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Chapter 1

Introduction

Inflation has been widely accepted as a key ingredient of our models for the Universe. The crucial
feature is a phase of accelerated expansion in the early Universe, lasting long enough to solve the
horizon and flatness problems, and setting the seeds for the subsequent structure formation. This
scenario is very generic and it can be realized through a variety of different models. A problem that
we are confronted with is finding observables that allow us to discriminate among these models.

We are in the era of precision Cosmology and many new experiments will take data in the following
decade, spanning from the Cosmic Microwave Background to Large-Scale Structure surveys. The
precision of the new data will allow us to employ higher order theoretical predictions, that could give
us precious information in our hunt for the best inflationary model. An observable that has a lot of
potential in this direction is non-Gaussianity.

Non-Gaussianity is an “umbrella term” that covers everything that goes beyond the free field case. A
completely Gaussian field is a collection of harmonic oscillator, all the information is contained in the
two-point function or equivalently its Fourier transform, the power-spectrum:

⟨ζ
k⃗
ζ
k⃗
′⟩ = δ(3)(k⃗ + k⃗

′
)Pζ(k) (1.1)

Higher order n-point correlation functions are trivial: they vanish identically for odd n and they are
products of a suitable number of power-spectra for even n.
Not so for a non-Gaussian field. The first order statistics that is capable of discriminating between
the Gaussian and non-Gaussian case is the three-point function or equivalently its Fourier transform,
the bispectrum:

⟨ζ
k⃗1
ζ
k⃗2
ζ
k⃗3
⟩ = 1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)Bζ(k1, k2, k3) (1.2)

The three-point function would contain information on the particle physics aspects of the early Uni-
verse: we could learn about self interactions of the inflaton, or interactions of the inflaton with other
fields, if present. This would shed light on the nature of inflation. Furthermore, different models pre-
dict different amplitudes and shapes of the bispectrum: therefore if we have models that give the same
predictions at the level of the power-spectrum, for the scalar spectral index ns and the tensor-to-scalar
ratio r, they may be distinguishable in terms of non-Gaussian features.

A complementary piece of information for the inflationary puzzle would come from detecting or con-
straining primordial gravitational waves. An almost scale-invariant stochastic background of relic
gravitational waves would fix the energy scale of inflation.

The goal of this project is to focus on a particular inflationary model and study its predictions for
non-Gaussianity at the level of the bispectrum of primordial curvature perturbation. The model is
motivated by the phenomenon of “climbing scalars” in String Theory [1, 2] and presents fascinating
links with the CMB anomalies, in particular the lack of power on the largest angular scales [3].
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Chapter 1. Introduction

This thesis is divided into two main parts. First we will focus on the attractor solution, that is power-
law inflation [4], and compute the bispectrum. The calculation will be carried out without making any
approximation in the slow-roll parameters, which has never been done before in the literature. Second,
we will study a particular model that experiences the climbing, at the level of the power-spectrum;
this prepares the ground to explore the predictions for the bispectrum, in a future work.

More in detail, the structure is the following.
The first chapter briefly recalls some basics of Cosmology, the shortcomings of the Big-Bang model and
the inflationary solution. The next chapters are devoted to introducing the main quantities that come
into play: second quantization in a curved spacetime, perturbation theory and the comoving curvature
perturbation, n-point correlation functions. The whole chapter 7 focuses on the in-in formalism,
which is a tool that is peculiar to Cosmology. The core of this first part of the thesis are chapter 8 and
chapter 9: the computation of the bispectrum is carried out, trying two different approaches and finally
obtaining an analytic result only in a particular configuration, the squeezed limit for the bispectrum.
This configuration is, however, the one that enters in Maldacena’s consistency relation, which will be
explored in chapter 9. We will see that, in the case of power-law inflation, the consistency relation is
satisfied even if one does not make the slow-roll assumption. This is the result one would expect, but
it has never been shown before in the literature, outside the slow-roll regime.
The second part of the thesis focuses on a particular model, inspired by String Theory, which is based
on the phenomenon of “climbing scalars”. The attractor solution at late times is Lucchin-Matarrese
power-law inflation, but at early times there is a pre-inflationary kinetic dominated phase which
can leave imprints in the power-spectrum on the largest observable scales. There are many analytic
models in which this can be realized, in chapter 12 we will focus on a particular one and compute the
power-spectrum numerically. We recover the qualitative behaviour that has already been observed in
other systems that experience the climbing. This will serve as a basis, in future works, to study the
bispectrum.

2



Chapter 2

Inflation

In this chapter we briefly introduce the basic ingredients of the ΛCDM model. Then we review the
shortcomings of the hot Big-Bang model and the inflationary solution. See [5–7] for more details.

2.1 Notation

We will use natural units c = ℏ = 1, unless otherwise specified.
The metric signature is the “mostly positive” one (−+++). Greek indices run from 0 to 3, Latin
indices run on spatial coordinates from 1 to 3.
The reduced Planck mass is defined as M2

P ≡ (8πG)−1. Its value is MP ≃ 2.4× 1018 GeV.

Conformal time will be denoted by τ . Dots will represent derivatives with respect to cosmic time,
primes will represent derivatives with respect to conformal time.

2.2 Brief introduction to Cosmology

On sufficiently large scales, of order 100 Mpc, our Universe appears homogeneous and isotropic, a
statement known as the Cosmological Principle. This properties lead to the Friedmann-Lemâıtre-
Robetrson Walker metric (FRW in the following), which describes the background spacetime:

ds2 = −dt2 + a2(t)

[︃
dr2

1− kr2
+ r2

(︁
dθ2 + sin2θdφ2

)︁]︃
(2.1)

The spatial curvature k is a constant that can describe a flat (k = 0), close (k = +1) or open (k = −1)
spatial geometry. The scale factor a(t) only depends on time, due to homogeneity, and it accounts for
the expansion of the Universe. The coordinates r are comoving coordinates, which can be though of
as coordinates on a grid that is expanding together with the Universe: they are related to physical
distances via x⃗phys(t) = a(t)x⃗com.

We define the Hubble parameter as the expansion rate:

H ≡ ȧ

a
(2.2)

It has units of inverse time and it sets the fundamental scale of the FRW spacetime: in units where
c = 1, the characteristic time-scale is t ∼ H−1, setting the scale for the age of the Universe, while the
characteristic length-scale is d ∼ H−1, setting the size of the observable Universe.

We introduce conformal time as:

dτ =
dt

a(t)
(2.3)

3



2.2. Brief introduction to Cosmology Chapter 2. Inflation

The background spacetime and the matter content living on it can be described by the action:

S =

∫︂
d4x
√
−g
(︃

1

16πG
R+ Lm(gµν , . . . )

)︃
(2.4)

The first part is the Einstein-Hilbert action, the second piece accounts for the rest of the Universe.
Varying the action with respect to the metric, we obtain the Einstein’s field equations:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν (2.5)

where the energy-momentum tensor is defined as:

Tµν = − 2√
−g

δ (
√
−gLm)

δgµν
(2.6)

To describe the background spacetime, homogeneous and isotropic, we can assume the energy-momentum
tensor to have the form of the perfect fluid one:

Tµν = uµuν(ρ+ P ) + Pgµν (2.7)

with uµ the 4-velocity of the fluid gµνuµuν = −1, ρ the background energy density and P the back-
ground isotropic pressure.

Equations (2.5) for the metric (2.1) with the energy-momentum tensor (2.7) give the Friedmann
equations:

H2 =

(︃
ȧ

a

)︃2

=
8πG

3
ρ− k

a2
(2.8)

ä

a
= −4πG

3
(ρ+ 3P ) (2.9)

From Bianchi identities ∇µG
µν = 0 we obtain the continuity equation:

ρ̇+ 3H(ρ+ P ) = 0 (2.10)

Only two out of these three equations are actually independent. In order to solve the system for a, ρ,
P as a function of t we specify the equation of state for a barotropic fluid:

ρ = wP (2.11)

For matter w = 0, for radiation w = 1/3, for a cosmological constant w = −1.

From the continuity equation we can read the behaviour of the energy density with the scale factor:

ρ(a) = ρ0

(︃
a

a0

)︃−3(1+w)

(2.12)

The energy density of matter is diluted as ρm ∝ a−3 due to the expansion. In the case of radiation
we have the combined effect of dilution (∝ a−3) due to the expansion of the volume and of redshift
(∝ a−1), therefore the energy density of radiation goes as ρr ∝ a−4. A cosmological constant instead
is characterized by ρΛ =constant.

For each species we can define the present ratio of the energy density to the critical energy density:

Ωi,0 ≡
ρi,0
ρcrit,0

ρcrit ≡
3H2

0

8πG
(2.13)

The evolution of the three components as a function of the scale factor is shown in Figure 2.1, notice
that the normalization for the three curves is set by present day observations.

4



Chapter 2. Inflation 2.3. Inflation

Figure 2.1: Evolution of the energy densities for the three different fluid components. From D. Baumann,
Cosmology Part III Mathematical tripos.

2.3 Inflation

2.3.1 Shortcomings of the Big-Bang model

The hot Big-Bang model is affected by a few shortcomings:

• horizon problem: we observe the CMB to be very homogeneous on scales encompassing regions
that at the epoch of last-scattering should have been causally disconnected. Define the (co-
moving) particle horizon as the maximum distance that can be covered between time 0 and
t:

dp(t) ≡
∫︂ t

0

dt′

a(t′)
=

∫︂ a

0

1

aH
dlna ∝

{︄
a radiation epoch

a1/2 matter epoch
(2.14)

This sets the scale above which particles never had the chance to communicate with one another.
The quantity (aH)−1 is the comoving Hubble radius: for the conventional components of the
fluid, with equation of state w ≥ 0, it grows monotonically with time.

• flatness problem: in order for the Universe to be as close to spatial flatness as we observe it
today, an extreme fine-tuning of Ω close to 1 in the early Universe is required. In fact, we can
rewrite the first Friedmann equation (2.8) as:

1− Ω = − k

(aH)2
Ω ≡ ρ

ρcrit
(2.15)

Since the comoving Hubble radius (aH)−1 grows with time, the quantity |1 − Ω| increases as
well, unless k = 0 exactly which is a null-measure case.

• monopole or unwanted relics problem: during phase transitions, topological defects can be pro-
duced, and we should observe them today because not enough time has elapsed in order for the
expansion to dilute them enough;

• we need a mechanism to provide the seeds for structure formation.

The horizon and flatness problems are not actual inconsistencies. We should simply accept that very
special, fine-tuned initial conditions are required, in order to obtain the Universe we observe today.
The large-scale homogeneity and the flatness of our Universe must be assumed, it is not predicted by
the model. Instead, one would like a theory that explains these features dynamically [5].

Inflation provides a solution to these shortcomings and a way to set the seeds for structure formation.
We now briefly review these two points.

5



2.3. Inflation Chapter 2. Inflation

2.3.2 The inflationary solution

Inflation is a phase of accelerated expansion in the very early Universe, around ∼ 10−34 s, lasting
“long enough” to solve the horizon and flatness problems. The key idea is: we need the comoving
Hubble radius to decrease with time. Three equivalent conditions for this to happen, related by the
Friedmann equations, are:

d

dt

(︃
1

aH

)︃
< 0

d2a

dt2
> 0 w < −1

3
(2.16)

The effect of a decreasing comoving Hubble radius can be appreciated in Figure 2.2.

Figure 2.2: Plot of the comoving Hubble radius and comoving wavelength as a function of time. Scales of
cosmological interest were larger than the Hubble radius until a ≈ 10−5 if a0 = 1 today. But at very early
times, before inflation, all scales of interest were smaller than the Hubble radius and therefore susceptible to
microphysical processing. Similarly, at very late times, the scales of cosmological interest are back within the
Hubble radius. Figure from [8].

2.3.3 Single field slow-roll scenario

So far, inflation is a generic recipe. It can be realized in a variety of ways. The simplest model
involves one single scalar field, dominating the energy budget of the Universe during inflation, and
with potential energy dominating over kinetic energy in such a way that w ≃constant. In other
words, we want this system to mimic the behaviour of a cosmological constant: in order to do this,
the potential for the scalar field must be flat enough and the field must be slowly rolling. These
requirements are usually encoded in the slow-roll parameters:

ϵ ≡ − Ḣ

H2
η ≡ − φ̈

Hφ̇
(2.17)

The equation of motion for the scalar field is the usual Klein-Gordon equation:

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 (2.18)

Inflation only requires ϵ < 1, to satisfy (2.16). However, both ϵ and η are usually required to be small,
in this case we are in the so-called slow-roll regime:

w ≃ −1 H ≃ const a(t) ∝ eHt (2.19)

The spacetime is approximately de Sitter and the background equations (2.8), (2.18) become:

H2 ≃ 1

3M2
P

V (2.20)

3Hφ̇+
∂V

∂φ
≃ 0 (2.21)

6



Chapter 2. Inflation 2.3. Inflation

One can introduce two slow-roll parameters that are related to the shape of the potential:

ϵV ≡
M2

P

2

(︃
V ′

V

)︃2

ηV ≡M2
P

V ′′

V
(2.22)

ϵ ≈ ϵV η ≈ ηV − ϵV (2.23)

where a prime here stands for derivative with respect to the field, and the last two relations hold in
the slow-roll approximation only.

