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Abstract 
 

The manufacturing process of pharmaceutical tablets involves feeding a powder formulation 
into a die followed by compaction using rigid punches. The die filling step is part of a larger 
tableting process which is usually performed using the multiple station rotary press and it has a 
major impact on the quality, uniformity and mechanical properties of the tablets produced. In 
this study, the effect of the main compression settings of the rotary press on the final tablet 
quality is analyzed for three different blends by exploiting multivariate statistical techniques, 
with a particular focus on weight consistency and uniformity, which are the most important 
quality parameters in die filling. It results that, while some settings have the same effect on all 
the considered blends (e.g., feed frame speed in increasing mean weight or overfill in decreasing 
weight variability), some others affect each blend in different ways. This may be related to the 
properties of the powder itself, in particular its flowability, which are known to be related to the 
operating conditions of the rotary press in determining die filling performance. In particular, it 
has been found that tablets made from more flowable powders are characterized by lower 
weight variability. The effect of the feed frame on the lubrication state of the blends is also 
evaluated, as its mechanical action can cause particle friction and over lubrication, resulting in 
lower tablet strength and slower dissolution. By comparing the data collected on the compactor 
simulator for both powder samples and samples with known lubrication, it is concluded that the 
feed frame only has a meaningful effect on powder lubrication above a certain feed frame speed. 
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Introduction 
 

Powder compaction is widely used in the manufacture of tablets, the most common solid dosage 

form in the pharmaceutical industry. It involves placing the powder in a die (known as the die-

fill stage) and then compressing it under high pressure to form the tablet. This stage is part of a 

larger tableting process, usually carried out in multi-station rotary presses, to produce high 

volumes of uniform weight, shape and size tablets. In particular, the efficiency in die filling has 

been found to be fundamental to achieve consistent weight, hardness and dosage of active 

pharmaceutical ingredient (API) in each tablet (Zakhvatayeva, 2018). Several studies have 

demonstrated how die filling is influenced by the combination of several factors, going from 

the operating conditions chosen at the rotary press to the flow properties of the powders. In fact, 

powders characterized by greater mean particle size, air permeability, air sensitivity and flow 

function coefficient are known to be characterized by better die filling (Mills and Sinka, 2013; 

Zakhvatayeva, 2018), but operating conditions can also have a major impact on the process. In 

particular, the effect of the feed frame used to distribute the powder over the dies of the rotary 

press plays a crucial role in determining die filling performance and maintaining specifications 

on mean weight and weight variability (Ketterhagen, 2015). Furthermore, the mechanical action 

of the feed frame may impact the powder blend causing particle attrition or over-lubrication, 

which could lead to reduced tablet strength and slow dissolution. 

The objective of this Thesis is to identify which are the compression settings of the rotary tablet 

press that most influence tablet properties, in particular mean weight and weight variability. 

This will be done by evaluating experimental data collected at the multi-station rotary press by 

the partner company for three powder blends. In addition, the effect of the feed frame speed on 

the lubrication state of the powder is evaluated for one of the previous blends, using data 

collected on a compactor simulator. The latter is a means of simulating the action of the rotary 

press using a fraction of the material that would be required by the rotary press, with significant 

time and materials savings. The results obtained are finally related to the flow properties of the 

powder blends, analyzed thanks to the availability of flow function and wall friction tests 

carried out on the blends under study. 

The Thesis is structured in four chapters. Chapter 1 introduces to elementary design features 

and working mechanism of typical rotary tablet presses, focusing on the contributions of 

material properties and process parameters to the flow behavior during die filling, including an 

explanation on the use of compactor simulator in alternative to rotary press. Chapter 2 provides 

detailed information on the equipment used for data collection, including the Fette 1200i tablet 

press, the Phoenix compactor simulator and the Brookfield tester. A description of the materials 
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used and the structure of the data sets is also included. The mathematical methods used for data 
analysis are then discussed in Chapter 3, which provides an overview of the fundamentals of 
multivariate analysis techniques and the theoretical knowledge necessary to discuss the results 
reported in Chapter 4. In this chapter, starting with a preliminary analysis that takes into account 
all the tablet characteristics collected, the focus is put on the weight data in particular and in the 
compression settings that are mostly affecting it. Moreover, a method for assessing the increase 
in the lubrication extent coefficient by exploiting data collected at the compactor simulator is 
proposed. The final step is to relate the blend behavior in the rotary press to the flow properties 
of the free powder blends themselves, to see how flow can explain different effects of 
compression settings on the powder blends during the compaction process. 



Chapter 1 
Rotary die filling system for 

pharmaceutical powders 
 

Die filling is a critical step in the compaction process used in the manufacture of pharmaceutical 
tablets. This chapter examines elementary design features and working mechanism of typical 
rotary tablet presses, focusing on the contributions of material properties and process 
parameters to the flow behavior during die filling, on which the mass and content uniformity of 
tablets and the production throughput depend. The use of  the compactor simulator as an 
alternative to the rotary press is then investigated, along with the advantages and limitations of 
such a choice. Finally, an overview is given of flow indices used to describe material properties 
and their correlation with die filling performance. 

 

1.1 Introduction to die filling process 

In the pharmaceutical production of tablets, powdered or granular materials are measured and 
transferred into a die cavity, in which they are successively compressed. The die filling process 
has a major impact on the quality, uniformity and mechanical properties of the tablets produced, 
so ensuring its accuracy is essential to achieve consistent weight, hardness and dosage of active 
pharmaceutical ingredient (API) in each tablet (Zakhvatayeva, 2018). The die filling step is part 
of a larger tableting process, including compression, ejection and coating, which is usually 
performed using the multiple station rotary press. Proper control of several factors, including 
the flow properties of the powder, the speed of the tablet press, the geometry of the die cavity, 
and environmental conditions such as humidity, is fundamental to guarantee the efficiency of 
the die filling, as will be seen below. 

 

1.1.1 The multiple station tablet rotary press 

The rotary press is a high-speed machine employed in pharmaceutical industry to compress 
powders and granular materials into tablets with uniform size, shape and weight. Moreover, 
modern rotary tablet presses often incorporates automated monitoring and data acquisition to 
maintain quality control and optimize production (https://www.ipharmachine.com). This 

https://www.ipharmachine.com/


                                                                                                                                                          Chapter 1 4 

machine is provided with multiple tooling stations, consisting of a die with an upper and lower 
punch, that rotate continuously around a central turret, allowing for the simultaneous production 
of multiple tablets with each revolution. The portions of the turret head that hold the upper and 
lower punches are called upper and lower turrets, while the one holding the dies is the die table 
(see Fig. 1.1).  

 

 

 

 

 

 

The dies are sealed from below by a bottom punch. This ensures that a precise amount of 
powder enters and fills the die with the correct adjustment, and it also assists in the compression 
and ejection process. The upper punch, on the other hand, ensures that the required amount of 
compression force is applied to the powder, producing a tablet of the desired shape and size. As 
the head rotates, the punches are moved up and down by fixed cam tracks, which control the 
filling, compression and ejection process. The capacity of the rotary press is determined by the 
rotation speed of the turret and the number of stations of the press. A schematic representation 
of the overall working mechanism of the tablet rotary press is reported in Fig.1.2, showing that 
each station passes through some subsequent stages (https://www.ipharmachine.com): 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  Rotary tablet press turret with 36 tooling stations 
(https://www.researchgate.net/tablet_dosage_forms). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  Representation of a rotary tablet press including all subsequent 
stages through which the die passes (https://powderprocess.net). 
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• Powder die filling (Fig.1.3(a)): the powder or granulated material is stored in the hopper 
and fed into the die cavities via a force-feeding system called feed frame. The feed frame 
ensures a consistent flow of powder into the dies, which is crucial for maintaining 
uniform tablet weight and dosage, preventing overfilling or uneven distribution. Further 
details about the function of feed frame in the compression process are reported below.  

• Metering (Fig.1.3(b)): After the fill stage, a weight control unit modifies the lower 
punch track to ensure that as the punch rises the correct amount of powder remains 
inside the die and a scraper removes eventually the excess product. 

• Compaction (Fig.1.3(c)): it is the phase in which compression and consolidation of the 
powder occurs at high force, applied by both the upper and lower punches on the die. In 
order to produce more homogenous tablets, a precompression process can be employed 
to carry out deaeration. In fact, if air is still present during the effective compression of 
the powder, its expansion at the end of compaction force application can cause capping. 
Precompression rollers are usually smaller than the compression ones and apply a lower 
compression force. 

 

 
 

 

 

(a) (b) 

(c) (d) 

Figure 1.3.  Main stages of tablet production in rotary tablet press, 
specifically: (a) die filling, (b) metering, (c) compression and (d) ejection 
(https://www.ipharmachine.com). 
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• Tablet ejection (Fig.1.3(d)):  The lower punch is raised to remove the tablet, which is 
then collected for further processing as packaging. This stage requires force to break the 
adhesion between the compact surface and the die wall. Radial die wall forces and die 
wall friction can cause uneven stresses on the tablets, leading to capping or lamination. 
This risk can be avoided by using lubricants that minimize the stress patterns to which 
the tablets are subjected. After ejection from the die, the take-off blade deflects the 
tablets down the discharge chute, where they are finally collected. 
 

1.2 The effect of powder flowability on tableting process 

Weight consistency and uniformity are the most important parameters in die filling, and are 
strongly influenced by the powder properties, especially its flowability. The latter is known to 
be determined by the inter-relationship between powder properties, such as cohesion, particle 
size and morphology, and process conditions (Zakhvatayeva, 2018). For this reason, many 
studies have been carried out to assess the extent to which powder flow is a function of these.   

 

1.2.1 The shoe-die system 

Powder flow during die filling has largely been studied using a model shoe die system, which 
mimics the die filling process in the rotary tablet press and identifies the types of flow that occur 
during this process. An example of a shoe-die system is shown in Figure 1.4, where it can be 
seen that a rectangular moving shoe containing the powder translates over the opening of a 
stationary die and progressively fills it.  

 

 

 

 

 

 

 

 

 

Wu and Cocks (2004) identified two types of flow that contribute to the filling in this system: 

Figure 1.4.  Example of shoe-die system used to investigate the types of 
powder flows originating during the die fill process (Baserinia, 2019). 
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• Nose flow: it occurs at lower shoe velocity and it is the most efficient in filling the die 
completely, since it allows the air entrapped between powder particles to escape more 
readily. The name is derived from the nose-shaped profile that the powder assumes as it 
moves towards the back of the shoe when the latter accelerates. 

• Bulk flow: it predominates at higher die filling velocities, as the shoe completely covers 
the die during the powder discharge. In this case, the material continues to detach from 
the bulk of the powder and falls into the die. 

It can be deduced that velocity of die filling (i.e. the velocity of the shoe with respect to the 
stationary die) plays an important role in determining the amount of powder deposited in the 
die. In general, it was noted that the slower the filling velocity and the higher the fill density 
(Wu and Cocks, 2004; Mills and Sinka, 2013). In addition to this, the presence of nose flow or 
bulk flow during die fill was also found to vary depending on whether gravity or suction filling 
was used. While in Figure 1.5(a) it is possible to see what the nose flow and bulk flow are in 
gravity filling, as the powder is discharged from the shoe by gravity alone, Figure 1.5(b) 
introduces the suction filling mechanism. In suction fill, the die opening is initially covered by 
the suction punch, while the successive downward motion of the punch creates a suction effect 
which facilitates powder flow into the die.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.5.  Types of flow originating in a shoe-die system for (a) gravity 
filling and (b) suction filling (Baserinia, 2019). 
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At this stage, air can enter the die through the powder bed and clearances in the system. When 
the suction movement is complete, the powder is discharged into the die by gravity and the air 
pressure in the die begins to rise, preventing further powder flow. At this point, similar to gravity 
filling, the air in the die can only escape through the powder bed and clearances (Baserinia, 
2019). It was noted by Wills and Sinka (2013) that in case of suction filling no nose flow 
mechanism was present, since the entire die opening is exposed to powder before the punch 
travels downward, and that compared to gravity filling, suction one is much more efficient. 
Specifically, to evaluate the efficiency of the die filling process, two parameters can be 
introduced: the fill ratio and the critical velocity.  The fill ratio is defined as: 

! = !
"                                                                                                                                       (1.1) 

where m is the mass of powder in the die at given fill velocity and M is the mass of powder in 
a fully filled die (Zakhvatayeva, 2018). When the filling velocity is above the so-called critical 
velocity, the die remains incompletely filled (! < 1), and the fill ratio becomes function of the 
die filling velocity v and the critical velocity vc as: 

! = (#!# )
$   ($ > $!)                                                                                                                                         (1.2) 

where n is a material-dependent parameter. The critical velocity was found to be significantly 
increased by suction filling mechanism, allowing to use higher die filling velocity during the 
tableting process and consequently to increase the throughput without damaging the weight 
consistency and uniformity expected by the process (Zakhvatayeva, 2018). Specifically, the 
improvement in die filling by suction mechanism was noted to be more relevant for smaller 
particles, since larger ones, with better permeability, allow air to escape more easily and are so 
less affected by suction.  

1.2.2 Powder properties and die filling relationship 

The effect of powder properties on die filling performance has been extensively investigated 
and the key findings are reported below. Mills and Sinka (2013) found out a strong correlation 
between critical velocity and particle size; they demonstrated that finer particles generally 
exhibit higher cohesion and intermittent die flowing behavior, for that an intermittent flow of 
powder detach from the shoe and falls into the die. Together with mean particle size, critical 
velocity is also affected by other powder characteristics, such as air permeability and sensitivity 
(Zakhvatayeva, 2018). Air permeability quantifies how easily air can pass through a powder 
bed and it is measured in terms of pressure drop across the powder bed. A low air permeability 
value results in intermittent flow and compromised filling, and this can be caused by fine 
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particles: higher fines content results in more compacted powder beds and lower air permeation. 
Differently, air sensitivity index is calculated as: 

% = &%'%                                                                                                                                (1.3) 

where &" is the normalized particle density, calculated as the ratio between the solid true density 
('#)	and the air density ('$), while *" is the Archimedes number, describing the number of 
particles flowing in air: 

&% =
&"(&#(&")*+$%

,&                                                                                                                   (1.4) 

with +%=particle diameter, g=gravitational acceleration and ,=air viscosity. A higher air 
sensitivity index corresponds to a powder which is less air sensitive. From the studies of 
Zakhvatayeva (2018), made on seven commonly used pharmaceutical powders tested on a die 
filling process in a rotary press, it is obtained that critical filling velocity increases with both air 
permeability and air sensitivity indices. This confirms that denser and coarser particles perform 
better in die filling. In addition to this, critical filling velocity was found to increase with the 
specific energy of the powder, measuring the resistance of particles moving relative to each 
other in an unconfined state. Finally, the effect on flow function and cohesion on die filling has 
been assessed, proofing that the process improves for higher flow function and lower cohesion. 
These two powder parameters can be determined by means of a rotational shear cell test, but 
for their full definition and collection process refer to §1.5.  

The discussion so far has focused mainly on the effect of powder properties on the tableting 
process, but it has already been said that operating conditions can also have a major impact on 
the process. In particular, the effect of the feed frame used to distribute the powder over the dies 
of the rotary press plays a crucial role in determining die filling performance. 

 
1.3 The effect of the feed frame on tablet properties 

The feed frame, or powder feeder, plays an important role in the rotary press tablet 
manufacturing process, as it is the last piece of equipment through which the powder flows 
before it is compressed into a tablet, after which the tablet mass and contents are fixed 
(Ketterhagen, 2015). Given that there are specifications for the mean and range (or variability) 
of both the tablet mass and the mass of the active pharmaceutical ingredient (API) within the 
tablets, it is important to maintain consistent powder fill weights in the tablet dies and to avoid 
any segregation of the powder blend in the process. In addition, the mechanical action of the 
feed frame may impact the powder blend causing particle attrition or over-lubrication which 
could reduce tablet strength and slow dissolution. For these reasons, a deep understanding of 
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powder flow in the tablet press feed frame for varying process conditions is crucial for 
controlling appropriately the tablet final quality. Figure 1.6 shows the action of the feed frame 
paddle wheel in filling the die. Powder is discharged from a hopper and distributed within the 
die by the paddle wheel of the feed frame, whose shape, direction of rotation and speed all 
influence the particle flow patterns and residence time distributions. Different mechanisms act 
simultaneously in a feed frame (Sierra-Vega, 2019): 

• gravity feeding: the powder falls from the hopper to feed frame, and then to the dies. 
• forced feeding: the rotation of the feed frame paddle wheels force the powder into dies. 
• suction fill: it takes place for the downward movement of the lower punch, that creates 

a partial vacuum driving the powder to the dies. 
• centrifugal forces, originated by the rotational movement of the die disc and the paddle 

wheels. 
• overhead pressure due to the pressure exerted on the powder in the feeder and die by 

the weight of the powder. 

