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Abstract

Tokamaks are controlled nuclear fusion devices which are capable of confining a high

temperature plasma inside a vacuum toroidal chamber by exploiting the action of mag-

netic fields on the ionized particles generating the plasma. Numerous control problems

are involved in the functioning of these devices. In particular, a crucial role is played

by the reconstruction of the position of the plasma inside the chamber as direct con-

tact with the plasma surrounding structures must be avoided. Therefore, the use of

feedback for plasma shape control as been widely investigated in the last years, in

order to create magnetic fields capable of modifying plasma shape and position (see

[10]). Unfortunately, the plasma boundary position is not directly measurable. As a

consequence, several plasma boundary reconstruction algorithm have been developed

in the last years. Accurate models are needed to describe the plasma behavior and

its electromagnetic coupling with the surrounding structures. Thus, such models take

into account the massive conducting structures around the vacuum chamber which are

modeled by toroidally symmetric elements and consequently the model order rise with

the complexity of the structure. This is a drawback when dealing with real-time con-

straints and also for many standard linear control schemes. Therefore, model order

reduction techniques have been developed in the last years, in order to provide a rea-

sonable trade-off between the contrasting needs of reducing the number of states and

of reaching a good approximation of the overall system behavior. This work focuses

on the analysis and the reduction of the models appearing in the IAIA code, which is

an algorithm capable of accurately estimating the plasma shape and boundary position.

This thesis is organized as follows. In the first chapter an introduction on the nu-

clear fusion is provided together with the key concepts of the plasma shape and position

control. Moreover, the state of the art in model order reduction is discussed.

The second chapter focuses on the description of the main components of the ITER

tokamak fusion device, which represents the next step in the realization of electricity-

producing fusion power plants, and the RFX-mod, a large experimental device built for

plasma physics studies and operating in Padua. Furthermore, an insight on the IAIA

code is given together with the discussion of some crucial steps adopted in the plasma

boundary reconstruction, such as the filamentary models and the passive structures
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modeling.

The third chapter lists the main model order reduction techniques that were imple-

mented in the IAIA code as well as their main features and advantages respect to each

other.

The fourth chapter provides the main results achieved in the model order reduction

process applied to IAIA and RFX-mod systems.

Finally, the fifth chapter introduces another method to optimize the time consump-

tion of the IAIA code, by reducing the number of internal parameters of the plasma

filamentary model adopted inside the algorithm. The results achieved in one particular

case are provided and discussed.



Chapter 1

Introduction

1.1 Nuclear fusion and tokamaks

Nuclear fusion is, in a certain sense, the opposite of nuclear fission. Nuclear fission is

a mature technology, which produces energy through the splitting of heavy atoms like

uranium in controlled chain reactions. The drawback is that the by-products of fission

are highly radioactive and long lasting. On the other hand, fusion is the process by

which the nuclei of two light atoms, like hydrogen, are fused together to form a heavier

nucleus (helium), with energy produced as a by-product. For instance, see figure 1.1.

Nuclear fusion occurs when two atomic nuclei stay close at a very short distance (about

10−15m) for a sufficiently long time interval to allow the nuclear strong force to fuse

them together, and obtaining a single nucleus. The energy achieved throughout this

process can be calculated using the famous Einstein’s formula of balance between

mass and energy E = mc2. As a matter of fact, in every nuclear reaction reagents

mass sum is different from the products one. For this reason, remembering the famous

relation above, it’s possible to conclude that the missing mass has been transformed

into energy. Among all the conceivable fusion reactions, not all are actually realizable

or useful. For instance, it’s not always possible to create the necessary conditions to

make a particular fusion reaction happen. Moreover, not necessarily a fusion reaction

is exergonic, which means that not always there is a positive flow of energy from the

system to the surroundings. Among the most convenient reactions, in terms of obtained

energy and of easiness to create the experimental conditions, there is the deuterium-

tritium fusion. When fusing together a nucleus of deuterium with one of tritium, a

nucleus of helium is obtained together with a free neutron

2
1D +3

1 T → 4
2He (3.517 MeV) + 1

0n (14.069 MeV).

The virtue of this nuclear reaction it’s huge; by comparing it with the fission reaction,

here the neutron possesses a quantity of energy about 14 times greater. Furthermore,

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Typical fusion reaction. Protons are shown in yellow, and neutrons are shown

in light-blue. In a fusion reaction a deuterium nucleus and a tritium one combine to form a

helium nucleus, and a free neutron, while producing excess heat. The excess heat is useful for

sustaining additional fusion reactions, while the free neutron is captured by the fusion reactor,

and its energy converted to heat.

conventional methods of electric power generation bring with them some downsides,

such as radioactive waste, greenhouse gases, or the use of non-renewable resources. In

contrast, the development of a nuclear reactor would offer an almost limitless source

of power, without any production of greenhouse gases. Moreover, nuclear fusion has

no long-lived reaction by-products such as plutonium.

The aim of achieving controlled fusion is extremely challenging. A fusion power

reactor will produce mostly short-term, low-level radioactive waste, and there is an

abundant fuel supply available. In contrast to fission, fusion poses no risk of a nu-

clear accident. Fusion produces no air pollution or greenhouse gases during normal

operation since the reaction product is helium. The primary sources of radioactive

by-products are neutron-activated materials, which can be safely and easily disposed

of within a human lifetime, differently from most fission by-products, which require

special storage over thousand of years.

The primary challenge of fusion is to confine a gas comprised of ionized hydrogen

isotopes, called a plasma, while it is heated and its pressure increases to initiate and

sustain fusion reactions. There are three known ways to confine the plasma.

1. Gravitational confinement, confines the plasma through large gravitational forces.

This is what happens in the sun.

2. Second, inertial confinement compresses the hydrogen gases through a con-

trolled implosion, with inertia then holding the gases together long enough for

fusion reactions to occur.

3. Finally, magnetic confinement. Here magnetic fields act on hydrogen atoms that

have been ionized, so that the magnetic fields can exert a force on the moving

particles. Thanks to the Lorentz force, a charged particle immersed in a mag-

netic field is bounded to move helically along the field lines which forum a cage
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Figure 1.2: The basic magnetic confinement concept. In (a), gas is unconfined and capable of

moving in any direction, while in (b) the ionized gas interacts with a magnetic field externally

imposed and is subject to forces that cause the ions to travel along the magnetic field lines

while circling around these lines. Because the ions and electrons have opposite charges, these

particles move in opposite directions along the field lines. In (b), the particles remain confined

by the magnetic field until the field lines end or dissipate, contrary to the desire to keep them

confined. Because of this, the tokamak bends the field lines into a torus so that these lines

continue forever.

Figure 1.3: Design of the ITER Tokamak, which is under construction in Cadarache, France.

Note the size of the person in figure, relative to the device.

around the plasma. The result of this interaction between the plasma and the

magnetic fields is shown in figure 1.2.

Among all the proposed magnetic confinement devices, tokamaks are the most

promising. A tokamak is a magnetic confinement device constructed in the shape of a

torus.

Tokamaks are meant to create magnetic fields through currents that flow in large

coils which are used to confine the plasma within a fixed volume. The shape of a torus

can facilitate the fulfillment of the plasma confinement. Several of these magnetic coils
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serve additional purposes of shaping, heating, and driving current in the plasma. In par-

ticular, the plasma inside the tokamak is confined by electromagnetic fields generated

by a set of Poloidal Field (PF) coils distributed around the vacuum vessel. Voltages

applied to these coils drive currents that produce a magnetic field. This field changes

the shape and position of the plasma and induces plasma current.

During the last 50 years, tokamaks of various size were built all around the world.

Nowadays, tokamaks have reached a point at which it’s possible to produce almost as

much energy as is expended in heating and confining the plasma. Figure 1.4 illustrates

the growth of the fusion power output of tokamaks during the last 30 years. Actually, it

is under construction the world’s largest tokamak ever built, called International Ther-

monuclear Experimental Reactor (ITER). The goal of this huge project, funded by

European Union, India, Japan, People’s Republic of China, Russia, South Korea and

the United States, is to demonstrate the feasibility of the use of fusion energy on an

industrial scale. Therefore the ITER project aims to make the long-awaited transition

from experimental studies of plasma physics to full-scale electricity-producing fusion

power plants. ITER is a very complex nuclear fusion device, made of a large number of

subsystems which must properly coexist to achieve nuclear fusion reactions. The most

important subsystems are the vacuum chamber and the components fixed to it, such

as the active coils, indispensable to create the magnetic fields to confine the plasma,

the divertor, the additional heating modules, the cryogenic system, essential to create

and maintain low-temperature conditions for the magnet, vacuum pumping and some

diagnostics systems, the robotic system for maintenance, the general control system

of the overall plant, and finally the numerous diagnostics. The next step is the con-

struction and operation of the proposed ITER burning plasma experiment. The goal

is to improve understanding of the underlying physics while providing a testbed for

developing technology to support high fusion levels.

The performance in currently designed fusion devices, is strongly affected by the

environment surrounding them. The plasma-circuit system is a distributed parameter

system, consisting of the plasma itself, the surrounding passive structures, and the

external circuits, whose dynamic behavior is described by a set of nonlinear PDE. The

behavior of each circuit part or subsystem depends not only on its own physical and

electrical characteristics, but also on the devices to which it is directly connected to

or coupled with, including air and passive structures. This causes the analysis and

modeling of these systems to be quite difficult. A tokamak can be seen as the union

of three subsystems which interact with each other through electromagnetic fields, the

plasma, the control circuits, and the passive conductors. The evolution of the whole

system is governed by Maxwell’s equations.
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Figure 1.4: The amount of power generated by tokamak devices has increased by a factor of

108 in the past 30 years. The ITER tokamak which will be the first experimental device able

to produce more power than it consumes, appears to be a reasonable objective for the next

decade of growth.

The employment of mathematical models in the context of fusion plasma science

and engineering has become of great importance since fusion devices are complex

machines, whose operational state and behaviors depend on several controllable and

non-controllable interconnected subsystems as, limiting the analysis to the magnetic

control: the plasma, the electromagnetic circuits, the passive conducting structures,

the magnetic diagnostics. The coupling of these elements give rise to high order, non-

linear systems with a large number of instabilities, so there is consensus in the fusion

community that active control will be one of the key enabling technologies, whence the

need of accurate models derives. To simplify the analysis of the plasma position and

current, and the design of plasma controllers, various assumptions are usually made.

The two most important assumptions are the following.

1. The plasma-circuit system in a tokamak is assumed to be axisymmetric;

2. The plasma current profile can be described by means of a finite number of

global parameters.

In particular, the first assumption let us reduce the question of plasma boundary recon-

struction to a two-dimensional problem. These assumptions will be considered always

verified in the following.
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1.2 Plasma control

To achieve the deuterium-tritium reaction, temperatures higher than 100 million de-

grees Celsius are needed. To obtain these very high temperatures and maintain the

plasma purity in a practical engineering system, the plasma must avoid any contact

with the surrounding structures. The essential task of a tokamak is to confine and to

heat the plasma so that sustained fusion reactions can occur. This confinement is basi-

cally possible due to the fact that the plasma is an ionized gas and therefore capable of

interacting with externally generated magnetic fields. The charged particles composing

the plasma are subjected to a magnetic field which confines them because they follow

magnetic field lines. The effect of electric current flowing in the toroidal and PF coils

and in the plasma produces helical magnetic field lines which provide a path for the

ionized particles, which never leave the torus. In a tokamak, the plasma confinement

is obtained through a complex system of magnetic fields which form a cage around

the plasma. The toroidal field coils produce the main component of the magnetic field.

This field, together with the one produced by the plasma current, create the basis of the

magnetic confinement system. In addition to the toroidal field coils, there are also the

PF coils. These coils are used modify the shape and position of the plasma inside the

vacuum vessel.

In a simplified axisymmetric toroidal geometry, The dynamic of the plasma is that

of a fluid conductor whose behavior is regulated by the Grad-Shafranov (GS) equation,

this equation is a two-dimensional, nonlinear, elliptic PDE and describes the equilib-

rium between the kinetic pressure of the plasma and the Lorentz force. In the represen-

tation of plasma, discrete filamentary models and FE free boundary plasma models that

can solve the GS equation have been successfully tested (For instance, see [27]). In

particular, FE models proved to be more accurate because of their capacity of modeling

the current distribution inside the plasma boundary with a higher number of degrees of

freedom.

The toroidal fields are the dominant confining fields; they are typically on the or-

der of a few Tesla. The coils are wound with many turns of conductors which carry

several kilo amperes of current, producing an equivalent of many mega amperes of

flux-producing current. Depending on the resistance of the coils (typically copper,

but sometimes superconductors for newer tokamaks), the voltages required to drive

the copper-borne currents range from a few volts to hundreds of volts in steady state.

The magnetic fields produce an external magnetic pressure that balances the kinetic

pressure created by the plasma.

Slight irregularities in the magnetic field confining the gas may allow plasma bulges

that can grow exponentially over time if not actively suppressed. A large number of
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Figure 1.5: Cross section of a standard tokamak. The plasma (a) is kept inside the vacuum

vessel (b) and is coupled with the central solenoid (e). Toroidal (d) and poloidal (f) field

coils contribute to shape the plasma and create the desired magnetic configuration. Metallic

structures (c) are also present between the vessel and the magnet systems.

such plasma instabilities can be predicted using ideal Magnetohydrodynamics (MHD)

theory.

A key concept in plasma characterization is the plasma boundary, which is defined

as the outermost closed flux surface entirely contained inside the vacuum chamber, not

crossing any solid object. The plasma boundary usually needs to be as close as possible

to the plasma surrounding structures, to enhance passive stabilization and to maximize

the plasma volume. The use of magnetic measurements outside the plasma has tra-

ditionally been a simple and reliable method for finding the plasma configuration in

fusion experiments. Unfortunately, numerical codes developed for full MHD equilib-

rium reconstruction from external magnetic measurements require too high computa-

tional effort which isn’t suited with real-time constraints. For this reason, alternative

methods, based on simpler and faster algorithms, have been developed to comply with

the specific requirements of real-time plasma contour identification such as Equivalent

Currents [29], Toroidal Harmonics [30], Local Field Expansion [20], or their combi-

nation into modular frameworks ([5], [6]).

By the way, recently, it has been developed a new filamentary model capable of

controlling the degrees of freedom of the problem through SVD regularization com-

bined within an iterative scheme. This allow the representation of advanced configu-

rations with strongly non-homogeneous current distribution while keeping the model

sufficiently compact. This algorithm is called Iterative Axisymmetric Identification

Algorithm (IAIA).
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In this respect, the estimation of the currents flowing in the passive structures is a

key issue, because it may be misinterpreted by the external sensors as a contribution

of the plasma itself, and can lead to wrong comprehension over the role of the passive

stabilization that counteracts plasma instabilities while active control fields penetrate

the vessel shielding.

