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Einstein: What I most admire about your art, is your universality. You don’t
say a word, yet the world understands you!

Chaplin: True. But your glory is even greater! The whole world admires you,
even though they don’t understand a word of what you say.





Abstract

This Master Thesis work is about testing gravity on cosmological scales and studying the
physics of Dark Energy.
The main purpose is to reconstruct cosmological functions through a non-parametric approach,
in order to not be model dependent, and, later, to implement correlation priors encoding
theoretical requirements of broad classes of models. In particular, the functions are reconstructed
via smoothed step function and a Machine Learning technique, called Gaussian Process, using
modified versions of CosmoMC and MGCosmoMC.
In the context of Dark Energy and Modified Gravity models, the non-parametric approach is
applied to the reconstruction over redshift of the Dark Energy Equation of State wDE(z), for the
Quintessence case, along with that of the two phenomenological functions µ(z) and Σ(z), in the
Horndeski case.
These reconstructed functions are then compared with currently available data, in order to
obtain their best fit trend, using Bayesian statistics techniques.



II

Sommario

Questo lavoro di tesi Magistrale concerne l’analisi della gravità su scale cosmologiche e lo studio
della fisica dell’Energia Oscura.
Il principale obiettivo è quello di ricostruire funzioni cosmologiche mediante un approccio non
parametrico, di modo che siano indipendenti dall’assunzione di un modello specifico, e in seguito
di implementare delle priors di correlazione che includano le condizioni teoriche per ampie classi
di modelli. In particolare, le funzioni sono state ricostruite mediante una funzione a scalino
regolarizzata ed una tecnica di Machine Learning, chiamata Processo Gaussiano, facendo uso di
versioni modificate di CosmoMC e MGCosmoMC.
Nel contesto di Energia Oscura e modelli di Gravità Modificata, l’approccio non parametrico è
stato applicato per la ricostruzione in redshift dell’Equazione di Stato dell’Energia Oscura
wDE(z), nel caso di Quintessenza, insieme alle funzioni fenomenologiche µ(z) and Σ(z), nel caso
di Horndeski.
Le funzioni ricostruite sono poi state confrontate con dati attualmente disponibili, di modo da
ricostruire nella maniera più adatta il loro andamento, mediante tecniche di statistica Bayesiana.
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Introduction

One of the most puzzling phenomena studied by modern Cosmology is the late time
acceleration of the Universe. Before 1998, when the two groups High-Z Supernova Search Team
[1] and Supernova Cosmology Project [2] observed this phenomenon, it was already known that
the Universe is expanding, with a rate encoded in the Hubble parameter H(t), which depends on
the constituents of the Universe and on their energy content. Before these Supernovae
observations, cosmologists were trying to measure a deceleration parameter, since a Universe
filled with matter and radiation is expected to slow down its expansion due to gravitational
effects.
Once the late time acceleration was observed, there was the necessity to introduce new
constituents of the Universe or new physical mechanisms, since matter and radiation are not able
to produce the observed accelerated phase within the General Relativity framework: the simplest
candidate is a Cosmological Constant Λ, that, together with the assumption of the existence of
Cold Dark Matter, provides the successful ΛCDM model, which had a striking success in
explaining cosmological observations.
Recently, the final release of the European Space Agency satellite Planck, observing the Cosmic
Microwave Background (CMB) [3], strongly reaffirmed the success of this model in describing the
evolution and content of the Universe from its first moments to present time.
However, some theoretical issues related to Λ prompted the exploration of alternative ways of
sourcing the cosmic acceleration, which led to the introduction of Dark Energy (DE) and
Modified Gravity (MG) models.
Other than theoretical reasons, some recent observations might also hint for deviations from the
ΛCDM paradigm; the measurement of the current expansion rate of the Universe H0 from local
observations [4] is in fact in tension with the value inferred from high-z measurements [3] which
obtain H0 under the assumption of ΛCDM

HSH0ES
0 = 73.48± 1.66 kms−1Mpc−1 HPlanck

0 = 67.36± 0.54 kms−1Mpc−1

While unforeseen systematic effects might also drive this tension, a fascinating possibility is
that this discrepancy might be explained by models departing the standard ΛCDM assumption.
At the background level, departures from Λ have been largely investigated parameterizing the
Equation of State of a dynamic exotic component [3][5][6][7].
Observations of the growth of structures add information to this and provide a powerful way to
constrain models beyond ΛCDM. These can potentially distinguish between new components of
the Universe (DE) and modifications to the laws of Gravity (MG), since they can possibly
measure departures from the ΛCDM evolution of perturbations, which are usually encoded in
general functions of time and scale µ(t, k) and γ(t, k).
Due to their relevance, these two functions have been deeply investigated and many ways to
parameterize their time and scale dependence have been proposed [8][9][10][11], in order to detect
or rule out possible deviations from General Relativity.

The purpose of this Master project is to develop a model-independent reconstruction method
in order to understand the behaviour over time of these functions, that could potentially shed
light on the nature of the mechanism driving the late cosmic acceleration.

1



CONTENTS 2

First, for the most simple DE model, named Quintessence, I will reconstruct the EoS alone, while
for the most generic class of scalar tensor theory, i.e. Horndeski model, I will reconstruct,
together with the EoS, the two phenomenological functions µ(a) and Σ(a). The choice of the
latter function instead of the already mentioned γ(a) will be later justified by their different link
to observables, though the two choices are equivalent.

The work is organized as follows.
Chapter I I will first focus on the bases of the standard model of Cosmology [12] [13] [14],
through the construction of the theory itself and its application. Secondly, in light of a highly
structured Universe at smaller scales, I will furnish a brief summary of the cosmological
perturbation theory, via both Newtonian and Relativistic treatment, and the key observables.
Finally, I will analyze the late cosmic acceleration observations and the properties of the
Cosmological Constant.
Chapter II I will briefly introduce some alternative Dark Energy and Modified Gravity models,
where a deeper treatment can be found in the following reviews [15] [16] [17] [18] [19] [20], and
the past literature attempts of solving the H0 tension, via parameterizations of the EoS and of
the two phenomenological functions cited above.
Chapter III I will develop the non-parametric approach to reconstruct these functions, going
through the details of the reconstruction methods and the Bayesian statistics tools used for the
analysis, addressing with a particular focus the use of a correlation prior within the Monte Carlo
parameter estimation.
Chapter IV I will present the results and reconstructions obtained for Quintessence (DE) and
Horndeski (MG) models.
Chapter V I will provide a further discussion of the obtained results and a look to the future
surveys, aimed at improving our knowledge about the late cosmic acceleration nature.

The modified versions of the softwares used to reconstruct and analyze the functions related
respectively to DE and MG models are publicly available at:

• https://github.com/FrancescaGerardi/CosmoMC_binneda

• https://github.com/FrancescaGerardi/MGCosmoMC_binMG_w



1 | The standard cosmological
model

The Cosmological model describes how the fluid components of the Universe behave and how
they influence its structure; for this reason, we need a theory that relates the dynamics and
distribution of these fluids to the geometry and dynamics of the Universe itself. This theory is
General Relativity, where the metric tensor is built up under the hypothesis of homogeneity and
isotropy of space, namely the Cosmological Principle.

1.1 Theory of gravity
Of the four fundamental interactions, gravity is the one playing the crucial role in the history of

the Universe; since the nuclear, both weak and strong ones, are short-range interactions (10−15 −
10−18m) and the observed Universe is electromagnetically neutral on average, gravity is the main
interaction of cosmological interest.
Thus, to determine the evolution of the Universe, we need a theory of gravity to be the pillar of any
cosmological model: for modern standard cosmology this theory is Einstein’s General Relativity.
Einstein’s theory is based on the equivalence principle, that states that there is no experiment
that can distinguish a uniform acceleration from a uniform gravitational field [21]. In order to
understand the meaning of this principle, let us consider, for instance, a light ray travelling in a
straight line with respect to an inertial frame. This principle means that as we expect this ray to
be deflected once we move to an uniformly accelerated frame, the same will happen as soon as the
ray enters a gravitational field, being deflected towards the gravitational source.
This result was though interpreted geometrically as a curvature of spacetime and free falling
particles move within this geometry along the trajectory that minimizes their proper time τ , which
is defined by the geodesics equation:

d2xµ

dτ2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 (1.1)

with dxµ = (dt dx dy dz), (µ = 0, 1, 2, 3) and Γµ
αβ the affine connection. The latter naturally

arises when redefining the notion of derivative in a curved spacetime. The differentiation process is
defined via the incremental ratio, thus, given a vector Aµ, the computation of its partial derivative
with respect to a space(time) direction ~x necessarily requires the difference between the vector
evaluated at two different points (Aµ(P ), Aµ(Q)), separated by an infinitesimal space(time) interval
δx. However, in a curved spacetime the tangent space, with respect to which a certain vector is
defined, changes point by point, hence we are no more allowed to compare Aµ(P ) and Aµ(Q). This
brought to the definition of covariant derivative; still referring to the incremental ratio definition,
what we can do, before comparing the two vectors, is to move one of them to the point where the
other is defined by parallel transport. The covariant derivative of a generic vector Aµ is defined as

∇νA
µ =

δAµ

δxν
+ Γµ

ανA
α (1.2)

where new terms linked to the affine connection come up. Γµ
αβ measures how much the vector,

moved by parallel transport, is altered from a point to another, due to the curvature.

3



1.1. THEORY OF GRAVITY 4

Moreover, this tensor is defined only in terms of the metric; once the latter is defined, this is
uniquely determined as

Γσ
αβ =

1

2
gρσ(∂αgβρ + ∂βgρα − ∂ρgαβ) (1.3)

where gµν is the metric tensor, which is the tensor that enters the invariant line element

ds2 = gµνdx
µdxν . (1.4)

By construction, the affine connection can be further used to define the Riemann curvature tensor

Rρ
µσν = ∂σΓ

ρ
νµ − ∂νΓρ

σµ + Γρ
σλΓ

λ
νµ − Γρ

νλΓ
λ
σµ (1.5)

The revolutionary idea of Einstein’s theory is that gravity is not a force, in a Newtonian sense,
but a geometric property of spacetime, and the geometry is intrinsically connected to any energy
source distribution via field equations (I assume here and for the rest of the Thesis that the value
of the speed of light c is equal to 1, unless in rare cases, where useful):

Rµν −
1

2
Rgµν = 8πGTµν (1.6)

The l.h.s. of Eq.(1.6) is the geometric member, in particular it includes only functions of the
metric tensor gµν . The symmetric Ricci tensor Rµν and the Ricci scalar R, which is its trace, are
respectively {

Rµν = Rσ
µσν

R = Rµ
µ = gµνRµν

(1.7)

obtained by the Riemann curvature tensor Rρ
µσν and the affine connection, defined by gµν as seen

above.

On the r.h.s. there is the symmetric energy-momentum tensor, in which the physical properties
of any energy density source are encoded. Under the assumption of a perfect homogeneous and
isotropic fluid component, with energy density ρ, pressure p and four-velocity uµ, the energy-
momentum tensor assumes the following form

Tµν = (ρ+ P )uµuν + Pgµν (1.8)

In particular, from the Tµ
ν conservation law

∇µT
µ
ν = 0

∂µT
µ
ν + Γµ

µαT
α
ν + Γα

µνT
µ
α = 0

(1.9)

it is possible to derive the time evolution of that fluid component, once the metric is given.

Einstein’s field equations are derived from the action S; for a generic physical system, S is the
quantity that characterizes its dynamics and from which its equations of motion can be derived
through the principle of least action. If we consider only gravity and matter field minimally coupled
to it, then the action is of the form S = SEH + SM , where the two addenda refer respectively to
gravitational and matter sectors

S = SEH + SM =
1

16πG

∫
d4x
√
−g (R+ 16πGLM ) (1.10)

with g the determinant of the metric, G = 6.67408 · 10−11 m3kg−1s−2 the gravitational constant,
R the Ricci scalar and LM the matter Lagrangian density.
So, applying the variational principle δS

δgµν = 0 and keeping in mind that R = gµνRµν :
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δS

δgµν
=

1

16πG

∫
d4x

(
δ(
√
−gR)
δgµν

+ 16πG
δ(
√
−gLM )

δgµν

)
δgµν

=
1

16πG

∫
d4x

(
δ(
√
−g)

δgµν
R+
√
−g δ(g

µνRµν)

δgµν
+ 16πG

δ(
√
−gLM )

δgµν

)
δgµν

=
1

16πG

∫
d4x
√
−g
(
δ
√
−g

δgµν
R

(
√
−g)

+
δgµν

δgµν
Rµν + gµν

δRµν

δgµν
+ 16πG

1√
−g

δ(
√
−gLM )

δgµν

)
δgµν

= 0

(1.11)

where [15]
δ
√
−g

δgµν
R

(
√
−g)

= −1

2
gµνR ;

1√
−g

δ(
√
−gLM )

δgµν
= −1

2
Tµν (1.12)

and
gµνδRµν = ∇ρ(g

µνδΓσ
µν + gµσδΓρ

ρµ) (1.13)

which is zero, since it is a total derivative that will be integrated over null bounds [15].

Combining Eqs.(1.11)(1.12)(1.13) we obtain the final expression of Eq.(1.6).

As a supporter of a static Universe, Einstein introduced the Cosmological Constant Λ, in order
to furnish the negative pressure required to prevent the gravitational contraction, caused by matter
in a finite Universe. This will be formally demonstrated later in Sect.1.4.2, once the FLRW metric
is introduced. Hence, Einstein added Λ to the Einstein-Hilbert action

SHE =
1

16πG

∫
d4x
√
−g(R− 2Λ) (1.14)

such that, following the same procedure used above

δSextra

δgµν
=

1

16πG

∫
d4x

(
−2δ
√
−gΛ

δgµν

)
=

1

16πG

∫
d4x

[
−2Λ

(
−1

2
gµν
√
−g
)]

=
1

16πG

∫
d4x

(√
−g
)
[Λgµν ]

(1.15)

So, the modified Einstein’s field equations are:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (1.16)

On one hand, after Lemaître demonstrated that a static solution would have been unstable
once considered density perturbations, Λ has been passed over. On the other hand, in 1929, the
first evidence of the Universe expansion came from Edwin Hubble observations: he found out there
was a linear relation between the distance d of extra-galactic nebulae and their recession velocities

v = const · d

where the constant is the Hubble parameter H(t) evaluated at present time Htoday = H0.

He measured the recession velocity via the spectral lines shift, defined as

z =
λo − λe
λe

=

√
1 + v/c

1− v/c
− 1 ∼ v

c
(1.17)
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Figure 1.1: Original velocity-distance relation diagram, taken from [22].

where λo and λe are respectively the observed and the emission wavelengths of the incoming
radiation; moreover, the last equality is valid only in the limit v � c.
In particular, the recession velocity due to the Universe expansion is what characterizes the so
called Hubble flow. Given a source in the sky, this will take part to the Hubble flow and will have
also a peculiar velocity, linked to the environment in which it is placed.

The rate at which the Universe expands depends on the energy content, as it is going to be
demonstrated in the next Section, once we restrict ourselves to the choice of a particular metric
tensor.
All the different epochs the Universe had been through, during its expansion, are characterized
by a different distribution of the energy density content among the different constituents, which
means that, for instance, a component which is subdominant at present, could have been the
dominant source of energy density in the past, and viceversa.
Writing the field equations, we have basically considered the gravitational and matter sectors,
encoded respectively in SEH and SM , where actually the matter content to be considered is not
trivially what we define as ordinary matter. This sector broadly refers to both non-relativistic
(T � m1) and relativistic (T � m) particles and scalar fields.
At present, the majority of the energy budget EB is unknown and it goes under the name of
Dark Sector, that includes both Dark Energy and Dark Matter. According to Planck results
[3][23] 2, the present energy content is predicted to consist of:

Dark Energy, which is the energy source for the late cosmic acceleration and it acts as a
repulsive force, i.e. as a fluid component with negative pressure. According to the standard
cosmological model this source is the Cosmological Constant Λ; however, there are still other
viable candidates, as dynamical Dark Energy (DE), or modifications to the theory of General
Relativity at large scales, where the theory has not been tested with the same precision as in the
Solar System. As both these mechanisms add dynamics to the system, both of them consist of
the addition of extra degrees of freedom to the standard GR action (Eq.(1.10)), as it is going to
be discussed in Sect.2.1. This component makes up ∼69% of EB .

Matter, which is split into Dark Matter and ordinary matter. On one hand, Dark Matter
consists of particles that interact only gravitationally and, according to the standard model, it is
the fluid component that provided the potential wells where baryons fell to form large scale
structure, right after the decoupling between photons and baryons (tdec ∼ 378000yrs). As it is
going to be cleared later in Sect.1.5, the Dark Matter component in agreement with large scale
observations must have been cold, i.e. T � m, when it decoupled from the thermal bath; thus,
the standard cosmological model is also called ΛCDM, since at present the Universe energy
budget is mainly made up of Dark Energy (Λ) and Cold Dark Matter (CDM). The DM sector

1A particle is defined non-relativistic/cold (relativistic/hot) if its temperature T is largely smaller (larger) than
its mass m

2together with other cosmological observations, in order to break degeneracies between parameters
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makes up ∼26% of EB .
On the other hand, by ordinary (baryonic) matter I mean the light products of the Big Bang
Nucleosynthesis (BBN), such as free hydrogen and helium ∼4% EB , the stars ∼0.5% EB they
formed and heavy elements ∼0.03% EB produced by stellar evolution.

Radiation, that constitutes nowadays an infinitesimal component of EB . By radiation we refer
to relativistic particles, mainly to photons of the Cosmic Microwave Background (CMB) radiation,
discovered in 1964 by Penzias and Wilson. CMB radiation is, up to now, the best example of a
black-body spectrum, whose specific intensity Iν is given by the Planck law

Iν =
2h

c2
ν3

ehν/kT − 1
(1.18)

where ν and T are the frequency and temperature of photons and h is the Planck constant
h = 6.626 × 10−34 J · s. Hence, given that the Universe was far more dense in the past, this
radiation must have generated under thermal equilibrium at a certain temperature Ti; this
condition was fulfilled until the recombination epoch (at T ∼ 3000K), before which photons and
matter were strongly coupled. CMB constitutes a strong evidence for the Hot Big Bang model,
according to which the Primordial Universe was a mixture of hot plasma and photons in thermal
equilibrium, which then cooled down because of the expansion, allowing the formation of atoms
and molecules. The adiabatic expansion of the Universe affects the mean temperature of the
Cosmic Microwave Background, that, since we are dealing with a black-body radiation, evolves as
T (t) = Ti

a(ti)
a(t)

3, reaching then the current average temperature T0 = 2.72548± 0.00057K.

Neutrinos, that are very light leptons with no charge, involved, for instance, in β-decay and
in the electron capture

n −→ p+ + e− + ν̄e p+ + e− −→ n+ νe

Depending on their mass they could be included within the relativistic or non-relativistic sectors.
While at the beginning neutrinos were believed to be massless, in which case

ρν ∝
(

4

11

)4/3

ργ , (1.19)

the neutrino oscillation phenomenon [24] have determined that they are massive and the three
species (νe, νµ, ντ ) have different masses. It has been envisaged that they have behaved as
relativistic particles in the early Universe, and as matter particles later [25]. This component
makes up ∼0.3% of EB .

3As later in Sec.1.2.1 we are going to see, defined the scale factor a(t), the energy density of photons will evolve
as ργ ∝ a−4(t) and since for relativistic non-degenerate bosons [13] ρ ∝ T 4 (Eq.(1.93)), then the temperature will
evolve over time as T ∝ a−1(t)
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1.2 The homogeneous expanding Universe
Einstein’s equations are powerful tools to understand the dynamics of the Universe, but to

reach that goal two main ingredients are required: the metric tensor and the energy sources
properties. However, as already said, there is an intimate connection between geometry and
matter distribution; this means that an assumption on one of them will reflect as a property of
the other. In particular, the existence of some symmetries in the matter distribution implies a
simpler metric, since there are less degrees of freedom.
This is the role played by the Cosmological Principle, which is the second cornerstone for modern
cosmology; it states that at a given time, over a sufficiently large scale (∼ 300Mpc), the Universe
observed by a comoving observer 4 is nearly homogeneous and isotropic (in space)5. This means,
respectively, that, given a certain physical property, its average is invariant by translation and
rotation.
The striking observational evidence of isotropy comes from CMB radiation, which has the same
mean temperature (T0 = 2.72548 ± 0.00057K at present) independently of the line of sight
direction, besides anisotropies of the order of 10−5K, whose nature will be discussed in Sect.1.3.
On the other hand, there is no way to experimentally probe homogeneity. The Universe would be
automatically homogeneous, if, along with the observed isotropy, the Copernican Principle is
assumed to be valid, as it states that the observer is not in a special position in the Universe.

The metric describing a homogeneous and isotropic expanding universe is the
Friedmann-Lemaître-Robertson-Walker (FLRW), where the line element in spherical-polar
coordinates is

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
. (1.20)

In Eq.(1.20) r, θ and φ are comoving spatial coordinates, t is the cosmic time, a(t) is the scale
factor and k is the curvature parameter.
The scale factor is defined as a dimensionless function of time that encodes the expansion, it
relates the comoving coordinates to the physical ones. As a simple example, let us consider the
2-dimensional spacetime; in this case the FLRW line element can be written as
ds2 = −c2dt2 + a2(t)dx2: dx is defined as the comoving distance, that does not change in time
due to the expansion of spacetime, while dl = a(t)dx is defined as the physical distance, that
takes into account the expansion of the Universe at time t. In particular a(t0) = a0 = 1.

There exist different cosmological
models depending on the value of the
curvature parameter, in particular it
can be positive, negative or equal to
zero; once normalized it assumes one
of the following values


−1 open Universe
0 flat Euclid spacetime
+1 closed Universe

(1.21)

We will see that k is dependent on the quantity of matter, which is still intuitive from a
Newtonian point of view: the more matter I have the more the Universe is going to be "closed"
under the effect of its potential well. Observationally, the Universe is highly close to flat [27].

4i.e. comoving with the Hubble flow
5Before the discovery of the CMB properties, there had been the development of the steady-state cosmology,

based on the Perfect Cosmological Principle, according to which the Universe was the same not only in all places
and in all directions, but also at all times. [26]



9 1.2. THE HOMOGENEOUS EXPANDING UNIVERSE

1.2.1 The background dynamics
Once the FLRW is assumed, the Einstein’s equations provide the equations that rule the

dynamics of the background, where by background I mean the perfect homogeneous and isotropic
Universe described exactly by the FLRW metric. These are the Friedmann equations.
Considering the i-th perfect fluid 6 component, at rest in comoving coordinates, its
energy-momentum tensor is equal to

Tµ
ν = (ρ+ P )uνu

µ + pgµν

=


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (1.22)

since uµ = (1, 0, 0, 0) and the metric tensor is diagonal. Moreover, it should also be noted that
the form of the energy-momentum tensor of Eq.(1.22) is required for compatibility with the
Cosmological Principle, anisotropic pressure is not permitted [26].
Hence, from Eq.(1.6) using Eqs.(1.20)(1.22), this yields the Friedmann equations(

ȧ(t)

a(t)

)2

=
8πG

3

∑
i

ρi(t)−
k

a2(t)
(1.23a)

ä(t)

a(t)
= −4πG

3

∑
i

(ρi(t) + 3pi(t)) (1.23b)

where ȧ(t) and ä(t) are respectively the first and the second derivative of the scale factor a(t)
with respect to the cosmic time.

Usually the properties of these fluid components are expressed in terms of their Equation of
State (EoS) w(t) = p(t)/ρ(t); hence, the time evolution of the density can be written in terms of
w(t).
Assuming that an i-th component does not exchange energy with the others, for the first law of
thermodynamics, considering a comoving volume:

d(ρia
3) = −pid(a3)

7→ ρ̇ia
3 + 3ρia

2ȧ = −3pia2ȧ⇔ ρ̇ia+ 3(ρi + pi)ȧ = 0⇔
⇔ ρ̇ia+ 3ρi(1 + wi)ȧ = 0⇔ ρ̇i

ρi
= −3(1 + wi)

ȧ

a

7→ dρi
ρi

= −3(1 + wi)
da

a

(1.24)

where the density and the scale factor are functions of time and the derivatives are computed
with respect to it.
Eq.(1.24) is a differential equation with solution

ρ ∝ e3
∫ 1
a(t)

1+w(a)
a da (1.25)

that reduces to
ρ ∝ a−3(1+w) (1.26)

if w = const. The same result is obtained working with Eqs.(1.23), deriving the first one and using
both

2
ȧ

a

[
ä

a
−
(
ȧ

a

)2
]

=
8πG

3

dρ

dt

2
ȧ

a

[
−4πG

3
ρ(1 + 3w)− 8πG

3
ρ

]
=

8πG

3

dρ

dt
ȧ

a

[
−8πG

3
3ρ(1 + w)

]
=

8πG

3

dρ

dt

(1.27)

6A fluid is perfect if, for instance, the mean free path between particle collisions is much less than the scales of
physical interest [26]



1.2. THE HOMOGENEOUS EXPANDING UNIVERSE 10

that yields the same last equation in Eq.(1.24).

