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Abstract

This work is one of three theses realized thanks to the collaboration between the University
of Padova and the Techmo Car S.P.A. company. Techmo is a world leader company in the
production of high-end customizedmobile and stationary equipment and operative vehicles
for the primary aluminium industry.
The goal of this project is to provide a proof of concepts of the use of Autonomous driving
in the primary aluminum industry. In particular this thesis reports the analysis of two types
of indoor and outdoor localization techniques in an aluminum smelter with a particular op-
erative vehicle, the Fluoride Feeder.
The indoor localization is performed with the ARTag Fiducial 2D Markers System: several
planar tags placed in the environment are detected with visual cameras, using suitable Open
CV and errors correction algorithms to retrieve the marker ID and its pose with respect to
the camera optical axis.
The outdoor localization employs a Wireless Sensors Network (WSN) in which multiple
Wi-Fi transceivers are adopted to trilaterate the position of the vehicle based on the Received
Signal Strength Indicator (RSSI) value.
The raw estimated pose obtained using both the localization approaches is, then, fuse with
the information retrieved by an ideal Inertial Measurement Unit (IMU) sensor using the Ex-
tended Kalman filter in order to increase the localization performances.
Experimental tests have been carried out in theGazebo virtual environment using theRobot
Operative System (ROS) and the Unified Robot Description Format (URDF) XML lan-
guage to setup and initialize the simulations. Stationary and moving tests have been per-
formed to deeply analyze the localization techniques behaviour inmany possible conditions:
in particular, in themoving simulations the fluoride feeder vehicle had to follow a non linear
trajectory to evaluate the localization reliability also in the presence of turns.
Finally, data are acquired and elaboratedwith theMatLab and Simulink software to evaluate
the estimated pose quality in terms of position and orientationmean, variance and standard
deviation error with respect to the true one.
Good results are obtained for the indoor fiducialmarkers system localization techniquewith
a position and orientation error of 0.3046 [m] and 1.45◦, respectively. On the other hand,
for the outdoor RSSI-based Wi-Fi localization approach, estimated pose results in low esti-
mated pose accuracy with a position error of 1.7739 [m].

Keywords: AGV, aluminum smelter, fluoride feeder, indoor localization, fiducial mark-
ers system, ARTag, outdoor localization, RSSI, Wi-Fi, wireless sensors networks, extended
kalman filter.
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1
Introduction

Nowadays, many factories face with labor shortage, high production standard, quality con-

trol of products processes, demand for improvedproductivity and request for qualifiedwork-

ers; consequently, any operation with low human expertise that requires high standardiza-

tion and precision is complemented support by an automated operation. For example, ma-

terial handling system is one of the most important area for automation. Moreover, many

industrial processes, due to danger factors like high temperatures, gas, dust and work repeti-

tiveness, can be hazardous for human workers. Hence, Automated Guided Vehicles (AGVs)

are designed to replace conventional systems in order to increase security, efficiency, time

management and profits.

Traditionally, AGVs were mostly used in manufacturing systems. Currently, AGVs are also

employed for routine transportation tasks in other areas, such as warehouses, container ter-

minals and external (underground) transportation systems [1].

The navigation system is a fundamental component of a modern AGV since it determines

its flexibility, reliability and work efficiency. A navigation system has to be able to solve the

so called global localization problem, meaning it has to obtain the pose (position and orien-

1



tation) of the related AGVwithin the work environment. The pose information needs to be

retrieved using only data gathered from the surroundings. Information of the surrounding

area are obtained using many types of sensors like laser scanners, camera, sonars and wireless

transceivers which are attached to the AGV itself. Several localization approaches are devel-

oped in the recent years, which can be split into three main categories:

1. Natural Landmarks Localization, which uses natural feature like building structures
(wall, ceiling and columns). This localization technique requires that most of the fea-
tures does not change over the time[1].

2. Artificial Landmarks Localization, which uses reflectors, planarmarkers andmagnets
or colored floor stripes[1]. This localization technique requires an invasive setup to
be laid down.

3. Radio Based Localization, which uses radio signals sent and received by transceiver
devices. This localization technique requires a supporting infrastructures.

In the Indoor Localization, many natural landmarks can change: for example, the latter

can be occluded by other elements, changing the geometry of the environment. Hence, arti-

ficial landmarks system is the suitable choice to perform localization onmessy environments

like factories. Artificial landmarks system is deployed in the environment where the AGV

is moving, to accomplish the localization task with high precision, efficiency and reliability.

Unfortunately, some of the artificial landmarks localization system due to the high instal-

lation and maintenance costs are adopted only by large industries. Moreover, systems like

magnetic and color stripes need floor modifications and they stop working when stripes are

dirty or damaged. Thus, these restrictions open the way to research and develop the Vision

Based Localization with 2D fiducial marker systems, especially if they can be made easier to

configure, simultaneously more cost-effective and highly accurate [2].

In theOutdoor Localization, natural and artificial landmarks localization systems are, signifi-

cantly, affected by several environmental parameters which can heavily compromise localiza-

tion accuracy and events and features. Indeed, changes in lighting conditions during the day

can partially or totally obscure landmarks or produce annoying shadows and reflexes, while
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badly atmospheric conditions like rain, snow and heavy wind can damage the artificial land-

marks already placed in the environment. Moreover, outdoor areas are, usually, very wide

and without buildings or structures where, for example, reflectors and markers can be safely

and permanently attached. These disadvantageous conditions cause no trivial identification

of efficient natural landmarks and high installation and maintenance costs for the artificial

onesmaking these two types of localization not usable. Hence, theRadio Based Localization

is a valid alternative for the outdoor localization. Indeed, Global Position System (GPS) and

Wi-Fi / Radio are the most used technologies adopted in the last years. The GPS, which is

still dominating the outdoor localizationmarket, has beenwidely used formany applications

including autonomous navigation of vehicle and robots. Despite its popularity all over the

world, it suffers of high power consumption of its sensors which reduces considerably the

battery life of the devices and poor localization accuracy (5-10 [m]). Moreover, many areas

on earth are not reachable by theGPS signal or characterized by poor reconstruction features.

Thus, Wi-Fi based localization system is often chosen for AGV outdoor localization due to

its low costs installation and maintenance and low power consumption. Moreover, as an

additional benefit, wireless transmitters placed in the environments (using pre existing struc-

tures like lampposts or road signs) can be used to create a communication network between

AGVs and their software management exchanging navigation and tasks information.

1.1 Thesis context

In the aluminumsmelter plants, theprimary aluminumproductionprocess takes place. Many

tasks are performed, by workers, in hazardous conditions. Thus, many companies involved

in the production and distribution of operative vehicles for the aluminum industry, started,

thanks also to the technology research and improvements in the autonomous driving sector,

to develop AGV vehicles.

One of these company is the Techmo Car S.P.A., specialized in the production of high-end

mobile and stationary equipment for the production of aluminium and metal. To achieve

this goal, the latter has started a collaborationwith theUniversity ofPadova, resulting in three

thesis that analyze threemainAGVs tasks: pathplanning, obstacle avoidance and localization.
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Studies are performed considering a specific aluminum smelter building, the potroom, and a

specific operative vehicle, the fluoride feeder.

1.2 Localization systems

This section gives a short overview of the localization system available on the market. To

choose the proper one, studies of installation andmaintenance costs, environmental charac-

teristic and dimension of working area needs to be done.

Vision localization system

Using this type of localization system, AGV uses cameras to record natural or artificial fea-

tures along the path. A vehicle that uses this type of system requires a pre defined map in

which the pose of each features needs to be recorded. The extraction of the features from

an image (corners, edges, etc.) requires an higher computational power and time compared

to all the other localization system but, on the other hand, it not require of any type of wire,

stripe and tape to be placed in the environment resulting in cheaper installation andmainte-

nance costs.

Inertial guidance localization system

Inertial guidance system is defined by gyroscopes and accelerometers sensors mounted on

the AGV, specifically in the Inertial Measurement Unit (IMU) sensor device. They pro-

vide, respectively, fixed reference directions or turning rate measurement, angular velocity

and linear acceleration changes of the system but suffer from noise and bias that may alter

the measurement considerably. Therefore, transponders or corrective markers are placed on

the environment to eventually correct the position and orientation of the AGV itself.

Laser scanner localization system

This type of localization is one of the most used in industrial environment and, in particu-

lar, for forklift AGVs. A rotating laser scanner (Lidar) mounted on the top of the vehicle

determines its position and orientation by precisely measuring angles and distances relative
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to reflectors placed on wall and columns (triangulation approach). To uniquely retrieve the

pose of the vehicle, at least three reflectors have to be detected by the laser to triangulate its

exact position. Despite its popularity, it is an expensive localization system because of the

high number of reflectors need to be mounted on the environment.

Contour based localization system (SLAM)

Simultaneous localization andmapping (SLAM) is a technology capable of determining the

current position of a vehicle without any kind on external infrastructure or artificial land-

mark placed in the environment. Only safety laser scanner needs to be mounted on the

AGV: they are simultaneously used for both localization and safety purposes. The local-

ization is robust against disturbances such as the appearance of other vehicles, people and

other dynamically moving objects. On the contrary, once the contour map is created, the

fixed objects labeled as landmarks do not have to move or remove from their locations.

Magnetic rods localization system

This approach involves small magnetic rods which are inserted on holes on the floor. Vehi-

cle’s route is defined using the floor magnets as key points. Vehicle positioning is calculated

based on its prior know position, the distance traveled and direction of travel. Magnetic

sensors on the vehicle detect the floor magnets and, on the basis of field strength, calculate

the absolute position of the vehicle. Costs of installation and maintenance are proportional

to the environment dimension; anyway, this localization system requires floor modification

which is forbidden, for example, in the potrooms of the aluminum smelter plants.

Magnetic strips localization system

Magnetic strips, which are attached to the operating floor surface to define the vehicle’s op-

erating path, communicate with magnetic-field sensors positioned on the bottom of the ve-

hicle. Magnetic strip not only provides the path for the AGV to follow but also, due to

different combinations of polarity, sequence and distance laid alongside the track, tell the

AGV to change direction and velocity. Despite its simplicity, this type of localization system
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need high maintenance costs because of the deterioration of the strips.

Optical localization system

Similar to the magnetic strips localization system, it uses colored strips mounted over the

floor to define the vehicle paths. Strips are quite cheaper but they can be damaged fastly in

high density traffic areas.

Hybrid localization system

This systemmerges several localization techniques to obtain better performancewith respect

to estimate position and orientation. For example, laser scanner navigation can be combined

with theWi-Fi localization to retrieve information about surrounding environment, increas-

ing the AGV adaptability to external events. On the other hand, installation and mainte-

nance costs of hybrid systems are proportional to the number of different localization ap-

proaches employed. Moreover, they require sophisticated algorithms to fuse correctly all the

needed information acquired from the AGV sensors.

1.3 Proposed solution

This thesis analyzes two solutions for indoor and outdoor localization: the 2Dfiducialmark-

ers system localization based on theARTag fiducial markers and theRSSI-basedWi-Fi local-

ization system using the trilateration algorithm. Both techniques are tested in a simulated

environment, where tags andwireless transceivers are placed, the first in the internal area and

the second in the external one. Both localization applications are simulated in stationary and

moving conditions, where, in the latter, the AGV needs to follow a nonlinear trajectory to

move from an initial point to an ending one. In particular, for the outdoor localization, sta-

tionary test is performed using different numbers of wireless transceivers, while the moving

one is obtained by choosing two different threshold values for the RSSI.

Indoor and outdoor estimated pose measurements are influenced by uncertainties, which

can, significantly, affect the pose of the AGV.Moreover, due to possible temporarily marker

occlusion or wireless signal loss, systemswas not be able to retrieve the pose of the vehicle for
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a certain amount of time. To avoid these serious problems and to increase the estimate pose

accuracy, both information obtained with the localization methods and the IMU sensors,

on board on the vehicle, are fused together using an Extended Kalman Filter.

1.4 Thesis outline

In Chapter 2, a brief description of the aluminum smelter context is given. In particular,

the aluminum process and the main buildings of the factory are highlighted. Finally, the

Techmo Car reality and the Fluoride Feeder vehicle specifications are depicted.

InChapter 3, the perception cameramodel is described, specifying the keymatrices involved

in the camera calibration and the process to retrieve the relation between 3D coordinates

with respect to the world reference frame and the point on the 2D image plane defined in

the camera reference frame.

Chapter 4 describes the fiducial markers indoor localization technique and how it’s possible

to compute the 3D vehicle pose with respect to the 3Dworld reference frame, starting from

the data obtained with a marker detection algorithm.

Chapter 5 shows the RSSI-basedWi-Fi outdoor localization system. In particular, the trilat-

eration process, used to retrieve the vehicle position from RSSI values, is described.

In Chapter 6, the sensor fusion technique based on the Extended Kalman filter is depicted.

In particular, a brief description of the IMU sensor and the kinematic model used by the

filter to retrieve the vehicle estimated pose are described.

In Chapter 7, the hardware and software used to setup and run the simulation are defined.

Moreover, the environment and vehicle modeling process used to create a suitable simula-

tion, are illustrated.

Chapter 8, the last chapter, shown the experimental results obtained in the simulative en-

vironment. In particular, stationary and moving simulations are performed for both the

localization techniques pointing out mean error, variance and standard deviation of the esti-

mated position and orientation.
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2
Context Analysis

In the first part of this chapter a brief description of the aluminum production processes

takes place, while on the second part, the Techmo Car company and the operative vehicle

considered for this project are depicted. Section 2.1 and Section 2.2 cover, respectively, a

general description of the primary and secondary aluminum processes. Section 2.3 and sec-

tion 2.4 outline the common factory layout characteristics, highlighting themain aluminum

smelter buildings and the operative vehicles thatwork there. Finally, section 2.6 describes the

reality of the Techmo Car company.

2.1 Primary aluminum Production

Primary aluminum is produced from bauxite ore that is converted into aluminum oxide

(alumina). The latter is, finally, reduced to aluminum. The common industrial production

practice consists of two consecutive stages:

1. Bayer process: in this first step, the high grademetallurgical alumina is produced from
bauxite.
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2. Hall-Héroult process: the second step converts alumina to aluminum by electrolytic
reduction.

Both processes were developed at the end of the 19th century and optimized through the

years thanks to continue technological improvements [3].

2.1.1 Production of Alumina

Figure 2.1: Example of Bayer process for alumina refinery

The extracted bauxite ore contains at most 30-60% of alumina, while the remaining 40-

70% is composed by unwanted materials such as silicon and titanium dioxide and iron ox-

ide. The latters have to be removed to avoid impurity and metal contamination during the

aluminum production. Indeed, with Bayer process, aluminum oxide (Al2O3), is extracted

frombauxite in a refinery plant. With variousmodifications, this is themost commonly used

method for alumina refining and it involves four steps (Figure 2.1):

1. Digestion: in the first step, the bauxite ore is grounded and mixed with a hot solution
of lime and caustic soda. The mixture is then pumped into high-pressure containers
and heated.
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2. Clarification: in the second step, separation process dissolves the aluminum oxide by
a caustic soda. The process result is a clarified dissolved alumina.

3. Precipitation: in the third step, alumina is pumped and added intoprecipitatorswhere
it is cooled down and separated from silicon dioxide. In this step, crystals of alu-
minium hydroxide are discovered.

4. Calcination: in the last step, the agglomerates of aluminum hydroxide crystals are fil-
tered, washed and calcined in rotary kilns at high temperatures. A dry and fine white
powder of pure alumina is the result [4].

2.1.2 From alumina to aluminum

Figure 2.2: Hall-Héroult process for primary aluminum produc on

Aluminum is produced by the electrolysis of alumina (10%) dissolved in amolten cryolite-

based electrolyte (80 %). The electrolyte is a solution of aluminum oxide in molten cryolite

containing an excess of aluminum fluoride (10 %) to decrease themelting point temperature

from 2000 ◦C near to 1000 ◦C [5]. In the modern aluminum smelter, the molten cryolite-

based electrolyte is put into an electrolytic rectangular cell, also know as potcel (Figure 2.2).

The temperature to hold the cryolite-based electrolyte bath in a liquid state is obtained by
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Joule effect provided by the current passing through the molten bath.. While the voltage

between the graphite anode and catode is relative low (4.5 - 5V), the current can easily rise up

to 150 - 500 kA causing a chemical reaction inside the potcel. From that reaction, aluminum,

carbon dioxide and gases are created: the first one is pumped outside the potcel to cold down

and led to other aluminum smelter building to next processing, while the carbon dioxide

as particulate exhaust is usually vented to the atmosphere. Finally, the exhausted gases are

captured by specialized filters.

2.2 Secondary aluminum Production

Recycled aluminum currentlymakes up a third of the total aluminumused in theworld. Re-

cycling is an essential part of the aluminum industry, given that this processmakes economic,

technological, and ecological sense (Figure 2.3). The aluminum destined for recycling can

be divided in two categories

1. Byproducts obtained during the aluminum process and transformation

2. Scrap of already used old parts that are transformed into ingots and plates for later
commercialization

The byproducts have their origin in the manufacturing process of aluminum material

(shavings, off-cuts, molded parts, etc.). Usually, their quality and composition is already

known. They can, therefore, bemelted downwithout having to carry out any previous treat-

ment and analysis.

The scrap is aluminum material from already produced aluminum goods, which have been

used and discarded at the end of their useful life (cables, pots, radiators, etc.). This type

of aluminum scrap reaches the recyclers after a considerable number of separation processes.

Due to the presence of other undesirablematerials, previous treatment and separation is nec-

essary [6]. One of the greatest advantage of the secondary aluminum production is energy

saving: the power consumption is 5 % of that one spent in the primary aluminum produc-

tion process.
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Figure 2.3: Aluminum life-cycle and secondary aluminum produc on process

2.3 Factory Layout

The production of primary aluminum takes place in aluminum smelters which consist of

large production lines containing hundreds of electrolytic-cells and a number of different

common processing areas in aluminum smelters [4]. The most important are:

• Potrooms

• CastHouse

• Carbon Anode Baking Shop

2.3.1 Potrooms

The plant layout of a modern aluminum smelter is characterized by a series of parallel long

buildingnamedpotrooms,wherehundreds ofpotcels (100-400 for eachpotroom) areplaced

in. Potrooms can be more than 1 km long, in some cases about 50 m wide, and 20 m high.