There is another set of slow-roll parameters one can introduce, the so-called “Hubble slow-roll param-
eters” [9]:

ϵH ≡ −
Ḣ

H2
ηH ≡

ϵ̇

ϵH
(2.24)

They are related to the previous definitions as follows:

ηH = 2ϵ− 2η η ≈ ηV − ϵ ηH ≈ 4ϵ− 2ηV (2.25)

where the approximated relations hold in the slow-roll limit.

It is important to stress that slow-roll is not mandatory. However, it is usually assumed because phys-
ical results are more transparent in this regime. Besides, many complicated aspects of the calculations
can be dropped off, if one assumes smallness of ϵ and η and works at leading order in the slow-roll
parameters.

In order to quantify the amount of inflation, we can introduce the number of e-folds [6]:

N ≡ ln
a(tend)

a(t)
=

∫︂ tend

t
Hdt (2.26)

Inflation needs to last for at least 60 e-folds in order for all the wavelengths we observe today to have
been in causal contact early on. The number comes from requiring that inflation solves the horizon
and flatness problems [6, 10]. Many models easily predict much more than this minimum amount,
however we have reasons to suspect that inflation did not last much longer than needed. One of these
is the “η-problem”: if we circumvent our ignorance on the ultraviolet theory by taking an effective field
theory approach to inflation, even Planck mass-suppressed operators can give rise to O(1) corrections
to the slow-roll parameter η. Roughly speaking, it is difficult to maintain η small enough for a long
time [11].

2.3.4 Quantum fluctuations as seeds for structure formation

The other and more important aspect of inflation is that it provides a mechanism to set the seeds for the
formation of structure. Quantum fluctuations are produced in the early Universe on small scales and
inflation stretches them to superhorizon scales: after horizon crossing, the amplitude of fluctuations
remains nearly frozen, until it enters the horizon again during radiation or matter domination. From
the particle point of view, the picture is intuitively the following. Particle-antiparticle pairs are created
and annihilated all the time, but during inflation the distance between particle and antiparticle is
stretched exponentially and the pair may not be able to meet and annihilate: this results in a net
number of particle being created. The appearance of these frozen fluctuations is equivalent to the
appearance of a classic field whose vacuum expectation value does not vanish when we average over
some macroscopic interval of time [12]. The production of quantum fluctuations during an inflationary
epoch is not a peculiar to the inflaton only: it is a feature of any generic scalar field evolving in an
accelerated background. The inflation plays a special role in that it dominates the energy density.
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2.4 Power-law inflation

Inflation does not necessarily mean exponential expansion. One could take the ansatz:

a(t) ∝ tp (2.27)

which defines power-law inflation [4, 13]. It can be realized with a single-exponential potential:

V (φ) = V0e

√
6γ

MP
φ
= V0e

Γφ (2.28)

where we have written
√
6γ/MP ≡ Γ for simplicity. The link between the slope of the potential and

the exponent of the scale factor is a well-known result in the literature [14,15]:

p =
2

M2
PΓ

2
=

1

3γ2
(2.29)

In the following chapters we will switch among p, γ, Γ, according to what is needed to simplify
calculations.

2.4.1 Background evolution

In cosmic time t, the e.o.m. (2.18) is:

φ̈0 +
3p

t
φ̇0 + V0Γe

Γφ0 = 0 (2.30)

whose solution is:

φ0(t) = −
2

Γ
logt+ const (2.31)

In conformal time:

φ0(τ) =
2

Γ(p− 1)
log|τ |+ const p =

2

M2
PΓ

2
(2.32)

We will come back on this solution later.

2.4.2 On the slow-roll parameters in power-law inflation

We defined the slow-roll parameters in (2.17) and (2.22). In conformal time:

ϵ = −H
′

H2
+ 1 η = − φ′′

Hφ′ + 1

On the attractor, with a(τ) = A(−τ)
p

1−p and so on:

ϵ = η =
1

p
= 3γ2 (2.33)

So that the requirement that they be smaller than 1 translates into:

γ <
1√
3

(2.34)

As for the other two definitions:
ϵV = 3γ2 ηV = 6γ2 (2.35)

therefore we have the link ηV = 2ϵV in power-law inflation.
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Chapter 3

QFT in curved spacetime

We briefly review how to deal with second quantization in a curved spacetime. See [16] and [12] for
more details.

3.1 Second quantization

Consider a scalar field φ. We split it into the background field, corresponding to its homogeneous
classical value, and the fluctuations:

φ(τ, x⃗) = φ0(τ) + δφ(τ, x⃗) (3.1)

To quantize the field, we first rescale:

δ ˜︁φ = aδφ (3.2)

that is, we work on the conformal metric, with the “conformal field”.
The canonical conjugated momentum is:

π = δ ˜︁φ′ (3.3)

The small fluctuations field is promoted to operator, satisfying the standard equal time commutation
relations:

[δ ˜︁φ̂(τ, x⃗), ˜︁π̂(τ, x⃗′)] = iℏδ(3)(x⃗− x′⃗ ) others vanishing (3.4)

Notice that the background is a c-number, it does not play a role in the commutators.
We can expand the field in Fourier space as usual:

δ ˜︁φ̂(τ, x⃗) = ∫︂ d3k⃗

(2π)3/2

[︂
uk(τ)âk⃗e

ik⃗·x⃗ + u∗k(τ)â
†
k⃗
e−ik⃗·x⃗

]︂
(3.5)

where k is the comoving wavevector. We have already enforced isotrpy in the assumption that the
modefunctions only depend on the modulus of the wavevector k.
The creation and annihilation operators satisfy the standard commutation relations:

[â
k⃗
, â†

k⃗
′ ] = δ(3)(k⃗ − k′⃗ ) others vanishing (3.6)

which follows from (3.4), if the modefunctions are normalized as1:

u∗ku
′
k − uku∗′k = −i (3.7)

1In fact the conjugated momentum is

π̃(τ, x⃗) ≡ δφ̃
′
(τ, x⃗) =

∫︂
d3k⃗

(2π)3/2

[︂
u′
k(τ)âk⃗e

ik⃗·x⃗ + u∗′
k (τ)â†

k⃗
e−ik⃗·x⃗

]︂
9
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3.2 Equation of motion

The evolution equation for the scalar field φ(τ, x⃗) is the Klein-Gordon equation:

gµν∇µ∇νφ =
∂V

∂φ
(3.8)

The unperturbed background field only depends on conformal time, thus the e.o.m. is:

φ′′
0 + 2Hφ′

0 = −a2
∂V

∂φ0
(3.9)

with H ≡
a′

a
.

Now we perturb the scalar field but not the metric, also including the spatial dependence of the field
in the Klein-Gordon equation.

δ ˜︁φ′′ − a′′

a
δ ˜︁φ+m2a2δ ˜︁φ−∇2δ ˜︁φ = 0

∂2V

∂φ2

⃓⃓⃓⃓
δ ˜︁φ=0

≡ m2 (3.10)

where we defined the effective mass of the scalar field m.

Going to Fourier space as in (3.5) we find how the modes uk(τ) evolve.

u′′k +

(︃
k2 − a′′

a
+m2a2

)︃
uk = 0 (3.11)

3.2.1 Choice of the vacuum state

A crucial feature of dealing with second quantization in a curved spacetime is the ambiguity in the
choice of vacuum [16, 17]. The usual definitions of vacuum and of particles with momentum k⃗ in

Minkowski are based on the decomposition of the field into plane waves e−i(ωkt−k⃗·x⃗). A particle with
momentum p corresponds to a wavepacket with spread ∆p, therefore it should be ∆p ≪ p for the
momentum of the particle to be well-defined. Roughly, if the spatial size of the wavepacket is λ such
that λ∆p ∼ 1 this means requiring λ ≫ 1/p. But the geometry of a curved spacetime may vary
significantly across a region of size λ: the notion of a particle with momentum p and solving the
wave equation in terms of plane waves is only meaningful if the spacetime is very close to Minkowski
on distances and on timescales of order p−1. Notice that spatial flatness alone is not sufficient: the
relevant quantity is the four-dimensional curvature.
For example, assume that in equation (3.11) the scale factor is such that at some time ω2

k(τ) =

k2− a′′

a +m2a2 < 0. In this case the modes uk(τ) do not oscillate, they behave as growing and decaying
exponentials. Formally, we can still define a mode expansion, a set of creation and annihilation
operators, a vacuum state, the corresponding excited states... but we could not interpret these states
as physical vacuum and particle number states! Moreover, the expectation value of the energy density
is not necessarily positive if ω2

k(τ) < 0, so we cannot even interpret it as an energy density. The

therefore

[δ ˜︁φ̂(τ, x⃗), δ ˜︁φ̂′
(τ, x⃗′)] =

∫︂
d3k⃗d3k⃗

′

(2π)3

[︃
uk(τ)âk⃗e

ik⃗·x⃗ + u∗
k(τ)â

†
k⃗
e−ik⃗·x⃗,

u′
k(τ)âk⃗′eik⃗

′·x⃗′
+ u∗′

k (τ)â†
k⃗
′e

−ik⃗
′·x⃗′

]︃
=

∫︂
d3k⃗

(2π)3

(︂
uk(τ)u

∗′
k (τ)eik⃗·(x⃗−x⃗′) − u∗

k(τ)u
′
k(τ)e

−ik⃗·(x⃗−x⃗′)
)︂

send k⃗ into −k⃗ in the second piece and this must be equal to iδ(3)(x⃗− x⃗′), from which the normalization (3.7) follows.
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ultimate reason of this ambiguity in the definition of vacuum and particle states is to be attributed
to the action being explicitly time-dependent, so the energy of the field is generally not conserved. In
quantum theory this leads to the possibility of particle creation, where the energy for new particles
is supplied by the gravitational field. A very instructive example of this is the Unruh effect, in which
the ground state of an inertial observer in Minkowski is detected as a non-vanishing particle number
state by an accelerated observer.

A quick way to appreciate the ambiguity is the following. Imagine we choose two different sets of
modefunctions and corresponding operators:

δ ˜︁φ̂(τ, x⃗) = ∫︂ d3k⃗

(2π)3/2

[︂
uk(τ)âk⃗e

ik⃗·x⃗ + u∗k(τ)â
†
k⃗
e−ik⃗·x⃗

]︂
(3.12)

=

∫︂
d3k⃗

(2π)3/2

[︂
vk(τ)b̂k⃗e

ik⃗·x⃗ + v∗k(τ)b̂
†
k⃗e

−ik⃗·x⃗
]︂

(3.13)

Since vk, v
∗
k are a basis, the function uk is a linear combination:

u∗k(τ) = αkv
∗
k(τ) + βkvk(τ) (3.14)

If both sets are normalized by (3.7), then:

|αk|2 − |βk|2 = 1 |αk| ≥ 1 (3.15)

The complex coefficients αk, βk are called the Bogolyubov coefficients. Their meaning is the following.
The two sets of creation and annihilation operators define two different vacua â

k⃗
|0a⟩ = 0 ∀ k⃗ and

b̂
k⃗
|0b⟩ = 0 ∀ k⃗, which are related through the Bogolyubov coefficients. If we compute the expectation

value of the b-particle number in the a-vacuum state, we find:

⟨0a|N̂ b|0a⟩ = ⟨0a|b̂
†
k⃗ b̂k⃗|0a⟩ = |βk|

2 δ(3)(0) (3.16)

If we quantized the field in a finite box, the divergent factor δ(3)(0) would be replaced by the box
volume. Therefore we can interpret |βk|2 = nk as a mean number density of b-particles.

Ultimately the choice of vacuum is determined by experiment: the correct vacuum state must be such
that the theoretical predictions agree with the available experimental data [17].

In our case, at very short distances, when the modes are well within the horizon, we want to recover
the usual flat spacetime theory. This translates into the requirement that, well within the horizon,
the modes approach the usual Minkowski plane waves:

k

aH
−→∞ uk(τ) −→

1√
2k
e−ikτ (3.17)

This is called the Bunch-Davies vacuum choice.

3.2.2 Limiting behaviours

Subhorizon scales

Well within the horizon k ≫ aH, therefore k2 dominates over both a′′/a and the mass term. Equation
(3.11) becomes:

u′′k + k2uk = 0 (3.18)

whose solutions are plane waves uk ∝ e−ikτ , in agreement with (3.17). We are recovering the Minkowski
limit, as expected.

11
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Superhorizon scales

On superhorizon scales k ≪ aH, therefore k2 is negligible. Equation (3.11) becomes:

u′′k −
(︃
a′′

a
−m2a2

)︃
uk = 0 (3.19)

In the case of a massless field m = 0, we can look for power-law solutions of (3.19) of the form uk ∝ aβ:

uk = B+(k)a+B−(k)
1

a2
(3.20)

There are a growing mode and a decaying mode.
Now we fix the amplitude of the growing mode by matching this solution (3.20) to the plane wave
solution (3.17) when the fluctuation with wavenumber k leaves the horizon (k = aH):

|B+(k)| =
1

a
√
2k

=
H√
2k3

(3.21)

On superhorizon scales, fluctuations are frozen, the original scalar field has the constant amplitude:

|δφk| =
|uk|
a

=
H√
2k3

(3.22)

When we average over large intervals of time, δφ ̸= 0. As a result of the exponential expansion of
the Universe, a classical fluctuation has been generated, the net result is a state with a non-vanishing
number of particles. It is a mechanism of gravitational amplification whose key point is H =constant.