For a flat single-component Universe, using Eqs.(1.23)(1.26), in the hypothesis of constant
Equation of State, it is simple to obtain the evolution over time of the scale factor:(

ȧ(t)

a(t)

)2

∝ ρ0a−3(1+w) ⇔ ȧ(t)

a−(1+3w)/2
∝ const

⇒ a
(1+3w)

2 da ∝ dt
(1.28)

where ρ0 = ρ(t0), so that by integration

a ∝ t2/[3(1+w)] (1.29)

In Tab.1.1 the time dependence for the matter, radiation and Cosmological Constant densities
are given, once specified their Equations of state wi, and plotted in Fig.1.2.

Component w a ρ

radiation 1/3 t1/2 a−4

matter 0 t2/3 a−3

Cosmological Constant -1 eHt a0

Table 1.1: Main ΛCDM Universe components with their EoS and the evolution of the scale factor and
density over time, under the hypothesis of a single component Universe. In particular, the EoS of matter
is w = 0 because a fluid of non-relativistic particles exerts a pressure which is negligible compared to their
energy density.

Figure 1.2: Behaviour over time of the matter, radiation and Cosmological Constant densities. The
intersection between the matter and radiation curves is defined as the time of equivalence. Figure from
[25].

Neglecting for the moment the Cosmological Constant contribution, which is relevant at late
times, from Fig.1.2 it can be seen that there exists a value of the scale factor, defined as aeq = a(teq),
at which the matter and radiation densities are equivalent. Thus, the standard cosmological
model distinguishes two main eras, that dominated by radiation, for a < aeq, and the latter by
matter, for a > aeq, as long as we neglect the Dark Energy dominance at present. Currently,
the equivalence epoch is estimated to be aeq ∼ 3 · 10−4, far before than the baryons-radiation
decoupling (adec ∼ 10−3).



11 1.2. THE HOMOGENEOUS EXPANDING UNIVERSE

The standard cosmological model provides a mathematical description of the Universe
dynamics as a consequence of its fluid components, accounting for the observed expansion. Since
the Universe is expanding, we expect that it must have generated as a highly dense and hot
environment; for this reason the standard cosmological model is also called the Hot Big Bang
model.
The Big Bang is defined as the initial singularity at which the scale factor is null and the
thermodynamic parameters, as density, diverge. Starting from this highly chaotic phase, the rate
of interactions between particles was much higher than the rate of expansion, hence these
particles were in thermodynamic equilibrium and constituted a thermal bath. But, as the
Universe adiabatically expanded, it cooled down. Hence, since different species have different
interaction rates, the time at which a certain particle species decouples from the thermal bath
depends on the interaction rate of that species and how the latter is affected by the cooling. For
instance, the standard cosmological model successfully explains the black-body CMB radiation as
a relic of this hot phase, where in particular CMB photons decoupled from baryons at
tdec ∼ 378000yrs, allowing the formation of atoms and molecules.
Moreover, the model successfully predicts [26] the light element abundance, i.e. hydrogen, helium
and lithium, via the Big Bang Nucleosynthesis theory (BBN), that is dated around 3 minutes
after the Big Bang (E ∼ 100keV ).

Figure 1.3: Evolutionary stages of the Universe. Figure adapted from [28].
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1.2.2 Cosmological parameters
Given the above cosmological model, some cosmological parameters can be defined. There exist

two parameters linked to the dynamical properties of the Universe: the Hubble and the deceleration
parameters

H(t) =
ȧ(t)

a(t)
q(t) = −a(t)ä(t)

ȧ(t)2
. (1.30)

The Hubble parameter is defined as the expansion rate. Before the observation of the late cosmic
acceleration [1][2], cosmologists were trying to measure the deceleration of the Universe
expansion, since matter alone is supposed to slow it down. However, in light of the late cosmic
acceleration, i.e. ä(t) > 0, the deceleration parameter at present is negative.

Then, there exist parameters linked to the density of the fluid constituents. Once defined the
critical density ρc(t) = 3H2(t)

8πG , as the energy density in the case of a flat Universe (Eq.(1.23a) with
k = 0), the fraction of the total energy density linked to the i-th component will be given by the
dimensionless density parameter

Ωi(t) =
ρi(t)

ρc(t)
. (1.31)

The critical density is named after its link with the curvature k. Indeed, if we write Eq.(1.23a)
in terms of the density parameters of all the fluid components, then

1 =
8πG

3H2

∑
i

ρi −
k

H2a2

1 =

∑
i ρi
ρc

− k

H2a2

⇒ Ω− 1 =
k

H2a2
(1.32)

with Ω =
∑

i Ωi.
Consequently, from Eq.(1.32) it can be immediately seen that

∑
i ρi < ρc ⇒ k < 0∑
i ρi = ρc ⇒ k = 0∑
i ρi > ρc ⇒ k > 0

(1.33)

By the definition of these parameters it can be finally cleared why the rate at which the Universe
expands depends on the energy content. The expansion history, starting from the first Friedmann
equation (Eq.(1.23a)), is defined as a function of the density parameters

H(a) = H0

[
Ωma

−3 +Ωγa
−4 +ΩDEa

−3(1+wDE)
]1/2

(1.34)

where I have taken into account matter, radiation and a general Dark Energy component, with
constant EoS. From the latter equation, it can be immediately seen that depending on the density
parameters, i.e. on the dominant energy sources, the Universe will expand at different rates.
In the specific case in which the Dark Energy is the Cosmological Constant, namely according to
ΛCDM model, the expansion rate of Eq.(1.34) becomes

H(a) = H0

[
Ωma

−3 +Ωγa
−4 +ΩΛ

]1/2 (1.35)
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1.2.3 Cosmological redshift and distances
Now that we know how the scale factor evolves as a function of the Universe energy content,

via Eq.(1.34), we can predict how the physical distances will evolve over time. However in order to
compare the theoretical predictions to observations, two important quantities must be adequately
defined: cosmological redshift and distances.

Cosmological Redshift

As already seen in Eq.(1.17), generically considering a distant light source, we can define the
redshift(blueshift) as the change in wavelength of the emitted photons to a redder(bluer) one. In
particular, the cosmological redshift refers to a change in wavelength of photons due to the cosmic
expansion. Thus, considering a photon on his path to the observer, as the Universe expands,
wavelengths get stretched, since photons loose energy against the expansion, i.e. decrease their
frequency, while reaching the observer.
There exists a relation between redshift and the scale factor. Let us consider the path of a photon,
characterized by ds2 = gµνdx

µdxν = 0 and dθ = dφ = 0; assuming it is emitted at te from the
source and it reaches the observer at t0 then

cdt = a
dr√

1− kr2∫ t0

te

cdt

a(t)
=

∫ r

0

dr√
1− kr2

(1.36)

where the r.h.s. is constant because r is the comoving coordinate and is constant by definition.
Then, let us consider a second light emission at te + δte received at t0 + δt0:∫ t0+δt0

te+δte

cdt

a(t)
=

∫ r

0

dr√
1− kr2

(1.37)

if δti is sufficiently small
δt0
a0

=
δte
ae
⇔ ν0a0 = νeae ⇔

1

λ0
=
ae
λe

(1.38)

and then by the definition in Eq.(1.17)

1 + z =
1

a
(1.39)

Luminosity distance

Luminosity distance is an important tool to constrain the expansion history via objects of which
we know the intrinsic luminosity, to which we refer as standard candles; let us derive it. There
exists a relation between the flux and the luminosity, that is

F =
L

4πr20
(1.40)

where r0 is the comoving distance between the source and the observer, equal to the physical
distance at present time, since a0 = 1. This would be the relation if there would not be any
expansion, but since the observed Universe is expanding we must take into account the photons
loss of energy and the difference between the frequency of emission and that of observation, so that

F =
L

4πr20(1 + z)2
=

L

4πd2L
. (1.41)



1.2. THE HOMOGENEOUS EXPANDING UNIVERSE 14

Thus, the distance in the flux-luminosity relation is no more the comoving one, but it becomes the
so called luminosity distance dL, such that dL = r0(1 + z).
As the comoving distance between the source and the observer is defined as

r0 =

∫ t0

te

cdt

a(t)

= c

∫ z

0

dz

H(z)

(1.42)

at the end this yields
dL(z) = (1 + z)c

∫ z

0

dz

H(z)
(1.43)

It’s worth mentioning here that the Hubble expansion law can be obtained from Eq.(1.43)
Taylor expanding the scale factor around its value today:

a(t) = a0 + (t− t0)
(
da

dt

)
t0

+
1

2
(t− t0)2

(
d2a

dt2

)
t0

+ ..

= 1 + (t− t0)H0 +
1

2
(t− t0)2q0H2

0 + ..

(1.44)

⇒ dL =
c

H0

(
z +

1

2
(1− q0)z2 + ..

)
where q0 is the deceleration parameter at present time.

Angular diameter distance

Moreover, it is possible to constrain the expansion history via geometrical probes, known as
standard rulers. In particular, assuming that the angular dimension dθ and the linear dimension l
of an object are known, in the limit of small angles, the following approximation is valid

dA =
l

dθ
(1.45)

where dA is defined as the angular diameter distance. There exists a relation between dA and dL,
this can be derived working with the FLRW metric, under the assumption that the two ends of
the object are at the same comoving distance r0, so that dr = 0 and dt = 0, laying on the same
plane, such that dφ = 0, then l =

√
ds2 = a(t)r0dθ so that

dA =
a(t)r0dθ

dθ
⇔ dA = a(t)r0 ⇔ dA =

r0
(1 + z)

⇒ dA =
dL

(1 + z)2
(1.46)
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1.3 The inhomogeneous Universe
The background theory evolution described in the previous Section is based on the

assumption that at sufficiently large scales the Universe is homogeneous and isotropic, however
this no longer holds on smaller scales, where the Universe tends to be highly structured (Fig.1.4).
Thus, that is the clear evidence that there exist deviations from these conditions.

Figure 1.4: Image of the large scale structure as created by The Millennium Simulation
( https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/ ).

The underlying idea behind large scale structure formation is that the whole homogeneous
Universe background 7 presented locally matter overdensities δρ(x, t), defined as δρ(x, t) = ρ(x, t)−
ρBCK(t) 8, that subsequently evolved, affected by the opposite effects of pressure and gravitational
forces, schematically [13]

δ̈ + (Pressure − Gravity)δ = 0 . (1.47)
That is the gravitational instability theory, first formulated by Jeans in 1902, in order to
determine the mechanism of stars and planets formation and later adopted as the standard model
theory for the formation of galaxies and large scale structure (LSS) in linear regime.

Since these fluctuations are originally random Gaussian distributed, we can statistically
characterize and study their amplitude as a function of the cosmological scale, defining the
two-point correlation function, or as a function of the wavenumber k, in Fourier space, via the
power spectrum.
Thus, having a stochastic fluctuations field δ(x, t), in real space the mean value of the statistic
ensemble is

〈δ(x, t)〉 = 0 (1.48)
by construction, hence it does not give us any information. On the contrary, the two-point
correlation function is statistically meaningful, since it is defined as

ξ(δx) ≡ 〈δ(x), δ(x+ δx)〉 (1.49)
7Studying the evolution of the perturbations, we will refer to the background as the manifold described exactly

by the flat FLRW metric.
8By the properties of homogeneity and isotropy, the mean value of the background will be only a function of

time.
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where the two fluctuations δ(x) and δ(x+δx) are specified at the same time t, but at two positions
that differ by δx.
As close regions of the Universe can influence each other, perturbations localized in such regions
can not evolve independently one with respect to the other, it is more useful to think of the
perturbation as a superposition of plane waves, that evolve independently while the fluctuations
are still linear [26]. In Fourier space, the fluctuation is defined as

δ(x, t) =
1

(2π)3

∫
δk(t)e

ik·xd3k (1.50)

and its Fourier transform δk(t) fulfills the condition

〈δk(t), δk′(t)〉 = (2π)3P (k, t)δ(3)(k+ k′) (1.51)

demanded by the fact that the two point correlation function, also in Fourier space, must meet
the Cosmological Principle. Indeed, defined the function of scale k and time t P (k, t) as the
power spectrum, the latter expresses the isotropy property, while the term δ(3)(k + k′) encodes
homogeneity, i.e. translation invariance.
Hence, in Fourier space the two-point correlation function will be

ξ(δx) = 〈 1

(2π)6

∫
d3kδk(t)e

ik·x
∫
d3k′δk′(t)eik

′·(x+δx) 〉 (1.52)

where using now Eq.(1.51) yields

ξ(δx) =
1

(2π)3

∫
P (k, t)e−ik·δxd3k . (1.53)

Thus, the measure of the amplitude of fluctuations as a function of the wavenumber k will be given
by the power spectrum, which is defined by the Wiener-Khintchine theorem (Eq.(1.53)) to be the
Fourier transform of the two-point correlation function, for a statistically homogeneous random
field.
If δx = 0, then Eq.(1.49) yields the variance

〈δ(x, t)2〉 =
∫

dk

k
∆(k, t) (1.54)

where ∆(k, t) is defined as the adimensional power spectrum

∆(k, t) =
1

(2π)3
k3P (k, t) (1.55)

The standard cosmological model can not predict the magnitude of the fluctuations δ(x, t),
but only the statistical properties of these perturbations, encoded in the power spectrum P (k, t).

Let us then proceed to the theory that provides an explanation for the evolution of these
fluctuations, working under the assumption that δρ(x, t) � ρBCK(t) (small perturbations), in
which case, it is possible to study their evolution via a perturbative approach: the perturbed
quantities will be described as y(t,x) = y0(t) + δy(t,x), where y0(t) is the mean background value
and by the assumed homogeneity and isotropy it does not depend on the spatial coordinate x.
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1.3.1 Newtonian approach
The gravitational Jeans instability theory dates back to 1902, even before the development of

the General Relativity theory, thus it is fully based on a Newtonian treatment. The underlying
idea of Jeans theory is to determine the role of the two opposite pressure and gravity forces on
the evolution of δ, depending on the scale of the fluctuations. Especially, the theory naturally
defines a critical scale, the Jeans scale λJ , that divides the two regimes in which one of the two
forces is dominant with respect to the other.
Let us formally derive the expression of the Eq.(1.47).

As the theory was formulated under non-relativistic assumptions (back then Relativity did not
exist) and these perturbations refer to the fluid constituents of the Universe, the starting point is
then to consider fluid dynamics laws for a non-relativistic fluid component, with density ρ, pressure
p and velocity u. Its equation of motion is given by a combination of:

• the continuity equation, implied by the mass conservation

δtρ = −∇r(ρu) (1.56)

• the Euler equation
(δt + u∇r)u = −∇rp

ρ
−∇rΦ (1.57)

that is inferred from momentum conservation.

Moreover, the gravitational potential Φ induced by the massive fluid is linked to the fluid density
via the Poisson equation

∇2
rΦ = 4πGρ (1.58)

Since we want to combine these three equations to determine the evolution over time of small
perturbations, we first decompose the density, pressure and velocity into their background and
perturbed quantities, i.e. ρ(t,x) = ρ0(t) + δρ(t,x), where δρ(t,x) must satisfy the condition
δρ(t,x)� ρ0(t) to enable us to apply perturbative theory.

The expansion of the Universe was not known at that time, however, for our aims we are going
to take it into account. Hence, it is more convenient to pass to the frame comoving to the fluid,
i.e. to Lagrangian coordinates:

r = a(t)x (1.59)
Thus, both the space and time derivatives will transform as

∇r = a−1∇x

δ

δt
=
δx

δt

δ

δx
+
δt

δt

δ

δt
=

δ

δt

(
r

a(t)

)
δ

δx
+
δ

δt
=

δ

δt
−Hx∇x

(1.60)

and due to this change of frame the velocity field will be then

u(t) =
dr

dt
=
da(t)x

dt
= ȧ(t)x+ a(t)ẋ = Hr+ v , (1.61)

where Hr is the Hubble flow and v = a(t)ẋ the peculiar velocity.

The evolution of adiabatic density perturbations obtained combining Eqs.(1.56)(1.57)(1.58)
transformed in the new reference frame is

δ̈ + 2Hδ̇ − c2s
a2
∇2δ = 4πGρ0δ (1.62)

where cs =
(

∂P
∂ρ

)1/2
is the sound speed and δ is the density contrast, defined as

δ =
δρ

ρ0
(1.63)
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Before proceeding, let us first derive the Jeans scale, as the main parameter of the theory.
Assuming a(t) = const (⇒ H = 0), i.e. a static Universe, Eq.(1.62) yields

δ̈ − c2s
a2
∇2δ = 4πGρ0δ (1.64)

and admits the oscillating solution of amplitude A

δρ(t, r) = Aexp [i (ωt− k · r)] (1.65)

where
ω2 = c2sk

2 − 4πGρ0 (1.66)
with k = |k|.
There exists a critical wavenumber associated to ω2 and that is the Jeans wavenumber

kJ =

√
4πGρ0
cs

(1.67)

or equivalently the Jeans length

λJ =
2π

kJ
= cs

√
π

Gρ0
(1.68)

which are found imposing the condition ω = 0, namely that the two opposite pressure and
gravitational forces balance each other.
Below that length (k > kJ) the pressure is dominant, then the fluctuations oscillate with constant
amplitude; on the contrary if k < kJ ω is imaginary and the argument of the exponential solution
is real, i.e. the perturbations grow exponentially.

Adding the friction term 2Hδ̇ due to the expansion (as in Eq.1.62), the fluctuations below the
Jeans length oscillate with decreasing amplitude (rather than keeping it constant), while above
they grow as a power law (rather than exponential).

Since we are interested in structure formation, let us focus on the matter component, i.e. on a
pressure-less fluid (p� ρ), such that Eq.(1.62) becomes

δ̈m + 2Hδ̇m = 4πGρ0δm (1.69)

where δm denotes the density contrast related to the matter fluid.
The evolution of matter density perturbations over time will be then determined once the epoch
of interest is specified; indeed this will make clear the time dependence encoded into the Hubble
parameter as well as the background densities that must be considered (radiation, matter and/or
Dark Energy), in order to solve the equation.
The full treatment can be found in [25][26].

As already pointed out more than once, this theory restricts us to the treatment of density
perturbations for non-relativistic fluids, besides we could be interested in determining an equation
for the evolution of density perturbation even for the radiation component.
Moreover, these approach is a good approximation as long as we are dealing with perturbations
whose size is far smaller than the Hubble radius

RC(t) =
c

H(t)
∼ cτH

defined as the radius of the sphere, centered on the observer, that contains all the points that had
been in causal connection with the observer within one Hubble time H(t)−1.
By definition, the comoving Hubble radius will be then equal to

rH(t) =
1

a(t)

c

H(t)
=

c

ȧ(t)

⇓

rH(t) ∝
{
t1/2 radiation dominated era
t1/3 matter dominated era

(1.70)
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Figure 1.5: Two regimes can be distinguished with respect to the Hubble radius: the sub-horizon and
the super-horizon regimes. Given the relation between the comoving scale λ of the perturbation and
the wavenumber k, the perturbation crosses the horizon when the condition k = aH is satisfied. Figure
adapted from [13]

The necessity of a full relativistic treatment can be dimensionally understood as follows.
Considering Eq.(1.58) and combining it to the first Friedmann equation (Eq.(1.23a)), the Poisson
equation leads to

∇2
rΦ =

3

2
a2H2δ (1.71)

that by a dimensional analysis, including the light velocity c explicitly, means

Φ

c2
∼
(
λ

rH

)2

δ (1.72)

Hence, on sub-horizon regime λ � rH the Newtonian approach is a good approximation as
Φ � c2, but this is no longer true at higher scales (i.e. λ ≥ rH) where a full General Relativity
treatment is required.
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1.3.2 Relativistic approach
As it can be already seen by the Newtonian treatment, gravity plays a fundamental role in the

evolution of density perturbations. As in GR gravity is a geometric property of spacetime and
geometry is linked to any energy source via field equations, the Relativistic approach to study the
evolution of density perturbations consists of perturbing Einstein’s equations. A perturbation of the
energy source causes a perturbation of the metric, with respect to the background (unperturbed)
FLRW gµν .
Thus, perturbing Eq.(1.6) and collecting the whole l.h.s. member into the Einstein tensor

Gµν = Rµν −
1

2
Rgµν (1.73)

the perturbed field equations will assume the form of

G0
µν + δGµν = T 0

µν + δTµν (1.74)

where the apex 0 denotes unperturbed quantities.
Hence, both the geometric and the energy source members must be properly modified. On one
hand, perturbations of the metric tensor will automatically imply perturbations of the Einstein
tensor, since the Ricci tensor and scalar are functions of the gµν by definition. On the other hand,
perturbations to the energy-momentum tensor will be sourced by perturbations in every quantity
that constitutes it, as density, pressure and the four-velocity.
Let us though start from perturbations of the metric tensor.

Metric tensor perturbations

The perturbed metric tensor will be of the form of

gµν = g0µν + δgµν (1.75)

such that FLRW line element in conformal time τ = t/a(t) will be perturbed in

ds2 = a2(τ)
[
−dτ2 + δijdx

idxj
]

⇓
ds2 = a2(τ)

[
−(1 + 2A)dτ2 + 2Bidx

idτ + (δij + hij)dx
idxj

] (1.76)

where A,Bi and hij are functions of space and time, respectively scalar, vector and tensor
perturbations.
Since we are only interested in scalar perturbations, it is now useful to operate the
scalar-vector-tensor (SVT) decomposition, in order to isolate all the scalar contributions to the
perturbed metric. Indeed, since the three kind of perturbations evolve independently one with
respect to the others at linear order, we can treat the evolution of scalar, vector and tensor
perturbations separately.
Hence, applying the SVT decomposition to vector and tensor perturbations, they are decomposed
in their scalar, vector (divergenceless) and tensor (traceless) part for Helmholtz theorem, as [25]

Bi = ∂iB + B̂i (1.77)

hij = 2Cδij +

(
∂i∂j −

1

3
∇2δij

)
∂iE +

1

2

(
∂iÊj + ∂jÊi

)
+ Êij (1.78)

Finally, the metric perturbative degrees of freedom are encoded in

• four scalars A,B,C,E

• two vectors B̂i, Êi

• one tensor Êij
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The Gauge problem In perturbation theory any perturbed tensor T can be expressed as the
sum of the unperturbed one, to which I am going to refer as the background T0, and the
perturbation δT , such that δT = T − T0. Here comes the Gauge problem: perturbations are not
uniquely defined. Let us consider two manifolds: the background flat FLRW M0 and the
perturbed M ; on M0 lays the tensor T0, while T on M . The problem is how to define their
difference, since two tensors must belong to the same manifold to be comparable. The solution is
then up to the choice of a gauge (a map), that can establish a 1:1 correspondence between the
manifolds.

Consider the points p ∈ M0 and q ∈ M0 both corresponding to the same point o ∈ M via two
different gauges: p = Ψ(o) and q = Φ(o), in general the perturbations δT = T - T0 for the first
gauge and δT̃ = T̃ - T̃0 for the second gauge will differ from each other. We might then wonder
what is the transformation law for these perturbations.
Formally gauge and coordinate transformations are two different things, however since we know
how scalars, vectors and tensors transform under a ordinary change of coordinates, we would like
to interpret the gauge transformation in terms of the latter [29]. Hence, starting from p, we can
interpret the gauge transformation within an active approach, namely moving from p to q, defining
a map in the background manifold as

Θ : p→ q = Θ(p) = Φ(Ψ−1(p)) . (1.79)

From this point of view the gauge transformation is defined as an active coordinates transformation;
thus, let us outline schematically the practical approach: first we need to fix the M0 coordinates
xµ. Secondly, we define the vector ξµ(x) = dxµ

dλ , where λ is the xµ curves parameter, that must be
small since we are interested in linear perturbations; hence, moving from p to q yields

xµ(q)→ xµ(p) + λξµ(x(p)) . (1.80)

Without getting any deeper, scalars, vectors and tensors consequently transform as δT̃ = δT +
LξT, where Lξ is the Lie derivative along the vector ξµ(x) [30]:

LξS = ξν
∂S

∂xν

LξV
µ = ξν

∂V µ

∂xν
+
∂ξµ

∂xν
V ν

LξTµν = ξλ
∂Tµν
∂xλ

+
∂ξλ

∂xµ
Tλν +

∂ξλ

∂xν
Tµλ

If we define [30] {
ξ0 = α

ξi = ∂iβ + di
(1.81)

then choosing a gauge means, via the transformation law above, giving conditions on α, β and di.