 

 

 

 

 

 

 

 

 

 

 

A non-uniform die filling may significantly affect the compression force, and consequently, the 
physicochemical properties of the tablets, such as density and porosity, tensile strength and 
hardness, dissolution rate, weight and drug content (Sierra-Vega, 2019). It must be noted that 
mass and mass variability are important quality attributes for a tableting process, and while 
weight mass can be set by adjusting some main press settings, the weight variability, expressed 
in terms of relative standard deviation (RSD), is not a value that can be directly set. For this 
reason, any investigation of how press settings and powder characteristics, such as flowability, 

(a) (b) 

Figure 1.6.  Schematic representation of (a) a tablet-press feeder system 
(Mahto et al., 2024), (b )feed frame and die turret with the fill point in blue, 
the die filling region in green and a possible dead zone in which the paddle 
wheel does not sweep in red (Ketterhagen, 2015). 
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affect weight RSD are crucial for modulating it. The study of Mendez et al. (2012) found out 
that mean die fill weight increased and the fill weight RSD generally decreased for blend 
powders subjected to increased feed frame paddle wheel speed. Furthermore, the powder flow 
properties seemed to improve, and the fill weight RSD to decrease, by increasing the number 
of paddle wheel blade passes. Ketterhagen (2015) adds that the reduction in weight RSD at 
higher feed frame speeds is valid regardless of the direction of rotation chosen for the paddle 
wheel. Despite of this, it was also noted that a small increase in weight RSD can verify with the 
transition from a low particle solid fraction in the die filling region at low speeds to a large solid 
fraction at large paddle wheel speeds. All these findings have been taken into account in the 
work developed in this Thesis and appropriate analyses have been carried out to assess whether 
they are borne out by the available experimental data. 

 

1.3.1 Lubrication extent coefficient 

It has been said that the speed of the feed frame has a significant effect on the powder mixture 
passing through it, including its state of lubrication. Tablet formulations are typically lubricated 
by blending the powder with a lubricant, such as magnesium stearate, that aids 
manufacturability by reducing die-wall friction, increasing the powder bulk density, and 
reducing powder adhesion to the metal components of the process equipment (Wang et al., 
2010). However, the over-mixing inside the feed frame, given by the prolonged exposure of the 
powder to excessive shear strain, could be detrimental for the final tablet by increasing its 
hydrophobicity, reducing dissolubility and tablet tensile strength. The over lubrication state has 
been investigated for years, and it is actually attributed to both process parameters and 
formulation features. In particular, Kushner and Moore (2010) developed a semi-empirical 
model to estimate the tablet tensile strength as a function of two formulation dependent terms, 
in which the extent of lubrication generated in a bin blender is calculated as: 

(-- = )-
'
%*./0+1203/+                                                                                                                                       (1.5) 

where -& is the bin volume, Fheadspace is the fractional headspace in the bin and r the number of 
bin revolutions. According to Eq. 1.1, the lubrication extent of the powder, measured in [dm], 
is expected to depend mainly on the volume of the blender, the blending time, the mass and the 
bulk density of the powder charged in the blender. This model was further extended by 
Blackwood (2012) to estimate the extent of lubrication provided by the action of the tablet press 
feed frame: 

(44 = ,562-                                                                                                                              (1.6) 
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with $'(%= tip speed of the paddle wheel and .=mean particle residence time in the feed frame. 
The above mentioned terms are calculated as: 

,562 = ./77**1                                                                                                                          (1.7) 

- = !()*+
!,(-)./($.,

 =
&0*12+833
!,(-)./($.,

                                                                                                  (1.8) 

 

where /)) is the feed frame diameter, 00# is the feed frame speed in [rpm], -** is the feed frame 
volume and 1'+",-.+%-' the mass of tablets produced per unit time. The sum of 2// and 200 
gives the total extent of lubrication developed during the manufacturing process, assuming that 
there are no other unit operations causing increase in lubrication. From the model defined by 
Blackwood (2012), it can be deduced that the coefficient of lubrication extent should increase 
linearly with the feed frame speed, and this will be assessed in this study. 

 

1.4 Compactor simulator 

Rotary presses are widely used for tablet manufacturing in pharmaceutical industry, but current 
techniques used for the implementation of this unit operation are still based on material-and 
time-expensive procedures. In fact, to evaluate if roller compaction is a convenient option for 
manufacturing, conventional scale equipment must be used, and this can be unfeasible in early 
development stages in which only low amounts of material (especially APIs) are available 
(Zinchuk, 2004). Using a laboratory scale compactor simulator is a mean of simulating the 
rotary press action (Fig.1.7), predicting the effects that critical parameters such as roll speed, 
pressure and radius have on the properties of compressed powder using a fraction of material 
required by conventional roller compaction equipment. 

 Figure 1.7.  Simulating a roller compactor using a compaction simulator , 
where D is displacement, R is roll radius, ω is roll rotation frequency, t is 
time (Zinchuk (2004)). 
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This is done by means of a mathematical expression based on the sine function, used to model 
the movement of a tangential point on the circumference of the roll compactor: 

/01234567689	 = 	;	108(<9)	                                                                                               (1.9) 

where R is the radius of the roller, ω is the roller rotation rate and t is time. The model allows 
to control the upper and lower punch displacement profiles of the compaction simulator. The 
powder is initially charged in the die of the compactor simulator. At t = 0, the punches move 
towards each other, compressing the powder at the same strain rate as in the real roller 
compaction process. The point at which the punches (or roller points) reach their minimum 
separation is correlated to the peak of the sine function, which can be used to target the thickness 
of the simulated tablets. When the punches reach their minimum separation, they retract to 
decompress the tablet before it is ejected by the movement of the lower punch. To quantitatively 
evaluate the simulation, Zinchuk et al., (2004) used tablet SF and the tensile strength profiles 
for comparing roll compaction and compactor simulator processes, with microcrystalline 
cellulose used as powder material. The results showed that tablets with similar SFs exhibit good 
agreement in tensile strength comparison, indicating that the method is valid for evaluating roll 
compaction behavior. The capability of the compactor simulator to mimic the rotary press 
compaction will be assessed in this Thesis, too, by exploiting the solid fraction and tensile 
strength profiles for tablets obtained with the two unit operations. It must be noted that 
compactor simulator is not able to account for some roll compaction aspects, since it employs 
a batch process to imitate a continuous one. Specifically, it does not account for roller 
compaction variables associated with continuous operation such as powder feed mechanisms, 
the nature of the shear forces experienced by the powder or the transition from the slip to no-
slip region of compaction. Despite of this, the compactor simulator remains a useful and 
representative tool allowing for control of critical variables like roll speed, separation, pressure 
and radius (Beccaro, 2023). 

 

1.5 Powder flowability  

One of the most critical properties of powders in pharmaceutical manufacturing is their ability 
to flow freely in operating units designed to achieve solid dosage forms. In fact, they must have 
sufficient flowability to be transported by gravity or to fill die cavities in a consistent manner, 
even at high throughputs. There are several flow characterization techniques used to quantify 
the flowability of a powder, but one of the most commonly employed by industry is the 
rotational shear cell flow test. Below is a description of the main flow indices obtained from 
the above test, which were then used as a reference in this thesis. 
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1.5.1 The flow function 

The flow function coefficient (ffc) is widely used in pharmaceutical development as reference 
index for powder flow assessment, often in a comparative fashion (Leung, 2017). It represents 
the powder’s ability to flow under a consolidating stress and it is found as: 

==5 = 9'
9!

                                                                                                                                  (1.10) 

where 31 is the major principal stress that consolidates the powder and 3!	is the stress at which 
the compacted powder will begin to flow or yield without confinement. The rotational shear 
cell test derives ffc operating on the basis of the Mohr circles, which consist on a graphical 
representation of the stress states within a powder material after that a pre-consolidation stress 
has been applied. To understand how Mohr circles are derived, it is useful to refer to the 
monoaxial compression test for explanation (Schulze, 2021). Imagining that a normal stress 32 
is applied to a powder sample, a horizontal stress 33 originates on the sample (Fig. 1.8(a)).  

 

 

 

 

 

 

 

 

It results that different stresses can originate in different cutting planes of the sample, and 
through equilibrium of forces it is possible to find which are the shear stress (.4)  and the normal 
stress (34)  acting on a bulk solid plane inclined of a certain angle 4 (Fig.1.8(b)): 

	34 = 5!65"
7 + 5!85"

7 cos	(24)                                                                                                                                                     (1.11) 

		.4 = 5!85"
7 sin	(24)                                                                                                                                                           (1.12) 

The pair of values (34 , .4), which can be calculated for each angle 4, can be plotted in a shear-
normal stress diagram and they form a circle in it, which is called “Mohr stress circle”, 
representing the stresses on all cutting planes at arbitrary inclination angles α, i.e., in all possible 
cutting planes within a bulk solid element. Applying different normal loads to the powder, 
sample, it is subjected to several shear stresses and a Mohr circle for each pre-set load is 

Figure 1.8.  (a) Element of a bulk solid with application of a normal stress 
:# from which a horizontal stress :$ originates and (b)volume element with 
triangular cross section of the bulk solid subjected to normal stress (Schulze, 
2021) . 
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obtained. The tangent line to the Mohr circle corresponding to the yield points of the powder 
under various stresses is drawn, namely the yield locus, and 31 is found as the maximum normal 
stress on the Mohr circle that touches the yield locus without crossing it. Differently, 3!	is 
determined by constructing a Mohr circle that is tangent to the yield locus and passes through 
the origin (zero normal and shear stress), representing the stress state where the powder would 
yield if unconfined (Fig.1.9). Another important parameter that can be found by means of the 
Mohr circles is the cohesion, which is the intercept of the yield locus on the shear stress (τ) axis 
when the normal stress (σ) is zero. It represents the intrinsic shear strength of a material when 
no normal stress is applied on it. Once that 31 and 3! are known, ffc can be found. 

 

 

 

 

 

 

 

 

The larger ffc is, i.e., the smaller the ratio of 3! over 31 , the better a bulk solid flows. The 
diagram  in Fig.1.10 clearly shows that ffc in most cases increases with 31, for that one obtains 
a different value of flowability for each consolidation stress applied. Since flowability results 
to be dependent on consolidation stress, it is not possible to express in absolute way the 
flowability by means of a single numerical value, but ffc can be efficiently used for powder 
comparisons. 

 

 

 

 

 

 

 

Figure 1.9. Schematic representation of yield locus, :% and :& found through 
Mohr circles built on a pre-consolidation load applied to a powder sample 
(Manokaran, 2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Flow function for a bulk solid A and constant reference 
flowability lines (Schulze, 2021). 
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1.5.2 The wall friction 

Wall friction is the friction between a bulk solid and a solid surface, such as the walls of a silo 
or hopper. The determination of wall friction or wall friction angle is important for the design 
of equipment where the bulk solid has to flow over a solid surface (Schulze, 2021). The 
principle of wall friction test can be easily explained by Fig. 1.11. A bulk solid is subjected to 
a vertical normal stress, and the stress acting between the solid and the wall surface is called 
39. 

 

 

 

 

 

The bulk solid starts to shift over the wall surface with a certain velocity, and the shear stress 
acting between bulk solid and the wall surface is measured. For each applied normal stress, a 
correspondent constant wall shear stress .9 can be found. By conducting the experiment 
applying different normal stresses, all pairs of 39 and .9 are plotted together and joining the 
points it is possible to find a wall yield locus (Fig.1.12), describing the wall shear stress 
necessary to shift a bulk solid continuously across a wall surface under a certain wall normal 
stress (Schulze, 2021).  

 

 

 

 

 

 

 

 

At this point, the wall friction angle ?: , which is the slope of the line passing through the origin 
of the 39,	.9	diagram and a point of the wall yield locus, is used to assess the wall friction. The 
larger it is and the greater is wall friction. In addition to this, also the bulk density of the powder 

Figure 1.11. Basic principle of wall friction test, in which a normal stress is 
applied to a powder sample and the relative shear stress developed on it is 
measured (Schulze,2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12. Basic principle of wall friction test, in which a normal stress is 
applied to a powder sample and the relative shear stress developed on it is 
measured (Schulze,2021). 
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is measured during the wall friction test, before and after stress application, in order to obtain 
the bulk density curve of the material. In general, a free-flowing material will be 
incompressible, so it will show only a small increase in density with stress.  In contrast, a very 
cohesive, poorly flowing bulk solid will show a large increase in bulk density with increasing 
stress. In this study, the powder bulk density determined during the wall friction test is used to 
calculate another meaningful index of the flowability of different powder formulations, the 
compressibility index (as will be explained in more detail in section §4.5.2); this last, together 
with the flow function coefficients and the wall friction angles, will provide a complete 
description of the flowability of the tested samples. 

 

1.6 The answers sought in this Thesis  

As previously described, the final properties of tablets produced in the rotary press are 
influenced by the inter-relationship between the compression settings chosen and the 
characteristics of the free powder. With this in mind, the aim of this Thesis is to answer the 
following questions: 

• Is it possible to identify which compression settings have the greatest influence on tablet 
properties, with particular emphasis on mean weight and weight variability? Is the effect 
of the compression settings the same for all the blends studied or is it blend specific? 

• With regard to the effect of the feed frame, can it be shown that its speed is one of the 
main factors influencing the final tablet quality? Are the statements in the literature 
regarding its ability to reduce weight variability and increase the lubrication state of 
powders consistent with the behavior observed for the blends under investigation? 

• Is it possible to verify the appropriateness of the semi-empirical model proposed by 
Kushner and Moore (2010) and extended by Blackwood (2012) to estimate the state of 
lubrication of the powder subjected to a given feed frame speed? 

• Does the composition of the blend affect the final properties of the tablet? In what way? 
• Can flow function tests and wall friction tests carried out on the powder blends be used 

to assess the effect of the feed frame on the original powder flowability and to 
understand how the intrinsic powder properties are related to the blend behavior in the 
rotary press? 

 





Chapter 2 
 

Materials, equipment and datasets 
 
This chapter provides a comprehensive presentation of the pharmaceutical powder mixtures 
used for the experiments, together with a detailed description of the equipment used for data 
collection, including the Fette 1200i tablet press, the Phoenix compactor simulator and the 
Brookfield tester machine. The data collection procedure is explained in detail, as the results 
are crucial to understanding the subsequent analysis approach. Finally, the dataset structures 
are presented, examining compression settings, measured and calculated product quality 
attributes contained within them. 
 
2.1 Powder mixtures 
 
The aim of this study is investigating the relationships existing between compression settings 
and tablet properties after compaction for three pharmaceutical placebo powder blends or 
formulations, whose components and related compositions are reported in Table 2.1. It must be 
noted that even if no API is present, lactose monohydrate is added as surrogate of it with the 
aim of imitating its behavior. 
 
 
Materials Function Formula Qty (mass %) in formulation/batch/blend 

Blend 1 Blend 2 Blend 3 

Lactose monohydrate 200M Diluent 23.02 5 22.34 

Avicel  Diluent 24.99 22.74 58.66 

Lactose anhydrous  Diluent 47.99 68.26 15 

Croscarmellose sodium Disintegrant 3 3 3 

Magnesium stereate Lubricant 1 1 1 

Total  100 100 100 

 
Placebo formulations, i.e., not containing any APIs, are of paramount importance for clinical 
studies, since they are made to match the physical properties of a real drug, like shape, size and 
color,  but they do not have any therapeutical effects on the body. In this way, they allow to 
improving drug development at a lower cost and saving most valuable resources. They can be 

Table 2.1.  Placebo formulations with related materials and compositions. 
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constituted by several types of excipients, that are inert or active substances generally added in 
formulations for aiding in processing of drug delivery system during manufacture, to protect 
and enhance stability of the product and to assist in maintaining integrity during use and storage. 
As it can be seen in Table 2.1, excipients can have different functions in a formulation: diluent, 
disintegrant, lubricant, binders, etc. Some of the main features of the ones employed in this 
work are following presented, and related SEM images are reported in Fig. 2.1: 

• Lactose monohydrate 200M: it is a milled powder of α-lactose monohydrate, combining 
good compaction, blending properties and storage stability. Fine in nature and with 
relatively high surface area, it is mechanically milled at different degrees of particle size 
allowing pharmaceutical companies to choose the grade best fitting for their study. It is 
commonly used as excipient in pharmaceutical drug development. 

• Avicel: it is a purified, partially depolymerized alpha-cellulose excipient made by acid 
hydrolysis of specialty wood pulp, commonly used as binder in pharmaceutical 
formulations. It is a type of microcrystalline cellulose (MCC), which generally flows 
and compresses extremely well, properties that gives this material a variety of 
applications in many fields. MCC is commonly available in different sizes, and Avicel 
is the one characterized by a nominal mean particle size of 100 μm, providing it a good 
flowability and making it suitable for direct compaction, being it resistant to a wide 
range of compaction pressures and to organic and non-organic contaminants (Yu, 2013). 