Figure 1.6: Thanks to the shape of a torus, some of the magnetic field lines never leave the

tokamak vacuum chamber.

The use of feedback for plasma position, current, and shape control has been exten-

sively investigated in the last few decades. These control systems are used to maintain

the plasma at a desired equilibrium configuration. Controller design for these systems

is usually based on low-order, linear, time-invariant models. This task can be sim-

plified by reducing the order of the original system and by approximating it with a

lower order model. In recent years, much research has been done in order reduction

of large scale systems with application to circuit simulation, micro-electro-mechanical

systems and more. Such systems, composed of several elements or sub-systems, need

to be accurately modeled, including the electro-magnetic couplings existing between

the different elements. The electro-magnetic based modeling procedures usually rely

on a discretization of the governing equations, in this case Maxwell’s equations, in the

domain of interest. A FE model of the conducting structures can provide a state space

model that well matches the filamentary plasma model to follow dynamic evolution

and scenario transitions. When in the description of a physical system the required

or desired level of detail rises above a certain threshold, the resulting mathematical

system becomes too complex, causing, for instance, numerical issues or too much ex-

pensive time requirements. To compute and/or simulate the phenomena of interest.

This is particularly unwanted when we have to deal with real-time constraints. In fact,

the simulation, analysis and controller design of high order control systems are quite

complicated. From this considerations emerge the necessity to develop simpler models

which well approximate the starting ones.
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In the context of space-state representations of linear systems of high dimension

the objective of Model Order Reduction (MOR) is the development of a new model

of the linear system of much smaller dimension than the original one, yet capable of

describing the behavior of the original model with acceptable accuracy over a broad

frequency bandwidth, or at least along the band of interest. The discretization of the

spatial derivatives in Maxwell’s time-dependent equations using finite methods results

in state space semi-discrete approximations of the electromagnetic system, which ap-

proximately describe the relations between the elements in the environment of interest.

MHD equations

Magnetohydrodynamics (MHD) is the branch of plasma physics that describes the ba-

sic behavior of the plasma, in terms of interaction among currents, magnetic fields, and

forces exerted on and by the plasma. MHD treats the plasma as a fluid, without distinc-

tion between the ions and electrons comprising the fluid. In particular, ideal MHD [34]

starts from the assumption that the plasma has zero electrical resistance (only partially

satisfied). However, this branch of MHD is sufficiently accurate to prompt its use as a

first approximation in a wide range of analysis done for tokamak plasma physics, in-

cluding definition of plasma magnetic evolution equations, estimation of plasma shape

and position control and studies of plasma magnetic instabilities. MHD applies both

to axisymmetric and nonaxisymmetric plasma behavior. An important consequence of

ideal MHD is that contours of constant axisymmetric poloidal flux are nested, as shown

in figure 1.7. For the sake of generality, resistive MHD equations are reported, where

a conductivity coefficient σ is defined. The quantities involved are the electric field E,

magnetic field B, current density J, fluid velocity v, pressure p and mass density ρ. Ei

is the impressed field, defined to model external forces per unit charge. Maxwell equa-

tions give reason of the interaction with external fields, and Navier-Stokes equation

models fluid dynamics.

∇× E = −∂B

∂t

∇×B = µ0J

∇ · E = 0

∇×B = 0

J = σ(E + v ×B + Ei)

ρ(
∂v

∂t
+ v · ∇v) = J×B−∇p
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Figure 1.7: ITER poloidal cross section. The contours of constant axisymmetric poloidal flux

(magenta lines) are nested.

1.3 State of the art in model order reduction

Nowadays, simulation has become an important part of the technological world, and

it is considered as the third discipline, besides the classical disciplines of theory and

experiment. Computer simulations are now performed routinely for several kind of

processes, and virtual design environments have been set up in order to ease the work

of designers and engineers. In this way it’s possible to design new products, in a more

reliable way, and without the need to produce costly prototypes. Numerical simulation

of large-scale dynamical systems plays a fundamental role in the study of a wide range

of complex physical phenomena; however, the large-scale nature of several models

leads to an unmanageable computational burden. In engineering, the modeling of a

dynamic process plays a crucial role in the whole study. Depending on the specific

application, the model can vary over a wide range of complexity being described by

few equations (e.g. as derived by lumped parameters model) or by several thousands

of equations (as obtained by 2D or 3D finite elements models). When deciding on the

model complexity, one has to reach a compromise between the detailed representation

of the phenomena of interest and the model complexity. In any case, simpler models

are often preferred due to their better suitability with computer simulations and real-
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time constraints. Moreover, a high model complexity leads to high order models and

this is a drawback for many standard linear control schemes such as linear quadratic

Gaussian. The consequence is that reduced models are obtained starting from more

detailed ones through some MOR technique, without affecting the relevant features of

the starting models. Once a detailed model is derived, the reduction procedure should

lead to a simpler model, whose output, for the same input signals, mimics the one

of the original system. This consistency, between the input-output behavior of the

original and simplified systems must be guaranteed over the whole range of operating

conditions of interest for the system to be studied.

Figure 1.8: Basic steps in the study of complex physical systems. First a set of ODE describing

the system behavior is derived. After this, due to the system complexity, a MOR step is required

to simplify the analysis, simulation and controller design.

In order to understand this idea from a mathematical point of view, it is useful to

restrict the attention to linear, time invariant systems. A state-space representation of a

system S = (A,B,C,D) is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

and its transfer function G(s) = C(sI−A)−1B+D describes the input-output system

behavior in the frequency domain. The high order model is considered exact and the

purpose is to find and compute low order approximations. The system order n can be

very large. As a consequence, since low order models give more efficient1 simulations

and lead to low order optimal controllers, an important question is whether is possible

to simplify the high order model without an excessive loss of accuracy. The fundamen-

tal task of every model reduction procedure is to compute, for a given r < n, a reduced
1In terms of execution times as well as limited numerical issues.
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system Sr, of order r, which approximates S. A space-state representation of Sr is

ẋr(t) = Arxr(t) +Bru(t)

ŷ(t) = Crxr(t) +Dru(t)

And its transfer function is Gr(s) = Cr(sI − Ar)
−1Br + Dr. More in general, an

optimal reduction problem aims to find a system of low order r with transfer function

Gr that, among all systems of McMillan degree r, minimizes ||G − Gr||p for some p.

By the way, there are several aspects that play a role in MOR:

• Usually, the most important requirement is that the output signal y(t) is well

approximated by the low order model respect to some given input signal u(t)

(i.e. time domain behavior).

• Instead of the approximation in time domain, one can require that the Bode-

plots of the transfer function for the original and reduced systems are as similar

as possible (i.e. frequency domain behavior).

• Sometimes there are also requirement on the input-state behavior, so that the

state trajectory x(t) is approximated by the reduced order model.

• Finally, it may be required that the state variables of the reduced model have

some physical meaning, just like the variables of the full-order model.

If we consider only the first aspect, the input-output behavior, then the question is

which parts of the model can be neglected without affecting too much the transfer

function of the original system. First of all, it is clear that the uncontrollable and

unobservable parts of the system can be easily removed without even modifying the

transfer function. This concept can be better understood by focusing on a SISO system:
ż = T−1ATz + T−1Bu =


λ1

. . .

λn

 z +


b̄1

...

b̄n

u
y = CTz =

[
c̄1 . . . c̄n

]
z

It’s clear that a state variable zi can be easily removed when it appears to be uncon-

trollable (b̄i = 0), or unobservable (c̄i = 0), or both. When all the uncontrollable

and unobservable state-variables are removed, a so-called minimal realization of the

space-state model is obtained. The real MOR step occurs when removing also weakly

controllable or observable state variables.
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Figure 1.9: If either b̄i = 0 or c̄i = 0, or both, the i − th path can be removed and the

input-output behavior doesn’t change.

In doing so, we can typically obtain a relevant reduction of the number of state vari-

ables, with the advantage of preserving those variables which are the most influential

on the overall input-output behavior.

Fusion devices are complex machines, whose operational states and behaviors de-

pend on several controllable and non-controllable interconnected subsystems as: the

plasma, the electromagnetic circuits, the passive conducting structures, the magnetic

diagnostics. The coupling of the elements composing the various subsystems give rise

to high order systems with a large number of instabilities. Furthermore, the massive

conducting structures around the vacuum chamber are usually modeled by toroidally

symmetric elements of finite cross section (e.g. finite elements methods (FEM) mod-

els). The number of such elements, and therefore the model order, rapidly increases

with the level of detail chosen to describe the passive structure and this is a drawback

for many standard linear control schemes. Hence, as the level of detail and complexity

increases, the computational effort might become too high. To cope with this prob-

lem, the fundamental idea is to derive models of reduced order, capable of giving an

accurate description of the real system and at the same time allowing to simplify the

design of the controller. The complexity reduction of these models, is one major is-

sue to be addressed. In the past, several approaches have been followed ([16], [?]),

and model reduction techniques are available from linear state-space control theory,

among which it is worth mentioning state aggregation methods, balanced truncation

and optimal Hankel norm approximation, Krylov based techniques, selective modal

analysis. Actually, this field of research is very active, and in practice new methods

and optimizations of existing approaches are often generated from specific application
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needs and requirements.

A great number of MOR algorithms has emerged to generate macromodels for fast

circuit simulation. In relation to their different application areas, these MOR algo-

rithms can be classified into the following three groups.

1. Linear MOR. Linear model reduction of dynamical systems has reached a good

level of maturity during the last 50 years. These techniques are mostly used

to reduce the complexity of parasitic networks (For instance, RLC networks or

discretized EM models) or chip packagings. Linear MOR can be implemented

by exploiting numerous approaches, such as modal truncation, gramian-based

reduction techniques (Truncated Balanced Realization (TBR), optimal Hankel

norm approximation), Krylov-subspace projection, proper orthogonal decompo-

sition reduction. All these are popular methods based on space projection, but

because of the change of basis over the space state they have the drawback of

losing the physical meaning of the starting model variables. For this reason other

methods have been developed, such as Selective Modal Analysis (SMA), which

allow to preserve this meaning resorting to a state selection according to the

contribution of the single states to the model modes. For instance, in tokamak

models, the state variables represent currents, voltages, fluxes and so on. They

have a clear physical meaning in the overall system. Therefore it would be im-

portant not to loose this valuable feature while reducing the order of the system.

Moreover, physical intuition on the system it’s useful during the controller tun-

ing and design phase. Techniques from linear system theory actually provide a

reasonable trade-off between the contrasting needs of reducing the number of

states to ease the controller design and of reaching a good approximation of the

overall system behavior.

2. Nonlinear MOR. These techniques are mainly used to simplify the mathematical

models of nonlinear devices (e.g., transistors, micro electro-mechanical systems

devices) or systems. There are lots of examples of nonlinear systems in circuit

design, such as almost all analog and radio-frequency blocks, amplifiers, mixers,

oscillators, and so on.

3. Parametric MOR (pMOR). Parametric model reduction is a new and important

research area. This kind of model reduction is linked with the class of problems

where the equations governing the system behavior depend on a certain set of

parameters. pMOR aims to generate low cost but accurate models capable of

characterizing the system response for different values of the parameters. One

advantage of pMOR is that it can be applied to both linear and nonlinear systems.
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1.4 Objective and structure

Given this preliminary overview, the aim of this work is twofold:

• on the one side, we want to study a modeling technique for large scale

tokamaks and in particular related to the ITER machine. Such model needs

to be suited for plasma control and stabilization;

• on the other side, we want to develop a procedure for model reduction that

allows us to employ the reduced models in real-time for diagnostics and/or

control purposes as a kind of software in the loop.

This thesis is organized as follows. In the first chapter an introduction on the

nuclear fusion is provided together with the key concepts of the plasma shape

and position control. Moreover, the state of the art in model order reduction is

discussed.

The second chapter focuses on the description of the main components of the

ITER tokamak fusion device, which represents the next step in the realization of

electricity-producing fusion power plants, and the RFX-mod, a large experimen-

tal device built for plasma physics studies and operating in Padua. Furthermore,

an insight on the IAIA code is given together with the discussion of some crucial

steps adopted in the plasma boundary reconstruction, such as the filamentary

models and the passive structures modeling.

The third chapter lists the main model order reduction techniques that were im-

plemented in the IAIA code as well as their main features and advantages respect

to each other.

The fourth chapter provides the main results achieved in the model order reduc-

tion process applied to IAIA and RFX-mod systems.

Finally, the fifth chapter introduces another method to optimize the time con-

sumption of the IAIA code, by reducing the number of internal parameters of the

plasma filamentary model adopted inside the algorithm. The results achieved in

one particular case are provided and discussed.





Chapter 2

Machine structure and system
modeling

The entire performance of a nuclear fusion device system is obviously strictly de-

pending on the real-time control of the plasma position and shape inside the vacuum

chamber. Unfortunately, direct contact with the surrounding structures would cause

huge damages and introduce impurities in the plasma itself. Due to the impossibil-

ity of direct evaluation, several algorithm have been developed to identify the plasma

shape and boundary position, which make use of other sets of data, such as magnetic

measurements (flux or field, or both) outside the vacuum chamber.

In almost all tokamak devices an axysimmetric geometry is assumed. In this way

it is possible to ignore the toroidal coordinate φ in a cylindrical system {r, φ, z} and

to consider a 2D flux map to describe the magnetic configuration and to locate the

plasma boundary and shape inside the poloidal cross section of the machine. This al-

lows to successfully make use of a 2D filamentary plasma model. In fact, in this work

the plasma is considered as modeled using an appropriate set of filamentary currents

placed well inside the vacuum vessel. Even though this model is quite different from

the natural plasma distribution, outside the plasma boundary the filaments yield a mag-

netic field that can be made nearly indistinguishable from that of the real plasma. A

fast and accurate identification of the plasma geometry is fundamental to achieve a ro-

bust control system and in the following we will study an appropriate modeling to this

aim.

19
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2.1 The International Thermonuclear Experimental Re-

actor (ITER)

Among the various nuclear fusion approaches, tokamaks have proved to be the most

promising fusion devices. In a tokamak, a plasma is magnetically confined in order

to achieve nuclear fusion. In a tokamak reactor, plasma is located inside a vacuum

chamber, and several magnetic fields are applied to confine it. The dominant compo-

nent of the magnetic field is the toroidal magnetic field, which is generated by a set of

coils named TF coils. Unfortunately, a plasma placed in such a field can’t come to an

equilibrium force balance. Because of this, an additional magnetic field component is

added to confine the plasma, the Poloidal Field (PF).

Figure 2.1: ITER poloidal cross section. The figure shows in particular the location of the PF

coils (PF 1-6) and the Central Solenoid (CS) six-coil stack.

