Università degli Studi di Padova

Dipartimento di Ingegneria Industriale Relazione per la prova finale di Laurea Triennale in Ingegneria Meccanica

DIMENSIONAMENTO E MODELLAZIONE CAD 3D DI UN RIDUTTORE AD INGRANAGGI

Tutor universitario: Prof. Alberto Campagnolo

Laureando: Giovanni Ballo

Padova, 14/07/2022

INTRODUZIONE

Obbiettivo del lavoro:

Dimensionamento di un riduttore ad ingranaggi e modellazione.

Fasi del lavoro

- Fase preliminare
- Dimensionamento ruote dentate
- Pre dimensionamento statico alberi
- Scelta dei cuscinetti e delle linguette
- Verifiche statiche
- Verifiche a fatica
- Verifiche di deformabilità
- Modellazione (Solidworks 3D)

Riduttore

- Dispositivo meccanico che si interfaccia tra un motore ed un'utenza
- Potenza costante
- Riduzione velocità di rotazione
- Aumento del valore della coppia

FASE PRELIMINARE

- Rapporti di trasmissione e potenze ↔
- $M_2 = F_s \cdot M_{U2, NOM} \longrightarrow M_2, n_2 \longrightarrow P_2 = M_2 \omega_2 \quad (F_s = 1, 5)$
- $\tau_{\text{TOT}} = \left(\frac{n_1}{n_0}\right) \left(\frac{n_0}{n_2}\right) = \tau_{12}\tau_{34} \longrightarrow \tau_{12}\tau_{34} = \tau^2 \longrightarrow \tau_{12} = \tau_{34} \text{(scelta ingegneristica!)}$

$$\eta_{02} = \frac{P_2}{P_0} = \eta_{RUOTE} \eta_{CUSCINETTI} = 0,96 \longrightarrow P_0 \longrightarrow n_0, M_0$$

 $\eta_{01} = \frac{P_0}{P_1} = \eta_{RUOTE} \eta_{CUSCINETTI} = 0,96 \longrightarrow P_1 \longrightarrow n_1, M_1$

• Scelta del motore elettrico:

- Motore asincrono trifase alimentato da corrente alternata.
- Frequenza 50Hz, velocità di sincronismo 1500 rpm, 2 coppie polari

Dimensionamento e modellazione CAD 3D di un riduttore ad ingranaggi *Giovanni Ballo*

DATI DI PARTENZA

M_{U2 NOM} =1230 Nm

τ_{TOT} =22.0

DIMENSIONAMENTO RUOTE DENTATE

• Come è stato effettuato il dimensionamento?

DETTAGLI DIMENSIONAMENTO

- Scelta numero di denti (costanza interasse)
- Scelta del materiale
- Applicazione della normativa:
- ➢ Ruota più critica → ruota 3
- Stima coefficienti
- $\succ \quad \text{Calcolo } \sigma_{F3} \text{ e } \sigma_{H3}$
- > Confronto con σ_{FP3} e σ_{HP3}
- Modulo minimo della ruota 3
- Verifica ruota 1, 2 e 4
- Confronto con formula di Lewis

RISULTATI FINALI

Tabelle riassuntive ruota 3

MODULO	RUOTA 3	FLESSIONE
M _{t3} (Nm)	409,74	
λ	12	λ= (8:12)
Z ₃	19	
Y _{f3}	1,54	
Ys3	1,9	
K _{fβ3}	1,1	
σ_{fp3}	660889600	Pa
σ_{flim} *Y _{ST}	922000000	Ра
Y _{NT,3}	0,896	
Y _{relT,3}	1	
Y _{x,3}	1	
Y _{M,3}	1	
m _(FLEX)	0,00259645	m
m _(FLEX)	2,59645341	mm
S _{Fmin}	1,25	

MODULO	RUOTA 3	PITTING
Z _{B,3}	1,1	
Z _{H,3}	2,5	
Z _{E,3}	189,81	
K _{HB,3}	1,1	
u=t	4,69041576	
S _{Hmin}	1	
Z _{L,3}	0,97	
Z _{R,3}	0,95	
Z _{V,3}	0,951747223	f(v3)
Z _{W,3}	1	
$\sigma_{Hlim}^{*}Z_{NT,3}$	1440000000	
σ _{Hp,3}	1262,930496	MPa
m _(PITTING)	3,506764811	mm