The potcels can be placed “end-to-end” (layout used in the older aluminum smelter), where

the short side of two consecutive potcels are faced up, or “side-by-side” where the long side
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of two consecutive potcels are faced up (Figure 2.4). The latter is the one used in themodern

aluminum factories: the advantage in terms of potroom wideness is the presence of only

one corridor where the ground vehicles can perform all the needed operations. Usually, just

under the potroom ceiling, a crane can be placed in order to move heavy loads or to perform

multiple operations on the potcels.

(a) End-to-end layout (b) Side-to-side layout

Figure 2.4: Potroom layouts

2.3.2 CastHouse

Figure 2.5: Casthouse

Themolten aluminum is extracted from the potcels (tapping procedure) and transported

to the casthouse into crucibles by a crucible transporter. There, the aluminum is inserted

in an holding furnace to maintain the high aluminum temperature and then place into the
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casting furnacewhere theprimary aluminum ismixedwith the secondary one to create ingots

(Figure 2.5).

2.3.3 Carbon Anode Plant

Carbon anodes are used in aluminium production in the pre-bake anode process. The car-

bon anodes are produced in the carbon plant which is a building separated from the pot-

rooms. The carbon anode plant is, usually, divided into three main sections (Figure 2.6):

1. Green anode: in this area, the coke (calcined petroleum coke) is reduced to a specific
particle size and mixed with a solution of liquid petroleum pitch to form a semi-solid
compound. The latter is then pressed in order to create a green rectangular anode.

2. Oven area: in this section, the green anodes are baked in ovens for several days at a
temperature of approximately 1400°C. The volatiles and participates are either kept
under pressure in the ovens where they are burned as fuel, or removed and passed
through a filter system.

3. Anode rodding: in this last area, metallic rods are inserted in the center of the oven
carbon anode blocks. The result is a new carbon anode ready to use in the potcels[7].

Figure 2.6: Carbon anode plant, anode rodding area
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2.4 Operative vehicles

In the older aluminum smelter and, in particular, inside the potroom buildings, almost all

the operations made on potcels are performed by cranes. Even if, using only cranes has some

advantages in terms of free space increasing and lower number of workers, a crane failure can

cause the complete interruption of the related potroom and the interruption of the primary

aluminum process, with huge consequences in terms of money loss and wasted material.

In the modern aluminum smelters, most of the crane operations such as tapping, crucible

transporting (Section 2.3.2) and potcel fluoride feeding are performed by the so called opera-

tive vehicles. These vehicles are equippedwith specialized arms and components to efficiency

replace cranes and to perform operations inside the aluminum smelter. In the next sections

examples of operative vehicles are depicted.

2.4.1 Potroom vehicles

End-to-end Potroom vehicles

1. Anode changers: they are used to substitute the consumed anodeswith the new ones.
Furthermore, they adjust the distance between anode and cathode to obtain suitable
potential difference and current intensity inside the potcels (Figure 2.7a).

2. Crustbreakers: they are used to break the crust present along potcel sides or between
the anodes and to simplify the anode extraction and replacement. They are equipped
with an hydraulic hammer controlled by the operator (Figure 2.7b).

3. Alumina feeders: they are used to fill potcels tankswith alumina (Figure 2.7c). These
vehicles have a container of volume between 7 and 9 m3 which is filled with alumina
using a specific charging silo. In the potroom, vehicles are guided to the potcel and
fill the alumina tanks using their retractile arm (these operation are almost the same
of the fluoride feeder, see Section 2.7).

4. Anode covering vehicles: they are used to cover the undercover part of the potcel,
after the crust breaker or the anode changing, using a mincedmelt (recycling material
coming from the consumed anodes). This minced melt has a mechanical function:
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it thermally insulate the melting aluminum from the external environment and from
the oxidation. In some particular cases, a certain amount of alumina is addedwith the
minced melt (Figure 2.7d).

(a) Anode changer vehicle (b) Crustbreaker vehicle

(c) Alumina feeder vehicle (d) Anode covering vehicle

(e) FFV (f) Taphole breaking and covering

(g) Bath tapping vehicle

Figure 2.7: Potroom opera ve vehicles
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Side-by-side Potroom vehicles

1. Fluoride feeders: similar to the Alumina Feeder (Section 2.4.1) they perform feeding
operations which are deeply describes in Section 2.7 (Figure 2.7e).

2. Taphole breaking and covering: they used an hydraulic hammer to open hole on the
crust of the short side of the potcel which permits the molten aluminum extraction.
Then, the hole is closed using a minced melt (Figure 2.7f).

3. Bath tapping vehicles: they are used to balance the cryolite bath quantity in order to
create uniform aluminum production conditions. This process consists of continu-
ously extracting and adding the cryolite bath from from specific potcels to other ones
(Figure 2.7g).

2.4.2 Casthouse vehicles

1. Skimming vehicles: they are equipped with a telescopic arm on which a metal rack
is mounted on the extremity. They are used to remove the superficial metal waste, to
mix the molten metal and to clean the bottom and the walls of the furnace.

2. Scraps loaders vehicles: they are used to charge the furnaces with aluminum scrap.
To accomplish this work, the scraps loader vehicles use forks and other loading devices.

(a) Skimming vehicle (b) Scraps loaders vehicle

Figure 2.8: Casthouse opera ve vehicles
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2.4.3 Other Vehicles

1. Anode transport vehicle (ATV): this vehicle performs tasks in different buildings of
the aluminum smelter. It transports anodes pallet, which contain either bothnew and
old anodes, from the carbon anode plant (Section 2.3.3) and the rodding shop to the
potroom. Pallets are lifted up by the ATV specific hydraulic system after a precisely
backward maneuver (Figure 2.9a).

2. Crucible transport and tilting vehicle (CTTV): it transports crucibles from the pot-
room to the casthouse (Section 2.3.2). The molten aluminum contained in each cru-
cible is inserted in the holding furnace by a pouring or siphoning maneuver provided
by the CTTV (Figure 2.9b).

(a) Anode transport vehicle (b) Crucible transport and l ng vehicle

Figure 2.9: Anode transport vehicle and Crucible transport and lted vehicle
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2.5 Hazards and Risks of the Primary aluminum Process

Potrooms and, in general, the aluminum smelter buildings, are dangerous work places for

operative vehicles and workers. Many hazardous tasks are performed each day in critical con-

ditions, which can cause several physical andmental injuries to the workers. Moreover, oper-

ative vehicles check up needs to be done periodically to prevent damages caused by the usury

of the mechanical and hydraulic components in such a critical environment. Indeed, the

smelter environment is characterized by severe conditions in terms of:

Temperature: regardless the place where the primary aluminum smelter is building, in-

side the potrooms temperatures can easily achieve 50-60 ◦C and, often, in proximity of the

potcels, can rise up to 80-90 ◦C. Hence, vehicles cabin are equipped with air conditioning

and all the components that can be damaged by high temperatures are covered with special

protections or cooled down by specific cooling systems.

Magnetic Field: due to the high intensity of the current used for the aluminum process,

inside the potrooms magnetic field can achieve values of 0.3 - 0.4 Tesla. This can cause se-

rious problems to the ferromagnetic mechanisms. To prevent dramatic consequences some

precautions can be take in place. For example, sensible parts of the vehicles should be put

on the top of them and the vehicle frame is used as a protection. Furthermore, the potroom

access is forbidden to all the people with pacemaker.

Electric Energy: due to the current intensity, potroommachines have to work in an elec-

tric environment. If a vehicle accidentally touch a potcel, due to its high mass and its metal

structure, transforms itself into a huge resistance subject to a Joule effect (the vehicle can be

burned causing serious hazard to the operator). To avoid it, all the machines are electrically

isolated (large plates of insulating material are mounted between frame and moving parts).

Dust: alumina and fluoride powders are very dangerous, in particular for drivers health.
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Because of that, machines are equipped with specific filters and seals to maintain engine and

cabin dust-free.

Gas: fluorine gas can ruin glass. Thus, vehicle glasses are protected with particular film

or are made in poly carbonate. Furthermore, some aluminum companies ask for filter and

ventilation systems to protect the driver, removing all the nocive gas inside the cabin.

Drivers: drivers are, probably, the biggest hazard for themselves and the plant. Theywork

as fast as possible ignoring the vehicle status. Moreover, to increase work efficiency, they by-

pass most of the vehicle security systems, which are necessary for ensure driver safety when

something goes wrong. Finally, driver who perform repetitive tasks can soon become dis-

tracted and and not careful.

2.6 TechmoCar S.p.a.

Figure 2.10: Techmo Car S.p.a. logo

Techmo is a world leader company in the engineering and pro-

duction of high-end customized mobile and stationary equip-

ment for the primary aluminium industry. The company was

founded in 1961 by Dr. Franco Zannini and since the begin-

ning it was focused on providing original and state of the art

solutions to problems related to metal production. Techmo was the first company in the

world to create and fabricate specialized vehicles for the aluminium electrolysis in the 1960’s.

Nowadays, Techmoproducts, located inmore than40 countries, are appreciatedby themost

demanding aluminium producers, adopting every kind of smelter reduction technologies.

Techmo research and development programs focus on the following multiple objectives:

• Improving all the environmental aspects: better comfort and saferworking conditions
for the operators, reduction of carbon footprint of the equipment and increase of the
recyclability of their components

• BringingHigher efficiency to theproductionprocesswhile reducingproduction costs,
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running costs and maintenance costs

• Increasing durability in the years

To achieve all of these objectives, Techmo is now studying the possibility to adopt the

AGV technology and implement it to create safer vehicles reducing production, running

and maintenance costs all over the years. Techmo has already started some research to ap-

ply this technology in the aluminum industry: a collaboration with University of Padova is

focusing on applying this new technology to a specific vehicle, the Fluoride Feeder Vehicle

(Section 2.7).

2.7 Fluoride Feeder Vehicle

One of the most iconic operative vehicle of Techmo Car S.p.a. is the Fluoride Feeder vehi-

cle (FFV). It is a six-wheel equipped diesel truck with retractile arm (Figure 2.11) which per-

forms its operations in the potrooms and in the Aluminium Fluoride Storage andHandling

(AFSH) areas (see Table2.1 for general specifications). It specifically performs two tasks:

• Feeds the potcels with aluminum fluoride

• Charges its container in the AFSH

2.7.1 Potcels feeding

Its main task is to feed each potcel with the aluminum fluoride (Section 2.1). When a potcel

required a certain amount of aluminum fluoride to accomplish the primary aluminum pro-

duction, the FFV’s worker drive until he reaches the selected potcel.

Then the FFV retractile arm, initially positioned over its container, startsmoving outside the

vehicle until it reaches the desired position over the potcel. Finally, thanks toworm inside the

container and the arm, the aluminum fluoride goes into the potcel passing through two top

openings. Note that, due to electric and hydraulic pipes which run over the potcel, the FFV

perform the feeding operation positioned between two consecutive potcels (Figure 2.12).

22



(a) Le side view of FFV (b) Right side view of FFV

(c) Front side view of FFV (d) Back side view of FFV

Figure 2.11: FFV

(a) Retrac le arm during feed opera on (b) Potcel feeding opera on

(c) Lateral view of feeding opera on (d) Potcel feeding opera on

Figure 2.12: Top view of feeding opera on
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2.7.2 Container charging

When the container is almost empty, the FFV goes into the AFSH building to charge. The

charging station consists of a silos which has an opening on the bottom fromwhich the alu-

minum fluoride passing into the vehicle. Because of the presence of many FFV (the number

depends on the size of the aluminum smelter), this charging operation needs to be perfectly

managed to guarantee no waste of time.

FFVMain Specifications

Length 6100 [mm]

Width 2200 [mm]

Height 3638 [mm]

Tare weight 12500 [kg]

Gross weight 23000 [kg]

Container capacity 10500 [kg]

N° of wheels 6

N° of traction wheels 2 wheel drive on the rear axis

Type of engine Diesel engine

Minimum steering radius 6150 [mm]

Wheel diameter 720 [mm]

Wheelbase 4180 [mm]

Retractile arm’s maximum yaw angle 120 [deg]

Retractile arm’s maximum pitch angle 37.4 [deg]

Table 2.1: FFV main specifica ons
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3
Perception

As introduced in Chapter 1, the indoor localization is based on fiducial markers (Chapter 4)

which are seen by monocular cameras placed over the FFV. To fully understand how this

localization procedure works, this chapter describes the frontal pinhole camera model and

how extrinsic and intrinsic camera parameters are retrieved from camera calibration.

Figure 3.1: Pinhole camera
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3.1 Pinhole Camera

The pinhole cameramodel describes themathematical relation between the coordinates of a

point in three-dimensional space and its projection onto the image plane of an ideal pinhole

camera (Figure 3.1). This model is only a simple approximation of amodern camera: indeed

lens effects and other non-idealities are not taken into account.

3.1.1 Pinhole CameraModel

Figure 3.2: Pinhole camera model

Drawing inspiration from Figure 3.2, a generic pinhole camera model is characterized by

the following elements [8]:

• 3D orthogonal frame defined by the triplet (X1,X2,X3) where O is the origin of the
coordinate system

• A point P with coordinates (x1,x2,x3) related to the 3D frame
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• 2D orthogonal frame defined by the pair (Y1,Y2) which represent the projection of P
onto a plane called image plane.

• R, at the intersection between optical axis (orthogonal segment fromO to the image
plane) and the image plane

• Projection line of point P into the camera

• Q with coordinates (y1,y2), which is the projection of P into the image plane

• f, which is the distance betweenO andR, called focal lenght

To understand the transformation from the 3D to 2D coordinate system, let’s consider

Figure 3.3 where P is the point in the 3D world frame andQ is its projection on the image

plane. According to the similarity of triangles criteria the relation between P with coordi-

nates (x1,x2,x3) andQwith coordinates (y1,y2) is obtained by the following formula(
y1
y2

)
= − f

x3

(
x1

x2

)
(3.1)

Note that the image on the image plane of a real pinhole camera is rotated by π. To pro-

duce an unrotated image the image plane can be intersect theX3 axis instead of at−f at f

(frontal pinhole camera model). The result mapping is(
y1
y2

)
=

f

x3

(
x1

x2

)
(3.2)

which leads to 
y1 = f

x1

x3

=⇒ x1

x3

=
y1
f

y2 = f
x2

x3

=⇒ x2

x3

=
y2
f

(3.3)

Drawing inspiration from Equation 3.3, starting from the 2D coordinates y1 and y2, it’s

possible to retrieve only the 3D coordinate ratio
x1

x3

and
x2

x3

. So, using a single camera, it’s

impossible to perform the inverse transformation from 2D image plane to 3D world frame

coordinates without information loss: for example, it is impossible to find the distance from
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P to the image plane.

In general, in order to obtain the position of a given point in the 3D frame starting from 2D

frame, it is necessary to use stereo vision system and epipolar geometry. However, in particular

cases likemarkers detectionwhere dimension, color and shape of tags are a priori well known,

a single cameramodel can be used to retrieve the position and orientation of the tag if at least

three correspondences between image points and objects points have been identified [9].

Figure 3.3: Rela on between 3D world frame and 2D image plane coordinates

3.2 Camera Calibration

Figure 3.4: Camera calibra on method

Geometric camera calibration is the process

of estimating intrinsic and extrinsic parame-

ters of a given camera. Intrinsic parameters

are, for example, focal length, skew, lens dis-

tortion and image center while, the extrin-

sic parameters describe position and orien-

tation of the camera in the 3D world frame.

Accurate camera calibration is necessary to

many vision-based 3D metrological techniques. Usually, camera calibration methods using

regular planar calibration targets, such as, check-board or circular patterns (Figure 3.4) of
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which dimensions are a priori known[10]. Intrinsic parameters matrix, K ∈ R3×3, is de-

fined as follows

K = KsKf =


Sx Sy Ox

0 Sy Oy

0 0 1



f 0 0

0 f 0

0 0 1

 =


fSx fSy Ox

0 fSy Oy

0 0 1

 (3.4)

where

• Sx and Sy are pixel scale factors

• Sθ is the skew factor which takes into account the fact that the pixels may not be
rectangular

• f is the focal length

• (Ox,Oy) is an offset vector

Let us define the standard perspective matrix Π0 ∈ R3×4

Π0 =


1 0 0 0

0 1 0 0

0 0 1 0

 (3.5)

which maps the homogeneous coordinates from 3D world to 2D world. The relation be-

tween the 2D reference frame and the 3D one can be defined using the following equation:


y1

y2

1

 = KΠ0


x1

x2

x3

1

 (3.6)

where the vector
[
x1 x2 x3 1

]T
represents the 3D homogeneous coordinates defined

on the 3D camera reference frame. Finally, the relation between the point in the 3D coordi-
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nates with respect to the world reference frame and the point on the 2D image plane defined

in the camera reference frame can be derived considering equation 3.6 and the extrinsic pa-

rameters matrixG, that is


y1

y2

1

 = KΠ0


x1

x2

x3

1

 = KΠ0G


X1

X2

X3

1

 = P


X1

X2

X3

1

 , G =

R T

0 1

 , G ∈ SE(3)

(3.7)

whereG and P are the extrinsic parameters matrix and the camera matrix respectively: G

is composedby the3×3 rotationmatrixR and the3×1 translation vectorT, whichmap the

vector
[
x1 x2 x3

]T
defined in the3Dcamera coordinates, into the vector

[
X1 X2 X3

]T
defined on the 3D world reference frame according to:


x1

x2

x3

1

 = G


X1

X2

X3

1

 =⇒


x1

x2

x3

 = R


X1

X2

X3

+T (3.8)
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4
Fiducial Markers Indoor Localization

For industrial purposes, many vision applications use two dimensional patterns to carry in-

formation used to perform accurate AGVs localization and navigation. Fiducialmarkers sys-

tem consists of artificial planar patterns that aremounted in the environment on pre existent

structures and automatically detected by cameras using suitable algorithms. They are used

for several scientific and technical purposes and, in particular, robotics, augmented reality,

navigation, localization and camera calibration. They combine fast and accurate camera posi-

tion and orientation estimationwith easy and inexpensive installation andmaintenance[11].