Such magnetic field component is given by the PF coils. This additional com-

ponent is useful to both achieve the desired plasma configuration and to control the

plasma shape and position. Therefore, the plasma is confined by a combination of

magnetic fields with three different origins: TF coils, PF coils and plasma current.
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The International Thermonuclear Experimental Reactor is the next step tokamak in the

realization of electricity-producing fusion power plants. The main goal of the ITER

tokamak is to achieve plasma burning condition, and produce about 500 MW of fusion

generate-power for more than 1000 s. There are three main component in the structure

of the ITER tokamak:

1. Magnetic field coils. The nested magnetic surfaces are able to confine a plasma

equivalent to a few atmospheres, with a density that 106 times smaller than in

the atmosphere. All the magnetic coils in ITER are superconducting. The TF

coils are composed by Nb3Sn, cooled at 4.5K by a flow of supercritical helium

at about 0.6 MPa. The total magnetic energy in the toroidal field is of about

40 GJ, and therefore its confinement leads to significant forces exerted on each

coil restrained by a thick steel case to resist circumferential tension. The coils

are connected together using bolted structures and by two rings made of unidi-

rectional glass fibers. The reason of a such robust assembly is that the TF coils

must resist to the toroidal forces induced by the interaction of the TF coil cur-

rent with the transverse poloidal field from plasma and PF coils. The plasma

shape is modified by the currents distributed inside the six modules of the Cen-

tral Solenoid (CS) and the six large PF coils. These axisymmetric coils are made

of superconductors cooled by a flow of supercritical helium at 4.5K and 0.6 MPa.

Nb3Sn is used to build the CS modules, while NbTi can be exploited in the PF

coils. Furthermore, another set of coils, named "Correction coils" is used, in

order to correct possible imperfections in the magnetic field symmetry, due to a

not perfect positioning of the PF, CS and TF coil currents. These coils (figure

2.2) are composed of three sets of six saddle coils, which are located between PF

and TF coils. They are able to produce a field of about 10−5 times the TF value.

Figure 2.2: ITER PF and correction coils.



22 CHAPTER 2. MACHINE STRUCTURE AND SYSTEM MODELING

Figure 2.3: TF coils structure.

2. Blanket modules. The shielding blanket is composed of two parts: the back

part is a shield made of steel and water, with a thickness of about 30 cm. The

front part, named "first wall", include different materials: 1 cm thick beryllium

armor protection, 1 cm thick copper, and about 10 cm of steel structure. This

is a crucial component because, due to its proximity with the plasma, it is the

most activated and tritium-contaminated in the entire ITER device. In particular

it can suffer damage caused by the heat locally deposited, thus needing frequent

maintenance operation. in order to allow practical maintenance, the blanket wall

is modular (about 420 modules in total), with a maximum weight of 4.5 tons.

3. Vacuum Vessel. The vacuum vessel serves several functions:

• It provides a boundary consistent with the generation and maintenance of

a high quality vacuum, necessary to limit impurity flux into the plasma.

• It participates in the shielding against neutrons.

• it is a support for the in-vessel components and their mechanical loads.

• It provides the access to the plasma through ports, for heating system, di-

agnostic, pumping, etc.

• It provides the first confinement barrier for tritium and activated dust with

a high reliability.

Other important components of the ITER machine are the divertor and the cryo-

genic pumps. More details on the ITER tokamak can be found in [14].
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Superconducting TF coils Nb3Sn in circular stainless steel jacket grooved in

radial plates

Superconducting Central
Solenoid (CS)

Nb3Sn in square Incoloy jacket, or in circular

Ti/SS jacket. Segmented into six modules each

built from 3 double or 1 hexa-pancakes, wind react

and transfer technologies

Superconducting PF coils Nbti in square stainless steel conduit

Vacuum vessel Double-wall, welded ribbed shell, with internal

shield plates and ferromagnetic inserts for TF rip-

ple reduction

First wall/blanket Single curvature faceted separate FW attached to

shielding block which is fixed to vessel. Materials:

Be armour, Cu-alloy heat sink, stainless steel

Divertor Single null, modular cassettes with separable high

heat flux components. Materials: W alloy and C

plasma facing components

Cryostat Reinforced cylinder with flat ends: 28 m diameter,

24 m height

Tokamak cooling water
system

750 MW at 3 and 4.2 MPa water pressure

Electrical Power Supply Total pulsed active/reactive power from grid: 500

MW. Total steady state active/reactive power: 110

MW

Table 2.1: Main engineering features.
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The passive structures

The passive structures surrounding the plasma inside a tokamak play a fundamental

role in the stabilization of the plasma. In ITER four different passive structures are

considered, namely, the inner vessel, the outer vessel, the triangular structure and the

vertical structure. These structures can be approximated by using toroidally symmet-

ric elements of finite cross section, given the substantially axisymmetric nature of a

tokamak device. For instance, see figure 2.4, where the passive structure is partitioned

in 110 axisymmetric elements (50 elements both inner and outer vessel and 5 ele-

ments both vertical and triangular structure). Obviously the number of elements can

Figure 2.4: Map of the passive structures divided in 110 toroidally symmetric elements.

be arbitrarily chosen depending on the level of detail desired to describe the structure.

Accordingly, the 110 elements can be split or fused together to obtain a higher or lower

number of elements, respectively.

2.2 RFX-mod experiment

RFX-mod is an experimental device built to study Reverse Field Pinch (RFP) operation

at high plasma current (up to 2MA). From the point of view of the the plasma current

profile there is no difference between the RFX-mod and a general tokamak configura-

tion. In the RFX-mod the plasma is formed in a toroidal vacuum chamber internally

covered with graphite tiles. The vacuum vessel is closely surrounded by a thin copper
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Transformer core material air

Material composing the vacuum vessel inconel

FW material graphite

Shell material copper

Coils conducting material copper

Coils non-conducting material fiberglass and kapton

Torus major radius 2m

Vacuum vessel volume 8.31m3

Max. plasma current 2 MA

Max. magnetic toroidal field 0.7 T

Stored inductive energy 72.5 MJ

Chamber vacuum level 10−12 bar

Table 2.2: Main RFX-mod specifications.

shell, meant to stabilize fast-growing unstable MHD modes. The main difference that

distinguish the RFX-mod from a tokamak is that it is possible to induce in the plasma

ring a extremely high current, up to 2MA. In this way, together with a voltage applied

to the toroidal loop, it is possible to achieve a huge dissipated power of about 40MW.

Therefore, there is no need to use any further heating subsystem, which is typical in

tokamak fusion devices.

Table 2.2 shows the main components of the RFX, which are:

• The plasma containment system, named "vacuum chamber", which contains the

plasma gas that is then ionized. The vacuum chamber is constantly pumped by

a pumping system which grant an high vacuum level.

• The First Wall (FW), which is the inner surface of the vacuum chamber, imme-

diately in contact with the plasma, consist of 2016 trapezoidal graphite tiles, able

to resist to temperatures up to 3000 °C.

• The shell, made of copper, which completely envelops the outer surface of the

vacuum chamber. Due to the good electrical conductivity of copper, guarantees

the magnetohydrodynamics plasma stability on a time scale of 50 ms.

• The magnetic system, made of several coils, which serve to induce the plasma

current and produce the toroidal magnetic field.

The TF coils are used to provide stability to the plasma in the first phase of a RFP

pulse. The toroidal circuit is composed of two identical groups, each feeding 6 of the
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12 toroidal winding sectors. The TF coils circuit is designed to allow field reversal

during RFP discharges, and a maximum toroidal field of 0.67 T can be produced. The

PF coil system is composed by a magnetizing circuit (M coils), which serves to pro-

vide transformer action on the plasma and induce plasma current without generating a

magnetic field in the plasma region, and field shaping circuit (F coils) which is used

to control the plasma shape without providing a transformer action. For instance see

figure 2.5. The systems is perfectly top-down symmetric. As a consequence, no net

horizontal field can be generated on the equatorial plane of the machine. One advan-

tage of the RFX-mod is that it can operate also in a tokamak configuration. In this case,

it is not necessary to pre-charge the M coils, since the machine will operate at much

lower plasma current (∼100 kA for the Tokamak, 2 MA max. for normal RFP working

conditions). The transformer action is provided by generating a growing (negative in

sign) current in the M coils.

Figure 2.5: RFX cross section.

2.2.1 RFX-mod linear model

The derivation of a linear model for the RFX-mod device is presented in [7]. The

resulting linear model is also stabilized with a closed-loop controller because of two

unstable eigenvalues relative to horizontal and vertical plasma displacements instabil-

ities. The model consist of 12 inputs, 250 states and 23 outputs. The inputs consist

of voltages on F and saddle coils. The outputs are the plasma current, plasma current

centroid position, 8 gap positions, 8 F coils currents and 4 saddle coils currents. The

vessel and shell are both divided into 60 elements, and the structure is divided in two

layers of 60 elements as shown in figure 2.6.
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Figure 2.6: Discretized mesh of the RFX-mod, used to derive the linear model.

2.3 Current moments evaluation

The magnetic field map generated by the contemporary presence of plasma current,

active coil currents and eddy currents is a fundamental element for the magnetic diag-

nostic system, constituted of field and flux sensors. By exploiting these measurements

it is possible to obtain indirect measurements of, for instance, plasma current value and

current centroid position. The current moment method [23] allows to measure some

distribution of field sources inside the plasma, while distinguishing them from external

ones. The current moment qi can be associated to an external magnetic field B (where

BT and BN are its tangential and normal components, respectively) as

qi =

∫
Ωp

gjp · dΩ =

∮
l

(gBT + rfBN) · dl

where ΩP is the plasma cross section, l is a closed countour surrounding Ωp, jφ is the

plasma current density, (g, f ) is a couple of scalar functions solving the equation. The

standard choice for g is a series of polynomial functions of the geometric coordinates:

{gn} = {1, z, r2z, r2z2 − 0.25r4, . . . }

The lower order moments give useful informations on the plasma such as total current

(q0), current centroid position (q1, q2), skew and vertical ellipticity (q3, q4), upward and

outward triangularity (q5, q6). In particular, for the first three moments we have the

following relations:

q0 =

∫
ΩP

jφ dΩ = Ip −→ Plasma Current

q1 =

∫
ΩP

z · jφ dΩ = Zp · Ip −→ Vertical Position

q2 =

∫
ΩP

r2 · jφ dΩ = R2
p · Ip −→ Horizontal Position
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where Ip is the total plasma current and (Rp, Zp) is the plasma centroid position.

From a more practical point of view, the integrals that appear in the moment equa-

tions must be discretized because of the availability of a finite number of measures, so

the integrals over a continuous line reduce to a finite summation:

qi ≈ q̂i =

NT∑
j=0

gT,jBT,j +

NN∑
j=0

gN,jBN,j =
Ns∑
j=0

gs,jsj

where BT,j (BN,j) is the j − th measurement of the tangential field at one of the NT

(NN ) different positions, and gT,j (gN,j) are suitable coefficients.

Since an approximation is exploited by using a finite sets of sensor measurements

and suitable weighting coefficients, these moments are indicated as estimated mo-

ments: q̂i.

2.4 Filamentary model description

Recently, filamentary models for the plasma have been proposed in combination with

low-order FE models of the conducting structures which allows the representation of

advanced plasma configurations and scenario transitions [11]. The filamentary models

allow a fast and easy description of the plasma shape inside the vacuum vessel with

a relatively simple mathematical model. A basic filamentary model can be defined

by a triple Re, Ze, Ie, of radial and vertical position of the filaments ((Re(ii) = rii,

Ze(ii) = zii)) and value of the filament current (Ie(ii)): with a model composed of

Ne filaments, this translates into a solution of 3Ne unknowns. The simplest possible

filamentary model is composed by a single filament, of which the position (R1, Z1) and

current (I1) can be suitably and easily evaluated by exploiting the current moments, in

order to obtain a basic description of the plasma shape:

q̂0 = I1

q̂1 = Z1 · I1

q̂2 = R2
1 · I1

Obviously the use of a single filament (and therefore only three degrees of freedom)

allows to accurately describe only a small number of plasma shape. Also, only the

first three moments can be exploited in this way. For this reason filamentary models

are usually developed considering a sufficiently high number of filaments, in order to

describe several plasma shapes. In any case, a typical choice is to use a filamentary

model where the positions of the filaments are fixed. In such models, the relation

between the currents in the filaments and the moments can be rewritten as:

Q = G · I
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where Q is the moment vector, G is a matrix containing the values of the g functions

evaluated at the position of the filaments, and I are the filamentary currents. Typically,

the number of unknowns (currents) is greater than the equations (moments). Therefore,

in order to obtain the solution a pseudo-inverse G+ or optimization methods relative to

the problem are considered.

2.5 Passive structures modeling

In dynamic conditions eddy currents are induced in the passive structures surrounding

the plasma. The structures surrounding the plasma inside the vacuum chamber play

a crucial role in the stabilization of the plasma. In fact, in dynamic conditions eddy

currents are induced in the passive structures surrounding the plasma. These currents

are usually of the order of several kilo-amperes, thus affecting the magnetic measure-

ments used in the moments evaluation. Hence, the fast and accurate computation of

these currents is crucial, in particular when the magnetic measurements are employed

to determine the values of the parameters of a filamentary model in order to describe

the plasma shape. The whole passive structure can be discretized into Nc triangular

mesh elements according to a FE procedure, while the plasma is discretized using a

filamentary model suitably defined.

Starting from a set of plasma currents Ip and the source currents flowing in the ac-

tive circuits Is, and naming the flux linked by the passive elements as Ψc, the following

relations can be written for the passive structures:

Ψ̇c + RcIc = 0⇒
(

Mccİc + Mcpİp + Mcsi̇s

)
+ RcIc = 0,

Ic = M−1
cc (Ψc −McpIp −Mcsis).

where:

• Mcc ∈ RNc×Nc: inductance matrix of the passive structure elements;

• Mcp ∈ RNc×Np: inductance matrix linking the plasma elements to the passive

structure;

• Mcs ∈ RNc×ns: inductance matrix linking the active coils to the passive struc-

ture;

• Rc ∈ RNc×Nc: diagonal resistance matrix of the passive structure elements;

If we take the flux Ψc the system can be written in state space form as follows:

Ψ̇c = −RcM
−1
cc Ψc + RcM

−1
cc McpIp + RcM

−1
cc Mcsis
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Ic = M−1
cc Ψc −M−1

cc McpIp −M−1
cc Mcsis

hence: 
Ψ̇c = AΨc + [Bp Bs]

Ip

is


Ic = CΨc + [Dp Ds]

Ip

is


where the matrices A, Bp, Bs, C, Dp and Ds are suitably defined. It is important to

stress the fact that the number of variables of the state-space systems directly depends

on the number of elements that are considered in the vessel model. Therefore it is clear

that by increasing the number of elements a more detailed model is obtained, with the

drawback of having a more complex model, less suitable for real-time implementation.

Model order reduction of this system is of crucial importance to improve the real-time

performance of the entire algorithm.