3.3 Exact solution in a de Sitter stage

In a de Sitter Universe:

H = const a(τ) = − 1

Hτ
(3.23)

equation (3.11) becomes:

u′′k +

(︄
k2 −

ν2 − 1
4

τ2

)︄
uk = 0 ν2 ≡ 9

4
− m2

H2
(3.24)

This is a Bessel equation, a linear second order ODE of the type:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 (3.25)

If ν ∈ R, as is the case, then the exact solution is given in terms of Bessel and Neumann functions, or
of Hankel functions of first and second order:

uk(τ) =
√
−τ
[︂
c1(k)H

(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)

]︂
(3.26)

We match solutions in the ultraviolet regime by using the asymptotic form of the Hankel functions
(A.5) and applying the Bunch-Davies vacuum prescription (3.17):

c1(k)

√︃
2

πk
e−ikτ+i(ν− 1

2)
π
2 + c2(k)

√︃
2

πk
eikτ−i(ν− 1

2)
π
2 ≡ 1√

2k
e−ikτ (3.27)

c1(k) =

√︃
π

4
ei(ν+

1
2)

π
2 c2(k) = 0 (3.28)
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The exact solution becomes:

uk(τ) =

√
π

2
ei(ν+

1
2)

π
2
√
−τH(1)

ν (−kτ) (3.29)

Notice that if m = 0 then ν = 3
2 exactly.

We obtain the fluctuation for the original field by dividing by the scale factor δφk = uk/a. On
superhorizon scales:

|δφk| = 2ν−
3
2
Γ(ν)

Γ(32)

H√
2k3

(︃
k

aH

)︃ 3
2
−ν

(3.30)
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Chapter 4

The primordial curvature perturbation

In the previous chapter, we have only focused on the fluctuations of the scalar field, neglecting per-
turbations in the metric. However, in the case of the inflaton, it is crucial to account for metric
perturbations as well. As a matter of fact, the inflaton dominates the energy budget of the Universe
during inflation and perturbations in the energy-momentum tensor generate perturbations in the FRW
metric through Einstein’s equations (2.5). On the other hand, metric fluctuations affect the evolution
of the inflaton perturbations since they appear in the perturbed Klein-Gordon equation. Therefore
field and metric perturbations are deeply intertwined and are to be studied together [12].
To keep track of non-Gaussianities, the analysis must be performed up to second order in perturbation
theory.

4.1 The gauge issue

The starting point is perturbing the quantities appearing in Einstein’s field equations (2.5): the matter
and energy content on one side, the geometry on the other side.

When dealing with perturbation theory in General Relativity, a crucial point to keep in mind is that
we are also perturbing the geometry. On the one hand we have the physical spacetime, on which the
physical quantity T lives; on the other hand there is the unperturbed background spacetime, on which
T0 is defined. We would like to define the perturbation as:

“δT = T − T0” (4.1)

but we cannot directly compare the two quantities T and T0 since they are defined on different space-
times. We first need a map, a one-to-one correspondence between the physical and the background
spacetimes. A gauge choice is the choice of such a map. Changing the map amounts to a gauge
transformation. There is not a unique choice of the map, and this introduces an ambiguity in the
definition of the perturbations. This problem is called the gauge issue. We refer to [18–20] for a
detailed discussion.

There are two main ways to deal with this problem. One possibility is to make a gauge choice that
simplifies the calculations, then in the end perform a gauge transformation if needed and go to a
gauge where physical results are easier to interpret. Another option, which was first introduced by
Bardeen [21], is to work with gauge-invariant quantities.
We will use the gauge-invariant curvature perturbation, which is a “mixed variable” containing both
matter and metric perturbations. Such a quantity is the most natural way to study the problem,
because Einstein’s equations themselves couple the metric and the inflaton fluctuations, as we already
mentioned. Therefore these objects that we define separately are actually very deeply intertwined
from a physical point of view.
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4.2 Cosmological perturbations

We explicitly write down the metric perturbations and the energy-momentum tensor perturbations
in full generality, with no gauge choice. The notation in recent works is quite unified, we mostly
follow [12].

If δ is a generic perturbation, our convention will be:

δ =
+∞∑︂
r=1

1

r!
δ(r) = δ(1) +

1

2
δ(2) + . . . (4.2)

We can use Helmholtz theorem to separate scalar, vector and tensor degrees of freedom. Vector
quantities can be split into a curl-free part and a divergence-free part:

ω̂i = ∂iω + ωi ∂iωi = 0 (4.3)

Similarly, tensors can be decomposed as:

χ̂ij = Dijχ+ ∂iχj + ∂jχi + χij ∂iχij = 0 χi
i = 0 (4.4)

where Dij = ∂i∂j − 1
3δij∇

2.

The advantage of these splittings is that scalar, vector and tensor perturbations evolve independently
at linear order, therefore they can be studied separately. When going to higher order in perturbation
theory, it is still true that n-th order modes evolve independently, but they receive contributions
from all kinds of lower order modes. This phenomenon is called mode-mixing, because higher-order
perturbations are coupled, in the sense that they are sourced by lower-order perturbations.

4.2.1 Metric perturbations

We perturb around the FRW background:

g00 = −a2(τ) (1 + 2ϕ(x⃗, τ))

g0i = a2(τ)ω̂i(x⃗, τ)

gij = a2(τ)
[︁
(1− 2ψ(x⃗, τ))δij + χ̂ij(x⃗, τ)

]︁ (4.5)

For our purposes, we can simplify the metric (4.5).
First-order vector perturbations are not generated in the presence of scalar fields, and in any case they
have decreasing amplitudes, hence we can safely neglect them.
The first-order tensor gives a negligible contribution to second-order perturbations.
Therefore:

g00 = −a2(τ)
(︂
1 + 2ϕ(1) + ϕ(2)

)︂
g0i = a2(τ)

(︃
∂iω

(1) +
1

2
∂iω

(2) +
1

2
ω
(2)
i

)︃
gij = a2(τ)

[︃
(1− 2ψ(1) − ψ(2))δij +Dij

(︃
χ(1) +

1

2
χ(2)

)︃
+

1

2

(︂
∂iχ

(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)︂]︃ (4.6)

The contravariant metric is obtained by requiring, up to second order, that gµνg
νλ = δλµ.

With the perturbed gµν one can compute the Christoffel symbols Γα
βγ and the components of the

Einstein tensor Gµ
ν up to second order. The computation is very long, the full expressions can be

found in [22].
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4.2.2 Energy-momentum tensor perturbations

Making the hypothesis of a perfect fluid, the energy-momentum tensor is (2.7). The velocity can be
perturbed as:

uµ =
1

a

(︃
δµ0 + vµ(1) +

1

2
vµ(2)

)︃
(4.7)

and the energy density:

ρ(τ, x⃗) = ρ0(τ) + δ(1)ρ(τ, x⃗) +
1

2
δ(2)ρ(τ, x⃗) (4.8)

4.2.3 Perturbed Einstein equations in Poisson gauge

We will now write down the perturbed Einstein equations at the background level, at first order, at
second order. Following [22], we work in the Poisson gauge or generalized longitudinal gauge:

ω = 0, χ = 0 (4.9)

The metric (4.6) in the Poisson gauge becomes:

g00 = −a2
(︂
1 + 2ϕ(1) + ϕ(2)

)︂
g0i = 0

gij = a2
[︃(︂

1− 2ψ(1) + ψ(2)
)︂
δij +

1

2

(︂
∂iχ

(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)︂]︃ (4.10)

The inverse metric can be found by requiring gµλgλν = δµν up to second order:

g00 = − 1

a2

(︂
1− 2ϕ(1) − ϕ(2) + 4(ϕ(1))2

)︂
g0i = 0

gij =
1

a2

[︃(︂
1 + 2ψ(1) + ψ(2) + 4(ψ(1))2

)︂
δij − 1

2

(︂
∂iχ(2)j + ∂jχ(2)i + χ(2)ij

)︂]︃ (4.11)

The field is split into a homogeneous background and a perturbation:

φ(x⃗, τ) = φ0(τ) + δ(1)φ(x⃗, τ) +
1

2
δ(2)φ(x⃗, τ) (4.12)

We now have to perturb Einstein equations (2.5) up to second order. The calculation can be found
in [22] and in the Appendix therein one can find the full expressions for the perturbed Einstein tensor.

First order

The equations of motion are hidden in the trace of the spatial part of Einstein equations.

We start with five scalar variables: the metric perturbations ϕ, ω, ψ, χ and the scalar field δφ. Two
scalars are eliminated with the gauge choice, in our case ω and χ. At first order there is a further
simplification because we are dealing with a single scalar field and there is no anisotropic stress, this
is given by the traceless spatial part of the Einstein equations: this results in the two gravitational
potential being equal ϕ(1) = ψ(1). So we are left with two variables only.

From a physical point of view, actually, the variable must be one, because the gravitational potential
feeds on the scalar field perturbation. They are related through Einstein equations. Hence we must
be able to use the energy constraint or the momentum constraint to express one as a function of the
other.
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The perturbed Einstein equations are [22]:

energy constraint δ(1)G0
0 = 8πGδ(1)T 0

0 (4.13)

6

(︃
a′

a

)︃2

ϕ(1) + 6
a′

a
ψ(1)′ − 2∂i∂

iψ(1) = 8πG

(︃
ϕ(1)φ′2

0 − δ(1)φ′φ′
0 − δ(1)φ

∂V

∂φ
a2
)︃

momentum constraint δ(1)G0
i = 8πGδ(1)T 0

i (4.14)

− 2
a′

a
∂iϕ

(1) − 2∂iψ
(1) = −8πGφ′

0∂iδ
(1)φ

spatial part δ(1)Gi
j = 8πGδ(1)T i

j (4.15)(︄
2
a′

a
ϕ(1)′ + 4

a′′

a
ψ(1) − 2

(︃
a′

a

)︃2

ϕ(1) + ∂k∂
kϕ(1) + 4

a′

a
ψ(1)′ + 2ψ(1)′′ − ∂k∂kψ(1)

)︄
δij

− ∂i∂jϕ(1) + ∂i∂jψ
(1) = 8πG

(︃
−ϕ(1)φ′2

0 + δ(1)φ′φ′
0 − δ(1)φ

∂V

∂φ
a2
)︃
δij

From the traceless part of the i− j equation:

ϕ(1) = ψ(1) (4.16)

The trace gives:

2
a′

a
ϕ(1)′ + 4

a′′

a
ϕ(1) − 2

(︃
a′

a

)︃2

ϕ(1) + 4
a′

a
ϕ(1)′ + 2ϕ(1)′′ =

= 8πG

(︃
−ϕ(1)φ′2

0 + δ(1)φ′φ′
0 − δ(1)φ

∂V

∂φ
a2
)︃

We need now the background results:

a′′

a
= H2 +H′ 4πGφ′2

0 = H2 −H′ (4.17)

By substituting the last term −8πGδ(1)φ∂V
∂φ a

2 from 0− 0 and using 0− i to eliminate δ(1)φ:

∂i

(︃
a′

a
ϕ(1) + ϕ(1)′

)︃
= ∂i

(︂
4πGφ′

0δ
(1)φ

)︂
δ(1)φ =

1

4πGφ′
0

(︂
Hϕ(1) + ϕ(1)′

)︂
(4.18)

For the gravitational potential we find:

ϕ(1)′′ + 2

(︃
H− φ′′

0

φ′
0

)︃
ϕ(1)′ + 2

(︃
H′ −Hφ

′′
0

φ′
0

)︃
ϕ(1) − ∂i∂iϕ(1) = 0 (4.19)

Alternatively we could have eliminated ϕ(1) with the momentum constraint and obtained an equation
for δ(1)φ.
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Chapter 4. The primordial curvature perturbation 4.2. Cosmological perturbations

Second order

When we go to second order, the most remarkable effect is mode-mixing: we find quantities that are
intrinsically second order and quantities that are products of first order fluctuations. As we have
already mentioned, first order perturbations act as a source for second order ones.

The unknowns are: ϕ(2), ψ(2), χ
(2)
i , χ

(2)
ij , δ(2)φ. In the following we will already set ψ(1) = ϕ(1).