The robustness and usefulness of a fiducial markers system are characterized by several qual-

itative and metrical parameters, that are:

1. False positive rate: rate of the erroneous reporting the presence of a tags when none is
present

2. False negative rate: probability that a marker is present in an image but not reported

3. Inter-marker confusion rate: rate of wrong id extrapolated from the detected markers
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4. Vertex jitter characteristics: noise in the marker corner positions, which affects the sta-
bility and accuracy of the tags detection process

5. Marker library size: high number of unique markers that the system can support

6. Minimal marker detection size: is the size in pixels required for reliable detection

7. Immunity to lighting variation: markers need to be detected correctly even in low
light environment

8. Immunity to occlusion: markers need to be detected correctly even if its pattern is par-
tially covered

9. Speed performance: a vision-based fiducialmarker localization systemneeds to achieve
real time performances with low cost computing power [12].

Nowadays, thanks to the technology improvement and research, especially on the aug-

mented reality, multiple planar marker systems have been created, each one characterized by

different pattern design: Data Matrix, Maxicode, QR, ARStudio, ARToolkit and ARTag

are some examples. Therefore, proper fiducial marker system comparison is necessary in or-

der to choose the suitable one for the task of interest (Figure 4.1)[13].

For its versatility, performances and simple implementation on the simulation setup of

this project, the ARTag fiducial markers system has been chosen for the indoor localization.

4.1 ARTag fiducial markers system

ARTag is a planar pattern marker system that counts 2002 markers on its library. Speaking

of robustness and usefulness, the false positive rate is estimated to be < 0.0039% of the

quadrilaterals found in an image. The internal marker confusion rate is minimal and vertex

jitter has a standard deviation of 0.03 and a maximum of 0.09 [pixels]. Moreover, it can

be detected despite lighting changes and markers can be detected if partially occluded by

external environmental elements. Finally, ARTag markers have square shape providing four
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Figure 4.1: Example of planar pa ern marker systems

corners necessary for perspective support and tags detection speed is typically on the order

of 10− 50 [ns], fast enough for real-time performance [12].

This type of marker uses a concept of squares with an internal image, where the latter is read

and decoded using a digital approach. The main characteristics of these tags are a square

border of either polarity (white on black or black on white) and a 5 × 5 [u] square grid

dividing up the interior. The whole marker is 9 × 9 [u], with a border of thickness 2 [u]

leaving the 25 internal cells to carry information (Figure 4.2). Each cell is only black or white

and carries one bit of digital data [14]. The sequence of 25 bits obtained by the internal cells

is composed by the id-bits, of length 10 bits, used to retrieve the correct ID of the related tag

and the redundant-bits, of length 15 bits, : the first one, of length 10 bits, is used to detect

and correct errors and to insure the uniqueness of the tag ID[15]. Once the markers are

placed in the environment in their pre-defined position and orientation, to obtain suitable

indoor localization, two processes need to be performed or by cameras with their embedded

acquisition system or by vehicle localization and navigation system:

• Markers detection

• Identification and ID decoding
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Figure 4.2: ARTag fiducial markers system

4.1.1 Markers detection

The first goal of the marker detection process is to find the outlines of potential markers and

then to deduce locations of marker’s corner in the camera frame. Moreover, detection sys-

tem needs to confirm correct marker and retrieve its identity or discard false ones. Finally,

the system computes the tag position and orientationwith respect to the camera frame using

information from the detected marker location (dimensions, pose with respect to the world

reference frame, etc.) and from the camera calibration (intrinsic and extrinsic matrices) (Sec-

tion 3.2). The markers detection process involves several phases which are performed by

using standard algorithms or particular libraries (OpenCV):

• Image acquisition

• Pre processing

– Low level image processing

– Line detection and line fitting

– Detection of the marker corners and its quadrilateral
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• Markers detection with acceptance criteria

– Fast rejection of false markers

– Fast acceptance of true markers

• Identification and IDmarkers decoding

• Markers pose with respect to the camera reference frame

As alreadymentioned in theChapter 1, visual localization approach canbeused efficiently

inside the aluminum smelter due to its reliability and immunity against several environmen-

tal hazardous parameters like high temperatures, corrosive gases, magnetic fields and dusts.

Moreover, markers can be placed on the walls and, thus, not damaged by the operative vehi-

cles.

Image acquisition

It’s the first process in marker detection. Specific cameras mounted on the FFV acquire

frames and send it to the processing and detection system. To increase localization accu-

racy performances, cameras needs to be mounted in crucial pre defined positions (on the

top of the vehicle cabin) in order to increase cameras field of view and to avoid occlusion

by the vehicle itself. Moreover, high camera resolution and frame rate values are important

parameters for low noise images: the latters need to be set properly without losing real time

performances overloading the localization system.

Pre processing

Markers detection is computed on gray scale image that is converted starting from the one

obtained by the cameras. A gray scale image is one in which the value of each pixel represent-

ing only an amount of light, that is, it carries only intensity information. Gray scale images,

a kind of black-and-white or gray monochrome, are composed exclusively of shades of gray
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from black (low light intensity) to white (high light intensity). If camera frame has differ-

ent color space format (RGB, CMYK, HSV, etc.), the image is converted into the intensity

image. The first operation of the marker detection is to retrieve a binary image (pixels have

only black or white color). A binary image is also called bi-tonal or two-level image obtaining

by the so called image segmentation processwhich is used to partitioning an image intomean-

ingful regions (in this case the number of region is equal to 2). To correctly separate the two

regions, an adaptive threshold technique is applied to compute the best threshold value in a

way that minimizes the variance of values within each region and maximizes the variance of

values between the regions (Otsu’s algorithm). The latter guarantees marker detection even

with different local illumination changes[16].

Figure 4.3: Spa al opera on

To detect edges into a given image, the gradient direction andmagnitude of each pixel are

computed using spatial operation. With spatial operation, each pixel in the output image is

a function of all pixels in a region surrounding the corresponding pixel in the input image

(Figure 4.3), that is

O[u, v] =
∑

(i,j)∈W

I[u+ i, v + j]K[i, j], ∀(u, v) ∈ I (4.1)
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where W is know as window, typically a w × w square region and K ∈ Rw×w is the so

called convolution kernel. For every output pixel, the corresponding window of pixels from

the input imageW is multiplied element-wise with the kernelK . Many convolution kernels

have been proposed and the most common is the Sobel Kernel, defined as follows:

K =


−1 0 1

−2 0 2

−1 0 1

 (4.2)

Pixels with the same gradient direction and magnitude values are clustered into components.

Components are generated following a graph-based recursive segmentation method: a graph

is created where the nodes represents pixels. Adjacent pixels are connected by edge and its

weight is equal to the pixel’s difference in gradient direction. If the edge weight is under

a certain threshold, the terminal pixel is added to the same component of the initial ones

(Figure 4.4). Note that, taking the derivative of a signal increases noises, especially to the high-

frequencies. To reduce these noises, a smoothing operation is applied, by a convolutional

operation between the image before the spatial operation and the followingGaussian kernel

[17]

G(x, y, σ) =
1

2πσ2
e
−
x2 + y2

2σ2 (4.3)

Edges detection is the most time expensive process of the markers detection. To increase

(a) Camera frame (b) Edge detec on

Figure 4.4: Example of edge detec on process
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speed performance it is possible to reduce camera resolution but, as consequence, small tags

could not be detected [18].

At this point, a set of segments have been computed from an image. The next step is to

find a close-loop with four corners in order to obtain a 4-sided shape (quadrilateral), using

a recursive algorithm. The first phase of quadrilateral detection process starts considering all

the segments founded in the edges detection. Then, on the second phase, only the segments

that begin close enough to the previous segments end and that obey to a counter clockwise

winding order are selected. Once the 4 lines are founded, the candidate quadrilateral is cre-

ated. The next step, before the marker decoding process, is used as first markers selection

in order to send to the marker detection step true and valid tags as much as possible (Fig-

ure 4.5)[18][19].

(a) Camera frame (b)Quadrilateral detec on

Figure 4.5: Example of quadrilateral detec on process

Fast acceptance and rejection criteria

Even small error in detected 2D locations of edges and corners might significantly affect the

calculate pose of the marker. Detection errors can be caused by pixel quantization error,

wrong threshold value, camera noise, etc. All of these errors cause annoying oscillations in

the tag’s pose. To increase accuracy, detection systems optimise the locations after initial

detection.
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For example, if marker has been detected using binary image, on the second step, system can

used gray-scale image tofind edges and corners. Moreover, it canuse the first detected corners

as initial estimate for a more accurate corner detection method.

Due to high speed performance required in real time augmented reality, markers needs to

be accepted or rejected quickly. Thus, fast acceptance/rejection criteria to distinguish real

markers from common objects are applied. First of all, system can reject quadrilaterals with

an area of a few pixels. Indeed, small area size means that markers is far away from camera

or the related quadrilateral is not a marker. To compute size of a certain area, it is possible

to calculate the number of pixels which belong to the perimeter of the related area. Another

criteria is basedon the overall appearance of themarkers. Indeed, if the systemalready known

the shape and pattern of the tags, it can reject quadrilaterals which have, for example, all

pixels black. Finally, 2D binary markers have a number of strong edges inside the marker

(edges between white and black cells). One method of rejecting obvious non-markers is to

calculate the number of intensity changes in two perpendicular directions. If the number of

changes is low, it cannot be a marker.

4.1.2 Identification and ID decoding

Once the quadrilateral border contours of the markers have been detected, a 5x5 unit spa-

tial windows is used to sample the internal region assigning values 0 or 1 if the color inside

each cell of grid is black or white respectively. Performing this sampling for all the possible

marker rotations, four 25-bits sequences are obtained; only one of them may end up being

validated in the decoding process. The 25-bit binary sequence encoded in the marker, as al-

ready mentioned at the beginning of the ARTag section, encapsulates a 10-bit ID which is

used to identify the relatedmarker. The extra 15 bits provide redundancy to reduce the false

detection rate and to provide uniqueness over the four possible rotations. If any of the four

25-bits sequences is found in the ARTag system, the candidate marker is consider as a valid

tag; to speed up this process, the dictionary elements are sorted as a balanced binary tree. To

this aim, markers are represented and sorted by the integer value obtained by concatenating

all its bits. Thus, the computational complexity of this process isO(4log2(|D|), whereD is
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the ARTag dictionary. Conversely, if no match is found, a Forward Error Correction (FEC)

and a Cyclical Redundancy Check (CRC) digital methods are applied to the four 25-bits se-

quences to identify if the related code is part of the ARTag marker set and to extract its ID

[20].

Figure 4.6: Example of decoding process

FEC is used to increase the positive rate repairing some bits of the sequence using the

Hamming Algorithm. Hamming algorithm is a method widely used for error detection and

correction. It is based on the use of parity bits. A parity bit tells whether the number of ones

in a binary number is odd or even. Even parity is equal one if the number on ones is odd and

zero if the number of ones is even. Vice versa, odd parity is respectively one if the number

of ones is even and zero if the number of ones is odd. With only one parity bit added to

the data, it is possible to detect one bit error without information about which bit is wrong.

On the contrary, with more parity bits, the Hamming algorithm is able to detect the loca-

tions of detected errors and, thus, correct them. Note that, using only the FEC process with

Hamming algorithm, the system is able to detect and correct only a certain amount of errors

within a cells block. In some cases, for example reflections and shadows, the probability error

existence between neighbouring cells is correlated. To increase FECperformance uncorrelat-

ing the detection error between near cells, data randomizing process is applied: the system

scatters the bits of each block within the marker. This means that data cells belonging to a

block are at different parts of the markers and not adjacent, making the probability error of

each marker cell independent to the other one. The latter technique, applied with the data

repetition, improves the probability of getting correct bits sequences [16].

Finally, the CRC digital method is applied in series to the FEC to extract the correct

marker ID, if the latter is a valid one. CRC is a checksum algorithm to detect inconsistency
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of data, i.e. bit errors over a bits sequence. This method is based on polynomial division.

The binary input sequence is interpreted as binary polynomial (bits are used as coefficients)

which is divided by another fixed binary number called generator polynomial. The latter is

statically defined by the used CRC algorithm: CRC-8 using a fixed defined generator poly-

nomialwithn+1bits, that is, for example,x8+x5+x2+1. The remainder of this division is

the checksum value. Division of polynomials differs from integer division. Indeed the CRC

process arithmetic calculation is based on the XOR (Exclusive-OR) operator, which truth

table is summarized in Table 4.1.

CRCmethod used for theARTagmarkers detection is calledCRC-16 and it has as generator

polynomialx16+x12+x5+1, which corresponds to thebits-sequence10001000000100001.

To perform the division, 16 bits are appended to the dividend and the most significant bit

of the divisor is aligned with the dividend one. If the reminder of this division is 0, the tag re-

lated to the used 25-bit sequence is labeled as valid and its ID is extracted and combinedwith

its border polarity. Otherwise, the tag is labeled as not valid and discharged by the system

[21].

XOR 0 1

0 0 1

1 1 0

Table 4.1: XOR truth table

Markers pose with respect to the camera reference frame

To perform fiducial markers localization, once the tags are labeled as valid and their ID have

been extrapolated using the above process, the position and orientation of the markers with

respect to the 3D camera reference frame are computed. The four corners of the valid tag,

with 2D camera coordinates xc and yc, are transformed, using the intrinsic camera param-

eters matrix, into the Xc, Yc and ZC coordinates on the 3D camera reference frame. The

entire process is analyzed in Section 3.2.
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4.1.3 FFV pose with respect to the world reference frame

The goal of both the indoor and outdoor localization approaches is to retrieve position and

orientation of the FFV with respect to the world reference frame, meaning finding the rota-

tion matrix and translation vectorRw
v and Tw

v , respectively. In this section, the technique

adopted to retrieve the 3D position and orientation vehicle coordinates with respect to the

world reference frame is depicted. To simplify the description of the entire process, let us

divide it in three fundamental steps:

1. Compute the vehicle pose with respect to the camera reference frame

2. Compute the vehicle pose with respect to the tag reference frame

3. Compute the vehicle pose with respect to the world reference frame

Notation

Firstly, let us considerN different tags and only one of the cameras placed over the cabin of

the vehicle (the process is the same for the other two cameras). Define the following transla-

tion and rotation matrices:

• Rv
c and Tv

c are, respectively, the rotation and translation matrices from the camera
reference frame to the vehicle reference frame

• Rti
c and Tti

c where i = 0, ..., N − 1 are, respectively, the rotation and translation
matrices from the camera reference frame to the i-th marker reference frame

• Rw
ti
and Tw

ti
where i = 0, ..., N − 1 are, respectively, the rotation and translation

matrices from the i-th marker reference frame to the world reference frame

• Ow,Ot,Oc andOv are, respectively, the origin of the world, tag, camera and vehicle
reference frames

Finally, note thatRj
i ∈ R3×3 andTj

i ∈ R3×1.
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Figure 4.7: 3D reference frame of the vehicle, camera, tag and world

To clarify the following steps, a graphical definition of the tags, camera and vehicle refer-

ence frames is required: each of them is permanently attached to the relative object over the

time and they are definedbefore the simulation starts. Figure 4.7 depicts the reference frames

involved in the simulation: the red arrow corresponding to the x-axis, while the orange and

blue ones are related, respectively, to the y-axis and z-axis. Frames are linked together by the

rotations and translations defined above.

Vehicle pose with respect to the camera reference frame

Firstly, knowing the camera pose with respect to the vehicle frame, the vehicle pose with

respect to the camera reference frame is easy to compute by post multiplying the translation

vectorTv
c by the inverse of the rotation matrixRv

c as follows:

Tc
v = (Rv

c)
−1Tv

c = (Rv
c)

T Tv
c (4.4)

Rc
v = (Rv

c)
−1 = (Rv

c)
T (4.5)
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Vehicle pose with respect to the tag reference frame

Once the vehicle pose with respect to the camera frame is computed, the main step of the

vehicle indoor localization consists of retrieving the vehicle pose with respect to the tag ref-

erence frame using the information obtained by marker detection and localization process.

Using the extrinsic and intrinsic parameters defined with the camera calibration, the pose of

the i-th marker, meaningRc
ti
andTc

ti
, is computed with respect to the camera frame. Then,

the vehicle pose with respect to the tag reference frame is calculated by sequentially using the

following equations:

Tc
v,ti

= Tc
ti
+Tc

v, i = 0, ..., N − 1 (4.6)

Tti
v =

(
Rc

ti

)−1
Tc

v,ti
=

(
Rc

ti

)T
Tc

v,ti
, i = 0, ..., N − 1 (4.7)

Rti
v = (Rv

c)
−1 (Rc

ti

)−1
= (Rv

c)
T (

Rc
ti

)T
, i = 0, ..., N − 1 (4.8)

Vehicle pose with respect to the world reference frame

The final step of the vehicle localization is to retrieve the pose of the vehicle with respect

to the world frame. The position of the FFV is computed taking into account the transla-

tion vectorsTw
ti
, i = 0, ..., N − 1, which are already known before the FFV initialization,

while the orientation is performed by post multiplying the rotation matrices involved in the

previous steps:

Tw
v = Tw

ti
+Rw

ti
Tti

v , i = 0, ..., N − 1 (4.9)

Rw
v = Rw

ti
Rti

c R
c
v, i = 0, ..., N − 1 (4.10)
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(global information)
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Figure 4.8: Indoor fiducial markers localiza on algorithms Flowchart
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5
Wi-Fi Outdoor Localization

Nowadays, Global Position System (GPS) is the most widely used and the most successful

positioning and localization technology. However, its low position accuracy and the high

power consumption of the related sensors give poor performances in many localization ap-

plications where high accuracy is required. Moreover, many earth areas are not covered by

GPS satellites or they are GPS denied. Hence, different kinds of outdoor localization tech-

nologies have been developed to support or to completely substitute the GPS technology in

such scenarios with significant increment of the localization performances [22].