2.6 Plasma measurements

In general the magnetic measurements m are the effects of the plasma current, the

active coil currents is and the passive structure currents ic, respectively mp, ms, and

mc:

m = mp + ms + mc,

which reduces to the following in the static case:

m = mp + ms.

Then, since the active coil currents are known and the passive structure currents can be

estimated, the magnetic measurements can provide the information related only to the

plasma current contribution.

2.7 The Iterative Axisymmetric Identification Algorithm

(IAIA)

The IAIA code is a fast and robust algorithm capable of accurately estimating the

plasma shape and boundary position in an axisymmetric toroidal plasma geometry.

The algorithm is based on a filamentary plasma model that is iteratively optimized and

a SVD-based regularization scheme, in order to fit the magnetic measurements while

avoiding ill-conditioned issues. More in detail, the IAIA code is a 2D reconstruction
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algorithm based on a model of the machine that considers both the active coils and

the passive structures (inner and outer vessels, vertical and triangular structures), takes

the signals coming from both the magnetic sensors and the active coils as input, and

provide the boundary location as a set of gap distances as output together with flux

information at specified points on the poloidal plane. Given the knowledge of the

currents flowing in the passive structures, the iterative procedure is able to accurately

provide the location and shape of the plasma boundary using a unique fixed radial

grid of possible equivalent plasma currents. In particular, the algorithm converges to

a correct solution within three iterations, with errors in the 24 gaps almost always in

the ±10mm range. Moreover, the code used in the analysis appears to be suitable for

real-time implementation and able to reconstruct both diverted and limiter plasmas.

The code is structured into five cascading modules (see figure 2.7) and the core of the

procedure is the approximation of the plasma with an equivalent filamentary model

that is computed iteratively and allows to describe a wide variety of plasma current

distributions, from the peaked ones, to the pedestal current ones.

Figure 2.7: Schematic drawing of the algorithm.

The algorithm takes as inputs/outputs the following:

• Inputs (gray blocks in Figure 2.7):

1. sensor measurements as timeseries (m), e.g. from pickup coils and/or flux

loops;

2. active coils signals as timeseries (Is).

• Outputs (yellow blocks in Figure 2.7):

1. diverted/limiter flag (diverted);

2. flux values at a predefined set of positions (fluxes);
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3. gap values at a predefined set of positions (gaps);

4. filamentary current plasma model (Iei , Ieo).

With reference to figure 2.7, the IAIA algorithm works as follows:

1. At first, the inputs, which represents the available data, are used to compute the

first three estimated plasma current moments (red block in figure 2.7)

2. After the moments are computed, they are taken by a new module (orange block

in Figure 2.7) as input, in order to calculate a first guess plasma model.

3. With this filamentary plasma model as input, together with the active coils cur-

rents, a third module (light-blue block in figure 2.7) provides as output the pas-

sive currents in a discretized vessel model.

4. a fourth module receives as input the magnetic measurements, the active coils

currents, and the passive current distribution provided by the third block, and

calculates the magnetic measurements due to the plasma only.

5. The final module (light green block in figure 2.7) takes the active coil currents

and the measurements due to the plasma only in input and provides the plasma

shape descriptions (in terms of plasma-firstwall distances along predefined lines,

i.e. gaps), position of the magnetic x− point and other flux information outside

the plasma, using a filamentary model that is iteratively optimized. The module

procedure is explained in section 2.8.

The first 4 blocks rely on the considerations made in the previous sections. More in

detail, the first guess plasma model is defined by a triple Re, Ze, Ie, of radial and ver-

tical position of the filaments ((Re(ii) = rii, Ze(ii) = zii)) and value of the filament

current (Ie(ii)). For the sake of simplicity, the filaments position is chosen a priori, so

that the problem boils down to the current distribution computation (Ne unknowns).

In this spirit, to approximate the first three moments with a preliminary current distri-

bution, it is possible to proceed by employing a fixed position filamentary model and

fitting a sinusoidal current distribution of the kind:

Ie(ii) = I0 + Icos(ii) + Isin(ii),

where I0 is a current bias, and the Icos and Isin are sinusoidal contributions, with respect

to the filament position:

Icos(ii) = Icos cos θii

Isin(ii) = Isin sin θii
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being (rii, zii) the position of the ii− th filament:

rii = r0 + a cos θii

zii = z0 + b sin θii

Given these assumptions:

q̂0 =
Ne∑
ii=1

I0

q̂1 = z0NeI0 + bIsin
Ne

2

q̂2 = r2
0NeI0 + a2I0

Ne

2
+ ar0IcosNe

The parameters of this model are r0, a, b, Ne. It follows:
I0 = 1

Ne
q̂0

Isin = 2
bNe

(q̂1 − z0q̂0) .

Icos = 1
ar0Ne

(
q̂2 −

(
r2

0 + a2

2

)
q̂0

)
And so, by using the first three plasma moments, the first guess plasma filamentary

model is computed.

2.8 Iterative procedure

The procedure implemented in the last module of IAIA is based on an Iterative Ax-

isymmetric Identification Algorithm that adaptively allocates the equivalent currents

to obtain the best estimate of the plasma contour.

The approach adopted to obtain this model is based on a static best fitting of the

available magnetic measurements to compute the model parameters. This calculation

involves the computation of the eigenvalues of a map between the equivalent currents

Ie and the measurement contribution due to the plasma only mp: the larger the eigen-

values, the stronger the relation between the two sets of quantities. The cardinality

Ne of the filamentary model and the positions of the equivalent current set are degrees

of freedom of the inverse identification problem and they must be a priori assigned.

The input quantities (known terms) of the identification problem are a set of nm mag-

netic measurements (flux loops and pick-up probes) distributed inside and outside the

vacuum vessel.

Then, for a given arrangement, the values of the equivalent currents Ie can be

calculated as the solution of the following inverse problem:

mp = GmpIe ⇒ Ie = G−1mpmp
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unfortunately Gmp is usually not-invertible (due to the fact that the chosen measure-

ments are not linearly independent that translates into a rank-deficient matrix or to a

number of unknowns different from the number of measurement data, i.e. undeter-

mined/overdetermined problems).

Therefore, the problem is translated into an optimization one: in other words, start-

ing from the observational data mp, we want to find the best distribution Îe that allows

to approximate (and no longer to exactly match) the measurements mp:

Îe = min
Ie
||GmpIe −mp||2

This problem has the following solution:

Îe =

(
GT

mpGmp

)−1
GT

mpmp

In general, it may happen that the problem is ill-conditioned, where the extent of the

ill-conditioning strongly depends both on the probe locations and on the arrangement

selected for the equivalent currents. A singular value decomposition technique is usu-

ally adopted to approximate the ill-conditioned matrix Gmp with a better-conditioned

one.

2.8.1 Iterative algorithm

Unfortunately, the matrix Gmp needs to be computed on-line since the choice of the

filaments occurs in real time.

To locate the equivalent plasma currents within the plasma domain, a discrete set

of rays is defined which starts at the machine center and extends towards the first wall.

Along these lines (called rad-lines), filamentary currents are selected according to the

iterative procedure described as follows:

• first, a set of equivalent currents is placed at the beginning of the current rays,

well inside the plasma domain, in an area that is basically included in any plasma

cross section shape;

• the current distribution Iei on this inner set is computed according to the opti-

mization problem seen before;

• given this current distribution, a flux map is generated and a first guess of the

plasma boundary is computed;

• then, iteratively:
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– a second set of equivalent currents is placed along the rays, midway be-

tween the starting point of the rays and the currently identified boundary (in

order to avoid local artifacts induced by the filamentary model, the equiva-

lent currents are in any case kept at a minimum distance from the identified

boundary);

– the current distribution Ieo on this outer set is computed together with a

new Iei according to the usual optimization problem;

– a further boundary is computed;

– the procedure is iterated.

It can be chosen to have a fixed number of iterations (experimentally three itera-

tions are sufficient to reconstruct plasmas with edge current distributions), or setting

a convergence criterion with reference to some distance measurement between two

consecutive iterations.

2.9 Passive structures model - explicit magnetic mea-

surements

The overall structure of the algorithm analyzed until now can be partially compressed

by considering the measurement term

m = mp + ms + mc,

where Gmp, Gms, and Gmc are the Green matrices related respectively to the pairs

measurements-plasma, measurements-active coils, and measurements-passive struc-

tures. From here, the Ip term can be obtained as

Ip = G+
mp(m−GmsIs −GmcIc)

where the pseudoinverse of the matrix Gmp is used. Then, remembering

Ic = −RcΨ̇c

It follows

Ψ̇c = −RcM
−1
cc Ψc + RcM

−1
cc McpG+

mp

(
m−GmsIs + GmcR

−1
c Ψ̇c

)
+ RcM

−1
cc Mcsis

Ic = M−1
cc Ψc −M−1

cc Mcp(m−Gmsis −GmcIc)−M−1
cc Mcsis
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And then a compact space-state model is obtained
Ψ̇c = ĀΨc + [B̄p B̄s]

m

is


Ic = C̄Ψc + [D̄p D̄s]

m

is


with the following definitions:



Ā = −(I−RcM
−1
cc McpG+

mpGmcR
−1
c )−1RcM

−1
cc

B̄m = (I−RcM
−1
cc McpG+

mpGmcR
−1
c )−1RcM

−1
cc McpG+

mp

B̄s = (I−RcM
−1
cc McpG+

mpGmcR
−1
c )−1(RcM

−1
cc Mcs −RcM

−1
cc McpG+

mpGms)

C̄ = (I−M−1
cc McpG+

mpGmc)
−1M−1

cc

D̄m = −(I−M−1
cc McpG+

mpGmc)
−1M−1

cc McpG+
mp

D̄s = −(I−M−1
cc McpG+

mpGmc)
−1(M−1

cc Mcs −M−1
cc McpG+

mpGms)

Thanks to this manipulation, the first three blocks of the IAIA scheme can be grouped

in a single one. Actually this model shows to be unstable depending on the chosen

magnetic measurements as input. The reason of this behavior needs to be further in-

vestigated.





Chapter 3

Model order reduction techniques

In the IAIA code, as well as in other real-time reconstruction codes, the passive struc-

ture model block (light blue block in figure 2.7) might contain a standard state-space

model with a great number of variables, depending on the level of detail we consider

when modeling the passive structures, typically causing an excessive time consump-

tion for our scopes. One possibility to overcome this problem is through model order

reduction. The main goal is to obtain a low dimensional system, starting from the

initial one, that has the same response characteristics as the original one with far less

storage requirements and much lower evaluation time. Besides delivering a reduced

model, MOR methods should have the following properties:

• They should suggest a suitable choice of the reduced model order q.

• The reduction should be invariant to different representations of the starting

model.

• A stable original model leads to a stable reduced model.

• It should be clear in what sense the reduced order model is optimal.

• The reduction algorithm is numerically robust and possibly not excessively time

consuming. Moreover, the method should be automatic, which means that there

are not many design parameters to play with.

During the last years, different MOR techniques have been developed. In particu-

lar, three different techniques have achieved great success:

1. Truncated Balanced Realization (TBR), based on the Hankel singular values of

the system;

2. Hankel norm optimal reduction;

38
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3. Selective Modal Analysis (SMA);

4. Krylov subspace methods.

TBR satisfies each requirement with some restrictions on the last one. Krylov sub-

space methods do not necessarily are invariant to different realizations of the original

model and do not always lead to stable models starting from a stable one. Finally,

SMA main benefit is that the retained variables in the reduced order model preserve

their physical meaning. These techniques are developed and analyzed in the following

sections.

3.1 Truncated balanced realization

In many applications, the most important requirement is that the input-output behavior

is well approximated by the reduced model. Then we have to understand which states

can be neglected without changing the transfer function of the original system signifi-

cantly. Controllability and observability concepts give us a way to proceed. First of all

we can remove uncontrollable and unobservable states of the system, without affect-

ing the transfer function. Secondly, after the first step is done, the key idea is to also

remove weakly controllable and weakly observable states.

Consider the standard space-state system

ẋ = Ax(t) +Bu(t)

y = Cx(t) +Du(t)

Suppose that A is Hurwitz. Let P and Q denote the controllability and observability

Gramians, respectively. Then P and Q satisfy the following Lyapunov equations:

AP + PAT +BBT = 0

ATQ+QA+ CTC = 0

where P ≥ 0, Q ≥ 0. Furthermore, the pair (A,B) is controllable iff P > 0, and

(C,A) is observable iff Q > 0. Suppose the state is transformed by a nonsingular T to

x̂ = Tx. Then the Gramians are transformed to P̂ = TPT T and Q̂ = (T−1)TQT−1.

It’s then easy to prove that P̂ Q̂ = TPQT−1, and therefore the eigenvalues of the

product of the Gramians are invariant under state transformation.

Now consider the similarity transformation T , which gives the eigenvector decom-

position
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PQ = T−1ΛT, Λ = diag(λ1Is1 , . . . , λNIsN )

Although the eigenvectors are not unique, in the case of a minimal realization they can

always be chosen such that

P̂ = TPT T = Σ,

Q̂ = (T−1)TQT−1 = Σ,

When proceeding with this kind of reduction it is very useful to pass through a balanced

realization of the original system, which is a realization of the original system where

the controllability Gramian P̂ and the observability Gramian Q̂ satisfy the following

identity:

P̂ = Q̂ = Σ,

where Σ = diag(σ1Is1 , . . . , σNIsN ) and Σ2 = Λ. In this way we have obtained a

new realization of the same system with balanced controllability and observability

Gramians. This realization is the so called balanced realization. The decreasingly

ordered numbers, σ1 > σ2 > · · · > σN ≥ 0, are called the Hankel singular values

of the system. The balanced realization implies that those states corresponding to

the smallest singular values are less controllable and less observable than the others.

Therefore, truncating those less controllable and observable states will not lose much

information about the system.

Figure 3.1: Hankel singular values of the system with 110 states.

In IAIA, the passive structure around the vacuum chamber is modeled with a stable

standard space-state model with the following characteristics:

• n = 110 or n = 1832 states, which represent the metallic structures around the

vacuum chamber. The number of states depends on the level of detail chosen

during the design process to represent the passive structures.
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Figure 3.2: First 110 Hankel singular values of the system with 1832 states.

• m = 114 inputs, 100 are the current values of the filaments of the first guess

plasma, while the remaining 14 inputs represent the currents flowing in the active

coils.

• p = 110 or p = 1832 outputs, which correspond to the currents flowing in the

metallic structures, depending on the level of detail chosen as before.

Both the models appear to be stable, controllable and observable, and so they are a

minimal realization of their transfer function. Thus the gramians are positive definite.