 
 

 

Figure 2.1.  SEM images of (a) Lactose monohydrate 200M, (b) Avicel, (c) Lactose anhydrous Supertab (d) 
Croscarmellose sodium and (e) Magnesium stereate (Rowe et al. 2009; 

https://dfepharma.com/excipients/pharmatose-200m; https://www.researchgate.net/figure/SEM-picture-of-
croscarmellose-sodium-particles). 

(a) (b) (c) 

(d) (e) 

https://dfepharma.com/excipients/pharmatose-200m
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• Lactose anhydrous Supertab: it is a disaccharide sugar used as filler, diluent and bulking 
agent in a wide variety of pharmaceutical tablets, capsules, powders and other 
preparations. It is characterized by a low level of crystalline water, resulting very 
suitable for formulations with sensitive moisture APIs. 

• Croscarmellose sodium: is an internally cross-linked sodium carboxymethyl cellulose, 
which is insoluble, hydrophilic and extremely absorbent, giving it excellent swelling 
properties and high water absorption capacity. It is commonly used as disintegrant in 
pharmaceutical manufacturing, providing an efficient disintegration at low levels of use. 

• Magnesium stearate (MgSt): This is a salt formed by the combination of stearate 
molecules with magnesium ions. It has historically been implemented at low 
percentages in pharmaceutical tableting as a lubricant to aid in ejection from tablet 
punches and it is used also to improve flowability when blended to lactose powder. 
MgSt also slows down the absorption and dissolution time of the tablet. 

 
For all three blends, lots of 100 kg are firstly manufactured, then processed in two sublots of 
50 kg each due to limitations of bin size. The first blending phase occurs in a IBC blender, 
where all ingredients are added orderly to the formulation (the same as Table 2.1), except for 
magnesium stearate, at certain blending speed and time. MgSt is successively added to the 
formulation at the same speed but reduced blending time. At this point the formulation is ready 
to go to compression in Fette 1200i machine. After this phase, samples are collected via 
polyethylene bottle. 
A summarizing scheme of the main steps involved in the formulation preparation is reported in 
Fig.2.2. 

 
 
 
 
 
 

Figure 2.2.  Process flow of material transfer for manufacture, from blending 
of excipients to compression phase with operating conditions. 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/lubricating-agent
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2.2 Equipment 
 
It was anticipated that the work of this Thesis is based on data belonging to different datasets, 
collected by the partner company by using different equipment, settings and procedures. 
Regarding the equipment, GSK commercial dataset is based on the use of Fette 1200i tablet 
press, a high-performance machine widely employed for pharmaceutical manufacturing. 
Compactor simulator data, differently, are obtained through the Phoenix, an advanced and 
sophisticated tool replicating the process of compacting powder into tablets generally operated 
by compacting tablet presses. Main features of both are going to be presented here following, 
together with the ones of the Brookfield powder flow tester, used for shear cell data collection. 
 
2.2.1 Fette 1200i tablet press 
 
Rotary tablet presses are essential machines in the pharmaceutical industry, designed for the 
mass production of tablets. They operate by continuously rotating a die table, allowing multiple 
compression stations to simultaneously fill, compress and eject tablets. They enable an efficient 
and consistent production of large quantities of tablets, ensuring uniformity in weight, hardness 
and shape. Their use is crucial for manufacturing of a wide range of products, meeting the 
industry’s stringent standards for quality and precision. 
For the aims of this work, the Fette 1200i is employed (Fig.2.3), a high-performance rotary 
tablet press designed for efficiency, precision and reliability in mass production. It stands out 
for its ability to produce large quantities of tablets consistently and with high precision and it is 
particularly suitable for pharmaceutical applications where tablet uniformity, quality and 
production speed are critical. This machine is often used to produce prescription drugs, over-
the-counter medications and nutritional supplements (https://www.fette-compacting.com). 

 
 
 
 
  
 
 
 

 
 
 
 

(a) (b) 

Figure 2.3.  Fette 1200i rotary tablet press (a) with internal die table visualization (b) 
(https://www.fette-compacting.com). 
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The machine operates according to the rotary tablet press working principles, here briefly 
reported (for details, refer to §1.1.1): 

• Powder filling: a feeder system is providing pharmaceutical powder into the die cavities 
of the press table. The powder must be accurately dosed to ensure uniform tablet weight 
and consistency among tablets produced. 

• Compression: The press starts rotating, bringing progressively all the die cavities under 
a set of punches (upper and lower), which exert a force on the powder compressing it 
into a solid tablet. 

• Tablet ejection: After the compression phase, the lower punch pushes the newly formed 
tablet out of the die cavity, which is then recovered by a conveyor or a handling system. 

 
Fette 1200i, as a rotary press, can perform these steps in a continuous cycle. Its die table rotates, 
allowing for simultaneous filling, compression and ejection at different stages around the press 
head. In this way, it ensures a high output producing thousands of tablets per hour, guaranteeing 
at the same time a precise control over tablet parameters. Its versatility makes it suitable for a 
wide range of tablet sizes and shapes, making it adaptable for different product requirements. 
 
2.2.2 Phoenix compactor simulator 
 
Phoenix is a highly instrumented single-station compression machine designed to simulate the 
operation of industrial tablet compaction machines, enhancing understanding of machine 
settings and process optimization without the need for large amounts of product.  
This type of equipment is commonly used for training, allowing users to simulate various 
aspects of tablet production, including powder feeding, compression force adjustments, ejection 
phase closely mimicking real-world operations (https://www.korsch.com). 

 
 

 
 
 
 
 
 
 
 
 
 Figure 2.4. Compactor simulator equipped with a single station for compression 

(https://tabletingtechnology.com). 
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For this specific study, Phoenix is employed only for blend 3 analysis, with the aim of using the 
collected data to evaluate firstly if compaction simulator mimics well the tablet rotary press, 
and successively for an estimation of the lubrication extent coefficient value acquired by the 
blend after subjection to different feed frame speeds. Details about data collection procedure 
are reported in the following sections. 

 
2.2.3 Brookfield powder flow tester (PFT) 
For the aims of this study it is fundamental to characterize powder flow properties and flow 
behavior, understanding how they are related to operating conditions chosen during 
compression in determining final tablets qualities. This is done by Brookfield PFT, a precision 
instrument able to measure, display and print out flow results at specified compaction loads 
(https://www.brookfieldengineering.com). There are several powder flow properties that PFT 
can measure to categorize flowability, but the most recognized indication of powder flowability 
is the unconfined failure strength when viewed as a function of the consolidating stress, known 
as the flow function. Wall friction, internal friction, and bulk density are also commonly used 
to relate measurements to flow behavior.  
 
 
 
 
 
 
 
 
 
 
 

 

The main working mechanism of PFT consists of driving a compression lid vertically 
downward into a powder sample contained in an annular shear cell (Fig.2.5). The powder 
sample has a defined volume and its weight is measured before the start of the test. The 
compaction stress applied to the powder is controlled by a calibrated beam load cell. The test 
properly starts with the annular shear cell rotated at a defined speed, while the torque resistance 
of the powder in the shear cell moving against the powder in the stationary lid is measured by 
a calibrated reaction torque sensor (https://store.brookfieldengineering.com/pft-powder-flow-

Figure 2.5. Brookfield powder flow tester (PFT) with powder sample in an 
annular shell cell going to be compressed by a compression lid vertically 
downward into it (https://store.brookfieldengineering.com/pft-powder-flow-
tester). 
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tester). The geometries of the lid, shear cell, rotational speed of the cell, and the compressive 
loads applied to the powder all contribute to the calculations which determine the “flowability” 
of the powder.  

2.3 Data collection procedure  
 
The purpose of this study is to verify the impact of various parameters and materials attributes 
on final tablet properties, especially tablet weight variability. For this reason, a design of 
experiments (DOE) was conducted, examining the impact of five main factors on tablets 
properties by using Fette 1200i tablet press. The factors to be explored are listed, with the 
applicable ranges in the table below (Table 2.2). Runs 1 to 5 were collected to manufacture 
round concave tablets, while runs 8 to 12 to produce oval tablets. In addition to them, also 
additional runs were performed when leftover powder was available, but not reported here since 
not reliable for the aims of the study. 
 
 
 

Run Fill cam  
(8mm,10mm,12mm,14 mm) 

Fill depth 
(mm) 

Overfill  
(% fill cam) 

Feed frame 
speed (rpm) 

 

Run design for round concave tooling (9 mm) 
1 10 7 30 15  
2 10 9 10 15  
3 10 8 20 30  
4 10 7 30 45  
5 10 9 10 45  

Run design for oval tooling (15.5 mm × 8.5 mm) 
8 14 11 20 15  
9 14 13 7 15  
10 14 12 15 30  
11 14 11 20 45  
12 14 13 7 45  

A brief overview of what these compression settings represent is here reported: 

• Fill cam: it is part of the tablet press mechanical system, with the primary function of 
controlling the lower punch position within each die cavity, determining the amount of 
powder that is filled into it. 

• Fill depth: it refers to the depth of the cavity that is filled with powder, determining the 
volume of the material that will be compressed for obtaining the final tablet and 
influencing consequently weight, size and density of the tablet. 

Table 2.2.  DOE specifications for data collection in Dataset 1 and Dataset 2. 
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• Overfill: it can be described as the offset between fill cam and fill depth, ensuring weight 
consistency even in presence of powder flows variations or redistributions within the 
die cavity. 

• Feed frame speed: it has a critical role in determining how efficiently powder is 
distributed inside die cavities, having a significant effect on final tablets properties. For 
further details about feed frame and related speed see §1.3. 

Samples used for this study are exclusively the ones collected at steady state, after a time of 0, 
5 and 10 min from the beginning of each run. 

 

It can be noted from Fig 2.6 that some feed frame samples, consisting in powder samples 
remaining in the feed frame, were then collected after runs 2, 3 and 5. These will be useful later 
on, for lubrication extent coefficient estimation purposes with compactor simulator. 

2.3.1 Dataset 1: GSK commercial dataset 
In this dataset, only data from runs 2, 3 and 5 are reported for each blend, as these are considered 
experimentally significant for an evaluation of the effect of the main compression settings on 
the final tablet properties. Together with the settings seen in §2.3, compression force is also 
varied for the data collection, since it is known from Pellett et al. (2018) to influence some 
tablets properties such as thickness, hardness and dissolution time.  
Time related data (at 0, 5 and 10 min) are reported only for an applied compression force of 13 
kN, while other few data, independently from time dimension, are also collected at 6.5, 9.5 and 
16 kN. Ten replicates (tablets) data are present for each time instant at 13 kN, for a total of thirty 
replicates available at this compression force, while for the other force values ten replicates are 
totally performed. While for blend 1 and 2 rotor speed is maintained constant in all runs 
considered by this dataset, in blend 3 it is also varied (from 41 to 49 rpm) in run 2 and 3 and 
consequently considered among compression settings in the successive analysis of this Thesis 
work. A summarizing scheme of data structure for GSK commercial dataset is reported below 

Figure 2.6. Data collection procedure synthetic flow  for Dataset 1 and Dataset 
2. 
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(Fig 2.7). At this point, an overview of which tablets properties are considered and reported in 
the dataset is provided in Table 2.3, with a successive focus in volume and tensile strength 
calculation. 

 
 
 
 
At this point, an overview of which tablets properties are considered and reported in the dataset 
is provided in Table 2.3, with a successive focus in volume and tensile strength calculation.  

 
 
 

 Units of measure 

Weight mg 

Thickness mm 

Hardness kp 

Tensile strength MPa 

Width mm 

Volume mm3 

Density g/cm3 

Solid fraction [-] 

Figure 2.7. General data structure representation for Dataset 1 valid for all 
blends, considering that for blend 3 two “RUN 2” and two “RUN 3” exist, one 
at 41 and one at 49 rpm rotor speed. 

Table 2.3. Tablets properties (measured and calculated) taken into account in Dataset 1. 
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2.3.1.1 Volume 
Tablet volume reported in the dataset is calculated as a function of the so-called cap volume 
(Vc), including the top and bottom of the tablet, and the wall thickness region volume (Vw): 
 
! = 	2	!! + !"                                                                                                                           (2.1) 
 
where !! = #$

% (3(
& + ℎ&), with a=base radius of the cap and h=cap depth, while !" = +,&-, 

with r=tablet radius and W=tablet wall thickness (see Fig. 2.8). 

 
 
 
 
 
 
 
 
 
2.3.1.2 Tensile strength 
 
Tensile strength of a tablet is a crucial measure of its mechanical integrity and robustness, as it 
ensures the tablet is strong enough to be able to withstand treatments successive to compression, 
such as film coating, packaging, transportation and use, but also weak enough to break in the 
human body and release its content (Pitt et al., 2013). While hardness test takes into account 
only the compressive force required to fracture a specimen across its diameter, tensile strength 
considers also the dimension and the shape of the compact, allowing ready comparisons to be 
made between samples of different shapes and size. It can be influenced by several factors as 
formulation, compression force and powder properties, and it is often used as a quality control 
parameter in pharmaceutical manufacturing to assess if the tablets meet the required mechanical 
standards. The tensile strength can be assessed by means of the following equation (Pitt and 
Newton, 1988) for round tablets only: 
 
./ = '()

#*! (2.84
+
* − 0.126

+
" + 3.15

"
* + 0.01)

,'                                                                     (2.2) 

 
where P is the breaking force (N), D is the tablet diameter (mm), t is the tablet thickness (mm) 
and W is the wall region thickness.  
 

h, Cap depth 

2r 

Figure 2.8. Details on terms significance for calculation of  tablet volume. 

a 
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2.3.1.3 Solid fraction 
This is a key intermediate product attribute in tablets formulation and manufacturing as it 
influences several tablets physical properties, like hardness, mechanical strength, disintegration 
and dissolution rate. Solid fraction (SF) is defined as the portion of tablet volume occupied by 
solid material, as opposed to the volume occupied by voids (pores or air space). It can be 
calculated as the ratio between the tablet density (8+-./0+), and the powder true density (81), 
where the latter is the density of the solid material alone: 
 
8+-./0+ = +-./0+	3-11

+4+-/	54/630	(14/89:8;+0<1+8+8-/	54891) =
3"

&>#:>$
                                                                           (2.3) 

81 = +-./0+	3-11
+-./0+	14/89	54/630 =

3"
>"

                                                                                                             (2.4) 

/9 = ?%&'()%
?"

= 3"
?"×(,$-!,.)

= 1 − :;,;<=>?                                                                             (2.5)                              

From the work of Stranzinger et al. (2021) it is known that, while the true density is a 
characteristic of the powder itself, the tablet density is highly affected by material processing 
in a unit operation; this is why it is crucial to understand how compression settings affect it in 
order to obtain appropriate tablet solid fractions. A higher solid fraction is usually correlated to 
a tablet which is denser and harder, as more of its volume is occupied by solid material, affecting 
consequently tablet tensile strength and its ability to withstand handling without breaking. 
 
2.3.2 Dataset 2: weight dataset 

Referring to the same compression settings and data collection procedure seen in §2.3, weight 
dataset includes exclusively tablet weight data for three different time instants (0, 5 and 10 
minutes) along several runs for each blend. Thus, differently from the previous dataset in which 
only runs 2, 3 and 5 were considered, additional runs data are reported, considering for each 
run the data time evolution and adopting a fixed compression force. For each time instant, sixty 
tablet weights are collected, with the aim of investigating specifically weight variability 
between runs and within runs for the different formulations (Fig. 2.9).  

Runs included in this dataset are here listed: 

• For blend 1: run 1, 2, 3, 4, 5 and 10 . 
• For blend 2: run 1, 2, 3, 4, 5, 8 and 9. 
• For blend 3: run 1, 1A, 2, 2A, 3, 3A, 4 and 5. 
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RUN 1    

Time [min] t=0 t=5 t=10 

Weight data [mg] × 60	%&'()*+,&- × 60	%&'()*+,&- × 60	%&'()*+,&- 

RUN 2    

Time [min] t=0 t=5 t=10 

Weight data [mg] × 60	%&'()*+,&- × 60	%&'()*+,&- × 60	%&'()*+,&- 

RUN N    

Time [min] t=0 t=5 t=10 

Weight data [mg] × 60	%&'()*+,&- × 60	%&'()*+,&- × 60	%&'()*+,&- 

    

 

Note that for blend 1 and 2, runs producing oval tablets are introduced (see Table 2.2), allowing 
one to evaluate how larger variations of compression settings like fill depth and rotor speed are 
affecting final weight of the tablets. With regard to the latter, the runs for oval tablet production 
are set at 15 rpm, as opposed to the 40 rpm used for runs 1-7. For blend 3, only 9 mm round 
tablet runs are selected, but the variation in rotor speed is also taken into account as it is set at 
both 41 and 49 rpm for runs 1 to 3. In some cases, and specifically indicated,  additional runs 
data which are not present in the dataset but available in supplementary material are included 
in the Thesis work for comparison purposes. 