Controlli e verifiche

σ _{н1} (MPa)

Dimensionamento Lewis

CONTROLLO)	
v ₃ '(m/s)	1,21296	
Z _V '	0,956853	
σ _{f3} (MPa)	180,7551	<661Mpa
σ _{H3} (MPa)	1036,691	<1263Mpa
σ _{f1} (MPa)	48,17313	<640Mpa

535,1882 <1253Mpa

Dimensionamento ISO 6336

Giovanni Ballo

RUOTA Z RUOTA Ζ m (mm) D_P (mm) λ b (mm) i (mm) m (mm) $D_{p}(mm) \lambda$ b (mm) i (mm) 242.5 242.5 242.5 242.5

Dimensionamento e modellazione CAD 3D di un riduttore ad ingranaggi

slide 6

DIMENSIONAMENTO ALBERI

- Si stima la lunghezza dei tre alberi
- Pre dimensionamento statico albero intermedio:
- > Si considerano i piani x-y (contenente $F_{t2} e F_{t3}$) e x-z (contenente $F_{r2} e F_{r3}$)
- Si determina il massimo valore di $M_f = \sqrt{M_{fxy}^2 + M_{fxz}^2} e M_t$
- Scelta del materiale → d∈ [40; 100]mm σ_r =780MPa, σ_s = 560MPa
- Assunzioni: albero snello, $v_{st} = 10$ VERIFICA ASSUNZIONI (criterio di von Mises!)
- $\blacktriangleright \quad \sigma_{Amm} \tau_{Amm} \longrightarrow d_f = \sqrt[3]{\frac{32M_f}{\pi\sigma_{amm}}} \approx 47,1mm \quad d_t = \sqrt[3]{\frac{16M_t}{\pi\tau_{amm}}} \approx 40,1mm \quad \longrightarrow d=50mm$
- Pre dimensionamento statico albero d'ingresso (uscita)
- Stessa procedura considerando il piano che contiene F_1 (F_4).

LBERO	MATERIALE	l (mm)	d (mm)	M _f (Nmm)	M _t (Nmm)	ω (rad/s)	n (rpm)	P (W)
0	35CrMo BONIFICATO 7875	300	50	574600	409740	31,92	304,813547	13087
1	C45 bonificato 7874	125	30	79600	91000	149,8	1430,484629	13632
2	35CrMo BONIFICATO 7874	135	60	372200	1845000	6,81	65	12600

CUSCINETTI

Scelta dei cuscinetti:

- > Durata richiesta in milioni di giri L_{10} (P.S. 90%)
- > Carico dinamico equivalente P ($P = XF_r + YF_a$)
- Il coefficiente di carico dinamico C
- Esponente p (p=3 per cuscinetti a sfere, p=10/3 per cuscinetti a rulli)
- > Relazione tra i parametri \longrightarrow L₁₀ = $\left(\frac{C}{P}\right)^p$
- Albero intermedio: cuscinetto a sinistra radiale ad una corona di sfere, cuscinetto a destra radiale ad una corona di rulli <u>cilindrici (sc</u>elti in base a C dal catalogo SKF)

> Albero d'ingresso (uscita): entrambi i cuscinetti a sfere (scelti in base a C dal catalogo

LINGUETTE

• Linguette

$$P = \frac{F}{A} = \frac{M_{t0}}{d_0/2} \cdot \frac{1}{lt_1} \le P_{AMM}, \tau = \frac{F}{A'} = \frac{M_{t0}}{d_0/2} \cdot \frac{1}{lb} \le \tau_{AMM}$$

- Scelta del materiale $\rightarrow \sigma_r$, $\sigma_s \rightarrow \sigma_{Amm} = \frac{\sigma_s}{\upsilon_{st}}$, $\tau_{Amm} = \frac{\sigma_{Amm}}{\sqrt{3}}$, $P_{Amm} = [75 110]$ MPa
- I > $\frac{2M_{t0}}{d_0 t_1 P_{AMM}}$ ≈ 27mm → I ∈ [36; 160]mm (per d=50mm) →
- > Verifica: $\tau = \frac{2M_{t0}}{d_0 lb} < \tau_{AMM}$
- Stessa procedura per tutti e tre gli alberi