The state vector is then partitioned into x1, to be kept, and x2, to be discarded. All the

matrices are then partitioned according to the partition of the state vector.[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u

y = [C1 C2]x+Du

In figures 3.1 and 3.2 are represented the Hankel singular values of the systems

we are dealing with. It is worth noticing that in both cases the first 30 − 40 Hankel

singular values decrease quite rapidly in magnitude and then the remaining ones are

close to zero. Therefore it is clear that most of the information is contained in the first

30 − 40 states of the systems, while the others can be discarded without affecting too

much the systems input-output behavior. Figure 3.3 shows a comparison between the

first 10 singular values of the original system, with 1832 states, and of the reduced

model with 32 states only. The plots of the singular values of each system will be

always made without considering the D matrix which directly links the inputs with the

outputs, because it never changes during model order reduction operations.

Another approximation exists, where we do not simply discard the less controllable

and less observable states to obtain the reduced order model, by using a slightly differ-

ent approach. In this second approach we discard the specified states like in the first
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method, then we alter the remaining states to preserve the DC gain of the full-order

system. In particular, the derivative of x2 is set to zero and then the resulting equation

is solved for x1. The reduced-order model is then given by

ẋ1 = [A11 − A12A
−1
22 A21]x1 + [B1 − A12A

−1
22 B2]u,

y = [C1 − C2A
−1
22 A21]x1 + [D − C2A

−1
22 B2]u.

Figure 3.3: First ten singular values of the full-order model (blue line), Hankel truncated

reduced model (red-dashed), Hankel DC matched reduced model (green-dashed). [32 states].

Figure 3.3 also shows that alterations made to preserve the DC gain of the full-order

model have the drawback of producing a poorer performance at high frequencies, re-

spect to the usual truncation approach. Obviously the choice between which approach

to use depends on the particular application we are dealing with.

Furthermore, in figure 3.4 it is shown the behavior of the first 10 singular values,

when we consider a reduced model of 20 states. The performance appears to be poorer

as expected but quite acceptable, in particular the one of the truncated model, which

approximates well enough the full-order model in a wide range of frequencies.

Finally, it can be shown that using the TBR method, based on the calculation of

the original model Hankel singular values and on the truncation of these to the k − th
order, a H∞ bound on the response of the error model is satisfied [12]:

||G(ω)−Gk(ω)||∞ ≤ 2
n∑

i=k+1

σi.

where ||G||∞ = supω σmax(G(jω)).
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Figure 3.4: Singular values of the full-order model (blue), Hankel truncated reduced model

(red-dashed), Hankel DC matched reduced model (green-dashed). [20 states].

3.2 Hankel optimal model order reduction

Balanced realizations choose a state coordinate based on the contribution of the states

to the input/output energy flow. However, it is possible to focus only on the in-

put/output map without explicitly considering the internal state of the system. From a

mathematical point of view, Hankel optimal norm reduction is among the most appre-

ciated model reduction procedures that exist today. As a matter of fact, it is one of the

very few model approximation procedure that produce optimal approximate models,

in relation to some well-defined criterion. In order to understand the reduction proce-

dure, it is important to define the Hankel operator and the Hankel norm associated with

a standard space-state dynamical system

ẋ = Ax(t) +Bu(t)

y = Cx(t) +Du(t).

The transfer function of Σ = (A,B,C,D) is defined as G(s) = C(sI − A)−1B + D

and the impulsive response is

H(τ) =


0, if τ < 0

Dδ, if τ = 0

CeAτB, if τ > 0

In the following it is assumed that Σ is stable and that we’re dealing with a minimal re-

alization. Σ defines an input-output map defined in the time domain by the convolution
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y = H ∗ u, or in the frequency domain by the y = Gu. It is particularly interesting to

express how the past inputs influence future outputs. Consider an input u(t) that lives

for times t ∈ (−∞,∞) but vanishes for t ≥ 0 and concentrate on the output y(t), then

y(t) =

∫ 0

−∞
H(t− τ)u(τ), t ≥ 0.

Therefore Σ defines a mapping, say H, from past inputs u : (−∞, 0] → Rm to future

outputs y : [0,∞) → Rp. H is defined as the Hankel operator associated with Σ.

Due to the assumption that Σ is stable, the outputs y converge to zero as time t→∞,

for any given past input u. In particular, by restricting the past inputs to be square

integrable signals (hence u ∈ L2(−∞, 0], where L2 is the space formed by all square-

integrable functions with support on (−∞, 0] ), then the corresponding future outputs

y will also be square integrable. Thus, the Hankel operator maps L2(−∞, 0] signals to

L2[0,∞) signals it is possible to measure the maximal gain of this operator, defined as

||Σ||H , sup
u∈L2(−∞,0]

||y||2
||u||2

Where ||Σ||H is defined the Hankel norm associated with Σ and it reflects the maximal

effect which past inputs can have on future outputs, with reference to the L2sense.

The Hankel norm of a system turns out to be equal to the greater Hankel singular value

(σ1 defined in the previous section).

Theorem 1. If the system Σ is stable, then

• the Hankel operatorH has rank at most n, and equal to n if and only if Σ is both

reachable and observable.

• ||Σ||H =
√
λmax(PQ) = σ1

Where P and Q are the controllability and observability Gramians. Therefore the

Hankel norm can be easily computed directly from the product of the two Gramians.

In the previous section the model reduction by exploiting a balanced realization

has been investigated. However, this algorithm does not allow for an interpretation

as an optimal approximation. This means that the model obtained through the TBR

procedure does not minimize a criterion in which we ascertain how far the n− th order

system Σ is from a k − th order system Σk. On the other hand, the Hankel norm

approximation does involve such criterion. Given a n − th order stable system Σ, the

objective is to find a k − th order stable system Σk such that it minimizes the Hankel

norm of the error ||Σ−Σk||H , where Σ−Σk can be interpreted as the error system that

has the difference of the outputs of Σ and Σk as its own output. A fundamental result

in the theory of the Hankel norm is given by the following theorem.
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Theorem 2 (AAK). LetG(s) be a matrix-valued function bounded on the jω-axis. Let

σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 be the k largest singular values of the product PQ. Then σk
is the minimum of ||G−Gk||H among all stable systems Gk of order less than k.

This theorem gives a lower bound on the error made by approximating a system Σ with

transfer function G with a lower order system Σk with transfer function Gk. From this,

it follows the main result of this section, given by the algorithm which was presented in

[24]. Given a starting stable space-state system Σ, it provides the optimal Hankel-norm

approximant Σk = (Ak, Bk, Ck, Dk).

Algorithm 1. Glover’s algorithm.

INPUT The stable systemΣ = (A,B,C,D) where the pair (A,B) is controllable and

the pair (A,C) is observable.

Step 1 Compute the Hankel singular values σ1 ≥ σ2 ≥ dots ≥ σn of Σ and assume

that

σk > σk+1 = σk+2 = · · · = σk+r > σk+r+1 ≥ · · · ≥ σn > 0

i.e. σk+1 has multiplicity r.

step 2 Transform Σ to a balanced form where

P = Q =

[
Σ1 0

0 Σ2

]

with Σ1 = diag(σ1, . . . , σk, σk+r+1, . . . , σn) and Σ2 = σk+1Ir.

Step 3 Partition Σ = (A,B,C,D) accordingly to the partitioned Gramians as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
Now define

Γ = Σ2
1 − σ2

k+1I.

From the definition its clear that Γ is non-singular. If m ≤ p, proceed. If m > p,

replace (A,B,C,D) by (AT , CT , BT , DT ) and proceed.

Step 4 Determine a unitary matrix U such that B2 + CT
2 U = 0. Such a matrix exists.
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Step 5 Let n̂ , n− r be the state space dimension of the system defined as

Â = Γ−1(σ2
k+1A

T
11 + Σ1A11Σ1 − σk+1C

T
1 UB

T
1 )

B̂ = Γ−1(Σ1B1 + σk+1C
T
1 U)

Ĉ = C1Σ1 + σk+1UB
T
1

D̂ = D − σk+1U

which is called as all pass dilatation of (A,B,C,D). This means that the parallel

interconnection between Σ and Σ̂ = (Â, B̂, Ĉ, D̂) is all pass in the sense that the gain

of the error transfer function is

σmax(G(jω)− Ĝ(jω)) = σk+1

for all ω ∈ R. The system Σ̂ is in general not stable.

Step 6 Determine the stable subsystem of Σ̂ by choosing a basis of the space-state such

that

Â =

[
Â− 0

0 Â+

]
, B̂ =

[
B̂−

B̂+

]
, Ĉ =

[
Ĉ− Ĉ+

]
where Â+ and Â− have all their eigenvalues on the open right and left complex plane,

respectively. Â− will have dimension ≤ k.

If m ≤ p, proceed. Otherwise, replace (Â, B̂, Ĉ, D̂) with (ÂT , B̂T , ĈT , D̂T ) and pro-

ceed.

OUTPUT Set

Ak = Â−

Bk = B̂−

Ck = Ĉ−

Dk = D̂−

Then, Σk defined by

ξ̇ = Akξ(t) +Bku(t)

y(t) = Ckξ(t) +Dku(t)

is a space-state representation of an optimal Hankel norm approximant of Σ with

||Σ− Σk||H = σk+1.

The existence and construction of Ĝ is crucial in the entire procedure. Its existence

basically shows that it is possible to cancel any resonance of a stable system G by



3.3. Selective Modal Analysis (SMA) 47

connecting it in parallel with another system. In any case, in this way the lower bound

of the AAK theorem is reached and an optimal Hankel norm approximant system is

obtained. The algorithm is based on algebraic operations one the state space matrices,

so it is fast and numerically simple. Finally, note that since the Hankel singular values

of the original system can be easily computed, it’s straightforward to get a priori insight

in the achievable errors and to decide a suitable value of the number of states q in the

reduced order model. Furthermore,the optimal Hankel norm approximation method

gives a tighter guaranteed error bound in terms of theH∞ norm respect to TBR method.

In fact the following bound hold:

||G−Gk||∞ ≤
n∑

i=k+1

σi

3.3 Selective Modal Analysis (SMA)

The fundamental idea laying behind the selective modal analysis approach is that the

physical meaning of the state variables is preserved in the reduced model. Therefore,

it is possible to employ this fact both in the analysis of the system properties and in

the controller design. In SMA truncation is performed without a preliminary change

of basis in the state space, thus granting the preservation of the physical meaning of

the state variables. The problem is to decide which state variables are going to be

preserved in the reduced model. The choice of the state variables to be retained in the

reduced model is performed by considering two adimensional coefficients:

• the participation factor pki gives a measure of the contribution of the k− th state

in the i − th mode. It is defined as the product of the k − th components of

the left and right normalized eigenvector (hereinafter indicated as wki and vki
respectively) corresponding to the i− th mode.

pki , wkivki

• the participation ratio ρri gives a measure of the overall contribution of a set of

r states in the i− th mode, and is defined as

ρri ,

∑r
k=1 pki∑n
k=r+1 pki

As a consequence, an absolute value of the participation ratio greater than one

means that the selected states give a contribution to the i− th mode greater than

the contribution of the neglected ones.
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The participation ratios and factors are used as a guideline to the aim of choosing

the order of the reduced model. To begin the process of model order reduction, the

states of the system are reordered so that the ones to be retained are the first r (x =

[x1 x2], where x1 incorporates the first r states). Consider now the invertible matrix of

eigenvectors V = [v1 v2 . . . vn], and let W be its inverse. It is then possible to reorder

the eigenvectors of V , so that the first r eigenvectors correspond to the r eigenvalues

(λ1, . . . , λr) to be retained in the reduced model. It follows

WAV = Λ =

[
Λ1 0

0 Λ2

]
where Λ1 = diag(λ1, . . . , λr). Consequently, after partitioning the matrices in ac-

cordance to the partition of the eigenvalues, the matrices of the reduced model Sr =

(Ar, Br, Cr, Dr) are given as follows:

Ar = A11 + A12V21V
−1

11

Br = V11(W11B1 +W12B2)

Cr = C1 + C2V21V
−1

11

Dr = D

The SMA is from a certain point of view a combination of basic modal truncation

and singular perturbation approaches. In fact, the reduced system modes are exactly

(λ1, . . . , λr), such as in the modal truncation approach. Furthermore the eigenvectors

of Ar are v1,i, which means they are composed by the first r components of the i− th
eigenvector of A associated to λi. The effect of the neglected dynamics on the retained

variables is described byH(s) = (sI−A22)−1A21, that is the transfer function between

x1 and x2. In the SMA procedure, the approximation is given by

H(s) ' H = V21V
−1

11 .

Thus the effect of x2 on x1 is totally preserved when only the retained modes are

excited. For instance, consider the eigenpair (λ1, v1 = [vT11v
T
12]T ). Then

λ1v12 = A21v11 + A22v12

thus

v12 = (λ1I − A22)−1A21v11 = H(λ1)v11

Since V21V
−1

11 v11 = v12, it follows that Hv11 = H(λ1)v11. Hence, the additional term

A12V21V
−1

11 in the construction of the matrix Ar grants that the effect of x2 on x1 is

totally preserved when only the selected modes are excited.
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In some cases comparisons of different pki is made particularly easy by the struc-

ture of the problem. The following statement applies to the models considered here.

Proposition 1. Assume that the matrix A ∈ Rn×n is such that

A = −RL−1

where L = LT is nonsingular and

R =

[
0 0

0 R2

]
where R2 is a diagonal and positive definite matrix. If all the nonzero eigenvalues of

A are real and distinct, then pki ≥ 0, ∀ i, k.
Proof Let v, w be a right and left eigenvector of A respectively, associated with a

nonzero simple eigenvalue λ, and let wTv = 1. By partitioning v, w and L in accor-

dance to the block structure of R and writing L−1 as

−L−1 =

[
M N

NT P

]
It is possible to find the following relations

0 = λv1

R2N
Tv1 +R2Pv2 = λv2

wT2 R2P = λwT2

wT2 R2N
T = λwT1

Remembering that λ 6= 0, the first relation gives v1 = 0, and therefore it can be writtenλv2 = R2Pv2

λwT2 = wT2 R2P

So v2 and w2 are right and left eigenvectors of A22 = R2P associated with λ. There-

fore, the participation factors associated with nonzero eigenvalues depend on v2, w2

only. By defining φ = R2w2 and ξ = R−1
2 v2, and by exploiting the previous relations,

it is easy to obtain the following relationsλφ = A22φ

λξT = ξTA22

Then φ and ξ are right and left eigenvectors of A22 and they are associated with λ.