2.4 Dataset 3: Compactor simulator dataset 

As explained in §2.3, three feed frame samples of blend 3 are collected between one run and 
another in order to be studied at the compactor simulator. This is done firstly to evaluate if the 
latter is able to mimic well the compression process at the rotary press, bringing the advantages 
of low material consumption and high process flexibility. Compactor simulator employs highly 
controlled punch displacement profiles to deliver a range of compression forces to the powder, 
in this case going from 6.5 to 16 kN, as well as in the rotary press (see §2.3.1). Tablets properties 
are measured for five tablets at each compression force level considered, and successively  
compared to the rotary press ones. In conjunction with the above mentioned samples, also the 
lubricated commercial blend 3, not yet subjected to feed frame sample, and four new realized 
blends are studied at the simulator under the same explained conditions. The new blends have 
the same composition as blend 3 and are obtained in a blender with V=500 mL for different 
blending times, varying in this way their extent of lubrication k (see Table 2.4).  

 

Figure 2.9.  Dataset 2 structure: sixty tablet weights are reported at each 
time instant for the single run. 
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 Lubrication extent k [dm] 
New sample 1 60 
New sample 2 300 
New sample 3 600 
New sample 4 1000 

Once these known-k blends are subjected to the compactor simulator, the correspondent tablets 
properties are analyzed and compared to the feed frame samples ones, with the aim of 
investigating the over lubrication state provided to the powder by the feed frame presence. 
Further details about are provided later on. 

2.5 Shear cell flow data 
  
The flow of powders in process equipment is a complex and challenging area of study, as it can 
change significantly during a process depending on the operating conditions and consequently 
affect the quality of the final product. In the absence of a unified framework for describing 
powder flow behavior, the collection of experimental data and the use of empirical correlations 
are fundamental to gaining adequate knowledge of the powders under investigation. To this 
end, a flow function and a wall friction test are carried out on powder samples of blends 1, 2 
and 3 before and after subjecting them to a feed frame. 
 
2.5.1 Flow function test 
 

 

Table 2.4.  Blending conditions and lubrication extent of new lubricated 
blends realized for compactor simulator profiles analysis. 

 

Fig. 2.10.  Flow function test algorithm followed in Brookfield PFT. 
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For the flow function test, Small Vane Lid 304 S/S (5 cc, 5-in. dia.) and Small Trough (38 cc, 
5-in. dia.) are used as PFT equipment, with an axial speed of 1mm/sec and torsional speed of 1 
rev/hr. Five initial consolidation stresses are tested (1.06, 1.69, 2.66, 4.20,6.63 kPa) for each 
sample, using geometric spacing between each stress and applying three over-consolidation 
stresses at each stress. A brief scheme of flow function test algorithm employed is reported in 
Fig. 2.10. As the data contained in this dataset are collected automatically after the above 
conditions have been set, specific details of the shear cell data collection procedure are beyond 
the scope of this study, but further information can be found in the work of Schulze (2021). As 
a result of each flow function test, a summary table is provided showing the most useful data 
for the purposes of this flowability analysis. For each of the five initial consolidation stresses, 
a corresponding major principal consolidation stress and unconfined yield strength are given, 
which can be plotted together to give the powder flow function value. Details of cohesion, 
density and effective angle of internal friction are also provided. 
 
2.5.2 Wall friction test 
 
For running the wall friction test, seven stresses are tested for each powder sample by using 
two displacement levels evenly spaced. The lid used in the Brookfield PFT is the Small Wall 
304 S/S, 2B Finish (5-in. dia.), while the trough employed is the Small Trough (38 cc, 5-in. 
dia.), with an axial speed of 1mm/sec and a torsional speed of 1 rev/hr.  

 
A brief scheme of flow function test algorithm employed is reported in Fig. 2.11. The wall 
friction angles obtained for each stress applied, which represent the sliding angles under normal 
flow for a given bulk solid against a wall surface, describe the resistance present between the 

Fig. 2.11.  Wall friction test algorithm followed in Brookfield PFT. 
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powder and the stainless steel wall of the equipment used. In addition, the data obtained on the 
initial bulk density of the powder, consisting of the freely settled bulk density of the powder 
and the maximum density recorded after shear compaction, are used to determine the 
compressibility index and the Hausner ratio of the samples tested, providing a clear and 
representative way of describing and comparing the flowability of the powders studied. 





Chapter 3 
 

Mathematical background 
 

Machine learning methods are largely employed in pharmaceutical industry for evaluating data, 

discovering patterns and trends that allow to make appropriate decision to improve production 

and product quality (Vamathevan et al., 2019). One of the most popular, used in this study for 

preliminary data analysis, is principal component analysis (PCA), an unsupervised 

methodology consisting in a dimensionality reduction exploited to manage large data sets, 

identifying at the same time main relationships among variables. Partial least-squares (PLS) 

models are then described, since they allow to identify main predictors (variables) determining 

a desired response, giving information about which settings are more appropriate to modify in 

order to reach a target. Analysis of variance (ANOVA) is finally presented, as it will be used 

for evaluating qualitatively the actual impact of some factors on a response of interest, namely 

tablet weight in this study. The quantitative evaluation is instead provided through response 

surface methodology. 

 

3.1 Quality-by-design implementation through latent-variable models 
 
Nowadays, the use of systematic and science-based approaches has a key role for supporting 

pharmaceutical development and manufacturing activities, contributing to the practical 

implementation of the quality-by-design paradigms. Ohage et al. (2016) highlight that, 

according to QbD, the proactive design of pharmaceutical manufacturing process and controls 

must be enhanced to consistently deliver the intended performance of the product, through an 

extensive mechanistic understanding of the relations between the product quality and the 

parameters that can have an impact on it. Latent-variable (LV) models can be used for that, 

resulting to be useful in any product development phase for a deeper understanding of product 

and process design, process improvement and optimization and control. They are designed to 

identify significant correlations among real data to describe the behavior of a system in a 

reduced number of variables (called LVs), which account for the systematic part of the 

variability of the data. Tomba et al. (2013) suggest that these models are effective also when a 

limited amount of samples is available, so that they are particularly suitable with product and 

process development in companies, like pharmaceutical ones, which are often not “data-rich” 

organizations. 
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Among the most common LV models employed, PCA and PLS are used in this study, allowing 

one, after an appropriate dataset organization, to identify the main driving forces acting on a 

system and providing a clear and deep understanding of the analyzed processes. In the 

following, a detailed description of the above-mentioned models is provided. 

 
3.1.1 Principal component analysis (PCA) 
 
This is one of the most successful multivariate statistical techniques used for exploring 

dominant information patterns in the data. As described by Tomba et al. (2013), it consists on 

finding the directions of maximum variability of the data, transforming correlated original 

variables (online process measurements, raw material characteristics, product features, etc.) 

into sets of linearly uncorrelated variables called principal components (PCs). Harvey and 

Handson (2022) explain that PCA is essentially a process of rotating the original set of V axes, 

which correspond to the V variables we measured, until we find a new axis that explains as 

much of the total variance as possible. This becomes the first PC axis. We then project the data 

onto the V− 1 dimensional surface that is perpendicular to this axis and repeat this process of 

rotation and projection until the original V axes are replaced with a new set of A PC axes. The 

first PC is the one explaining the major part of the variability, while each successive one, found 

through iterative extraction procedures or alternatively by exploiting appropriate algorithms, 

does not correlate with the previous ones and expresses the remaining part of the variability. 
The representation of the original observations in a low-dimensional space, typically 2-5 PCs, 

gives a convenient overview of the data available with a minimum loss of information, 

describing the main driving forces of the system under study. An example of PCA working 

mechanism is provided in Fig. 3.1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Principal component analysis transformation of the original 
variables space in a low-dimensional space of artificial variables 
(https://learnche.org/pid/latent-variable-modelling/principal-component-
analysis) 
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Mathematically, PCA finds the directions of maximum variability of the data matrix X, with N 

rows and V columns (! × #),	maximizing the covariance matrix of the process variables. Wise 

and Gallagher (1996) discuss the theoretical derivation of PCA, starting from the definition of 

the covariance matrix: 

 

'()(+) =
!!!
"#$                                                                                                                           (3.1) 

The original matrix X, containing the variables whose correlations must be investigated, is 

expressed by the PCA model as: 

 

+ = -.% + 0 =	∑ 2&3&% + 0
'
()$   ,                                                                                       (3.2)                             

where T is the score matrix ! × 4 containing the projection of the N observations in the A-

dimensional space defined by the A-principal components (where 4 ≤ min	{!, #}), P is the 

matrix # × 4 of the loadings and E is the residual matrix,  accounting for the reconstruction 

error of X. Note that for any pair 2&, 3&, +3& = 2&, since the score vector is a linear combination 

of the original X data defined by 3&. From the study of Wise and Gallagher (1996) it can be 

derived that the analytical solution of the above mentioned maximization problem is the same 

as the one of the eigenvector problem, since 3& vectors are eigenvectors of the covariance 

matrix, i.e. for each 3&: 

;<=(+)3& = >*3&  ,                                                                                                            (3.3) 

where >* is the eigenvalue associated with the eigenvector 3& and provides an indirect measure 

of the variance explained by the product 2&3&%. This means that the optimal linear projection 

for which the variance of the projected data is maximized is now defined by the eigenvectors 

of the data covariance matrix X corresponding to the largest eigenvalues and that will be 

consequently chosen as PCs. Solving the eigenvector problem is one of the most popular and 

widely used methods for finding principal components for PCA model construction, but there 

are many other useful approaches such as singular value decomposition, iterative and 

probabilistic methods that can be exploited for it. Once the principal components have been 

identified, the number (A) of them to be selected to build the model is usually determined 

through cross-validation or rules of thumb (Mardia et al., 1979; Valle et al., 1999). If we now 

provide a geometric interpretation of PCA, it can be said that the scores define the location of 

the original samples in the coordinates of the newly discovered principal component axes, while 

loadings give an indication of the location of the principal component axes with respect to the 

original axes. As can be seen in Fig. 3.2, each principal component is defined by the cosine of 

its angle of rotation with respect to each of the original axis. Once identified the angle of rotation 
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of the PC to the axis for variable 1 and 2, the cosine of the angle correspond to a loading which 

describes how a variable contributes to the principal component. 

 

 

 

 

 

 

 

 

 

Loading vectors, describing the direction of the principal components in relation to the original 

variables, express the correlations among variables for the percentage of variability explained 

by the considered PC. The sign of a loading determines how a variable contributes to the 

principal component: a positive loading indicates that an increase of a variable is correlated 

with an increase of all the other variables that can be found in the positive side of the loading 

plot, while the same variable decreases for an increase of the variables that can be found in the 

negative part of the loading plot. On the other hand, the score vectors, indicating the direction 

of the principal components in relation to the observations, describe similarity among the 

observations in the new latent variable space. 

3.1.2 Projection on latent structures (PLS) 
 
PLS is a linear multivariate statistical method combining the advantages of integrating principal 

component analysis and linear regression analysis. Abdi (2007) suggest that it is particularly 

useful when it is needed to predict a set of dependent variables from a large set of independent 

variables (predictors), because it reduces the variables, used to predict, to a smaller set of 

predictors, which are actually included in the regression. 

It relates in this way two data matrices: 

• X [!	?@ABCDEFG?HA × #	DECGE@IBA], including settings and process variables 

Figure 3.2.  Representation of the relationship existing between original 
variables and first principal component through the loadings (Harvey and 
Handson, 2022). 
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• Y [!	?@ABCDEFG?HA × J	DECGE@IBA], which are quality/response variables, 

by exploiting the ability of multivariate projection methods to analyze noisy and collinear data 

identifying the directions of maximum variability of X that best predict Y. 

It has a large variety of applications, like estimation and prediction as soft sensing, process 

monitoring, design and transfer of process and products on different scales and production sites, 

process and product optimization, response surface modelling in DOE and instrument 

calibration (Facco, 2024). 

As well as in PCA, X matrix is decomposed as described in Eq. 3.2, but in addition also Y 

matrix is similarly decomposed: 

 

K = LM% + N = ∑ O&P&% + N
+
&)$                                                                                                                       (3.4) 

 

where U, Q and F are respectively the scores, loadings and residuals matrices of Y. The 

decomposition problem is solved through appropriate algorithms. For further information 

about, it is suggested to refer to the work of Geladi et al. (1986). Dunn (2023) clearly explains 

that differently from PCA, PLS works not only in catching the directions of maximum 

variability of X, but on the transformation of X data in order to maximize the covariance of its 

latent variables with Y dataset (Fig.3.3).  

 

 

 

 

As anticipated in Fig. 3.3, PLS model finds regression coefficients that define the linear relation 

among the score space of X matrix (t) and the one of Y matrix (u), explaining the relationship 

between independent and dependent variables in the new latent space: 

(a) (b) 
Figure 3.3.  In (a): 1) PCA with estimate of PCs, 2) subsequent representation 
of the new space and 3) projection of real data on it; in (b) PLS graphical 
representation maximizing the correlation between X and Y ((Santos et 
al.,2023). 

 

 

 

 

 

 

 



                                                                                                                                                              Chapter 3 40 

O = Q2                                                                                                                                      (3.5) 

Non-linear versions of PLS are sometimes needed and they can be built changing the above-

mentioned equation. PLS defines a new vector space, that is a subspace of the previous one, in 

which original data are represented. Loading, score and residual matrices contain all the 

information to draw this new space with its own observations and quantities. Scores in PLS are 

interpreted as PCA ones, allowing one to recognize similarities and differences among 

observations through the identification of clusters, outliers and patterns in the line plot of scores. 

But differently from PCA, where loadings are the main descriptors of correlations among 

variables, in PLS it is more appropriate to refer to the weights (W), which represent the 

coefficients of the linear combination of X determining the scores (T), as shown in Eq. 3.6 and 

3.7, and needed to make these last orthogonal to each other (Geladi et al.,1986): 

- = +R∗                                                                                                                               (3.6) 

R∗ = R(.%R)#$                                                                                                                 (3.7) 

Plotting the weights is very powerful because they allow to superimpose the loadings plots for 

the X and Y space simultaneously. In this way, we do not only see the relationship between 

the X variables, but also their relationship between the Y variables (Dunn, 2023). We usually 

prefer to refer to W* rather than W when investigating the relationships in a PLS model, since 

W* directly expresses the relationship between the score vectors t and the original matrix X, 

whereas W relates t to the deflated data resulting from the iterative procedure of the Nipals 

algorithm for PLS model construction, making the interpretation of the scores difficult. For 

further investigation about the differences between P, W and W*, Dunn (2023) study is 

recommended. 

3.1.3 Data pretreatment 

Before proceeding with PCA or PLS, it is often necessary to operate a data pretreatment in 

order to avoid that the variability extracted by the models is affected by the different scales of 

data collected. In this study, before each PCA or PLS model construction, variables are 

weighted in the same way by applying autoscaling, consisting of two subsequent steps as 

explained by Gallagher and Shaver (2015): 

• mean-centering: mean of each column V of matrix X is subtracted by all terms of the 

same column, in order to avoid that the LV models identify as significant directions of 

variability in the data the differences among variable mean values. 
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• scaling to unit variance: each column of X matrix is divided by its standard deviation, 

essential to make the analysis independent of the units of the variables. 

It is clarified that the most appropriate methodology for data pretreatment can vary depending 

on the data and the type of application of the study. In this case, the above-mentioned procedure 

is sufficient in order to treat efficiently data available. After autoscaling, it is possible to build 

the most informative model depending on the purposes of the analysis, investigating the 

correlations among variables from the loadings based on auto-scaled data. 

3.2 Data unfolding techniques for dynamic analysis of data 

As discussed in Chapter 2, tablets data are collected at different time instants (0, 5 and 10 min), 

meaning that the structure of the data corresponds to a three-dimensional array or cube, 

including the run observations I, variables J and time interval K. In order to model these data 

and capture their dynamic time dependence, it is necessary to unfold the data array into a two-

dimensional matrix. PCA or PLS can be then applied to these matrices and model them to 

explain the maximum variance or covariance with the fewest possible number of latent 

variables. Chai et al. (2013) specify that each method of unfolding provides a different matrix 

with a different structure and a different dimension with respect to the original one, but the 

batch-wise unfolding technique (or better, in this case, the run wise unfolding one) is the most 

applied one, since it allows to express the run dynamics referring to the mean time trajectory of 

variables. Data are unfolded into a two-dimensional structure, maintaining the run direction and 

unfolding the variable and time ones (Fig. 3.4). In this way, each row contains the information 

about a single run, capturing the variable correlations both within time and time-to-time; both 

cross-correlated and self-correlated relationships in process data are so expressed. 

