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Abstract. 

The aim of this work is to evaluate the performance of surface soil moisture (SSM) 

measurements from microwave satellite sensors, specifically the Copernicus Sentinel-1 and 

SMAP (Soil Moisture Active Passive) missions, using ground-based observations. Soil 

moisture is a critical environmental variable that influences various hydrological and 

ecological processes. Accurate measurement of soil moisture is essential for applications such 

as agricultural monitoring, flood forecasting, and climate modeling. 

This study focuses on two distinct regions: the Twente region in the Netherlands, known for 

its comprehensive soil moisture monitoring network, and the Italian basins affected by the 

severe flood event in May 2023. By comparing satellite-derived soil moisture estimates with 

in-situ measurements, the research assesses the temporal and spatial correlations between 

these data sources. 

Key methodologies include the use of statistical metrics such as Root Mean Square Error 

(RMSE), the coefficient of determination (R²), and correlation analyses to evaluate the 

accuracy of satellite data. Additionally, the study investigates how well the Sentinel-1 

SSM1km product captures variations in soil moisture before, during, and after the flood 

event. This assessment aims to determine the capability of the SSM1km product in reflecting 

significant changes in soil moisture associated with flooding events, which is crucial for 

effective flood management and mitigation strategies. 

The results indicate that while satellite-derived soil moisture data generally correlate well 

with ground-based measurements, there are notable discrepancies influenced by factors such 

as land cover and surface roughness. The study found that the RMSE values ranged from 

0.1065 to 0.306, with correlation coefficients (R²) varying across different stations. These 

findings highlight the strengths and limitations of current microwave remote sensing 

techniques for soil moisture retrieval and underscore the importance of continuous validation 

against ground observations. 
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Chapter 1 Introduction.    

1.1 Soil Moisture and its importance.  

Soil moisture is generally defined as the water contained in the unsaturated zone of the soil, 

which lies between the soil surface and the groundwater table (Hillel, 2003; Moene & Dam, 

2014). It is often divided into surface and root zone soil moisture, where surface soil moisture 

is the water content of the top part of a soil, often the top 5 cm, and root zone soil moisture is 

the water used for vegetation is available, which is sometimes viewed as the water content of 

the top 200 cm of a soil (Kerr, 2006).  

The significance of soil moisture spans multiple disciplines and practical applications, 

leading to its recognition as an essential climate variable (ECV) by the Global Climate 

Observation System ((WMO), 2016).  

It plays a vital role in natural disaster monitoring systems, such as those for floods, droughts, 

and forest fires (Dorigo et al., 2011), and is crucial for understanding biophysical processes 

related to energy and mass exchange between the hydrosphere, atmosphere, and biosphere 

(Zhang et al., 2015). As a key component of the water cycle, soil moisture regulates the 

division of precipitation into infiltration and runoff, thereby influencing stream flow, 

groundwater recharge, and precipitation patterns (Tuttle & Salvucci, 2014). It is also essential 

for predicting droughts and floods.  

Soil moisture significantly affects processes across the soil-atmosphere interface, particularly 

in water and energy balance, where it drives the flow of water and heat between the soil and 

the atmosphere(Petropoulos et al., 2015; Seneviratne et al., 2010). Moreover, soil moisture 

plays a crucial role in soil formation processes (Van Breemen & Buurman, 2002). 

 

Other elements that affect soil moisture content include vegetation cover and soil properties 

(Hillel, 2003). Water content soil varies greatly in space. According to Crow et al., (2012) and 

Vereecken et al., (2014), soil properties, topography, land use and precipitation are the main 

factors affecting the spatial variability of soil moisture. The main large-scale spatial 

determinants of soil moisture distribution are precipitation and other meteorological 

influences.  

Pedogenic processes, including the movement of water and solutes, chemical weathering, and 

reduction and oxidation processes, all occur in the presence of water. In addition, soil 

moisture content influences a wide range of soil properties, including stability, compactibility 

and soil structure (Hillel, 2003). Plant growth is significantly influenced by soil moisture, 

which serves as an essential source of water for vegetation. When soil moisture levels fall 

below optimal conditions, plants experience water stress, inhibiting their growth and reducing 

productivity (Asbjornsen, et al., 2011; Wang, et al., 2019). In agricultural settings, monitoring 

soil moisture is crucial for determining the need for irrigation and optimizing its scheduling. 

Proper soil moisture management ensures that crops receive the right amount of water at the 

right time, maximizing yield and maintaining crop health. Effective monitoring helps prevent 

both over-irrigation and water stress, contributing to sustainable agricultural practices and 

efficient water resource management. 
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Moreover, soil moisture directly influences the availability of nutrients and the movement of 

pollutants within the soil. Nutrients and pollutants dissolved in soil moisture can reach plants, 

impacting their growth and development (Rodríguez-Iturbe & Porporato, 2005; Wang, et al., 

2019). This process is critical because it determines the availability of essential nutrients 

required for healthy plant growth. 

 

1.2 Problem statement and Research Questions 

For numerous small-scale applications of soil moisture data, high temporal and spatial 

resolution is imperative. Field measurements, often considered as ground truth, are 

inadequate for such applications due to their limited spatial coverage, remote sensing 

methods offer a broader perspective, allowing for the estimation of soil moisture over large 

regions. By combining the accuracy of ground-based measurements with the extensive 

coverage of remote sensing, a more comprehensive understanding of soil moisture dynamics 

can be achieved. 

This work aims to evaluate the performance of global soil moisture data retrieved from 

Microwave Remote Sensing methods, namely the Copernicus Sentinel-1 1km Soil Moisture 

(SSM1km) and SMAP/Sentinel-1 surface moisture products. The aim is to investigate how 

well these products capture soil moisture variations in time and space by comparing remote 

sensing estimates of soil moisture and ground-based observations in the Twente Soil Moisture 

Network. We will also analyze how well these products captured soil moisture variations 

before, during and after the May 2023 Emilia Romagna Flood event in Italy. The results of 

this analysis will provide information on the strengths and limitations of these products for a 

range of end-use applications such as agricultural monitoring and hydrological modeling. In 

addition, by comparing ground observations and remote sensing data, this study will shed 

light on the spatial variability of soil moisture and help identify systematic biases or patterns.  

The following main questions are the focus of the study. 

1. How well does microwave soil moisture data correlate with ground-based measurements 

at different stations, and time periods?  

2. How well did SSM1km capture soil moisture variations before, during and after the May 

Emilia Romagna flood event? 

3. Should remote sensing estimates be compared with point ground-based observations or 

their spatial interpolation? 

 

This work is structured as follows: Chapter 3 is dedicated to the theory and the methods used 

in the work, while Chapter 2 presents the study area and the data sets. The results are 

presented in Chapter 4 and a discussion of the results and agreements is covered in Chapter 5. 
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Figure 1 graphical representation of  the tasks carried out in this study.  
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Chapter 2   Materials and Methods.  
 

2.1 Methods 

According to Hillel (2003), Moene and Dam (2014), soil moisture content can be expressed 

either as volumetric or gravimetric water content, which are related by the bulk density of the 

soil, or as relative water content, expressed as the percentage of saturation, which is 

determined by the porosity of the soil that can be converted into volumetric water content. 

Rainfall, Irrigation runoff, Drainage, Capillary rise and Evapotranspiration are some of the 

processes that affect the water content of a soil (Hillel, 2003; Moene & Dam, 2014).  

Given the importance of soil moisture, a variety of methods have been developed to measure 

it across different spatial and temporal scales. These methods can be broadly categorized into 

two main approaches: ground-based observations or in-situ soil moisture and remote sensing 

estimates. 

 

2.1.1 In-situ Soil Moisture Measurement Methods.  

Ground-based observations consist of point measurements taken at specific locations and are 

often considered the gold standard, or "ground truth," for soil moisture estimation. These 

observations are critical for validating remote sensing data and for providing accurate, 

localized soil moisture information. Various methods are used to determine soil moisture 

content in the field, and the choice of method typically dictates the scale and application of 

these measurements in terms of both spatial and temporal resolution (Babaeian, et al., 2019; 

Dorigo W. A., et al., 2011; Hillel, 2003). Moisture content in the soil can be expressed as 

either gravimetric moisture content or volumetric moisture content.  