For this project, due to its flexibility, connectivity, mobility and low cost characteristics, the

Wireless technology has been chosen for the outdoor localization process. To performWi-Fi

localization it is necessary to define a wireless infrastructure calledWireless Sensors Network

(WSN).

A WSN (Figure 5.1) is a radio-based self-configuring network consisting of a large number

ofwireless nodes equippedwith sensing devices distributed in the environmentwhereAGVs

move. Each node is equipped with a transceiver to send and receive data with other nodes

within its communication radio range. Sensed information in many applications of WSN
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only becomes useful when it is accompanied by the location of the area and accurate dis-

tances of where such information is been sensed. Hence, sensor nodes need to know the

distance between one another in order to calculate their positions[23].

Figure 5.1: Wireless Sensors Network: a set of 8 beacons nodesB1 −B8 in known posi ons allows the localiza on of
P

Right now, there are several techniques to compute position between wireless nodes, that

are

• Based on signal propagation speed and propagation time

– Time of arrival (TOA)

– Time of flight (TOF)

– Time difference of arrival (TDOA)

• Based on signal direction

– Angle of arrival (AOA)
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– Direction of arrival (DOA)

• Based on the power of the signal at the receiver

– RSSI

Due to its low cost, relative accuracy, presence in nearly almost all the wireless sensors and

simple implementation on multiple simulation software, the RSSI technique is chosen for

this project.

5.1 Received signal strength indicator

To compute theRSSI value, the Friis Transmission Equation is considered and implemented

into a modified Free Space Propagation Model, which is one of the simplest propagation

model for wireless transmission. In telecommunication, the Free Space Propagation Model

assumes the transmitters and receivers wireless sensors placed in an empty environment with

no absorbing obstacles or reflecting surfaces. However, in real world, wireless sensor net-

works infrastructure can be placed in messy environments such as cities or industrial plants.

Indeed, wireless signal is affected by fixed and moving obstacles present in the surrounding

environment, which can attenuate the power of the transmitted signal or add noise to the

latter. To take into account these phenomena the path loss exponent (n) is defined. This co-

efficient assumes values between 2 (propagation in free space) and 6 (indoor environments).

So, starting from the simplest Free Space PropagationModel, that is

Pr

Pt

= GtGr

(
c

4πfd

)2

= GtGr

(
λ

4πd

)2

(5.1)

where

• Pr [W ] is the received signal power (RSSI)
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• Pt [W ] is the transmitted signal power

• Gt is the transmitter gain

• Gr is the receiver gain

• c [m/s] is the light speed

• f [Hz] is the radio signal carrier frequency

• d [m] is the distance between transmitter and receiver

• λ [m] is the wavelength defined as
c

f

the modified equation become

Pr

Pt

=
GtGr

da

(
c

4πf

)2

=
GtGr

da

(
λ

4π

)2

(5.2)

where a is the path loss exponent. Usually, in telecommunication, equations 5.1 and 5.2

are represented with powers and gains expressed in dBm (decibel milliwatt) and dBi (decibel

isotropic) respectively

P (dBm) = 10 log10 P (W ) and G(dBi) = 10 log10G (5.3)

Moreover the received signal, due to objects obstructing the propagation path between trans-

mitter and receiver, can fluctuates: this effect is called log-normal shadowing and it is taken

into account by adding an additive Gaussian white noise, x ∼ N (0, σ2), in the free space

propagation model equation, that is

RSSI = Pr = Pt +Gt +Gr − x+ 20 log10 λ− 20 log10 4π − 10a log10 d (5.4)

where RSSI is the estimated RSSI which takes into account both the path loss exponent

and the log-normal shadowing noise. From equation 5.4, the estimated distance between

each transmitter and receiver of the wireless sensor network can be computed as
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d = 10

Pt +Gt +Gr −RSSI + 20 log10 λ− 20 log10 4π

10a (5.5)

Let consider aWSNwhere multiple wireless transceiver are used to detect the position of

an unknown point in the environment. The estimated distances between transceivers and

receiver, which have been just retrieved using the equation 5.5, are used to compute the esti-

mated position of the unknown point using a suitable localization approach. To accomplish

this task, the Trilateration algorithm is chosen; its functionality and characteristics are de-

scribed in the next section.

5.2 Trilateration algorithm

Trilateration technique is the process of determining the three dimensional coordinates xp,

yp and zp of an unknownpointP by distancemeasurement, using the geometry of sphere; it

does not involve angular measurements used, for example, in the triangulation process[24].

Figure 5.2: Trilatera on technique: point P stands at the intersec on of 4 spheres of centerB1 −B4
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Let consider a WSNwithN fixed nodes (beacons) labeledBi with pre defined 3D coordi-

nates defined with respect to the world reference frame, that is

Bi = (xi, yi, zi) i = 0, 1, 2, ...N − 1 (5.6)

where i refers to the i-th beacon.

The trilateration algorithm considers the coordinates of the unknown point P as the point

of intersection of several spheres, whose centers are the locations of theN beaconsBi (Fig-

ure 5.2). The equation of theN spheres are respectively

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 = r2i i = 0, 1, 2, ...N − 1 (5.7)

where ri is both the radius of the i-th sphere and the true distance between the i-th beacon

and the unknown point. The point of intersection of the n < N spheres is obtained by

letting i = 0, 1, 2, ..., n− 1 and solving the resulting n nonlinear system

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r20

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = r21

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = r22

...
...

...

(x− xn−1)
2 + (y − yn−1)

2 + (z − zn−1)
2 = r2n−1

(5.8)

This approach is not feasible because it produces a nonlinear equation with high degree.

Hence, another solving techniques needs to be take into account. Linearizing the system of

equations geometrically converts the problem into one of finding the point of intersection

of several planes (direct approach). When the exact distances from beacons are available, the

solution of the linear system of equations is completely determined. Unfortunately, in real

applications, distance between beacons and receiver, computed using the RSSI technique,

is affected by noises. The estimated distance d̃i is obtained by adding error ∆i to the true
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one di. Thus, in real cases, the position calculated by the direct solution of the linear equa-

tions is no longer acceptable meaning that the direct approach can not be used. The chosen

approach consists of a first linearization step of the system 5.8 following by a Linear Least

Squares (LLS) regression method. The latter is used to retrieve the estimated position of the

unknown point in real cases where the exact distances between P andBi are not available.

5.2.1 System linearization

Let consider the equation of i-th sphere with radius ri, that is

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 = r2i (5.9)

The linearization technique uses a specific beaconBj of coordinates xj, yj, zj as linearizing

tool. Adding and subtracting theBj coordinates in 5.9 gives

(x− xj + xj − xi)
2 + (y − yj + yj − yi)

2 + (z − zj + zj − zi)
2 = r2i (5.10)

where i = 0, 1, 2, ..., j − 1, j + 1, ...n− 1. Expanding and regrouping the terms, leads to

(x− xj)(xi − xj) + (y − yj)(yi − yj) + (z − zj)(zi − zj)

=
1

2
[(x− xj)

2 + (y − yj)
2 + (z − zj)

2 − r2i + (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2]

=
1

2

[
r2j − r2i + d2i,j

]
= bi,j

(5.11)

where

di,j =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (5.12)

is the distance between beacons Bi and Bj . For simplicity, the beacon B0 is selected as the

specific one. Since i = 1, 2, ...n − 1, this leads to a linear system of n − 2 equations in 3

unknowns, that are the coordinates of the unknown point P . Therefore, at least 4 beacons

are required to uniquely determine the position of P . Moreover, taking into account the
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Wi-Fi RSSI values, only the n wireless transmitters for which the RSSI value retrieved at

the receiver is over−85 [dBm] are taken into account for the trilateration algorithm. This

improve the localization accuracy, avoiding noisy data or data loss. Indeed, −85 [dBm] is

the minimum received power value for which the data can be received without information

loss.

(x− x0)(x1 − x0) + (y − y0)(y1 − y0) + (z − z0)(z1 − z0) = b1,0

(x− x0)(x2 − x0) + (y − y0)(y2 − y0) + (z − z0)(z2 − z0) = b2,0

(x− x0)(x3 − x0) + (y − y0)(y3 − y0) + (z − z0)(z3 − z0) = b3,0

(x− x0)(xn−1 − x0) + (y − y0)(yn−1 − y0) + (z − z0)(zn−1 − z0) = bn−1,0

(5.13)

This system can be easily written in matrix form

Aρ = b (5.14)

where

A =



x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0
...

...
...

xn−1 − x0 yn−1 − y0 zn−1 − z0


∈ Rn−1×3

ρ =


x− x0

y − y0

z − z0

 ∈ R3×1, b =



b1,0

b2,0

b3,0
...

bn−1,0


∈ Rn−1×1

(5.15)
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5.2.2 Linear least squares (LLS)

The linear least squaresmethod is a standard approach to approximate the solution of ovede-

termined systems (the number of equations is larger or equal to the number of unknowns)

byminimizing the sumof the squares of the residualsmade in the results of every single equa-

tion.

Consider the linear model defined in the equation 5.14. The least squares estimate of−→x is

given by

ρ̂ = arg min
ρ∈R3×1

∥b−Aρ∥2 (5.16)

which is a quadratic form, convex in x. It means that all its global minimumpoints are given

by setting its gradient to zero, that is

∂

∂ρ
∥b−Aρ∥2

=
∂

∂ρ
(b−Aρ)T (b−Aρ)

=
∂

∂ρ

(
bT b− bTAρ− ρTAT b+ ρTATAρ

)
= −2AT b+ 2ATAρ = 0

(5.17)

At this point the linear least square estimator x̂ can be easily computed as

ρ̂ =
(
ATA

)−1
AT b (5.18)

which iswell formed if andonly ifATA is no singular or poorly conditioned. IfATA is rank

deficient, even if the original matrixAwas not close to singular, several approaches likeQR

orSVD decomposition can be take into account. The latter is used to compute theMoore-

Penrose inverse matrixA+ ofA to obtain the optimal solution of the systemAρ = b, that

is

ρ̂ = A+b (5.19)
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Once the least square estimator is found, the final step is to retrieve the coordinates of the

wireless receiver P in the 3D space. Indeed, the coordinates of the specific beacon B0 used

to linearize the system are added to x̂.

P = ρ̂+B0 =⇒


xp

yp

zp


=


x̂− x0

ŷ − y0

ẑ − z0


+


x0

y0

z0


(5.20)

Trilateration algorithm is used, most of the times, for localization purposes meaning both

position and orientation of the object, the fluoride feeder vehicle, can be computed. Unfor-

tunately, because of the trilateration process not use angular measurement but only distance

information between beacons and unknown point, only the position can be computed.

To determine the orientation of the vehicle, it is necessary tomerge the position information

obtained via trilateration algorithmwith the ones obtained using inertial measurement unit

sensors (gyroscopes, accelerometers, etc.) utilizing suitable sensor fusion approach (Chap-

ter 6). Finally, notice that, the vector P contains the 3D coordinates of the wireless receiver

with respect to the world frame. To easily compute the estimated position, receiver P needs

to be placed on the top of the vehicle (for example, over the cabin) and centered on the ori-

gin of the latter coordinate frame system. Once the coordinates of the receiver are computed,

the ones of the vehicle can be determined subtracting the translation vector which link the

receiver P to the center of the vehicle coordinate frame.

V = P −Tv
r =⇒


xv

yv

zv


=


xp

yp

zp


−


xt

yt

zt


(5.21)
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6
Sensors Fusion

In real world, vehicle localization is affected by various environmental noises, interferences

and conditions that make this task no trivial. For example, wireless signals can be occluded

by obstacles or reflected by building walls causing wrong RSSI detection and low accuracy

outdoor localization. Moreover, markers detection can be affected by camera non-idealities.

These interferences act as error sources, hence preventing the FFV to know its position and

orientationwithprecision andaccuracy. FFVperceives the environmentusing sensors, which

enable the vehicle to receive data about the surrounding area and are used to determine its

own pose with respect to the 3Dworld coordinate frame. In particular, the FFV is equipped

with wireless communication system, camera, laser and inertial measurement sensors (Sec-

tion 7.3.2). Because these sensors directly interact with the surroundings, the noises impact

the data reading and acquisition. So, it is preferable to use multiple sensors in order to in-

crease the redundancy of the system, hence improving the probability of getting accurate

data. To fuse the data acquired by the sensors mounted on the FFV, the Extended Kalman

filter (EKF) sensors fusion technique is used [25].

EKF is chosen with respect to the classic Kalman filter to deal with nonlinear systems. The
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requirement of linear equations for the measurement and state transition models is, thus,

relaxed; indeed, the models can be nonlinear and need only to be differentiable. The EKF

works by transforming the nonlinear models at each time step into linearized ones.

6.1 Extended Kalman Filter Framework

Firstly, let consider the non-linear continuous-time dynamic system of the EKF, that isẋ(t) = f(x(t)) +w(t)

z(t) = h(x(t)) + e(t)
(6.1)

where

• x(·) is the n×1 state vector at time k

• f(·) is the n×n process nonlinear vector function

• w(·) is the n×1 process noise vector

• z(·) is them×1 observation vector

• h(·) is them×1 observation nonlinear vector function

• e(·) is them×1 measurement noise vector

In particular, the noise processes are zero-mean random vectors with known covariances,

uncorrelated each other and temporally uncorrelated with the initial state value x0:

w ∈ Rn×1, E[w] = 0, V ar[w] = E[wwT ] = Q = QT ≥ 0 ∈ Rn×n

e ∈ Rm×1, E[e] = 0, V ar[e] = E[eeT ] = R = RT > 0 ∈ Rm×m

E[weT ] = 0, E[wxT
0 ] = 0, E[exT

0 ] = 0

(6.2)
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F (x(t)) =
∂f(x(t))

∂x

∣∣∣
x=x(t)

H(x(t)) =
∂h(x(t))

∂x

∣∣∣
x=x(t)

(6.3)

The EKF works in two steps:

• Prediction in which it is carried out a prediction step that projects the current state
estimate and error covariance forward in time

• Update in which the current a priori prediction is combinedwith current observation
information to refine the state estimate

The initialization step, inwhichvectors andmatrices of thedynamic systemare initialized,

is the first fundamental step to perform before the EKF started. Vectors and matrices are set

with values obtained with the first FFV sensors measurements data.

6.2 Extended Kalman Filter Prediction Step

Assuming that the dynamic of the vehicle is slower than the sampling time

∆tk = tk − tk−1 (6.4)

It is possible to calculate both a priori state and error covariance using the exact discretization:

x̂(k|k − 1) = fk−1(x(k − 1|k − 1)) (6.5)

P̂ (k|k − 1) = F (k − 1|k − 1)P (k − 1|k − 1)F T (k − 1|k − 1) +Q(k − 1) (6.6)

where f is the standard 3D kinematic model derived fromNewtonian mechanics.

6.3 Extended Kalman Filter Update Step

Once the computation of the a priori state and error covariance is done, the a posteriori state

estimation and error covariance P ∈ Rn×n can be defined using the following relations:

x̂(k|k) = x̂(k|k − 1) + L(k)[z(k)−H(k − 1|k − 1)x̂(k|k − 1)] (6.7)
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P (k|k) = [I−L(k)H(k|k−1)]P̂ (k|k−1)[I−L(k)H(k|k−1)]T+L(k)RL(k)T (6.8)

where I ∈ Rn×n is the identity matrix and L ∈ Rn×n is the Kalman gain calculated as

follows:

L(k) = P̂ (k|k−1)HT (k|k−1)[H(k|k−1)P (k|k−1)HT (k|k−1)+R(k)]−1 (6.9)

Figure 6.1: Sensors fusion technique
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6.4 Sensors Fusion using Odometry and Inertial information

This section describes a model for sensors fusion using the odometry and the inertial infor-

mation retrieved by the sensors attached to the FFV.Todescribe themodel, the fiducialmark-

ers indoor localization technique is chosen. Indeed, with the indoor localization, the 3D full

pose (position + orientation) can be retrieved. Similar model can be applied on the wireless

outdoor localization where the orientation is not retrieve by the trilateration algorithm (Sec-

tion 5.2). In the latter, using only the Inertial Measurement Unit (IMU) sensor, is possible

to retrieve only the relative orientation of the FFV with respect to its starting orientation

defined with respect to the world reference frame.

6.4.1 InertialMeasurement Unit Sensors

The IMU sensors are based on inertia and relevant measuring principles. IMU for aerial and

ground robots and vehicles typically consists of accelerometers, gyroscopes and sometimes also

magnetometers. Subsequently, a briefly description of the main characteristics of accelerom-

eters and gyroscopes widely used are depicted.

• Accelerometers: they are electromechanical devices that are able of measuring static
and/or dynamic forces of acceleration. Static forces include gravity, while dynamic
forces can include vibrations and movement. Accelerometers can measure accelera-
tion on 1, 2 or 3 axes.

• Gyroscopes: a gyroscope is, conceptually, a spinning wheel in which the axis of rota-
tion is free to assume any possible orientation. When rotating, the orientation of this
axis remains unaffected by tilting or rotation of the mounting, according to the con-
servation of angular momentum. Due to this principle, a gyroscope can lead to the
measurement of orientation and its rate of change.

Real inertial measurement sensors are affected by noises: accelerometers, even when there

are no movements performed by the vehicle, produce a small time-varying offset (bias er-

ror), while gyroscopes measurements are affected by noise. Considering the output orien-

tation data, these two errors can cause both measurement error and the orientation drift
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phenomenon. Sensors fusion technique is used to compensate measurement noise errors,

while bias offset is reduced performing a closed path in which IMU output data are recali-

brated in order to connect the starting point of the path with the ending one. In this project,

an high precision pre initialized IMU is considered, meaning only the noise produced by the

gyroscope is considered, while the bias produced by the accelerometers is considered negligi-

ble.