  

 

 
 

 

 

 

Applying PCA or PLS to this unfolded matrix is therefore modeling the time-varying behavior 

of the runs as a locally linear dynamic model with all the variables at every sample time, as 

investigated by Chai et al. (2013).  The models built after this unfolding contain data dynamic 

Figure 3.4.  Run wise unfolding procedure used to reduce matrix dimension 
for PCA and PLS analysis. 
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information in the loading plot, which express the time trajectories of each variable and 

determine their importance on data variability. The score plot, as well as seen before, continues 

to describe the relationship among observations (replicates of runs), since each point in it 

represent a synthesis of all variables time trajectories of each run for the entire time considered.  

 

3.3 Analysis of variance (ANOVA)  

Analysis of variance is a statistical method used to simultaneously compare means of several 

data groups to determine if the observed difference are due to chance or if actual distinctions 

are present (Smalheiser, 2017). This is done by comparing variability recorded by applying 

different treatments/levels of some main factors (variability between treatments) and variability 

of repeated measures at the same treatment (variability within treatments). ANOVA can handle 

multiple factors, varied on different levels, providing a robust way to identify their relationships 

with each other and with dependent variables of interest.  

3.3.1 The ANOVA table 

The fundamental ANOVA identity is made of two contributions that provide the total 

variability: 

SST = SS-./*-0/1- + SS/..2.                                                                                         (3.8) 

where SST is the total sum of squares, SStreatment is the sum of square of the difference between 

treatment averages and grand average and SSerror is the sum of squares of differences of 

observations within treatments from the treatment average (the random error). 

In mathematical form, Eq. 3.8 can be rewritten as: 

                       (3.9) 

 

with: 

• U34: single observation j under the i-th treatment 

• U5.V  :average of the observations under the i-th treatment 

• U..V  :grand average of all observations 

• H :total number of observations for treatment G 

• E: total number of treatments 

Linda Gaiani

Linda Gaiani
(3.8)
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The comparison of the mean squares of the above-mentioned sum of squares (obtained by 
dividing them for the respective degrees of freedom) through an F-test is used to determine if 
actual difference among treatment means is present. The output of the test is an ANOVA table 
(an example is given in Table 3.1)  showing how the sums of squares are distributed according 
to the source of variation, and hence the mean sum of squares (Brereton, 2018). For each factor 
examined, an F-test value and a corresponding p-value are reported. The latter can be used as 
an indication of whether or not the null hypothesis of the F-test (equality of treatment means) 
should be rejected. As an indication, a significance level of 0.05 is chosen, as values of p≤0.05 
indicate that the null hypothesis should be rejected, i.e. that a factor does have an effect on the 
response.  

 

 

 SS DF MS F-value P-value 
Treatment SStreatment a-1 MST=SST/(a-1) MST/MSE > "# ≤ 0.05 

Error SSerror N-a MSE=SSE/(N-a)   
Total SST N-1    

It is important to note that ANOVA provides qualitative information about the relationship 
between a factor and a variable of interest, determining only whether or not the latter is properly 
dependent on it. The quantitative way in which a factor influences the response must be further 
assessed by the use of response surfaces. 

3.4 Response surface design 

Response surface methodology (RSM) is a collection of statistical and mathematical techniques 
useful for developing, improving, and optimizing processes. It also has important applications 
in the design, development, and formulation of new products, as well as in the improvement of 
existing product designs. It exploits quantitative data from appropriate experimental designs to 
explore the space of the process or independent variables  developing an appropriate 
approximating relationship between independent variables and a response of interest, dependent 
on them. Data collection procedure is crucial for a robust statistical analysis and meaningful 
insights on the variable relationships within the experimental domain. A meticulous and 
systematic data acquisition, performed through planned experimental runs and precise 
collection of the corresponding responses, allows to capture accurately the interactions between 
process variables and response variables. The relationships between them are represented in a 
graphical way as response surfaces, which have three main purposes (Raymond and 
Montgomery, 2016; Özkal et al., 2005): 

Table 3.1.  Example of ANOVA table providing sum of squares (SS), mean 
squares (MS), degrees of freedom (DF) and F statistic values for a single 
factor evaluation. 
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• to determine how process variables affect the response. 

• to determine the inter-relationships among different process variables. 

• to describe the combined effect of all process variables on the response. 

The response function f, expressing the dependence of the response (W)	on the independent 

variables (x1 and x2 for example) considered, is usually approximated by using low-order 

polynomials, like first order (Eq. 3.10) or second order (Eq. 3.11) ones: 

W = X7 + X8Y8 + X9Y9 + X89Y8Y9                                                                                         (3.10) 

W = X7 + X8Y8 + X9Y9 + X88Y89 + X99Y99+X89Y8Y9                                                                           (3.11) 

where the final term of both equations describes the interaction between the test variables x1 

and x2. It must be noted that adding an interaction term introduces a curvature on the response 

surface (Fig. 3.5). When the curvature in the true response surfaces is strong, as it happens in 

most real cases, first order model is not appropriate to use, and the second order one is required. 

 

 

Second order models are very flexible and suitable for use when response optimization is 

required, as they approximate well the narrow region of the design space where curvature is 

present. Another useful graphical tool often used to present the results of response surface 

design is the contour plot, a two-dimensional view in which all points that have the same 

response are connected to produce contour lines of constant responses. The contour plot is 

closely related to the shape of the response surface because it is actually a graphical 

representation of it, holding constant the z-slices (i.e. contours) and drawing lines to connect 

(a) (b) 

Figure 3.5.  Response surface (a) for a first order model including only main 
effects and (b) for a first order model with interaction term (b) 
(https://online.stat.psu.edu/stat503/lesson/11). 
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the coordinates at which a chosen z-value occurs. An example of a contour plot related to the 

response surface found by RSM is shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

RSMs are constantly evolving and have a wide range of applications, capable of handling 

complex systems and providing the knowledge to optimize them. In fact, mapping a response 

surface over a particular region of interest not only allows the relationships between multiple 

factors and a response variable to be understood, but also allows changes in a response variable 

to be predicted in advance by adjusting some key factors. Furthermore, knowledge of this 

relationship allows the appropriate selection of operating conditions to meet specifications and 

requirements. 

Figure 3.6.  Contour plot of a response surface (https://jaeronline.com.-
Response-Surface-Methodology) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Chapter 4 
 

Results and discussion 
 
The compression settings used in a rotary press have a strong influence on the final tablet 
quality. For this reason multivariate statistical analysis is used to capture such correlations. 
Starting with a preliminary analysis that takes into account all the tablet characteristics 
collected, the focus is on the structure of the weight data in particular. It is also known that the 
effect of the feed frame speed affects the lubrication state of the powder (Ketterhagen, 2015), 
and a method for assessing the increase in the lubrication extent coefficient is proposed. Finally, 
the previous findings are related to the flow properties of the powders considered. 

4.1 Tablets properties exploratory analysis  
 
The first step is to understand how the final tablet properties are related to the main compression 
settings used in Dataset 1. The settings in the dataset are namely fill depth, feed frame speed 
and main compression force. To do this, a PCA model is built for each blend using an 
appropriate matrix that takes into account all replicates collected at each time point in each run.  
It is recalled from §2.3.1 that for blends 1 and 2 the dataset contains data from sixty tablets for 
run 2, sixty for run 3 and sixty for run 5, which include ten replicates per run time at 13 kN and  
ten replicates for each other main compression force applied. The total number of observations 
considered is 180, which will be the number of rows in the matrix. In contrast, for blend 3, the 
number of observations increases, up to 299, because additional replicates are made, which also 
vary the rotor speed. The diagnosis of the PCA models built is reported in Table 4.1, while the 
process variables and tablet properties whose relationship must be investigated are described in 
Tables 4.2 and 4.3. 
 
 

 Matrix dimension [NxV]  N° of PCs Explained variance 
Blend 1 180×11 3 98.0 % 

Blend 2 180×11 3 99.2 % 

Blend 3 299×12 4 98.7 % 

 

 

Table 4.1.  Diagnostics of the PCA models built on Dataset 1. 
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The score plots, providing an indication of the behavior similarities among the observations 
considered, suggest that feed frame speed and compaction force applied are the main reasons 
of variability between the collected tablet properties. In fact, it can be seen from Fig. 4.1 that 
for all blends four clusters of observations can be distinguished at each level of feed frame 
speed, corresponding to different compaction forces used to run the tableting process. It can be 
also noted that for all blends the runs performed at 15 and 30 rpm feed frame speed and 13 and 
16 kN compression force are always found together in the positive part of the first PC, meaning 
that their behavior is similar and described by the correspondent loading plot. On the other 
hand,  PC 2 describes mainly the differences between clusters at 30 and 45 rpm for blend 2 and 
blend 3, while for blend 1 it is more representative of the differences between clusters at 15 and 
45 rpm. One other notable thing is that while all clusters of observations at 45 rpm are described 

N. Variable 
1 Fill depth [mm] 

2 Feed frame speed [rpm] 

3 Main compression force [kN] 

4 Weight [mg] 

5 Thickness [mm] 

6 Hardness [kp] 

7 Tensile strength [MPa] 

8 Width [mm] 

9 Volume [mm3] 

10 Density [g/cm3] 

11 Solid fraction [-] 

N. Variable 
1 Fill depth [mm] 

2 Rotor speed [rpm] 

3 Feed frame speed [rpm] 

4 Main compression force [kN] 

5 Weight [mg] 

6 Thickness [mm] 

7 Hardness [kp] 

8 Tensile strength [MPa] 

9 Width [mm] 

10 Volume [mm3] 

11 Density [g/cm3] 

12 Solid fraction [-] 

Table 4.3. Compression settings and tablet properties from Dataset 1 used 
as variables to perform PCA for blend 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Compression settings and tablet properties from Dataset 1 used 
as variables to perform PCA for blend 1 and 2. 
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by the positive part of PC 2 for blend 2 and 3, for blend 1 the cluster at 13 kN is the only one 
in the positive part of PC 2, behaving in an opposite way with respect to the others at 45 rpm. 
In addition to this, the above mentioned cluster is also more dispersed with respect to the other 
blend clusters at 45 rpm, meaning that in blend 1 at highest feed frame speed there is the highest 
replicates variability. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Observing the loading plots on the first two PCs, explaining most of the variability, common 
findings among blends are derived (Table 4.2 for variables identification). Starting from blend 
1 and 2, there seem to be two main correlations between the variables studied: 

(a) (b) 

(c) 

Figure 4.1. Score plot built on Dataset 1 including data of all compaction 
forces applied for (a) blend 1, (b) blend 2 and (c) blend 3. 
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• force-volume based relationship: fill depth, weight, thickness, width and volume change 
together and in an opposite way with respect to main compression force, hardness, 
tensile strength and solid fraction (Fig. 4.2(a) and 4.3(a)). 

• weight-fill depth relationship: weight is increased by fill depth, also when feed frame 
speed is lower (Fig. 4.2(b) and Fig.4.3(b)). 

 

 
 

 
 

 
 
For blend 3, an additional compression setting has to be considered, as for this blend the rotor 
speed is also varied to find its effect on the tablet properties (see Table 4.3 for variable 
identification).  
The main relationships (force-volume based and weight-fill depth ones) found for blends 1 and 
2 are valid also for blend 3 (Fig. 4.4). The additional information provided here is that rotor 
speed has not an actual influence on general correlations found between variables neither in PC 
1 nor PC 2 loading plots. It can be concluded that, for the 90% variability expressed by the 
model for blend 1 and 3 and 80% for blend 2, variables of the two above-mentioned groups 

(a) 

(a) (b) 

(b) 

Figure 4.3. Loading plot on (a) PC 1  and (b) PC 2 of the PCA model built 
on Dataset 1 for blend 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Loading plot on (a) PC 1 and (b) PC 2 of the PCA model built 
on Dataset 1 for blend 1. 
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vary together, for that greater fill cam corresponds to greater weight, thickness, width and 
volume, while greater compression force results in greater hardness and tensile strength. In 
addition to this, the 50% variability of data suggests that when weight, thickness, width and 
volume are greater, hardness and tensile strength are smaller. 

 

 
 
 
 
 
 
 
 
 

 
 
Furthermore, rotor speed doesn’t seem to affect significantly tablets properties relationships, at 
least for blend 3. These are preliminary considerations on tablets properties relationships 
between each other and with compression settings, valid in general for all blends. It is now 
appropriate to go deeper into the topic by considering each blend behavior separately. It should 
also be remembered that the data on tablets were collected at different times for each set of 
compression settings; therefore, the subsequent models to be built will also take into account 
the dynamic time dependence of the data, in order to evaluate whether the time evolution is 
significant in determining the tablet properties. 
 
4.2 Time dependence of tablet properties 
 
Tablets properties are collected for each run at three different time instants (every 0, 5 and 10 
minutes), assuming for each of them steady state conditions. 
The dynamic dependency of tablet properties will be assessed to understand if there are 
consistent changes in them as time progresses. 
 
4.2.1 Weight and compression force trend in time 

The speed of the feed frame plays an important role in determining the weight during the 
compaction process, as it is responsible for the uniform distribution of the powder in the die 
cavities. A first assessment of the effect of feed frame speed on mean weight and compression 
force trend can be made by comparing two runs, 2 and 5, in which all compression settings are 

(a) (b) 

Figure 4.4. Loading plot on (a) PC 1 and (b) PC 2 of the PCA model built 
on Dataset 1 for blend 3. 
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identical except for the feed frame speed. It must be specified that weight appearing in the 
following plots is a mean weight calculated above all weight data available for each time instant 
in Dataset 1. 
 
4.2.1.1 Blend 1 

Even though a greater weight should be achieved with a higher feed frame speed (Mendez et 

al.(2010)), it can be seen from Figure 4.5 that at t=0 the weight is smaller than expected at 45 

rpm, while after 5 min it increases and remains approximately constant until the end. At the 

same time, the main compression force increases after time 0 and then remains constant. This 

increase may be due to the inability of the machine to reach a steady state and therefore the 

steady state compression force, and this may be due to flowability problems of the powder, as 

will be seen in section §4.5.   

 
 

 

4.2.1.2 Blend 2 

 

(a) (b) 

(a) (b) 

Figure 4.6. (a) Weight and (b) compression force profiles over time in Dataset 
1 at feed frame speed of 15 rpm (run 2) and 45 rpm (run 5) for blend 2. 

 

 

 

Figure 4.5. (a) Weight and (b) compression force profiles over time in Dataset 
1 at feed frame speed of 15 rpm (run 2) and 45 rpm (run 5) for blend 1. 
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For this compound, the weight is greater at the higher feed frame speed from the beginning of 
the run and remains approximately constant throughout (Fig. 4.6(a)). The compression force 
also remains constant (Fig.4.6(b)), confirming that blend 2 has good flowability even at the 
higher feed frame speed considered, as confirmed in §4.5. 
 

4.2.1.3 Blend 3 

Run 2 and 2A are performed with the same compression settings except for rotor speed (49  

 
 

and 41 rpm respectively), an additional setting varied in this blend to evaluate its impact on 
tablets properties, too. It can be seen that weight is smaller at higher rotor speed maintaining a 
constant feed frame speed (Fig. 4.7(a)).   
The compression force is constant in time (Fig. 4.7(b)), meaning that for this blend, as for blend 
2, flowability is good for all settings conditions considered and is not varying as consequence 
of feed frame speed. 
By a first preliminary analysis on these time profiles, it can be concluded that blend 1 is the 
only one that exhibits an abnormal behavior, even if only at high feed frame speed. 
 

4.2.2 Data dynamic analysis 

To assess the dynamic time dependence of the data, a multivariate analysis technique, 
specifically PCA, is used to assess whether correlations between compression settings and 
tablet properties change over time. This is only done for the data collected at 13 kN compression 
force, as this is the only data for which the time evolution was taken into account in the data 
collection procedure for Dataset 1.  
For the purpose of this study, it is necessary to construct an appropriate matrix. First of all, the 
original matrix dimension is reduced according to a run wise unfolding strategy, as explained 

(b) (a) 

Figure 4.7. (a) Weight and (b) compression force profiles over time in Dataset 
1 at feed frame speed of 15 rpm (run 2) and 45 rpm (run 5) for blend 3. 
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in §3.2. It is wanted to assess the dynamic dependence of data, but it must be taken into account 
that there is not a real relationship between tablet replicates produced at time 0 with the ones 
produced at time 5 or 10. For this reason, fictitious run replicates are created combining each 
original replicate row at t=0 with all the rows of the other groups (t=5 and t=10) for runs 2, 3 
and 5, considerably increasing the matrix dimension with respect to the one in §4.1 for PCA 
modeling. An example of row combinations for a single run (run 2 in this case) is shown in 
Figure 4.8. With ten replicates available at each time point, a matrix of 1000 rows (10×10×10) 
is obtained for each run by combining them all. Considering that there are three runs available 
for each blend, a matrix of dimension 3000×36 is obtained for blends 1 and 2 and a matrix of 
5000×36 is obtained for blend 3, for which additional data are available because a change in 
rotor speed was also taken into account in the data collection phase (from 41 to 49 rpm). 