Taking the divergence of the 0 − i equation we get rid of the vector mode and we get an expression
for δ(2)φ:

1

2
δ(2)φ =

ψ(2)′ +Hϕ(2) +∆−1α

8πGφ′
0

− ∆−1β

φ′
0

(4.20)

α ≡ 2ϕ(1)′∂i∂
iϕ(1) + 10∂iϕ

(1)′∂iϕ(1) + 8ϕ(1)∂i∂
iϕ(1)′ (4.21)

β ≡
(︂
∂i∂

iδ(1)φ
)︂
δ(1)φ′ + ∂iδ(1)φ∂iδ

(1)φ′

+ 2ϕ(1)∂i∂
iδ(1)φφ′

0 + 2∂iϕ
(1)∂iδ(1)φφ′

0 (4.22)

Similarly we take the trace of the i− j equation:

∂i∂
iϕ(2) + 3Hϕ(2)′ + 3

a′′

a
ϕ(2) + 3H2ϕ(2) − ∂i∂iψ(2) + 6Hψ(2)′ + 3ψ(2)′′+

− 24
a′′

a

(︂
ϕ(1)

)︂2
+ 12H2

(︂
ϕ(1)

)︂2
− 24Hϕ(1)ϕ(1)′+

− 7∂iϕ
(1)∂iϕ(1) − 8ϕ(1)∂i∂

iϕ(1) − 3
(︂
ϕ(1)′

)︂2
=

= 3(8πG)

[︃
1

2
δ(2)φ′φ′

0 −
1

2
δ(2)φ

∂V

∂φ
a2 +

1

2

(︂
δ(1)φ′

)︂2
− 1

2

(︂
δ(1)φ

)︂2 ∂2V
∂φ2

a2+

−2ϕ(1)δ(1)φ′φ′
0 + 2

(︂
ϕ(1)

)︂2
φ′2
0 −

1

6
∂iδ

(1)φ∂iδ(1)φ

]︃

Then we substitute δ(2)φ and δ(2)φ′ and we use the background eom where needed:

φ′′
0 + 2Hφ′

0 + a2
∂V

∂φ
= 0

Finally:

ϕ(2) − ψ(2) = ∆−1γ (4.23)

1

3
γ ≡ ∆−1

(︁
α′ − 8πGβ′

)︁
+ 2H∆−1 (α− 8πGβ) + 8

a′′

a

(︂
ϕ(1)

)︂2
+ 8Hϕ(1)ϕ(1)′+

− 4H2
(︂
ϕ(1)

)︂2
+
(︂
ϕ(1)′

)︂2
+

7

3
∂iϕ

(1)∂iϕ(1) +
8

3
ϕ(1)∂i∂

iϕ(1)+

+ 8πG

[︃
1

2

(︂
δ(1)φ′

)︂2
− 1

2

(︂
δ(1)φ

)︂2 ∂2V
∂φ2

a2 − 2ϕ(1)δ(1)φ′φ′
0+

+2
(︂
ϕ(1)

)︂2
φ′2
0 −

1

6
∂iδ

(1)φ∂iδ(1)φ

]︃
(4.24)

This leaves one unknown only: ϕ(2).
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4.3. The gauge-invariant curvature perturbation Chapter 4. The primordial curvature perturbation

Substituting everything in the 0− 0 equation we find:

ϕ(2)′′ + 2

(︃
H− φ′′

0

φ′
0

)︃
ϕ(2)′ + 2

(︃
H′ −Hφ

′′
0

φ′
0

)︃
ϕ(2) − ∂i∂iϕ(2) =

= 12H2
(︂
ϕ(1)

)︂2
+ 3

(︂
ϕ(1)′

)︂2
+ 8ϕ(1)∂i∂

iϕ(1) + 3∂iϕ
(1)∂iϕ(1) − γ +∆−1γ′′+

+

(︃
H− 2

φ′′
0

φ′
0

)︃
∆−1γ′ −∆−1

(︁
α′ − 8πGβ′

)︁
+ 2

(︃
H+

φ′′
0

φ′
0

)︃
∆−1 (α− 8πGβ)+

+ 8πG

[︃
−1

2

(︂
δ(1)φ′

)︂2
− 1

2

(︂
δ(1)φ

)︂2 ∂2V
∂φ2

a2 + 2ϕ(1)δ(1)φ′φ′
0 + 2

(︂
ϕ(1)

)︂2
φ′2
0 +

−1

2
∂iδ

(1)φ∂iδ(1)φ

]︃
(4.25)

which is master equation (47) in Acquaviva et al. [22].

4.3 The gauge-invariant curvature perturbation

Following [12], we introduce the gauge-invariant curvature perturbation on spatial slices of uniform
density, at linear order. We will need to generalize it to second order, in order to deal with non-
Gaussianity.

The intrinsic spatial curvature on hypersurfaces of constant τ in a flat Universe (k = 0) is:

(3)R =
4

a2
∆2ψ̂

(1)
(4.26)

where

ψ̂
(1)

= ψ(1) +
1

6
∆2χ(1) (4.27)

is the curvature perturbation.

Let’s make a gauge transformation:
xµ ↦−→ x̃µ = xµ + ξµ (4.28)

with ξµ = (ξ0, ∂iξ). The scalar functions ξ0 and ξ are arbitrary and they determine the choice of
constant-τ hypersurfaces (time-slicing) and the spatial coordinates on these hypersurfaces respectively.

We can verify that ψ̂
(1)

is not gauge-invariant, in fact if we change the slicing:

τ ↦−→ τ + α(1) ψ(1) ↦−→ ˜︁ψ(1) = ψ(1) −Hα(1) (4.29)

Any scalar quantity φ which is homogeneous in the background can be written as φ(τ, xi) = φ0(τ) +
δφ(τ, xi) and the perturbation transforms as:

˜︂δφ = δφ− ξ0φ′
0 (4.30)

Notice that scalars are independent of the function ξ, that is, they do not depend on the choice
of coordinates on the three-dimensional spatial hypersurfaces. The function ξ can only affect the
components of 3-vectors or 3-tensors on the hypersurfaces.

Bardeen in his seminal work [21] showed that any unambiguous choice of time-slicing can be used to
define explicitly gauge-invariant perturbations.
If we use the value of any physical scalar to unambiguously specify the gauge function ξ0, and hence the
time-slicing of the perturbed spacetime, then we can write the resulting scalar metric perturbations or
any matter perturbation on this hypersurface in a manifestly gauge-invariant way by explicitly including
the transformation from an arbitrary coordinate system. If in addition we make an unambiguous choice
of the spatial coordinates on these hypersurfaces, through the gauge function ξ, then all the 3-tensor
components also become gauge-invariant.
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Chapter 4. The primordial curvature perturbation 4.3. The gauge-invariant curvature perturbation

For example, one can use the matter content to pick out uniform density hypersurfaces, and this gives
an unambiguous time-slicing on which to define perturbed quantities [12]. The perturbation in the

density transforms as in (4.30), so ˜︁δ(1)ρ = δ(1)ρ+ ρ′0α
(1). We want ˜︁δ(1)ρ = 0 so it must be:

α(1) = −δ
(1)ρ

ρ′0
(4.31)

The curvature perturbation on uniform density hypersurfaces is:

˜︃ˆ︁ψ(1)

⃓⃓⃓⃓
ρ

= ˆ︁ψ(1) −Hα(1)

= ˆ︁ψ(1) +Hδ
(1)ρ

ρ′0
(4.32)

Now this quantity is indeed gauge-invariant (the two new terms that would come from the gauge
transformation would cancel out exactly) and it is indicated with:

−ζ(1) ≡ ˜︃ˆ︁ψ(1)

⃓⃓⃓⃓
ρ

= ˆ︁ψ(1) +Hδ
(1)ρ

ρ′0
(4.33)

This combination can also be interpreted as the density perturbation on uniform curvature slices
or spatially-flat gauge, such that ψ(1) = χ(1) = 0. This procedure is an example of how to find a
gauge-invariant quantity by selecting a proper time-slicing in an unambiguous way.

Let’s see a more intuitive link between inflaton, density and curvature perturbations.
The inflaton dominates the energy budget of the Universe during inflation, and its energy density is
mainly potential energy ρ ∼ V . So the energy density fluctuations are:

δρ ≃ V ′(φ)δφ (4.34)

which using the equation of motion in the slow-roll regime 3Hφ̇+ V ′ ≃ 0 becomes:

δρ ≃ −3Hφ̇δφ (4.35)

Fluctuations in the inflaton produce fluctuations in the Universe expansion from place to place. Each
region in the Universe goes through the same expansion history, but at different times.

δt =
δt

δφ
δφ = −δφ

φ̇
(4.36)

to be connected to the number of e-foldings:

N =

∫︂ tf

ti

Hdt = ln
af
ai

δN = Hδt (4.37)

We can define δN to be the “additional expansion”:

ζ ≡ δN = Hδt = −Hδφ

φ̇
= −H 1

φ̇

(︃
− δρ

3Hφ̇

)︃
= −H δρ

V ′φ̇
= −Hδρ

ρ̇
(4.38)

hence

ζ = δN ≃ −Hδρ

ρ̇
(4.39)

Of course δρ/ρ is not a gauge invariant quantity. The correct definition is the one given above.
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4.3. The gauge-invariant curvature perturbation Chapter 4. The primordial curvature perturbation

The time evolution of the curvature perturbation can be derived from the continuity equation for the
energy density [12, 23]: one starts from the Bianchi identities for the energy momentum tensor part
∇µT

µ
ν = 0 and projects it onto a time-like vector field uν∇µT

µ
ν = 0. The result is (neglecting spatial

gradients):

ζ(1)′ = − H
ρ+ P

δ(1)Pnon-adiabatic (4.40)

So the curvature perturbation evolves being sourced by the non-adiabatic pressure. In particular, for
purely adiabatic perturbations it is conserved on large scales: hence ζ(1) is the proper quantity to
use in order to characterize the amplitude of adiabatic perturbations. This is the case for single field
slow-roll inflation.

Observationally, ζ is the physical quantity that we can measure by looking at the temperature
anisotropies in the CMB:

ζ ≈ −5∆T
T

(4.41)

The statistical properties of this variables encode informations on inflation.

Another gauge-invariant quantity is given by:

R(1) = ψ(1) +Hδ
(1)φ

φ′
0

(4.42)

On superhorizon scales, both R(1) and ζ(1) are nearly constant and

R(1) ≈ −ζ(1) on superhorizon scales (4.43)

In order to deal with non-Gaussianity, this discussion must be generalized to second order.
The second order extension of (4.33) is [24]:

−ζ(2) ≡˜︃ˆ︁ψ(2)

⃓⃓⃓⃓
ρ

= ˆ︁ψ(2) +Hδ
(2)ρ

ρ′0
− 2Hδ

(1)ρ′

ρ′0

δ(1)ρ

ρ′0
− 2

δ(1)ρ

ρ′0

(︂ ˆ︁ψ(1)′ + 2H ˆ︁ψ(1)
)︂

+

(︄
δ(1)ρ

ρ′0

)︄2(︃
Hρ

′′
0

ρ′0
−H′ − 2H2

)︃
(4.44)

with ˆ︁ψ(2) ≡ ψ(2) + 1
6∇

2χ(2).
Going beyond linear order, [22] showed that the second order generalization of (4.42) is:

R(2) = Hδ
(2)φ

φ′
0

+ ψ(2) +

(︂
ψ(1)′ + 2Hψ(1) +H δ(1)φ′

φ′
0

)︂2
H′ + 2H2 −Hφ′′

0
φ′
0

− 1

3
∂iω

(1)∂iω(1) (4.45)

We will be interested in the three-point function of primordial curvature perturbations ⟨ζζζ⟩. There
are many approaches to compute it. In the following chapters we will sketch two of them: one relies
on standard field theory techniques and follows the steps of Acquaviva et al. [22], the other one is the
in-in formalism which is the most common approach nowadays for n-point functions in Cosmology.
Before doing this, the next chapter will be devoted to introducing more in detail the power-spectrum
and the bispectrum.
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Chapter 5

Power-spectrum and beyond:
non-Gaussianity

In this chapter we set the conventions for the correlation functions, introduce the power-spectrum and
the bispectrum. We briefly review the main predictions for the observables.

5.1 Power-spectrum

Consider a random field f(t, x⃗) which can be expanded in Fourier space:

f(t, x⃗) =

∫︂
d3k⃗

(2π)3/2
eik⃗·x⃗f

k⃗
(t) (5.1)

The power-spectrum is the Fourier transform of the two-point function:

⟨f
k⃗1
f∗
k⃗2
⟩ = Pf (k)δ

(3)(k⃗1 − k⃗2) (5.2)

The Dirac delta enforces momentum conservation, the function Pf only depends on the modulus due
to anisotropy. The power-spectrum measures the amplitude of the fluctuations at a given scale k.
We can define the dimensionless power-spectrum Pf (k) as:

Pf (k) ≡
2π2

k3
Pf (k) (5.3)

The mean square value of f(t, x⃗) in real space is:

⟨f2(t, x⃗)⟩ =
∫︂
dk

k
Pf (k) (5.4)

We can see that the meaning of Pf (k) is that of contribution to the variance per unit logarithmic
interval in the wavenumber k.

To describe the slope of the power-spectrum we introduce the spectral index nf (k):

nf (k)− 1 ≡
dlogPf (k)
dlogk

(5.5)

The quantity nf (k) − 1 parametrizes the deviation from scale invariance: nf = 1 corresponds to
an exact scale-invariant or Harrison-Zel’dovich power-spectrum; nf > 1 corresponds to a blue tilt,
which means perturbations have more power on smaller scales; nf < 1 corresponds to a red tilt, thus
perturbations have less power on smaller scales.
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5.2. Non-Gaussianity Chapter 5. Power-spectrum and beyond: non- . . .