Dimensionamento e modellazione CAD 3D di un riduttore ad ingranaggi *Giovanni Ballo* l=36mm

VERIFICHE STATICHE

Verifiche statiche con <u>criterio di von Mises</u>

SEZ	φ (mm)	M _{fxy} (Nmm)	M _{fxz} (Nmm)	M _f (Nmm)	M _t (Nmm)	W _f (mm ³)	W _t (mm ³)	σ _f (MPa)	т _t (MPa)	σ _{id} (MPa)	v _{st}
A-A	30	4830	12400	13307,48	0	2650,72	5301,44	5,02	0	5,02	111,55
B-B	47	24800	63400	68077,90	0	10192,80	20385,60	6,68	0	6,68	83,84
C-C	50	33700	96600	102309,58	409740	12271,85	24543,69	8,34	33,39	58,43	9,58
D-D	50	91800	111000	144042,49	409740	12271,85	24543,69	11,74	33,39	59,01	9,49
E-E	50	464000	201000	505664,91	409740	12271,85	24543,69	41,21	33,39	71,01	7,89
F-F	50	532000	217000	574554,61	409740	12271,85	24543,69	46,82	33,39	74,41	7,53
G-G	47	347000	142000	374930,66	0	10192,80	20385,60	36,78	0	36,78	15,22
H-H	30	106000	43400	114540,65	0	2650,72	5301,44	43,21	0	43,21	12,96

ALBERO D'INGRESSO

ALBERO D'USCITA

SEZ.	ф	Mf	Mt	W _f (mm ³)	W _t (mm ³)	σ_{f} (MPa)	τ_f (MPa)	σ_{id} (MPa)	v _{st}	SEZIONE	Φ	M _f	Mt	W _f	Wt	σ _f	τ _f	σ_{id}	V _{st}
	(mm)	(Nmm)	(Nmm)								(mm)	(Nmm)	(Nmm)	(mm³)	(mm³)	(MPa)	(MPa)	(MPa)	
A-A	30	12128,4 6	91000	2650,72	5301,44	4,58	17,17	30,08	15,63	A-A	40	49604,03	0	6283,185	12566,37	7,894727	0	7,894727	70,933
B-B	30	54157,7	91000	2650,72	5301,44	20,43	17,17	36,07	13,03	B-B	56	228814,1	0	17241,06	34482,12	13,27146	0	13,27146	42,19
		3								C-C	60	372329,2	1845000	21205,75	42411,5	17,55793	43,50235	77,36695	7,2382
C-C	30	79591,9	91000	2650,72	5301,44	30,03	17,17	42,26	11,12			,		,		,	,	,	
		6					,			D-D	60	239476,5	1845000	21205,75	42411,5	11,293	43,50235	76,18986	7,3500
D-D	27	52261,0	0	1932,37	3864,75	27,05	0	27,05	17,38	E-E	60	49604,03	1845000	21205,75	42411,5	2,339178	43,50235	75,38458	7,4285
		8										,		,	'	'	,	,	,
E-E	25	11489,4	0	1533,98	3067,96	7,49	0	7,49	62,75										
		0																	

Dimensionamento e modellazione CAD 3D di un riduttore ad

Giovanni Ballo

ingranaggi

VERIFICHE A FATICA

- Si assume di trovarsi in un caso di <u>flessione rotante ($\sigma_a = \sigma_{fmax}, R = -1$)</u>
- Verifiche a fatica

ALBERO INTERMEDIO

SEZIONE	σ _a (MPa)	k _d	k _i	k _{tn}	K _f	$\sigma_{a,inf,-1}$ (MPa)	$\sigma^*_{a,inf,-1}$ (MPa)	ν _σ
A-A	5,02032707	1,16	1,06	2,52	2,3	390	137,9027467	27,46887701
B-B	6,67901872	1,22	1,15	2,75	2,5	390	111,1903065	16,64770099
C-C	8,33693453	1,25	1,15	NO	2,12	390	127,973749	15,35021637
D-D	11,7376383	1,25	1,15	2,02	2,02	390	134,3090831	11,44259851
E-E	41,2052837	1,25	1,15	2,02	2,02	390	134,3090831	3,259511182
F-F	46,8189216	1,25	1,15	NO	2,12	390	127,973749	2,73337669
G-G	36,7838759	1,22	1,15	2,75	2,5	390	111,1903065	3,022800176
H-H	43,2111651	1,16	1,06	2,53	2,3	390	137,9027467	3,191368397