6.4.2 Model Equations

Let

x =
[
x y z α β γ vX vy vz ωR ωP ωY ax ay az

]T
∈ R15×1

(6.10)

be the state vector where

1. x, y and z are the 3D position coordinates ([m])

2. α (roll), β (pitch) and γ (yaw) are the 3D orientation coordinate ([rad])

3. vx, vy and vz are the linear velocities ([m/s])

4. ωR, ωP and ωY are the angular velocities ([rad/s])

5. ax, ay and az are the linear accelerations ([m/s2])

In particular, the 3D full pose is obtained by using the odometry information (visual cam-

era and wireless sensors), while the angular velocities and linear accelerations elements are

obtained using the IMU information (IMU sensor). Moreover, no information about lin-

ear velocities are retrieved by both the vehicle odometry and inertial sensors.

In order to clarify the dynamic model definition, let us split the state vector x into five vec-

tors:

1. p = [x, y, z]T ∈ R3×1: position vector w.r.t. the world frame

2. θθθ = [α, β, γ]T ∈ R3×1: orientation vector w.r.t. the world frame

62



3. v = [vx, vy, vz]
T ∈ R3×1: linear velocities vector w.r.t. the vehicle frame

4. ωωω = [ωR, ωP , ωY ]
T ∈ R3×1: angular velocities vector w.r.t. the vehicle frame

5. a = [ax, ay, az]
T ∈ R3×1: linear accelerations w.r.t. the vehicle frame

such that x =

[
p θθθ v ωωω a

]T

.

The dynamic model system is defined as follows:

ẋ =



ṗ = p+Rw
v,l vdt+

1

2
Rw

v,l adt
2

θ̇θθ = θθθ +Rw
v,a ωωωdt

v̇ = v + adt

ω̇ωω = ω̇ωω

a = a

z = h(x) + e =

[
x y z α β γ ωR ωP ωY ax ay az

]T
+ e

(6.11)

where the matrixRw
v,l andRw

v,a are 3 × 3 rotation matrices which transform the linear and

angular velocities defined on the vehicle reference frame in the 3Dworld coordinates system.
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7
Simulation setup

In this chapter, the crucial step of simulation setup is described. Firstly, a brief overview of

the hardware specifications and all the software used to perform robust and efficient experi-

ments are depicted, highlighting the ones used to run the simulations. Then, the processes

of 3Dmodeling of the FFV and the aluminum smelter indoor and outdoor environment are

given. Finally, the virtual sensors attached to the FFV frame are analyzed describing all their

fundamental parameters.

7.1 Hardware and Software Setup

In this section, a briefly overview of hardware (PC specification) and software used for sim-

ulation is made. The latter one can be divided in:

• Pre-Simulation software used to create the simulation setup.

• Simulation software used to run the simulation.

• Post-Simulation software used to data acquisition and elaboration.
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Figure 7.1: Simula on setup

7.1.1 PC Specification

Due to the computational burden of the simulation and because of logical separation in the

simulation processes, a two PC setup is chosen for the simulation. The first one, themain

PC, is used to run the simulation software (ROS and Gazebo) while, the second one is used

to acquire data from the simulation (Matlab and Simulink) or to modify simulation setup

using a suitable editor (Table 7.1).

PC-1 Main Specifications

CPU Intel i7-2630QM

RAM 4 Gb

GPU Nvidia GT540M

O.S. Ubuntu 18.04.3 LTS

PC-2 Main Specifications

CPU Intel i3-6006U

RAM 4Gb

GPU Intel HD 3000

O.S. Windows 7 SP2

Table 7.1: PC main specifica ons
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7.1.2 Blender

Figure 7.2: Blender logo

Blender is a free, multi-platform and open-

source 3D software used for animation, sim-

ulation, rendering, compositing and mo-

tion tracking, even video editing and game

creation. For the project, Blender has been used tomodel the 3D indoor and outdoor world

model (Section 7.2) and to create the 3D graphic meshes used for Fluoride Feeder vehicle,

ARTag markers andWi-Fi transceivers.

7.1.3 Autodesk Inventor

Figure 7.3: Inventor logo

Autodesk Inventor is a 3Dmechanical solid

modeling design software developed by Au-

todesk. It is used for 3D mechanical de-

sign, design communication, tooling cre-

ation and product simulation. This soft-

ware enables users to produce accurate 3D models to aid in designing, visualizing and sim-

ulating products before they are built. For the thesis, Autodesk Inventor has been used to

convert the Fluoride Feeder vehicle and potcels 3D Inventor proprietary files (.iam and .ipt)

into a 3D ones supported by Blender (.dae). Furthermore, information about mass and in-

ertial of FFV and potcel have been retrieved and used for the Gazebo Simulation.

7.1.4 Robotic Operative System (ROS)

Figure 7.4: ROS logo

The Robot Operating System (ROS) is a

flexible framework for writing robot soft-

ware which runs on Unix-based platforms.

It provides services expected fromoperating

system such as hardware abstraction, low level device control, message passing between pro-

cesses and package management. It also includes tools, libraries, and conventions that aim
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Figure 7.5: ROS framework

to create and simulate complex and robust robot behavior (robot arms, vehicles, drones, ...)

across a wide variety of robotic platforms. Moreover, due to the ROS packages organization

and combinations, it can be used for collaborative projects and works. The graph-based

framework uses nodes to identify processes which can send (publish) or receive (subscribe)

data through abstract communication channels referred to as topics. Topic is a buswhich car-

ries messages of any type, such as sensors information and data acquisition or control input

values, in anonymous way: this means that nodes are not aware of whom they are communi-

cating with. Nodes that send data over topics are called publisher, while the one that receive

data from topics are called subscriber. Network management is performed by a master node

called using the roscore. Roscore is a collection of nodes and programs that are pre-requisites

of a ROS-based system. and it has to run in order for ROS nodes to communicate. Example

of topics data type used in this project are:

nav_msgs/Odometry: represents an estimate of a pose (position and orientation) and ve-

locity (linear and angular) in free space. The pose in this message should be specified in the

coordinate frame given by header.frame_id. The twist in this message should be specified in

the coordinate frame given by the child_frame_id.

sensor_msgs/ImageRaw: define information about frames acquired by a given camera.

Description about camera resolution and, thus, image size are given. Finally information

about image pixels are stored in the datamatrix of size equal to the image pixels dimensions.
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sensor_msgs/CameraInfo: defines meta information of the camera. In particular, infor-

mation about image size, intrinsic, extrinsic and projection camera matrices and distortion

parameters are given. These data are used in the marker localization technique (Chapter 4)

to retrieve tags position with respect to the camera frame.

sensor_msgs/LaserScan: represents data of laser measures and laser information. In par-

ticular, information aboutminimum,maximumand increment angle of scanning and range

of laser operation distances are given. Laser measures, which are distances between laser and

objects for each angle bin, are stored in a range array which length is given by the equation

length(range) =
αM − αm

αi

(7.1)

where αM and αm are, respectively the maximum andminimum scanning angle, while αi is

the angle increment. Keep in mind that, increasing the angle increment of the laser scanner

gives better speed performances but lower measure accuracy, while the vice versa gives lower

speed performances but high measure accuracy.

sensor_msgs/Imu: define information about orientation, angular velocity and linear ac-

celeration of the vehicle, obtained by the inertial measurement unit.

7.1.5 Gazebo Simulator

Figure 7.6: Gazebo logo

Gazebo Simulator is an open-source 3D

robotics simulator for Linux operative sys-

tems. Used in combinationwithROS (Sub-

section 7.1.4), it’s possible to rapidly test al-

gorithms, design robots, maps robots move-

ments and run simulation in different scenarios. Moreover, due to its robust physics engine,

offers the ability to accurately and efficiently simulate populations of robots both in indoor

69



and outdoor environments. For the project, Gazebo Simulator has been used to test the sim-

ulation and acquire the needed information for real-time user algorithms.

A Gazebo model is defined using the Unified Robot Description Format (URDF), an XML

format which uses specific tags to describe kinematics, dynamics and basic physics descrip-

tion of a robot. General robot is defined in the URDF format using the following tags:

Link: describes the rigid bodyof a robot elementwith inertia, visual features, and collision

properties (Figure 7.7).

• Visual: it defines the visual properties of a link. This element specifies shape (box,
cylinder, etc.), dimensions (width, height, thickness, etc.) and color of the object.
Shape of the link can be both geometrical or a complex shape given by 3Dmesh.

• Collision: the collision element is a direct sub element of the link object and it defines
the collision properties of a link. Even if, most of the times it is equal to the visual
element, in order to lighten the simulation, the geometry shape is simpler than the
visual one (for example, a bounding box).

• Inertial: it defines the inertial properties of a link, such as center of mass and inertial
matrix.

<link name="my_link">

<visual>

<origin> ... </origin>

<geometry> ... </geometry>

</visual>

<collision>

<origin> ... </origin>

<geometry> ... </geometry>

</collision>

<inertial>

<mass> ... </mass>
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<inertia> ... </inertia>

<axis> ... </axis>

</inertial>

</link>

Lis ng 7.1: Template of XML format for Link element

Figure 7.7: Link descrip on

Joint: describes the kinematics and dynamics of the joint (Figure 7.8). Moreover, due to

hard constraints and physics limitation of the robot (maximum steering angle, maximum

velocity, etc.), joint can specifies the so called safety limits.

• Type: specifies the type of joint

– Revolute: a hinge joint that rotates along the axis andhas a limited range specified
by the upper and lower limits

– Continuous: a continuous hinge joint that rotates around the axis and has no
upper and lower limits

– Prismatic: a sliding joint that slides along the axis, and has a limited range spec-
ified by the upper and lower limits

– Fixed: this is not really a joint because it cannot move. All degrees of freedom
are locked. This type of joint does not require the axis, calibration, dynamics,
limits or safety controller

– Floating: this joint allows motion for all 6 degrees of freedom
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– Planar: this joint allows motion in a plane perpendicular to the axis

• Parent: specifies the name of the parent link in the robot tree structure

• Child: specifies the name of the child link in the robot tree structure w.r.t. the parent
link

• Axis: specifies the joint axis specified in the joint frame. This is, for example, the rota-
tion axis for revolute joint or the translation axis for the prismatic joint

• Limit: specifies the lower and upper joint limit, the maximum effort and velocity of
the joint.

<joint name="joint_name" type="...">

<origin xyz="..." rpy="..."/>

<parent link="parent_link"/>

<child link="child_link"/>

<limit effort=".." velocity=".." lower=".." upper=".."/>

</joint>

Lis ng 7.2: Template of XML format for Joint element

Figure 7.8: Joint descrip on
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Finally, the gazebo simulation world and the robot itself can be equipped with different

types of controls and sensors. Controls allow the robot to move in all the possible direc-

tion, while sensors guarantee interaction between robot and the surrounding environment:

for example, robot is capable to detect and avoid obstacles, to move along a given path to

perform tasks, localize itself or to compute its linear and angular velocities. Controls and

sensors, in order to work properly inside the Gazebo simulation, need to be attached to the

so called Gazebo Plugins. Gazebo Plugin is a chunk of code, usually written in C++, which

is compiled as a shared library and inserted into the simulation. There are currently 6 types

of plugins: World (control world properties such as physics engine, ambient lighting, etc.),

Model (control joints, andmodel state), Sensor (acquire sensor information and control sen-

sor properties), System, Visual and GUI plugins. To apply sensors to the related robot, two

steps needs to be performed:

1. Create a link related to each sensor: for increase the simulation reality, link dimensions
and shapes should be as similar as possible to a real sensor

2. Attach the plugin to the sensor link: to attach the plugin to the sensor link, specific
tags are required (Listing 7.3):

• Gazebo: is an extension of the URDF used for specifying additional properties
needed for simulation purposes in Gazebo

• Sensor: specifies the type of sensor and its name. Inside sensor tag, sensor prop-
erties are defined

• Plugin: specifies the name and the filename of the gazebo sensor plugin. Inside
plugin tag, ROS communication properties, such as topic and frame name, are
depicted. Plugin only-reading file has extension .so and it is created when the
plugin is compiled.
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<gazebo reference="...">

<sensor type="..." name="...">

<visualize>true</visualize>

<update_rate>15</update_rate>

<ray>

<scan...</scan>

<range...</range>

<noise...</noise>

</ray>

<plugin name="..." filename="...">

<topicName...</topicName>

<frameName...</frameName>

</plugin>

</sensor>

</gazebo>

Lis ng 7.3: Template of XML format for laser scanner sensor plugin element

7.1.6 Matlab and Simulink

Figure 7.9: Matlab and Simulink logo

Matlab is a program designed specifically

for engineers and scientists. Using Matlab

you can analyze data, plot different types of

graphs, develop algorithms, create models

and applications. Simulink is a block dia-

gram environment for simulation and model-based design. It supports system-level design,

simulation, automatic code generation and ROS integration. Simulink provides a graphical

editor, customizable block libraries, and solvers for modeling and simulating dynamic sys-

tems. It is integrated withMatlab, enabling the users to incorporate Matlab algorithms into

models and export simulation results to Matlab for further analysis.For the project, Matlab
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and Simulink are used to define end-user plots to better understand how the simulations

works in terms of mean, variance and standard deviation of position and orientation error.

7.2 WorldModelling

In order to performGazebo simulations so that they are as realistic as possible it is necessary

to define a model for the 3D world. The latter represents the environment where the ve-

hicle can move and complete the tasks assigned to it. In particular, for the purpose of this

project, a simplified version of an aluminumproduction plant has been adopted, as depicted

in Figure 7.10.

Figure 7.10: View of the simplified world model

Notice that this choice does not affect the reliability of the simulation and allows to reduce

the computational burden required by the latter.

The 3D world just introduced can be described using three main elements:

• Potroom: already introduced in Section 2.3.1, it is the building where the aluminium
production process is performed. Each of the potcels contained within it could repre-
sent the final point for the path that the vehicle has to follow;

• AluminiumFluoride Storage andHandling (AFSH): it is the buildingwhere the vehi-
cle’s tank is filled with the aluminium fluoride, which will then have to be distributed
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in the potcels. According to the given tasks schedule, the AFSH may represents the
starting or an intermediate area through which the vehicle’s path has to pass;

• Streets: they define the areas that the vehicle can cover to move from one building to
an other. In general the points of the streets constitute the greater part of those that
describe the vehicle’s path.

In the following sections, a brief description of how these three elements have been imple-

mented is given.

7.2.1 Potrooms and AFSH

Potrooms

In general, a Potroom can be described as a rectangular building that contains a sequence of

Potcels, placed in series or parallel, and one ormore hallways that allows vehicles and human

operators to easily move from one point to an other inside the room. Additionally a crane

could be present to move heavy loads. Since for the accomplishment of the objectives of this

analysis such device is not influential, it has been discarded in the Potroommodelling phase.

For the same reason, also the design of the building’s roof has been neglected.

At this point, in order to obtain a 3Drepresentationof thePotroom, the 3Dcomputer graph-

ics software Blender (Section 7.1.2) has been adopted. The design procedure can be divided

in three phases:

• Potcel design: first a model for a potcel needs to be obtained. To this end, a 3D ren-
dering of the object, kindly provided by Techmo s.p.a., was imported into the afore-
mentioned software. The potcel’s local reference frame has then beenmoved in order
to make the positioning of the object inside the building easier. Furthermore a metal
texture has been added in order to get a more realistic visualization of the model. The
result of this step can be seen in Figure 7.11.
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Figure 7.11: View of the Potcel model

• Room design: in this phase it is desired to get amodel for the building. To this aim it is
necessary to define the floor and thewalls structure. Regarding the second, it has been
obtained as the union of parallelepipeds of different dimensions. A part of these is in
contactwith the groundwhile another part is not, in order to simulate the shape of the
doors entering and leaving the room. In order to get amore realistic visual of the result
a texture similar to the one of a concrete wall has been added to each defined element.
For what concern the floor it has been simply defined using a rectangular plane with
the same dimensions of the building plan. Then an asphalt texture has been added to
the floor model in order to obtain a better visual result. The room obtained from this
procedure can be seen in Figure 7.12.

Figure 7.12: View of the room model

• Potroomdesign: in this last phase the results of the two previous steps have been added
in order to obtain the final 3D model of the potroom. In particular 40 potcels have
been inserted in parallel in the room model. This arrangement allows to obtain an
area that can serve as a large hallway. In order to get a more rich simulation it has been
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decided to include in the world representation a second Potroom, identical and con-
nected to the first one through two long corridors. The latters have been implemented
using the same procedure used to define the roomduring the second step. To perform
indoor localization, ARTagmarkers are placed on the potroomwall with position and
orientation with respect to the world frame defined in Table A.5 and Table A.6. In
total, 29 tags are placed on the potrooms: 9 are placed on the long sidewalls of the first
potroom, 12 are placed on the long side walls of the center corridor which links the
two potrooms and 8 are placed on the long sidewalls of the second potroom. Each tag
is created startingwith anARTagmarker image: the latter is used as texture in Blender
in order to create the tagmesh (.dae file) for the related .urdf file. For this project, due
to the high dimensions of the potroom building, tags dimensions are 1x1 [m2]. The
final 3Dmodel of the potrooms without markers is depicted in Figure 7.13.

Figure 7.13: View of the model of two potrooms without markers

AFSH

TheAluminiumFluoride Storage andHandling is a rectangular building, smaller than a Pot-

room, in which the stocks of aluminum fluoride, useful for the production of aluminum,

are stored. Such room presents a unique door that allows the entry and exit of vehicles. The

design of such structure has been performed in away that is similar to the one used in the sec-

ond step of the Potroommodel definition, neglecting the representation of not fundamental

elements such as the roof and the aluminium fluoride’s stocks.
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7.2.2 Streets and external environment

Figure 7.14: Example of Aluminium Smelter.