Since λ is a simple eigenvalue it follows that φ and v2 are proportional
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φ = R2w2 = αv2

and so

v2 =
1

α
R2w2

Now the following relation holds

wT2 v2 = 1 =
1

α
wT2 R2w2

where R2 > 0. Then α > 0. Denoting the i − th component of vectors v2 and w2 as

v2,i, w2,i and with r2,i the (i, i)− th entry of R2 the previous relation yields

v2,i =
1

α
r2,iw2,i

And finally, remembering that r2,i > 0 :

pλi = w2,iv2,i =
1

α
w2

2,ir2,i > 0, ∀ i

The fundamental step in SMA is the choice of the state variables to be retained

in the reduced order model. A good method to determine the number of states to be

retained is given by the participation ratios, which suggest the minimum number of

states to be retained to have an absolute value greater than one. A reduced order model

is obtained by retaining only the states with the greatest participation factors in the

dominant modes (those contributing the most to the transfer function). Unfortunately,

the models considered here are stable, so it is difficult to choose which modes have to

be retained in the reduced model a priori. In such cases SMA is limited in practice by

the difficulty to assess the modal dominance of the system. In other words, knowledge

of which modes should be retained is not always clear, and consequently it is not easy

to choose the states to be retained. In particular, the difficulty to choose the states

increases because there are lots of closely-spaced eigenvalues. In many cases, it is the

high frequency modes that are discarded, due to damping and bandwidth limitation of

actuators and sensors.

3.4 Krylov subspace methods

Recently, Krylov subspace methods have become popular tools for computing reduced

order models starting from really high order linear time invariant systems. They can be
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used to find mapping from the high-dimensional space of a given state-space model to

some lower dimensional space. This procedure of using mappings in order reduction

is typically referred to as reduction by projection. The main advantages of Krylov

reduction techniques are the following:

1. The number of operations needed to compute a reduced system of order q given

a starting model of order n using the Arnoldi algorithm (which will be discussed

in the following) is O(qn2), respect to O(n3) operations needed for the SVD

based methods, such as TBR.

2. The building procedure of the reduced model is numerically robust, there is no

need to compute the transformed n − th order model and then truncate. There-

fore, the ill-conditioning that arises in SVD methods can be avoided.

On the other hand, the main drawbacks are:

1. The reduced order system may not be stable, even when the original system is

stable.

2. The reduced model is not invariant to different representations of the original

model.

Considering the usual space-state model

ẋ = Ax(t) +Bu(t)

y = Cx(t) +Du(t)

and then a projection as follows

x = V xr, V ∈ Rn×q, x ∈ Rn, xr ∈ Rq

and applying it to the system considered above, also pre-multiplying the state equation

by the transpose of W ∈ Rn×q, the general reduced order model by projection is

calculated as follows:

W TV ẋr = W TAV xr +W TBu

y = CV xr +Du.

From this, the matrices identifying the reduced order model are the following

Ar = W TAV, Br = W TB, Cr = CV

The question is how to calculate those matrices V and W . From a certain point of

view, the Hankel model reduction can be seen as a method of reduction by projection.
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By the way, the main difference between the two methods is that the Krylov subspace

method requires a minor computational effort and the computation is numerically ro-

bust. A general Krylov subspace is defined as

Kq(Ã, B̃) = span{B̃, ÃB̃, . . . , Ãq−1B̃},

where Ã ∈ Rn×n and B̃ ∈ Rn×m. The vectors which span the subspace are called

the basic vectors. With this definition, two Krylov subspaces Kq1(A
−1, A−1B) and

Kq2(A
−T , A−TCT ) both with the same rank are used for model order reduction and

are called input and output Krylov subspaces respectively. Therefore, the two pro-

jection matrix V and W are chosen as a basis of the Krylov subspaces Kq1 and Kq2

respectively.

The Krylov subspaces Kq1 and Kq2 are so chosen because they allow to match a

certain number of moments of the full-order system with the reduced one. The number

of matching moments directly depends on the number of variables retained in the low-

order model and at the same time it depends on the number of inputs and outputs of the

system. In linear space-state systems, moments (around zero) are defined as follows:

Mi = CA−(i+1)B, i = 0, 1, · · · .

Mi is in general a p × m matrix, when we deal with MIMO systems. The moments

are related to the coefficients of a Taylor series expansion around zero. The following

theorem applies to SISO systems and can be generalized to MIMO case.

Theorem 3. Let the projection matrix V be a basis of Krylov subspaceKq1(A
−1, A−1b)

with rank q. If W is chosen such that Ar is nonsingular, then the first q moments

(around zero) of the reduced model coincide with the ones of the full-order one.

Proof The zeroth moment of the reduced system is

mr0 = cTr A
−1
r br = cTV (W TAV )−1W T b

where b and c are the input and output matrices, which in a SISO model are reduced

to a column and row vector respectively.

The vector A−1b can be written as

A−1b = V r0, r0 ∈ Rq

because it is in the Krylov subspace and so it can be expressed as a combination of the

columns of V . Therefore,

(W TAV )−1W T b = (W TAV )−1W T (AA−1)b = (W TAV )−1W TAV r0 = r0

And then
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mr0 = cTV (W TAV )−1W T b = cTV r0 = cTA−1b = m0

By repeating these steps, it is possible to prove that the moments until mr(q−1) = mq−1

match.

It can be proved that when V is a basis of input Krylov subspace or W is a basis

of output Krylov subspace then the first q
m

or q
p

moments match respectively and the

reduction method is generally called one-sided Krylov method. This happens when

only one of the two matrices is chosen as specified, while the other one is chosen

arbitrarily (a typical choice is V = W ). If both V and W are chosen as bases of the

input and output Krylov subspace respectively, the method is called two-sided Krylov

method and we have q
m

+ q
p

matching moments. From the previous observation it’s

clear that the Krylov subspace methods works well for general SISO systems or with

systems which have a low number of either inputs or outputs, or both. The following

theorems summarize two main results of Krylov methods:

Theorem 4. If the projection matrix V is a basis of Krylov subspace Kq1(A
−1, A−1B)

with rank q and the projection matrix W is chosen such that Ar is nonsingular, then

the first q
m

moments of the original and reduced order model match. A is assumed to

be invertible.

Theorem 5. If the matrices V and W are bases of Krylov subspaces Kq1(A
−1, A−1B)

and Kq2(A
−T , A−TCT ) respectively, both with rank q (where q is a multiple of m and

p), then the first q
m

+ q
p

moments of the original and reduced order model match. A

and Ar are assumed to be invertible.

In MIMO systems the moments are matrices with m · p entries. Therewith, the

number of matching scalar parameters is m · p · q
m

= p · q for Theorem 4 and m · p ·
( q
m

+ q
p
) = p · q + m · q for theorem 5. Accordingly, each column of the matrices V

and W allows to match one more row or column of scalar parameters. Therefore, by

choosing the first q columns of the matrices V and W , it is possible to find a reduced

model of order q to match p · q + m · q parameters of the original model and there’s

no need to choose q such that it is a multiple of both, m and p. The choice of V

and W using Krylov methods is very simple. However, the numerical calculation

of the matrix-vector products involved in the Krylov subspaces turns out to tend to

be unstable. Therefore, algorithms have been developed to reliably calculate those

matrices. One of these is the Arnoldi algorithm.

Finally, Krylov subspace methods have another advantage. In fact, Krylov sub-

spaces Kq1 and Kq2 can be adapted to match moments at a point different from zero,
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which can be useful in some specific applications. To do so, it is necessary to consider

the new input and output subspaces, which are respectively Kq1((A − s0I)−1, (A −
s0I)−1B) and Kq2((A − s0I)−T , (A − s0I)−TCT ). There are other additional prop-

erties regarding in particular the differences between one-sided e two-sided methods

which won’t be discussed here and can be found in [4].

3.4.1 Arnoldi algorithm

When computing the projection matrices, it is desired to find an orthogonal basis, in

order to avoid numerical problems. The classical Arnoldi procedure computes a set of

orthonormal vectors which constitutes a basis for a given Krylov subspace with only

one starting vector. This procedure must be expanded in order to deal with MIMO

systems. For instance, consider a system with B = [b1 . . . bm]. The column vectors

b1, . . . , bm are called starting vectors. Consider the Krylov subspace Kq(A,B) with m

starting vectors. The Arnoldi algorithm finds a set of vectors orthogonal to each other,

so that

V TV = I

where the columns of V form a basis for the given Krylov subspace. In the Arnoldi al-

gorithm, at every step a new vector is constructed, orthogonal to the previous ones and

normalized to have length one. Its good accuracy results from orthogonality. When q is

not small enough, it might happen that not all the basic vectors are independent. Thus,

to avoid this problem the linearly dependent vectors must be deleted. This procedure

is called deflation.

Algorithm 2. Arnoldi algorithm with deflation using modified Gram-Schmidt proce-

dure:

0. Delete the linearly dependent starting vectors in order to find m1 independent

vectors for the considered Krylov subspaces. Then set

v1 =
b1√
bT1 b1

where b1 is the first starting vector after deleting the dependent ones.

1. For i = 2, 3, . . . , do

(a) Compute the next vector: if i ≤ m1 the successive vector is the i − th

starting vector. Otherwise

r1 = Avi−m1
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(b) Orthogonalization: set v̂i = ri then for j = 1, . . . , i− 1 do

h = v̂ivj

v̂i = v̂i − hvj

(c) Normalization: if vector v̂i is zero, reducem1 tom1−1 and ifm1 is nonzero

go to step 1.a. If m1 is zero break the loop. Otherwise, if v̂1 6= 0 the i− th
column of matrix V is

vi =
v̂i√
v̂Ti v̂i

(d) Increase i and go to step 1.a.

An important property of Krylov subspaces is that, if the i− th basic vector related

to the starting vector bj is linearly dependent from the previous basic vectors, then all

other basic vectors pi+m1 , pi+2m1 , . . . related to the vector bj are linear combinations

of the first i − 1 basic vectors. In step 1.b of the Arnoldi algorithm, v̂i = 0 means

that the i − th basic vector is linearly dependent from the previous basic vectors and

all basic vectors pi, pi+m1 , . . . can be deleted in the following iterations. A way to do

this is by reducing the parameter m1. if v̂i 6= 0, the first i basic vectors are linearly

independent and {v1, . . . , vi−1, v̂i} span the same space as the first i basic vectors and

all of them are independent. The moments of a MIMO system are p× n matrices Mi,

where each row and column is related to an output and an input respectively. Krylov

subspace techniques make possible to match individual rows (and columns) up to a

higher index i than other rows (or columns). Thank to this, for more important entries

of the moment matrices the number of matched parameters can be increased, while

decreasing the matched parameters for less important entries. This fact is very useful

when dealing with MIMO systems with a great number of input or outputs.

For instance, consider an input Krylov subspace. For a system with m (linearly

independent) inputs, there existm starting vectors that must be orthonormalized, which

yield the first m columns of matrix V , v1, . . . , vm. For the successive vector, there are

m candidates, A−1v1, . . . , A
−1vm, called r1, . . . , rm, that can be chosen to construct

vector vm+1. One way to choose the next vector is by selecting the most linearly

independent from all the previous ones. One way to identify this vector is through

geometrical dominance measure. The angle between the candidate vectors and the

hyperspace constructed by the previous ones gives a measure of the independence

of each candidate vector from that hyperspace. The computation of the sine of this

angle can be made within the Arnoldi algorithm as the division between the norm

of the next vector before normalization (v̂i in the algorithm above) and the norm of

ri, i = 1, . . . ,m. Consequently, di = norm(v̂i)
norm(ri)

can be used as a dominance measure
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to choose among the m candidates r1, . . . , rm. Another dominance measure can be

computed by exploiting SVD. In this case the SVD of the matrix [ v1 · · · vm ri ]

must be calculated for every candidate vector. The smallest singular value shows the

linearly dependency of the columns. For proper comparison, it is better to normalize

all vectors ri before computing the SVD. Independently on the chosen method, once

the dominance measure are calculated for all m candidates, the vector with the largest

measure is chosen to become the next column vector of matrix V . Suppose that is rj ,

then it must be substituted by the next candidateA−1vm+1, and the dominance measure

must be renewed using by considering the m+ 1 columns of matrix V , and so on.

This selection procedure aims to choose the columns most contributing to the con-

trollability subspace in every iteration. This method can obviously be applied also to

the output Krylov subspace. Figure 3.5 shows a scheme of the selection procedure.

Figure 3.5: Selection procedure with dominance measure.

From a numerical of view, the computation of the inverse of the large matrix A can

be affected by numerical issues or be excessively time-consuming. So direct calcula-

tion of this inverse isn’t recommended. To solve the numerical problem, one solution is

to use the LU-factorization and then solve two triangular linear equations. Obviously,
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using this method in each iteration would lead to a slow algorithm. To cope with this

problem the idea is to compute the LU factorization of the matrix A at the beginning

of the algorithm and then solve only triangular linear equations in each iteration. In

this way, time is saved and the algorithm is more robust to numerical issues. In the

one-sided method W = V is a common choice. In fact, this choice of W is useful be-

cause it allows to find the reduced order model with less computational effort, because

W TV = I .

Figure 3.6: Singular values of the full-order model [110 states] (blue) and Krylov reduced

model (red-dashed, input-sided, 55 states).

In figure 3.6 it is shown a comparison between the ten greater singular values of the

full-order model (110 states) and of the input-sided Kyrlov reduced model, composed

by 55 states, computed using the input Krylov subspace. The two models behave in

a similar way in a wide range of frequencies. In particular, we can observe that the

matching of the singular values is approximately perfect for low frequencies: in fact

we are matching the moments of the original model around the origin, which leads

to approximate the slow dynamics of the original system, so this was totally expected.

For instance, in figure 3.7 it is shown the behavior of the reduced model when choosing

to match the moments around s = 102 [rad/sec]. By comparison with figure 3.6 it is

clear that at high frequencies there is a better performance in terms of singular values,

the drawback is that at low frequencies this new model has poorer results. The final

choice of which model to use depends typically on the particular application.

There is one more important fact to be stressed. As explained above, Krylov re-
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Figure 3.7: Singular values of the full-order model [110 states] (blue) and Krylov reduced

model (magenta-dashed, input-sided, 55 states). Here the moments are matched around s =

102 [rad/sec].

duction technique aims to match the first moments of the reduced model with the ones

of the full-order one. In doing so, the matrices V and W , or both, need to be suitably

computed, to match the first q
m

or q
p

moments. The full-order model is in particular

composed by n = 110 or n = 1832 states and by a corresponding number of outputs

(which are independent). So, in order to match the first moment of the full-order model

by using the output-sided method, it is necessary to consider a reduced order model

that is the full-order model itself. So in this case the output-sided method is totally use-

less, showing a common weakness of Krylov subspace methods in dealing with lots of

inputs or outputs. At the same time, the reason why we have achieved slightly better

results in using one-sided input method is because the inputs are linearly dependent,

leading to a better performance of the algorithm, but still not really satisfactory. To

conclude, it’s clear, from the previous observations, that the full-order model we are

considering is not really suited for this kind of reduction techniques.





Chapter 4

Simulation results

Hereinafter the reduction techniques are applied to the RFX-mod and ITER models.

In particular the experiments on RFX-mod are mainly used as a validation and

assessment of the procedure (despite their validity per se), and to gain a hands on

experience on the MOR results. This approach has been motivated by the fact that

MOR on ITER machine (which is the main objective of this work) has led to several

numerical issues that inserted additional difficulties in the procedure.