 
 

 
 
 
 
The columns of the matrix, alias the variables included in the study (V in Fig. 4.8) are the 
following (Table 4.4): 
 
 
 
 
 
 
 
 
 
 
 
 

N. Variable 
1 Feed frame speed [rpm] 

2 Main compression force [kN] 

3 Rotor speed [rpm] 

4 Fill depth [mm] 

5 Weight [mg] 

6 Thickness [mm] 

7 Hardness [kp] 

8 Tensile strength [MPa] 

9 Width [mm] 

10 Volume [mm3] 

11 Density [g/cm3] 

12 Solid fraction [-] 

(a) (b) 

N 

Table 4.4. Compression settings and tablets properties included in the PCA 
model built on Dataset 1 at 13 kN for dynamic data analysis. 

 

 

 

 

 

Figure 4.8. (a) Fictitious combination procedure of run replicates for PCA 
model construction and (b) example of matrix configuration after RWU and 
replicates combination for a single run. 
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In Table 4.5 model structure and correspondent PCs selected with related explained variance 
are reported. Successively, only data related to PC 1 and PC 2 will be considered since they are 
the ones explaining most of the variability. 
 
 
 

 Matrix dimension [NxV]  N° of PCs  Explained variance 
Blend 1 3000 × 36 3 87.3 % 

Blend 2 3000 × 36 3 85.7 % 

Blend 3 5000 × 36 4 86.8 % 

 
The similarity of the behavior between the tablet replicates collected for runs 2, 3 and 5 for each 
blend is first assessed by means of the score plot (Fig. 4.9). Indeed, it is known that observations 
that are close to each other in this plot are similar to each other. 
 

  

  
 

 
 
 
 
 
 
 
 

(a) (b) 

(c) 

 

Figure 4.9. Score plot reporting similarities between tablet replicates in (a) 
blend 1, (b) blend 2 and (c) blend 3 for the PCA model built on Dataset 1 with 
RWU and replicates combination strategy. 

 

 

Table 4.5. Diagnostics of the PCA models built on the Dataset 1 at 13 kN for 
dynamic data analysis. 
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In each blend three clusters of observations with similar behavior can be identified (Fig. 4.9), 
noting that the main cause of variability between them is given by the feed frame speed. It can 
also be seen that in blend 2 the clusters are more compact, whereas in blend 1 and 3 they are 
characterized by a greater spread across the score space, which means that the variability within 
runs is greater at a fixed feed frame speed. This translates in reduction of properties uniformity 
between tablets produced at the same compression settings, making it more difficult to achieve 
adequate CQA in all tablets. It is therefore useful to investigate the reasons for such an increase 
in variability between replicates at a constant feed frame speed, such as 45 rpm in blend 1, 
where it is considerable. Observing more in detail the score plot for blend 3 at 15 and 30 rpm 
(Fig. 4.10), obtained with the same model used for Fig. 4.9, it can be noted that higher rotor 
speed increases runs variability at the same feed frame speed conditions. 
 

   
 

 
 
It can be concluded that the speed itself, of both the feed frame and the rotor, has an effect on 
tablet quality: greater speed leads to greater variability. In order to better understand what 
happens in blends at fixed feed frame speed, which is the main source of variability, the matrices 
previously used are re-organized so that each contains tablet replicates data not for the 
individual blend but instead for the individual feed frame speed. An example of the new matrix 
structure is shown in Table 4.6.  This configuration gives a 4000×36 matrix for FFspeed=15 
rpm and 30 rpm, whereas a 3000×36 matrix dimension is obtained for FFs=45 rpm as only 
rotor speed at 49 rpm is used for blend 3 at 45 rpm. In Table 4.7 is it possible to observe the 
diagnostic of the PCA models built with the new configuration. 
 
 

(a) (b) 

Figure 4.10. Focus on  the score plot for blend 3 compressed at (a) 15rpm and 
(b) 30 rpm feed frame speed and different rotor speed obtained from PCA 
model built on Dataset 1 with RWU and replicates combination strategy. 
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 Matrix dimension [NxV]  PCs selected Explained variance 
FFspeed=15rpm 4000 × 36 2 81.7 % 

FFspeed=30rpm 4000 × 36 2 77.8 % 

FFspeed=45rpm 3000 × 36 2 86.4 % 

 
The differences in blends behavior at fixed feed frame speed can be evaluated by using the 
score plot in Fig. 4.11.  It can be seen that blend 1 and 2 behave very similarly at lower feed 
frame speed, while they adopt a different behavior for the highest one. At the same time, blend 
3 behaves in an opposite way with respect to the other blends for all the feed frame speeds 
considered. 

(a) (b) 

 

Table 4.7. Diagnostic of the PCA models built on Dataset 1 including in each 
matrix all data of all blends at fixed feed frame speed. 

 

Table 4.6. Matrix configuration for PCA application using RWU and replicates 
combination strategy on Dataset 1 at fixed feed frame speed, including 
observations for all blends. 

(a) (b) 
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The main cause of variability is expressed by the first PC, indicating that blend 1 and 2 are 
similar while blend 3 has an opposite trend. For blend 3, two different rotor speed are tested: it 
results that, for both 15 and 30 rpm, rotor speed affects blend 3 variability increasing it (while 
this is not known for the other blends). It can be noted also that blend 1 variability is large at 
high FFspeed, and the reasons for that are described mainly by the second PC of the model.  
The loading plots are thus analyzed to capture the relationships between the variables of 
interest. 
 

  
     

 

(c) 

 
Figure 4.11. Score plot resulting from PCA application on the matrix described 
in Table 4.6 reporting tablet replicates similarities at (a) 15 rpm, (b) 30 rpm and 
(c) 45 rpm. 

 

Figure 4.12. Loading plot on the first PC for 15 rpm feed frame speed from PCA 
model built on Dataset 1 using RWU and replicates combination strategy at 
fixed feed frame speed. 
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The solid line refers to compression settings, while the dashed one refers to measured and 
calculated variables. For both 15 and 30 rpm, two groups of variables that vary together can be 
identified (Fig. 4.12 and Fig. 4.13): compression force, hardness and tensile strength on one 
side, and weight, thickness, width and volume on the other. Considering that blend 1 and 2 are 
in the positive part of the score plot, while blend 3 in the negative one, it can be also concluded 
that blend 1 and 2 have greater weight, thickness, width and volume and lower hardness and 
tensile strength with respect to blend 3. 
 

  
 
 

Figure 4.13. Loading plot on the first PC for 30 rpm feed frame speed from PCA 
model built on Dataset 1 using RWU and replicates combination strategy at 
fixed feed frame speed. 

 

 

Figure 4.14. Loading plot on the first PC for 45 rpm feed frame speed from PCA 
model built on Dataset 1 using RWU and replicates combination strategy at 
fixed feed frame speed. 
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Regarding the 45rpm case, the loading plot for PC 2 is also considered because it explains 19% 
variability, more than doubled with respect to the previous models. The first loading plot (Fig. 
4.14) confirms that two groups of variables are still recognizable at 45 rpm, while the second 
one (Fig. 4.15) highlights that an increase in compression force goes together with an increase 
in solid fraction especially at the beginning of the run. Even if it would be expected that 
compression force remains constant during the run, the above analysis demonstrates that it is 
changing during time, especially in some runs (like run 5 for blend 1).Remembering that PC 2 
is describing the high amount of variability in blend 1 at 45 rpm, it is possible to say that the 
relationship between compression force and solid fraction is causing such an increase in run 
variability. It must be generally noted that variables are not changing their relationship in time, 
so no dynamic time dependence between data seems not to be present. The conclusion that can 
be derived from all the loading plots studied is that time evolution is not significant with respect 
to the relative relationship between the variables. 
 
4.2.3 Additional considerations on tablet replicates variability 

The study of the loading plots obtained  by PCA modeling with the initial matrix configuration, 
whose diagnostic is described in Table 4.5, considering each blend separately, can be useful to 
derive some additional information about the relationships between variables in each single 
blend. In particular, the loading plots on the second PC are reported, since they describe the 
variability within clusters for a fixed feed frame speed. It can be seen from Fig. 4.16 that there 
are stable and common relationships between some variables for all blends, most importantly 
the increase in hardness and tensile strength with a decrease of feed frame and rotor speed, even 

Figure 4.15. Loading plot on the second PC for 45 rpm feed frame speed from 
PCA model built on Dataset 1 using RWU and replicates combination strategy 
at fixed feed frame speed. 
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if it must be remembered that this refers to only 20% of the variability. However, common 
relationships between blends are not significant in explaining why the shape of one blend cluster 
differs from that of another blend at the same feed frame speed. The only relationship that is 
changing for different blends is the compression force - solid fraction one,  even if the loading 
plots are not emphasizing in all blends the importance of this relation with respect to others. 
Given this, it can be said that the variability within clusters can be attributed to the relationship 
that exists between compression force and solid fraction with respect to the other variables. The 
loading plots of blends 1 and 2 provide significant information about the relationships between 
these two variables: in blend 1, the main compression force does not seem to have adequate 
control over the solid fraction, whereas in blend 2 they vary strictly together. The relationship 
between compression settings and powder characteristics will be further discussed (§4.3.4 and 
§4.5), but it is anticipated that the sudden variations of solid fraction in the different blends 
could be related to the different physical properties of the blends themselves, concluding that a 
more flowable powder, such as blend 2, allows for an easier control of the tablets solid fraction. 
 

  

 
  

(a) 

(b) 
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4.3 Weight data structure 
 
Die filling is known to be a critical step in the tableting process and influences several quality 

characteristics of the final product. It is responsible for the weight uniformity of the tablets, 

which is a critical quality attribute to be monitored to ensure an appropriate drug dosage and 

that the same amount of API is contained in each tablet produced. 

The following study focuses on understanding which are the significant factors determining 

tablet weight variability within the design space studied. 

 

4.3.1 Mean weight and weight variability definition 
The mass and content uniformity of tablets depend on both process variables and powder 

properties, and they must be guaranteed after the compression process. In the following study, 

both of these tablet properties are going to be analyzed. More specifically, mean weight is used 

to describe the average weight achieved for particular compression settings (and therefore for 

a particular run), while weight variability, expressed as weight relative standard deviation, 

describes the variability in weight characteristics between tablets obtained at the same 

compression settings within the specific run. In fact, it is necessary to ensure that the same 

quantity of powder, and in particular of API, is present in the tablets produced in a run, so that 

the CQA of the tablets are uniform. In each run, mean weight and weight variability are obtained 

for each time instant as follows: 

(c) 

Figure 4.16. Loading plot on the second PC obtained by PCA modeling of 
Dataset 1 using RWU and replicates combination strategy for (a) blend 1, (b) 
blend 2 and (c) blend 3  
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where N=total (60) tablet replicates at a specific time instant and wi= tablet weight [mg] in the 

single observation, while the relative standard deviation is calculated as: 
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× 100                                                                        (4.2) 

 

4.3.2 Runs time profile of mean weight and weight variability 

It has already been shown that mean weight increases with feed frame speed, fill depth and fill 
cam, while it tends to decrease for higher overfill and rotor speed. In addition, from the mean 
weight and compaction force profiles over time for the three blends in Dataset 1 described in 
§4.2.1, it is possible to deduce that weight variations are also related to those of the compaction 
force. 

 
 

 

RUN 3 

RUN 10 

Figure 4.17. Mean weight (mg), weight variability in terms of RSD (%) and 
compression force (kN) time profiles for runs of blend 1 taken from Dataset 2. 
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It is known from the work of Mendez et al. (2010) that a higher feed frame speed should reduce 
the tablet weight variability and therefore the variability between tablets obtained at the same 
compression setting, but this does not correspond to reality in some cases, as can be seen from 
the time profiles obtained by Dataset 2 and reported in Fig. 4.17. For example, in blend 1 (Fig. 
4.17), high weight variability is recorded at the highest feed frame speed (run 5). Furthermore, 
run 10 setting conditions, with the highest fill cam and fill depth, in blend 1 make more difficult 
to achieve weight uniformity. Run 9 and 12 are added to the analysis to compare their behavior 
with run 10, and it can be seen that in both of them weight is uniform along time and the related 
variability is low. It can be concluded that the increase in variability recorded for run 10 is run-
specific, and it does not depend on the increase of target weight imposed. 
Blend 2 has a constant mean weight in time and low weight variability for all compression 
settings considered; additionally, runs at lower fill depth give lower weight variability, 
independently of the feed frame speed value, as can be seen from Fig. 4.18(a) and Fig. 4.18(b). 
In this blend the increase in feed frame speed is beneficial in reducing weight variability. 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.18. Mean weight (mg), weight variability in terms of RSD (%) and 
compression force (kN) time profiles for (a) runs 1/4, (b) runs 2/5, (c) run 3,  (d) 
run 8 and (e)run 9 of blend 3 taken from Dataset 2. 

 

 

 

 

(a) (b) 

(c) (d) 

(e) 
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In blend 3, again, increasing the feed frame speed causes a negligible increase in weight 
variability (run 2-5 and run 1A-4 profiles in Fig. 4.19).  An additional information given by 
these runs is that higher rotor speed affects negatively weight variability, as can be seen by 
comparing run 1-1A, 2-2A and 3-3A. Moreover, it can be noted (Fig. 4.19(c)) that runs with 
lower fill depth, as runs 1 and 4, are characterized by slightly lower weight variability with 
respect to runs at higher fill depth, as runs 2 and 5. It is evident that process parameters have an 
influence on the weight uniformity of tablets, more or less relevant depending on the blend 
considered, and that such relationships need to be further investigated. 
 
4.3.3 Composition and settings affecting weight properties 

It has already been noted how the effect of some compression settings on weight can vary for 
different blends. At this point, it seems reasonable to investigate whether there is a relationship 
between the weight properties and the blend composition itself, in order to understand which 
powder ingredients are mostly correlated to mean weight and variability. Although it is known 
that general assumptions are critical, this type of study is useful to better investigate the effect 
of composition on tablet properties for the specific blends studied. With this aim, a PCA model 
is built by using Dataset 2, calculating a mean weight and weight relative standard deviation 
with the 60 observations collected at each time instant. A unique matrix of dimensions 62×10 
is constructed, containing all the blends within it, but still distinguishable one from each other 
for the variations in the composition variables included in the columns (Table 4.10). Each row 
is representative of the mean weight and weight variability for a single time instant of a single 
run; considering all time instants of all runs reported in Dataset 2, 62 rows are obtained. A PCA 

Figure 4.19. Mean weight (mg), weight variability in terms of RSD (%) and 
compression force (kN) time profiles for (a) runs 1/1A/4, (b) runs 2/2A/5, (d) 
runs 3/3A with (d) comparison of weight standard deviation profiles of runs 
1/1A/4 and 2/2A/5 of blend 3 taken from Dataset 2. 
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(b) 
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model is constructed with 3 PCs explaining 79.4% of the variability. The variables included are 
the ones reported in Table 4.8, comprehending compression settings, composition and weight 
properties. 

 
 

     N.     Variable 

1 Mean weight [mg] 
2 Weight variability (RSD) % 
3 

4 

5 

6 

7 

8 

9 

10 

Fill cam [mm] 

Fill depth [mm] 

Overfill [mm] 

Feed frame speed [rpm] 

Rotor speed [rpm] 

X1 (Lactose monohydrate) 

X2 (Avicel PH_102) 

X3 (Lactose anhydrous) 

 

 

 
 
 
 
Each point appearing in the score plot (Fig. 4.20) represents a synthesis of weight and weight 
variability at a single time instant for a run of each blend. It can be seen that blend 3 and blend 
2 form a cluster with respect to PC 1 and behave in an opposite way accordingly to the first PC, 
while blend 1 points are more randomly distributed. No cluster can be clearly distinguished for  

Table 4.8. Variable list used to build the PCA model to evaluate weight 
properties dependence on blend composition.  

 

 

 

 

 

 

 

 

 

 

Figure 4.20. Score plot of (a) PC1 vs PC2 and (b) PC1 vs PC3 built on PCA 
model based on Dataset 2 in which a single point represents an average of 
weight and weight RSD for a single time instant in a single run of the blend.  
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either PC 2 or PC 3, meaning that the observations are not properly blend dependent. 