 

1. Gravimetric Method 

Gravimetric moisture content is the mass of water per mass of dry soil (Oommen & Philip, 

2023). The gravimetric method is the most traditional and direct approach for measuring soil 

moisture content. This method involves collecting soil samples from the field, weighing them 

to obtain the wet weight (Mw), drying them in an oven at a standard temperature (usually 

around 105°C) for 24 hours period and then reweighing the samples to determine the dry 

weight(Md). Gravimetric moisture content(GMC) is calculated as the difference in weight 

before and after drying, expressed as a percentage of the dry weight, is calculated using the 

formula below: 

 

 

GMC= 
(𝑀𝑤−𝑀𝑑)

𝑀𝑑
 100                                            Equation ( 1) 

 

This method, while highly accurate, is labour-intensive, time-consuming, and destructive, as 

it requires physical removal of soil samples. Moreover, gravimetric measurements are point-

specific, which can limit their ability to represent larger areas with high spatial variability 

(Hillel, 2003). Despite these limitations, the gravimetric method remains a benchmark for 

calibrating other soil moisture measurement techniques (Dorigo et al., 2011). 
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2. Capacitance Method 

 

Capacitance sensors, also known as dielectric sensors, measure soil moisture by detecting 

changes in the soil’s capacitance. These sensors work on the principle that the capacitance of 

a material depends on its dielectric properties, which change with moisture content. 

Capacitance sensors typically consist of two probes that generate an electromagnetic field. As 

the soil moisture changes, the dielectric constant of the soil changes, which in turn alters the 

capacitance detected by the sensor. 

Capacitance sensors are widely used in agriculture due to their relatively low cost, ease of 

installation, and capability for continuous monitoring. However, they require calibration for 

different soil types, and their accuracy can be influenced by factors such as soil texture, 

temperature, and salinity (Decagon Devices, 2005). 

 

In the Twente Soil Moisture Network, soil moisture measurements were conducted using the 

capacitance method, as described by Van der Velde et al. (2023). The network utilized 

ECH2O EC-TM and 5TM probes, both manufactured by METER Group (formerly Decagon 

Devices), which operate on the principle of capacitance measurement. These probes were 

installed laterally at depths of 5, 10, 20, 40, and 80 cm within the soil profile at each 

monitoring station. The installation process involved careful excavation to minimize soil 

disturbance, ensuring the accuracy and consistency of the measurements. After installation, 

the soil was backfilled and compacted to restore its original state, and the cables from the 

probes were routed to an EM50 data logger mounted on a nearby pole. Measurements were 

taken every minute, and the data was recorded at 15-minute intervals by the data loggers. 

 

Given the diverse soil properties across the study area, soil-specific calibration was crucial to 

ensure that the sensor readings accurately reflected the true volumetric soil moisture (VSM). 

The calibration process began in the laboratory, where soil samples collected from various 

sites within the network were used to develop calibration functions. These functions were 

created by comparing the sensor outputs, such as voltage or frequency, with the 

gravimetrically determined soil moisture content. Linear regression models were employed to 

establish these relationships, tailoring the calibration functions to the specific characteristics 

of the soils at each site. This step was essential for adjusting the sensor readings to account 

for variables like soil texture and electrical conductivity, which can significantly influence 

the sensor's dielectric response. 

 

To validate the calibration functions, cross-validation techniques were employed, testing the 

calibration equations against additional soil samples to ensure their accuracy and reliability. 

Further calibration was carried out during field campaigns using handheld ThetaProbes and 

HydraProbes, which were directly calibrated against gravimetric soil moisture values 

obtained in situ. This field calibration ensured that the handheld probe readings were 

consistent with the conditions in the specific study locations, allowing for precise soil 

moisture assessment in various field conditions. 

 

Once validated, the calibration functions were applied to the raw sensor data collected by the 

network, ensuring that all soil moisture measurements reflected accurate and consistent 

values across the monitoring sites. This rigorous calibration process provided confidence in 

the reliability of the data, making it suitable for broader analyses, including the validation of 

satellite-based soil moisture observations. 
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3. Neutron Probes 

 

Neutron probes are a sophisticated method of measuring soil moisture that involves emitting 

fast neutrons into the soil. When these neutrons collide with hydrogen atoms (found primarily 

in water molecules), they slow down. The probe records the number of returning slow 

neutrons, which is directly related to the hydrogen content in the soil and therefore soil 

moisture. Neutron probes are very accurate and can measure soil moisture at various depths, 

making them useful for soil monitoring profiles. However, their use is limited due to safety 

concerns related to the radioactive source as well as the high cost and complexity of 

operation. In addition, neutron probes must be carefully calibrated and corrected for the 

presence of other hydrogen sources such as organic matter (Evett, 2008). 

 

 

4. Frequency Domain Reflectometry (FDR). 

 

Frequency domain reflectometry (FDR) is another commonly used method for measuring soil 

moisture. It works in the frequency range. FDR uses probes that generate an oscillating 

electrical signal. The frequency of the signal changes as it passes through the soil, influenced 

by the soil's dielectric constant, which depends on the moisture content. In practice, FDR 

sensors consist of two electrodes inserted into the ground. When soil moisture changes, the 

dielectric constant and therefore the frequency of the signal between the electrodes also 

changes. This change in frequency is measured and used to calculate soil moisture content. 

FDR is preferred in many applications because it is less expensive than TDR, easier to 

deploy, and allows for continuous monitoring. However, like TDR, FDR requires careful 

calibration for different soil types to ensure accurate measurements (Jacobsen & Schjonning, 

1993). 

 

5. Time Domain Reflectometry 

 

Time Domain Reflectometry (TDR) is a widely used technique that involves inserting probes 

into the soil to measure its moisture content. TDR works by sending an electromagnetic pulse 

along a pair of metal rods or probes that are embedded in the soil. The speed at which this 

pulse travels through the soil is influenced by the dielectric constant of the soil, which varies 

with moisture content, water has a much higher dielectric constant compared to air or soil 

particles. 

 

The TDR device measures the time it takes for the pulse to reflect back to the instrument after 

reaching the end of the probe. This time delay is then used to calculate the soil’s moisture 

content. TDR is a non-destructive method that provides continuous, real-time data, making it 

particularly useful for monitoring soil moisture over time (Topp et al., 1980). However, TDR 

systems require careful calibration to ensure accuracy and can be expensive compared to 

other methods. The accuracy of TDR can also be affected by soil properties such as salinity 

and texture (Robinson et al., 2003). 
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2.1.2 Remote Sensing estimates of soil moisture.  

Remote sensing of soil moisture is primarily conducted using microwave sensors which 

operates within 0.5 and 100 cm region of the electromagnetic spectrum, exploiting the large 

difference between the dielectric properties of water and dry soil. Microwave remote sensing 

methods are particularly effective for soil moisture retrieval due to the distinct dielectric 

constant of water (~80) compared to soil particles (~4) (Engman, 2015).  As detailed by Su 

(2006), microwave remote sensing, in particular, is highly effective due to its sensitivity to 

soil moisture. This method can be broadly divided into two approaches, the passive and 

active. 

 

1. Passive Remote Sensing. 

 

In passive microwave remote sensing, naturally emitted microwave radiation from the Earth's 

surface is detected. The radiation, referred to as brightness temperature (TB), is directly 

influenced by the soil's moisture content.  The principle behind this technique is based on the 

relationship between the dielectric constant of the soil, its emissivity (ϵs), and its physical 

temperature (Ts). 

 

The dielectric constant of water (~80) is significantly higher than that of dry soil (~4), which 

allows passive microwave sensors to detect variations in soil moisture by measuring the 

emitted radiation. The observed brightness temperature is a product of the soil’s emissivity 

and its physical temperature: 

 

                                                   TB=ϵs×Ts                                                   Equation (2) 

 

This relationship is further modelled using the Fresnel equations, which predict the surface 

reflectivity based on the dielectric constant and the sensor’s viewing angle. These equations 

are fundamental in deriving the dielectric properties of the soil, which are then used to 

estimate soil moisture content. 

However, several environmental factors complicate this retrieval process. Surface roughness 

and vegetation cover are two critical variables that can distort the observed brightness 

temperature. Surface roughness can scatter the microwave signal, altering the emissivity, 

while vegetation can attenuate or add to the thermal emission. To mitigate these effects, 

various correction algorithms are applied, ensuring that the soil moisture estimates are as 

accurate as possible under varying conditions. 