5.1.1 Power-spectrum for the inflaton fluctuations

The power-spectrum for inflation fluctuations is given by:

⟨δφ
k⃗1
, δφ∗

k⃗2
⟩ = 1

a2
⟨δφ̃

k⃗1
, δφ̃∗

k⃗2
⟩ ≡ 2π2

k3
Pδφ(k)δ(3)(k⃗1 − k⃗2) (5.6)

The left-hand side, the average on the vacuum, gives:

1

a2
uk1u

∗
k2δ

(3)(k⃗1 − k⃗2) =
|uk|2

a2
δ(3)(k⃗1 − k⃗2) (5.7)

so:

Pδφ(k) =
k3

2π2
|uk|2

a2
=

k3

2π2
|δφk|2 (5.8)

In the case of a massless field, ν = 3
2 exactly. The fluctuation δφk has the constant amplitude (3.22)

on superhorizon scales, therefore the two-point function in this limit approaches
H2

2k3
and we find the

well-known result:

Pδφ(k) =
(︃
H

2π

)︃2

(5.9)

The scalar spectral index is nδφ = 1: we are in the case of a perfect scale invariance, or Harrison-
Zel’dovich power-spectrum.

For a light scalar field, instead, the amplitude of the fluctuations is given by (3.30) and:

Pδφ(k) =
H2

(2π)2

(︃
k

aH

)︃3−2ν

(5.10)

The spectral index is:

nδφ − 1 = 3− 2ν (5.11)

so it follows that nδφ ∼ 1. There is a deviation from perfect scale invariance.

See [12] for a more detailed discussion.

5.2 Non-Gaussianity

The non-Gaussianity we observe today in the sky is mainly due to the highly non-linear gravitational
evolution and structure formation later in the history of the Universe. It may be that, below and
before that, there was some primordial contribution to non-Gaussianity, which is the aspect we are
focusing on now.

Primordial non-Gaussianity can be caused by intrinsic non-linearities in the scalar field already during
inflation.
We considered the evolution on a single scalar field on the background spacetime. The simplest case
is that of a Gaussian field, whose expression in momentum space is ∼ uâ+ u∗â†. In that case, all the
information is contained in the power-spectrum: n-point correlation functions are vanishing for odd
n and are products of the two-point correlation functions for even n. The power-spectrum completely
characterizes the field from a statistical point of view.

But if there is an interaction term in the Lagrangian, then the field can no longer be written as sum
of harmonic oscillators.
The three-point function or its Fourier transform, the bispectrum, is the lowest-order statistics able
to distinguish non-Gaussian from Gaussian perturbations [12].

There can be many sources of non-Gaussianity. Simplest inflation models generate a negligible amount
of non-Gaussianities, where “simplest” means [9]:
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• single scalar field

• with canonical kinetic term

• always slow-rolls

• in Bunch-Davies vacuum

• in Einstein gravity

Any violation of the above condition could generate some non-Gaussianity.

5.3 The bispectrum

The bispectrum is the Fourier transform of the three-point function. With our Fourier convention
(5.1):

⟨ζ
k⃗1
ζ
k⃗2
ζ
k⃗3
⟩ = 1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)Bζ(k1, k2, k3) (5.12)

The Dirac delta enforces momentum conservation, so that the three wavevectors k⃗i form a triangle.
Due to isotropy, Bζ only depends on the moduli of the momenta.
We can split the bispectrum into an amplitude and a shape:

Bζ(k1, k2, k3) = fNLF (k1, k2, k3) (5.13)

Now we will analyze these two components more in detail.

The naive expectation is that the bispectrum should be proportional to 1/ϵ2. The reason is that
the power-spectrum for single-field slow-roll inflation is proportional to 1/ϵ and, schematically, the
bispectrum is proportional to the product of two power-spectra. Falk et al. [25] computed fNL ∝ ϵ2,
due to non-linearity in the inflaton potential in a fixed de Sitter space. However, it was shown later [26]
that fNL ∼ ϵ, η because of second order gravitational corrections during inflation: so it is gravity that
gives the most important contribution, such that non-Gaussianity is not second order in the slow-
roll parameters but first order. This estimate was later confirmed with a full second order approach
in [22,27].

5.3.1 fNL

The non-Gaussianity parameter fNL is a measure of the amplitude of the bispectrum with respect to
the power-spectrum squared.
There are many conventions in the literature to define it, we follow [28] and parametrize:

Bζ(k1, k2, k3) = −
6

5
fNL [Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)] (5.14)

The numerical factor comes from the relation between the curvature perturbation ζ on superhorison
scales and the Bardeen potential Φ [21], that is Φ = 3

5ζ [29].

For single-field slow-roll inflation, see [27,28]:

BM
ζ (k1, k2, k3) =

H4
DS

32k31k
3
2k

3
3M

4
P ϵ

2
·[︄

− 2(ηV − ϵ)(k31 + k32 + k33) + 2ϵ

(︃
k31 + k32 + k33

2
+

1

2

(︁
k1k

2
2 + k21k2 + k1k

2
3 + k21k3 + k2k

2
3 + k22k3

)︁
+

+
4

k1 + k2 + k3

(︁
k21k

2
2 + k21k

2
3 + k22k

2
3

)︁)︃]︄
(5.15)
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According to (5.14), the non-Gaussianity parameter is:

fNL =
5

12
(2ηV − 6ϵ− 2ϵf(k1, k2, k3)) (5.16)

where f(k1, k2, k3) is a function of the three momenta such that 0 ≤ f(k1, k2, k3) ≤ 5/6, in particular
it goes to zero when one side of the triangle is much smaller than the other two and it goes to 5/6 in
the equilateral case.

f(k1, k2, k3) =
1

2(k1 + k2 + k3)
(︁
k31 + k32 + k33

)︁ ·[︄
− 3(k41 + k42 + k43)− 2(k31k2 + k1k

3
2 + k31k3 + k1k

3
3 + k32k3 + k2k

3
3)+

+ 10(k21k
2
2 + k21k

2
3 + k22k

2
3) + 2k1k2k3(k1 + k2 + k3)

]︄
(5.17)

Specializing these results to the case of power-law inflation, where ηV = 2ϵ:

BM
ζ (k1, k2, k3) =−

V 2
0

288M8
P ϵk

3
1k

3
2k

3
3(k1 + k2 + k3)

·(︁
k41 + k42 + k43 − 10(k21k

2
2 + k21k

2
3 + k22k

2
3)− 2k1k2k3(k1 + k2 + k3)

)︁
(5.18)

and:

fNL = −5

6
ϵ (1 + f(k1, k2, k3)) (5.19)

Some care is needed. Detecting non-zero fNL proves that the initial seeds were non-Gaussian, but not
detecting it does not prove Gaussianity. Indeed, primordial non-Gaussianity may evade observational
bounds that are optimized to search for fNL.

5.3.2 Shapes

The shape function contains information on how much power is associated to a given triangle shape,
keeping the overall scale k1 + k2 + k3 fixed. Figure 5.1 illustrates the possible configurations. Since
the three wavevectors are bound to form a triangle, the function F (k1, k2, k3) only has two degrees of
freedom.

Figure 5.1: Parameter space for the three momenta, rescaled so that x2 ≡ k2/k1 and x3 ≡ k3/k1. They are
ordered x3 < x2 < 1 and satisfy the triangle inequality x2 + x3 > 1. Figure from [5].

Shapes are a powerful tool because different inflationary models predict bispectra that peak at different
shapes. As someone once said, “there are more shapes of non-Gaussianity from inflation than... stars
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in the sky”1. Below we only list two of them, the equilateral shape and the squeezed shape, because
they will be relevant for our discussion. For more details, we refer to [30].

• Equilateral shape
We choose k1 = k2 = k3 ≡ k.

Fequil(k1, k2, k3) =
18

5
A2

[︄
− 1

k4−ns
1 k4−ns

2

− 1

k4−ns
1 k4−ns

3

− 1

k4−ns
2 k4−ns

3

− 2

(k1k2k3)2(4−ns)/3
+

(︃
1

(k1k22k
3
3)

(4−ns)/3
+ 5 permutations

)︃]︃
(5.20)

This type of non-Gaussianity is associated to non-canonical kinetic terms for the inflaton.

• Local or squeezed shape
In this case, one of the sides of the triangle is much smaller than the other two k3 ≪ k1, k2.

Flocal(k1, k2, k3) =
6

5
A2

(︄
1

k4−ns
1 k4−ns

2

+
1

k4−ns
1 k4−ns

3

+
1

k4−ns
2 k4−ns

3

)︄
(5.21)

where the constant is the normalization of the power-spectrum Pζ(k) = Akns−4.

Multi-field models usually predict a large amount of non-Gaussianity of this type. Also for single-
field slow-roll inflation some non-Gaussianity of the local type is expected, but its amplitude is
suppressed by the slow-roll parameters fNL = O(ϵ, η).

In Fourier space, when taking the squeezed limit we are looking at correlations between long and
short wavelength modes. This configuration will be very important in the following since, for
single-field models, there is a consistency relation linking the bispectrum in the squeezed limit
with the scalar spectral index of the power-spectrum. We will come back on this point later on
and examine it in the case of power-law inflation.

Figure 5.2: Plots of the local and equilateral bispectra. Again, the coordinates x2 and x3 are the rescaled
momenta. Figure from [5].

5.4 Experimental constraints

Experimental constraints on the power-spectrum have been obtained by the Planck mission [31]. If
we parametrize the primordial power-spectrum in terms of an amplitude As and a tilt ns − 1, then:

Pζ(k) = As

(︃
k

k∗

)︃ns−1

(5.22)

1Sabino Matarrese, paraphrasing Saint Augustine.

27



5.4. Experimental constraints Chapter 5. Power-spectrum and beyond: non- . . .

As =
(︁
2.101+0.031

−0.034

)︁
× 10−9 ns = 0.9649± 0.0042 at 68%, k∗ = 0.05 Mpc−1 (5.23)

Experimental constraints on non-Gaussianity are usually given in terms of the amplitude parameter
fNL.
There is a critical sensitivity fNL ∼ 1, which is set by non-Gaussian contributions from ubiquitous
second-order perturbations [12]. Ideally, we would like to reach this threshold. In fact, the slow-roll
parameters are of order O(0.01), so fNL ∼ O(0.01) for these models; but even if we start with Gaussian
primordial perturbations, nonlinear effects in CMB evolution will generate fNL ∼ O(1), and a similar
number for large-scale structures due to the nonlinear gravitational evolution or the galaxy bias [9].
We should be able to disentangle all these contributions.
Unfortunately, the data at hand do not provide definitive conclusions.

The best results so far have been obtained by looking at the CMB: in this area, the Planck experiment
is currently the state of the art and it has been able to set the most stringent constraints to date [30].
The bounds depend on the specific template one is looking for in the data:

f localNL = −0.9± 5.1

f equilNL = −26± 47

forthoNL = −38± 24 (5.24)

at 68% confidence level.

The Planck constraints are close to what is ultimately possible from using CMB temperature data

alone. When measuring the angular CMB power-spectrum, there is always a fractional error of
√︂

2
2ℓ+1

in the measurement of each Cℓ. The crucial limit is set at low ℓ by cosmic variance, due to the fact that
we only have one realization of the CMB at our disposal, and this greatly dominates the error bars at
the lowest multipoles [32,33]. In particular, the signal for fNL = 1, which is the watershed that would
rule out single-field models of inflation, is smaller than cosmic variance. Therefore, distinguishing
|fNL| ≪ 1 from |fNL| ∼ 1 is a key target to observationally distinguish single-field, slow-roll inflation
from other scenarios.

The next challenge is looking at the large-scale structure: improvements in this direction are expected
in the next decades.
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Chapter 6

Power-law inflation

We now specialize the results of the previous chapters to power-law inflation [4, 13]. We go through
the perturbed Einstein equations for this model, we introduce the Mukhanov-Sasaki variable which
greatly simplifies the problem, we compute the power-spectrum.

6.1 Background dynamics

Power-law inflation is defined by a(t) ∝ tp. In conformal time, the scale factor becomes a(τ) =

A(−τ)
p

1−p where A is some normalization constant.
The solution for the background field is (2.32):

φ0(τ) =MP

√
2p

p− 1
log(−τ) + C (6.1)

where C is the integration constant.

Following [13], the definition of the scale factor should be, more rigorously:

a(t) = a∗

[︃
1 +

H∗(t− t∗)
p

]︃p
(6.2)

since this returns exactly de Sitter in the p −→∞ limit.
In conformal time:

τ =

∫︂
dt

a(t)

τ − τ∗ = −
p

a∗H∗(p− 1)

(︃
1 +

H∗(t− t∗)
p

)︃1−p

a(τ) = a∗

[︃
a∗H∗(1− p)(τ − τ∗)

p

]︃ p
1−p

(6.3)

What is a∗? Another way to fix the normalization, that is more convenient for our purposes, is via

the background equation of motion for the field (2.18), with a(τ) = A(−τ)
p

1−p :

φ′′
0 + 2Hφ′

0 + a2
∂V

∂φ
= 0

(6.4)

This way we find:

A = e
− C

MP

1√
2p
MP√
V0

√︁
p(3p− 1)

p− 1
(6.5)
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Finally, recall the relations:

ν =
3p− 1

2(p− 1)
p =

1

3γ2
=

1

ϵ
(6.6)

with ϵ the slow-roll parameter.