To increase the reality of the simulation and,

in particular, to obtain a more suitable out-

door environment, a 3D external environ-

ment is created. Drawing inspiration from

some real aluminium smelters, (Figure 7.14)

a simplifiedmap is modeling using Blender.

Firstly, in order to not overload the simula-

tions, only the roads which link the AFSH

to the Potroom and the ”no-street areas”

where the Fluoride Feeder can not pass through were defined; all the not influential objects

such as other buildings and natural elements are not taken into account. An easy way to de-

sign the elements of themap is to define them as a concatenation of rectangular planes, black

for the roads and green for the no-street areas. Finally, the Potroom and the AFSHbuildings

are added to obtain the complete simulation map where the Flouride Feeder can move in.

Moreover to perform outdoor localization, Wi-Fi transceivers are placed in the external en-

vironment at 5 [m] height. Wi-Fi antennas position with respect to the world frame are

summarized in Table A.1, Table A.2, Table A.3 and Table A.4. Note that, due to the differ-

ent outdoor simulations performed (Section 8.2), four wireless transceivers position layout

needs to be defined. The 3D resulting simulation map is depicted in Figure 7.15 where the

transmitters are not showing due to their small dimensions.

(a) 3D world map without Potroom and AFSH (b) 3D complete world map

Figure 7.15: 3D world map for Gazebo simula on.
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7.3 Fluoride Feeder modeling

To obtain a suitable fluoride feeder vehicle simulation model, it is helpful to create a model

closest to reality in terms of dimensions, shape and description parameters of each vehicle

componentswhich canbe affected the physic behaviour of the FFV itself. Indeed, the physics

engine ofGazebo simulator is capable towell simulate gravity effect: thus, a correctmass and

inertial matrix value of the vehicle is also fundamental for high accuracy simulation.

7.3.1 VehicleModeling

Firstly, started from the Autodesk Inventor 3D complex model of the FFV, each single ele-

ment of the assembled model is extrapolated and exported in the 3D .obj file, useful for next

steps; furthermore, thedescriptiveparameters likemass and inertialmatrix are retrievedusing

the Autodesk Inventor iProprieties function (Table 7.2). The 3Dmodel of each component

is imported in the Blender software (Section 7.1.2) and, after simple color and texture elabo-

ration, exported in the 3D .dae file. The latter is used as 3Dmesh for the visual tag of the link

elements of the fluoride feeder vehicle .urdf file. The result can be seen in Figure 7.16 and

Figure 7.17 for each specific FFV parts. Now, the vehicle is ready to be displayed in Gazebo.

To spawn the vehicle model and the simulated world (Section 7.2) in Gazebo, meaning to

place them in the current position and orientation inside theGazebo environment, a .launch

file needs to be created. The latter is anXMLformat file used to define all themodels, sensors,

plugins and parameters required for the experiments. The roslaunch terminal command call

the related .launch file previously created and spawning all the elements containing in the

XML file. The transformation from code to simulated world is transparent to the user and,

thus, not described in this thesis.

80



(a) Real le side view of FFV (b) Real right side view of FFV

(c) Virtual le side view of FFV (d) Virtual right side view of FFV

Figure 7.16: Top view of feeding opera on

Component name Mass X Y Z Ixx Iyy Izz
Frame 3143.09 2.20 6.10 0.72 11307.59 1522.91 12545.74

Cabin 662.98 1.40 1.30 2.24 509.87 465.22 329.16

Empty Container 3685.47 2.20 5.03 2.83 10410.34 409.83 9449.36

Full Container 14959.17 2.20 5.03 2.83 25648.30 9829.79 23811.73

Engine Group 1070.00 0.86 1.80 1.08 445.26 173.16 374.92

Oil Tank 425.80 0.53 1.19 0.73 86.00 38.39 84.16

Traction Axle 429.78 0.75 0.36 1.50 17.74 87.94 79.79

Steering Axle 285.69 1.55 0.39 0.15 2.50 1.98 42.73

Wheel 91.05 0.72 0.23 0.72 3.38 5.98 3.38

Hub 63.00 0.34 0.32 0.32 0.34 0.87 0.86

Table 7.2: Descrip ve parameters of FFV components: dimensions [m], weigths [kg] and inter al moments [kgm2]
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(a) Frame of FFV (b) Cabin of FFV

(c) Container of FFV (d)Oil tank of FFV

(e) Engine group of FFV (f) Steering axle of FFV

(g) Trac on axle of FFV (h) Hubs of FFV

(i)Wheels of FFV

Figure 7.17: Virtual elements of the fluoride feeder vehicle
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7.3.2 Fluoride Feeder Vehicle SensorsModeling

As described in Section 7.1.5, vehicle can interact with the surrounding environment using

sensors. The chosen sensors for the FFVmodel vehicle are:

• Cameras

• Wi-Fi receiver

• Laser scanners

• Inertial Measurement Unit (IMU)

To achieve real-time simulation speed, all the sensor are designed like simple withe boxes:

no computational heavy meshes are attached to the sensors link.

Cameras

Three visual cameras are mounted over the cabin of the fluoride feeder vehicle in pre defined

position and orientation with respect to the FFV coordinate frame (Table 7.4). They are

used for the indoor fiducial markers system localization: they acquire frames with a certain

resolution and frame rate (Table 7.3) and send the obtained images to the localization system

for the marker detection process (Section 4.1.1 and Section 4.1.2). To better simulate a real

camera, anAdditiveWhite GaussianNoise (AWGN)N (0, 0.007) is added to camera pixels;

note that this noise is sampled independently per pixel of each frame.

Camera Specifications

Frame and Topic Rate 15 [Frame/s]

Frame Resolution 800x800 [pixels]

Image Color Space 8-bit RGB

Horizontal Field Of View 1.3962634 [rad]

Noise (AWGN) N (0, 0.007)

Table 7.3: Camera specifica ons
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Figure 7.18: Camera pose on the fluoride feeder vehicle

Camera name Rvehicle
camera Tvehicle

camera

Right Camera


−1 0 0

0 0 −1

0 −1 0

 [
0 −0.95 2.8

]T

Front Camera


0 0 1

−1 0 0

0 −1 0

 [
0.75 0 2.8

]T

Left Camera


1 0 0

0 0 1

0 −1 0

 [
0 0.35 2.8

]T

Table 7.4: Camera pose w.r.t. the FFV coordinate frame. The values of the transla on vector have metric measure unit

84



Wi-Fi Receiver

To perform outdoor localization, the fluoride feeder vehicle needs to be equipped with aWi-

Fi receiver used to retrieve the RSSI value by each Wi-Fi transceivers placed in the external

environment. As depicted in Figure 7.19, oneWi-Fi receiver is placed over the FFV cabin, in

order to obtain the cleanest possible received signal strength indicator value avoiding object

occlusion caused by the FFV components (container, retractile arm, etc.). Due to the huge

outdoor dimensions, each transmitter has an high signal power, meaning that its wireless

signal can be intercepted by the receiver even at long distances. Moreover, to simplified the

simulation, Wi-Fi transmitters and receiver have same specifications (Table 7.5).

Figure 7.19: Wi-Fi receiver on the fluoride feeder vehicle

Wi-Fi Receiver and Transmitter Specifications

Signal Rate 15 [Hz]

Frequency 2442 [MHz]

Gain 2.5 [dB]

Power 50 [dBm] = 100 [W ]

Table 7.5: Wi-Fi transmi er and receiver specifica ons
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Laser Scanners

An automated guided vehicle performs different tasks in different environment where fixed

or movable objects are already present. Moreover, most of the times, AGVs work in promis-

cuous area where they have to cooperate with other vehicle and workers. Thus, the fluoride

feeder vehicle is equipped with multiple 2D laser scanners for safety reasons: with the laser

scanners, the FFV is capable to detect surrounding obstacles and stop itself if the detected

object is too close. Lasers are placed in order to obtain a full coverage of the FFV surround-

ing area to increase its adaptability to the environment changes. On the FFV, four 2D laser

scanners are mounted, one on each side of the vehicle (Figure 7.20). Note that, because of

the small obstacle which can interfere with the FFV tasks, the lasers are placed close to the

bottom of the vehicle’s frame. Finally, to make the laser scanner behaviour more realistic

and similar to a real one, an AWGN noise is added.

(a) Back and le laser scanners (b) Front and right laser scanners

Figure 7.20: Laser scanners on fluoride feeder vehicle

2D Laser Scanner Specifications

Topic Rate 15 [Hz]

Angle Scan 180 [deg] with resolution of 0.25 [deg]

Scan Range 0.1 - 50.0 [m]

Noise N (0.0, 0.01)

Table 7.6: 2D laser scanner specifica ons
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InertialMeasurement Unit

The Inertial Measurement Unit sensor (Section 6.4.1) is used to retrieve information about

orientation ([rad]), angular speed ([rad/s]) and linear acceleration ([m/s2]) with respect to

the FFV reference frame. The accelerometer measures the linear acceleration of the FFV

considering the external forces with respect to the FFV reference frame, that is

aIMU = RT (α, β, γ)(p̈− ge3) + ba + ηηηa (7.2)

The gyroscopes measures the angular velocity of the FFVwith respect its reference frame, so

that

ωωωIMU = ωωω + bωωω + ηηηωωω (7.3)

where for both accelerometer and gyroscope b and ηηη are, respectively, the bias error and the

measurement noise. Note that the bias error can be compensated via sensor calibration.

Its information are merged with the odometry ones using the Extended Kalman filter (Sec-

tion 6.4) to improve localization precision and accuracy. The IMU sensor (no image because

the sensor is not visible) ismounted on the FFV in the origin of the fluoride feeder vehicle 3D

coordinate system and it send data with a frequency of 15 [Hz]. To make the sensor and all

the simulationmore realistic, an additiveGaussianwhite noise is added to the IMUmeasure-

ments, that is w ∼ N (0.0, 0.1). Finally, as already mentioned in Section 6.4.1, the sensor

used in the simulation is an ideal inertial measurement unit, meaning with high orientation

accuracy, no accelerometer bias and with small gyroscope measurement error.
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8
Experimental Results

This chapter describes and presents the experimental results obtained performing simula-

tions for the indoor and outdoor FFV localization using the Gazebo Simulator software and

the ROS framework (Section 7.1.5 and Section 7.1.4). In particular, for each localization

technique, two types of simulations have been performed:

1. Stationary vehicle localization: the FFV is placed in the simulation environment
with fixed position and orientation; the simulation runs for about 15 [s] and only the
odometry information are used to localize the FFV.Then, information retrieved using
fiducialmarkers orWi-Fi techniques are combinedwith the inertialmeasurementunit
data using the EKF in order to obtained better performances.

2. Moving vehicle localization: the FFV is localize while is moving from a starting po-
sition to an ending one defined before the simulation starts. To test the localization
robustness and reliability while the FFV turns, a non linear trajectory is performed
by the vehicle. As already described in the stationary simulations, odometry data and
IMU information are merged together using the EKF.
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For the indoor localization, to deeply analyze the fiducial markers technique, both posi-

tion and orientation data obtained by the tags detection process are used in the EKF. Hence,

orientation information retrieved by the inertial measurement unit sensor are neglected. For

the outdoor localization, the relation between the number of wireless transmitters and local-

ization accuracy is also tested. Indeed, localization process are performed, on stationary FFV,

using 4,8 and 14 transmitters each time. The latters are placed in the outdoor environment

asymmetrically to not distort the estimated position error with respect to the true one. Fi-

nally, only the 2D position coordinates x and y and the yaw orientation angle are acquired

and considered as relevant for the thesis goal. Indeed, a planar simulation environment is

considered.

8.1 Indoor localization experimental results

8.1.1 Stationary vehicle localization

For this simulation, the FFV is placed inside the potroomwith fixedposition andorientation,

that are 
x[m] =

[
x y z

]T
=

[
65 13 0.35

]T
θθθ[rad] =

[
α β γ

]T
=

[
0 0 0

]T (8.1)

The simulation is performed for about 15 [s] which takes into account the EKF initializa-

tion time which is about 2 − 3 [s]. The latter is fundamental to stabilize the filter around

the initial estimated position and orientation of the FFV, retrieved with the markers detec-

tion. Drawing inspiration from Figure 8.1a, the vehicle position retrieved by detecting only

the markers oscillates, along the x-axis, from 64.67 to 65.39 [m], while, along the y-axis,

from 12.72 to 13.77 [m]. Moreover, only three tags are detected to perform this stationary

localization: the first (on the bottom), which is perpendicular to the right camera and the re-

maining two (the top ones) which have both a planar orientation with respect to the optical

axis of the left camera of 0.43 [rad] (24.5◦). Moreover, the top right marker has, also, planar

orientation with respect to the optical axis of the front camera of 1.15 [rad] (65.90◦).
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(a) Sta onary FFV posi on with odometry
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(b) Sta onary FFV posi on with odometry (zoom on 64.6 - 65.4 [m] along the x axis)

Figure 8.1: Sta onary FFV indoor posi on with odometry

As depicted in Figure 8.1b, the estimated position (blue dots) is shifted over red dot, from

the vehicle and the non perpendicular tags. Moreover, the top blue dots (estimated posi-

tion obtained using the non orthogonal markers) are more scattered than the bottom ones

(estimated position obtained using the perpendicular tag). Concerning this raw stationary

simulation, markers orientation with respect to the cameras optical axis is a key parameter

for the localization performance. Fig 8.2 depicts the FFV stationary localization performed

using the sensor fusion technique with the EKF. The simulation setup is the same used for

the previous one but, in this case, data acquisition started after the initialization time of the
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filter. As can be seen from Figure 8.2b, the accuracy, in terms of localization range on the

x and y axis, has increased: vehicle position goes, along the x-axis, from 64.74 to 65.26 [m],

while, along the y-axis, from 12.93 to 13.63 [m].
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True position
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(a) Sta onary FFV posi on with odometry and IMU

64.6 64.7 64.8 64.9 65 65.1 65.2 65.3 65.4
12

12.5

13

13.5

14

Estimated position

True position

(b) Sta onary FFV posi on with odometry and IMU (zoom on 64.6 - 65.4 [m] along the x axis)

Figure 8.2: Sta onary FFV indoor posi on with odometry and IMU

Note that, because of the pose information used on the EKF are obtained from the mark-

ers detection process, the estimated vehicle position computed with the sensor fusion ap-

proach is affected by the poor accuracy localization performed by the left and front cameras

with the non perpendicular tags. Indeed, observing the Figure 8.2b, the green dotsmatching

the FFV position is shifted to the top with respect to the true vehicle position.
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(a) Sta onary FFV posi on error with odometry and odometry + IMU
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(b) Sta onary FFV posi on error with odometry and odometry + IMU zoomed on 2 - 17 [s] along the x axis

Figure 8.3: Sta onary FFV indoor posi on error with odometry and odometry + IMU

Indoor stationary position error results are summarized in Figure 8.3 and Table 8.1: in

particular, in Figure 8.3a, it’s possible to notice the position error computed with the sensor

fusion technique tends to its mean value after the initialization time of the filter. In conclu-

sion, sensor fusion technique, applied to the stationary localization, increase the estimated

position accuracy of about 41% with respect to the one computed using only the fiducial

markers localization approach.
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Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 0.3869 0.1170 0.3421

Odometry and IMU 0.2282 0.0096 0.0980

Table 8.1: Mean, variance and std. dev. of the FFV posi on error
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Figure 8.4: Sta onary FFV indoor orienta on with odometry and IMU
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Drawing inspiration from Figure 8.4, estimated orientation is almost similar to the true

one, using both the localization techniques. In particular, the sensor fusion technique gives

smoother results with respect to the markers detection one (Figure 8.4b). Note that, observ-

ing the black line relative to the true orientation, even if the vehicle is stationary, an orienta-

tion draft phenomenon takes place (the FFV turns even if it is fixed in a predefined position).
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(a) Sta onary FFV orienta on error with odometry and odometry + IMU
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(b) Sta onary FFV orienta on error with odometry and odometry + IMU zoomed on 3 - 16 [s] along the x axis

Figure 8.5: Sta onary FFV indoor orienta on with odometry and IMU

Orientation error results are depicted in Figure 8.5 andTable 8.2: sensor fusion technique

increase the estimated orientation accuracy of about 40%with respect to the one estimated

using only the markers detection process.
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Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 0.0115 5.12× 10−5 0.0072

Odometry and IMU 0.0069 1.09× 10−5 0.0033

Table 8.2: Mean, variance and std. dev. of the FFV orienta on error

In conclusion, stationary indoor localization gives good results for both estimated posi-

tion and orientation. Moreover, sensor fusion technique increases the localization accuracy,

meaning the mean error computed between estimated pose and the true one is lower than

the one calculated using only the markers localization process. However, markers orienta-

tion with respect of the cameras optical axis affects the localization performances resulting

inmore oscillating estimated pose values. To attenuate this phenomenon and to increase the

estimated pose accuracy, a suitable threshold of the planar angle between camera and tags has

to be chosen (in this thesis the threshold is set to 1 [rad]).

8.1.2 Moving vehicle localization

For this second indoor localization simulation, the FFV needs to follow an “S” trajectory

which leads the FFV from the first potroom to the second one. The path presents two curves,

one, to the left, forwhich the FFVgoes from the potroom to the corridor and the secondone,

to the right, forwhich the vehicle goes from the hallway to the second potroom. Starting and

ending points of the trajectory, initial and final vehicle orientation, linear velocity and initial

orientation are defined before the simulation starts, that are:

x0[m] =

[
x y z

]T
=

[
70 13 0.35

]T
x1[m] =

[
x y z

]T
=

[
103 100 0.35

]T
θ0θ0θ0[rad] =

[
α β γ

]T
=

[
0 0 0

]T
θ1θ1θ1[rad] = θ0

v[m/s] = 5

(8.2)
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Note that, from Equation 8.2, the linear velocity is chosen arbitrarily under the 10 [km/h]:

the latter is almost the real maximum velocity achieved by the FFV inside the potroom. As

already seen in the previous section, both the only marker detection and the sensor fusion

localization are tested and comparedwith the true pose of the FFV; information aboutmean,

variance and standard deviation error of the vehicle estimated pose are depicted in the next

tables and graphs.