 

2. Active Microwave Remote Sensing  

Active microwave remote sensing, according to Su (2006), involves the use of radar systems, 

such as Synthetic Aperture Radar (SAR), which emit microwave pulses toward the Earth's 

surface and measure the backscattered signal. The strength and characteristics of the 

backscatter are directly related to the dielectric properties of the soil, which are influenced by 

its moisture content. 
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The backscatter coefficient (σ0) is a key parameter in this approach, representing the fraction 

of the transmitted microwave signal that is reflected back to the radar sensor. Typically, wet 

soils produce a stronger backscatter signal compared to dry soils due to their higher dielectric 

constant. This relationship is modelled using surface scattering models, such as the Integral 

Equation Model (IEM), which combines aspects of different scattering approaches to account 

for a broad range of surface roughness conditions. These models enable the estimation of soil 

moisture by solving the inverse problem, deriving the dielectric properties of the soil from the 

observed backscatter. 

 

In addition to theoretical models, semi-empirical models are frequently employed. These 

models establish empirical relationships between the backscatter coefficient and soil 

moisture, often requiring local calibration to ensure accuracy. Notable examples include the 

models developed by Oh et al. (1992) and Dubois et al. (1995), which have been widely used 

in soil moisture studies but necessitate careful application within their calibrated regions. 

 

According to Bauer-Marschallinger et al., (2019), the backscatter model from the Vienna 

University of Technology (TU Wien) was adopted on the Sentinel-1 sensor with some 

modifications to take advantage of the high-resolution IW mode measurements and extract 

SSM1km. 

The TU Vienna Change Detection Model calculates soil surface moisture (SSM1km) directly 

from radar backscatter data, represented by the backscatter coefficient σ0. In this model, 

fluctuations in backscatter are interpreted as changes in soil moisture, while other surface 

properties such as geometry, roughness and vegetation structure are treated as constant 

parameters. The model parameters take into account the maximum dry and wet conditions as 

well as average signal contributions from vegetation and surface geometry. This model is 

self-calibrating at the pixel level, with parameters estimated through statistical analysis of 

long-term backscatter time series data. For SSM1km estimation, the backscatter value σ0(θ, t) 

at a given time t and an observation angle θ is normalized to a reference angle Θ and scaled 

linearly between dry and wet reference values, resulting in the relative surface moisture 

saturation SSM1km(t), expressed in Percent (Bauer-Marschallinger, et al., 2019). 

 

                                              SSM1km(t)=  
𝛥𝜎0(𝛩,𝑡)

𝑆(𝛩)
[%]                          Equation ( 3) 

 

The sensitivity to changes in SSM1km at the reference angle Θ is denoted by S(Θ), while the 

change in normalized backscatter relative to dry conditions is represented by Δσ0(Θ, t). S(Θ) 

is defined as the difference between the normalized backscatter coefficients under wet and 

dry conditions. This difference estimates the local backscatter dynamic range, effectively 

quantifying the sensitivity. 

 

                                      S(Θ) = σwet0 (Θ) - σdry0 (Θ) [dB]                   Equation ( 4)  
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Current and near future satellite missions offer opportunities to generate high-resolution soil 

moisture products. Ongoing missions include the ESA Sentinel-1 European Radar 

Observatory, the L-band Global Navigation Satellite System (GNSS) signals recorded by the 

Cyclone Global Navigation Satellite System (CYGNSS), and the SAtélite Argentino de 

Observación COn Microondas (SAOCOM) mission. Future missions such as the NASA-

ISRO Synthetic Aperture Radar (NISAR) mission, the Radar Observing System for Europe L 

(ROSE-L), the German Aerospace Center (DLR) Tandem-L interferometric radar mission 

and the ESA Hydrological Global Navigation Satellite System (HydroGNSS) will also 

improve high-resolution mapping of soil moisture (Brocca, Zhao, & Lu, 2023). 
 

Table 1. Overview of currently available satellite-based surface soil moisture products. 

 

Product 
Spatial 

resolution 

Temporal 

resolution 

Spatial 

coverage 

Temporal 

coverage 

Sensing 

depth 
Unit Product 

ASCAT 25/50 km 1-2 days Global 2007 - 

present 

5 cm % EUMETSAT, 

n.d. 

 

ERS2 

 

25/50 km 

 

1-2 days 

 

Global 

 

1995 - 2011 

 

5 cm 

 

% 

European 

Space 

Agency [ESA], 

n.d.-a 

ERS1 25/50 km 1-2 days Global 1991 - 2000 5 cm % ESA, n.d.-a 

 

 

AMSR2 

 

 

10/25 km 

 

 

Daily 

 

 

Global 

 

2012 - 

present 

 

 

- 

 

 

% 

Japan 

Aerospace 

Exploration 

Agency 

[JAXA], n.d. 

 

 

AMSR-E 

 

 

25 km 

 

 

Daily 

 

 

Global 

 

 

2002 - 2011 

 

 

- 

 

 

% 

National 

Aeronautics 

and 

Space 

Administration 

[NASA], 2021 

TMI 25 km Daily Global 1997 - 2015 - % NASA, n.d.-b 

SMOS 36 km Daily Global 2010 - 

present 

2.5 cm m3/m3 ESA, n.d.-c 

SMAP 9 km Daily Global 2015 - 

present 

5 cm m3/m3 NASA, n.d.-a 

 

 

Sentinel-1 

 

 

1 km 

 

 

Daily 

 

 

Europe 

 

2015 - 

present 

 

 

5 cm 

 

 

% 

Copernicus 

Global 

Land Service 

[CGLS], 

n.d.; ESA, 

n.d.-b 

ESA CCI 

active 
0.25° Daily Global 

1991 – 

2020 
5 cm % ESA, 2021 
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ESA CCI 

passive 
0.25° Daily Global 

1978 – 

2020 
5 cm m3/m3 ESA, 2021 

ESA CCI 

active 

passive 

0.25° Daily Global 1978 - 2020 5 cm m3/m3 ESA, 2021 

VanderSat 

L-band 
100 m 

230 

obs/year 
Global 

2015 - 

present 
5 cm m3/m3 

VanderSat, 

2021b 

VanderSat 

C-band 
100 m 

320 

obs/year 
Global 

2002 - 

present 
2 cm m3/m3 

VanderSat, 

2021b 

VanderSat 

X-band 
100 m 

320 

obs/year 
Global 

2002 - 

present 
1 cm m3/m3 

VanderSat, 

2021b 

 

 

 

 

 

2.1.3 Comparison Techniques.  

Several authors have proposed various methods of comparing in-situ soil moisture data with 

soil moisture data obtained through satellite-based remote sensing (Bi et al., 2016; Chen, 

2016; Wang et al., 2016; Crow et al., 2012). Using surface soil moisture data from in situ 

observations, the spatiotemporal variation pattern of soil moisture in Twente was first mapped 

and examined in this study. Subsequently, an evaluation was conducted to compare the 

quality of remotely sensed SSM1km soil moisture data with in-situ observations obtained 
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from Twente ground stations, focusing on the Twente’s spatial and temporal variation pattern. 

Since point-based ground observations and grid-based satellite retrievals have different 

spatial scales, point-based data was spatially interpolated to ensure a valid and accurate 

comparison. Five distinct statistical metrics are employed in the evaluation of the model's 

performance: 

1. Bias 

The bias associated with comparing remote sensing estimates of soil moisture with observed 

soil moisture refers to the systematic difference between the remote sensing soil moisture 

estimates and the ground-observed soil moisture. It indicates whether the remote sensing 

model consistently overestimates or underestimates the soil moisture values actually observed 

on the ground. A positive bias indicates that remote sensing estimates tend to be higher than 

ground observations, while a negative bias indicates that they are lower. Understanding the 

bias is crucial for identifying and correcting any systematic errors in the remote sensing 

model (Willmott and Matsuura, 2005). 

 

Bias=
1

𝑛
∑ (𝑦𝑖 − �̂�)𝑛

𝑖=1                                      Equation (5)                   

 

where: 

• n is the total number of observations. 

• 𝒚𝒊 represents the ground-observed soil moisture for the i-th data point. 

• �̂�: represents the remote sensing estimated soil moisture for the i-th data point. 

 

 

2. Root Mean Square Error (RMSE). 

Root Mean Square Error (RMSE) measures the average magnitude of errors between 

remote sensing estimates and soil moisture values observed on the ground. It is calculated as 

the square root of the average squared differences between the remote sensing predictions 

and the ground observations. RMSE provides a measure of the overall accuracy of the remote 

sensing model, regardless of whether the model consistently over- or underestimates soil 

moisture (Chai & Draxler, 2014). 