6.2 Perturbed Einstein equations in power-law inflation

6.2.1 First order

The equation is (4.19):

ϕ(1)′′ + 2

(︃
H− φ′′

0

φ′
0

)︃
ϕ(1)′ + 2

(︃
H′ −Hφ

′′
0

φ′
0

)︃
ϕ(1) − ∂i∂iϕ(1) = 0

ϕ(1)′′ +
2

τ

(︃
p

1− p
+ 1

)︃
ϕ(1)′ +

2

τ2

(︃
− p

1− p
+

p

1− p

)︃
ϕ(1) − ∂i∂iϕ(1) = 0

ϕ(1)′′ +
2

(1− p)τ
ϕ(1)′ + k2ϕ(1) = 0 (6.7)

where in the last step we also went to Fourier space.

The solutions are Bessel functions of first and second kind:

ϕ(1)(τ) = 2α ((1− p)τ)α [cJ(k)Jα(−kτ) + cY (k)Yα(−kτ)] (6.8)

having introduced:

α ≡ 1 + p

2(p− 1)
α = ν − 1 (6.9)

Now we plug this solution in (4.18) to get δ(1)φ:

ϕ(1)′ = 2αk ((1− p)τ)α [cJ(k)Jα−1(−kτ) + cY (k)Yα−1(−kτ)]
Hϕ(1) = 2αp ((1− p)τ)α−1 [cJ(k)Jα(−kτ) + cY (k)Yα(−kτ)]

δ(1)φ =
1

4πGφ′
0

(︂
Hϕ(1) + ϕ(1)′

)︂
=

1

8πG
2αΓ ((1− p)τ)α

[︂
cJ(k) ((p− 1)(−kτ)Jα−1(−kτ)− pJα(−kτ))+

cY (k) ((p− 1)(−kτ)Yα−1(−kτ)− pYα(−kτ))
]︂

=

√︃
2

p
MP 2

α(p− 1)α(−τ)α
[︂
cJ(k) ((p− 1)(−kτ)Jα−1(−kτ)− pJα(−kτ))+

cY (k) ((p− 1)(−kτ)Yα−1(−kτ)− pYα(−kτ))
]︂

(6.10)

6.2.2 Second order

The equation is (4.25):

ϕ(2)′′ + 2

(︃
H− φ′′

0

φ′
0

)︃
ϕ(2)′ + 2

(︃
H′ −Hφ

′′
0

φ′
0

)︃
ϕ(2) − ∂i∂iϕ(2) = S

It looks like the first order equation (4.19) except that on the right hand side we have a source term
S = S(x⃗, τ) that has the form A(x⃗, τ)B(x⃗, τ) with A, B first order quantities. When we go to Fourier
space, the product becomes a convolution1:

ϕ
(2)′′
k⃗

+ 2

(︃
H− φ′′

0

φ′
0

)︃
ϕ
(2)′
k⃗

+ 2

(︃
H′ −Hφ

′′
0

φ′
0

)︃
ϕ
(2)

k⃗
+ k2ϕ

(2)

k⃗
=

∫︂
d3k⃗

′

(2π)3/2
A

k⃗
′B

k⃗−k⃗
′ (6.11)

1In our convention (5.1):

ϕ(2)(x⃗, τ) =

∫︂
d3k⃗

(2π)3/2
ϕ
(2)

k⃗
(τ)eik⃗·x⃗
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The solutions will be given by the solutions of the homogeneous equation, which is analogous to the
first order one, and a particular solution. The main difficulty in this calculation will be dealing with
the convolution kernel in the particular solution and computing that time integral.
If we work in the slow-roll approximation as in [22] a lot of terms in (4.25) can be dropped, and we
are able to recast it as a first order equation. This way we never have to deal with the kernel.
The homogeneous solution is (6.8):

ϕ
(2)
hom(τ) = 2α ((1− p)τ)α [bJ(k)Jα(−kτ) + bY (k)Yα(−kτ)] (6.12)

To find the particular solution, we should integrate2:

ϕ
(2)
part(τ) =

∫︂ τ

τi

dη

(︄
−ϕ

(2)
1 (τ)ϕ

(2)
2 (η)

detW (η)
S
k⃗
(η) +

ϕ
(2)
1 (η)ϕ

(2)
2 (τ)

detW (η)
S
k⃗
(η)

)︄
(6.13)

where:

ϕ
(2)
1 (τ) = c1(k)2

α ((1− p)τ)α Jα(−kτ)

ϕ
(2)
2 (τ) = c2(k)2

α ((1− p)τ)α Yα(−kτ)

detW = ϕ
(2)
1 ϕ

(2)′
2 − ϕ(2)′1 ϕ

(2)
2 =

21+2αc1(k)c2(k)

π

(p− 1)2α(−τ)2α

(−τ)
(6.14)

We obtain:

ϕ
(2)
part(τ) =

∫︂ τ

τi

dη
π

2

(︃
τ

η

)︃α

(−η)
[︁
Jα(−kτ)Yα(−kη)− Jα(−kη)Yα(−kτ)

]︁
S
k⃗
(η) (6.15)

Or in terms of Hankel functions:

ϕ
(2)
part(τ) =

π

4i
(−τ)α

∫︂ τ

τi

dη(−η)1−α
[︂
H(1)

α (−kη)H(2)
α (−kτ)−H(1)

α (−kτ)H(2)
α (−kη)

]︂
S
k⃗
(η) (6.16)

Notice that the Green’s functions inside the time integral for ϕ(2) are classical, so we can use Bessel
and Neumann or we can use Hankel of first and second kind, at will. Instead, when quantizing
R(1) and writing the mode functions θk, those must be Hankel of first and second kind, because
that is the framework in which we can locally recover the harmonic oscillator with the Bunch-Davies
prescription for the vacuum. For this reason, the modefunction associated to the annihilation operator
â
k⃗
must be H(1)(−kτ) so that it will have the correct e−ikτ behaviour (positive frequency), while the

modefunction associated to the creation operator â†
k⃗
must be H(2)(−kτ) and locally will go like eikτ

(negative frequency). In other words, θk ∝ H(1) and θ∗k ∝ H(2) [34, 35].
It is be more convenient to work with Hankel functions, especially when approximating to super-
horizon scales. ∫︂

d3k⃗

(2π)3/2
eik⃗·x⃗

(︃
ϕ
(2)′′
k⃗

+ 2

(︃
H− φ′′

0

φ′
0

)︃
ϕ
(2)′
k⃗

+ 2

(︃
H′ −Hφ′′

0

φ′
0

)︃
ϕ
(2)

k⃗
+ k2ϕ

(2)

k⃗

)︃
=

∫︂
d3k⃗

(2π)3/2
d3k⃗

′

(2π)3/2
ei(k⃗+k⃗

′
)·x⃗Ak⃗Bk⃗

′

Multiplying by e−ip⃗·x⃗ and integrating in d3x⃗:∫︂
d3x⃗ d3k⃗

(︁
. . .

)︁
ei(k⃗−p⃗)·x⃗ =

∫︂
d3x⃗

d3k⃗ d3k⃗
′

(2π)3/2
(︁
. . .

)︁
ei(k⃗+k⃗

′−p⃗)·x⃗

Recall that
∫︁
d3x⃗ ei(k⃗−p⃗)·x⃗ = (2π)3δ(3)(k⃗ − p⃗):∫︂

d3k⃗ δ(3)(k⃗ − p⃗)
(︁
. . .

)︁
=

∫︂
d3k⃗ d3k⃗

′

(2π)3/2
δ(3)(k⃗ + k⃗

′
− p⃗)Ak⃗Bk⃗

′ =

∫︂
d3k⃗

(2π)3/2
Ak⃗Bp⃗−k⃗

2Notice that here η inside the integral is conformal time, not to be confused with the second slow-roll parameter.
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6.3 Mukhanov-Sasaki variable

The quickest way to deal with equations (4.16), (4.18), (4.19) is to introduce a mixed variable. We
introduce the Mukhanov-Sasaki variable [36]:

v = a

(︃
δφ+

φ′
0

H
ϕ

)︃
(6.17)

This variable mixes together perturbations in the field and perturbations in the metric. At first it
may seem that we are complicating matters but, as we have already mentioned, a mixed variable is
actually the most natural way to formulate the problem because these objects are deeply intertwined
from a physical point of view. As a matter of fact, the equations we obtain for v are much more
elegant than the ones for the single variables alone.

The e.o.m. for v can be obtained from the second-order action (as will be sketched in the in-in
formalism framework, see (8.8)):

v′′k +

(︃
k2 − z′′

z

)︃
vk = 0 (6.18)

with:

z =
aφ′

0

H
(6.19)

The Mukhanov-Sasaki variable is linked to the curvature perturbation (4.42) through3:

v(x⃗, τ) = z(τ)R(x⃗, τ) with z =
aφ′

0

H
(6.20)

We only need to compute the background dependent term z′′/z. Using (2.32) and the background
evolution:

z′′

z
=

p(2p− 1)

(p− 1)2τ2
(6.21)

The solutions of (8.9) are:

vk(τ) =
√
−τ [cJ(k)Jν(−kτ) + cY (k)Yν(−kτ)] ν =

3p− 1

2(p− 1)
(6.22)

We can also check that inserting our first order solutions (6.10) and (6.8) into the definition of v we
recover the same result, up to a redefinition of the coefficients cJ(k) and cY (k). To perform this check
we need some properties of the Bessel functions like the recurrence relations (A.2).

Let us mention that working with v is not the only possibility. For example, [2] choose another way,
that proves more convenient when one deals with the problem numerically in a more generic model:

Q ≡ v

a
=
φ′
0

H
R (6.23)

The advantage of working with the rescaled Mukhanov-Sasaki variable is that it is constant on super-
horizon scales and it remains well-defined throughout the evolution of φ0. Naively, if δφ is frozen on
superhorizon scales and R ≈ Hδφ/φ′

0, then Rφ′
0/H is frozen. So working with Q is analogous to what

we did in chapter 3, in a quasi-de Sitter stage and neglecting metric perturbations, when we worked

3 In fact:

v = a

(︃
δφ+

φ′
0

H ϕ

)︃
= a

φ′
0

H

(︃
ϕ+H δφ

φ′
0

)︃
=↑⏐⏐

in Poisson gauge where χ = 0

aφ′
0

H

(︃
ψ̂ +H δφ

φ′
0

)︃
=
aφ′

0

H R
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with the fluctuations of the field δφ and computed ⟨δφδφ⟩. Instead v would be the analogous of the
rescaled field that we called δ ˜︁φ.
In our case:

Qk(τ) = (−τ)ν [cJ(k)Jν(−kτ) + cY (k)Yν(−kτ)] (6.24)

where we can reabsorb the normalization of the scale factor into a redefinition of the coefficients cJ(k),
cY (k).

To fix the coefficients cJ(k) and cY (k) we have to choose the vacuum according to the Bunch-Davies
prescription. In order to do this, it is best to rewrite everything in terms of Hankel functions, because
it will be useful to study the asymptotic behaviour:

vk(τ) =
√
−τ
[︂
c1(k)H

(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)

]︂
(6.25)

Using the asymptotic expansion of the Hankel functions (A.5) well inside the horizon, for −kτ ≫ 1,
we obtain:

vk(τ) ∼
√
−τ
√︃

2

−πkτ

[︂
c1(k)e

−ikτe−i(ν π
2
+π

4 ) + c2(k)e
ikτei(ν

π
2
+π

4 )
]︂

As usual, the Hankel function of second kind has the wrong asymptotic behaviour, so we need to
choose c2(k) = 0. The other coefficient is fixed by asking that we recover the Minkowski behaviour:√︃

2

πk
e−i(ν π

2
+π

4 )c1(k)e
−ikτ =

1√
2k
e−ikτ

c1(k) =

√︃
π

4
ei(ν

π
2
+π

4 ) (6.26)

Finally:

vk(τ) =

√︃
π

4
ei(ν

π
2
+π

4 )
√
−τH(1)

ν (−kτ) ν =
3p− 1

2(p− 1)
(6.27)

6.3.1 Modefunctions for R or ζ

Equation (6.20) gives the link between comoving curvature perturbation and Mukhanov-Sasaki vari-
able, therefore we are in the position to write down the modefunctions for R or for ζ.