One way to proceed is working with the Bardeen [31] variables, defined by the gauge-invariant
combination of the perturbative terms of the metric tensor; these are: the two scalar variables
[25]

Ψ ≡ A+H(B − E′) + (B − E′)′ (1.82)

Φ ≡ −C −H(B − E′) +
1

3
∇2E (1.83)
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the vector and tensor perturbations

Φ̂i ≡ Ê′
i − B̂i Êij (1.84)

where H = aH is the Hubble parameter in conformal time τ and ′ denotes derivatives with
respect to τ .

Anyway, a gauge must be fixed, before proceeding with all the calculations.
The gauge I will use is the Newtonian gauge, that is defined by the choice

B = E = 0 (1.85)

so that in terms of the Bardeen variables: A = Ψ and C = Φ. Hence, the flat FLRW perturbed
line element at linear order in Newtonian gauge is

ds2 = −(1 + 2Ψ(x, t))dt2 + a2(t)(1− 2Φ(x, t))d~x2 (1.86)

⇓

gµν = g(0)µν + δgµν = a2
(
−(1 + 2Ψ(x, t)) 0

0 (1− 2Φ(x, t))δij

)
(1.87)

Source tensor perturbations

The perturbed energy-momentum tensor will be of the form of

Tµν = T 0
µν + δTµν (1.88)

with the perturbation with respect to the background equal to

δTµ
ν = (δρ+ δP )uµ(0)u

(0)
ν + (ρ0 + P0)(δu

µu(0)ν + uµ(0)δuν)− δPδ
µ
ν −Πµ

ν (1.89)

where a priori there could be added also a traceless anisotropic stress tensor Πµ
ν .

In particular, the source properties, as density, pressure and four-velocities, will be expressed as
the addition to the background quantities of the sum over the (r) perturbative orders (r=1:linear
order) as in [30]:

ρ = ρ0 +

∞∑
r=1

δρ(r)

r!
p = p0 +

∞∑
r=1

δp(r)

r!
9 uµ =

1

a

[
δµ0 +

∞∑
r=1

vµ(r)

r!

]
(1.90)

where δρ and δp are scalar perturbations, while vµ is a vector one.
From the normalization condition of the four-velocity uµuµ = −1, or better from its perturbation
at linear order, it is possible to explicitly derive a link between the linear perturbative order of the
peculiar velocity v0(1) and the scalar perturbations of the metric, where only A = Ψ and C = Φ
differ from zero, as we put ourselves in the Newtonian gauge. If we would have perturbed the
normalization condition at the r-th order, we would have found the link between v0(r) and the
metric perturbations. Especially, at linear order [25]

uµ = a−1[1−A, vi] uµ = a[1 +A,−(vi +Bi)] (1.91)

Finally, the perturbed energy-momentum tensor (1.89) will have non-zero off-diagonal terms,
due to peculiar velocities vi [32]:

T 0
0 = −ρ(1 + δ)

T 0
i = −(ρ+ P )vi

T i
j = (P + δP )δij +Πi

j

with δ = δρ/ρ density contrast.

9δp = c2sδρ+ δpnon adiabatic
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1.3.3 Probes of inhomogeneities
Cosmic Microwave Background anisotropies

As we already said at the very beginning of this Section, the first evidence of matter density
inhomogeneities comes from large scale structure (LSS), indeed the standard cosmological model
provides, in both Newtonian and General Relativity frameworks, powerful tools to calculate the
evolution over time of these perturbations.
However, up to now, we have restricted our observations to the matter sector, whereas at earlier
times radiation was a relevant component, as already argued while dealing with the homogeneous
FLRW Universe, and it was also strongly coupled to baryons before tdec. Hence, we should find
imprints of these baryon density perturbations in the form of radiation density perturbations as
well. Since the CMB is the relic of the earliest hot and dense phase of the Universe, it constitutes
the most promising way to obtain information on the evolution of the Universe, namely of
perturbations as well.

The signature of perturbations related to the radiation sector, specifically to the CMB, is the
presence of temperature anisotropies, defined as

∆T

T0
(θ, φ) =

T (θ, φ)− T0
T0

(1.92)

where (θ, φ) are angular sky coordinates, while T0 is the current mean temperature of the Cosmic
Microwave Background radiation.

Figure 1.6: This is a map of the CMB temperature from Planck. Figure from
https://www.esa.int/spaceinimages/Images/2013/03/Planck_CMB

The first detection of fluctuations in the sky temperature of the CMB dates back to 1992 by
the COBE team, while, more recently, WMAP and Planck satellites revealed a pattern of
anisotropies, that are nowadays estimated to be of the order of 10−5K.

The main reason why we find these features in the temperature distribution is that for
relativistic non-degenerate bosons [13]

ργ =
π2

30
g∗T

4 , (1.93)

where photons have two spin states (g∗ = 2). Hence, density perturbations led to perturbations in
temperature, as

∆T

T0
=

1

4

δργ
ργ

. (1.94)
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In order to provide a statistical characterization of fluctuations in the CMB temperature on
the sky, the usual procedure is to expand Eq.(1.92) in spherical harmonics, such that

∆T

T
(θ, φ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, φ) (1.95)

where l is defined as the multipole order. Commonly the sum over the multipole orders is taken
over l ≥ 2, since we are interested in analyzing the intrinsic nature of these anisotropies, as
consequences of density fluctuations. Indeed, on one hand, the monopole (l = 0) basically alters
the mean temperature on a particular observers sky, while, on the other hand, the dipole term
(l = 1) is caused by the motion of the observer (i.e. the Earth) through space. The remaining
l ≥ 2 modes are attributable to both primary and secondary effects, where the former are related to
phenomena that affect photons energy (i.e. temperature, frequency) at the last scattering surface
(zrec ∼ 1080), while the latter are related to those that act from the last scattering surface to the
observer.

Figure 1.7: Cosmic Microwave Background (CMB) angular power spectrum of temperature anisotropies,
where DTT

l = l(l + 1)CTT
l /2π. The solid line is ΛCDM, the best fit. Figure adapted from [3]

Ylm(θ, φ) functions constitute a complete orthonormal set of functions on the sphere surface and
their coefficients alm are generally complex and satisfy the condition

〈a∗l′m′alm〉 = Clδll′δmm′ (1.96)

where Cl = 〈|alm|2〉 is defined as the angular power spectrum.

From the entire temperature anisotropies angular power spectrum of Fig.1.7 we can
distinguish three main regimes: large (2 . l . 30), intermediate (30 . l . 1000) and small scales
(1000 . l . 2500). The standard model of Cosmology provides a full explanation of the
evolutionary mechanisms of these anisotropies; in particular, depending on the scale there will be
different contributions, as for instance, we expect gravitational effects alone at the largest scales,
while decreasing the scale also pressure starts acting very efficiently, resulting in the oscillating
pattern of Fig.1.7. The nature of these effects will be explained throughout the following sections.



25 1.3. THE INHOMOGENEOUS UNIVERSE

Integrated Sachs Wolfe effect On larger scales the only interaction is the gravitational one,
hence all the effects on CMB at these scales, in terms of cosmological perturbations, will be linked
to the Newtonian potentials Ψ and Φ. The Integrated Sachs Wolfe (ISW) effect is the source of
secondary anisotropies on large scales and it is linked to the evolution of the potentials over time.
Considering for example a photon that enters a potential well and suffers blueshift, this can be
then redshifted, while exiting the well, of a different quantity, resulting in an overall change in
frequency.
In particular, [33]

∆TISW

T0
= −

∫
d(Ψ + Φ)

dt
a(t)dχ (1.97)

with χ defined as the comoving distance and the integration is along the line of sight. Hence, by
definition, the ISW give information on the evolution over time of the sum of the two potentials
along the line of sight.

Sunyaev-Zel’dovich effect The SZ effect is a source of CMB secondary anisotropies at small
scales. While CMB photons are passing through a cluster, they get scattered; however, since the
electrons of the hot-plasma are far hotter than photons, the latter suffer inverse Compton
scattering. Thus, this effect induces a shift and moderately changes to the black-body spectrum
shape, as shown in Fig.1.8.

Figure 1.8: The left panel shows the Cosmic Microwave Background (CMB) spectrum, undistorted (dashed
line) and distorted by the Sunyaev-Zeldovich effect (SZE) (solid line). The right panel shows the intensity
distortions, due to kinetic and thermal SZ effects. [34]

There is an overall decrease of photons in the lower frequency region, as they move to the higher
one.
Depending on the motion of the electrons, it is possible to distinguish between thermal and kinetic
SZ effects, where in the first case the high energy of electrons is linked to their temperature Te and
the produced anisotropy [34]

∆TSZE

T0
= f(x)

∫
ne
kBTe
mec2

σT dl (1.98)

depends on the Thomson cross section σT , on the electron number density ne and rest mass energy
mec

2, on the Boltzmann constant kB , and the integration is along the line of sight. Moreover, x
is defined as a dimensionless frequency x = hν

kBTCMB
and f(x) is a specific function of it [34]. In

the second case electrons are highly energetic due to their bulk motions and generate a thermal
distortion of magnitude

∆TSZE

T0
= −τe

ve
c

(1.99)

that depends on their relative velocity ve and on the optical depth τe.
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Matter distribution and peculiar velocities

The relevant variables for observables describing LSS are the two Newtonian potentials Φ and
Ψ, the matter density contrast δm and the matter velocity perturbation v. Then, the evolution
of these variables will be provided by four equations, calculated using cosmological perturbation
theory in Fourier space, restricting ourselves to linear order. The equation for the evolution of
matter density perturbations is given by a combination of fluidodynamics laws: the continuity
and the Euler equations. Since we are interested in perturbations well within the horizon, we
are enabled to restrict to the Newtonian treatment, in which case the evolution of matter density
perturbations is determined by Eq.(1.69).
The r.h.s. of Eq.(1.69) can be expressed as a function of the Newtonian potential Ψ, via the
Poisson equation (Eq.(1.58)), that can be even obtained from the (00)-component of the Einstein’s
equations, in the Newtonian limit. Hence, passing to Fourier space, the evolution equation becomes

δ̈m + 2Hδ̇m +
k2

a2
Ψ = 0 (1.100)

The evolution of matter density perturbations is linked to the expansion history and Ψ: to solve
Eq.(1.100) the Dark Energy equation of state is needed, as well as the potential Ψ. The latter is
constrained by the anisotropic stress Eq.(1.101) and the Poisson Eq.(1.102) equations, respectively
found solving the trace-free part of the linearly perturbed Einstein’s equations and combining the
(00) and (0i) components

k2(Φ−Ψ) = 12πGa2(ρ+ P )σ (1.101)

k2Φ = −4πGa2ρ∆ (1.102)

with ρ∆ = ρδ+3aH
k (ρ+P )v the comoving density perturbation and the anisotropic stress σ such

that (ρ+ P )σ = −(kikj − 1
3δ

i
j)Π

i
j [25], where δij is the Kronecker δ. During the epoch relevant for

structure formation, in ΛCDM the two potentials are equal, due to a null anisotropic stress, and
very simply related to the density contrast via the Poisson equation.
Finally, the equation that determines the velocity field can be derived by the covariant conservation
of the perturbed energy-momentum tensor and yields [13]

δ̇m + ikv = 0 (1.103)

in Fourier space.

As the evolution of the matter density contrast (Eq.(1.100)) is linked only to Ψ, matter
distribution and peculiar velocities can give information on the Newtonian potential.
First, the evolution over redshift of matter distribution can be obtained by Galaxy Counts (GC)
at different redshifts, that consists of determining the observed number of galaxies with flux
higher than a fixed lower limiting magnitude. Many projects were involved in order to do GC, as
2MASS (Two Micron All-Sky Survey) and SDSS (Sloan Digital Sky Survey).
Second, the main observations of peculiar velocities come from redshift-space distortions (RDS)
and from the Sunyaev-Zel’dovich (SZ) effect.
As the name suggests, redshift-space distortions consist of shapes distorted in the redshift space.

For example, let us consider a distant galaxy cluster that is undergoing a spherical collapse, as
soon as we move from real space to redshift space its shape get distorted, as the moving
boundary points of the cloud will contribute with different peculiar velocities along the line of
sight, i.e. with different redshifts (Eq.(1.17) in the local Universe) in addition to that caused by
the cosmological expansion. Indeed, the galaxies closest to us moving toward the center of the
overdense region and hence away from us, will appear farther from us than they actually are.
Similarly, galaxies on the opposite side of the perturbation are moving toward us, so they appear
closer to us than they actually are [13]. The magnitude of the distortion rises, as the region
becomes more overdense.
RSD is one of the main scientific targets in ongoing and forthcoming galaxy redshift surveys such
as BOSS (The Baryon Oscillation10 Spectroscopic Survey) in SDSS-III, eBOSS in SDSS-IV, SKA

10discussed in Sect.1.4.1
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Figure 1.9: The left panel shows the shape distortions due to peculiar velocities, passing from the real space
to the redshift space; the Figure is taken from http://www.astr.ua.edu/keel/galaxies/hamcollapse.gif. The
right panel is the map of the distribution of galaxies in the nearby Universe, between declination δ = 0◦

and 30◦, where the maximum recession velocity is 12000 km · s−1. The highlighted regions are the so called
’fingers of god’, that point radially towards the center of the diagram, where our Galaxy is located.

(Square Kilometre Array), DESI (Dark Energy Spectroscopic Instrument, starting in 2019)11 and
EUCLID (launch in 2021)12.

Weak Lensing of galaxies

Photon’s geodesics are linked to a linear combination of Ψ and Φ, indeed the photon trajectory
xµ(λ), following from the geodesics equation, will satisfy [33]

d2xµ

dλ2
∝ ~∇⊥(Ψ + Φ) (1.104)

so that any information strictly related to photon path will give information on the potentials
combination, thus their evolution.
Gravitational Lensing, in a general manner, consists of the deflection of light rays when they
propagate through an inhomogeneous gravitational field, in particular we define the sources of
this field as lenses. In this context, we are interested in the Weak gravitational Lensing (WL)
of galaxies photons, which is sourced by the structure they go through. Hence, it can track the
matter distribution and the i-th component of deflection angle (two component vector in the sky)
given by [33] is

αi =

∫
−∂i(Ψ + Φ)ds (1.105)

where ds is the path infinitesimal element.
Hence, measurements of the Weak Lensing shear distribution over multiple redshift bins can
provide an estimate of the space and time variation of the Lensing potential, defined as Ψ+Φ

2 [16].
WL measurements comes from LSST (Large Synoptic Survey Telescope), HST (Hubble Space
Telescope), SKA and EUCLID.

11https://www.desi.lbl.gov/
12http://sci.esa.int/euclid/
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1.4 The late cosmic acceleration

1.4.1 Observational evidence
There exist numerous observational evidences for the late cosmic acceleration, in particular

related to the background evolution directly (geometrical probes for example) and to the growth
of structures. I will first start with Type Ia SNe, since they provided the first evidence of the late
phenomenon, then I will move on to the simplest evidence coming from the direct estimate of the
Universe age today and finally I will focus on the CMB probes.

Type Ia Supernovae

The first evidence of the cosmic acceleration came from Type Ia Supernovae observations in
1998, measuring their luminosity distances dL(z) [2] [1], as they are sources of which the intrinsic
luminosity can be known.

Type Ia supernovae are thermonuclear explosions of Carbon-Oxygen white-dwarves (WDs),
that exceed the Chandrasekhar mass limit MCh. In particular, the WD of a binary system
accretes mass from the companion star within the Roche lobe: the WD is, roughly speaking, a
core whose pressure is sustained by electron degeneracy, once the WD has reached MCh while
accreting, this pressure can not balance self-gravity anymore. The star reaches the temperature
and density for Carbon burning, but since the core is degenerate, then the burning is unstable
and the star undergoes the incineration of all material in the WD core up to Fe-peak elements.
An explosive burning flame starts to propagate outwards, behind which material undergoes
explosive nuclear burning.

Two main properties of this kind of SNe led to the discovery: they are very bright explosion
events and they are standardizable candles with a nearly constant absolute magnitude
MV ∼ −19.5mag. From the absolute magnitude M and the observed apparent magnitude m, the
luminosity distance can be inferred using the distance modulus

M −m = 5− 5logdL (1.106)

So, on one hand, Type Ia SNe observations give us the observed dependence of the luminosity
distance over redshift z, which is independently known from the spectral lines shifts (Eq.(1.17)).
On the other hand, this dependence can be then fitted via the theoretical relation between the
luminosity distance and the Hubble parameter H(z), which is that of Eq.(1.43) for a flat
Universe. In this way Type Ia SNe can constrain the density parameters.

Theoretically, if we consider the second Friedmann equation (Eq.(1.23b)), under the assumption
of a single fluid component, the condition of cosmic acceleration is satisfied whenever

ä(t) > 0⇔ −4πG

3
(ρ(t) + 3p(t)) > 0⇔ p < −1

3
ρ⇔ w < −1

3
, (1.107)

hence, if there exists a fluid component with EoS w < −1/3. Then, the Cosmological Constant is a
good candidate to explain this acceleration, since wΛ = −1 (Tab.1.1). Furthermore, if we generally
define Dark Energy as the fluid with constant EoS w < −1

3
, DE affects the expansion history as

H(z) = H0[ΩM (1 + z)3 +Ωrad(1 + z)4 +ΩDE(1 + z)3(1+wDE)]1/2 (1.108)

Different models can fit the data (Fig.1.10), in particular, referring to the ΛCDM model,
there is a degeneracy between the two density parameters Ωm and ΩΛ

13. To break this
degeneracy it is necessary to obtain other constraints on this two cosmological parameters, from
other datasets, for instance BAO (Baryon acoustic oscillations) and CMB (right panel Fig.1.12).

13ΩDE in the Λ scenario.
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Figure 1.10: Hubble diagram for Type Ia Supernovae, [2]. In this plot is shown the effect of the density
parameters choice on the luminosity distance evolution.

Age of the Universe

Cosmic acceleration can be supported considering the theoretically inferred age of a near-flat
Universe and its consistency with the oldest globular clusters age.
From the expansion history (1.108), it is possible to estimate the age of the Universe today t0 via
the density parameters:

t0 =
∫ t0
0
dt =

∫ 1

0

dt

da

a

a
da =

∫ ∞

1

1

H(z)(1 + z)
dz

=
1

H0

∫ ∞

1

dz[
ΩM (1 + z)3 +ΩDE(1 + z)3(1+wDE)

]1/2
(1 + z)

(1.109)

having considered a flat Universe and neglecting the radiation contribution, since it is dominant
only at high redshift, that are suppressed in the integration.
If there would not be any Dark Energy component, ΩM ∼ 1 and ΩDE = 0, the integral would lead
to [35]

t0 =
2

3H0
(1.110)

which is, for the H0 measured value, less than the globular clusters age.
The way to fix the problem is then to assume the presence of a Dark Energy component, since t0
increases at decreasing ΩM .
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Cosmic Microwave Background

As we have just seen in Sec.1.3, the induced small deviations in the isotropic distribution of
the Cosmic Microwave Background, namely its temperature anisotropies, is the most promising
way to obtain information on the evolution of the Universe, hence on the late cosmic acceleration
as well.

On one hand, we have already seen that the Integrated Sachs-Wolfe (ISW) effect, as defined
in Eq.(1.97), provides a measure of the time variation of the two Newtonian potentials Φ and Ψ
of the perturbed metric (Eq.(1.87)) along the line of sight. Indeed, while travelling towards the
observers, CMB photons suffer a net change in frequency, as they go in and out gravitational
potential wells that varies because of the Universe expansion. Moreover the rate of change of the
potentials will be directly related to the rate at which the Universe is expanding, providing an
evidence for the late cosmic acceleration.

Figure 1.11: Schematic representation of the ISW effect, taken from [32]

ISW effect acts on large scales, where gravity alone plays the key role; however, as we move to
smaller scales pressure starts to become important. Hence, on intermediate scales the CMB
anisotropies power spectrum (Fig.1.7) clearly shows an oscillating pattern that, according to
ΛCDM, is the result of forced oscillations, that took place before the decoupling between photons
and baryons. Indeed, the strong coupling provided the pressure necessary to baryons to prevent
the collapse inside the DM halos; this interplay between gravity and pressure gave rise to acoustic
oscillations.
The first acoustic peak constrains the sum of all the density parameters to be approximately
equal to 1 (i.e. curvature k = 0), a priori it does not constraint a non-zero ΩΛ; but, it represents
a very powerful tool to constrain its value together with Type Ia SNe and large scale data, that
can constrain the contributes separately. Furthermore, the multipole order at which the first
peak is located gives information on the size of the sound horizon at the decoupling, that is
defined as the maximum distance that a sound wave could have traveled between the Big Bang
and recombination. Therefore, since any l is defined as a function of the angular dimension θ, the
observed lpeak yields the angular dimension of the sound horizon, which is then linked to the
linear size via the angular diameter distance dA (Eq.(1.45)).

CMB spectrum is well fitted by models that undergo late accelerated expansion. Currently,
by the recent Planck 2018 data release [3], CMB constrains the already mentioned standard
cosmological parameters as in Tab.1.2.
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Parameter Planck TT,TE,EE+lowE+lensing
H0[km s−1 Mpc−1] 67.36 ± 0.54
ΩΛ 0.6847 ± 0.0073
Ωm 0.3153 ± 0.0073

Table 1.2: Some of the standard cosmological parameters from [3].

Baryon acoustic oscillations

The same acoustic oscillation visible in the CMB power spectrum left an imprint on the
spatial distribution of baryons on large scales (left panel of Fig.1.12). Indeed, after decoupling,
photons started to travel unimpeded, leaving behind a shell of baryonic matter at a radius fixed
by the size of the sound horizon at tdec; without the photons pressure, baryons and DM (left
behind at the center of the perturbation) formed a configuration which included overdensities of
matter at both the center of the perturbation and at the position where baryons decoupled from
photons 14.
Baryon acoustic oscillations (BAO) constitutes a geometrical probe: measurement of this
configuration over a wide range of redshifts give us the observed relation between distance and
redshift dA(z), comparable with the theoretical one Eq. (1.45), as done above for Type Ia
Supernovae.
Let us define the acoustic length scale rs as the comoving distance traveled by a sound wave from
t = 0 to the time of the photons-baryons decoupling tdec, so [15]

rs =

∫ trec

0

cs(t)

a(t)
dt =

∫ ∞

zrec

cs(z)

H(z)
dz . (1.111)

A measure of BAO along the line of sight will give a measure of H(z)rs, thus to derive the
expansion history a measure of rs will be needed from CMB, in particular from the position of the
first acoustic peak.

Figure 1.12: The left panel is the large scale redshift-space correlation function of the SDSS sample,
from [36]. The right panel shows the observational constraints on the matter and Dark Energy density
parameters, obtained by using Type Ia Supernovae, BAO and CMB. Figure taken from [37]

14Very useful animations can be found at https://www.cfa.harvard.edu/ deisenst/acousticpeak/acoustic_physics.html
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1.4.2 Cosmological constant
As we have already seen, Einstein wrongly added a scalar degree of freedom to Eq.(1.10) in

order to reproduce a static-Universe: that is the Cosmological Constant Λ, introduced as an extra
term to the Einstein-Hilbert action as in Eq.(1.14). As demonstrated in Eq.(1.15), Λ contributes
to the field equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (1.112)

via the new covariant term Λgµν .

Due to this extra degree of freedom that influences the dynamics of the system, the derived
Friedmann equations slightly change into(

ȧ(t)

a(t)

)2

=
8πG

3

∑
i

ρi(t)−
k

a2(t)
+

Λ

3
(1.113a)

ä(t)

a(t)
= −4πG

3

∑
i

(ρi(t) + 3pi(t)) +
Λ

3
(1.113b)

where, now that they are computed, we can completely understand the mathematical reason why
Λ would have led to a static Universe. A static Universe is characterized by the set of conditions{

ȧ = 0

ä = 0
(1.114)

hence, from the Friedmann equations of Eq.(1.113) in the hypothesis of matter domination (i.e.
p = 0), we find that the static Universe corresponds to

8πG

3
ρm(t)− k

a2(t)
= −Λ

3
4πG

3
ρm(t) =

Λ

3

⇒


k

a2(t)
= Λ

Λ

4πG
= ρm(t)

(1.115)

Despite the fact that the Einstein’s Cosmological Constant was abandoned right after the
Universe expansion discovery, Λ had been reintroduced to explain the late cosmic acceleration, as
an energy density source with wΛ = −1 (the Λ term then shifts to the r.h.s. of Eq.(1.112)).