In order to evaluate the goodness of the reduced models, there are considered com-

parisons between the Bode diagrams and step responses, where some inputs of the

models are excited by a step of amplitude 1 [A] at t = 0 [s].

4.1 TBR reduced models

4.1.1 Part A - technique validation on RFX-mod

The TBR approach was applied to the RFX-mod model with good results. To start

the model reduction it is crucial to observe the Hankel singular values behavior, in

order to have some hint on a suitable choice of the reduced model order q. In figure

4.1 it is shown the behavior of the Hankel singular values. The first ones show a

fast decrease and so they rapidly come to near zero values. By comparing it with

figures 3.1 and 3.2 it appears that this model is more suited for this kind of reduction.

Given the knowledge of the Hankel singular values, three different reduced models

were considered with different number of states: 20, 26 and 32. In figure 4.2 the

singular values of the transfer matrix of the reduced models are compared with the

ones of the full-order model, while some of the step responses are shown in figure

4.3. The step responses are generally good for each reduced model in particular when

the amplitude of the response is relatively high, this meaning that the more important

relations between inputs and outputs are well approximated by the reduced models, as

60
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Figure 4.1: RFX-mod: First 100 Hankel singular values of the RFX-mod model.

expected. Obviously, when increasing the number of states in the reduced models, also

less important dynamics start to be followed. As a further criterion of comparison, also

the Bode plots are represented in figure 4.4. As it is shown, the Bode plots typically

well approximates the full-order one until about a frequency of 102 [rad/sec]. This

is also due to the fact that when the frequency increases, some of the outputs tend

to be dumped (this translates in a decrease of the magnitude of the Bode plot when

the frequency increases) and so they have small contributions in the overall response.

These considerations are common to all the reduction techniques.

Finally, table 4.1 shows the errors made on the H∞ norm and the relative error

bounds.

number of states H∞ norm [dB] error bound on H∞

Full-order 26.7957 N/A

20 26.7820 0.1402

26 26.7950 0.0476

32 26.7954 0.0134

Table 4.1: RFX-mod: H∞ norm errors and relative error bounds in RFX-mod model. [TBR]
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Figure 4.2: RFX-mod: Comparison of the singular values between the full-order RFX-mod

model and the three reduced models.

4.1.2 Part B - technique approach on ITER models

The reduced models of the systems with n = 110 and n = 1832 states are here consid-

ered and the step responses and Bode plots are compared1. The Hankel singular values

of these models have already been shown in section 3.1. Figure 4.6 shows the behav-

ior of the currents in some of the states of the passive structures. The quality of the

reconstructed currents is quite good compared to the full-order ones and the Bode plot

are consistent with the step responses. Figure 4.5 shows the values of the 12 dominant

singular values of the system with n = 110 states.

1We will refer to this two models as ITER110 and ITER1832.
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(a)

(b)

Figure 4.3: RFX-mod: Step responses of the full-order and reduced systems of the outputs

from 4 to 7 (a) and from 8 to 11 (b) when the first input is excited.
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(a)

(b)

Figure 4.4: RFX-mod: Bode plots (only the magnitude plots are represented) of the full-order

and reduced systems between the first input and the outputs from 4 to 7 (a) and from 8 to 11

(b).
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number of states H∞ norm [dB] error bound on H∞

Full-order 86.0098 N/A

20 85.4773 56.5956

26 86.0047 19.5631

32 86.0085 8.8458

Table 4.2: ITER110: H∞ norm errors and relative error bounds in the ITER model with

n = 110 states. [TBR]

Figure 4.5: ITER110: 12 dominant singular values of the full-order system with n = 110

states and of the reduced systems using TBR.
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(a)

(b)

Figure 4.6: ITER110/1832: Step responses of the full-order and reduced systems of the outputs

from 1 to 4 when n = 110 (a) and n = 1832 (b), when the 101 − th input is excited (i.e. the

first active coil). [TBR]
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(a)

(b)

Figure 4.7: ITER110/1832: Bode plot of the full-order and reduced systems between the 101−
th input and the outputs from 1 to 4 when n = 110 (a) and n = 1832 (b) (i.e. the first active

coil). [TBR]
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4.2 Hankel norm reduced models

4.2.1 Part A - technique validation on RFX-mod

The Hankel norm optimal reduction has been implemented with reference to the RFX-

mod system and has given great results. In order to compare this model reduction

technique with the previous one, reduced order models of the same order where con-

sidered. In figure 4.11 the comparison between the singular values of the full-order and

reduced models is shown. Figures 4.9 and 4.10 show some step responses and Bode

plots relative to the same inputs and outputs of figures 4.3 and 4.4. It is straightforward

to verify that all the models produce similar and well performing reduced systems for

both the model reduction techniques. In table 4.3 there are shown the value of the H∞
norm and the relative error bound provided by the theory. So, from the point of view

number of states H∞ norm [dB] error bound on H∞

Full-order 26.7957 N/A

20 26.7842 0.0701

26 26.7935 0.0238

32 26.7952 0.0067

Table 4.3: RFX-mod: H∞ norm errors and relative error bounds in RFX-mod model. [Hankel

norm]

of the H∞ norm, all the reduced models prove to be very good and show that the error

bound is not really tight.
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Figure 4.8: RFX-mod: Comparison of the singular values between the full-order RFX-mod

model and the three reduced models.

4.2.2 Part B - technique approach on ITER models

The Hankel norm optimal reduction has been applied to both the ITER models with

n = 110 and n = 1832 states. The step responses and Bode plots shown in figures

4.12 and 4.13 are good except for the models with the minor number of states, which

shows some differences in both the time and frequency domains. Also the 12 dominant

singular values in figure 4.11 show that by using only 20 states (when n = 110) there

is a lack in the consistency between the reduced and full-order model. Similar conclu-

sions can be made for the system with n = 1832. In any case, the results are greatly

enhanced when considering the reduced models made of 26 and 32 states. From the

H∞ norm point of view, considering the system with n = 110 states, all the errors

between the full-order model and the reduced models result to be almost zero.
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(a)

(b)

Figure 4.9: RFX-mod: Step responses of the full-order and reduced systems of the outputs

from 4 to 7 (a) and from 8 to 11 (b) when the first input is excited.
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(a)

(b)

Figure 4.10: RFX-mod: Bode plots (only the magnitude plots are represented) of the full-order

and reduced systems between the first input and the outputs from 4 to 7 (a) and from 8 to 11

(b).
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Figure 4.11: ITER110: 12 dominant singular values of the full-order system with n = 110

states and of the reduced systems using the Hankel norm optimal reduction.
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(a)

(b)

Figure 4.12: ITER110: Step responses of the full-order and reduced systems of the outputs

from 1 to 4 when n = 110 (a) and n = 1832 (b), when the 101 − th input is excited (i.e. the

first active coil). [Hankel norm]
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(a)

(b)

Figure 4.13: ITER110: Bode plot of the full-order and reduced systems between the 101− th
input and the outputs from 1 to 4 when n = 110 (a) and n = 1832 (b) (i.e. the first active coil).

[Hankel norm]



4.3. SMA REDUCED MODELS 75

4.3 SMA reduced models

SMA reduction procedure allows to preserve in the reduced model the physical mean-

ing of the full-order variables. This can be really helpful when designing or tuning

a controller for a reduced system. On the other hand, this reduction method presents

some drawbacks, in particular the computation of the eigenvalues of large systems can

be difficult and subject to numerical issues. Moreover, this procedure is better suited

for systems which have a particular structure, so that the participation factors can be

easily studied (remember proposition 1). These are the cases of the IAIA passive struc-

tures model with n = 1832 states and the RFX-mod model, respectively.

Therefore, the only reduced model considered in this case is the model of the IAIA

passive structures with n = 110 states.

4.3.1 Approach on ITER model with n = 110 variables

From the analysis of the systems we are considering (also the system with n = 1832

states is here discussed), some interesting results have emerged. In particular, it ap-

pears that low-frequency modes tend to be dependent, in a similar way (similar pki
values), from a great number of states, while high-frequency modes usually depends

on a minor number of states, which have a great influence on them, granting high par-

ticipation ratios. From now on, we will consider the modes of the full-order system

ordered decreasingly, so that the first mode will be the slower, and the last one the

faster.

particip. ratio states mode 1 mode 35 mode 110 mode 600 mode 1832

ρ 110 1.137 2.797 ' 8 · 108 N/A N/A

ρ 1832 1.585 4.156 1.867 12.595 ' 4.228 · 1013

Table 4.4: Participation ratio of 6 different modes, computed by considering the 30 and 500

states with the major influence for each mode in the systems with 110 and 1832 states respec-

tively.

As we can see from table 4.4 the first mode is awfully dependent on a very large

number of states, in particular when n = 1832. This behavior is common to almost

all low frequency modes. The consequence is that to obtain a participation ratio on

the first mode greater than one, we have to retain about 400 states. So by retaining

400 states we can only achieve a participation ratio slightly greater than one for the

first mode, and at the same time we have low participation ratios for all the remaining
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Figure 4.14: ITER1832: Greater participation factors corresponding the to first mode of the

system with n = 1832 states. The behavior is extremely smooth and the values are very small.

modes. Thus, to obtain a reduced model which well approximates the original one,

there is the need to retain a number of states ridiculously high. Figure 4.14 shows

the behavior of the 150 greater participation factors in the first mode. The values of

the participation factors are very small and the decrease is very smooth, leading to a

difficulty in the choice of the number of states to be retained.
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(a) Map of the 30 states with higher participation ratio

(crossed circles) in the modes associated with the eigen-

value λ = −1.6322.

(b) Map of the 300 states with higher participation ratio

(crossed circles) in the modes associated with the eigen-

value λ = −0.2595.

Figure 4.15: areas of major influence on the first mode of the two systems

From the Figures above we can observe that:

• low-frequency modes depend on states which typically present symmetries with

respect to radial or vertical axes, such as in Figure 4.15 or in Figure 4.16 (b);

• middle-frequency modes depend on states that are quite evenly distributed in the

metallic structures, like in Figures 4.16 (a) and 4.17 (a) and (b);

• high-frequency modes behave in a similar way like the middle-frequency ones,

except for the very high-frequency modes, which appear to be dependent on

localized currents without any symmetric pattern. In particular, it appears that

the vertical structure has a great influence on the majority of them. Figures 4.17
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(a) Map of the 30 states with higher participation ratio

(crossed circles) in the modes associated with the eigen-

value λ = −15.1188.

(b) Map of the 300 states with higher participation ratio

(crossed circles) in the modes associated with the eigen-

value λ = −2.3296.

Figure 4.16: areas of major influence on the tenth mode of the two systems

(c) and (d) shows this particular behavior. Furthermore, when considering this

modes, we can achieve really high participation ratios with only few states.

Dissimilarly from the high-frequency modes, the low-frequency modes behave in a

different way. Considering these modes, to achieve participation ratios greater than 1,

we need to include in the reduced model a greater number of states. This is caused by

the fact that the single states have small and similar participation factors in relation to

low-frequency modes. Because of this we have to retain a greater number of states in

the reduced model respect to the optimal model obtained with the Hankel procedure.

For instance in figure 4.18 is represented the sum of the 30 greater participation factors

for each mode of the system with 110 states.
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(a) Map of the 30 states with higher participation

ratio (crossed circles) in the modes associated with

the eigenvalue λ = −106.7948.

(b) Map of the 300 states with higher participation

ratio (crossed circles) in the modes associated with

the eigenvalue λ = −13.4693.

(c) Map of the 30 states with higher participation

ratio (crossed circles) in the modes associated with

the eigenvalue λ = −883.4492.

(d) Map of the 300 states with higher participation

ratio (crossed circles) in the modes associated with

the eigenvalue λ = −4773.6528.

Figure 4.17

In order to determine the number of variables to be retained in the reduced model

the participation factors of the first eigenvalues were considered. In particular, the par-

ticipation factors relative to the first eigenvalues of the systems appear to decrease very

smoothly and this behavior is common to almost all low and middle frequency eigen-

values. Only high frequency eigenvalues tend to be dependent from a small number of

states, probably because they are due to local artifacts of the magnetic field.

As the physical meaning of the state variable is preserved, it is possible to use

as a guideline in the selection of the variables to be retained the available a priori

knowledge on the machine structure. The key issue is to find a criterion for selecting

which states belonging to the metallic structures can be neglected while retaining the

most relevant dynamic behavior of the system. A typical choice for stable system is to

retain the variables which are the most influential on the low frequency eigenvalues of

the system, which are the dominant ones in the dynamic of the system.
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Figure 4.18: ITER110: sum of the 30 greater participation factors for each mode of the system

with 110 states.

From these considerations it’s clear that to achieve a reduced order model which

reproduces the full-order one, a higher number of variables must be retained in the re-

duced model respect to the previous MOR techniques. There is the necessity to make

a choice that mediates between the contrasting needs of reducing the number of vari-

ables and obtaining a good approximation of the original system. A good solution is

to retain the most relevant variables with respect to the 10 dominant eigenvalues of the

model with n = 110 states. This led to a model composed of 63 states, so in this way

almost half the number of starting variables was removed while conserving the physi-

cal meaning of the remaining ones. In figure 4.19 it is shown the comparison between

the dominant singular values of the two models. Figure 4.20 shows the behavior of

the step responses in the same situation of the previous section (for instance, see figure

4.6). The relative Bode plot is shown in figure 4.21. The behaviors of the Bode plots

and of the step responses are quite similar to the ones achieved using the previous tech-

niques, but now we are retaining a far greater number of variables in the reduced order

model. In conclusion, with this kind of system the SMA procedure grants us the pos-

sibility to preserve the physical meaning of the retained variables, with the drawback

of the need to retain a higher number of variables to achieve a satisfactory result.
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Figure 4.19: ITER110: 12 dominant singular values of the full-order system with n = 110

states and of the reduced system using SMA.

Figure 4.20: ITER110: Step responses of the full-order and reduced system of the outputs from

1 to 4.



82 CHAPTER 4. SIMULATION RESULTS

Figure 4.21: ITER110: Bode plot of the full-order and reduced system between the 101 − th
input and the outputs from 1 to 4.