Using a(τ) = A(−τ)
p

1−p , with the normalization A defined in (6.5):

z =
aφ′

0

H
= −

√︃
2

p
AMP (−τ)

p
1−p (6.28)

With the normalized solution for v (6.27) we find:

ζk(τ) = −
√︃
p

2

1

AMP

√︃
π

4
ei(ν

π
2
+π

4 )(−τ)νH(1)
ν (−kτ) (6.29)

Let’s write the modefunction of ζ as:

θk(τ) = c(−τ)νH(1)
ν (−kτ) (6.30)

where we have called the constant c for simplicity.
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6.4 Power-spectrum in power-law inflation

With the convention (5.2), the dimensionless power-spectrum, defined in (5.3), for ζ or R is:

Pζ(k, τ)) = ⟨ζ̂ k⃗(τ)ζ̂ k⃗′(τ)⟩ =
1

|z(τ)|2
vk(τ)v

∗
k(τ)δ

(3)(k⃗ + k⃗
′
) (6.31)

On superhorizon scales, if we approximate the Hankel functions as in (A.6):

Pζ(k) =
2

1−3ϵ
−1+ϵ e

C
MP

√
2ϵ

π3
V0
M4

P

(1− ϵ)2
(︂
Γ
(︂

3−ϵ
2(1−ϵ)

)︂)︂2
(3− ϵ)ϵ

k
2ϵ

−1+ϵ (6.32)

In the slow-roll limit ϵ −→ 0 we recover the known result:

PR(k)
ϵ−→0−−−→

H2
DS

8M2
Pπ

2ϵ
(6.33)

where we have introduced the would-be de Sitter Hubble parameter H2
DS = 1

3M2
P
V0.

Defining the scalar spectral index as in (5.5):

ns − 1 =
dlogPR(k)
dlogk

= 3− 2ν = − 2ϵ

1− ϵ
≃ −2ϵ+O(ϵ2) (6.34)

In the slow-roll limit, we recover the standard result.
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Chapter 7

In-in formalism

If we are interested in studying n-point correlation functions with n > 2, a powerful tool in cosmology
is the in-in formalism. This chapter is devoted to introducing the formalism, we refer to [5,37,38] for
more details.

In full generality, let’s say we want to compute expectation values of operators Q̂ which in general are
products of the field δϕa and its conjugate momentum δπa, typically evaluated at the end of inflation.

There is a crucial difference with respect to the particle physics case. In particle physics, the main
observable is the S-matrix, i.e. the transition probability for a given state |in⟩ in the far past to
become some state |out⟩ in the far future:

⟨out|S|in⟩ = ⟨out(+∞)|in(−∞)⟩ (7.1)

The states are taken to be asymptotically free in the far past and again in the far future.

In cosmology instead one is interested in expectation values at a fixed time. We want to compute:

⟨Q̂(τ)⟩ = ⟨in|Q̂(τ)|in⟩ (7.2)

The boundary conditions are only imposed at early times, when the wavelengths are well inside the
Hubble radius and we expect the fields to behave as if they were in Minkowski space. This is the
essence of the Bunch-Davies vacuum choice.

(a) Particle physics in-out transition amplitudes. (b) Cosmology in-in expectation values.

Figure 7.1: Comparison between the particle physics and the cosmology approach. From [39].

The time evolution is governed by the Hamiltonian of the system, which is a functional of the fields
ϕa(x⃗, τ) and their conjugate momenta πa(x⃗, τ) at a fixed time t:

H[ϕ(τ), π(τ)] ≡
∫︂
d3x⃗H[ϕa(x⃗, τ), πa(x⃗, τ)] (7.3)

with ϕ and π satisfying the canonical commutation relation:

[ϕa(x⃗, τ), πb(x⃗
′, τ)] = iδabδ

(3)(x⃗− x⃗′) (7.4)
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7.0.1 Interaction picture

Assume that we can split the Hamiltonian for perturbations H[ϕ(x⃗, τ), π(x⃗; τ), τ ] as:

H = H0 +HINT (7.5)

The interaction term would lead to nonlinear equations of motion. It is convenient to put ourselves
in the interaction picture: we evolve operators as in the free theory, and move all the complications
into the evolution of states.

• Physical states evolve with a Schroedinger equation with HINT :

i∂τ |ψ(τ)⟩I = Ĥ
I
INT (τ)|ψ(τ)⟩I (7.6)

• Operators evolve with a Heisenberg equation with H0:

i∂τ Ô
I
(τ) =

[︂
Ô

I
(τ), Ĥ

I
0(τ)

]︂
(7.7)

Therefore:
|ψ(τ)⟩I = e−iHINT τ |ψ(0)⟩ Ô

I
(τ) = eiH0τ Ô(0)e−iH0τ

The link with the Schroedinger picture for states is given by:

|ψ(τ)⟩I = eiH0τ |ψ(τ)⟩S

The key point is that the field operator evolves like in the free theory: thus the plane wave expansion
is still valid [37]. Corrections arising from the interaction are then treated perturbatively, as a power
series in HINT [39].

7.0.2 Interaction picture fields

According to the split of the Hamiltonian into H0 and HINT , the interaction picture fields are defined
as [38]:

ϕI′ ≡ i
[︁
H0[ϕ

I(τ), πI(τ); τ ], ϕI
]︁
−→ ϕI(τ) = U−1

0 (τ, τ0)ϕ
I(τ0)U0(τ, τ0) (7.8)

πI′ ≡ i
[︁
H0[ϕ

I(τ), πI(τ); τ ], πI
]︁
−→ πI(τ) = U−1

0 (τ, τ0)π
I(τ0)U0(τ, τ0) (7.9)

where U0(τ, τ0) is the time evolution operator in the free theory, coming from the free Hamiltonan H0:

∂

∂τ
U0(τ, τ0) = −iH0(τ)U0(τ, τ0) U0(τ0, τ0) = 1 (7.10)

In order to fix ϕI completely, we also need to specify the initial conditions.

An operator in the Heisenberg picture evolves with the interaction Hamiltonian as [37,38]:

Ô(τ) =
(︂
T − ei

∫︁ τ
τ0

ĤINT (τ ′)dτ ′
)︂−1

Ô
I
(τ)
(︂
T − ei

∫︁ τ
τ0

ĤINT (τ ′)dτ ′
)︂

(7.11)

7.0.3 In-in master formula

The n-point correlation functions can be expressed perturbatively in terms of the free field ones.

It is necessary to compute expectation values for the actual vacuum state, the interacting vacuum
state, not the free one |0⟩ for which a

k⃗
|0⟩ = 0 ∀ k⃗.

Let |Ω⟩ be the vacuum of the interacting theory. Using the interaction picture, if the vacuum coincides
with the free vacuum at time τ0 then:

⟨Qn(τ)⟩ = ⟨Ω(τ)|QI
n(τ)|Ω(τ)⟩ = ⟨Ω|U−1(τ, τ0)Q

I
n(τ)U(τ, τ0)|Ω⟩ (7.12)
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where the time evolution operator U(τ, τ0) evolves the vacuum state from τ0 up to τ . Again, notice that
this does not correspond to a scattering amplitude because when we compute scattering amplitudes
in particle physics the initial t −→ −∞ and final t −→ +∞ states are free states.
From the evolution of a generic state in the interaction picture, the vacuum will obey:

∂τ |Ω(τ)⟩ = −iĤ
I
INT (τ)|Ω(τ)⟩ |Ω(τ)⟩ ≡ Û(τ, τ0)|Ω⟩ (7.13)

Û(τ, τ0) = T − exp

(︃
−i
∫︂ τ

τ0

Ĥ
I
INT (τ

′)dτ ′
)︃

(7.14)

In order to connect the vacuum of the interacting theory |Ω⟩ to the vacuum of the free theory |0⟩, let’s
expand |0⟩ by inserting a complete state of energy eigenstates of the full theory [38,39]:

|0⟩ = |Ω⟩⟨Ω|0⟩+
∑︂
n

|n⟩⟨n|0⟩ (7.15)

e−iH(τ−τ0)|0⟩ = e−iEΩ(τ−τ0)|Ω⟩⟨Ω|0⟩+
∑︂
n′

e−iEn′ (τ−τ0)|n′⟩⟨n′|0⟩ (7.16)

Now we require that in the far past the vacuum coincides with the one of the free theory. This is
achieved via the iϵ prescription:

τ0 ↦−→ −∞(1− iϵ) (7.17)

This projects out all the excited states and leaves us with the free vacuum only. As [38] points out,
this implies some assumptions, that are difficult to explicitly verify. We need the interacting vacuum
to have some projection onto the free vacuum ⟨Ω|0⟩ ≠ 0, which is fine as long as HINT is a small
perturbation (see also the remarks in [27]). We are also assuming that, if ⟨Ω|0⟩ grows with time, the
growth near τ −→ −∞ is slower than exponential, so that it does not overcome the suppression factor
coming from the iϵ trick.
We obtain:

e−iH(τ−τ0)|Ω⟩ = e−iH(τ−τ0)|0⟩
⟨Ω|0⟩

−→ Û(τ, τ0)|Ω⟩ =
Û(τ, τ0)|0⟩
⟨Ω|0⟩

(7.18)

where the iϵ prescription is understood.
This prescription translates into a choice of contour for the time integration, as shown in Figure 7.2.

Re(𝜏)
Im(𝜏)𝜏 Re(𝜏)

Im(𝜏)𝜏
Figure 7.2: Contour of integration in the in-in formalism. In numerical calculations, the contour is often
deformed to a vertical line, as in the right panel. From [38].

So our expectation value is:

⟨Q̂n(τ)⟩ =
⟨0|
(︃
T − e

(︂
−i

∫︁ τ
τ0

Ĥ
I
INT (τ ′)dτ ′

)︂)︃−1

Q̂
I
n(τ)T − e

(︂
−i

∫︁ τ
τ0

Ĥ
I
INT (τ ′)dτ ′

)︂
|0⟩

|⟨0|Ω⟩|2
(7.19)

If we require both vacuum states to be normalized, the denominator is 1 (this can be seen by taking
Q̂ to be the identity matrix, [38]). Hence:

⟨Q̂n(τ)⟩ = ⟨0|
(︃
T − e

(︂
−i

∫︁ τ
τ0

Ĥ
I
INT (τ ′)dτ ′

)︂)︃−1

Q̂
I
n(τ)T − e

(︂
−i

∫︁ τ
τ0

Ĥ
I
INT (τ ′)dτ ′

)︂
|0⟩ (7.20)
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This is our master formula. A few variants exist, for example the commutator form:

⟨Ω|Q̂(τ)|Ω⟩ =
∞∑︂
n=0

in
∫︂ τ

τ0

dτ1

∫︂ τ1

τ0

dτ2· · ·
∫︂ τn−1

τ0

dτn

⟨
[︂
ĤINT (τn),

[︂
ĤINT (τn−1), . . .

[︂
ĤINT (τ1), Q̂

I
(τ)
]︂
. . .
]︂]︂
⟩ (7.21)

To first order in the interaction Hamiltonian, we can expand:

Û(τ, τ0) = 1− i
∫︂ τ

τ0

Ĥ
I
INT (τ

′)dτ ′ (7.22)

and substituting back in the expectation value:

⟨Qn(τ)⟩ = −i
∫︂ τ

τ0

dτ ′⟨0|
[︁
QI

n(τ), H
I
INT (τ

′)
]︁
|0⟩ (7.23)

The general recipe for dealing with this computation in the in-in formalism is [9]:

• perturb the Lagrangian around the homogeneous solutions of the classical e.o.m.;

• write down the Lagrangian and/or the Hamiltonian for the perturbations;

• split the Hamiltonian into a quadratic kinematic part H0, describing free fields in the time-
dependent background, and and interaction part HINT ;

• quantize the fluctuation fields in terms of the annihilation and creation operators;

• the mode functions u
k⃗
(τ) are solutions of the e.o.m., properly normalized, and specified by an

initial condition such as the Bunch-Davies vacuum;

• the correlation function is given by (7.20);

• series-expand the integrand in powers of HINT to the desired order;

• perform contractions for each term in the expansion: each term gives a non-zero contribution
only when all fields are contracted;

• sum over all possible contractions and perform the time-ordered integrations.

38



Chapter 8

Going to second order in the action

In order to compute the bispectrum, we need to perturb the action up to third order. The calculation
is very long, we will only sketch the main steps. See the original work by Maldacena [27] and a detailed
review of his computation in [40] and in [38].

8.1 The ADM formalism

A convenient framework to perform the computation is the Arnowitt, Desner and Misner (ADM)
decomposition of the metric. The advantage of this choice is that, in the perturbed action, some vari-
ables will not be dynamical, i.e. their e.o.m. will be purely algebraic and they will act as constraints,
thus reducing the difficulty of the problem. Furthermore, within this formalism the Einstein equations
assume manifestly the form of a time-evolution equation.

We start by splitting the spacetime M into a spatial part and time, or (3 + 1)-splitting. This can
be done for any spacetime that is globally hyperbolic, that is it admits a spacelike surface Σ called
Cauchy surface such that every timelike or null curve without endpoints intersects Σ once and only
once. Practically, this condition is almost always satisfied in the cases of interest in cosmology. In this
case, we can foliateM into a family of spacelike hypersurfaces {Σt} at constant t ∈ R. Hence we can
write the manifoldM as product R × Σ. The “time flow” vector field will have a component that is
normal to the surfaces Σt and a component that is tangential to them [41].
We write the metric as:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (8.1)

gµν =

(︃
−N2 +NkNk Nj

Ni hij

)︃
gµν =

(︄
− 1

N2
Nj

N2

N i

N2 hij − N iNj

N2

)︄
(8.2)

The quantity N(t, x⃗) is the lapse function which measures the rate of flow of proper time with respect
to coordinate time t, as one moves normally to Σt. The quantity N i(t, x⃗) is the shift vector which
measures the amount of “shift” tangential to Σt contained in the time flow vector field. See Figure
8.1. The effect of “moving forward in time” can be seen as that of changing the spatial metric on
some abstract three-dimensional manifold Σ: the globally hyperbolic spacetime (M, gµν) can be seen
as time development of a Riemannian metric on a fixed three-dimensional manifold [41].