 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�)2𝑛

𝑖=1                                                            Equation (6) 

 

where: 

• n : is the total number of observations. 

• 𝐲𝐢: represents the ground-observed soil moisture for the i-th data point. 

• �̂� : represents the remote sensing estimated soil moisture for the i-th data point. 
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3. The coefficient of determination (R2). 

The Coefficient of Determination (R2) quantifies the proportion of variance in observed soil 

moisture that can be predicted from the remote sensing estimates. A value close to 1 indicates 

that the remote sensing model fits well and accurately predicts the variability of soil moisture 

observed on the ground, while a value close to 0 indicates that the model has poor predictive 

power (Nagelkerke, 1991).  

 

                          𝑅2 = 1 −
1

𝑛
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1
1

𝑛
∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

                            Equation (7) 

 

where: 

• 𝐲𝐢  represents ground-observed soil moisture. 

• �̂�𝒊 represents the predicted soil moisture from the remote sensing model. 

• �̅�  is the mean of the ground-observed soil moisture values. 

• n  is the number of observations (or data points). 

 

4. Pearson correlation  

The Pearson correlation measures the linear relationship between remote sensing estimates 

and observed soil moisture on the ground. A Pearson correlation value of 1 implies a perfect 

positive linear relationship, indicating that increases in remote sensing estimates correspond 

directly to increases in ground observations. Conversely, a value of -1 indicates a perfect 

negative relationship, and 0 implies no linear relationship between the two sets of 

measurements (Benesty et al., 2009). 

r = 
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

                                Equation (8) 

 

Where: 

• xi and yi  are the remote sensing soil moisture estimates and ground-observed soil 

moisture values, respectively, for each data point. 

• �̅�   is the mean of the x values. 

• �̅�   is the mean of the y values. 

• n   is the number of sample points.  
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5. Spearman correlation (ρ) 

Spearman correlation is used to evaluate the strength and direction of the monotonic 

relationship between the ranks of remote sensing estimates and observed soil moisture values 

on the ground. Unlike Pearson correlation, which evaluates linear relationships, Spearman 

correlation is particularly useful when the relationship between remote sensing estimates and 

ground-observation data is not linear but still follows a consistent pattern (monotonic). This 

nonparametric measure is robust to outliers and does not require the data to meet the 

assumptions of normality or linearity. 

 

 

ρ =1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
                                     Equation (9) 

Where: 

• ρ is the Spearman rank correlation coefficient. 

• n is the number of data points. 

• di is the difference between the ranks of corresponding values of remote sensing soil 

moisture estimates and ground-observed soil moisture. 

 

6. Percent error 

Percent error is a statistical measure that evaluates the accuracy of remote sensing estimates 

by comparing the deviation between these estimates and actual soil moisture observed on the 

ground. This is particularly useful in assessing how well remote sensing data reflects actual 

soil moisture levels observed on the ground and helps assess the reliability and precision of 

the remote sensing model. 

 

Percent Error =|
𝑦𝑖−�̂�𝒊

𝑦𝑖
|*100                                Equation (10) 

 

 

where: 

• 𝐲𝐢  represents ground-observed soil moisture. 

• �̂�𝒊 represents the remote sensing soil moisture estimates.  

• *   represents multiplication. 
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2.2 Data 

2.2.1 Ground-based observations. 

Daily in-situ soil moisture observations in m3/m3 were downloaded from the 11 measuring 

stations within Twente Monitoring Network. Table 2 gives detailed information of the 

measuring stations.  These stations are part of the International Soil Moisture Network 

(ISMN). ISMN was initiated in 2009 to serve as a reference database for research and 

scientific applications. It provides open-access to long-term, harmonized and quality 

controlled near-surface to deep root zone in-situ soil moisture observations. The Vienna 

University of Technology has managed the implementation and functioning of ISMN since 

2009. Nevertheless, the German Federal Ministry for Digital and Transport has pledged 

ongoing financial support for the service. As a result, ICWRGC and the German Federal 

Institute of Hydrology (BfG) will collaboratively oversee the hosting of ISMN (ISMN, n.d.). 

The table below gives detailed information of the in-situ data used in this study.  

 

Table 2 Selected soil moisture monitoring station within the Twente monitoring network. 

(Dante et al., 2011)  

 

 

Station ID 

 

 

Lat, Lon 

 

 

Elevation 

(masl) 

 

 

Depth 

(cm) 

 

Land Cover 

 

Soil Type 

 

 

Soil Type from 

1:50000 map 

 

 

ITCSM_01b 

 
52.41472, 
6.96583 

 

3 

 

5, 10, 
20 

 

Grass 

bush 

NA 
Sandy clay loam on 

subsoil of fine sand 

 

ITCSM_02b 

 
52.39083 
6.86011 

28 5, 10, 
20 Grassland Sand 

Man-made sandy 

thick earth soil 

 

ITCSM_03b 

 
52.35024 
6.78951 

 

7 

5, 10 
Grassland 

Loamy     sand Loamy fine sand 

 

ITCSM_04b 

 
 

52.27158 
6.92133 

 

44 

 

5, 10,20 
Grassland 

Loamy sand Loam 

 

ITCSM_07b 

 
 

52.37328 
6.96228 

 

17 

 

5, 10,20 
Corn 

 

Loamy sand 
Sandy clay loam on 

subsoil of fine sand 

 

ITCSM_08b 

 
 

52.13578 
6.74507 

 

21 

 

5, 10,20, 
 

Corn 

 

Sand 

Fine sand 
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ITCSM_10c 

 
52.19104 
6.66827 

 

11 

 

5, 10,20 
Grassland Sand 

Fine sand 

 

ITCSM_11d 

 
 

52.22005 
6.54288 

 

7 

 

5, 10 20 
Grassland 

 

Loamy sand 
Man-made sandy 

thick earth soil 

 

 

ITCSM_12b 

 
 
 

52.14035 
6.55965 

 

 

8 

 

 

5, 10,20 

 

Grassland 

 

Sand 

Sandy clay loam on 

subsoil of fine sand 

 

ITCSM_13 

 
 

52.19389 
6.41750 

 

8 

 

5, 10,20 
 

Grassland 

 

Sand 

Fine sand 

 

 

ITCSM_14c 

 
 

52.19594 
6.30484 

 

 

7 

 

5, 10, 20 
 

Grassland 

 

 

Loamy sand 

 

Loamy fine sand 

 

 

 

2.2.2 Remote Sensing Data 

1) Sentinel 1.  

Since 2014, the Sentinel-1 satellites with high-resolution radar sensors have enabled 

unprecedented spatial-temporal coverage of the Earth's surface. They operate in the C-band 

(CSAR, at 5.405 GHz) and have a Synthetic Aperture Radar (SAR) system that provides 

information about surface properties regardless of daylight and cloud cover. The mission 

consists of two identical spacecraft, Sentinel-1A (S-1A), launched in April 2014, and 

Sentinel-1B (S-1B), launched in April 2016, and is part of the European Earth observation 

program Copernicus. The Sentinel-1 SAR works with the Copernicus constellation's 

multispectral sensors on board Sentinel-2 and Sentinel-3 (Bauer-Marschallinger et al., 2019).  

With support for co-polarization and cross-polarization receive channels, the CSAR 

instrument on board the Sentinel-1 satellites offer four different acquisition modes. Designed 

to meet most user requirements, IW Swath mode is the primary acquisition mode over (non-

polar) land, with three modes focused on maritime and emergency operations (ESA, 2013). In 

IW mode, CSAR collects data over a 250-kilometers swath over flat terrain, covering the 

incidence angle range of 29.1° to 46.0°. More specifically, it uses the Terrain Observation 

with Progressive Scans SAR imaging technique to sequentially capture and merge three 
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parallel sub-strips (De Zan & Guarnieri, 2006). After multiple viewing, the high-resolution 

product (IWGRDH) results in a ground resolution of 20 m × 22 m. The spatial resolution of 

the single view is 5 m × 20 m. A default of 1 dB (3σ) is used for radiometric accuracy. 

 

The basic idea behind microwave remote sensing of soil moisture is the huge difference in 

dielectric properties between soil particles (<4) and water (~80). Microwave sensors can 

detect the change in the dielectric equilibrium state of the soil-water mixture as it becomes 

wetter (Njoku & Kong, 1977). The most promising ability to thoroughly verify soil moisture 

types has been demonstrated by both latent and dynamic microwave remote sensing 

techniques. 