 

 

 
 

 
 
 
 
 
According to the first PC, mean weight increases with fill cam and fill depth (as already known), 
but also with lactose anhydrous, while it decreases with higher Avicel and lactose monohydrate 
presence (Fig. 4.21(a)). This is confirmed by the density features of these powders, as can be 
seen in §4.5.2. The second PC, explaining 20% variability (Fig. 4.21(b)), suggests that there is 
a higher weight variability for a lower overfill, lower lactose anhydrous and higher lactose 
monohydrate content. Additionally, weight variability increases also with lactose anhydrous for 
higher feed frame speed conditions (Fig. 4.21(c)). Considering that lactose anhydrous has the 
largest impact on weight and that it is the component with highest presence in blend 2 
(X3=0.683), it can be concluded that blend 2 has the highest mean weight, followed by blend 1 
and finally by blend 3 (adding information to what found in §4.2.2). Moreover, for the majority 
of the explained variability, weight variability does not increase with lactose anhydrous, while 
among all components the one most affecting it is lactose monohydrate. Blend 2 (X1=0.05) is 
the blend less affected by weight variability. The relationship between composition and weight 
variability is not yet clearly defined, so further studies are needed to assess the effect of powder 
properties impact on flowability and weight variability. It can be anticipated that several 
flowability tests were carried out on free powder and feed frame-subjected samples of all three 

(a) (b) 

(c) 

Figure 4.21. Loading plot on (a) PC 1, (b) PC 2 and (c) PC 3 built using a PCA 
model based on weight data to find correlations between composition, 
compression settings and weight properties. 
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blends to assess their flowability and how their behavior changes in the presence of the feed 
frame (see §4.5). From the flow function test, it can be concluded that all the blends are free 
flowing, but the Carr’s (or compressibility) index can give some additional information.  
 
 

 

 

 

 
 
 

Compressibility index Index properties 

£10 Excellent 

11-15 Good 

16-20 Fair 

21-25 Passable 

26-31 Poor 

32-37 Very poor 

>38 Extremely poor 

 

Blend 2 is the one whose flowability is mostly improved by the feed frame presence (see Table 
4.9 and 4.10), resulting to be the most flowable of the blends. A general conclusion that can be 
drawn is that the blend which is less affected by weight variability is also the most flowable 
one, indicating that a relationship between powder properties and tablets quality exists and can 
be exploited to obtain tablets with increased properties uniformity. In fact, blend 2 is not 
subjected to compaction force variations due to weight deviations. The most flowable blend is 
consequently not damaged by the presence of feed frame speed, on the contrary it is enhanced 
by it, and for any compaction force used weight properties are not affected.  
 

4.3.4 Dynamic dependence of weight data on compression settings 

Dataset 2, which provides sixty weight data for each time point considered in each run, is used 
to find more rigorously which are the compression settings that most influence the mean weight 
and the replicates weight variability inside a run. It is recalled that mean weight is the weight, 
averaged over time, achieved for specific setting conditions, while replicates weight variability 

 Compressibility index (%) 
 Lubricated sample Feed frame sample 

Blend 1 21 17 

Blend 2 19 9 

Blend 3 19 16 

Table 4.9. Carr’s index for free powder samples and feed frame subjected 
samples for all three blends under study. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.10. Carr’s index table for association of the index value with flowability 
properties of the powders (Shipar et al. (2014)). 
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inside a run is intended to be the replicability of the experiment, analyzed to evaluate whether 
for the same compression settings the same weight is achieved in all tablets. 
4.3.4.1 PLS model construction 
 
PLS analysis is employed, building matrices with a run wise unfolding structure combining 
weight data at different time instants according to the strategy explained in §4.2.2. In this case, 
although there are 60 weights available for each time point, using all of them for the 
combination would result in a matrix of extremely large dimension and difficult to handle. To 
avoid this, 20 of those 60 weight data at t=0 are randomly selected and then combined with 
another 20 of 60 weight data at t=5 and with 20 weight data of t=10, obtaining a total of 8000 
rows for each run. Note that up to this point there would be three weight data points for each 
tablet replicate, one per time point. Since for the PLS model construction it is required to have 
a single response data for each row, a mean weight is calculated among the three weights 
available for the single row, obtaining a response vector (Y1) whose dimension is 8000× 1. This 
means that we are renouncing to identify the variability of the response in time, but anyway we 
still try to correlate the average response over time with the variables point values at different 
times. For weight variability within a run, the combination procedure differs in that it first 
considers a weight RSD calculated on all 60 original weight data for the specific time point. 
Then, as for the weight, three weight RSDs would be obtained for each row and an average of 
these values is performed to obtain a response vector (Y2) whose dimension is again 8000×1. 
The matrix X includes the compression settings varied in time, namely fill depth, feed frame 
speed, rotor speed, fill cam, overfill and compaction force. The dimensions of the matrices are 
shown in Table 4.13, from which it is possible to see also the mean weight models structure, in 
terms of latent variables chosen and corresponding explained variability. Given that the 
combination strategy provides 8000 rows for each run, the resulting matrices for PLS model 
will have a number of rows corresponding to the runs included, namely the ones of Dataset 2 
(as shown in Table 4.11). Note that all runs of Dataset 2 are used for each blend, even if meant 
to achieve different target weights. This is done in order not to lose information about the actual 
effect of rotor speed on weight, since runs with same target weight are all at the same rotor 
speed. The analysis will also focus on the different behavior between runs to achieve the 250mg 
and 800mg weight targets, to understand if compression settings affect the mean weight and 
standard deviation differently for different weight targets. For a preliminary analysis of 
similarities among observations with respect to their weight and weight variability, a PCA 
analysis is performed adding to the X matrix built for the PLS model (as described in §4.3.4.1) 
the three weight and weight variability columns that resulted from the combination strategy for 
each time instant, without averaging their values as it was required by PLS. 
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 Vector Y 
(Mean weight) 

Matrix X N° of LVs Explained 
variance of X 

Explained 
variance of Y 

Blend 1  40000 × 1 40000 × 18 2 91.0%           99.7% 

Blend 2 56000 × 1 56000 × 18 2 81.5% 99.3% 

Blend 3 56000 × 1 64000 × 18 2 60.6% 97.8% 

 
A unique matrix is obtained, including the information about the process and response variables, 
whose dimension is respectively 40000 × 24 , 56000 × 24 and 64000 × 24	for blend 1,  
blend 2 and blend 3. For blend 1 and 2, two LVs  are selected explaining 91.1% for blend 1 and 
84.3% for blend 2. For blend 3, three LVs are chosen and 85.8% variability is expressed. 
It is possible to see from Fig.4.22 and Fig.4.23 that the variability between different runs is 
much more relevant than the one within runs. This indicates that the replicability of the 
experiment is generally good for all blends. In addition, it can be seen that PC 1 reflects the 
change in tooling adopted during data collection for both blend 1 and blend 2. Regarding blend 
3, where significant variations in rotor speed have been applied, weight variability is seen to 
increase at higher rotor speed for the same feed frame speed used, as suggested by the 
comparison of the clusters shape of runs 1-1A, 2-2A and 3-3A in Fig.4.21. The highest 
variability is recorded for run 3, which has both high feed frame and rotor speed. It is noticeable 
also that fill depth seems to have a role in runs variability, since for almost half of the 
observations (45.68%) runs at lower fill depth behave differently from the others. This confirms 
what obtained previously in §4.3.2. 
 

   

 

 

(a) (b) 

Table 4.11. PLS model construction for the three blends including number of 
latent variables selected, explained variance of the process variables matrix and 
of mean weight response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Score plot from a preliminary PCA analysis on X matrix built as 
the PLS one described in §4.3.5.1 including weight and weight RSD columns in 
the process variables matrix to assess the behavior similarities among 
observations for (a) blend 1 and (b) blend 2. 
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The following observations can be made referring to the PLS weights plot obtained for mean 
weight: 

• for blend 1, mean weight is mainly increased by fill cam and fill depth, as well as rotor 
speed decreases it (Fig. 4.24(a)); also feed frame speed and overfill can respectively 
increase and decrease it (Fig.4.24(b)) but in a less relevant way, since their relationship 
with mean weight is described by the second PC, explaining a lower amount of 
variability (24.3%) with respect to the first one (66.7%). 

• for blend 2, rotor speed as an important role on the decrease of mean weight, while fill 
cam, fill depth and compaction force provide an increase of it (Fig.4.24(c)).  

• for blend 3, fill depth is dominant in increasing mean weight, while overfill decreases it 
with the same power (Fig.4.24(d)). 

(a) (b) 

Figure 4.23. (a) and (b) Score plot from a preliminary PCA analysis on X matrix 
built as the PLS one described in §4.3.5.1  including weight and weight RSD 
columns in the process variables matrix to assess the behavior similarities 
among observations for blend 3. 
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For all blends, it is confirmed that time evolution is not significant in determining the 
relationship between compression settings and response variables. 
In this way it is possible to know on which compression settings is more convenient to operate 
to achieve the target weight for each specific blend. It must be said that fill cam is a setting 
difficult to modify; for this reason, it is more practical to operate on the other mentioned 
compression settings. 
Focusing now on the variability within a single run, a different model is used to study the 
replicability of tablets production. The process variable matrix (X matrix) is the same as the 
previous one used for PLS analysis, with the response variable which is now the weight 
variability of replicates in a single run, expressed in terms of relative standard deviation 
averaged on the mean weight along all-time instants for the single run. In Table 4.12 model 
structure and diagnostic are reported. 
 

(c) 

(d) 
Figure 4.24. Weight plot for PLS analysis applied to Dataset 2 of (a) the first 
LV of blend 1, (b) the second LV of blend 1, (c) the first LV of blend 2 (98.2% 
variability of mean weight) and (d) the first LV of blend 3 (92.4% variability of 
mean weight). 
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 Vector Y 

[Weight variability] 

Matrix X N° of LVs Explained 
variance of X 

Explained 
variance of Y 

Blend 1  40000 × 1 40000 × 18 3 99.5%           91.5% 

Blend 2 56000 × 1 56000 × 18 3 91.7% 63.3% 

Blend 3 64000 × 1 64000 × 18 3 76.8% 72.3% 

 

The weight plots obtained by the PLS analysis are here shown, taking into account that only the 

most meaningful ones, explaining the majority of the variability for X and Y, are shown. 

 

  
 

 

 

  
 

Table 4.12. PLS model construction for the three blends including number of 
latent variables selected, explained variance of the process variables matrix and 
of weight variability response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) (b) 

Figure 4.25. Weight plot for PLS analysis applied to Dataset 2 of (a) the first 
LV of blend 1 (explaining 76.9% variability of weight RSD) , (b) the second LV 
of blend 1 (explaining 6.5% variability of weight RSD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 4.26. Weight plot for PLS analysis applied to Dataset 2 of (a) the first 
LV of blend 2 (explaining 19.3% variability of weight RSD) , (b) the second LV 
of blend 1 (explaining 39.6% variability of weight RSD). 
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In this case, it can be derived by the weight plots that: 

• in blend 1, an increase in feed frame speed cause an increase in weight variability, as 

explained by both the first and the second PCs of the PLS model (Fig.4.25(a) and (b)). 

So, working at 30 rpm instead of 45 rpm can be beneficial for replicability. Moreover, 

a decrease in overfill can lead to lower weight variability (Fig. 4.25(a)). 

• In blend 2, an increase in rotor speed leads to an increase in weight variability (Fig. 

4.26), while overfill decreases it. Since acting on overfill is difficult, modulating the 

rotor speed can be the main way to control also weight variability. Furthermore, for this 

particular blend decreasing feed frame speed is a way of increasing weight uniformity. 

• In blend 3, greater weight variability results from lower compaction force (Fig.4.27). 

An increase in rotor speed (Fig.4.27(a)) cause an increase in weight variability, as well 

as greater overfill (Fig.4.27(b))., even if with less relevant contribution. For this blend, 

feed frame speed does not seem to have an impact on weight variability of the tablet 

replicates. 

 

The main findings of this analysis are presented in Table 4.13, together with the most important 

results of the proposed study, with the aim of representing in a concise and effective way what 

was found to be characteristic of each blend: 

 

 

Figure 4.27. Weight plot for PLS analysis applied to Dataset 2 of (a) the first 
LV of blend 3 (explaining 39.5% variability of weight RSD) , (b) the second LV 
of blend 1 (explaining 22.7% variability of weight RSD). 
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 Blend 1 Blend 2 Blend 3 

Weight-thickness-
width-volume 

highly related, for given compression settings they increase or decrease together 

(values) greater than blend 3 greater than blend 3 smaller than blends 1-2 

Compression force-
hardness- TS  

highly related, for greater compression force also hardness and TS increase 

(values) smaller than blend 3 smaller than blend 3 greater than blends 1-2 

Fill cam and fill depth increase in weight 

 increase in replicates 

variability within a run 

(including weight RSD 

at 800mg) 

/ / 

Overfill decrease in mean weight and weight variability 

Feed frame speed 
 
 

Increase in weight and 

weight RSD * 

Increase in weight and 

decrease in RSD 

Increase in weight and 

not evident effect on 

weight RSD 

/ / Increase in lubrication 

extent coefficient 

Runs variability at 
constant feed frame 

speed 

Poor control of 

compaction force on 

solid fraction 

Strict control of 

compaction force on 

solid fraction 

Not clear relationship 

between comp. force and 

solid fraction 

Rotor speed decrease in mean weight and general increase in replicates variability within a run 

(for weight) / increase weight RSD increase weight RSD 

    

 

Table 4.13. Summarizing table reporting main findings about relationships 
between compression settings and tablets properties for blend 1, 2 and 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 * does not match knowledge from literature 
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4.4 Lubrication extent coefficient 
 
Tablet formulations are typically lubricated by mixing the powder with a lubricant (in this case 
magnesium stearate) to improve manufacturability by reducing die-wall friction and powder 
adhesion to the metal components of the equipment. However, it is possible that the powder, 
because of overmixing (which causes excessive shear strain to be applied to the powder), 
reaches an over-lubrication state which damages the final tablets properties. By analyzing the 
compactor data available for blend 3, we want to assess whether the feed frame speed causes 
such an increase in lubrication. 
 

4.4.1 Compression profiles comparison for rotary press and compactor 

simulator 

Some powder samples, after being sheared from the feed frame in runs 2A, 3A and 5, are taken 
from the rotary press, are placed on the compactor simulator and compacted there, always at 
6.5, 9.5, 13 and 16 kN compression force (for details, refer to §2.3) . As it can be seen from 
Lura et al. work (2021), the comparison among tablets properties, more specifically tensile 
strength vs solid fraction, is commonly used to assess the similarity between compression 
process followed in the rotary press and in the compactor simulator for equivalent processing 
conditions. 
It follows that the compaction profiles obtained on the compactor simulator mimic well those 
of the rotary press for each feed frame speed considered (Fig. 4.28) and can therefore be used 
to study the over lubrication to which the compound is subjected during the real compaction 
process on the rotary press. 

 

 

(a) (b) 
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4.4.2 Lubrication extent estimation for feed frame-subjected blends 

Together with feed frame subjected samples, also new lubricated blends with known lubrication 
coefficient k are compressed at compactor simulator, obtaining the profiles reported in Fig.4.29. 
 

 
 

In the above figure it can be seen that the tensile strength is lower for blends with a higher 
lubricating coefficient at parity of the solid fraction. This confirms what was reported in the 
studies of Kushner and Moore (2010), where it was found that the compactibility profiles of 
some powder blends based on MCC and MgSt are a decreasing function of the number of mixer 

(c) 

Figure 4.28. Comparison between compression profile obtained at the rotary 
press and at the compactor simulator at (a) 15 rpm, (b) 30 rpm and  (c) 45 rpm  
feed frame speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29. New lubricated blends with known lubrication coefficient k 
(possible through blending time control) TS over solid fraction profiles after 
compression at the compactor simulator. 
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revolutions. The tensile strength over solid fraction profiles appear to be parametric to the 
lubrication coefficient, so that feed frame samples profiles can be projected over the new 
samples ones to have a qualitative description of the lubrication extent reached because of the 
feed frame presence. Note that the chosen fit of the experimental data is exponential, based on 
the knowledge of the Ryshkewitch (1953) equation relating tensile strength and solid fraction 
as:  
 
72 = 721exp	(<((1 − 2>))  
 
The semi empirical model proposed by Kushner and Moore (2010) and extended by Blackwood 
et al. (2012) can provide an estimation of the initial lubrication extent of blend 3, before being 
subjected to the feed frame speed. Since the lubrication in this case is given only by the blending 
process, it is sufficient to calculate kbb to know k: 
 
@ = @22 = A2

3/5 × >.()678)9( × B 
 
in which V is the bin volume, Fheadspace the fractional headspace in the bin and r the number of 
bin revolutions. Using the available data about the powder mass charged in the bin (mcharged), 
the bulk density of the blend formulation (r) and the blending time (t) and speed (s), it is 
possible to obtain: 
 

@22 = A2
3/5 × (

:&('&'()*+,/;)÷=
:

) × C × += 200 L1/3× (
;11	>&(311?-/;)÷1.A5B	?-/>

;11	>
) × 17BE-	 ×

3C1
D1

 =  128.75 dm 

 
 

(4.6) 

Figure 4.30 Projection of tablets data obtained for compression of the original 
blend 3 (not subjected to feed frame) at the compactor simulator, together with 
the known-k samples ones. 