SEZ	σ _a (MPa)	k _d	k _l	K _{tn}	k _f	$\sigma_{a,inf,-1}$ (MPa)	σ* _{a,inf,-1} (MPa)	νσ
A-A	4,575537	1,16	1,05	1	1	347,5	285,3037767	62,35416
B-B	20,43134	1,16	1,14	1	1	347,5	262,7797943	12,861605
C-C	30,02656	1,16	1,14	1	2,1	347,5	125,1332354	4,1674187
D-D	27,04501	1,15	1,14	2,34	2,14	347,5	123,8620729	4,5798493
E-E	7,489927	1,12	1,05	1,92	1,78	347,5	166,0074142	22,16409

ALBERO D'INGRESSO

SEZIONE	σ _a (MPa)	k _d	Kı	K _{tn}	k _f	σ _{a,inf,-1} (MPa)	σ* _{a,inf,-1} (MPa)	Vf
A-A	7,894727	1,2	1,05	2,5	2,28	390	135,7561	17,19578884
B-B	13,27146	1,25	1,15	2,75	2,5	390	108,5217	8,17707436
C-C	17,55793	1,26	1,15	1	1,12	390	240,3135	13,6868907
D-D	11,293	1,26	1,15	1	1	390	269,1511	23,83345161
E-E	2,339178	1,26	1,05	1	1	390	294,7846	126,0205668

ALBERO D'USCITA

VERIFICHE

Verifiche di deformabilità

- Si effettuano seguendo un metodo analitico (integrazione <u>equazione della linea</u> <u>elastica</u>)
- Si confrontano i valori di frecce e rotazioni con quelle limite

Albero intermedio (dettagli)

PIANO	CASO	a (mm)	b (mi	m)	φ (S)	rad	f2	(mm)	f	3 (mm)		φ (D)	rad	
Ху	1(SOLO Ft2)	62,5	237	7,5	0,000	16144	0,	00891694	0	,0069604	91	-0,00	0108881	
Ху	2 (SOLO Ft3)	232,5	67	7,5	0,000	54666	0	0,0326044	0	,0466894	24	-0,00	0792103	
Ху	TOTALE				0,000	70811	0,	04152134	0	,0536499	15	-0,00	0900983	
Xz	1(SOLO Fr2)	62,5	237	7,5	5,876	62E-05	0,	00324555	0	,0025334	52	-3,96	6299E-05	
Xz	2(SOLO Fr3)	232,5	67	7,5	0,000	19897	0,	00849679	0	,016993576		-0,000288302		
Xz	TOTALE				0,0002577		0,	01174234	0	0,019527028		-0,000327932		
Albero i	intermedio (sintesi)		Alb.1 (sintesi)					Alb.2 (sintesi)					-
f⊤2 (mm)	0,04314979	<0,127mm		f (n	nm)	0,0127		<0,127mm		f (mm)	0,00	43	<0,127mm	
f _{⊤3} (mm)	0,05709307	<0,127mm		φ _D (0,000304		<0,00291 rad		φ _D (rad)	9,6E	-05	<0,00291 rad	
φ _{Ts} (rad)	0,00075355	<0,00291 ra	ad	φs	(rad)	0,000304		<0,00291 rad		φ _s (rad)		-05	<0,00291 rad	
φ _{TS} (rad)	0,00095881	<0,00116 ra	ad	Ľ				·		,				

A SEGUIRE

DIMENSIONAMENTO CASSA

RIDUZIONE INGOMBRI, FACILITA' MONTAGGIO, ISPEZIONE, MANUTENZIONE

CONCLUSIONI

- Riduttore dimensionato
- A seguire: modellazione di ogni componente