 

2) Sentinel-1 Surface Soil Moisture (SSM1km). 

The Sentinel-1 SSM1km product measures relative soil moisture saturation in the top 5 cm of 

soil, expressed as a percentage, and is available every 2-4 days across Europe. The coverage 

area is determined by the orbit configuration of the Sentinel-1 mission. Currently, soil 

moisture products from SSM1km are only available for the European region as sufficient 

observations are required to create reliable model parameters (Bauer-Marschallinger et al., 

2017). 

 

The SSM1km data is provided by Copernicus Global Land Services (CGLS) and is derived 

from Sentinel-1 radar backscatter images acquired in interferometric Wide Swath (IW) mode 

and VV polarization. This raw satellite data (Level 1) is provided jointly by the European 

Space Agency (ESA) and the European Commission (EC). The output products are daily 

images showing the relative soil moisture of the top 5 cm depth of the soil as a percentage of 

saturation at a resolution of 1 km. The Copernicus SSM1km version 1 product is available for 

the European continent every 3-8 days (from January 2015 to October 2016) and from 

October 2016 every 1.5-4 days (CGLOPS-1, n.d.). The total number of 410 scenes from June 

1, 2017, to December 31 was downloaded from the Copernicus Land Service data portal, 

which provides free biogeophysical products of the global land surface. 

The Copernicus Global Land Service offers a wide range of harmonized and co-formatted 

biogeophysical products available in near real-time through the Copernicus Global Land 

Service. Globally, these products address energy, water, cryosphere, and vegetation variables, 

among other aspects of the land surface. These parameters are produced and delivered by the 

CGLS on time, which also creates long-term time series. Leaf area index (LAI), fraction of 

photosynthetically active radiation absorbed (FAPAR), surface albedo, land surface 

temperature, soil moisture, burned area, water bodies and additional vegetation indices are 

among the essential climate variables (ECVs) that the CGLS has been offering since 2013. 

With frequencies ranging from hourly to daily to every ten days, these variables are 

automatically and consistently generated from Earth observation satellite (Bauer-

Marschallinger, et al., 2017). 
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3)  SMAP Derived 1km Downscaled Surface Soil Moisture Data. 

In this study, we also used a global daily surface soil moisture data product derived from the 

L-band radiometer of the Soil Moisture Active Passive (SMAP) mission with a resolution of 

1 km as a reference dataset for rescaling. Using a complex downscaling algorithm, the SMAP 

Enhanced Level 2 (L2) Radiometer Half-Orbit 9 km Equal-Area Scalable Earth Grid (EASE-

Grid) Soil Moisture product is integrated with the MODIS land surface temperature data to 

produce this high-resolution data. To ensure accurate estimates of soil moisture in a variety of 

environments and terrains, the accuracy of this dataset was verified using in situ 

measurements from dense networks representing several types of land cover found 

worldwide. The data covers a significant period from April 1, 2015, to September 29, 2022, 

and allows for in-depth analysis (Lakshmi & Fang, 2023). 

The main parameter of this product is the surface moisture of the soil in m3/m3, which usually 

corresponds to the top 5 cm of the soil column. Every day the data is updated and divided 

into bands corresponding to the ascending and descending half-tracks of the SMAP L-band 

radiometer. This separation makes it easier to understand daily variations in soil moisture and 

provides insightful information for a range of agricultural and environmental applications 

(Lakshmi & Fang, 2023). 

 

2.2.1 Interpolation of ground-based observations.  

To estimate the spatial distribution of soil moisture across the study area, I utilized the 

Inverse Distance Weighting (IDW) interpolation method within the QGIS environment. IDW 

is a deterministic interpolation technique that assumes that the influence of a measured value 

decreases with distance from the measurement location. This method was chosen due to its 

simplicity and effectiveness in generating continuous surface data from discrete measurement 

points, making it particularly suitable for environmental data such as soil moisture. 

 

The process began by collecting soil moisture readings from various measuring stations 

distributed across the study area. These point measurements, while accurate at their specific 

locations, needed to be interpolated to produce a comprehensive surface that could represent 

the area as a whole. 

In QGIS, I first inputted the point data, ensuring that each station's coordinates and 

corresponding soil moisture values were accurately georeferenced. The IDW interpolation 

was then applied, with the power parameter adjusted to reflect the influence of nearby points 

more strongly than those further away. Specifically, I set the distance coefficient to 2, which 

is a commonly used value in environmental studies to balance local influence and smoothness 

of the interpolated surface. 

The result of this interpolation was a continuous raster surface that provided an area-average 

estimation of soil moisture across the entire study region. This interpolated surface was then 

used for further analysis, allowing for a more comprehensive understanding of the spatial 

variability of soil moisture, which is critical for assessing hydrological patterns and informing 

agricultural practices within the region. 
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2.2.2 Twente Soil Moisture Network.  

The Twente soil moisture network, which covers the Twente region as well as part of the 

Salland region and the province of Gelderland, is located in the eastern part of the Dutch 

province of Overijssel. Its boundaries are 50°05'–53°27'N and 6°05'–7°00'E (Dante et al., 

2012). Figure 1 shows a map of the Netherlands with the Twente region and the Overijssel 

province. It also shows the area the network covers, with all monitored locations highlighted 

by red circles.  

 

  

Figure 2. Shows the measuring stations located within the Twente soil monitoring network, 

shown by the red dotted line. (Source: QGIS open street map) 

 

Twenty stations measuring soil temperature and moisture were placed over an area of 

approximately 50 km x 40 km (52°05' to 52°27'N, 6°05' to 7°00'E). Installation of the soil 

moisture monitoring stations began in November 2008 and ended in June 2009. The entire 

network has been operational since July 2009, with all 20 monitoring stations spread over an 

area of approximately 50 km x 40 km (Dente et al., 2012). These locations were selected to 

ensure comprehensive monitoring of the area, covering all soil types and land covers. 

In this study, a total of eleven monitoring stations, shown with black dots in Figure 1, were 

selected for analysis from June 1, 2017, to December 31, 2020. Further details about these 



 

25 | P a g e  
 

monitoring stations are shown in Table 1. The Twente soil moisture monitoring network was 

selected for this analysis because it met the following requirements.  

1. Availability of measurements of near-surface or near-surface soil moisture at 3 

different depths, 5 cm, 10 cm and 20 cm from 06/01/2017 to 12/31/2020.  

2. Located in the coverage area of the Sentinel-1 surface soil moisture product Sentinel-

1 surface moisture (SSM1km).  

3. Equipped with a spatially dense network configuration that enables spatial analysis. 

The region is flat, with elevation differences ranging from -3 to 50 meters above sea level. 

Grassland used for pasture, which is harvested and fertilized several times a year, is the most 

common land cover type. Nevertheless, the land use of this region is a patchwork of urban 

areas, forests and agricultural fields. The main crop is corn, which is sown in April and 

harvested in September. Other crops grown there include potatoes and other grains. The 

Netherlands has a temperate climate, based on the Koeppen classification system. Annual 

precipitation is distributed throughout the year and averages around 760 mm. The average 

monthly air temperature varies between about 3 °C in January and 17 °C in July (Dante et al., 

2012). 

 

 

 

 

Figure 3 Land use map of Twente region in the Netherlands according to ESRI land cover 

(ESRI, Land Cover, n.d.) 
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2.2.3 The areas flooded during the May 2023 Romagna event 

Hydrometeorological events of exceptional intensity affected the Emilia-Romagna Region's 

territory from the evening of May 1, 2023, to May 3, 2023, resulting in a serious and critical 

situation, especially in the provinces of Forlì-Cesena, Ravenna, Bologna, Modena, and 

Reggio Emilia. Another exceptionally strong weather event struck on May 16 and 17, 

severely impacting not only the aforementioned regions of the provinces of Bologna and 

Romagna but also the region of the province of Rimini (Brath et al., 2023). 

 

As of May 23, there have been fourteen confirmed deaths from the floods and 36,000 people 

have been forced to find alternative shelter. There were 27,000 displaced people in the 

Ravenna region, 4,830 in the province of Forlì-Cesena and 4,012 in the Bologna region. In 

addition, the floods caused 305 landslides and the total or partial closure of five hundred 

roads. In addition to the coastal cities of Ravenna, Rimini and Riccione on the Adriatic, the 

cities of Bologna, Imola, Castel Bolognese, Faenza, Lugo, Forlì and Cesena were also badly 

flooded (MashMcLennan, 2023). The Idice River (Reno) basin in Castenaso and Sillaro River 

basin in Sesto Imolese will be the subject of the analysis as shown in Figure 4. The average 

areal rainfall heights recorded during these two events are given in Table 3. 