 

 

 

(4.5) 
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Projecting the data obtained for the original blend 3 onto the known-k samples ones (Fig. 4.30), 
it is confirmed that this approach is reliable to have an approximate estimate of the lubrication 
coefficient. The feed frame sample at 15 rpm is compressed at the simulator and its lubrication 
state is evaluated in Fig. 4.31(a). As the sample appears to have a lower degree of lubrication 
than the original, the prediction limits are found for both in order to estimate the uncertainty of 
the fitting used. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a) 

(b) 

Figure 4.31. (a) Comparison between tensile strength over solid fraction profile 
of feed frame sample at 15 rpm and original blend, adding in (b) the prediction 
bounds for both. 
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The prediction bounds are found with the command predobs in Matlab, which is used to find 
the prediction intervals across the extrapolated fit range when function fit is employed to have 
a fitting of the experimental data. It can be seen in Figure 4.31(b) that the prediction boundaries 
of the two profiles overlap, so it can be concluded that the feed frame sample at 15 rpm behaves 
similarly to the original commercial mixture. Doing the same for the samples at 30 rpm and 45 
rpm, it results that powder subjected to 30 rpm feed frame speed has a lubrication extent which 
is again similar to that of the original one, while the one at 45 rpm has a significant increase of 
it (Fig. 4.32(a) and Fig.4.32(b)). In fact, at 45 rpm, the lubrication extent is close to the 300 dm 
lubrication profile, meaning that the original k (128.75 dm) is more than doubled due to the 
effect of the high feed frame speed. 
 

  
 

 
The obtained results can be compared to the semi-empirical formula proposed by Blackwood 
(2012) to estimate the additional contribution given by the feed frame presence to the original 
lubrication state: 
 
@EE = F/,8 × G 
 
where F/,8 is the speed of the paddle wheel and G the mean particle residence time in the feed 
frame. This contribution should be added to the blending lubrication (kbb) one to have the total 
lubrication of the powder.  
It must be noted that the results obtained in this study disagree with the semi-empirical model 
a priori, because the latter presumes that the powder, when subjected to the feed frame, always 
increases its lubrication state. Differently, here it is stated that only a feed frame speed of 45 
rpm has an actual impact on the lubrication extent of the powder. 

(a) (b) 

(4.7) 

Figure 4.32 Comparison between tensile strength over solid fraction profile of 
feed frame sample at (a) 30 rpm and original blend and (b) of sample at 45 rpm 
and original blend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linda Gaiani

Linda Gaiani
80



Results and discussion                                                                                                                                                     
  
 

35 

Calculating @EE at 45 rpm for blend 3 using the semi-empirical model, it is obtained: 
 

@EE = H × 3FF × >>7 ×
=-.+/,×:00
/)2H(/7/.×"

 = H × 0.18- ×
AI	J8'
D1	7

×
1.A5B	-/'>×1.BAI	'>
12333	5(-.+56/'

8933	6/' ×1.5	-
× 10

6'
'
= 

      =301.9 dm  

which must be added to the initial kbb to have the total k extent: 

@ = @22 + @FF = 128.75	N- + 301.9	N- = 430.65	N-                                                    (4.8) 

The model seems to overestimate the lubrication contribution given by the feed frame also at 
the highest feed frame speed considered. 
 
4.5 Shear cell flow data analysis 
 
A flow function test and a wall friction test were performed on lubricated and feed frame 
samples of blends 1, 2 and 3 in order to evaluate their flow properties as original powders and 
after being subjected to certain feed frame speed. Data retrieved from the tests are employed 
for blends properties analysis and comparison, relating the main findings on the above 
mentioned shear cell flow data with the blends behavior in the rotary press. 
 
4.5.1 Flow function test results 
The ratio between the unconfined failure strength (S9)	and the major principal stress (S3)	 for 
a given initial consolidation stress (I) is known to provide a flow function coefficient ffc which 
is indicative of the flowability of the powder for the specific I (§1.5.1). Taking into account all 
five initial consolidation stresses applied to the powder samples, it is possible to obtain a linear 
relationship between S9 and S3, whose slope is an overall flow function value which can be 
used to compare the flowability state of the different lubricated blends (Fig. 4.33). 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.33 Comparison between flow function values, given by the inverse of 
the slope of +: over +;, for the lubricated samples of blends 1, 2 and 3. 
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When comparing the flowability values, it can be seen that blends 2 and 3 have similar 
flowability, while blend 1 is the least flowable of the blends (Table 4.17). In any case, it should 
be noted that a flow function value greater than 10 indicates a free-flowing powder behavior, 
and it is known by Koynov et al. studies (2015) that care should be taken in ranking materials 
within the free-flowing regime. For this reason, it can be concluded that all three blends have 
good flowability in their initial state. Considering also the powder samples subjected to the feed 
frame, it can be said that the presence of the feed frame does not modify the overall flowability 
of the blends, since the flowability values of these samples for blends 1, 2, 3 are similar to those 
of the lubricated blends (Table 4.14). 
 
 
 
 

 Linear fitting 

ax+b 

R2 Flow function value 

Lubricated blend 1 0.058x+0.24 0.997 17 

Lubricated blend 2 0.034x+0.24 0.991 29 

Lubricated blend 3 0.033x+0.28 0.929 30 

Feed frame sample blend 1 0.055x+0.25 0.992 18 

Feed frame sample blend 2 0.036x+0.22 0.976 28 

Feed frame sample blend 3 0.032x+0.19 0.997 31 

 
 
A method proposed by Wang et al. (2016) to analyze shear cell data measured at different 
consolidation stresses consists in investigating the relationship between the flow function 
coefficient ffc and the cohesion G3 (kPa), showing that the two parameters have an intrinsic 
inverse correlation (power law with exponent -1). More specifically, it is proposed to refer to a 
dimensionless cohesion, calculated as: 
 
T∗ =

L$	(?M))
N	(?M))

                                                                                                                             (4.9) 

This provides a classification of the flowability of different materials based on the 
dimensionless C* which includes the effect of the initial consolidation stress applied. 

Table 4.14. Details about linear fitting performed on the ratio of !! and !1 and 
correspondent flow function values for the lubricated and feed frame subjected 
powder samples of blends 1, 2 and 3 
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According to the new classification, a T∗ ≤ 0.048 indicates a free-flowing powder, while for a 
0.048 < T∗ ≤ 0.121 the material can be considered easy-flowing (Wang, 2016). Comparing 
the behavior of blends 1 and 2 (Fig. 4.34(a)), it can be seen that blend 2 is a free-flowing powder 
for four of the five consolidation stresses applied and that the presence of the feed frame makes 
it more flowable, especially at 4.2 kPa. Blend 1, on the other hand, tends to have a more easy-
flowing behavior and the sample subjected to the feed frame does not seem to have a better 
flowability than the lubricated one. For blend 3, the cohesion data available are the same for 
the lubricated and feed-frame exposed samples, so it is only possible to compare its overall flow 
behavior with the other blends. At the lower initial consolidation stress applied, its behavior is 
similar to that of blend 2, while at the highest consolidation level it is the least flowable of the 
three (Fig.4.34(b)). Blend 2 is confirmed to be the blend with the highest flowability, which is 
slightly improved by the presence of the feed frame. This is in agreement with the previous 
results, in which blend 2 was found to be a blend that can be subjected to any feed frame speed 
without experiencing a reduction in flowability, while maintaining high weight uniformity 
during tablet production. 
 
4.5.2 Wall friction test results 
The process of compaction of pharmaceutical powders and the resulting density of the tablet 
are mainly influenced by two major mechanisms: interparticle friction and die wall friction. For 
this reason, in addition to the flow function indices, descriptive of the first mentioned 
mechanism,  wall friction test is fundamental to be considered for flowability definition in the 

Figure 4.34 Correlation between flow function coefficient and dimensionless 
cohesion for (a) blends 1 and 2 considered as lubricated or feed frame subjected 
samples, and (b) with addition of blend 3. 
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compression process, since it describes the friction between the powder under compaction and 
the die wall (Michrafi et al., 2003). In the study just mentioned, the behavior of the friction for 
different powders is evaluated by analyzing the friction coefficient profile over the density of 
the powder after compression in the die. Many indirect methods exist to calculate the friction 
coefficient, but it is known that, together with some geometric factors, it is mainly function of 
the shear stress applied during compaction. Based on this, the analysis of the bulk density 
profiles over shear stress applied to blend samples during the test can be sufficient to evaluate 
the friction behaviors of the blends (Fig.4.35). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The density values at x=0 correspond to the freely settled bulk density of the powder (WO,QR1), 
before being subjected to any stress. It can then be seen that the density increases with 

(a) (b) 

(c) 

Figure 4.35 Correlation between bulk density and shear stress of compaction 
for lubricated and feed frame subjected samples of (a) blend 1, (b) blend 2 and  
(c) blend 3. 
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increasing shear stress until it reaches an approximately constant value. While the feed frame 
presence is causing an increase in powder densification for blend 1 and 3 with respect to the 
lubricated samples, blend 2 behaves in the opposite manner, decreasing the bulk density in the 
feed frame exposed samples for each shear stress of compaction applied and especially at the 
highest ones. A higher bulk density indicates that the powder is more densely packed and less 
prone to segregation during production processes such as compaction, but it can also result in 
increased wall friction which can cause flow problems such as flow stoppages and inconsistent 
discharge rates (Arnold et al., 2005). A further step is consequently made by using the freely 
settled bulk density of the powder (WO,QR1)	and the maximum tapped bulk density (WS)	recorded 
for each sample from the test to calculate the compressibility index, whose values have already 
been reported in §4.3.4. This index is representative of the propension of a powder to 
consolidate, and it is found as: 
 
CI(%) =

T<&T=,?#3
T<

× 100                                                                                                    (4.10) 

The CI values found for the studied samples confirm that blend 2 is definitely improved in 
flowability by the feed frame speed presence, assuming excellent flowability properties, while 
blend 1 and 3, although interested by an actual densification because of the feed frame, are not 
properly modifying their flowability features with respect to the lubricated original powder. 
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Conclusions 
 

Three pharmaceutical powder blends have been subjected to the compaction process in the 
multi-station rotary press with the aim of investigating how compression settings affect final 
tablet characteristics. By performing a preliminary analysis on the available data, it resulted that 
two main groups of variables tend to change together for different compression settings applied. 
In particular, fill depth is mainly increasing weight, thickness, width and volume, while 
compression force affects hardness, tensile strength and solid fraction. It was also noted that 
variables are not changing their relationship in time, so no dynamic time dependence between 
data seems to be present at the typical manufacturing time scale. These considerations are valid 
for all three investigated blends. Focusing then on mean weight and weight variability, 
expressed in terms of relative standard deviation, it was demonstrated that they are differently 
affected by compression settings for different blends. Mean weight, even if increased by lower 
overfill in all blends, is greater for higher fill cam and fill depth for blend 1 and 3 and higher 
rotor speed for blend 2. Regarding weight variability, it is mainly increased by higher feed frame 
speed for blend 1, and higher rotor speed for blend 2 and 3. Regarding the latter,  an increase 
of it can be observed also at lower compression force.  
Among all the other compression settings, feed frame speed was found to be the major source 
of properties variability between tablets produced at the rotary press for all blends. Then, at a 
given feed frame speed, the main cause of variability between tablet replicates is due to wide 
changes in solid fraction, as shown by variations in compression force in time, in blend 1, and 
higher rotor speed in blend 3. This makes it more difficult to achieve adequate CQA in all tablets 
produced from these blends.  
The results of this study only partially confirm the ability of the feed frame speed to decrease 
weight RSD found in the literature, as it only occurs for blend 2, while weight RSD increases 
with feed frame speed in blend 1. Together with the influence of feed frame speed on tablet 
properties, also its effect on the lubrication state of the powder is evaluated. A semi-empirical 
model proposed by Kushner and Moore (2010) and extended by Blackwood (2012) suggests 
that the presence of the feed frame always accompanies to an increase in the lubrication of the 
powder, progressively higher for higher feed frame speed. By using the compactor simulator 
data collected on blend 3, after ensuring that compactor simulator profiles were able to mimic 
well the rotary press ones, it was demonstrated that for the above mentioned blend the 
lubrication was not increased at 15 rpm and 30 rpm feed frame speed, while it was more than 
doubled with respect to the original blend one at 45 rpm. This means that the semi-empirical 
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model overestimates the effects of the feed frame speed on a powder blend, especially for lower 
feed frame speed values.  
To conclude, the results of the flowability tests, carried out both on the free powder blend 
samples and on powder samples previously subjected to the action of the feed frame, indicate 
that all three blends have good flowability and that blend 2 is improved by the presence of the 
feed frame, resulting to be consequently the most flowable blend in the die filling stage. Since 
blend 2 was previously found to be the one characterized by the lower weight variability, it can 
be concluded that blends which are less affected by weight variability are also the most flowable 
ones, indicating that a relationship between powder properties and tablets quality exists and can 
be exploited to obtain tablets with increased properties uniformity. Table 4.13 summarizes the 
main findings of this study. 
 
 
 

 Blend 1 Blend 2 Blend 3 

Weight-thickness-
width-volume 

highly related, for given compression settings they increase or decrease together 

(absolute values) greater than blend 3 greater than blend 3 smaller than blends 1-2 
Compression force-

hardness- TS  
highly related, for greater compression force also hardness and TS increase 

(absolute values) smaller than blend 3 smaller than blend 3 Greater than blends 1-2 
Fill cam and fill depth increase in weight 

 increase in replicates 
variability within a run 
(including weight RSD 

at 800mg) 

/ / 

Overfill decrease in mean weight and weight variability 
Feed frame speed 

 
 

Increase in weight and 
weight RSD * 

Increase in weight and 
decrease in RSD 

Increase in weight and 
not evident effect on 

weight RSD 
/ / Increase in lubrication 

extent coefficient 
Runs variability at 
constant feed frame 

speed 

Poor control of 
compaction force on 

solid fraction 

Strict control of 
compaction force on 

solid fraction 

Not clear relationship 
between comp. force and 

solid fraction 
Rotor speed decrease in mean weight and general increase in replicates variability within a run 
(for weight) / increase weight RSD increase weight RSD 

 

Conclusions 

* does not match knowledge from literature 

Table 4.13. Summarizing table reporting main findings about relationships 
between compression settings and tablets properties for blend 1, 2 and 3. 
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Nomenclature 
 

!!  = Archimedes number  
C* = dimensionless cohesion 
D = tablet diameter 
""" = feed frame diameter 
## = powder particle diameter 
Fheadspace =  fractional headspace in the bin 
I = initial consolidation stress applied during glow function test 
k =  overall lubrication extent coefficient 
$$$ = lubrication coefficient due to blending  
$%% = lubrication coefficient due to feed frame 
m = mass of powder in the die at given fill velocity 
!!"#$%&"'%!	  = mass of tablets produced per unit time 
%& = mass of the tablet 
M = mass of powder in a fully fill die 
& = bin revolutions 
R = roller radius 
s = blending speed 
t = blending time 
'('  = tensile strength at 0.85 solid fraction 
V = die filling velocity 
vc = critical velocity 
)()* = tip speed of the feed frame paddle wheel 
V = tablet volume 
Vb =  bin volume 
w = expected tablet weight 
 
Greek letters 
 
* = fill ratio  
+ = air viscosity 
, = air sensitivity index 
-+,-./  = bulk density of the blend formulation 
-0 = air density 
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.1,34'  = settled bulk density of the powder sample in the wall friction test 
-5 = solid true density 
-6  = tapped bulk density of the powder sample in the wall friction test                                                            
/7 = major principal stress  
/8 = unconfined failure strength 
0  = mean particle residence time in the feed frame 
1 = roller rotation rate 
 
Acronyms 
 
ANOVA  = analysis of variance 
API  = active pharmaceutical ingredient 
CI  =  compressibility index 
CQA   =  critical quality attributes 
DOE  =  design of experiment 
FF5  =  feed frame speed 
ffc  =  flow function coefficient 
LV  = latent variable 
MCC   =  microcrystalline cellulose 
MgSt   =  magnesium stearate 
PC  = principal component 
PCA  = principal component analysis 
PLS  = projection on latent structures 
RSD  =  relative standard deviation 
PFT  = powder flow tester 
TS   =  tensile strength 
SF   =  solid fraction 
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