Drawing inspiration from Figure 8.6, both localization techniques have good accuracy

performances during almost the entire path. In particular the sensor fusion localization is

more accurate than the other one, even when the FFV turns to enter and to get out the corri-

dor, which causes oscillations and errors in themarker detection process. These phenomena

are caused by the fast and sudden direction change computed by the vehicle when it starts

turning. Moreover, in the curves, tags are not perpendicular to the optical axis of the cameras,

causing both misleading markers detection and low accurate estimated pose.

Observing the position error plot in Figure 8.6b, it’s possible to split data into three sepa-

rate areas. The first one, from 0 to 12.5 [s] concerns the first part of the path where markers

on the walls are far away from the vehicle (at least 12[m]) and where the vehicle has to turn

left to enter in the corridor. The second one, from 12 to 36 [s] concerns the second part of

the path where the vehicle is crossing the corridor. In this sector of the building, markers are

close to the vehicle (at most 3 [m]) due to the narrow width between walls. Moreover, the

FFV performs a linear trajectory. The last one, from 36 to 45 [s] concerns the third part of

the path which includes the right turn: the latter is performed with high speed in order to

test the marker detection in presence of fast direction change.

Markers localization technique is very effective for linear trajectory with tags near to the

vehicle, while it lose accuracy when tags distance, with respect to the vehicle, is over 10 [m].

Moreover, during the left and right turns, position accuracy is affectedby the angular velocity

achieved by the vehicle to compute the turn and the radius of the curve itself: “soft” turn like

the one performed to enter in the corridor with low speed and big turn radius gives better

localization performances than the “hard” one computed to exit from the corridorwith high

speed and small turn radius. Position error results are depicted in Figure 8.6b and Table 8.3:
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Figure 8.6: Moving FFV indoor posi on: star ng point is set to (x, y) = (70, 13)[m]
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sensor fusion technique increase the estimated position accuracy of about 19%with respect

to the one estimated using only the markers detection approach.

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 0.3748 0.1628 0.4035

Odometry and IMU 0.3046 0.0744 0.2728

Table 8.3: Mean, variance and std. dev. of the FFV posi on error
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Figure 8.7: Moving FFV indoor orienta on error with odometry and odometry + IMU
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Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 0.0237 0.0013 0.0366

Odometry and IMU 0.0254 0.0014 0.0369

Table 8.4: Mean, variance and std. dev. of the FFV orienta on error

For theorientation information retrievedusingboth the localizationmethods (Figure 8.7),

same considerations and conclusion just outlined for the position data can be defined. In-

deed, close tags distance from the vehicle and linear path trajectory give the best results of

the entire simulations, while distant tags and direction changes affect significantly the ori-

entation accuracy. In particular, let us consider the orientation data retrieved while vehicle

performed the “hard” right turn. The estimated orientation, using both the localization ap-

proaches, does not match at all the true orientation values while the vehicle starts turning to

enter in the second potroom (time interval [52 52.5] [s] of the simulation). The marker de-

tection process is computationally too heavy to follow the fast vehicle dynamics in this small

amount of time causing, combined with the fast direction change, a large orientation error.

Orientation error results are depicted in Figure 8.7b and Table 8.4. Looking at the Table 8.4,

it’s interesting to observe how fast direction changes and vehicle dynamics can affected the

orientation error using the sensor fusion approach. The latter is slightly worse than the one

computed using only the markers detection technique. Indeed, the EKF, in order to work

properly, needs to be implemented assuming that the dynamic of the vehicle is slower than

the data acquisition and elaboration rate.

In conclusion, moving indoor localization gives good results for both estimated position

and orientation, especially concerning the sensor fusion approach. As already discussed, tags

distance and orientation with respect to the cameras central axis, angular velocity achieved

by the vehicle during the turns and radius of the curves are crucial parameters to take into

account to obtain a suitable localization. Indeed, estimate pose error can be reduce setting

specific thresholds like maximum orientation angle and distance between tags and cameras

(for this simulation the thresholds are set, respectively, to 1 [rad] and 20 [m]). Moreover,

if the vehicle dynamic is too fast for the EKF, it’s possible to tune the data acquisition rate
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paying attention to not obtain too much time distant odometry and inertial information

which can compromise the localization performances.

8.2 Outdoor localization experimental results

8.2.1 Stationary vehicle localization

The first outdoor localization simulation is performed placing the FFV in a pre defined fixed

position and orientation defined as follows:


x[m] =

[
x y z

]T
=

[
−37 −80 0.35

]T
θθθ[rad] =

[
α β γ

]T
=

[
0 0 1.57

]T (8.3)

For localization purposes, only the 2D planar coordinates x and y and the Y angle are used.

The simulation is performed for about 10 [s] including the EKF initializing time. More-

over, in order to analyze the relation between number of transmitters and localization per-

formances, simulation is computed surrounding the vehicle with different number ofWi-Fi

transmitters (4,8 and 14). Each Wi-Fi beacon is placed at 5 [m] height and located in the

environment in order to avoid symmetries with respect to the vehicle pose. Indeed, symme-

tries can positively affected the vehicle position, distorting the real accuracy performances of

the RSSI based Wi-Fi localization: for example, if the transmitters are placed with the same

y axis, the estimated y coordinate of the vehicle position will be very close to the real one.

Each simulation is computed bounding the possible RSSI acceptable values between 0 to

-85 [dBm]. This outdoor localization is in free-space without any support or priori info by

maps or other external supports.
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Figure 8.8: Sta onary FFV outdoor posi on (Tx = 4)
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Figure 8.9: Sta onary FFV outdoor posi on (Tx = 8)
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Drawing inspiration fromFigure 8.8, Figure 8.9 andFigure 8.10 the vehicle positions com-

puted using the sensor fusion localization approach are significantly better than the ones

computed using only the RSSI indicator approach. Moreover, the number of Wi-Fi trans-

mitters employed in each simulation is directly correlated to the estimated position accuracy

(Figure 8.11): increasing the number on antennas gives better position results reducing the

mean error value. Position results for these stationary simulations are summarized in Ta-

ble 8.5, Table 8.6 and Table 8.7.
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Mean position error with odometry

Mean position error with odometry and IMU

Figure 8.11: FFV outdoor mean error posi on comparison with different number of reachable wireless transmi ers

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 3.7041 12.2972 3.5067

Odometry and IMU 1.3491 1.0305 1.0151

Table 8.5: Mean, variance and std. dev. of the FFV posi on error (Tx = 4)

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 2.8802 4.8916 2.2117

Odometry and IMU 0.9883 0.3822 0.6182

Table 8.6: Mean, variance and std. dev. of the FFV posi on error (Tx = 8)
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Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 1.9768 4.1929 2.0477

Odometry and IMU 0.8181 0.4093 0.6397

Table 8.7: Mean, variance and std. dev. of the FFV posi on error (Tx = 14)

Considering the position error tables with 4 and 14 transmitters, the mean position er-

ror using only the odometry information decreasing of about 47%, while the one computed

using both odometry and inertial measurement unit information decreasing of about 39%.

Moreover the estimated position obtained with the sensor fusion approach has better per-

formance with the related only Wi-Fi based localization (almost 59% better). On the other

hand, as depicted in Table 8.1, the position accuracy retrieved using the RSSI-based Wi-Fi

technique for the stationary vehicle localization is significantly worse (about 70% position

error more) than the one calculated in the indoor stationary simulations.

Observing the Figure 8.12, orientation error is close to zero, thanks to the estimated ori-

entation which is similar to the true one. Firstly, note that in the outdoor localization, the

orientation information are obtained using only the IMU sensor: this means that it’s im-

possible to acquire orientation data using the only odometry information. Hence, only the

sensor fusion approach is used for this simulation and, due to the fact that the orientation

is computed independently to the presence and the number of the Wi-Fi transmitters, the

estimated orientation values are almost equal using 4,8 or 14 antennas (for simplicity, only

the graphs with Tx = 8 of the estimated orientation and its error is depicted in the the-

sis). However, as described in the section 6.4.1, the IMU sensor used for the simulation is

ideal, meaning that the bias obtained with the accelerometer is almost zero and, moreover,

the noise which affect the IMU gyroscope is very small. Orientation error results with 8

transmitters are depicted in Table 8.8.
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Figure 8.12: Sta onary FFV outdoor orienta on (Tx = 8)

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry and IMU 7.4941× 10−4 7.2484× 10−10 2.6923× 10−5

Table 8.8: Mean, variance and std. dev. of the FFV orienta on error (Tx = 8)

In conclusion, the number of the wireless transceivers surrounding the stationary vehi-

cle is directly correlated to the estimated position accuracy. Moreover, as already seen for

the stationary indoor localization, sensor fusion localization approach is significantly bet-

ter than the one performed using only the odometry information obtained with the RSSI-
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basedWi-Fi technique. On the other hand, increasing the number ofWi-Fi antennas results

in more sophisticated localization infrastructure with higher installation and maintenance

costs. Hence a cost benefits analysis needs to be done to determine the optimal number of

wireless transmitters to obtain discrete localization performances.

8.2.2 Moving vehicle localization

For the last experimental tests of the project, the vehicle, as already seen in Section 8.1.2,

needs to follow a non linear path (“S” trajectory) staying over the streets defined in the ex-

ternal environment. The path presents two turns with same radius, the first to the left and

the second to the right. Furthermore, the transmitters are placed along the roadsides at the

height of 5 meters simulating a real street lamps network. To better understand how the

wireless signal degradation over long distances can affect the localization performances, two

simulations are defined using two different boundary on the RSSI indicator value. The first

is RSSI > −80 [dBm], while the second is RSSI > −75 [dBm]. The latter is chosen

more strictly than the other one to avoid that distant transmitters can erroneously affect the

localizationmeasure: roughly speaking, distant transmitters are considered as outliers. Initial

and final position and orientation of the vehicle and its linear velocity are defined as follows:



x0 =

[
x y z

]T
=

[
−37 −80 0.35

]T
x1 =

[
x y z

]T
=

[
12.5 −13 0.35

]T
θ0 =

[
α β γ

]T
=

[
0 0 1.57

]T
= θ1

v = 5 m/s

(8.4)
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Figure 8.13: Moving FFV outdoor posi on (RSSI>−80 [dBm])

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 4.7367 15.0375 3.8778

Odometry and IMU 2.1041 1.2827 1.1325

Table 8.9: Mean, variance and std. dev. of the FFV posi on error (RSSI>−80 [dBm])
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Figure 8.14: Moving FFV outdoor posi on (RSSI>−75 [dBm])

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry 3.3154 12.2431 3.4990

Odometry and IMU 1.7739 0.9569 0.9782

Table 8.10: Mean, variance and std. dev. of the FFV posi on error (RSSI>−75 [dBm])
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Drawing inspiration fromFigure 8.13 and 8.14, the estimated position retrieved using the

sensor fusion technique is better than the one obtained using only the odometry informa-

tion: the green plot is more accurate, stable and smooth than the blue one. Furthermore, as

depicted in Table 8.9 and 8.10, the mean error obtained with the “RSSI>−75 [dBm]” sim-

ulation is lower than the simulation with the RSSI threshold equal to−80 [dBm]. Hence,

signal degradation is an important parameter to take into account and to set properly in

order to increase accuracy performance of the Wi-Fi localization. Note that, a strict RSSI

threshold can cause localization failure due to the fact that it’s impossible to detect at least 4

transmitters.

However, speaking about indoor-outdoor performances comparison, the mean position er-

ror obtained in the moving outdoor localization, is very high with respect to the one com-

puted in the indoor moving simulation. This means that the RSSI-based Wi-Fi outdoor lo-

calization, using both odometry and sensor fusion technique are not suitable and reliable

to retrieve the vehicle pose with good accuracy. Moreover, navigation process, which is

based on the localization information, can results unstable and unpredictable, causing se-

curity problems both regarding the aluminum smelter plant and the vehicle itself.

As depicted in Figure 8.15 and 8.16, the estimated orientation is similar to the true one. The

blue line related to the estimated orientation almost overlap the red one related to the true

orientation. However, drawing inspiration from Figure 8.11 and 8.12, the orientation error

rise up in the time interval [9 − 13] [s] and [17 − 22] [s] which correspond to period in

which the vehicle performs right and left turn, respectively. This increasing error orienta-

tion can probably cause by noise attached to the gyroscope of the IMU sensor (remind that

the inertial measurement sensor is ideal which means that no accelerometer bias affect the

orientation measure). Nevertheless, the maximum value of the orientation error is about

0.032 [rad] (1.83◦), which can be considered negligible with respect to the one retrieved in

the moving indoor localization (Table 8.4).
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Figure 8.15: Moving FFV outdoor orienta on (RSSI>−80 [dBm]): star ng point is set to (x, y) = (−37,−80)[m]

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry and IMU 0.0028 1.9186× 10−5 0.0044

Table 8.11: Mean, variance and std. dev. of the FFV orienta on error (RSSI>−80 [dBm])
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Figure 8.16: Moving FFV outdoor orienta on (RSSI>−75 [dBm]): star ng point is set to (x, y) = (−37,−80)[m]

Mean Error [m] Variance [m] Std. Dev. [m]
Odometry and IMU 0.0059 9.2748× 10−5 0.0096

Table 8.12: Mean, variance and std. dev. of the FFV orienta on error (RSSI>−75 [dBm])

In conclusion,RSSI-basedWi-Fi outdoor localization gives rough estimated FFVposition

with high mean error, meaning it’s not usable for high precision AGV outdoor localization.

Moreover with the ideal IMU sensor selected for the thesis simulations, it’s impossible to un-

derstand how good the estimated orientation value can be and how it affects the estimated
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pose of theFFVusing the sensor fusion technique. To increase the localizationperformances,

an hybrid localization system can be adopted (Section 1.2): laser scanner or visual cameras

can be employed to retrieve more information about the surrounding environments like ob-

stacles or street lines. The latter can be used to determine the vehicle position with respect

to the street borders and this is useful to maintain the vehicle near to the center of the road.

114



9
Conclusion and Future Work

9.1 Conclusion

AGVs, in real world, needs to challenge with many crucial navigation aspects such as path

planning, obstacle avoidance, and localization.

This thesis proposes two localization techniques for the aluminum smelter fluoride feeder

operative vehicle. The first one, the indoor localization, is performed using the ARTag fidu-

cialmarkers system,while, the secondone, the outdoor localization, is implementedwith the

RSSI-based Wi-Fi approach. Both localization techniques are tested in a simulated Gazebo

environment using a simplified fluoride feeder model defined starting from known informa-

tion about the vehicle. Moreover, for each localization, stationary and moving simulations

are performed: in particular, for the moving test, the FFV had to follow a “S” path in order

to analyze the localization performances in presence of curves.

Considering the indoor fiducial markers localization, the experimental results, using the

moving approach, are promising: position and orientation mean error is, respectively, of

0.3046 [m] and 1.45◦. On the other hand, the outdoor RSSI-basedWi-Fi localization accu-
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racy performances obtained in the moving simulation are very poor: position and orienta-

tionmean error is of 2.1041 [m] and 0.33◦, respectively. Remind that, the great orientation

value obtained in the latter simulation is retrieved using an high accuracy IMU sensor with

no accelerometer bias andwith small gyroscopemeasurement error: in real world, IMUdata

are much more noisy affecting both position and orientation error obtained in the outdoor

localization.

In conclusion, only the fiducial markers localization technique can be chosen as a valid local-

ization approach, while the RSSI-based Wi-Fi localization, because of its low accuracy per-

formance, needs to be complemented by other localization support (maps, lasers or visual

cameras).

9.2 Future work

Future work can be split in two categories: localization techniques improvements and local-

ization validation in real world scenario.

To improve both localization approaches analyzed in this thesis, laser scanners and additional

visual cameras can be taken into account to retrieve information about the surrounding en-

vironment (obstacles, building structures position, etc.) and to detect natural feature (road

lines, doors, etc.).

To validate the aforementioned localization techniques and in particular to test their robust-

ness, real world simulation needs to be performed: indeed, in virtual simulations, many envi-

ronmental parameters like weather conditions, magnetic field and high temperature are not

considered because not supported by the Gazebo simulator. Moreover, a localization sys-

tems comparison considering characteristics such as pose accuracy, operating limits of the

localization devices with respect to the environmental conditions and installation andmain-

tenance costs, is required.
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A
Markers andWi-Fi transmitters location

In this chapter, the pose of the fiducial markers and the position of the Wi-Fi transmitters

used, respectively, for the indoor and outdoor FFV localization are depicted. Note that, due

to the wireless omnidirectional antennas model, only the position of the transmitters are

defined. Moreover, for both the localization, different tables are defined for stationary and

moving localization simulation setup. The first three tables describe the position of the wire-

less antennas on the stationary outdoor localization, while the fourth one highlight the trans-

mitters position during the moving test. The final tables depict position and orientation of

the fiducial markers for both stationary and moving simulations.