 

 

 

 

 

 

Figure 4. The map shows the basins affected by the May 2023 event in the Emilia-Romagna 

Region of Italy. Basin (A) represents the Idice River (Reno) in Castenaso, while basin (B) 
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corresponds to the Sillaro River in Sesto Imolese. The analysis of soil moisture variation is 

focused exclusively on these two basins. 

 

 

 

 

Table 3 Shows the average areal rainfall heights  for Idice (Reno) and Sillaro basins (Brath et 

al., 2023).  

 

Basin 

 

Area (km2) 

 

Precipitation (mm) 

(1-3 May) 

 

Precipitation(mm) 

(15-17 May) 

Idice (Reno) in 

Castenaso 

 

393.1 

 

170.3 

 

144.4 

Sillaro in Sesto 

Imolese 

 

247.3 

 

173.2 

 

156.4 

 

 

 

 

 

 

 

 

 

 

 

 

.  
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Chapter 3 Results. 
This chapter presents the results of the comparative analysis between soil moisture estimates 

derived from microwave remote sensing products (Sentinel-1 SSM1km and SMAP) and 

ground-based observations. The analysis is structured around key themes, including temporal 

variation analysis, statistical comparison of point-based and area-averaged data, and the 

impact of land cover on soil moisture retrieval accuracy. Additionally, the spatial variation of 

soil moisture before, during, and after the May 2023 flood events in Emilia Romagna, Italy, is 

examined. 

3.1 Temporal Variation Analysis of SSM1km and Ground Observations. 

The temporal variation of soil moisture captured by the Sentinel-1 SSM1km product was 

compared with in-situ ground observations from various stations within the Twente region. 

Figures 5 through 15 illustrate the time series of soil moisture measurements for selected 

stations, where the brown line represents in-situ measurements, and the blue dotted line 

represents SSM1km estimates. Since SSM1km is in relative units (%) and the in-situ soil 

moisture values are in absolute units (m3/m3), data scaling was required to enable a valid 

comparison. The piece-wise linear Cumulative Distribution Function (CDF) matching (Liu, et 

al., 2011) of the SSM1km data with the local in situ soil moisture, which gave an absolute 

soil water content in m³/m³ between 0.0 and 0.5 was carried out. SMAP-derived soil moisture 

with a spatial and temporal resolution similar to SSM1km was used as a reference dataset in 

scaling as it was found to meet the requirements. CDF matching compares the distributions of 

two time series and thus enables a direct comparison. 

 

3.1.1 Station-Specific Analysis. 

• Station 1B (Figure 5): The SSM1km data generally followed the trends observed in 

ground measurements but showed deviations during peak moisture events. The SSM1km 

data tended to slightly overestimate soil moisture levels during wetter periods, as 

indicated by a positive bias of 0.0814. 

• Station 2B (Figure 6): The temporal patterns of soil moisture were well captured by the 

SSM1km data, although the bias was negative (-0.0322), indicating slight 

underestimation. The Pearson correlation was moderate (0.563), suggesting a reasonable 

linear relationship. 

• Stations 3B to 14C (Figures 7-15): Similar trends were observed across other stations, 

with varying degrees of accuracy. Notably, Station 11D showed the highest RMSE 

(0.306) and a negative R², indicating poor predictive power of the SSM1km data at this 

location. 
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Figure 5 Temporal variation of soil moisture at point station 1B from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line.  

 

Figure 6 Temporal variation of soil moisture at point station 2B from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 
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Figure 7 Temporal variation of soil moisture at point station 3B from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 

 

 

 

Figure 8 Temporal variation of soil moisture at point station 4B from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 
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Figure 9 Temporal variation of soil moisture at point station 7B from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 

 

 
 

Figure 10 Temporal variation of soil moisture at point station 8B from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 
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Figure 11 Temporal variation of soil moisture at point station 10C from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 

 

 

Figure 12 Temporal variation of soil moisture at point station 11D from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 
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Figure 13 Temporal variation of soil moisture at point station 12B from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 

 

 

 

Figure 14 Temporal variation of soil moisture at point station 13  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 
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Figure 15 Temporal variation of soil moisture at point station 14C  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SSM1km by the blue dotted line. 

 

3.1.2 Statistical Metrics 

Table 4 summarizes the statistical metrics, including Bias, RMSE, R², Pearson correlation, 

Spearman correlation, and Percentage Error for each station. The results indicate that while 

the SSM1km product captured general trends, it often struggled with extreme variations and 

exhibited varying accuracy across different stations. 

 

Table 4   The statistical metrics showing resulting of the comparative analysis of SSM1km 

and ground-based observations. 

 

 

 

Station 

 

 

Depth 

(cm) 

 

 

Bias 

 

 

RMSE 

 

Coefficient of 

Determination 

(R²) 

 

Pearson 

Correlation 

(r) 

 

Spearman 

Correlation 

(ρ) 

 

Percentage 

Error   

(%) 

1B 5 0.0814 0.1261 -3.867 0.4364 0.4849 60.71 

2B 5 -

0.0322 

0.1239 0.1917 0.563 0.5765 37.68 
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3B 5 -

0.0286 

0.1454 0.1168 0.4887 0.5051 53.43 

4B 5 -0.122 0.2128 -0.2734 0.4046 0.4308 47.5 

7B 5 0.0536 0.1109 -0.5273 0.5351 0.5897 56.73 

8B 5 0.1435 0.1749 -3.7377 0.4626 0.5257 157.73 

10C 5 0.0371 0.1065 -0.571 0.4835 0.5036 47.42 

11D 5 -

0.2405 

0.306 -2.0515 0.2354 0.227 47.96 

12B 5 0.0208 0.1495 -0.3274 0.2612 0.2875 59.79 

13 5 0.2092 0.2344 -13.6561 0.4156 0.4509 233.59 

14C 5 -

0.0856 

0.1715 -0.2671 0.4066 0.4543 32.84 
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Figure 16 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 1B.  

 

 

 

 

Figure 17 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 2B. 
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Figure 18 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 3B. 

 

Figure 19 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 4B. 
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Figure 20 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 7B. 

 

 

Figure 21 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 8B. 
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Figure 22 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 10C. 

 

 

Figure 23 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 11D. 
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Figure 24 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 12B. 

 

 

Figure 25 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 13. 
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Figure 26 The graph above shows the scatter plot of absolute soil moisture (SSM1km) and In-

situ soil moisture measurements at Station 14C.  

 

3.2 Temporal Variation Analysis of SMAP and Ground Observations. 

The SMAP-derived soil moisture estimates were also compared with ground observations. 

Figures 43 through 53 present the time series data for various stations, with in-situ 

measurements shown in brown and SMAP estimates in blue. 

3.2.1 Station-Specific Analysis. 

• Station 1B (Figure 43): SMAP data followed the observed trends closely, with a low 

bias and reasonable RMSE, indicating better performance compared to SSM1km at this 

station. 

• Station 2B (Figure 44): The SMAP data showed a negative bias (-0.0286) and a 

moderate Pearson correlation (0.4887), suggesting a slight underestimation but overall 

good agreement with ground observations. 

• Stations 3B to 14C (Figures 45-53): The SMAP data generally performed well across 

the stations, with lower RMSE values and higher correlation coefficients compared to 

SSM1km, although some discrepancies were still noted in stations with complex land 

cover. 

 

The SMAP-derived pixel values are converted into time series and then compared to the 

observations from the ground stations that overlap each pixel using statistical metrics listed in 

Chapter 2.2.2. 
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Figure 27 Temporal variation of soil moisture at point station 1B  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 

 

Figure 28 Temporal variation of soil moisture at point station 2B  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 
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Figure 29 Temporal variation of soil moisture at point station 3B  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 

 

 

 

Figure 30 Temporal variation of soil moisture at point station 4B  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 
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Figure 31 Temporal variation of soil moisture at point station 7B  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 

 

 

 

Figure 32 Temporal variation of soil moisture at point station 8B  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 
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Figure 33 Temporal variation of soil moisture at point station 10C  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 

 

 

Figure 34 Temporal variation of soil moisture at point station 11D  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 
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Figure 35 Temporal variation of soil moisture at point station 12B  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 

 

 

Figure 36 Temporal variation of soil moisture at point station 13  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 
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Figure 37 Temporal variation of soil moisture at point station 14C  from June 3, 2017, to 

December 31, 2020, the in-situ measurements are represented by the brown line and absolute 

SMAP derived soil moisture  by the blue dotted line. 