In particular, one way to look at the Cosmological Constant is to represent it as vacuum energy,
such that its energy is the one related to quantum fluctuation of the vacuum. Its pressure and
density can be described by the extra term in Eq.(1.112):

8πGTΛ
µν = −Λgµν

= 8πG [(ρΛ + pΛ)uµuν + pΛgµν ]
= 8πGpΛgµν [wΛ = −1]

⇔ pΛ = − Λ

8πG
= −ρΛ (1.116)

Up to now the Cosmological Constant constitutes the best fit to data. Referring to the right
panel of Fig.1.12, Type Ia SNe, BAO and CMB data, under the Λ assumption, constrain the
matter and Dark Energy density parameters to be respectively Ωm ∼ 0.3 and ΩΛ ∼ 0.7; hence,
the standard model of cosmology is named ΛCDM after the late dominance of the Cosmological
Constant, as source of the late cosmic acceleration, and Cold Dark Matter, that prevails over
baryons abundance.
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1.5 Problems of ΛCDM model
Besides the successful predictions of ΛCDM model, the latter comes along with many problems,

mainly linked to the initial conditions:
• This model is based on the assumption that General Relativity still holds at large scales and

early times (up to Planck time tP ∼ 10−43s), but it does not give any explanation to what
happened at t < tP , as we enter the quantum gravity regime.

• The nature of Dark Matter (DM) is still unknown and largely studied, since it is one of the
main constituents of the Universe energy content. Using DM, the standard model provides
an explanation of cosmic structure formation and acoustic oscillations that left an imprint
on both CMB anisotropies and matter distribution (BAO). Moreover, the standard model
requires the DM component to be cold when it decoupled from the thermal bath; that is
demanded in order to reproduce hierarchical clustering, which is the scenario in agreement
with observations. Hot Dark Matter (HDM) would have suppressed small scales
perturbations, leading first to the formation of the largest structures and, secondly, to those
at lower scales by fragmentation.

• Increasing the temperature, going backward in time, the degree of symmetry rises, hence,
even matter and anti-matter should have been in a symmetric configuration. The origin of
the asymmetry between matter and antimatter, namely the Baryogenesis problem, is still not
clear.

• It does not provide a mechanism for the origin of density perturbations

• Horizon Problem An important question that the model has to tackle, in order to justify
its basic assumptions, is to understand the origin of the inferred homogeneity. Considering
the region of characteristic comoving dimension λ entering the comoving Hubble radius rH
at time tH (Fig.1.5), if tH > trec how could homogenization have happened at that scale if
at that time photons were already decoupled?

• Flatness Problem Taking the last equality of Eq.(1.32) and defining Ωk = − k

a2H2
then

Ωk,0 = 1− Ω0 . (1.117)

If Ωk,0 < 0.0005 at 95% c.l. then |1 − Ω0| < 10−2, which yields a fine tuning problem, why
should the Universe have started with such a strict condition?

• Cosmological constant problems Since Λ is the dominant Universe component, from
Eq.(1.113a) it is clear that at present we require Λ to be of the order of H2

0 ∼ (2.1332h ×
10−42Gev)2 [35]. Hence, since ρΛ = Λ

8πG ,

ρΛ ∼ H2
0M

2
Pl ∼ 10−47GeV 4 . (1.118)

Since the Cosmological Constant energy density ρΛ is constant over time by definition, its
contribution to the Universe energy budget can be thought to be that of the vacuum energy,
which is the state of minimum energy, characterized by a constant ρV . The calculation of the
latter is computed within particle physics: considering a quantum field as a set of harmonic
oscillators, since the theory is thought to be reliable up to Planck scale, the energy density
of the vacuum can be written as

ρV ∼
k4max

16π2
∼ M4

Pl

16π2
. (1.119)

From this calculation it results that ρV ∼ 1074GeV 4, a mismatch of ∼ 120 order of magnitude
with respect to ρΛ! That is the Cosmological Constant Problem: why such a tiny amount of
ρΛ ?
Another significant question would be: why now? That constitutes the so-called coincidence
problem. Apart from its tiny value, ρΛ,0 has the same magnitude as the present matter
density ρM,0, despite their ratio changes with time as (1 + z)3 and thus very rapidly.



1.5. PROBLEMS OF ΛCDM MODEL 34

• H0 tension between the value obtained from local measurements [4] and that inferred by
high redshift observations [3] under the Λ assumption

HSH0ES
0 = 73.48± 1.66 kms−1Mpc−1 HPlanck

0 = 67.36± 0.54 kms−1Mpc−1

Is this tension due to systematic effects on the observations or is it a hint that we have to
drop the assumption of a ΛCDM expansion?

As it goes beyond the scope of the Thesis, I will only mention that a solution to the Horizon
and Flatness problems is assuming the existence of an early accelerated expansion phase, named
Inflation (already spoiled in Fig.1.3). Since this phase is supposed to have been driven by a
dynamical scalar field, its quantum fluctuation would have then caused the density fluctuations
needed for LSS formation and imprinted in the CMB anisotropies. For a detailed description I
suggest the further readings [13][14][28][38].

The two last problems are basically the main motivation to my Thesis work, as I will discuss
in the following Chapter.



2 | Beyond ΛCDM model

As just pointed out in the previous Chapter, the standard cosmological model has still unclear
aspects and some of the problems related to it are the motivations underlying my Thesis work.
On one hand, the theoretical issues related to Λ have prompted the exploration for alternative
dynamical ways of sourcing cosmic acceleration, as Dark Energy (DE) and Modified Gravity
(MG) models. On the other hand, in absence of evident systematic effects, the discrepancy
between local and high redshift measurements of the Hubble parameter have encouraged
cosmologists to investigate beyond ΛCDM models.
First, I will introduce some of these alternative models, focusing on how they might be used as
viable models for cosmic acceleration. Then, in the second part of the Chapter, I will overview
some of the parametric approaches adopted in literature in order to ease the H0 tension. In this
context, referring for instance to the reconstruction of the DE Equation of State wDE(z), by
parametric approach I mean that the redshift dependence is an assumed function of some
parameters.
Thus, the aim of this Chapter is to set the ground to the non-parametric approach I will develop
in the next one and apply to DE and MG models.

2.1 Alternative models to the Cosmological Constant
A good starting point is the action, since from it we can derive all we need to study the dynamics

of the Universe, once the metric tensor gµν and the properties of the energy sources are specified.
While Dark Energy models introduce a new dynamical component in the cosmic energy budget,
typically modeled by a scalar field, Modified Gravity theories modify the laws of gravity in the
low curvature regime, to admit self-accelerating solutions in the presence of negligible matter. For
the regime of interest to us, they both result in the freeing of additional degrees of freedom to the
standard action of Eq.(1.10)

S = SEH + SM =
1

16πG

∫
d4x
√
−g (R+ 16πGLM ) . (2.1)

2.1.1 Dark Energy
This class of models is based on the existence of a fluid (i.e. field), generally named as Dark

Energy (DE), characterized by a negative w, since we require the second time derivative of the
scale factor to be positive (Eq.(1.107)), in order to reach the acceleration regime.
There exist multiple DE models, from the simplest canonical scalar field, named Quintessence, to
K-essence [39] [35] and coupled DE [40][35], i.e. models based on the interaction among the Dark
sector components or between these and ordinary matter.
The new component will contribute to the energy-momentum tensor Tµν of the standard fluids
with TDE

µν , where its pressure pDE and density ρDE must satisfy the condition found in Eq.(1.107).
Since we are simply modifying the Universe energy content, the extra energy-momentum tensor
TDE
µν term will appear on the r.h.s. of Eq.(1.6), yielding

Rµν −
1

2
Rgµν = 8πGTµν + 8πGTDE

µν . (2.2)

35



2.1. ALTERNATIVE MODELS TO THE COSMOLOGICAL CONSTANT 36

Quintessence

Quintessence is a scalar field φ with slowly varying potential and it interacts with the others
only gravitationally, so that the resulting total action is

S = SEH + Sφ + SM

=

∫
d4x
√
−g
(
M2

P

16π
R+ Lφ + LM

) (2.3)

where Lφ is the Lagrangian density of the field. Lφ is made up of the standard kinetic term and
a potential that depends only on the scalar field itself

Lφ =
1

2
gµν∂µφ∂νφ− V (φ) (2.4)

For any energy source that contributes to the dynamics of the system, i.e. to the action, with
Si =

∫
d4x
√
−gLi, the energy-momentum tensor T (i)

µν is equal to

T (i)
µν = − 2√

−g
δSi

δgµν
. (2.5)

Quintessence will act as an energy density source with

Tφ
µν = ∂µφ∂νφ− gµνLφ

=

(
ρφ 0
0 pφδij

)
=

(
1
2 φ̇

2 + V (φ) 0

0
(

1
2 φ̇

2 − V (φ)
)
δij

)
(2.6)

where we have assumed a perfect isotropic and homogeneous fluid (i.e. field), in the flat FLRW
background.
Consequently, the Quintessence EoS is then

wφ =
pφ
ρφ

=

1

2
φ̇2 − V (φ)

1

2
φ̇2 + V (φ)

(2.7)

that takes value in −1 ≤ wφ ≤ 1, but, since the pressure must be negative, −1 ≤ wφ < 0.
Assuming a flat Universe and Quintessence as the dominant energy source at present, the
Friedmann equations take the form(

ȧ(t)

a(t)

)2

=
8πG

3

[
1

2
φ̇2 + V (φ)

]
(2.8a)

ä(t)

a(t)
= −8πG

3
(φ̇2 − V (φ)) (2.8b)

From Eq.(2.8b) it is clear that, in order to reach an accelerated expansion, i.e. ä > 0, φ̇2 must be
smaller than the potential V (φ). Thus, the potential must be flat enough. Since V (φ) > φ̇2, the
EoS is lower than zero, while, in the case in which the kinetic term is completely negligible with
respect to the potential, we retrieve the lower limit w = −1. The V (φ) > φ̇2 condition is very
similar to that required in the Inflationary scenario, namely Inflation would have occurred if the
slow-roll parameters

ε =
M2

Pl

16π

(
V,φ
V

)2

η =
M2

Pl

16π

V,φφ
V

(2.9)

with V,φ = dV
dφ and V,φφ = d2V

dφ2 , satisfied the conditions ε, |η| � 1, i.e. if the scalar field driving
inflation had a sufficiently flat potential. However, as stressed by [41], these conditions are
designed assuming the dominance of the inflationary field; though, since at late times, during the
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DE dominance epoch, there is a non negligible energy from Dark Matter, these slow-roll
conditions are not completely trustworthy. Hence, in order to account for DM contributions as
well, ε should be properly defined as ε = −Ḣ/H.

From the scalar field continuity equation ρ̇φ + 3H(ρφ + pφ), substituting the values of ρφ =
1
2 φ̇

2 + V (φ) and pφ = 1
2 φ̇

2 − V (φ) we find the equation of motion of φ

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0 (2.10)

which is the Klein Gordon equation, that can be equivalently derived by varying the action Sφ

with respect to the scalar field φ.
The dynamics of Quintessence has been studied for a wide variety of potentials V (φ); depending
on its analytical form, it is possible to classify Quintessence models between two main classes: the
thawing and the freezing models. In the first case, as its name suggests, the scalar field starts
from a nearly frozen condition in the earlier epochs, due to the Hubble friction, and it evolves once
the field mass, i.e. d2V (φ)/dφ2, drops below the Hubble expansion rate. An example of thawing
solution is [35] is

V (φ) = V0 +M4−nφn (2.11)

By contrast, the second class is characterized by a scalar field that slows down at late times, as
V (φ) tends to be shallower than in the early epochs [42]. An example of freezing model is the
Ratra-Peebles potential [43]

V (φ) =
M4+n

φn
(2.12)

that is also the canonical example for the class of so-called tracking solutions [44], where the
energy density of the field closely traces the background energy density ρM + ρrad up to the
recent cosmic acceleration, when it grows dominating the matter and radiation terms. Hence, it
provides a possible solution to the coincidence problem.

It is desirable, for Quintessence models, to provide a solution to the fine-tuning problem: that
is not so easy, since we have already a constraint on the field mass, given by the slow roll conditions
[35]. Thus, if

|η| =
∣∣∣∣M2

Pl

V,φφ
V

∣∣∣∣ . 1 (2.13)

then the mass of the scalar field mφ = V,φφ at present must satisfy

mφ .
V0
M2

Pl

' H2
0 → mφ . H2

0 ' 10−33eV , (2.14)

where V0 is the value of the potential at present. The mass of the scalar field must be extremely
small.
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2.1.2 Modified gravity
General Relativity has been tested to very high precision at very small scales, i.e. in the Solar

System, and astrophysically; however, on cosmological scales it has not yet been tested with
similar accuracy. Consequently, exploring modifications to gravity on large scales and whether
such modifications could be responsible for the late time acceleration is a natural step forward,
taking care of recovering standard GR on small scales and at early times.
There are various ways in which the laws of gravity can be modified on the largest scales.
Generally Modified Gravity (MG) models involve covariant modifications to the standard
Einstein-Hilbert action, that can be for instance provided by adding higher order curvature
invariants, as in the case of f(R) gravity, or giving the graviton a mass, as in the case of massive
gravity theories. The idea behind the latter example is that while in General Relativity the
gravitational long-range force is mediated by a massless spin 2 particle, i.e. the graviton, giving a
mass to this particle would mediate a force characterized by a Yukawa type profile ∼ 1

r e
−mr.

Modifications to the laws of gravity can originate from extra dimensional scenarios as well: in
standard GR space and time constitute a curved 3+1 dimensional manifold, whereas these
particular scenarios theorize that matter fields are confined to this 4-dimensional brane
embedded in a higher dimensional bulk, into which gravity may leak. In the peculiar case of the
Dvali-Gabadadze-Porrati (DGP) model, the higher dimensional bulk is a 5-dimensional
Minkowksi bulk of infinite volume.
These models and many others are all reviewed in [45].
In what follows I will introduce the broad class of scalar tensor theories.

Scalar tensor theories

Many DE models rely on scalar fields, whereas the latters can also enable modifications to the
Einstein-Hilbert action, this time being not minimally coupled to the gravitational tensor field.
Horndeski theory constitutes the most general scalar tensor theory, with second-order equations
of motion, which is required to avoid Ostrogradsky’s instability. Its action is [9]

S =
1

16πG

∫
d4x
√
−g
∑5

i=2 Li + LM (gµν) (2.15)

with
L2 = G2(φ,X) L3 = G3(φ,X)�φ

L4 = G4(φ,X)R+G4X(φ,X)[(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)]

L5 = G5(φ,X)Gµν∇µ∇νφ− 1

6
G5X(φ,X)[(�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+ 2(∇µ∇αφ)(∇α∇βφ)(∇β∇µφ)]

(2.16)

where X = − 1
2∂

µφ∂µφ is the kinetic term, K and Gi are functions of φ and the subscript
(X,φ) denotes partial derivative of Gi with respect to that variable.
The action of Eq.(2.15) includes a wide variety of theories, such as f(R) and Brans-Dicke (BD)
theories, that can be then obtained imposing conditions on the Li terms, as we will see in a
moment.

Brans-Dicke When referring to an additional scalar degree of freedom in the standard gravity
sector, the Brans-Dicke theory is the more immediate example. Its action is obtained from Eq.(2.15)
setting all the functions to zero, except for

G2 =
1

2

ωBD

φ
∇µφ∇µφ− U(φ) G4 =

1

2
φ , (2.17)

where ωBD is the Brans-Dicke parameter. The resulting action is

S =
1

16πG

∫
d4x
√
−g
(
1

2
φR− 1

2

ωBD

φ
∇µφ∇µφ− U(φ)

)
+ SM (gµν , ψ) (2.18)
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f(R) theories f(R) theories add to the gravitational sector a general function of R, named f(R),
such that the total action becomes

S =
1

16πG

∫
d4x
√
−g(R+ f(R)) + SM (gµν , ψ) . (2.19)

Since we want to modify the Einstein-Hilbert sector
√
−gR, a natural choice would be to add terms

to the action that are proportional to
√
−gRn, where for n > 1 Starobinski (1979) showed that such

terms lead to modifications of the standard cosmology at early times. For n < 0 such corrections
become important in the late Universe and can lead to self-accelerating vacuum solutions [46].
The action of Eq.(2.19) can be inferred from Eq.(2.15) imposing [47]

G2 = −1

2

(
R
∂f

∂R
− f(R)

)
G4 =

1

2

∂f

∂R
, (2.20)

where in [47] notation the standard R term is included in the function f(R).

The extra term f(R) will introduce terms to the l.h.s. of Einstein’s equations, indeed varying
the action with respect to gµν

δS

δgµν
=

1

16πG

∫
d4x

(
δ(
√
−gR)
δgµν

+
δ(
√
−gf(R))
δgµν

+ 16πG
δ(
√
−gLM )

δgµν

)
δgµν

=
1

16πG

∫
d4x
√
−g
(
−1

2
gµνR+Rµν +

1√
−g

δ(
√
−g)

δgµν
f(R) +

δf(R)

δgµν
− 8πGTµν

)
δgµν

=
1

16πG

∫
d4x
√
−g
(
−1

2
gµνR+Rµν +

1√
−g

δ(
√
−g)

δgµν
f(R) +

∂f(R)

∂R

δR

δgµν
− 8πGTµν

)
δgµν

=
1

16πG

∫
d4x
√
−g
(
−1

2
gµνR+Rµν +

1√
−g

δ(
√
−g)

δgµν
f(R) + fR

(
δRµν

δgµν
gµν +Rµν

)
− 8πGTµν

)
δgµν

= 0

(2.21)

and using Eqs.(1.12)(1.13), together with the definition of the affine connection, yields

(1 + fR)Rµν −
1

2
gµν(R+ f(R)) + (gµν�−∇µ∇ν)fR = 8πGTµν (2.22)

where fR = ∂f/∂R, ∇µ is the covariant derivative and � = gµν∇µ∇ν .
Then, having modified the l.h.s. of Einstein equations we expect that the Friedmann equations for
a flat FLRW metric will present extra terms on the l.h.s. as well [32]

H2 +
f

6
− ä

a
fR +H ˙fR =

8πG

3
ρ (2.23a)

ä

a
− fRH2 +

f

6
+
f̈R
2

= −4πG

3
(ρ+ 3p) (2.23b)

where in the f(R) = 0 case we recover the standard Friedmann equations.

From another point of view, these extra terms can be interpreted as an additional effective fluid
that contributes to the energy momentum tensor with an effective Equation of State [32]

weff = −1

3
− 2

3

[
H2fR − 1

6 −HḟR −
1
2 f̈R

]
[
−H2fR − f

6 −HḟR −
1

2fRR

] . (2.24)

Hence, by determining the expansion history, we can specify how the fluid contribution to H(z)
evolves over time, i.e. the form of f(R). Moreover, this effective fluid has an energy momentum
tensor

8πGT eff
µν = fRRµν −

1

2
gµνf(R) + (gµν�−∇µ∇ν)fR . (2.25)
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The additional scalar degree of freedom is represented by fR, defined as the scalaron, whose
equation of motion is defined by the trace of Eq.(2.22)[32]

�fR =
1

3
(R+ 2f −RfR)−

8πG

3
(ρ− 3p) ≡ ∂Veff

∂fR
(2.26)

From the latter, restricting |f � R| and |fR| � 1 at high curvature 1, we can derive the mass of
the scalaron as

mφ ≡
∂2Veff
∂f2R

=
1

3

[
1 + fR
fRR

−R
]
∼ 1

3fRR
(2.27)

where, in order to have stability against small perturbations we require |fRRR| � 1 and fRR > 0.
As discussed in [32] [48], fR needs to satisfy the following further conditions:

• fR small at recent epochs, since we want to meet the solar and galactic scale constraints

• fR < 0, in order to recover standard GR at early epochs

• 1 + fR > 0 for all finite R, to prevent the graviton from becoming ghost-like

2.1.3 Distinguishing between DE and MG models
Cosmological structure formation provides a powerful way of probing and constraining beyond

ΛCDM models: the different coupling with gravity and/or matter will reflect in a different
evolution of the density perturbations and, so, in a different large scale structure formation. In
particular, MG models introduce an anisotropic stress term which can not be neglected and leads
to a slightly different evolution.

Phenomenological approach

As already seen in Sect.1.3.3, large scale structure offers a broad variety of cosmological
observables that enable us to study the evolution of cosmological perturbations. The growth of
structures is affected by Ψ (Eq.(1.100)), while photons geodesics by a linear combination of Φ
and Ψ, where Φ and Ψ are the scalar perturbations to the FLRW metric in Newtonian gauge
(Eq.(1.87)).

During the epoch relevant for structure formation, in ΛCDM the two potentials are equal, due
to a null anisotropic stress (as assumed when radiation content is negligible, Eq.(1.101)). That is
also valid for minimally coupled DE models as well, since they simply add an homogeneous and
isotropic fluid component, that does not affect the matter behaviour, due to the minimal
couplings.
The viability of the evolutionary equations can be tested combining the cosmological observations
described in Sect.1.3.3, as weak lensing and galaxy counts.
Since these equations have been derived in the standard GR framework, deviations from these
equations would suggest that standard GR is not valid at large scales, i.e. that we need to modify
the theory of gravity, or that we need a scalar field which is not minimally coupled to matter
sector.
When one considers extended theories of gravity, these equations might change to possibly
include time derivatives as well.
In a general manner, we can parameterize these deviations in terms of the following functions of
time and scale: a rescaling of the Newton’s constant µ(a, k) and a gravitational slip γ(a, k),

1since we require consistency with the high redshift Universe
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defined via

k2Ψ(a, k) = −4πGa2µ(a, k)ρ∆ (2.28)
Φ(a, k)

Ψ(a, k)
= γ(a, k) (2.29)

While µ is closely linked to observables, since Ψ directly affects the growth of matter density
perturbations via Eq.(1.100)

δ̈m + 2Hδ̇m +
k2

a2
Ψ = 0 , (2.30)

an observational interpretation of γ is not that immediate. Hence, we can equivalently refer to
another phenomenological function Σ(a, k), defined via

k2(Ψ + Φ) = −8πGa2Σ(a, k)ρ∆ , (2.31)

which is related to µ(a, k) and γ(a, k) via

Σ(a, k) =
(γ(a, k) + 1)µ(a, k)

2
(2.32)

and it is directly linked to photon’s geodesics.
Providing any two of these functions is sufficient to solve the equations of evolution of density
perturbations [9].
In the ΛCDM model, based on GR, these phenomenological functions will reduce to
µ(a, k) = γ(a, k) = Σ(a, k) = 1.

This phenomenological approach encodes all our ignorance about the source of these
deviations, i.e. the functional forms of these functions. However, in order to fit these functions to
data, one might wonder what is the best form for these phenomenological functions. Since in the
context of MG the linearly perturbed Einstein’s equations can possibly yield time derivatives in
Eqs.(1.101)(1.102), finding a closed form for µ(a, k), γ(a, k) and Σ(a, k) would require to solve
these differential equations first, making them dependent on the initial conditions [49]. Though,
as pointed out in [9] it would be possible to derive them in a specific gravity theory adopting the
quasi-static approximation (QSA), namely restricting to scales well within the horizon and
neglecting time derivatives of the metric perturbations with respect to their spatial ones. Hence,
the differential equations become algebraic.
One of the goal of this Thesis is to provide a non-parametric reconstruction of µ and Σ over
redshift, never restricting to any approximation or any assumption related to a particular
functional form of these two phenomenological functions.
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2.2 The H0 tension
Since the discovery of the expansion of the Universe [22], there have been many attempts to

measure the Hubble parameter H0, as it would enable us to calculate the expansion rate at
present, by definition, the observable size of the Universe and the age of the Universe itself. The
Hubble constant can be estimated via both direct and indirect probes.
In the first case, the value of H0 is measured through distance indicators in the nearby Universe,
in particular, via standard candles, as Type Ia Supernovae, already treated in Sect.1.4.1, and
Cepheids. The latter are variable stars, whose period of pulsation is related to their luminosity,
i.e. to the absolute magnitude, the knowledge of which enables us to calculate the object distance
via Eq.(1.106).
On the other hand, over the past 15 years, measurements of the Cosmic Microwave Background
(CMB) temperature anisotropies have provided a powerful tool to indirectly estimate H0 and to
test the standard model. Indeed, CMB observations predominantly probe the physics of the early
Universe, but given the proper cosmological model, it is possible to extrapolate from them
standard cosmological parameters, defined at present time. Hence, this indirect measurement
offers us the possibility to test self-consistency of the ΛCDM model.
In absence of significant systematic errors, we would expect, if the model is correct, direct and
indirect (model-dependent) constraints on H0 to be in accordance; however, if a significant
inconsistency between the two is found, then this would imply that is necessary to investigate
beyond the standard model.