Wi-Fi Transmitters Position

Transmitters Tworld
transmitter Transmitters Tworld

transmitter

0
[
−45 −90 5

]T
2

[
−29 −100 5

]T
1

[
−45 −50 5

]T
3

[
−19 −60 5

]T
Table A.1: Wi-Fi transmi ers posi on for sta onary FFV simula on with Tx = 4
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Wi-Fi Transmitters Position

Transmitters Tworld
transmitter Transmitters Tworld

transmitter

0
[
−45 −90 5

]T
4

[
−65 −90 5

]T
1

[
−45 −50 5

]T
5

[
−55 −70 5

]T
2

[
−29 −100 5

]T
6

[
−37 −70 5

]T
3

[
−19 −60 5

]T
7

[
−19 −80 5

]T
Table A.2: Wi-Fi transmi ers posi on for sta onary FFV simula on with Tx = 8

Wi-Fi Transmitters Position

Transmitters Tworld
transmitter Transmitters Tworld

transmitter

0
[
−45 −90 5

]T
7

[
−19 −80 5

]T
1

[
−45 −50 5

]T
8

[
−55 −110 5

]T
2

[
−29 −100 5

]T
9

[
−45 −100 5

]T
3

[
−19 −60 5

]T
10

[
−37 −110 5

]T
4

[
−65 −90 5

]T
11

[
−19 −90 5

]T
5

[
−55 −70 5

]T
12

[
−55 −60 5

]T
6

[
−37 −70 5

]T
13

[
−29 −50 5

]T
Table A.3: Wi-Fi transmi ers posi on for sta onary FFV simula on with Tx = 14
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Wi-Fi Transmitters Position

Transmitters Tworld
transmitter Transmitters Tworld

transmitter

0
[
−42 −90 5

]T
7

[
−42 −90 5

]T
1

[
−31 −80 5

]T
8

[
0.0 −50 5

]T
2

[
−42 −70 5

]T
9

[
9.0 −30 5

]T
3

[
−31 −60 5

]T
10

[
19 −50 5

]T
4

[
−42 −50 5

]T
11

[
19 −40 5

]T
5

[
−31 −40 5

]T
12

[
19 −20 5

]T
6

[
−20 −50 5

]T
13

[
9.0 −10 5

]T
Table A.4: Wi-Fi transmi ers posi on for moving FFV simula on

ARTag Markers Position and Orientation

ID Rworld
tag Tworld

tag ID Rworld
tag Tworld

tag

0


0 0 −1

−1 0 0

0 1 0

 [
100.2 25 3.5

]T
5


0 −1 0

0 0 1

−1 0 0

 [
75 0.5 3.5

]T

1


0 0 −1

−1 0 0

0 1 0

 [
100.2 50 3.5

]T
6


0 −1 0

0 0 1

−1 0 0

 [
85 0.5 3.5

]T

2


0 0 −1

0 −1 0

−1 0 0

 [
100.2 80 3.5

]T
7


0 −1 0

0 0 1

−1 0 0

 [
95 0.5 3.5

]T

3


0 0 −1

−1 0 0

0 1 0

 [
100.2 20 3.5

]T
8


0 0 −1

0 −1 0

−1 0 0

 [
100.2 60 3.5

]T

4


0 0 −1

−1 0 0

0 1 0

 [
100.2 40 3.5

]T
9


0 0 −1

−1 0 0

0 1 0

 [
100.2 15 3.5

]T

Table A.5: ARTag markers pose from ID 0 to ID 9
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ARTag Markers Position and Orientation

ID Rworld
tag Tworld

tag ID Rworld
tag Tworld

tag

10


0 0 −1

0 −1 0

−1 0 0

 [
100.2 70 3.5

]T
21


0 0 1

1 0 0

0 1 0

 [
91 65 3.5

]T

11


0 1 0

0 0 −1

−1 0 0

 [
95 100 3.5

]T
22


0 0 1

1 0 0

0 1 0

 [
91 75 3.5

]T

12


0 1 0

0 0 −1

−1 0 0

 [
75 24 3.5

]T
23


0 0 −1

−1 0 0

0 1 0

 [
100.2 90 3.5

]T

13


0 0 1

1 0 0

0 1 0

 [
91 35 3.5

]T
24


0 0 1

1 0 0

0 1 0

 [
91 25 3.5

]T

14


1 0 0

0 0 −1

0 1 0

 [
85 24 3.5

]T
25


1 0 0

0 0 −1

0 1 0

 [
101 24 3.5

]T

15


0 0 1

1 0 0

0 1 0

 [
91 85 3.5

]T
26


1 0 0

0 0 −1

0 1 0

 [
105 109 3.5

]T

16


0 0 −1

−1 0 0

0 1 0

 [
100.2 30 3.5

]T
27


1 0 0

0 0 −1

0 1 0

 [
115 109 3.5

]T

17


0 0 1

1 0 0

0 1 0

 [
91 85 3.5

]T
28


1 0 0

0 0 −1

0 1 0

 [
125 109 3.5

]T

18


1 0 0

0 0 −1

0 1 0

 [
95 24 4.5

]T
29


−1 0 0

0 0 1

0 1 0

 [
105 85.2 3.5

]T

20


0 0 1

1 0 0

0 1 0

 [
91 55 3.5

]T

Table A.6: ARTag markers pose from ID 10 to ID 29
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B
Python scripts

To perform suitable simulations, Gazebo simulator and ROS provide plugins, topics and

nodes to obtain data and to better understand the performance of the indoor and outdoor

localization tests. However, these information are not sufficient to compute the position

and orientation of the fluoride feeder vehicle in the simulation environment. For example,

in the indoor localization, the ROS node ar_track_alvar, which is used to detect markers

(Appendix C), gives us only the 3D distance between tags and camera, while, in the outdoor

localization, the feeder_odometry, which is used to compute the RSSI value (equation 5.4),

gives us only the odometry information about the position of the fluoride feeder vehiclewith

respect to the 3D world reference frame. Thus, extrapolated data needs to be elaborated us-

ing suitable and efficient algorithms (scripts) in order to obtain information about position

and orientation of the vehicle with respect to the 3D world coordinates. These scripts are

created using the Python high-level programming language, which is, nowadays, one of the

most used programming language in the world.
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For this project, two main scripts have been implemented:

1. marker_localization, which is the algorithmused for retrieve the indoor FFVposition
and orientation with respect to the 3D world reference frame

2. wifi_localization, which is the script used for compute the outdoor FFVpositionwith
respect to the 3D world coordinates

B.1 Marker_localization script

1 #!/usr/bin/env python

2

3 ###################################################################

4 ######## LOAD PYTHON PACKAGES AND DEFINE GLOBAL VARIABLES #########

5 ###################################################################

6

7 def marker_detection(msg):

8 if len(msg.markers) > 0:

9 detection_pose = msg.markers[0].pose

10 i = msg.markers[0].i

11 name = msg.markers[0].header.frame_id

12

13 if i != 255 and i < numTags:

14 if name=="/camera_right_link":

15 translation_camera = trans_cam_right

16 R_camera = R_cr

17 elif name=="/camera_left_link":

18 translation_camera = trans_cam_left

19 R_camera = R_cl

20 elif name=="/camera_front_link":

21 translation_camera = trans_cam_front

22 R_camera = R_cf

23
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24 if i==0 or i==1 or i==4 or i==9 or i==3 or i==16 or i==23:

25 R = R_0

26 if i==2 or i==8 or i==10:

27 R = R_1

28 if i==29 or i==30:

29 R = R_2

30 if i==5 or i==6 or i==7:

31 R = R_3

32 if i==12:

33 R = R_4

34 if i==11:

35 R = R_5

36 if i==13 or i==15 or i==17 or i==20 or i==21 or i==22 or i==24:

37 R = R_6

38 if i==14 or i==18 or i==26 or i==27 or i==28 or i==25:

39 R = R_7

40

41 # from camera distance on vehicle reference frame to the camera one

42 trans_camera = np.transpose(R_camera).dot(translation_camera)

43 # from roto translation on the camera frame to roto translation on tag frame

44 trans = [detection_pose.pose.position.x, detection_pose.pose.position.y,

45 detection_pose.pose.position.z]

46 trans_2 = trans + trans_camera

47 rot = [detection_pose.pose.orientation.x, detection_pose.pose.orientation.y,

48 detection_pose.pose.orientation.z, detection_pose.pose.orientation.w]

49 transform = tf.transformations.concatenate_matrices(

50 tf.transformations.translation_matrix(trans_2),

51 tf.transformations.quaternion_matrix(rot))

52 inversed_transform = tf.transformations.inverse_matrix(transform)

53 translation = tf.transformations.translation_from_matrix(inversed_transform)

54 #camera rotation with respect to the tag reference frame

55 quaternion = tf.transformations.quaternion_from_matrix(inversed_transform)

56 (r_1,p_1,y_1) = tf.transformations.euler_from_quaternion(quaternion)

57 quaternion_matrix = quaternion_matrix_function(quaternion)

58 Rot_vehicle_world = R.dot(quaternion_matrix.dot(np.transpose(R_camera)))
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59 q = quaternion_from_matrix(Rot_vehicle_world)

60

61 if abs(translation[0]) < limit_dist and abs(translation[1]) < limit_dist and

abs(translation[2]) < limit_dist and abs(p_1) < limit_angle:

62 pose_vehicle = p_tags[:,i] + R.dot(translation)

63 odom.pose.pose.position.x = pose_vehicle[0]

64 odom.pose.pose.position.y = pose_vehicle[1]

65 odom.pose.pose.position.z = pose_vehicle[2]

66 odom.pose.pose.orientation.x = q[0]

67 odom.pose.pose.orientation.y = q[1]

68 odom.pose.pose.orientation.z = q[2]

69 odom.pose.pose.orientation.w = q[3]

70 odom.pose.covariance = odom_covariance

71 odom.twist.covariance = odom_covariance

72

73 def quaternion_from_matrix(q):

74 w = math.sqrt(1 + q[0,0] + q[1,1] + q[2,2]) * 0.5

75 x = (q[2,1] - q[1,2]) / (4*w)

76 y = (q[0,2] - q[2,0]) / (4*w)

77 z = (q[1,0] - q[0,1]) / (4*w)

78 quat = np.array([x,y,z,w])

79 return quat

80

81 def quaternion_matrix_function(q):

82 q_matr = np.zeros((3,3))

83 q_matr[0,0] = 1 - 2*math.pow(q[1],2) - 2*math.pow(q[2],2)

84 q_matr[0,1] = 2*q[0]*q[1] - 2*q[2]*q[3]

85 q_matr[0,2] = 2*q[0]*q[2] + 2*q[1]*q[3]

86 q_matr[1,0] = 2*q[0]*q[1] + 2*q[2]*q[3]

87 q_matr[1,1] = 1 - 2*math.pow(q[0],2) - 2*math.pow(q[2],2)

88 q_matr[1,2] = 2*q[1]*q[2] - 2*q[0]*q[3]

89 q_matr[2,0] = 2*q[0]*q[2] - 2*q[1]*q[3]

90 q_matr[2,1] = 2*q[1]*q[2] - 2*q[0]*q[3]

91 q_matr[2,2] = 1 - 2*math.pow(q[0],2) - 2*math.pow(q[1],2)

92 return q_matr
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93 r = rospy.Rate(15)

94 marker_sub = rospy.Subscriber("/ar_pose_marker",AlvarMarkers,marker_detection)

95 marker_pub = rospy.Publisher("/vehicle_localization", Odometry, queue_size = 10)

96

97 while not rospy.is_shutdown():

98 odom.header.stamp = rospy.Time.now()

99 odom.header.seq = seq

100 seq = seq+1

101

102 if odom.pose.pose.orientation.x!=0 and odom.pose.pose.orientation.y!=0

103 and odom.pose.pose.orientation.z!=0 and odom.pose.pose.orientation.w!=0:

104 odom_broadcaster.sendTransform((odom.pose.pose.position.x,

105 odom.pose.pose.position.y,0.35),(odom.pose.pose.orientation.x,

106 odom.pose.pose.orientation.y,odom.pose.pose.orientation.z,

107 odom.pose.pose.orientation.w), rospy.Time.now(),"base_link","odom")

108

109 marker_pub.publish(odom)

110 r.sleep()

Lis ng B.1: Marker localiza on algorithm
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B.2 Wifi_localization script

1 #!/usr/bin/env python

2

3 ###################################################################

4 ######## LOAD PYTHON PACKAGES AND DEFINE GLOBAL VARIABLES #########

5 ###################################################################

6

7 def callback(msg):

8

9 rssi = np.zeros((num_trans))

10 (rssi, index) = findRssi(msg.position)

11 rssi = np.asarray(rssi)

12 l = len(index)

13 index2 = np.asarray(index)

14 rospy.logwarn(str(len(index2)))

15 dist = np.zeros((1,l))

16 A = np.zeros((l-1,3))

17 b = np.zeros((l-1,1))

18 j = 0

19

20 if len(index2)>=4:

21 for i in range(l):

22 dist[0,i] = math.pow(10,(rssi[index[i]] - tx_pow - tx_gain - rx_gain -

23 20*math.log10(wave)+20*math.log10(4*math.pi))/(-10*attenuation))

24

25 for i in range(l-1):

26 A[i,0] = position_trans[index[i+1],0] - position_trans[index[0],0]

27 A[i,1] = position_trans[index[i+1],1] - position_trans[index[0],1]

28 A[i,2] = position_trans[index[i+1],2] - position_trans[index[0],2]

29 b[i,0] = 0.5*(math.pow(dist[0,0],2) - math.pow(dist[0,i+1],2) +

30 math.pow(position_trans[index[0],0] -

31 position_trans[index[i+1],0],2) +

32 math.pow(position_trans[index[0],1] -

33 position_trans[index[i+1],1],2) +
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34 math.pow(position_trans[index[0],2] -

35 position_trans[index[i+1],2],2))

36

37 x_1 = np.linalg.pinv(np.transpose(A).dot(A))

38 x_2 = x_1.dot(np.transpose(A))

39 x_3 = x_2.dot(b[:,0])

40 x_ls = x_3 + np.transpose(position_trans[index[0],:])

41 odom_pub.pose.pose.position.x = x_ls[0]

42 odom_pub.pose.pose.position.y = x_ls[1]

43 odom_pub.pose.pose.position.z = x_ls[2]

44 odom_pub.pose.pose.orientation.x = 0

45 odom_pub.pose.pose.orientation.y = 0

46 odom_pub.pose.pose.orientation.z = 0

47 odom_pub.pose.pose.orientation.w = 1

48 odom_pub.pose.covariance = odom_covariance

49 odom_pub.twist.covariance = odom_covariance

50

51 def findRssi(x):

52 index = []

53 a = []

54 noise = np.random.normal(0,6,1)

55 j = 0

56 for i in range(num_trans):

57 d = distance(x,i)

58 r = tx_pow + tx_gain + rx_gain - noise[0] + 20*math.log10(wave) -

59 20*math.log10(4*math.pi) - 10*attenuation * math.log10(d)

60 a.append(r)

61 if r > -75:

62 index.append(i)

63 return a,index

64

65 def distance(y,index):

66 return math.sqrt(math.pow((position_trans[index,0] - y.x),2) +

67 math.pow((position_trans[index,1] - y.y),2) +

68 math.pow((position_trans[index,2] - y.z),2))
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69

70 rospy.init_node('wifi_localization')

71 feeder_sub = rospy.Subscriber('/feeder_odometry',Pose, callback)

72 wifi_odom_pub = rospy.Publisher('/wifi_odom',Odometry,queue_size = 10)

73

74 r = rospy.Rate(15)

75

76 while not rospy.is_shutdown():

77 odom_pub.header.stamp = rospy.Time.now()

78 odom_pub.header.seq = seq

79 seq = seq+1

80 if odom.pose.pose.orientation.x!=0 and odom.pose.pose.orientation.y!=0

81 and odom.pose.pose.orientation.z!=0 and odom.pose.pose.orientation.w!=0:

82 odom_broadcaster.sendTransform((odom.pose.pose.position.x,

83 odom.pose.pose.position.y,0.35),(odom.pose.pose.orientation.x,

84 odom.pose.pose.orientation.y,odom.pose.pose.orientation.z,

85 odom.pose.pose.orientation.w), rospy.Time.now(),"base_link","odom")

86

87 wifi_odom_pub.publish(odom_pub)

88 r.sleep()

Lis ng B.2: Wifi localiza on algorithm
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C
ROS nodes and topics

In this section, a briefly description of the relevant ROS nodes and topics used for the simu-

lations is given.

Indoor localization

• individualMarkersNoKinect: it is used to perform marker detection. It requires as
input parameters the marker size, the name of the visual camera and its calibration
parameters, the max_new_marker_error which is a threshold determining when new
markers can be detected under uncertainty and themax_track_errorwhich is a thresh-
old determining howmuch tracking error can be observed before an tag is considered
to have disappeared. As output, it provides the ID of the detected tag and its transla-
tion vector with respect to the camera coordinate frame. It publishes the output data
(AlvarMarker custom data type) over the /ar_pose_marker topic.

• markerLocalization: it is used to compute theFFVpose in theworld coordinate frame.
It takes, as input, the information from the /ar_pose_marker topic and publish the
fluoride feeder vehicle pose (odometry data type) over the /vehicle_localization topic.

135



Outdoor localization

• wifiLocalization: it is used to retrieve the RSSI value starting from the true position
of the FFV, obtained subscribing the /feeder_odometry topic, and the transmitters.
Then, using the trilateration algorithm, the position of the vehicle is computed and
published over the odometry data type topic /wifi_odom.

Indoor and outdoor localization

• feederOdometry: it is used to retrieve the true position of the fluoride feeder vehicle
and publish it over the /feeder_odometry topic.

• imuCovariance: it is used to adding the covariance matrix in the /imu topic and pub-
lish the complete IMU data type message over the /imu_cov topic.

• ekfLocalization: it is used to fuse the odometry information acquired from the /vehi-
cle_localization or the /wifi_odom topics with the inertial motion unit data obtained
from the /imu_cov topic. The ekfLocalization output is an odometry data type mes-
sage published over the /odometry_filtered topic.

• simpleMove: it is used tomove the FFV on theGazebo environment. It requires, as in-
put parameter, the initial position of the vehicle, the velocity in [km/h] to achieve and,
if the trajectory is not linear, the turn angle and its direction. The output is published
over the /ackermann_cmd topic.

ROS computational graph for indoor and outdoor localization are depicted in FigureC.1

and Figure C.2. Note that, all the nodes and topics not described above but present in the

ROS graphs are internal to the ROS framework and useful for the simulations. Their func-

tionality and nature description are not required for the thesis purposes.
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