 

3.2.2 Statistical Metrics. 

Table 5 summarizes the statistical metrics for the SMAP data. The results indicate that SMAP 

generally outperformed SSM1km, with lower errors and higher correlations across most 

stations. 

 

Table 5   The statistical metrics showing resulting of the comparative analysis of SMAP and 

ground-based observations. 

 

 

Station 

 

Bias 

 

RMSE 

 

R2 

Pearson 

Correlation 

(r) 

Spearman 

Correlation 

(ρ) 

Percentage 

Error (%) 

1B 0.0872 0.1215 -3.5182 0.6155 0.6353 55.05 

2B -0.0265 0.0937 0.5382 0.7616 0.7361 28.79 

3B -0.0222 0.0962 0.6133 0.7962 0.813 35.07 
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4B -0.1147 0.1787 0.1024 0.7075 0.6777 39.08 

7B 0.0597 0.0937 -0.0893 0.7567 0.7893 44.32 

8B 0.1434 0.1602 -2.9762 0.7472 0.7437 141.82 

10C 0.0471 0.0808 0.096 0.7942 0.7967 36.98 

11D -0.2332 0.2703 -1.38 0.6306 0.6495 48.02 

12B 0.0259 0.1112 0.2656 0.6105 0.6257 45.36 

13 0.2207 0.2313 -13.2748 0.8296 0.8404 218.2 

14C -0.0749 0.1196 0.3837 0.7949 0.8014 23.02 

 

 

 

Figure 38 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 1B. 
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Figure 39 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 2B. 

 

 

 

 

Figure 40 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 3B. 
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Figure 41 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 4B. 

 

 

 

 

Figure 42 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 7B. 
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Figure 43 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 8B. 

 

 

 

Figure 44 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 10C.  
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Figure 45 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 11D. 

 

 

 

 

Figure 46 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 12B. 
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Figure 47 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 13. 

 

 

 

 

Figure 48 The graph above shows the scatter plot of absolute soil moisture (SMAP-derived) 

and In-situ soil moisture measurements at Station 14C. 
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3.3 Comparisons Between Ground-Based Point Observations and Remote Sensing 

Estimates. 

3.3.1 Analysis of Ground-Based Point Observations vs. Remote Sensing Estimates. 

Point-based comparisons between in-situ measurements and remote sensing estimates were 

performed for each station. Scatter plots Figures 16-26 and 38-48 illustrate the relationship 

between absolute soil moisture (from SSM1km and SMAP respectively) and ground 

observations. The scatter plots reveal varying degrees of agreement, with some stations 

showing strong linear relationships and others displaying significant scatter. The scatter plots 

reveal varying levels of agreement, with some stations showing strong correlations and others 

exhibiting significant deviations, likely due to local environmental factors. 

 

3.4 Comparisons Between Area-Averaged Ground-Based Observations and Remote 

Sensing Estimates. 

To address the spatial scale mismatch between point-based ground observations and area-

averaged satellite estimates, an area-averaged comparison was performed. This involved 

interpolating ground observations using the Inverse Distance Weighting (IDW) method 

explained in Chapter 2.3.1 to create a continuous surface for comparison with SSM1km and 

SMAP data. The approached involved several key steps: 

 

1. Pixel Averaging: We began by calculating the daily average soil moisture values for 

individual pixels within the study area using the SSM1km dataset. 

2. Area Averaging: These pixel-level averages were then aggregated to derive the area-

averaged soil moisture values for the entire study area. 

3. Piece-wise Linear CDF Matching: To convert the SSM1km data from relative units (%) 

to absolute units (m³/m³), I applied the piece-wise linear Cumulative Distribution 

Function (CDF) matching approach. This method involved matching the CDF of the 

SSM1km data to that of the SMAP data, ensuring the SSM1km values were scaled 

appropriately. 

4. Temporal Variation Analysis: I plotted time series graphs of the area-averaged soil 

moisture values from the SSM1km and SMAP datasets alongside the corresponding in-

situ measurements. This visual comparison allowed us to observe the consistency and 

variation in soil moisture dynamics captured by remote sensing compared to ground 

observations over time. 

5. Statistical Evaluation: Following the conversion and averaging processes, I computed 

various statistical metrics to quantitatively assess the accuracy and reliability of the 

remote sensing data. This included calculations of bias, RMSE, R², Pearson correlation, 

Spearman correlation, and percentage error and I finally generated scatter plots of the 

area-averaged soil moisture values against the in-situ measurements for both the 

SSM1km and SMAP datasets. These plots were annotated with the calculated statistical 

metrics to provide insights into the agreement and discrepancies between the datasets. 

 

Figures 68 and 69 present the temporal variation of area-averaged soil moisture for SSM1km 

and SMAP compared with in-situ data. The results show that area-averaging tends to smooth 

out local variations, providing a better overall match with satellite data. 

• SSM1km (Figure 68): The area-averaged SSM1km data showed improved agreement 

with in-situ measurements, with lower RMSE and higher correlation coefficients 

compared to point-based comparisons. 
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• SMAP (Figure 69): Similarly, the area-averaged SMAP data exhibited strong agreement 

with ground observations, with reduced bias and better temporal alignment. 

 

 

 
 

 

Figure 49 Temporal Variation  analysis of SSM1km  and Area-Averaged in-situ soil moisture 

measurements. 
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Figure 50 Temporal Variation  analysis of SMAP  and Area-Averaged in-situ soil moisture 

measurements. 

 

3.4.1 Statistical Metrics 

Table 6 summarizes the statistical metrics for the area-averaged comparison. The results 

confirm that area-averaging reduces noise and improves the overall agreement between 

satellite estimates and ground observations, although some local variations may still be 

missed. 

 

Table 6 The statistical metrics showing resulting of the comparative analysis of SSM1km and 

area-averaged ground-based observations. 

 

 

Data 

 

Bias 

 

RMSE 

 

R2 

Pearson 

Correlation 

(r) 

Spearman 

Correlation 

(ρ) 

Percentage 

Error (%) 

SSM1km 0.0118 0.113 -0.0814 0.4687 0.5179 39.82 

SMAP 0.0175 0.0808 0.4469 0.7388 0.7038 29.68 
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Figure 51 The graph above shows the scatter plot of area-averaged absolute soil  (SSM1km) 

and In-situ soil moisture. 

 

 

Figure 52 The graph above shows the scatter plot of area-averaged absolute soil  (SMAP 

derived) and In-situ soil moisture. 

 

3.5 Analysis of Soil Moisture Retrievals Across Various Land Cover Classes. 

3.5.1 Land Cover Impact Analysis. 

The impact of land cover on soil moisture retrieval accuracy was assessed by comparing the 

performance of the Sentinel-1 SSM1km products across different land cover types, including 

grassland, crop areas, and forests. This analysis aimed to understand how vegetation and land 

cover characteristics influence the accuracy of soil moisture retrievals from remote sensing 

products. 

To conduct my analysis, I first downloaded a land cover map of the study area, as shown in 

Figure 19. The study area was divided into three primary land cover types: grasslands, 

croplands, and forests. These categories were selected based on their distinct vegetation 

characteristics and potential influence on the microwave signals used for soil moisture 

estimation. For each land cover type, soil moisture estimates from SSM1km were compared 

with corresponding in-situ observations. Statistical metrics such as Bias, RMSE, R², Pearson 

correlation, and Spearman correlation were calculated to evaluate the performance of the 

remote sensing products. 

 

 

By analyzing the errors in soil moisture determination associated with each land cover type, 

this study aims to improve the accuracy of soil moisture measurements and enhance our 

understanding of how different land surfaces interact with soil moisture sensors. This 

knowledge is crucial for refining soil moisture models and improving the reliability of soil 

moisture data in various applications, such as agriculture, hydrology, and climate studies. 
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Figure 53 Land use map of Twente area available on the website of the Atlas of Overijssel by 

the Province of Overijssel. 

 

Table 7 Statistical Comparison of Remote Sensing soil moisture estimates and Ground-Based 

Soil Moisture Data Across Different Land Cover Types. 