Figure 2.1: Recent values of H0 as a function of publication date since the Hubble Key Project. The
missions and collaborations taken into account are KP (Key Project) [50], SH0ES (Supernovae H0 for
the Equation of State of Dark Energy) [51], CHP (Carnegie Hubble Program) [52] for direct probes (blue
squares in Figure) and WMAP (Wilkinson Microwave Anisotropy Probe) [53] and Planck [23] missions
for CMB probes (red squares), assuming the ΛCDM model. Figure from [54].

Since the time of the Hubble Key Project, there has been incredible progress in decreasing
known systematic errors, as it is shown in Fig.2.1 [54].
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Referring to the estimates obtained from local measurements [4] and from high redshift
observations [3]

HSH0ES
0 = 73.48± 1.66 kms−1Mpc−1 HPlanck

0 = 67.36± 0.54 kms−1Mpc−1

a tension of 3.5σ is found, where the latter is defined as

T (H0) =
|HSH0ES

0 −HPlanck
0 |√

σ2(HSH0ES
0 ) + σ2(HPlanck

0 )
(2.33)

since the two measures are Gaussian distributed.

Is this tension due to systematic effects on the observations or is it a hint that we have to
drop the assumption of a ΛCDM expansion?
In absence of evident systematic effects, we are prompted to investigate whether the tension
could be alleviated with beyond ΛCDM models.

2.2.1 Parametric approach
In order to investigate possible departures from the standard cosmological model, one can

either restrict to the choice of a particular model or work in the general parameterized
frameworks, that could enable the detection of potential hints, that a fixed model would not
detect. Hence, there had been many attempts into developing parameterized frameworks.

As we have just seen in the previous Section, by alternative models to the Cosmological
Constant we mean DE and MG models, where both of them result in a freeing of additional
degrees of freedom. In particular, at the background level the latter acts as an effective fluid
component with Equation of State wDE . Hence, in the past few years many parameterizations of
the DE EoS have been adopted, or similarly of the expansion history.

Let us start from reviewing the most common parametric approach to the background dynamics.
If the DE is not a Cosmological Constant with w = −1, then there is no reason why the DE
Equation of State should remain constant; hence, in order to test a time-varying wDE(a), the most
common example of a two-parameters description of the DE EoS is the Chevallier-Polarski-Linder
(CPL) [5] [6] parameterization

wDE(a) = w0 + (1− a)wa , (2.34)

where w0 and wa are constant. The first parameter is the value of the DE EoS at present (w0 =
w(t0)), while wa encodes the overall evolution of wDE over time. CPL bounds the behaviour of the
function up to infinite redshift. Even if its simplicity is an advantage, it has a limited capability,
since it requires a linear relation between w and w′ = dw

dlna and it fails fitting EoS rapidly evolving.
Extending the parameter space, on the basis of an expansion approach, another way to parameterize
a time-varying EoS is via the Padé expansion [7] for instance

wDE(a) =

∑N
n=0 αna

n∑M
m=0 βma

m
. (2.35)

These and many other parameterizations of the time-dependent DE EoS will then affect the
expansion history, i.e. the background dynamics, since the Hubble parameter is defined as a
function of the density parameters, whose evolution depends on the Equations of State of the
different components, including DE.
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However, at the level of cosmological perturbations, in order to distinguish between DE and MG
models, we must also provide the phenomenological functions µ(a, k), γ(a, k) and Σ(a, k), in which
deviations from the standard GR regime are encoded. Hence, while investigating alternative models
to the Cosmological Constant via parametric approaches, we would like to provide appropriate time
and scale dependencies of these functions.
But, as already pointed out in Sect.2.1.3, in the most general case we can not obtain a closed form
for µ, γ and Σ, unless we restrict to the QSA approximation.
Let us then proceed to the overview of some of the proposed parameterizations of µ and γ, closely
following [49] procedure first. Let us consider a broad class of MG theories that modifies the
standard action with a Lagrangian density made up of geometric invariants, as R, RαβR

αβ ,∆R
and so on, as well as N scalar degrees of freedom φi. Setting the Poisson and anisotropic stress
equations and that obtained varying the action with respect to the field in Fourier space, as
suggested by [49], we can adopt linear operators multiplying the potentials Φ, Ψ and the i-th
scalar field perturbation δφi, in which the background functions, (proper) time derivative and/or
powers of k are encoded. In particular these operators are of the form

Ô =

N,M∑
n,m

on,mk
n∂m0 (2.36)

where N and M are maximum order of metric derivatives while the on,m are functions of time,
that, where needed, will have additional low/high indices as required by the operator.
As we restrict ourselves to the QSA, these operators become polynomials in k. Hence, the three
equations above constitute now a system of algebraic equations, that provides µ and γ as ratios
of polynomials in k. Without loss of generality, [49] provides a parametric form for the two
phenomenological functions

γ(a, k) =
p1(a) + p2(a)k

2

1 + p3(a)k2
µ(a, k) =

1 + p3(a)k
2

p4(a) + p5(a)k2
(2.37)

where the pi(a) are background functions. Of particular interest is the fact that the denominator
of γ is equal to the numerator of µ, which they find to be a general feature, since they did not
adopted any particular model.

This choice is similar to the BZ parameterization [10]

µ(a, k) =
1 + β1λ

2
1k

2as

1 + λ21k
2as

γ(a, k) =
1 + β2λ

2
2k

2as

1 + λ22k
2as

(2.38)

where λi are dimensionally lengths and βi are dimensionless couplings. However, there are some
slight differences: the general feature involving the numerator/denominator of µ and γ is not set,
the time dependence is restricted to a power law and finally the standard GR limit is recovered
for k → 0. Moreover, this last parameterization is used by [11] as starting point to derive
parameterized forms of µ(a, k) and γ(a, k) in the case of f(r) theories.

As a final example, in [8], µ(a, k) and γ(a, k) are parameterized as

µ(a, k) = 1 + f1(a)
1 + c1(λH/k)

2

1 + (λH/k)2
γ(a, k) = 1 + f2(a)

1 + c2(λH/k)
2

1 + (λH/k)2
(2.39)

where λ and ci are constants and the fi(a) encode the deviations from standard GR as a function
of a, via a time-varying DE density parameter, so that fi = EiiΩDE(a), or as an expansion
fi = Ei1 + Ei2(1 − a). In particular, the two regimes of small scales and large scales will behave
differently: for example, for small k, i.e. large scales, µ(a, k) −→ 1+ f1(a)c1, while for large k, i.e.
small scales, µ(a, k) −→ 1 + f1(a).
While the previous parameterizations are obtained under the QSA, as stressed in [8] that is not
the case for the parameterized forms of Eq.(2.39). The above Planck parameterization is set in
the (minimal) way to allow for (arbitrary) scale dependence, as data cover a sufficiently wide
range of scales.
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2.2.2 Non-parametric approach
As I previously said, working in a general parameterized framework could enable the

detection of peculiar aspects of the functions of interest, however this is not ensured; indeed the
assumption on the analytical form of the parameterization could be still too much constraining.
There exists another way to compute the reconstruction, that consists of non-parametric methods
that aim at determining the function given observational data, rather than the parameters
associated to a particular assumed form of the function itself, such as w0 and wa for the CPL
parameterization.

Hence, there had been the attempt to reconstruct in a non-parametric way the DE EoS and
the expansion history H(z) [55][56][57][58], where the main advantages of using the
non-parametric approach are related to a higher freedom of the reconstructed function. First
adopting this approach enables us to infer the unknown function with a minimum of
assumptions, avoiding the restrictions of a model or a parametric form. Secondly, via the
non-parametric approach we can potentially capture essential features of the function, hence all
the information coming from data, that could be wiped out by model assumptions.
The hope is to avoid the possible biasing of results due to specific assumptions regarding the
functional form of the function of interest, which may turn out to be incorrect [55].

However, a legitimate assumption is to require a sufficiently smooth function, which means
that the function is expected to vary of small amounts while moving with infinitesimal steps on
the curve. Hence, we can apply to the reconstructions a smoothness prior information in which is
encoded the correlation between different redshifts [59].

One the basis of this last idea, the purpose of this Master project is to develop a
model-independent reconstruction method in order to understand the behaviour over time of the
DE EoS and of µ(a) and Σ(a) in the MG case. The aim is to furnish a powerful tool to
potentially highlight the nature of the mechanism driving the late cosmic acceleration. Of
particular importance, will be the implementation of the method with the help of the correlation
priors, where the latter naturally restrict us to the choice of a model.
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3 | Non-parametric approach and
Data Analysis

The lack of a theoretical understanding for the late cosmic acceleration, have prompted the
exploration of many alternative models. In what follows, I will outline the non-parametric
approach, used to reconstruct the behaviour over time of DE and MG functions, and the
Bayesian analysis, addressing with a particular focus the use of a correlation prior within the
Monte-Carlo parameter estimation.

3.1 Reconstruction method
Let us define the function to be reconstructed in a generic way, as f(a). Since f(a) must be

reconstructed non-parametrically, the first step to take is to discretize it into binned fi(a) = f(ai)
with i = 1, ..., N , equally spaced in the interval [amin, 1]. The function f(a) can be reconstructed
via smoothed step function and Gaussian Process (GP) (Fig. 3.1).

Smoothed step function

This reconstruction is computed as

f(a) = f(a1) +

N−1∑
i=1

f(ai+1)− f(ai)
2

{
1 + tanh

[
s

(
a− ai+1

ai+1 − ai

)]}
(3.1)

where s is the smoothing factor, at increasing s the function will be more smoothed at the transition
points.
As it is going to be later discussed, for some of the functions of interests the computation of their
derivative with respect to the scale factor is also needed. In the particular case in which the
function is reconstructed via the smoothed step function method, the derivative is done in such a
way that the incremental ratios calculated at the transition points āj = (ai + ai+1)/2

f ′(āj) =
f(ai+1)− f(ai)

ai+1 − ai

are interpolated via smoothed step function as well, as done in [60].

Gaussian Process

In a general manner, let us suppose that, given a function of the variable a without an analytical
expression, we know only few (a, f(a)) training points and how they are correlated. Gaussian
process is a solution to this regression problem: it is a distribution over functions fitting the
training points.
A Gaussian Process is defined as a collection of random variables , any finite number of which have
a joint Gaussian distribution[61].
Let us start considering the training points ~a = (a1 a2 a3), we can always think of the function f(a)

47
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evaluated at these points as a vector and, at each point ai, f(ai) is a Gaussian random variable
with mean µ(ai) and variance σ2

a,i. Considering then the whole vector, this will be modeled with
a multivariate Gaussian distribution

~f =

f1f2
f3

 ∼ N(~µ,C) = N

(
~µ,

C11 C12 C13

C21 C22 C23

C31 C33 C33

) (3.2)

where N stands for Normal distribution and C is the covariance matrix, as Cij = C(~f(ai), ~f(aj))
denotes the correlation between two points ai and aj , i.e. how strongly they influence each other.
We expect that the closer ai and aj are, the more they will be correlated and the more they will
influence each others fi and fj values.
The Gaussian Process regression is available in the python package sklearn and the covariance
function we choose is the Radial Basis Function (RBF):

C(a, a′) = e−
|a−a′|2

2l2 (3.3)

where l is the correlation length, such that

C(a, a′) =

{
0 |a− a′| � l
1 a = a′

(3.4)

This kernel is both stationary, because is a function of a− a′, and isotropic, since it is a function
of its module |a− a′|.

So now, given the noise-free training points, we are interested to know what will be the value
of the function at a point a∗, defined as f(a∗). Since we expect the function to be smooth, for a
small variation of the a variable we do not expect the function at that point to be far different
from those adjacent.
Hence, assuming that f(a∗) will be Gaussian distributed as well, i.e. f(a∗) ∼ N(µ∗, C(a∗, a∗)),
where C(a∗, a∗) is the self-covariance, the joint distribution will assume the form of[

~f
f∗

]
∼ N

([
~µ
µ∗

]
,

[
C(~a,~a′) C(~a, a∗)
C(a∗,~a) C(a∗, a∗)

])
(3.5)

Thus once specified the mean and correlation functions, considering now all the fitting points,
the Gaussian Process will be defined as

f(~a) ∼ GP (µ(~a), C(~a,~a′)) (3.6)

Therefore, for this reconstruction method, ai and fi(a) alone are not sufficient, the correlation
length is also needed; but then, the problem is to find the criterion to obtain it without having
data a priori. This is one of the reasons why imposing a correlation prior is helpful. In Sect.3.2.2
the analytical expression of the correlation priors used within this work automatically gives the
correlation length; even if they refer to kernels (Tabs.3.1 and 3.2) which are different from that of
Eq.(3.3), we can assume that the extrapolated correlation length will be a good approximation
for the GP reconstruction.
Moreover, since the correlation length is provided by the correlation prior in terms of scale factor,
this justifies the choice of bins equally spaced in a.

In [61] the aim is to reconstruct a function through Gaussian Process given the training
points, that are observed with their errorbars, so that GP is effectively set as the believed
distribution of the function itself. In this work, the training points are parameters sampled and
obtained through the data analysis and once the GP properties are fixed, there exists only one
Gaussian Process fitting them and, during the data analysis, the training points themselves are
modified, not the GP reconstruction.
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Figure 3.1: The reconstruction methods implemented are three: step function, smoothed step function
and Gaussian Process; the red dots are the chosen f(ai). Moreover, we decided to constrain the values of
f(a < amin) = f(amin).

Since we are dealing with two methods for the non-parametric approach, an interesting point
would be to compare them, as in Fig.3.1. Let us suppose we fix the scale factor interval over
which we want to reconstruct the function, we intuitively expect that increasing the number of
bins within that interval will enable the reconstructed function to become insensitive to both the
binning properties and to the reconstruction method. Indeed, on one hand, a higher number of
bins will enable the emergence of additional peculiar features, while on the other hand, we expect
that a denser binning will make the smoothed step reconstruction approximate that obtained via
Gaussian Process.

Within this work, the outlined method is applied to the reconstruction of the DE EoS and of
the two phenomenological functions µ(a) and Σ(a), where the latters are reconstructed if we are
dealing with MG models. While working with DE models the reconstruction of the DE EoS is
computed in CAMB 1, otherwise it must be computed in MGCAMB 2 [62][63], along with µ(a)
and Σ(a), for MG models. Hence, since CAMB and MGCAMB work with parameterizations of
the functions we are interested in, I modified them implementing the approach above. Moreover,
their reconstruction alone is not sufficient for the CAMB/MGCAMB computation: some
functions of them must be computed, as explained in what follows.

Those that I defined as the binned values of the function f(a) are new parameters for these
codes; in particular they will be sampled (Sect.3.2.1) within a given range flow ≤ fi ≤ fup and
obtained with their errors through the data analysis.
Thus, one of the main differences between the two methods is that the smoothed step reconstruction
will be all enclosed within that range, by its definition, but, that is not true for Gaussian Process,
that fits the training points without being necessary all included in the range [flow, fup]. So, passing
to the redshift notation, the reconstruction before z1 and after zN could behave in any way. On
one hand, I added the f(z = 0) parameter, which will be free to vary in the same range of all
the other f(zi), or equivalently we could set the condition f(z < z1) = f(z1) in the case in which
z1 is sufficiently smaller than zN , since we do not expect the function to vary significantly within
[0, z1], compared to variations happening within a bigger redshift interval. On the other hand, I
fixed f(z > zN ) = f(zN ), as it can be seen from Fig. 3.1, as for the other methods.

1https://camb.info/
2http://aliojjati.github.io/MGCAMB/home.html
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In order to reconstruct a generic wDE , we will also consider time-varying EoS crossing the so
called "Phantom divide" at wDE = −1. As explained in [64][65], unless we add new degrees of
freedom, a single scalar field can not cross the Phantom divide maintaining gravitational stability
[66], which is the reason why for Quintessence we are later going to impose −1 as a lower limit
for wDE,i. But as [65] puts in evidence, Type Ia Supernovae data do not exclude the DE EoS to
go below the Phantom divide; since we want to obtain a non-parametric reconstruction of a
generally time-dependent wDE based on data, the crossing would be unavoidable. For this reason
we must adopt the PPF description.

The problem arises when considering the momentum conservation equation [64]; in the
particular case in which w = −1, assumed that the sound speed is fixed and denoting with ˙
derivatives with respect to ln a, [66]

ṗ

ρ̇
=

(
w − 1

3

d ln(1 + w)

dlna

)
(3.7)

will diverge leading to gravitational instability of the Dark Energy perturbations.

Thus, the PPF description of the effective DE stress tensor consists on the use of a new variable
Γ [67]. Together with the momentum and energy conservation laws, Γ needs to fulfill a boundary
condition that replaces the relationship between pressure and density fluctuations: the condition
imposed is on the relationship between DE and matter momentum densities at large scales and a
transition scale, under which DE becomes relatively smooth.
The variable is defined in [64] under these conditions as

Γ =
4πGa2

k2cK
ρDEδ

(rest)
DE (3.8)

with cK = 1 − 3K/k2 (K background curvature) and the rest frame defined with respect to the
Dark Energy component.

The DE EoS affects the expansion history via ρDE , which is given in Eq.(1.25), depending on
the value of the Equation of State. In terms of the binning in redshift, Eq.(1.25) translates into

ρDE(z) ∝


exp

[
3

∫ z

0

1 + w(z)

1 + z
dz

]
z ≤ zN(

1 + z

1 + zN

)3(1+wN )

ρDE(zN ) z > zN [w = const!]

(3.9)

where the integral is computed via trapezoidal method and where we assumed that after a
given zN , wDE takes the value of the last bin and stays constant in the past.
Fig.3.2 shows examples of ΩDE

3 and the wDE used to obtain them, with both binned and GP
reconstructions.

So, the Equation of State is reconstructed and enters the background evolution, while µ(z)
and Σ(z) (and γ(z)) enter the evolution of perturbations via their time derivatives, done with
respect to the scale factor.

The computation of the time derivatives is dependent on the reconstruction method and it is
based on the calculation of the incremental ratio.
In the case of the Gaussian Process the derivative is computed taking the incremental ratio for a
certain number of sub-bins and interpolating those to obtain a continuous curve; while for the
smoothed step function alternative, the computation of the derivative has been explained above.
Fig.3.3 shows examples of µ̇(z) and the µ(z) used to obtain them, with both binned and GP
reconstructions.

3I here recall that the density parameter of the i-th Universe component is defined as Ωi(t) =
ρi(t)
ρc(t)
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Figure 3.2: The upper plot shows the evolution of the Matter and Dark Energy densities, obtained for the
reconstructions showed in the lower plot. In particular here I compare the Λ EoS and predicted density
parameters, with those for the wDE reconstructed via Gaussian Process and smoothed step function, for
the same input parameters.

Figure 3.3: The upper plot shows the two method of reconstruction for µ(z) (as for Σ(z)), while the
lower plots its derivative. The difference between the smoothed step function and the Gaussian Process is
clear, however, given a certain redshift interval for the reconstruction, increasing the number of bins the
derivatives will be more similar.
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3.2 Bayesian analysis: parameter estimation
Together with the standard cosmological parameters, the discretized values of the reconstructed

functions will be used to compute cosmological observables fitted to the data. The process of
obtaining from data the values of the N parameters Xi (i = 1, .., N) describing the model is called
parameter estimation. Bayes theorem

p(X|Θ) ∝ p(Θ|X)p(X) (3.10)

provides a relation between the posterior distribution p(X|Θ), the prior distribution p(X) and the
likelihood p(Θ|X), where Θ denotes the data vector [68].
The posterior distribution represents the knowledge about X given the observed data Θ, i.e.
the probability distribution associated to the estimated parameters we are looking for; the prior
distribution is the believed distribution of the parameters X and the likelihood, L(Θ;X) = p(Θ|X),
is the probability distribution of data given the parameters.
Let us suppose for example that a set of given data points have Gaussian errors and we want to
fit them with the model, the χ2 is defined as

χ2 =
∑
i

(Θi − Θ̃i)
2

σ2
i

(3.11)

where Θi are the observed data and Θ̃i are the predictions of the model at each point; hence, the
χ2 will test the goodness of fit.
If data are correlated, then

χ2 =
∑
ij

(Θi − Θ̃i)D
−1
ij (Θj − Θ̃j) (3.12)

where D is data covariance matrix.
The likelihood, defined in the Gaussian case as

L(Θ;X) =
∏
i

1√
2πσ

exp

[
(Θi − Θ̃i)

2

σ2
i

]
∝ e−χ2

(3.13)

tells us how likely the observed data distribution is, once we define the model.

If, a priori, there is no knowledge about the tendency of X to assume a particular value
instead of the others, then the p(X) = const is called uniform prior and Eq.(3.10) becomes
p(X|Θ) ∝ L(Θ;X).

We are now anyway left with the problem of computing L(Θ;X) and p(X|Θ) at different values
of the parameters Xi (i = 1, .., N). This is in general a complicated task, as we should compute
these functions at each point of the multi-dimensional parameter space. In order to make this
feasible, a commonly used approach is to sample the parameter space using Monte Carlo Markov
Chains approaches.

3.2.1 Monte Carlo Markov Chain
A Monte Carlo Markov chain is a memory-less stochastic process that moves in a given

parameter space. Being memory-less means that this stochastic process fulfills the Markov
property that p(Xi | X0...Xi−1) = p(Xi | Xi−1), which means that the probability to transit from
a point Xi−1 to Xi will depend only on Xi−1 and not on the previous ones.
Hence, the chain moves from a point Xi to Xi+1, randomly generated (Monte Carlo) from a
proposal distribution, according to a transition probability T (Xi, Xi+1), which is set by the
Metropolis-Hastings algorithm to be [69]

T (Xi, Xi+1) = α(Xi, Xi+1)q(Xi, Xi+1)

= min

[
1,
P (Xi+1|Θ)q(Xi+1, Xi)

P (Xi|Θ)q(Xi, Xi+1)

]
q(Xi, Xi+1)

(3.14)
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Figure 3.4: Burn-in phase

where q(Xi, Xi+1) is the proposal distribution, i.e. the steps distribution.
In the case in which the proposal distribution is symmetric [68], the previous transition probability
simplifies in

T (Xi, Xi+1) = min

[
1,
P (Xi+1|Θ)

P (Xi|Θ)

]
q(Xi, Xi+1) . (3.15)

This can be also understood intuitively, the transition probability will be proportional to both
the probability of generating Xi+1 starting from Xi (given the proposal distribution q(Xi, Xi+1))
and the value of α, where, fixed q(Xi, Xi+1), if α > 1 the consecutive code iteration will be done
choosing the set of parameters Xi+1, otherwise this choice will be done only α% of the times.

Since the sampling starts from a random point, it will take some time for the chain to get
close to the peak of the final distribution; this time is the so called burn-in phase (Fig.3.4).

This kind of sampling is implemented in the MCMC software CosmoMC 4 ([69]; [70]), which
is connected to CAMB or MGCAMB and is therefore able to sample the parameter space and to
obtain at each point the corresponding theoretical predictions needed to compute p(X|Θ). In
particular, it explores the parameter space, varying the model parameters within a given range
Xlow ≤ X ≤ Xup.

In order to understand when the MCMC chains are converged, CosmoMC uses the Gelman-
Rubin criterion [68]. This method is based on the fact that, if there are M chains, each one made
by N point after the burn-in phase, ideally, the mean value X̄J calculated in one chain J is equal
to its mean X̄ calculated considering the whole sample, i.e. all the M chains

X̄J =
1

N

N∑
i=1

XJ
i (3.16)

X̄ =
1

NM

M∑
J=1

N∑
i=1

XJ
i (3.17)

The test gives the value of R defined as

R =
N−1
N W + B

N (1 + 1
M )

W
(3.18)

4https://cosmologist.info/cosmomc/
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where

W =
1

M(N − 1)

M∑
J=1

N∑
i=1

(XJ
i − X̄J)2 (3.19)

B

N
=

1

(M − 1)

M∑
J=1

(X̄J − X̄)2 (3.20)

so that R ≥ 1. Ideally, the chains will be converged when R = 1; practically, a R − 1 ∼ 0.01 is
still a good convergence.

Once the chains finish and we have the posterior distribution p(X|Θ), where both X and Θ are
vectors, we want to extrapolate as many information as possible on the parameters.
Assuming that the prior is not flat, as it is in general, the peak of the posterior distribution will be
different from the peak of the likelihood; thus, we can not use the peak of the likelihood, defined
as the maximum likelihood estimate, as a good estimate of X.
But still we can derive many properties, first the mean value, defined as

X̂ =

∫
dX X p(X|Θ) , (3.21)

then, the errors.