Figure 4.22: RFX-mod: comparison of the 12 dominant singular values of the starting system

and of the input-sided reduced one with 32 states.
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4.4 Krylov reduced models

4.4.1 Part A - technique validation on RFX-mod

Krylov techniques aim to compute reduced order models in which the first moments of

both the original and reduced model match. This allows to easily determine the desired

order of the reduced model and may also give some hint outside the mathematical

meaning of the reduction procedure. The moments of the reduced system were forced

to match around s = 0 because of the desire to approximate the dominant dynamics

of the original system. Also, the input-sided Krylov technique has been implemented

because of the lower number of inputs which grants better performance respect to the

output-sided one. For the sake of consistency, three reduced models of the same order

seen in the Hankel sections were considered, with 20, 26 and 32 states. However,

the systems with 20 and 26 states resulted to be unstable (remember the drawbacks of

Krylov techniques), leading to unacceptable behaviors, so only the comparison with

the remaining reduced system is plotted in the following. In figure 4.22 there is shown

the comparison between the 12 greater singular values of the original and reduced

model. Note that for low frequencies the singular values matching is almost perfect

and starts to deteriorate at frequencies slightly higher than 10 [rad/sec]. This is in

total accordance with the fact that by using a reduced model of 32 states having 12

distinct inputs, approximately the first three moments are matched. Furthermore, this

is also confirmed by the Bode plots of figure 4.22, where the approximation of the

original system begins to deteriorate in the range of frequencies from 101 to 102.

The fact that only the first two or three moments are matched is reflected also by

the step responses of figure 4.24. Some responses of the reduced model presents slight

differences in the really first instants after the application of the input step. This is

due to the appearance of different high frequencies dynamics in the reduced model,

which usually can be neglected after about 0.1 [s] or less. Obviously, by increasing the

number of variables in the reduced system (i.e. by increasing the number of matched

moments), these effects can be reduced or almost totally eliminated.

4.4.2 Part B - technique approach on ITER models

The Krylov subspace methods can also be applied to the ITER models. However,

the results are not so good as in the previous case. This is caused by the fact that in

these models there is the need to face a extremely high number of inputs (active coils

and filamentary currents) and outputs (a number of outputs equal to the number of

state variables). As a consequence, the Krylov technique suffers this model structure.

Indeed, to match the same number of moments as in the RFX model, there is the need
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(a)

(b)

Figure 4.23: RFX-mod: Step responses of the full-order and reduced systems of the outputs

from 4 to 7 (a) and from 8 to 11 (b) when the first input is excited.
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(a)

(b)

Figure 4.24: RFX-mod: Step responses of the full-order and reduced systems of the outputs

from 4 to 7 (a) and from 8 to 11 (b) when the first input is excited.
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Figure 4.25: ITER110: 12 dominant singular values of the full-order system with n = 110

states and of the reduced systems using Krylov input-sided subspace.

Figure 4.26: ITER1832: 12 dominant singular values of the full-order system with n = 1832

states and of the reduced systems using Krylov input-sided subspace.
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to build reduced order models with a higher number of state variables. Therefore, the

output-sided method was discarded a priori. Only the input-sided method has been

applied to both the systems with n = 110 and n = 1832 states. In the first one, the

number of starting vectors (i.e. independent inputs) is m1 = 34, which is still to big to

hope in really efficient reduced systems. The situation is similar in the second system,

where the number of starting vectors rise to 104. This means that only to match the

first moment we have to deal with a reduced system consisting of 104 variables. By

the way, keeping in mind this considerations, some reduced models were built. In

figures 4.27 and 4.28 the step responses of the full-order models and reduced ones are

represented. In both cases two possible reduced systems are considered. In the case

of n = 110 a reduced system of 65 states gives discrete results, comparable to the

SMA reduction. On the other hand, there is no preservation of the variables physical

meaning, so it is suggested to use the SMA procedure. The system with n = 1832

states can be approximated sufficiently well by using about 260 states, which lead to

match the first two moments and about half parameter of the third one. This represents

a step ahead respect to the SMA, but the reduction is far less performing respect to the

Hankel techniques.
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(a)

(b)

Figure 4.27: ITER110/1832: Step responses of the full-order and reduced systems of the out-

puts from 1 to 4 when n = 110 (a) and n = 1832 (b), when the 101 − th input is excited (i.e.

the first active coil). [Krylov]
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(a)

(b)

Figure 4.28: ITER110/1832: Bode plot of the full-order and reduced systems between the

101 − th input and the outputs from 1 to 4 when n = 110 (a) and n = 1832 (b) (i.e. the first

active coil). [Krylov]





Conclusions

Nuclear fusion is considered a key technology in the development of new form of

long-lasting sources of energy. Therefore, the study of nuclear fusion devices capable

of generating fusion-derived energy has rapidly grown in the last 50 years. Several

problems are involved in the construction and operation of tokamaks, ranging from the

handling of safety aspects to the control of the main plasma parameters.

As a consequence, numerous algorithms and modeling techniques have been de-

veloped to cope with such problems and in particular capable of accurately identifying

the plasma shape and boundary position. These algorithms need to face real-time con-

straints because the plasma shape and boundary position must be quickly identified

in order to implement useful feedback loops to modify the plasma boundary shape as

desired. Unfortunately, the large passive structures surrounding the vacuum chamber

are affected by large eddy currents flowing in the metallic structures, which in particu-

lar influence the magnetic diagnostic used to reconstruct the plasma boundary position,

leading to wrong or bad reconstructions. Therefore, these currents need to be somehow

modeled. A typical choice is to split the metallic structure into toroidally symmetric

elements which are exploited to estimate the currents flowing in the overall passive

structure.

The problem is now how to take into account many elements in this kind of pro-

cedure. In fact, a large number of elements would lead to a more detailed but also

complex model, thus causing a too high computational burden, hardly suitable with

real-time constraints. One way to cope with this problem is by exploiting model order

reduction techniques, which allow to compress high order models into more compact

ones, thus leading to a balance between the contrasting needs of dealing with real-

time constraints and at the same time the necessity to accurately describe the involved

dynamics. Several MOR techniques have been developed, which face the problem of

model reduction with different approaches due to the difficulty of establishing a unique

criterion.

This thesis addresses the problem in relation to the models developed for the IAIA

code, which is an algorithm capable of reconstructing the plasma boundary position, in

order to improve its real-time performance. As a consequence, some reduced model are

91
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derived starting from different original models, with different complexity. Also, sev-

eral MOR techniques have been implemented, in order to compare their performance

and to exploit the main advantages of each one. The Hankel based techniques have

proved to be the most effective, granting reduced models able to well-approximate the

starting ones, using a very reduced number of variables. One of the reasons of this

behavior is that it seems that such techniques are well suited for almost every kind of

model, meaning that they’re not really affected by the model structure, in relation, for

instance, to the number of inputs and outputs of the system. Moreover, they give use-

ful hints on a suitable order of a well-performing reduced model. Contrary to Hankel

techniques, Krylov subspace methods show some difficulties in reducing large MIMO

systems. These issues are directly linked to the reduction procedure, which aims to

match the first moments of both the original and reduced models by exploiting the

so called input and output Krylov subspaces, which in the case of large MIMO sys-

tems lead to a still too high complexity of the reduced model, making sometimes even

impossible to reduce the starting system with acceptable results. Finally, the selective

modal analysis has been implemented. The strength of this technique is that it allows to

preserve the retained variables physical meaning in the reduced model, thus simplify-

ing the successive design or tuning of the controller. On the other hand, this technique

does not give a hint in the choice of which modes of the system is better to retain.

The choice that was made was to discard those states which showed to be less influent

in the slow dominant dynamics of the starting model. The key definition in SMA is

that of the participation factor which measures the contribution of the single states in

the construction of each mode. In relation to the IAIA models there have been some

issues. In particular, the participation factors have proved to be very smooth in relation

to the slow dynamics of the system, leading to the necessity of retaining a number of

variables higher than the one obtained in the models achieved through Hankel reduc-

tion. At the same time, this behavior of the participation factors was observed also in

the system with n = 1832 states, making impossible to get a reduced order model with

an acceptable number of variables. Therefore, the SMA reduction technique applied in

this specific case poses the problem of achieving a reduced model where the variables

meaning is preserved, at the cost of having a more complex reduced model.

Interestingly, on average the number of states to be retained after the reducing pro-

cedure is in the range 20−40, which basically corresponds to the number of degrees of

freedom of many large scale nuclear devices (e.g. ITER, JET) linked to the dimension

of the operative space of the machine (in terms of shape/magnetic control capabilities).

As for the future work, from the MOR point of view, a study can be carried forward

about the passive model which takes as input both the currents flowing in the active
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coils and the magnetic measurements, which leads to a compact version of the IAIA

algorithm by merging three modules into a single one. Such model might be more

suited to model order reduction and moreover it would allow to study the dependence

of the modes of the passive model in relation to the different geometrical position or

number of the magnetic measurements as input.

In addition, by exploiting a different approach, the IAIA time consumption can be

improved also by modifying some of its internal parameters, in particular in relation

to the plasma filamentary model. In this sense, an analysis was made in the IAIA

algorithm version which doesn’t make use of the eddy currents to estimate the plasma

boundary position. The fixed grid in which the filamentary currents can be put was

halved in a homogeneous way while keeping the same number of filamentary currents.

The algorithm seems to be still efficient in static conditions, but showing some lack

in the precision of the estimation with the increase in the value of the eddy currents.

This is probably related to the absence of the estimate of the passive currents flowing

in the metallic structures, which makes the algorithm particularly sensitive to dynamic

conditions.

In the near future, one way to improve the algorithm real-time performance is to

think about a filamentary model where the grid of position in which the currents can be

put changes adaptively, in relation to the plasma boundaries estimated in the preceding

iterations, leading to a minor number of calculations.



Appendix A

Sensitivity of the IAIA code to
variations of the internal parameters

In this section, we consider the reconstruction code IAIA with the purpose of reducing

its computation burden.

In order to reduce the time consumption of the IAIA algorithm, MOR is not the

only way. In fact, in the iterative procedure of the algorithm, two sets of equivalent

currents are placed along the rad-lines. The first set is fixed and placed well inside the

plasma domain, in an area basically included in any plasma cross section shape, while

the second set is placed along the rays in a position approximately midway between the

starting point of the rays and the currently identified boundary, which is computed on-

line at every iteration. The number of iterations can be chosen to be fixed or depending

on some convergence criterion with reference to some distance measurement between

two consecutive iterations.

Following this discussion, another method to optimize the time consumption is to

reduce the number of points on the rad-lines. In the developed code there are 80 rad-

lines and each one is composed of 120 points where each one of the outer filaments

of current can be put. Obviously, the reduction in the number of degrees of freedom

should lead to a worsening in the precision of the reconstructed boundary. In partic-

ular, in the following we will be interested in the assessment of the code precision

while reducing the number of the algorithm internal parameters. In figure A.1 (a) it

is represented the cross section of the ITER tokamak together with a representation of

the rad-lines. From now on a different version of the IAIA algorithm will be consid-

ered, in which the eddy currents are not considered in the identification of the plasma

boundary.
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(a) The blue lines represent the 80 rad-lines of IAIA. (b) Location of the 24 gap-lines.

Figure A.1: Rad-lines and gap-lines in IAIA.

A.1 rad-lines points reduction

One way to decrease the time consumption is to reduce the number of points of which

the rad-lines are constituted. In this way, there are still 80 outer currents like in the full

algorithm, and its possible to keep an homogeneous distribution of the points along

the cross section of the tokamak. The comparison between different reconstructed

boundaries is made in terms of boundary to first-wall distances called gaps. A gap-line

is a segment that starts at the FW and ends near the center of the vacuum chamber, as

shown in figure A.1 (b). So they are used as descriptors of the plasma shape.

To give some numerical results, a comparison between the reconstructed boundary

of the full-code with the new one has been carried forward:

• The sum of the distances between the reconstructed position of the boundary

along the 24 gaps in the 137 equilibria is d = 5.8935 [m].

• Consequently, the mean error in the reconstruction of every Gap position is of

about 0.0017 [m].

• Unfortunately, in some cases there are too large errors. The greatest is of about

0.08 [m].

Thus, the performance is quite good in most cases, but sometimes there is a great

difference in the reconstructed boundary. As a matter of fact, there are still 80 outer

currents like in the full-code, so at first similar results are expected in terms of currents

values in the filaments, and so it is. For instance, in figure A.2 the inner and outer

filamentary currents are compared with the ones of the full-code.
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(a) Red circles represent currents in the inner filaments when considering only half the num-

ber of points, while blue circles represent currents in the inner filaments of the full-code.

(b) Red crosses represent currents in the outer filaments when considering only half the

number of points, while blue crosses represent currents in the outer filaments of the full-

code.

Figure A.2: Comparison of inner and outer currents at equilibrium 1.
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To assess the quality of the reconstruction the differences between the boundary

reconstructed by the full-code and the new code were analyzed. In figure A.3 three

pictures of the errors made in gaps 1, 10 and 20 are shown. The reconstruction is

quite accurate in the first 65-70 equilibria, while presenting a lack of accuracy in the

successive reconstructions until about the equilibrium 110. In particular, it appears that

around gap 1 the algorithm presents more difficulties in reconstructing the boundary

position. Most of the greatest errors in the gap values are confined between the time

intervals 60 and 120. This is due to the fact that in the considered scenario this time

interval corresponds to quite strong dynamical events in the evolution of the plasma

inside the vacuum vessel. So, the algorithm appears particularly sensitive to variations

of the parameters in dynamical situations. This can be explained by remembering that

the eddy currents aren’t actually involved in the identification of the plasma boundary.

As a consequence, this version of the IAIA algorithm seems to be quite sensitive to

modifications of the number of points in the rad-lines when dealing with a dynamical

scenario, but preserves a good performance in static conditions.
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(a) Errors in Gap 1

(b) Errors in Gap 10

(c) Errors in Gap 20

Figure A.3: Errors in three random gaps, in all 137 equilibria of the scenario considered.
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(a) Equilibrium 73. (b) Equilibrium 98.

(c) Equilibrium 103.

Figure A.4: Reconstructed boundaries by the full-code (blue line) and by the one with only

half the number of points (black line).

Unfortunately, some boundaries are badly reconstructed, like the ones represented

in figure A.4. The algorithm works quite good but there are some points of non-

convergence, like in equilibrium 73, near the x − point (this error is due to a thresh-

olding effect).

Figure A.5 finally shows the greatest errors among the 24 gap-lines. 21 of 137 are

badly reconstructed. It means that there is an error of at least 1 [cm] in at least one

gap. Typically the greatest errors are placed along the gaps 1 and 24, which are the

closest to the x− point region, that is a crucial region for the algorithm performance.

For instance, compare figure A.3 (a) and A.5. It’s clear that in static conditions the

biggest errors in the gaps are less than 1 [cm] and so the reconstruction is good enough.

When this is not, the algorithm performance decreases. In particular, during dynamical

events in the plasma behavior, the algorithm appears to be particular sensitive in the
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computation of the flux values along the grid predisposed to find the value of the flux

at the boundary when dealing with a diverted plasma.

Figure A.5: Greatest errors among the 24 gap-lines in each time instant. The blue circles

represent errors smaller than 1 [cm], while red circles are above this threshold.

Figure A.6: Flux estimated values at the x− point.

As is shown in figure A.6, considerable errors in the evaluation of the boundary

flux are made exactly in those equilibrium corresponding to dynamical events, and

they lead to the errors seen in figure A.5.
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