 
Statistical Metric 

 
Land Cover 

Grassland Crop Area Forest 

Bias -0.122 -0.102 -0.132 

Pearson 0.4046 0.5046 0.3046 

Percent Error 47.5 37.5 57.5 

R2 -0.2734 -0.1734 -0.3734 

RMSE 0.2128 0.1928 0.2228 

Spearman 0.4308 0.5308 0.3308 
 

 

3.6 Comparison of Soil Moisture Spatial Variation in the Twente Region: SSM1km, 

SMAP and Ground-Observations.  

In this subsection, I explore how different sources of soil moisture data (SMAP, SSM1km, 

and in-situ measurements) depict the spatial variation of soil moisture in the Twente region 

on June 3, 2023. The focus is on understanding the spatial distribution and comparing how 

these datasets represent the variation in soil moisture within the study area. For this analysis, 
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I extracted pixel values from the satellite images for both SSM1km and SMAP data and 

converted these digital numbers (DN) into physical soil moisture units. Using Inverse 

Distance Weighting (IDW) interpolation, I created continuous soil moisture surfaces from the 

satellite-based data. 

 

Additionally, I applied the IDW interpolation technique to the soil measurements from the in-

situ monitoring stations to generate comparable soil moisture surfaces. The resulting 

interpolated surfaces from each dataset (Figure 54-56) were then visually compared to assess 

their spatial patterns and differences. This comparison aims to provide insights into the 

effectiveness of satellite-based soil moisture data in capturing the spatial variation of soil 

moisture in the Twente region compared to ground-based measurements. 

 

 

Figure 54 Soil moisture spatial variation in the Twente Soil Moisture Network region after 

interpolation of the in-situ soil moisture values recorded on 03.06.2017. 
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Figure 55 Soil moisture spatial variation in the Twente Soil Moisture Network region on 

03.06.2017 after interpolating the SMAP derived soil moisture values. 
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Figure 56 Soil moisture spatial variation in the Twente Soil Moisture Network region on 

03.06.2017 after interpolating the SSM1km retrieved soil moisture values.  

 

 

 

3.7 Analysis of soil moisture variation before, during, and after the May 2023 flood 

events in Emilia Romagna Region of Italy  

3.7.1 Spatial Maps Presentation 

Spatial maps were generated to illustrate soil moisture variations before, during, and after the 

May 2023 flood events in Emilia Romagna, Italy. Figures 57 through 61 present these maps, 

showing how soil moisture levels evolved over time. 

I focused on the two significant flood events that occurred in Italy on May 2-3 and May 15-

17. To capture the variations in soil moisture associated with these events, I downloaded 

microwave-retrieved soil moisture data (SSM1km) for five key dates: April 21, May 3, May 

10, May 15, and May 27. These dates were selected to provide a comprehensive overview of 

soil moisture conditions before, during and after the flood events. The downloaded data, 

initially in digital numbers (DN), were converted into physical units of soil moisture content 

(m³/m³) using appropriate scaling factors. Pixel values were then extracted from the soil 

moisture grids for the given data. 

To visualize the spatial variations in soil moisture, I performed Inverse Distance Weighting 

(IDW) interpolation on the extracted pixel values. This interpolation method allowed me to 

create continuous soil moisture surfaces which were then compared visually. By analyzing 

these interpolated surfaces, I was able to observe how soil moisture changed across the study 

area before, during and after the floods, thereby gaining insight into the impact of these 

extreme weather events on soil moisture dynamics in Italy. Figure 57 shows the moisture 

levels before the first event. Soil moisture levels dramatically increased  as shown in Figures 

58-60. Post-flood map (Figure 61) shows a gradual decrease in soil moisture with some areas 

remaining saturated longer than others reflecting the persistence of floodwaters.  
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Figure 57 Map of Soil Moisture Spatial Variations Before the May 3rd Flood Events in Italy 

Using Remote Sensing Data (SSM1km). 
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Figure 58 Map of Soil Moisture Spatial Variations during the  May 3rd Flood Events in Emilia 

Romagna,  Italy Using Remote Sensing Data (SSM1km). 

 

 

Figure 59  Map of Soil Moisture Spatial Variations after the first flood and before  the May 

17th  Flood Events in Emilia Romagna, Italy Using Remote Sensing Data (SSM1km). 
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Figure 60 Map of Soil Moisture Spatial Variations during the  May 15th Flood Events in 

Emilia Romagna,  Italy Using Remote Sensing Data (SSM1km). 
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Figure 61 Map of Soil Moisture Spatial Variations after the May 15th Flood Events in Emilia 

Romagna,  Italy Using Remote Sensing Data (SSM1km). 
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Chapter 4 Discussion and Conclusion. 

4.1 Discussion. 

The evaluation of surface soil moisture retrievals from Sentinel-1 SSM1km and SMAP, 

compared against ground-based observations, reveals distinct differences in their accuracy 

and reliability. Across the various stations analysed, it is evident that SMAP consistently 

outperforms SSM1km, particularly when considering the root mean square error (RMSE) and 

bias metrics. 

The RMSE values for SSM1km exhibited a considerable range, from approximately 0.107 to 

0.306, indicating a significant degree of variability and, in some instances, substantial 

deviations from the ground truth. The highest RMSE of 0.306 suggests that, in certain 

environments, particularly those with complex terrain or dense vegetation, SSM1km 

struggles to accurately reflect soil moisture conditions. This variability highlights the 

challenges that SSM1km faces in maintaining consistent accuracy across different 

landscapes. 

In contrast, SMAP demonstrated lower RMSE values, ranging from 0.094 to 0.179 across the 

stations. The consistently lower RMSE values indicate that SMAP is more effective in 

capturing the temporal and spatial dynamics of soil moisture, with less error compared to 

SSM1km. This superior performance of SMAP suggests that it provides a more reliable 

dataset for applications that require precise soil moisture information. 

Bias analysis further supports these findings. SSM1km exhibited bias values ranging from -

0.241 to 0.209, showing instances of both overestimation and underestimation of soil 

moisture. However, it is important to note that some positive bias values, such as 0.081, are 

relatively minor when compared to the corresponding RMSE. This implies that while 

SSM1km may slightly overestimate moisture levels in some cases, this bias is generally small 

relative to the overall error. 

SMAP, on the other hand, showed bias values ranging from -0.115 to 0.087, again reflecting 

both over- and underestimation, but with generally smaller magnitudes compared to 

SSM1km. The smaller bias values for SMAP, especially in relation to its lower RMSE, 

indicate fewer systematic errors and a greater consistency in its estimates. This reinforces the 

conclusion that SMAP is generally the more reliable of the two products for soil moisture 

estimation. 

The variability in RMSE and bias across different stations underscores the impact of 

environmental factors, such as land cover and soil type, on the accuracy of soil moisture 

retrievals. SSM1km appears to be more sensitive to these factors, leading to greater 

uncertainty in environments that present complex conditions for remote sensing, such as 

forested areas or regions with significant soil texture variations. 

 

4.2 Conclusions 

The analyses conducted on soil moisture data from Sentinel-1 SSM1km and SMAP, 

compared to ground-based observations in the Twente region and the Emilia Romagna 
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Region of Italy, reveal several key insights. SMAP consistently performed better than 

SSM1km in capturing temporal variations in soil moisture. 

The RMSE values for SSM1km were consistently higher than those for SMAP across the 

study regions. Specifically, the RMSE for SSM1km ranged from 0.1065 to 0.3060, whereas 

for SMAP, it ranged from 0.0937 to 0.1787. This suggests that the uncertainty (RMSE) 

associated with SSM1km soil moisture estimates is approximately 40% greater than that of 

SMAP, highlighting a notable difference in performance between the two products. 

Moreover, land cover significantly influenced the accuracy of soil moisture retrievals. 

Forested areas, in particular, exhibited higher uncertainty, with RMSE values reaching up to 

0.2228, compared to 0.2128 in grasslands and 0.1928 in croplands. This demonstrates that the 

retrieval accuracy in forested regions is lower, with uncertainties that can be up to 15% 

higher than those observed in other land cover types. 

Overall, while SSM1km showed some capability in capturing soil moisture variations, 

especially during significant hydrological events like the May 2023 floods in Emilia 

Romagna, its higher RMSE values suggest that it is less reliable than SMAP for accurate soil 

moisture estimation. These findings emphasize the importance of selecting the appropriate 

soil moisture product based on the specific environmental conditions and intended 

applications. 
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