But, we want to estimate the errors for a parameter Xi; to do this it is necessary to marginalize,
i.e. to project the multidimensional distribution p(X|Θ) in the Xi one dimension. Marginalizing
over all the other parameters means to derive

p(Xi|Θ) =

∫
dX1..dXi−1dXi+1..dXN p(X|Θ) (3.22)

Furthermore, as a consequence, the confidence levels (1σ = 68.27%, 2σ = 95.45%, 3σ = 99.73%)
are defined such that, for example in the 1σ case∫

R

dXi p(Xi|Θ) = 0.6827 (3.23)

where if R = [x, x′] then Xi = X̂i
+(x′−X̂i)

−(X̂i−x) at 1σ.
Notice that if the parameter Xi obtained after the marginalization is Gaussian distributed, the 1σ
estimate will reduce to Xi = X̂i ± ‖x− X̂i‖, since x′ = x.

3.2.2 The correlation prior
We said above that p(X|Θ) is computed through the likelihood L(Θ;X) and the prior p(X).

For our reconstructions, since we assume that we are working with smooth functions, we can use
as prior information the fact that fi (i = 1, .., N) is correlated with the values of the adjacent
bins. For this reason, as shown by [59], a correlation prior can be imposed; in this way if a bin is
unconstrained there is no risk it can behave far differently from those close by.
Referring to (3.10), the net effect of the prior is that{

p(X) ∝ e−χ2
PRIOR/2

χ2
PRIOR = (~f − ~fFID)TC−1(~f − ~fFID)

(3.24)

where C is the covariance matrix, ~f is the vector of (f1 .... fN ) and ~fFID is the vector of the
fiducial binned f values. To avoid any dependence on the fiducial value, I computed fFID,i as the
mean of fi with those adjacent:

fFID,i =


(fi + fi+1)/2 i = 1

(fi−1 + fi + fi+1)/3 i = 2, .., N − 1

(fi−1 + 2fi)/3 i = N

(3.25)
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Assuming this prior distribution means that we are assuming that our fi parameters are
Gaussian distributed and in particular the covariance matrix describes its fluctuation around the
fiducial model.

Using Bayes theorem, we can encode this prior directly in an overall χ2. Indeed, since the
posterior is the product of the two exponentials of Eqs.(3.13) and (3.24), the resulting p(X|Θ) will
be proportional to the exponential of the sum of the two χ2 related to data and prior, so that{

p(X|Θ) ∝ e−χ2

χ2 = χ2
DATA + χ2

CORR PRIOR

(3.26)

Following [71] we write the covariance matrix as

C(a, a′) =
√
C(a)C(a′)C̃(a, a′)

with C(a) autocorrelation matrix and C̃(a, a′) correlation matrix, functions only of the scale
factors. For the Dark Energy EoS we used as analytical fittings to C(a) and C̃(a, a′) those
obtained by [71], via minimization of the residuals, for two classes of models: Quintessence and
Horndeski.
The two correlations fitting formula are the exponential and the CPZ parameterizations
(Tab.3.1), such that if δa (or δln(a)) is much higher than the correlation length ξ then the
correlation tends to zero. The prior that minimizes the best the residuals in all the cases is the
exponential one.

Autocorrelation matrix α β γ x

C(x) = α+ βexp(γ(x− x0))
Quintessence 0.03 0.3 6.5 a

Horndeski 0.05 0.8 2 ln(a)
Correlation matrix ξ n x y

C̃(x, y) = exp
[(
− |x−y|

ξ

)n] Quintessence 0.7 1.8 a a′

Horndeski 0.3 1.2 ln(a) ln(a′)

C̃(x, y) = 1

1+
(

|x−y|
ξ

)n
Quintessence 0.6 2 a a′

Horndeski 0.2 2 ln(a) ln(a′)

Table 3.1: Summary of the autocorrelation and correlation analytical fits obtained by [71]. The first
parameterization of the correlation matrix is the exponential, while the second is the CPZ [59]. In particular
ξ is the correlation length used for the Gaussian Process method.

For µ(z) and Σ(z) I used the CPZ analytical fit to the correlation matrix found by [72]
(Tab.3.2), while for the autocorrelation matrix there was no fitting. For this reason, once known
the binning, I directly took the numerical values for C(a).

Correlation matrix ξ n x y

C̃(x, y) = 1

1+
(

|x−y|
ξ

)n
µ 0.31 1.74 a a′

Σ 0.38 1.7 a a′

Table 3.2: CPZ fitting parameters for the correlation matrix in the Horndeski case; taken from [72]

The choice of the binning properties is very important.

First, given a certain redshift interval for the reconstruction, a high number of bins implies a
lower dependence of the reconstruction on the binning properties, such as the size. As outlined
by [59], the correlation length sets the so called "number of effective degrees of freedom"
Neff = (amax − amin)/ξ; as long as N > Neff the dependence of the reconstruction on the
number of bins is negligible.
Furthermore, as already said, for increasing number of bins also the dependence on the
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reconstruction method itself is suppressed, indeed for higher N the step function is going to
approach the reconstruction obtained with the Gaussian Process.

However, overbinning is possible as well. Indeed, let us focus on the following input
parameters: the correlation length ξ, the bin width ∆a and the proposal density of fi(a)
(i = 1, .., N). The correlation length sets the strength of the influence of one bin on another; if
the distance between two points ai and aj is much smaller than this length they will be highly
correlated. The risk is that if a sufficiently high proposal density (i.e. long step) is given,
CosmoMC will vary f(ai) with respect to f(aj) more than what the correlation can predict. This
can lead to huge values of the χ2. But on the other hand, we can not give a too low proposal
density, because otherwise the code would not be as efficient as we want. Thus, there is a
practical upper limit to N .
In Fig.3.5 I plotted5 the results obtained for the EoS running CosmoMC without any dataset,
but only with the CPZ correlation prior, in both the Horndeski and Quintessence case (different
prior parameters), for the same input binning parameters. The constraints given by the
Quintessence CPZ prior seems to be slightly more binding.

5https://getdist.readthedocs.io/
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Figure 3.5: This is the triangle plot referred to the only CPZ prior runs in the case of Quintessence and
Horndeski, given the same input parameters for the reconstruction of the EoS. It shows the effect of a
different correlation length.
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4 | Results

The non-parametric approach enables us to reconstruct the DE Equation of State wDE(z) and
the two phenomenological functions µ(z) and Σ(z) in a model-independent way. The only way in
which we will restrict the analysis to a particular class of models, as Quintessence and Horndeski,
is imposing the correlation priors (Sect.3.2.2), since the latter have been obtained imposing specific
theoretical conditions [71]. I here want to remind that the use of the correlation prior restricts us
in the choice of the binning properties as well. Thus, Crittenden et al.[59] defined the "number of
effective degrees of freedom" as Neff = (amax − amin)/ξ, where the correlation length ξ is given
by the correlation prior; as long as N > Neff the dependence of the reconstruction on the binning
properties is negligible. We will require this condition to be satisfied in every reconstruction.

The reconstruction parameters fi(a) (i = 1, .., N) are sampled within an appropriate range
during the data analysis:

• Quintessence EoS lays in the region above the Phantom divide (Eq.(2.7)) in the (z, wQ(z))
space, so that wQ,i is sampled in the range [−1, 0]. The reconstruction of wQ(z) is done using
both the CPZ and exponential correlation priors (Tab.3.1), to highlight how they differently
affect the inferred wQ,i parameters. Since it is a simple scalar field minimally coupled to
gravity, there is no need to compute µ(z) and Σ(z), as this model does not provide any
modification to perturbation theory with respect to ΛCDM (µ(z) = Σ(z) = 1).

• Horndeski EoS has no particular restriction in the values that it can assume, hence wH,i is
sampled within the reasonable range [−3, 0], that still includes ΛCDM. The reconstruction
of wH(z) is obtained applying the exponential prior (Tab.3.1) to the data analysis.
Moreover, since it is a MG model, there is the need to compute µ(z) and Σ(z); in particular
the sampling range is fixed on the basis of the results obtained by [8] in the DE-related and
time-related parametrizations of fi in Eq.(2.39). So, µi and Σi vary within the range [0.2, 2]
and they are reconstructed using their CPZ correlation priors (Tab.3.2), provided by [72].

4.1 Data

The datasets I used for the analysis are the JLA (’Joint Light-curve Analysis’) dataset [73],
that unifies Type Ia SNe observations of SDSS-II (Sloan Digital Sky Survey) and SNLS
(Supernova Legacy Survey) collaborations, for a total of 740 Type Ia SNe up to redshift z ∼ 1,
the 6dFGS (6dF Galaxy Survey) [74] and SDSS Data Release 7 [75] for BAO and Planck 2015
data [23] for CMB.
However, the choice of the datasets is a bit tricky in the Horndeski case, since it is a MG model
and in principle it requires a proper computation of the density perturbations evolution, via the
two phenomenological functions µ and Σ. Since we first compute the reconstruction of the EoS,
without getting into account µ and Σ, only background observables (SNe and BAO) can be used;
when including also perturbations observables (CMB), µ and Σ need to be included in order to
account for the modified growth of structures.

59
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4.2 Code validation
As stated in the previous Chapter, the non-parametric reconstruction of wDE(z), µ(z) and

Σ(z) was included in CAMB and MGCAMB and then linked to CosmoMC. It was therefore
necessary to check that the standard case was still working properly. For this reason I made tests
with w = const cases, which are those computed by the standard CAMB, reconstructing the
constant DE EoS via the smoothed step function method. In particular, I here consider the
ΛCDM case (wΛ = −1), using all the datasets listed above. The resulting standard cosmological
parameters are compared in Fig.4.1, they are in accordance.

Figure 4.1: The cosmological parameters obtained with the standard and the modified CosmoMC in
ΛCDM case are the same. H0, Ωm and ΩΛ parameters has been already encountered throughout the
text, while τ is the reionization optical depth and ns is the scalar spectral index (ns = 1 is typical of
Harrison-Zel’dovich power spectrum)
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4.3 Quintessence
The first set of results reported is for a DE with wDE 6= −1 obtained for canonical

Quintessence models.
I discretized the scale factor reconstruction interval [amin, 1], such that in one correlation length
(ξexp = 0.6 ∼ ξCPZ = 0.7) there were approximately four bins: ~a = (0.85 0.7 0.55 0.4 0.25 0.1).

Fig.4.2 shows the results obtained reconstructing the DE EoS via the smoothed step function
reconstruction.
An interesting point to highlight is the effect of different correlation priors on the inferred
parameters. For this purpose, in the smoothed step reconstruction case, I first ran the code with
only the datasets and, then, added the exponential and CPZ priors.
Even from a first look at Fig.4.2, it is possible to understand the effect of the prior on wDE,i

parameters. The use of the prior, independently of which one, reduces the 2D contours of the
inferred wDE,i with respect to those obtained with only the datasets. Indeed, we do not expect
the additional prior to make the contours larger since it provides information, but, at least equal
or smaller. Hence, the two priors affect the inferred probability distributions of wDE,i differently,
where the most evident distinction is on the parameter wDE,5, for which the peaks in Fig.4.2 are
slightly different.

SMOOTHED STEP FUNCTION RECONSTRUCTION
Parameter JLA+BAO+Planck JLA+BAO+Planck (exp prior) JLA+BAO+Planck (CPZ prior)
Ωbh

2......... 0.02242± 0.00021 0.02242± 0.00021 0.02242± 0.00021
Ωch

2......... 0.1164± 0.0015 0.1165± 0.0015 0.1166± 0.0015
H0 ........... 65.1+1.6

−0.94 65.1+1.6
−0.95 65.1+1.5

−0.94

ΩΛ............ 0.670+0.017
−0.0099 0.670+0.016

−0.010 0.670+0.016
−0.0099

Ωm............ 0.330+0.0099
−0.017 0.330+0.010

−0.016 0.3296+0.0099
−0.016

wDE,1........ −0.803, < −0.757 −0.805, < −0.759 −0.803, < −0.761
wDE,2........ −0.937, < −0.926 −0.935, < −0.924 −0.936, < −0.923
wDE,3........ −0.930, < −0.916 −0.930, < −0.914 −0.929, < −0.914
wDE,4........ −0.908, < −0.891 −0.920, < −0.895 −0.912, < −0.902
wDE,5........ −0.848, < −0.820 −0.876, < −0.831 −0.865, < −0.844
wDE,6........ −0.768, < −0.708 −0.801, < −0.732 −0.787, < −0.750

Table 4.1: Mean values and 1σ confidence levels of the Quintessence case inferred parameters, using the
datasets without and with the priors, reconstructing the Equation of State via smoothed step function.
The input scale factors associated to the ~wDE are ~a = (0.85 0.7 0.55 0.4 0.25 0.1).

The comparison of the three cases, bin by bin, can be quantified as a percentage difference of
the mean values inferred adding the exponential(exp) and CPZ priors with respect to the mean
values obtained using only the datasets. Hence, we notice that the main differences associated to
the choice of a particular prior are related to the behaviour of wDE,4 (exp: −1.32%, CPZ: −0.44%),
wDE,5 (exp: −3.3%, CPZ :−2.01%) and wDE,6 (exp: −4.3%, CPZ: −2.47%) mean values and 1σ
confidence levels, given in Tab.4.1, while wDE,1 (exp: −0.249%, CPZ: 0%), wDE,2 (exp: +0.214%,
CPZ: +0.107%) and wDE,3 (exp: 0%, CPZ: +0.108%) do not differ significantly case by case.
The larger impact of the correlation priors in the last three bins can be explained with the fact that
these redshifts contain much less data; therefore the constraining power of the prior is comparable
to that of the data.



4.3. QUINTESSENCE 62

Figure 4.2: This plot shows the 2D contours between each of the wDE,i at 1σ and 2σ, for smoothed step
reconstruction of the Quintessence Equation of State wDE . All the cases (datasets alone or with a prior,
exponential or CPZ) are included. The input scale factors are ~a = (0.85 0.7 0.55 0.4 0.25 0.1)
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Figure 4.3: These plots show the Quintessence EoS smoothed step reconstructions obtained including,
respectively from the top to the bottom, the datasets alone, data with the exponential correlation prior and
then data with the CPZ prior. For each case, the shaded areas are those filling the reconstructions within
the 68%, 95% and 99% confidence levels of all the wDE,i, while the continuous lines are the reconstructions
obtained using the mean values (Tab.4.1). The dashed line is the wΛ = −1 case.
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Figure 4.4: These plots show the superposition of the Quintessence EoS reconstructions of Fig.4.3,
obtained via smoothed step function. The lower one is a zoom of the upper plot. The input scale factors
are ~a = (0.85 0.7 0.55 0.4 0.25 0.1).

The final reconstructions obtained via the smoothed step function are shown in Figs.4.3 and
4.4. The visible difference between the effects of the two priors is linked to the already discussed
behaviour of wDE,4, wDE,5 and wDE,6, for which the priors are severely constraining.
Apart from the first bin, the mean tendency of the function is to increase over redshift,
independently of the correlation priors. The behaviour of the first bin could be both due to a lack
of data or to the particular reconstruction method. The following Gaussian Process
reconstruction will make this clear.
The Cosmological Constant EoS wΛ = −1 is still included within the 1σ confidence level
reconstructions and therefore the ΛCDM limit is compatible with data also when using this
non-parametric approach.

Let us proceed to the comparison between the previous reconstructions and those obtained
via Gaussian Process method, using the datasets alone or with the CPZ prior as well. The
correlation length ξ of the Gaussian Process is set equal to that of the prior, even if the latter is
not used in the first case, but its ξ can still be though to be the fiducial one.

Since there are no data to constrain wDE,0 I do not include it in the free parameters of the
analysis. Then, there are two possible ways to proceed: letting the Gaussian Process extrapolate
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GAUSSIAN PROCESS RECONSTRUCTION
Parameter JLA+BAO+Planck JLA+BAO+Planck (CPZ prior)
Ωbh

2......... 0.02242+0.00022
−0.00020 0.02241± 0.00021

Ωch
2......... 0.1166± 0.0015 0.1167± 0.0014

H0 ........... 62.8+1.6
−2.0 63.4+2.2

−1.6

ΩΛ............ 0.645± 0.020 0.651+0.025
−0.017

Ωm............ 0.355± 0.020 0.349+0.017
−0.025

wDE,1........ −0.809, < −0.764 −0.775, < −0.723
wDE,2........ −0.931, < −0.916 −0.945, < −0.933
wDE,3........ −0.928, < −0.914 −0.920, < −0.901
wDE,4........ −0.907, < −0.889 −0.929, < −0.911
wDE,5........ −0.848, < −0.816 −0.868, < −0.833
wDE,6........ −0.761, < −0.691 −0.786, < −0.726

Table 4.2: Mean values and 1σ confidence levels of the Quintessence case inferred parameters, using
the datasets without and with the CPZ prior, reconstructing the Equation of State via Gaussian Process
method. The input scale factors associated to the ~wDE are ~a = (0.85 0.7 0.55 0.4 0.25 0.1).

the wDE,0 value once given the wDE,i (i = 1, .., N) inferred parameters as training points or
setting the condition wDE(z < z1) = wDE,1.

Figure 4.5: This plot is the superposition of the Quintessence EoS reconstructions obtained via Gaussian
Process including the datasets alone, respectively setting wDE,0 to be freely extrapolated by the GP itself
or wDE(z < z1) = wDE,1. The continuous lines are the reconstructions obtained using the mean values
(Tab.4.2).

To keep the reconstruction as general as possible, the best choice would be the first approach;
however, if we think that from present to z1 = 0.18 the Equation of State is not going to vary
significantly, compared to variations happening within a bigger redshift interval, the second
approach is valid. Since such a strict condition on the value of wDE(z < z1) does not change
significantly the behaviour of the reconstruction on higher redshifts (Fig.4.5), we are going to
bind the GP reconstruction with this condition.
The inferred reconstructions are shown and compared in Fig.4.6.
We here observe that, as in the smoothed step case, the addition of the prior largely affects the
earliest time reconstruction (referring to wDE,4, wDE,5 and wDE,6); however, differently from
above, now the prior affects more evidently the first bins: the mean values of the reconstruction
obtained adding the prior respectively differ from the wDE,1, wDE,2 and wDE,3 means obtained
with only the datasets by +4.2%, −1.5% and +0.86%. This could be linked to the unconstrained
parameter wDE,0, to which wDE,1 is highly correlated.
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Figure 4.6: These are the Quintessence EoS reconstructions obtained via Gaussian Process including,
respectively from the top to the bottom, the datasets alone and with the CPZ prior and the comparison
of the two. For each case, the shaded areas are those filling the reconstructions within the 68%, 95% and
99% confidence levels of all the wDE,i, while the continuous lines are the reconstructions obtained using
the mean values (Tab.4.2). The input scale factors are ~a = (0.85 0.7 0.55 0.4 0.25 0.1).
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Figure 4.7: The upper plot is the superposition of the smoothed step function and Gaussian Process
reconstructions for Quintessence EoS obtained including the datasets without the prior. The lower plot
refers to the reconstructions obtained including the CPZ prior. For each case, the shaded areas are those
filling the reconstructions within the 68%, 95% and 99% confidence levels of all the wDE,i, while the
continuous lines are the reconstructions obtained using the mean values. The input scale factors are
~a = (0.85 0.7 0.55 0.4 0.25 0.1).

The comparison between the smoothed step reconstructions and those obtained via Gaussian
Process, in both the cases without and with the CPZ prior, is shown in Fig.4.7.
As expected the smoothed step function tends to mimic the Gaussian Process and the results of
the two methods are consistent with each other; in the Figure I also plotted the inferred training
points of the Gaussian Process to put them in evidence with respect to those obtained from the
smoothed step function method.
The addition of the correlation prior in the Gaussian Process reconstruction affects the first three
bins behaviour more significantly than it does in the smoothed step case, with respect to the
reconstructions obtained using the datasets alone. Hence, if the smoothed step and GP wDE,i

mean values inferred without the prior are very close to each, they are slightly different using the
CPZ prior.
Again, apart from the first bin and independently of the prior, the mean tendency of the function is
to increase over redshift; hence, the behaviour of wDE,1 do not seem to be linked to the particular
reconstruction method.
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4.4 Horndeski class of MG models
As already seen, introducing a scalar field not minimally coupled to gravity induces

modifications at the level of both background evolution and cosmological perturbations. In this
Section I focus first on the effects of Horndeski models on the background expansion, and only in
a second time I will include the effects at the perturbation level.
In Sec.4.4.1 I will present the results obtained for the reconstruction of the DE Equation of State
alone, hence Planck data could not be used. Due to the limited data I will only show the results
obtained using both the datasets and the prior, since with only background data the convergence
of the chain was computationally demanding. The assumed correlation prior for the EoS is the
exponential one. While providing the results I will refer to this case as HDE.
In Sec.4.4.2, on the other hand, I will reconstruct the effective EoS, including its exponential
prior, along with the two phenomenological functions µ(z) and Σ(z) via our modified version of
MGCosmoMC, including their CPZ priors. Thus, including modifications to linear order scalar
perturbations, Planck data can finally be used, allowing us to reconstruct wDE(z) up to higher
redshifts, with respect to the previous case. Furthermore I will compare the EoS reconstruction
made with MGCosmoMC with that of Sec.4.4.1, including wrongly Planck data, to show the
importance of self-consistency. While providing the results I will refer to this case as HMG.

4.4.1 HDE: Reconstruction of the EoS alone
I discretized the scale factor reconstruction interval [amin, 1], such that in one correlation

length (ξexp = 0.3) there were three bins: ~a = (0.9 0.8 0.7 0.6 0.5 0.4). In this case, since we are
not using Planck data, the reconstruction can only be made up to z6 = 1.5.

The behaviour of the obtained wDE,i is shown in Tab.4.3; for both the smoothed step
function and Gaussian Process reconstructions, the last bins are the less constrained. The wDE,6

is highly unconstrained with respect to the others, since the 68% confidence level cover the whole
allowed range of values for wDE,i (∈ [−3, 0]); moreover, the bins highly correlated to this
unconstrained bin will suffer of larger confidence levels.
This high uncertainty on wDE,6 is caused by the lack of data, on one hand we are not using high
redshift observations (CMB), on the other, JLA datasets is not fully constraining in the redshift
interval z ∼ [1, 1.5], since the number of SNe in this range of redshift is much smaller than at
smaller z.

HDE RECONSTRUCTIONS: JLA+BAO (exp prior)
Parameter Smoothed step function Gaussian Process
Ωbh

2......... 0.041+0.012
−0.031 0.049+0.017

−0.031

Ωch
2......... 0.181+0.084

−0.12 0.157+0.067
−0.10

H0 ........... 82.06, > 76.6 83.44, > 79.7
ΩΛ............ 0.684± 0.086 0.713± 0.072
Ωm............ 0.316± 0.086 0.287± 0.072

wDE,1........ −1.10+0.30
−0.22 −1.10+0.28

−0.23

wDE,2........ −0.97+0.36
−0.22 −0.86+0.26

−0.18

wDE,3........ −1.09+0.60
−0.30 −0.98+0.44

−0.25

wDE,4........ −1.21+0.73
−0.39 −1.05+0.58

−0.34

wDE,5........ −1.44+0.75
−0.63 −1.36+0.74

−0.62

wDE,6........ −1.52 ∈ [−3, 0] −1.43 ∈ [−3, 0]

Table 4.3: Mean values and 1σ confidence levels of the Horndeski case, reconstructing the Equation of
State via smoothed step function and via Gaussian Process. The input scale factors associated to the ~wDE

are ~a = (0.9 0.8 0.7 0.6 0.5 0.4). Here the bound shown with the ∈ [−3, 0] notation indicates a lack of
constraining power, with the 1σ region extending over the full prior range.
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Figure 4.8: These are the Horndeski EoS reconstructions obtained via smoothed step function (upper
plot) and via Gaussian Process (central plot), compared in the lower plot; these are inferred using JLA,
BAO and the exponential prior. For each case, the shaded areas are those filling the reconstructions within
the 68%, 95% and 99% confidence levels of all the wDE,i, while the continuous lines are the reconstructions
obtained using the mean values (Tab.4.3). The input scale factors are ~a = (0.9 0.8 0.7 0.6 0.5 0.4).
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The plots in Fig.4.8 are obtained reconstructing the EoS using the inferred wDE,i mean values
and their confidence levels limits, via smoothed step function in the upper plot, and via Gaussian
Process in the one below. The lower plot is the superposition of these two reconstructions.
The function tends to decrease over redshift, independently of the reconstruction method;
however, while in Quintessence case the first bin was the one that differed from the mean
tendency, this time could be the first or the second one.
Even though the mean values reconstructed with the two methods differ more than in the
Quintessence case (Fig.4.7), also in this case the results are compatible with each other within
1σ, and again the ΛCDM limit is also included within 1σ, thus in agreement with the data.

4.4.2 HMG: Reconstruction of all the functions
Let us now analyze the resulting reconstructions of the Equation of State wDE(z) and the two

functions µ(z) and Σ(z), for which only the smoothed step reconstruction was applied.

Comparison with the previous results

The first main point to tackle is the comparison between the EoS reconstructions obtained in
the HDE and HMG cases, hence the consistency choice of not using high redshift Planck data for
the reconstruction of the wDE(z) of a MG model if its modifications to perturbations are not
taken into account in µ(z) and Σ(z).
In order to make the two cases comparable, the binning properties of the EoS must be the same
for both, I discretized the scale factor reconstruction interval [amin, 1], such that
~a = (0.9 0.8 0.7 0.6 0.5 0.4).

So first, we need to wrongly add Planck data to the smoothed step reconstruction treated in
Sec.4.4.1, in order to later highlight the differences with the HMG case, stressing the importance
of a proper choice of datasets.
Hence, let us compare the previous results with the one obtained including high redshift
observations. The resulting inferred EoS parameters are shown in Tab.4.4, while the two
reconstructions are compared by superposition in Fig.4.10. Using high redshift data, highly
reduces the 1σ c.l. reconstruction, i.e. that obtained using the 68% c.l. lower and upper limits.
This is due both to the increased constraining power on wDE,i and to the breaking of
degeneracies between these and the cosmological parameters, which are now better constrained.

HDE SMOOTHED STEP RECONSTRUCTIONS
Parameter JLA+BAO (exp prior) JLA+BAO+Planck (exp prior)
Ωbh

2......... 0.041+0.012
−0.031 0.02218± 0.00022

Ωch
2......... 0.181+0.084

−0.12 0.1207± 0.0021
H0 ........... > 76.6 68.1± 1.2
ΩΛ............ 0.684± 0.086 0.690± 0.011
Ωm............ 0.316± 0.086 0.310± 0.011

wDE,1........ −1.10+0.30
−0.21 −1.07± 0.21

wDE,2........ −0.97+0.36
−0.22 −0.91± 0.20

wDE,3........ −1.09+0.60
−0.30 −0.95± 0.25

wDE,4........ −1.21+0.73
−0.39 −0.96± 0.32

wDE,5........ −1.44+0.75
−0.63 −1.22± 0.32

wDE,6........ −1.52,∈ [−3, 0] −1.46+0.59
−0.35

Table 4.4: Mean values and 1σ confidence levels of the Horndeski case, reconstructing the Equation of
State via smoothed step function, including JLA,BAO and the exponential prior first and, then, adding
Planck data. The input scale factors associated to the ~wDE are ~a = (0.9 0.8 0.7 0.6 0.5 0.4).Here the bound
shown with the ∈ [−3, 0] notation indicates a lack of constraining power, with the 1σ region extending
over the full prior range.
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Figure 4.9: This triangle plot shows the 2D contours between each of the wDE,i at 1σ and 2σ, for
smoothed step reconstruction of the Horndeski Equation of State wDE , obtained including JLA,BAO and
the exponential prior first and, then, adding Planck data.
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Figure 4.10: This plot shows the superposition of the Horndeski EoS smoothed step function
reconstructions, obtained without and with Planck data in HDE case. For each case, the shaded areas are
those filling the reconstructions within the 68% confidence levels of all the wDE,i, while the continuous
lines are the reconstructions obtained using the mean values (Tab.4.4). The input scale factors are
~a = (0.9 0.8 0.7 0.6 0.5 0.4).

Let us then move on to the comparison with HDE (including Planck data) and HMG
reconstructions. While the binning properties of the EoS are the same as before, µ(z) and Σ(z) a
priori have different binning properties. The vector of the binned scale factor for their
reconstruction is ~a = (0.85 0.7 0.55 0.4), still satisfying the condition N > (amax − amin)/ξ
(ξµ = 0.31, ξΣ = 0.38), where the binned values of µ(z) and Σ(z) will vary during the Bayesian
analysis in the range [0.2, 2] [8]. The transition scale factor atrans, i.e. the scale factor below
which standard GR regime is recovered, is set to atrans = 0.1.
Since both the EoS and the two phenomenological functions affect the evolution over time of
density perturbations, we expect that a reconstruction of µ(z) and Σ(z) will affect the behaviour
of the reconstructed EoS, as it can be seen in Fig.4.11.

Figure 4.11: These are the Horndeski EoS reconstructions obtained including JLA,BAO and exponential
prior for wDE in HDE case and JLA, BAO, Planck and the EoS prior in HDE and HMG cases, where
the latter needed also the µ and Σ correlation priors. For each case, the shaded areas are those
filling the reconstructions within the 68% confidence levels of all the wDE,i, while the continuous lines
are the reconstructions obtained using the mean values (Tabs.4.4,4.5). The input scale factors are
~a = (0.9 0.8 0.7 0.6 0.5 0.4) for the EoS, while ~a = (0.85 0.7 0.55 0.4) for µ(z) and Σ(z).
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The inferred parameters for the reconstructions are resumed in Tab.4.5.

SMOOTHED STEP RECONSTRUCTIONS JLA+BAO+Planck
Parameter HDE (exp prior) HMG HMG (priors)
Ωbh

2......... 0.02218± 0.00022 0.02260± 0.00029 0.02261± 0.00029
Ωch

2......... 0.1207± 0.0021 0.1168± 0.0025 0.1167± 0.0025
H0 ........... 68.1± 1.2 68.1± 1.3 67.8+1.2

−1.3

ΩΛ............ 0.690± 0.011 0.697± 0.012 0.695± 0.011
Ωm............ 0.310± 0.011 0.303± 0.012 0.305± 0.011
wDE,1........ −1.07± 0.21 −1.13± 0.24 −1.07± 0.20
wDE,2........ −0.91± 0.20 −0.77± 0.30 −0.89± 0.19
wDE,3........ −0.95± 0.25 −1.09± 0.43 −0.94± 0.24
wDE,4........ −0.96± 0.32 −0.88+0.70

−0.38 −0.93± 0.31
wDE,5........ −1.22± 0.32 −0.99+0.65

−0.43 −0.996± 0.28
wDE,6........ −1.46+0.59

−0.35 −1.12+0.67
−0.31 −1.05+0.44

−0.25

µ1........ − 1.41± 0.30 1.34± 0.32
µ2........ − 1.32+0.22

−0.29 1.27± 0.23
µ3........ − 1.18+0.14

−0.19 1.18± 0.13
µ4........ − 1.103± 0.055 1.105± 0.056
Σ1........ − 1.31+0.27

−0.34 1.25+0.20
−0.28

Σ2........ − 1.16+0.21
−0.26 1.17+0.13

−0.18

Σ3........ − 1.07+0.16
−0.14 1.08± 0.10

Σ4........ − 1.087± 0.049 1.089± 0.052

Table 4.5: Mean values and 1σ confidence levels of the Horndeski case. The first column of results refers to
the reconstruction of the Equation of State via smoothed step function in HDE case including JLA,BAO,
Planck as datasets and the wDE exponential prior. The other columns refer to the reconstruction of the
Equation of State, µ and Σ via smoothed step function in HMG case, including all the datasets without and
with all the correlation priors (for wDE , µ and Σ). The input scale factors are ~a = (0.9 0.8 0.7 0.6 0.5 0.4)
for the EoS, while ~a = (0.85 0.7 0.55 0.4) for µ(z) and Σ(z).

From Fig.4.11 it can be seen that Planck data highly constrain the DE EoS wDE(z) at higher
redshifts, even in the HMG case, despite the higher number of parameters, since we included also
the µi and Σi (i = 1, .., 4) parameters. Furthermore the two phenomenological functions
reconstructions seem to make the DE EoS get closer to ΛCDM limit, independently of the use of
the correlation priors, as it can be seen from Tab.4.5.

For both the HDE and HMG cases, the reconstruction of the DE EoS is compatible within 1σ
with the Cosmological Constant (wΛ = −1); in the HMG case, for which also the two
phenomenological functions have been included, the reconstructions of µ(z) and Σ(z) are
compatible with the standard GR regime, i.e. µ(z) = Σ(z) = 1, within 2σ. Hence, again the
ΛCDM limit is in agreement with the data.
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Upper redshift limit for Equation of State

Since now Planck data can be consistently used, the reconstruction of the Horndeski Equation
of State can be made up to a higher redshift.
So, I discretized the scale factor ~a = (0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1) for the EoS, while the
binning properties of µ(z) and Σ(z) are the same as in the previous paragraph.

The inferred reconstruction parameters are resumed in Tab.4.6.

HMG SMOOTHED STEP FUNCTION RECONSTRUCTIONS
Parameter JLA+BAO+Planck JLA+BAO+Planck (priors)
Ωbh

2......... 0.02258± 0.00028 0.02258± 0.00029
Ωch

2......... 0.1170± 0.0024 0.1168± 0.0023
H0 ........... 67.1+2.3

−4.7 66.4± 2.6
ΩΛ............ 0.686+0.027

−0.040 0.681± 0.024
Ωm............ 0.314+0.040

−0.027 0.319± 0.024
wDE,1........ −0.874, > −1.12 −0.82± 0.39
wDE,2........ −0.94+0.59

−0.50 −0.95± 0.23
wDE,3........ −1.04± 0.42 −1.01± 0.26
wDE,4........ −0.83+0.57

−0.38 −0.90± 0.28
wDE,5........ −0.90+0.55

−0.41 −0.91± 0.32
wDE,6........ −1.19+1.0

−0.45 −1.05+0.47
−0.39

wDE,7........ −1.28+1.2
−0.42 −1.22+0.65

−0.48

wDE,8........ −1.45, ∈ [−3, 0] −1.40+0.82
−0.68

wDE,9........ −1.49, ∈ [−3, 0] −1.49, ∈ [−3, 0]
µ1........ 1.41+0.35

−0.30 1.36± 0.31
µ2........ 1.32+0.24

−0.28 1.27± 0.24
µ3........ 1.19+0.15

−0.19 1.17+0.13
−0.16

µ4........ 1.102+0.053
−0.058 1.107± 0.053

Σ1........ 1.31+0.27
−0.34 1.24+0.20

−0.26

Σ2........ 1.14+0.19
−0.25 1.15+0.14

−0.18

Σ3........ 1.07+0.17
−0.15 1.09± 0.11

Σ4........ 1.085± 0.049 1.088+0.053
−0.047

Table 4.6: Mean values and 1σ confidence levels of the Horndeski case, reconstructing the Equation of
State, µ and Σ via smoothed step functions including all the datasets without and with all the correlation
priors. The input scale factors are ~a = (0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1) for the EoS, while ~a =
(0.85 0.7 0.55 0.4) for µ(z) and Σ(z). Here the bound shown with the ∈ [−3, 0] notation for the EoS
parameters indicates a lack of constraining power, with the 1σ region extending over the full prior range.

Let us first show in Fig.4.12 the effect of the correlation priors on the reconstruction of the
Equation of State wDE(z), while in Fig.4.14 for µ(z) and Σ. Once again, the correlation prior
reduces the 1σ confidence level region, still including the Cosmological Constant. The mean
values slightly vary from one case to the other, it could be both for the effect of the EoS prior in
absence of data or to how the µ and Σ priors affect the two phenomenological functions and
hence affects the EoS, since they are correlated.

A higher number of bins for the Equation of State, with respect to the previous results obtained
binning the scale factor in ~a = (0.9 0.8 0.7 0.6 0.5 0.4), will reflect in a slight different behaviour
of wDE(z); the comparison between the two reconstructions obtained using the priors is plotted
in Fig.4.13. In particular, we expect the same overall trend of the function in the two cases,
but slightly different behaviors bin by bin, since, for the first case, a lot of information is lost,
cutting the reconstruction at a = 0.4. Indeed, if wDE(z > zfinal) = wDE(zfinal) and the bins are
correlated, since it is probable that the final wDE is different in the two cases, this will lead to
differences in the preceding bins.
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Figure 4.12: These are the Horndeski wDE(z) reconstructions obtained including all the datasets without
and with the priors, obtained binning the scale factor in ~a = (0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1) for the
EoS and in ~aµ = (0.85 0.7 0.55 0.4) for µ(z) and Σ(z). For each case, the shaded areas are those filling
the reconstructions within the 68% confidence levels, while the continuous lines are the reconstructions
obtained using the mean values.

Figure 4.13: These are the Horndeski EoS reconstructions obtained including JLA, BAO, Planck datasets
along with the priors in HMG case, obtained binning the scale factor in ~a = (0.9 0.8 0.7 0.6 0.5 0.4) (6 bins
case) and ~a = (0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1) (9 bins case), given the same binning properties for µ(z)
and Σ(z) (~aµ = (0.85 0.7 0.55 0.4)). For each case, the shaded areas are those filling the reconstructions
within the 68% confidence levels of all the wDE,i, while the continuous lines are the reconstructions obtained
using the mean values.
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Figure 4.14: These are the Horndeski µ(z) (upper plot) and Σ(z) (lower plot) reconstructions obtained
including all the datasets without and with the priors, obtained binning the scale factor in ~a =
(0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1) for the EoS and in ~aµ = (0.85 0.7 0.55 0.4) for µ(z) and Σ(z). For each
case, the shaded areas are those filling the reconstructions within the 68%, 95% and 99% confidence levels,
while the continuous lines are the reconstructions obtained using the mean values.
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Reconstruction of µ(z) and Σ(z) up to atrans

I here present the final results obtained in the case in which the Horndeski Equation of State
scale factor binning is ~a = (0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1), while that of µ(z) and Σ(z) is
~a = (0.85 0.7 0.55 0.4 0.25 0.1), then up to the transition scale factor atrans = 0.1.

HMG SMOOTHED STEP FUNCTION RECONSTRUCTIONS
Parameter JLA+BAO+Planck JLA+BAO+Planck (exp prior)
Ωbh

2......... 0.02264± 0.00028 0.02266± 0.00028
Ωch

2......... 0.1161± 0.0024 0.1158± 0.0024
H0 ........... 67.0+2.3

−4.5 66.4± 2.5
ΩΛ............ 0.687+0.028

−0.039 0.683± 0.24
Ωm............ 0.313+0.039

−0.028 0.317± 0.24

wDE,1........ −0.87+0.87
−0.24 −0.83± 0.38

wDE,2........ −0.93+0.59
−0.49 −0.96± 0.23

wDE,3........ −1.06+0.37
−0.42 −0.998± 0.25

wDE,4........ −0.78+0.55
−0.35 −0.89± 0.26

wDE,5........ −0.92+0.70
−0.40 −0.83+0.35

−0.32

wDE,6........ −1.01, > −1.29 −0.89+0.42
−0.34

wDE,7........ −1.27, > −1.68 −1.16+0.64
−0.49

wDE,8........ −1.47, ∈ [−3, 0] −1.48+0.76
−0.67

wDE,9........ −1.52, ∈ [−3, 0] −1.58± 0.78

µ1........ 1.53+0.42
−0.18 1.46+0.43

−0.23

µ2........ 1.43± 0.25 1.38± 0.25
µ3........ 1.34+0.20

−0.23 1.31+0.19
−0.22

µ4........ 1.23± 0.15 1.23+0.16
−0.14

µ5........ 1.12± 0.10 1.14± 0.10
µ6........ 1.021+0.089

−0.14 1.05+0.12
−0.15

Σ1........ 1.42± 0.32 1.35± 0.30
Σ2........ 1.34± 0.29 1.29± 0.26
Σ3........ 1.28± 0.26 1.22± 0.24
Σ4........ 1.20+0.24

−0.20 1.18± 0.20
Σ5........ 1.18+0.17

−0.11 1.16± 0.14
Σ6........ 1.118+0.071

−0.063 1.123± 0.061

Table 4.7: Results of the Horndeski case, without and with the priors, reconstructing the Equation of
State, µ(z) and Σ(z) via smoothed step function. The input scale factors associated to the ~wDE are
~a = (0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1), while for ~µ and ~Σ are ~a = (0.85 0.7 0.55 0.4 0.25 0.1). Here the
bound shown with the ∈ [−3, 0] notation for the EoS parameters indicates a lack of constraining power,
with the 1σ region extending over the full prior range.

In Fig.4.15 I plotted the reconstructions for wDE(z) (upper plot), µ(z) (central plot) and Σ(z)
(lower plot) obtained including JLA, BAO, Planck and the correlation priors for all these
functions.
The effective Equation of State mean behaviour is oscillating, crossing the Phantom divide once,
and then decreases below −1. Such a particular pattern, at least referring to the reconstruction
obtained using the wDE,i mean values, would have never been caught by a CPL-like
parametrization (Eq.(2.34)) for instance. The Cosmological Constant limit wΛ = −1 is still in
agreement with the reconstruction within 1σ.
On the other hand, the two phenomenological functions tends to decrease over time up to atrans,
reaching very closely 1 in the case of µ(z). This behaviour meets the ‘late times’ Planck
parametrization (Eq.(2.39)), where the time dependence of µ(z) and Σ(z) is assumed to be the
same of the DE density parameter ΩDE(z). While the ΛCDM (µ(z) = Σ(z) = 1) is in agreement
with the µ(z) results within 1σ, ΛCDM is within 2σ for Σ(z), which is again consistent with the
results of Planck.



4.4. HORNDESKI CLASS OF MG MODELS 78

Figure 4.15: These are the Horndeski wDE(z) (upper plot), µ(z) (central plot) and Σ(z) (lower plot)
reconstructions obtained including all the datasets without and with the priors, obtained binning the scale
factor in ~a = (0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1) for the EoS and in ~aµ = (0.85 0.7 0.55 0.4 0.25 0.1) for µ(z)
and Σ(z). For each case, the shaded areas are those filling the reconstructions within the 68%, 95% and
99% confidence levels, while the continuous lines are the reconstructions obtained using the mean values.



5 | Discussion and conclusions

5.1 Model-independent results
Without assuming any prior, the reconstructions are model-independent, hence the w(z), µ(z)

and Σ(z) obtained in Horndeski case without imposing the prior could be actually treated as the
most general reconstructions of this work, since no model dependent condition is imposed on the
reconstruction.
In the three figures below I show the results of the last paragraph of the previous Chapter, without
having assumed any prior: the Cosmological Constant case is within 1σ in the EoS reconstruction,
while within 2σ in the µ(z) and Σ(z) reconstructions.

The obtained model-independent reconstructions reveal the strength of the non-parametric
approach.
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At the background level, the mechanism driving the late cosmic acceleration affects the
expansion history via an effective DE Equation of State (upper plot panel) that seems to have an
oscillating pattern, at least reconstructing the function using the mean inferred wDE,i (red solid
line). Of course, additional data could be able to further constrain the function.
The power of the non-parametric approach lies in catching this oscillating pattern, or any other
particular, that for instance a CPL-like parametrization (Eq.(2.34)) would have never caught.

This same mechanism could potentially turn out to be a modification to the laws of gravity
on large scale. Thus, since we want to keep the reconstruction as general as possible without
restricting ourselves to DE models, we need to examine the two phenomenological functions as
well.
The behaviour of µ(z) and Σ(z) seems to be in agreement with the ‘late times’ Planck
parametrizations [8]. Indeed, referring to the parametrizations of Eq.(2.39) and neglecting the
scale dependence of the phenomenological functions, µ(a) and Σ(a) take the form

µ(a) = 1 + f1(a)

Σ(a) = 1 + f2(a)
(5.1)

where assuming fi = EiiΩDE(a) would represent well the behaviour of µ(z) and Σ(z) (low
panels), that tend to standard GR limit for higher redshifts.

5.2 Quintessence and Horndeski

The non-parametric approach has been implemented as a model-independent reconstruction
for w(z), µ(z) and Σ(z), as long as we do not include any theoretical condition coming from the
correlation priors. Throughout the data analysis we have also restricted ourselves to the choice of
particular models, for which the priors were given, i.e. Quintessence DE model and the broad
class of Horndeski scalar tensor theories (MG).

For Quintessence case, in order to fulfill the theoretical conditions of the model, the
correlation prior was not sufficient, indeed it was also necessary to impose the lower limit of the
EoS to wDE = −1, cutting-off a severe range of solutions. The wDE(z) reconstructed with the
smoothed step and Gaussian Process methods are shown and compared in Fig.4.7, from which we
concluded that the two methods are in agreement with each other.
Furthermore, while working assuming Quintessence model, we also had the chance to test the
effects of both the exponential and CPZ (Tab.3.1) priors on the reconstruction, where we have
later deduced that the constraining power of the correlation prior largely increases where there
are less data.

Secondly, we analyzed the broad class of Horndeski scalar tensor theories, accounting also for
the two phenomenological functions µ(z) and Σ(z) while working with observables related to the
evolution of the density perturbations, as the CMB. Indeed, there is a degeneracy between the
effective EoS, µ(z) and Σ(z), since on one hand the evolution of matter density perturbations
is both linked to the expansion history and the scalar perturbation Ψ, while on the other hand
photon’s geodesics are linked to a linear combination of Ψ and Φ, to which µ(z) and Σ(z) are
related by definition.
The non-parametric approach makes the effective Equation of State reveal an oscillating pattern,
that evolves to values below −1 at higher redshifts.
As already pointed out in Sect.5.1, the behaviour of µ(z) and Σ(z) obtained through the non-
parametric approach could be further compared with the ‘late times’ Planck parametrization,
neglecting the scale dependence, since µ(z) and Σ(z) at higher redshifts tends to 1, with Σ(z)
being slightly more departing from 1 with respect to µ(z).
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5.3 H0 tension
We have seen within this work that the tension between local and high redshift estimates of

the H0 parameter is one of the facts that have prompted the exploration of alternative models to
the Cosmological Constant.
Referring to the estimates obtained from local measurements [4] and from high redshift observations
[3]

HSH0ES
0 = 73.48± 1.66 kms−1Mpc−1 HPlanck

0 = 67.36± 0.54 kms−1Mpc−1 ,

I here want to show the comparison between these two and the inferred values of H0 for all the
HMG cases computed, namely for all the Horndeski cases in which all w(z), µ(z) and Σ(z) are
reconstructed using all the datasets.

HMG RECONSTRUCTIONS
wDE bins µ and Σ bins priors H0 ΩM ΩDE

CASE 1 6 4 × 68.1± 1.3 0.303± 0.012 0.697± 0.012
X 67.8+1.2

−1.3 0.305± 0.011 0.695± 0.011

CASE 2 9 4 × 67.1+2.3
−4.7 0.314+0.040

−0.027 0.686+0.027
−0.040

X 66.4± 2.6 0.319± 0.024 0.681± 0.024

CASE 3 9 6 × 67.0+2.3
−4.5 0.313+0.039

−0.028 0.687+0.028
−0.039

X 66.4± 2.5 0.317± 0.24 0.683± 0.24

Table 5.1: Inferred mean values and 1σ c.l. of the cosmological parameters, in all the Horndeski
HMG cases, without and with the priors, reconstructing the EoS and the phenomenological functions
via smoothed step function.

We can see that in all these cases the tension between high and low redshift measurements of
H0 is reduced to ∼ 2σ, whereas in ΛCDM the tension is larger than 3σ.
We notice from Fig.5.1 that this is mainly due to the bigger errors on H0, because of its
degeneracies with DE/MG parameters, rather than to a shift in the mean value of the parameter.

Figure 5.1: The gray vertical region refers to the Planck inferred value of H0, while the red vertical region
to the local measurements estimate.

To this end, it is pointless trying to ease the tension considering Quintessence results, since,
as justified in the Appendix, the inferred H0 parameter is smaller than the one that would be
obtained under the Cosmological Constant assumption.
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5.4 Future prospects
A tremendous boost to this investigation will be given by the upcoming surveys, here briefly

described, that are specifically designed to understand and constrain the physics of the late
cosmic acceleration phase, providing, for instance, a map of the matter distribution, that, as we
have seen, is one of the most promising ways to distinguish between DE and MG models.

5.4.1 The Dark Energy Spectroscopic Instrument (DESI)
The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based Dark Energy

experiment [76]. The five year Survey will be conducted on the Mayall 4-meter telescope at Kitt
Peak National Observatory starting in 2019 [77], where the instrument will be installed at prime
focus on the telescope, along with a new optical corrector, which will provide a three-degree
diameter field of view.

DESI will study BAO (primary measurements) and the growth of structure through RSD with
a wide-area galaxy and quasar redshift survey, with in total more than 30 million galaxy and
quasar redshifts, covering 14000 deg2 and constructing a 3D map spanning the nearby Universe to
11 billion light years.
Specifically, the spectrograph will be capable of taking up to 5,000 simultaneous spectra over a
wavelength range from 360 nm to 980 nm, probing redshifts up to 1.0 for luminous red galaxies,
1.7 for emission line galaxies ([O II]) and 3.5 for the Lyman-α forest 1 from quasars, that will be
then used also to trace the distribution of neutral hydrogen along with the matter distribution.
Moreover, DESI will perform a Bright Galaxy Survey of the z < 0.4 Universe, allowing the study
of cosmic structure in the DE-dominated epoch with much denser sampling.
Finally, comparing the expansion history and the growth of large scale structure from redshift
space distortions will allow DESI to test General Relativity.

5.4.2 EUCLID
In 2021 there is going to be the launch of the long-awaited EUCLID [78] satellite, with the

main goal of understanding the physics related to the late cosmic acceleration, mapping the
geometry and evolution of the Universe with unprecedented precision.

EUCLID is a space-based mission, equipped with a 1.2m telescope, along with three imaging
and spectroscopic instruments working in the visible and near-infrared wavelength bands, that will
provide images of a billion galaxies and measure nearly 100 million galaxy redshifts, covering at
least 15000 deg2 of sky. These instruments are:

• VIS2, that will work on visual imaging of all the galaxies of the survey, with a 0.1arcsec
resolution. It will be used to measure the shapes of galaxies and derive the gravitational
lensing effects induced by LSS on distant background galaxies.

• NISP3, that is designed for near-infrared (between 900 and 2000 nm) imaging photometry
and spectroscopy, both characterized by 0.3arcsec resolution. This instrument aims at
providing near infrared photometry of all galaxies observed also with VIS, to derive
photometric redshifts and rough estimates of distances of galaxies seen by VIS, and near
infrared low resolution spectra and redshifts of millions galaxies, mapping their distribution
and clustering and describing how they changed over the last 10 billion.

1The forest is a collection of absorption features in the spectra of distant quasars blue-ward of the Ly-α emission
line, where the absorption is caused by neutral gas in the intergalactic medium.

2https://www.euclid-ec.org/?pageid = 2485
3https://www.euclid-ec.org/?pageid = 2490
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Figure 5.2: Figure adapted from [https://www.euclid-ec.org/?pageid = 2686]

This high-precision survey mission is firstly designed to place high accuracy constraints on
Dark Energy and Gravity, where we have seen that the main alternatives to the Cosmological
Constant are not only dynamical DE scalar fields, but also modifications to the standard GR
theory.
Weak Lensing and Galaxy Clustering are the most sensitive probes of Dark Energy and of the
theory of Gravity on cosmological scales; moreover, since they are also affected by the properties
of Dark Matter, EUCLID is going to investigate the Dark Matter sector as well.
Concerning Weak Lensing, EUCLID will measure the shape and spectra of galaxies in the visible
(VIS) and near-infrared (NISP) out to redshift 2, thus covering the period over which the
Universe expansion had been accelerated, and the pattern of light distortions out to redshift 3.
By measuring the correlations in the shapes of the 1.5 billion galaxies that EUCLID will image,
the expansion and growth history of the Universe can be determined with high precision, along
with a map of the distribution of (dark and luminous) matter.
Other important observables are peculiar velocities, that, as already seen, leave a characteristic
pattern in redshift space, in form of distortions. Redshift space distortions provide us an
independent measurement of the growth rate, which, together with that from lensing
tomography, will be EUCLID’s key measurement to detect the gravitational slip and break the
DE versus MG degeneracy [79].
In addition to these main probes, EUCLID will provide abundance and properties of galaxy
clusters and strong lensing and possible luminosity distance through Type Ia Supernovae, for few
thousand of which EUCLID will provide NIR lightcurves and spectroscopic redshifts for many of
the host galaxies.

Finally, EUCLID’s capabilities can test the Cosmological Principle assumption to new levels
and, combined with CMB experiments, this mission will also place constraint on cosmic initial
conditions [80].
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5.5 Summary
Throughout this Thesis we have outlined the key points of the non-parametric approach,

aimed at reconstructing Dark Energy and Modified Gravity functions, given the knowledge on
their correlation priors. The main purpose is to infer via Bayesian analysis, i.e. from data, the
behaviour of the Dark Energy Equation of State wDE(z) and the two phenomenological functions
µ(z) and Σ(z).
I developed the analysis for Quintessence (DE) and Horndeski (MG) models, for which the
correlation priors of the Equations of State were provided by [71], while those for µ(z) and Σ(z)
by [72]. An important observation is that the efficiency of the correlation prior, in constraining
the binned functions, highly increases at redshifts for which there are less data.
In order to obtain reconstructions independent on the binning properties, we have set the number
of bins to fulfill the condition of [59], where the correlation length is that set by the correlation
prior. Moreover, since we also require the reconstructions to be independent on the method, we
both tested smoothed step and Gaussian Process methods, finding that they provide
reconstructions in agreement to each other. We expect that a denser binning would not only
show off peculiar aspects of these functions but would make the reconstructions highly
independent on the method as well.

The mean behaviour of these functions shows peculiar features compared to the standard
ΛCDM case, which is still compatible with the most general reconstructed functions, as wΛ = −1
is included within 1σ for all the wDE reconstructions, while µΛ = ΣΛ = 1 within at least 2σ for
every reconstruction of the two phenomenological functions, also when theoretical priors are
included. Thus no evidence for modifications of the ΛCDM paradigm is found.

I have also shown that allowing for free redshift evolution for wDE(z), µ(z) and Σ(z) results
in looser constraints on H0 with respect to ΛCDM. This allows to mitigate the tension between
high and low redshift measurements from ∼ 3.5σ to ∼ 2σ.

In the near future, several surveys will place high precision constraints from many observables
linked to the nature of the late cosmic acceleration, boosting the benefit of the non-parametric
approach here designed and, possibly, enabling us to detect or rule out classes of DE/MG models.
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APPENDIX A. Effect of the Quintessence prior

Since we already know that Quintessence equation of state can not lay below wDE = −1, the
mean wDE =

(∑N
i=1 wDE,i

)
/N is going to be higher than wΛ = −1, so that it is worth

comparing the behaviour of the obtained parameters with those of ΛCDM, where we expect that
the inferred one will behave similarly to those for wDE = −0.9 with respect to ΛCDM case.

SMOOTHED STEP FUNCTION RECONSTRUCTION
Parameter JLA+BAO+Planck JLA+BAO+Planck (exp prior) JLA+BAO+Planck (CPZ prior)
H0 ........... 65.1+1.6

−0.94 65.1+1.6
−0.95 65.1+1.5

−0.94

ΩΛ............ 0.670+0.017
−0.0099 0.670+0.016

−0.010 0.670+0.016
−0.0099

Ωm............ 0.3301+0.0099
−0.017 0.330+0.010

−0.016 0.3296+0.0099
−0.016

Table 2: Inferred mean values and 1σ c.l. of the cosmological parameters, in Quintessence cases, without
and with the priors, reconstructing the EoS via smoothed step function.

Figure 3: These are two triangle plots for the cosmological parameters H0, ΩΛ and Ωm inferred in the
Quintessence case, reconstructing the equation of state via smoothed step function. The left plot includes
the results of Quintessence run with datasets alone and ΛCDM, the right one is the comparison between
the runs without and with the priors.

Constant DE Equation of state

Let us focus on the w = −0.9 case, which is the one of interest. The behaviour of its inferred
cosmological parameters of Fig.4 with respect to the ΛCDM case can be explained as follows.
Starting from the density parameters, let us suppose that the redshift z∗ at which the Matter and
Dark Energy components are equal is known. For wDE = const the Dark Energy density evolves
as ρDE,0(1 + z∗)

3(1+wDE). At z∗, ρm(z∗) = ρDE(z∗)←→ ρm,0(1 + z∗)
3 = ρDE,0(1 + z∗)

3(1+wDE) :

ρm,0

ρDE,0
= (1 + z∗)

3wDE ←→ Ωm,0

ΩDE,0
= (1 + z∗)

3wDE

{
ΛCDM

Ωm,0

ΩDE,0
= (1 + z∗)

−3

wDE = −0.9 Ωm,0

ΩDE,0
= (1 + z∗)

−2.7
(2)
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Figure 4: These are the cosmological parameters H0, ΩΛ and Ωm obtained in the ΛCDM, w = −1.1 and
w = −0.9 cases.

but then, since (1+z∗)−3 < (1+z∗)
−2.7 and under the assumption of a flat Universe Ωm,0+ΩDE,0 ∼

1, the matter density parameter for ΛCDM must be lower than that of the wDE = −0.9 case, as
it happens in Fig.4.
On the other hand the resulting behaviour of H0 can be understood starting from the following
relation between the luminosity distance and H0:

dL =
z

H0

(
1 +

1

2
(1− q0)z

)
where in the hypothesis of a flat Universe the deceleration parameter is equal to q0 = 1+3wDEΩDE

2 .
Let us suppose that the luminosity distance dL(z) of a Type Ia Supernova of given redshift is
known, then:

z

H0(ΛCDM)

(
1 +

1

2
(1− q0(ΛCDM))z

)
=

z

H0

(
1 +

1

2
(1− q0)z

)
(if not specified I am referring to the wDE = −0.9 case). From the previous result we know that
ΩDE < ΩΛ and wDE are known. From a trivial calculation, the result is that
H0(ΛCDM) = cH0 > H0, that is the result in Fig.4.

As expected, the cosmological parameters inferred in the Quintessence model behave more
similarly to those for wDE = −0.9 than to ΛCDM case.
As we have no restrictions in the Horndeski EoS, that crosses the Phantom divide, this same
reasoning can not be done for this case.



Bibliography

[1] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L.
Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss,
B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff,
and J. Tonry. Observational Evidence from Supernovae for an Accelerating Universe and a
Cosmological Constant. , 116:1009–1038, September 1998.

[2] S. Perlmutter et al. Measurements of and from 42 high-redshift supernovae. The Astrophysical
Journal, 517(2):565, 1999.

[3] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. 2018.

[4] A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson, J. W. MacKenty, J. B. Bowers,
K. I. Clubb, A. V. Filippenko, D. O. Jones, and B. E. Tucker. New Parallaxes of Galactic
Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble
Constant. , 855:136, March 2018.

[5] Michel Chevallier and David Polarski. Accelerating universes with scaling dark matter. Int.
J. Mod. Phys., D10:213–224, 2001.

[6] Eric V. Linder. Exploring the expansion history of the universe. Phys. Rev. Lett., 90:091301,
2003.

[7] Mehdi Rezaei, Mohammad Malekjani, Spyros Basilakos, Ahmad Mehrabi, and David F. Mota.
Constraints to Dark Energy Using PADE Parameterizations. Astrophys. J., 843(1):65, 2017.

[8] P. A. R. Ade et al. Planck 2015 results. XIV. Dark energy and modified gravity. Astron.
Astrophys., 594:A14, 2016.

[9] Levon Pogosian and Alessandra Silvestri. What can cosmology tell us about gravity?
constraining horndeski gravity with Σ and µ. Phys. Rev. D, 94:104014, Nov 2016.

[10] Edmund Bertschinger and Phillip Zukin. Distinguishing Modified Gravity from Dark Energy.
Phys. Rev., D78:024015, 2008.

[11] T. Giannantonio, M. Martinelli, A. Silvestri, and A. Melchiorri. New constraints on
parametrised modified gravity from correlations of the CMB with large scale structure. ,
4:030, April 2010.

[12] Sean Carroll. An introduction to General Relativity, Spacetime and Geometry. 2004.

[13] S. Dodelson. Modern Cosmology. 2003.

[14] Edward W. Kolb and Michael S. Turner. The Early Universe. Front. Phys., 69:1–547, 1990.

[15] J. Yoo and Y. Watanabe. Theoretical Models of Dark Energy. International Journal of Modern
Physics D, 21:1230002, December 2012.

[16] Austin Joyce, Lucas Lombriser, and Fabian Schmidt. Dark Energy Versus Modified Gravity.
Ann. Rev. Nucl. Part. Sci., 66:95–122, 2016.

89



BIBLIOGRAPHY 90

[17] Robert R. Caldwell and Marc Kamionkowski. The Physics of Cosmic Acceleration. Ann. Rev.
Nucl. Part. Sci., 59:397–429, 2009.

[18] Joshua A. Frieman, Michael S. Turner, and Dragan Huterer. Dark energy and the accelerating
universe. Annual Review of Astronomy and Astrophysics, 46(1):385–432, 2008.

[19] Eric V. Linder. Mapping the Cosmological Expansion. Rept. Prog. Phys., 71:056901, 2008.

[20] David H. Weinberg, Michael J. Mortonson, Daniel J. Eisenstein, Christopher Hirata, Adam G.
Riess, and Eduardo Rozo. Observational probes of cosmic acceleration. Physics Reports,
530(2):87 – 255, 2013. Observational Probes of Cosmic Acceleration.

[21] James B. Hartle. Gravity, An introduction to Einstein’s General Relativity. 2003.

[22] Edwin Hubble. A relation between distance and radial velocity among extra-galactic nebulae.
1929.

[23] Planck Collaboration, P. A. R. Ade, et al. Planck 2015 results. XIII. Cosmological parameters.
, 594:A13, September 2016.

[24] A. B. Balantekin and W. C. Haxton. Neutrino Oscillations. Prog. Part. Nucl. Phys., 71:150–
161, 2013.

[25] Daniel Baumann. Cosmology, Part III, lectures.

[26] F. Lucchin P. Coles. Cosmology, The Origin and Evolution of Cosmic Structure. 2002.

[27] P. A. R. Ade et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys.,
571:A16, 2014.

[28] Daniel Baumann. Inflation. In Physics of the large and the small, TASI 09, proceedings of
the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado,
USA, 1-26 June 2009, pages 523–686, 2011.

[29] Sabino Matarrese and Nicola Bartolo. Early Universe Cosmology Lecture notes. 2006.

[30] Sabino Matarrese, Silvia Mollerach, and Marco Bruni. Second order perturbations of the
Einstein-de Sitter universe. Phys. Rev., D58:043504, 1998.

[31] James M. Bardeen. Gauge Invariant Cosmological Perturbations. Phys. Rev., D22:1882–1905,
1980.

[32] Alessandra Silvestri and Mark Trodden. Approaches to understanding cosmic acceleration.
Reports on Progress in Physics, 72(9):096901, 2009.

[33] Bhuvnesh Jain and Pengjie Zhang. Observational Tests of Modified Gravity. Phys. Rev.,
D78:063503, 2008.

[34] J. E. Carlstrom, G. P. Holder, and E. D. Reese. Cosmology with the Sunyaev-Zel’dovich
Effect. , 40:643–680, 2002.

[35] S.Tsujikawa L. Amendola. Dark Energy, Theory and Observations. 2010.

[36] Daniel J. Eisenstein et al. Detection of the Baryon Acoustic Peak in the Large-Scale
Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J., 633:560–574, 2005.

[37] N. Suzuki, , others, and T. Supernova Cosmology Project. The Hubble Space Telescope
Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z 1 and Building
an Early-type-hosted Supernova Sample. , 746:85, February 2012.

[38] David H. Lyth and Andrew R. Liddle.

[39] Michaël Malquarti, Edmund J. Copeland, Andrew R. Liddle, and Mark Trodden. A new view
of k-essence. Phys. Rev. D, 67:123503, Jun 2003.



91 BIBLIOGRAPHY

[40] A. Pourtsidou, C. Skordis, and E. J. Copeland. Models of dark matter coupled to dark energy.
Phys. Rev., D88(8):083505, 2013.

[41] Edmund J. Copeland, M. Sami, and Shinji Tsujikawa. Dynamics of dark energy. Int. J. Mod.
Phys., D15:1753–1936, 2006.

[42] Shinji Tsujikawa. Quintessence: a review. Classical and Quantum Gravity, 30(21):214003,
2013.

[43] Bharat Ratra and P. J. E. Peebles. Cosmological consequences of a rolling homogeneous scalar
field. Phys. Rev. D, 37:3406–3427, Jun 1988.

[44] Paul J. Steinhardt, Li-Min Wang, and Ivaylo Zlatev. Cosmological tracking solutions. Phys.
Rev., D59:123504, 1999.

[45] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Constantinos Skordis. Modified
Gravity and Cosmology. Phys. Rept., 513:1–189, 2012.

[46] Sean M. Carroll, Vikram Duvvuri, Mark Trodden, and Michael S. Turner. Is cosmic speed -
up due to new gravitational physics? Phys. Rev., D70:043528, 2004.

[47] Eleftherios Papantonopoulos. Modifications of Einstein’s Theory of Gravity at Large Distances.
2014.

[48] Levon Pogosian and Alessandra Silvestri. The pattern of growth in viable f(R) cosmologies.
Phys. Rev., D77:023503, 2008. [Erratum: Phys. Rev.D81,049901(2010)].

[49] Alessandra Silvestri, Levon Pogosian, and Roman V. Buniy. Practical approach to
cosmological perturbations in modified gravity. Phys. Rev., D87(10):104015, 2013.

[50] W. L. Freedman et al. Final results from the Hubble Space Telescope key project to measure
the Hubble constant. Astrophys. J., 553:47–72, 2001.

[51] A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, S. Casertano, A. V. Filippenko, B. E.
Tucker, M. J. Reid, D. O. Jones, J. M. Silverman, R. Chornock, P. Challis, W. Yuan, P. J.
Brown, and R. J. Foley. A 2.4% Determination of the Local Value of the Hubble Constant. ,
826:56, July 2016.

[52] W. L. Freedman, B. F. Madore, V. Scowcroft, C. Burns, A. Monson, S. E. Persson, M. Seibert,
and J. Rigby. Carnegie Hubble Program: A Mid-infrared Calibration of the Hubble Constant.
, 758:24, October 2012.

[53] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta,
M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik,
A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L. Wright. Nine-year
Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter
Results. , 208:19, October 2013.

[54] Wendy L. Freedman. Cosmology at a Crossroads. Nat. Astron., 1:0121, 2017.

[55] T. Holsclaw, U. Alam, B. Sansó, H. Lee, K. Heitmann, S. Habib, and D. Higdon.
Nonparametric Dark Energy Reconstruction from Supernova Data. Physical Review Letters,
105(24):241302, December 2010.

[56] T. Holsclaw, U. Alam, B. Sansó, H. Lee, K. Heitmann, S. Habib, and D. Higdon.
Nonparametric reconstruction of the dark energy equation of state. , 82(10):103502, November
2010.

[57] M. Seikel, C. Clarkson, and M. Smith. Reconstruction of dark energy and expansion dynamics
using Gaussian processes. , 6:036, June 2012.

[58] Y. Wang, L. Pogosian, G.-B. Zhao, and A. Zucca. Evolution of dark energy reconstructed
from the latest observations. ArXiv e-prints, July 2018.



BIBLIOGRAPHY 92

[59] Robert G. Crittenden, Levon Pogosian, and Gong-Bo Zhao. Investigating dark energy
experiments with principal components. Journal of Cosmology and Astroparticle Physics,
2009(12):025, 2009.

[60] S. Casas, M. Kunz, M. Martinelli, and V. Pettorino. Linear and non-linear Modified Gravity
forecasts with future surveys. Physics of the Dark Universe, 18:73–104, December 2017.

[61] Carl Edward Rasmussen and Chris Williams. Gaussian Processes for Machine Learning. 2006.

[62] Alireza Hojjati, Levon Pogosian, and Gong-Bo Zhao. Testing gravity with camb and cosmomc.
Journal of Cosmology and Astroparticle Physics, 2011(08):005, 2011.

[63] Gong-Bo Zhao, Levon Pogosian, Alessandra Silvestri, and Joel Zylberberg. Searching for
modified growth patterns with tomographic surveys. Phys. Rev. D, 79:083513, Apr 2009.

[64] Wenjuan Fang, Wayne Hu, and Antony Lewis. Crossing the phantom divide with parametrized
post-friedmann dark energy. Phys. Rev. D, 78:087303, Oct 2008.

[65] R.R Caldwell. A phantom menace? cosmological consequences of a dark energy component
with super-negative equation of state. Physics Letters B, 545(1):23 – 29, 2002.

[66] Wayne Hu. Crossing the phantom divide: Dark energy internal degrees of freedom. Phys.
Rev. D, 71:047301, Feb 2005.

[67] Wayne Hu. Parametrized Post-Friedmann Signatures of Acceleration in the CMB. Phys. Rev.,
D77:103524, 2008.

[68] A. Heavens. Statistical techniques in cosmology. ArXiv e-prints, June 2009.

[69] Antony Lewis and Sarah Bridle. Cosmological parameters from CMB and other data: A
Monte Carlo approach. Phys. Rev., D66:103511, 2002.

[70] Antony Lewis. Efficient sampling of fast and slow cosmological parameters. Phys. Rev.,
D87(10):103529, 2013.

[71] Marco Raveri, Philip Bull, Alessandra Silvestri, and Levon Pogosian. Priors on the effective
dark energy equation of state in scalar-tensor theories. Phys. Rev. D, 96:083509, Oct 2017.

[72] Juan Espejo, Simone Peirone, Marco Raveri, Kazuya Koyama, Levon Pogosian, and
Alessandra Silvestri. Phenomenology of Large Scale Structure in scalar-tensor theories: joint
prior covariance of wDE, Σ and µ in Horndeski. 2018.

[73] M. Betoule et al. Improved cosmological constraints from a joint analysis of the SDSS-II and
SNLS supernova samples. Astron. Astrophys., 568:A22, 2014.

[74] Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith, Lachlan
Campbell, Quentin Parker, Will Saunders, and Fred Watson. The 6df galaxy survey: baryon
acoustic oscillations and the local hubble constant. Monthly Notices of the Royal Astronomical
Society, 416(4):3017–3032, 2011.

[75] Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden, and Marc
Manera. The clustering of the sdss dr7 main galaxy sample i. a 4 per cent distance measure
at z = 0.15. Monthly Notices of the Royal Astronomical Society, 449(1):835–847, 2015.

[76] Andreas Albrecht et al. Report of the Dark Energy Task Force. 2006.

[77] Amir Aghamousa et al. The DESI Experiment Part I: Science,Targeting, and Survey Design.
2016.

[78] A. Refregier, A. Amara, T. D. Kitching, A. Rassat, R. Scaramella, J. Weller, and f. t. Euclid
Imaging Consortium. Euclid Imaging Consortium Science Book. ArXiv e-prints, January
2010.



93 BIBLIOGRAPHY

[79] R. Laureijs, J. Amiaux, S. Arduini, J. . Auguères, J. Brinchmann, R. Cole, M. Cropper,
C. Dabin, L. Duvet, A. Ealet, and et al. Euclid Definition Study Report. ArXiv e-prints,
October 2011.

[80] Luca Amendola et al. Cosmology and fundamental physics with the Euclid satellite. Living
Rev. Rel., 21(1):2, 2018.





Acknowledgements
Vorrei rigraziare tutti coloro che hanno fatto parte del mio percorso fino ad oggi.

Un sentito ringraziamento va al Professor Nicola Bartolo e ad Alessandra, che mi hanno permesso di
fare questa bellissima esperienza a Leiden, dimostrandosi sempre assai disponibili nei miei confronti,
e a Matteo, che, nonostante sia una delle persone più impegnate che io conosca, si è dimostrato
molto paziente con me, fornendomi un grandissimo aiuto durante lo svolgimento del progetto.
Ringrazio gli storici amici di Mestre, che mi sono sempre stati vicino e con cui ho condiviso
moltissime avventure, la pazza compagnia di Astronomia, che ha allietato il mio studio con bizzarre
esperienze, e Mario, per avermi regalato mille risate e avermi spronata ad uscire dai miei schemi.
Ringrazio la mia famiglia, che da ogni angolo del pianeta ha sempre fatto il tifo per me, e mio
fratello Giovanni, la cui perseveranza e ambizione sono per me fonte di ammirazione.
Infine, il ringraziamento più importante va ai miei genitori, che mi hanno sempre sostenuta, anche
nelle scelte più discutibili e nei momenti peggiori, e a cui devo ciò che sono e ciò che ho.


	Introduction
	The standard cosmological model
	Theory of gravity
	The homogeneous expanding Universe
	The background dynamics
	Cosmological parameters
	Cosmological redshift and distances

	The inhomogeneous Universe
	Newtonian approach
	Relativistic approach
	Probes of inhomogeneities

	The late cosmic acceleration
	Observational evidence
	Cosmological constant

	Problems of CDM model

	Beyond CDM model
	Alternative models to the Cosmological Constant
	Dark Energy
	Modified gravity
	Distinguishing between DE and MG models

	The H0 tension
	Parametric approach
	Non-parametric approach


	Non-parametric approach and Data Analysis
	Reconstruction method
	Bayesian analysis: parameter estimation
	Monte Carlo Markov Chain
	The correlation prior


	Results
	Data
	Code validation
	Quintessence
	Horndeski class of MG models
	HDE: Reconstruction of the EoS alone
	HMG: Reconstruction of all the functions


	Discussion and conclusions
	Model-independent results
	Quintessence and Horndeski
	H0 tension
	Future prospects
	The Dark Energy Spectroscopic Instrument (DESI)
	EUCLID

	Summary

	Appendices