8.2 Perturbed action

8.2.1 Second order

The action for gravity and a scalar field is:

S =

∫︂
d4x
√
−g
(︃

1

16πG
R− 1

2
gµν∂µφ∂νφ− V (φ)

)︃
(8.3)
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Figure 8.1: Illustration of the lapse function and the shift vector. From [41].

When substituting the metric (8.1) into the action (8.3), hij and φ are the dynamical variables while
N and N i are Lagrange multipliers. The e.o.m. for N and N i are the hamiltonian and momentum
contstraints. A gauge choice for hij and φ is necessary in order to fix time and space reparametrization.
Maldacena in [27] sets, to second order:

δφ = 0 hij = a2e2ζ
(︃
δij + γij +

1

2
γilγlj

)︃
with ∂iγij = 0, γii = 0 (8.4)

so that ζ and γ are the physical degrees of freedom, which oarametrize the scalar and tensor fluctuations
respectively.
The lapse function and shift vector are perturbed as:

N(t, x⃗) = 1 + α(t, x⃗) Ni(t, x⃗) = ∂iβ(t, x⃗) (8.5)

In computing both second and third order action, it is only necessary to know N and N i to first
order. Their second-order and third-order perturbations would be multiplying the first-order and
zeroth-order constraints respectively.

In the following, we will use the definitions of the slow-roll parameters as given in (2.17):

ϵ =
1

2M2
P

φ̇2

H2
η = − φ̈

φ̇H
(8.6)

but we will not make the slow-roll approximation, we will just use them to keep the notation lighter
and compare the results with the approximated case. In the end, if needed, we can always rewrite
explicitly the coefficients.

Introducing the curvature perturbation (4.33), the action to second order is:

S2 =M2
P

∫︂
dtd3x⃗

1

2

φ̇2

H2

(︂
a3ζ̇

2 − a∂iζ∂iζ
)︂

(8.7)

In terms of the Mukhanov-Sasaki variable v = −zζ:

S2 =M2
P

∫︂
dτd3x⃗

1

2

(︃(︁
v′
)︁2

+ ∂iv∂
iv +

z′′

z
v2
)︃

(8.8)

leading to an e.o.m. that resembles a harmonic oscillator, with a time-dependent frequency term:

v′′k +

(︃
k2 − z′′

z

)︃
vk = 0 (8.9)
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8.2.2 Third order

When going to third order, a lot of integration by parts is necessary (see [40]). In the gauge (8.4):

S3 =M
2
P

∫︂
dtd3x⃗

{︂1
4

(︃
φ̇2

H2

)︃2 (︂
a3ζ̇

2
ζ + a∂iζ∂

iζζ
)︂
− φ̇2

H2
a3ζ̇∂iχ∂

iζ+

− 1

16

(︃
φ̇2

H2

)︃3

a3ζ̇
2
ζ +

φ̇2

H2
a3ζ̇ζ2

d

dt

(︃
1

2

φ̈

φ̇H
+

1

4

φ̇2

H2

)︃
+

+
1

4

φ̇2

H2
a3∂i∂jχ∂

i∂jχζ + f(ζ)
δL

δζ

⃓⃓⃓⃓
1

+

+ Lb
}︂

(8.10)

where:

∇2χ =
1

2

φ̇2

H2
ζ̇ (8.11)

δL

δζ
= − d

dt

(︃
φ̇2

H2
a3ζ̇

)︃
+
φ̇2

H2
a∇2ζ (8.12)

−f(ζ) =
(︃
1

2

φ̈

φ̇H
+

1

4

φ̇2

H2

)︃
ζ2 +

1

H
ζ̇ζ − 1

4

1

H2a2
∂iζ∂

iζ +
1

2H
∂iχ∂

iζ+

+
1

4

1

H2a2
∆−1∂i∂j

(︁
∂iζ∂jζ

)︁
− 1

2H
∆−1∂i∂j

(︁
∂iχ∂jζ

)︁
(8.13)

The first line in (8.10) is of order ϵ2 and would give the leading contribution in the slow-roll parame-
ters. Notice that the main contribution comes from the gravitational interaction, not from V ′′′ which
is subleading in the slow-roll parameters [27].

The last line in (8.10) contains boundary terms, arising from the integration by parts, and it is given
explicitly in [42]. It is of the form:

Lb = ∂t(. . . ) + ∂i(. . . ) (8.14)

As pointed out in [38, 42, 43] the total spatial derivative do not contribute. To see this, one can
think that there is no “spatial boundary” in our inflationary Universe [38], or alternatively that the
interaction Hamiltonian of these terms would be proportional to the total momentum k⃗1 + k⃗2 + k⃗3
which vanishes thanks to the Dirac delta imposing momentum conservation [42].
However, the total time derivative terms can not, in general, be neglected. For the in-in formalism we
do have a “time boundary” [38], typically chosen at a time such that ζ becomes conserved after that.
Since we will be interested in the superhorizon regime, the contribution from the boundary terms will
be just:

Lb ≃
d

dt

(︃
−
(︃
φ̈

φ̇H
+

1

2

φ̇2

H2

)︃
a3ζ2∇2χ

)︃
=

d

dt

(︂
ϵ(η − 2ϵ)a3ζ̇ζ2

)︂
(8.15)

Furthermore, in the superhorizon regime we can neglect those terms in (8.13) which contain at least
one derivative of ζ, since they should be vanishing. We can approximate:

f(ζ) ≃ −
(︃
1

2

φ̈

φ̇H
+

1

4

φ̇2

H2

)︃
ζ2 = −ϵ− η

2
ζ2 (8.16)

The last term in the action (8.10) is proportional to the first order equations of motion. We are doing
perturbation theory, hence we are allowed to use the linear equations of motion in the third or higher
order actions and simplify out that term [38]. However, if we do this, we must keep in mind the
contribution from the boundary terms (8.14). This is well explained in [42]. The boundary terms are
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necessary to erase from the action the terms with second order time derivative on ζ contained in the
second to last term in (8.10). Without these boundary terms, the second order time derivative terms
remain in the action. The reason why we have such problematic interactions is that these terms are
generated by the integration by parts, and therefore the inclusion of the boundary terms naturally
takes care of them.
Another way to take care of the term proportional to the e.o.m. is removing it by performing a field
redefinition:

ζ = ζn − f(ζn) (8.17)

As pointed out in [27], it does not matter whether we write ζ or ζn in f(ζ) since it is quadratic in the
field1.
If we perform this redefinition, the ζ̈ terms would be eliminated without using the equations of motion,
in the following manner. The cubic terms in the action S3 are not affected by the field redefinition,
since we would only get quartic corrections. Only the second-order terms S2 change, and the extra
terms we get cancel exactly the last term in (8.10).

S2 =

∫︂
dtd3x⃗

(︂
ϵa3ζ̇

2 − ϵa∂iζ∂iζ
)︂
↦−→

=

∫︂
dtd3x⃗

(︃
ϵa3
(︂
ζ̇n − ḟ(ζn)

)︂2
− ϵa∂i (ζn − f(ζn)) ∂i (ζn − f(ζn))

)︃
=

∫︂
dtd3x⃗

(︂
ϵa3ζ̇

2
n − 2ϵa3ζ̇nḟ(ζn)− ϵa∂iζn∂iζn + 2ϵa∂iζn∂

if(ζn) +O(ζ4n)
)︂

= S2[ζn] +

∫︂
dtd3x⃗

{︃
d

dt

(︂
−2ϵa3ζṅf(ζn)

)︂
+ f(ζn)

d

dt

(︂
2ϵa3ζṅ

)︂
− 2ϵaf(ζn)∇2ζn

}︃
= S2[ζn] +

∫︂
dtd3x⃗

{︃
d

dt

(︂
−2ϵa3ζṅf(ζn)

)︂
− f(ζn)

δL

δζn

}︃
(8.18)

Where again, when integrating by parts, the total spatial derivative term can be dropped. The last
term cancels exactly the term proportional to the lienar e.o.m. in (8.10). Moreover, if we approximate
f(ζ) as in (8.16), then the boundary term we get from S2 will cancel (8.15).

After we remove all terms proportional to the equations of motion, for the cubic terms HINT = −LINT

[27]. This statement holds, as long as there are no time-derivative couplings in the interaction terms.

However, the three-point function is changed by the field redefinition. The crucial point here is that
f(ζ) contains time derivatives. As a consequence, ζn is not constant outside the horizon, unlike ζ: this
comes from the fact that ζ stays constant on superhorizon scales and (8.13) contains coefficients of
the quadratic terms which are time-dependent [27]. Furthermore, the redefinition changes the ground
state of perturbations [44].
Schematically, if we have a field redefinition of the form ζ = ζc + λζ2c then the three-point correlation
function changes as:

⟨ζ(x1)ζ(x2)ζ(x3)⟩ =⟨ζc(x1)ζc(x2)ζc(x3)⟩

+ 2λ
[︂
⟨ζ(x1)ζ(x2)⟩⟨ζ(x1)ζ(x3)⟩+ cyclic

]︂
(8.19)

Different field redefinitions can reshuffle the contributions between the two terms.
If we work in the superhorizon regime:

ζ ≃ ζn +
ϵ− η
2

ζ2n (8.20)

1Some care is needed with the conventions used in the literature for the sign of f(ζn). We are following [27], but
for example [42] defines the term proportional to the e.o.m. with the opposite sign, and as a consequence also the field
redefinition has the opposite sign.
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hence:

⟨ζ(x1)ζ(x2)ζ(x3)⟩ =⟨ζn(x1)ζn(x2)ζn(x3)⟩

+ 2(ϵ− η)
[︂
⟨ζ(x1)ζ(x2)⟩⟨ζ(x1)ζ(x3)⟩+ cyclic

]︂
(8.21)

So I now have two choices. I can either keep the whole action (8.10) and explicitly compute by hand
the interaction Hamiltonian, but keep track of the boundary terms (8.15); or I can follow the field
redefinition approach, this way I don’t have to worry about boundaries, but I will have to correct the
three-point function as in (8.21).
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Chapter 9

The bispectrum: in-in formalism
approach

After performing the redefinition (8.17) and switching to conformal time, the action for the field ζn is:

S3[ζn] =M2
P

∫︂
dτd3x⃗

{︂
ϵ2a2ζ ′2n ζn + ϵ2a2∂iζn∂

iζnζn − 2ϵ2a2ζ ′n∂i∆
−1ζ ′n∂

iζn+

− 1

2
ϵ3a2ζ ′2n ζn + ϵa2ζ ′nζ

2
n

d

dτ
(ϵ− η)+

+
1

2
ϵ3a2∂i∂j∆

−1ζ ′n∂
i∂j∆−1ζ ′nζn

}︂
(9.1)

The correction to the three-point function when we go to Fourier space looks as follows. The redefi-
nition is of the form:

ζ = ζn + λζ2n −→ ζ
k⃗
= ζ

n,k⃗
+ λ

∫︂
d3p⃗1d

3p⃗2
(2π)3/2

δ(3)(p⃗1 + p⃗2 − k⃗)ζn,p⃗1ζn,p⃗2 (9.2)

Hence (8.21) becomes:

⟨ζ
k⃗1
ζ
k⃗2
ζ
k⃗3
⟩ =⟨ζ

n,k⃗1
ζ
n,k⃗2

ζ
n,k⃗3
⟩+

+ λ

∫︂
d3p⃗1d

3p⃗2
(2π)3/2

δ(3)(p⃗1 + p⃗2 − k⃗1)⟨ζn,p⃗1ζn,p⃗2ζn,k⃗2ζn,k⃗3⟩+ sym.

=⟨ζ
n,k⃗1

ζ
n,k⃗2

ζ
n,k⃗3
⟩+ 2λ

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)Pζ(k2)Pζ(k3) + sym. (9.3)

In our particular case, due to the relation between ϵ and η in power-law inflation, λ = 0. The correction
vanishes identically.

Applying our in-in master formula (7.23), we have:

⟨ζ
n,k⃗1

(τ)ζ
n,k⃗2

(τ)ζ
n,k⃗3

(τ)⟩ = −i
∫︂ τ

τ0

dτ ′⟨0|
[︂
ζ
n,k⃗1

(τ)ζ
n,k⃗2

(τ)ζ
n,k⃗3

(τ), HI
INT (τ

′)
]︂
|0⟩

= 2Im

∫︂ τ

τ0

dτ ′⟨0|ζ
n,k⃗1

(τ)ζ
n,k⃗2

(τ)ζ
n,k⃗3

(τ)HI
INT (τ

′)|0⟩ (9.4)

where HINT = −LINT and the interaction Lagrangian for the redefined field can be read from the
action (9.1).
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9.1 Interaction Hamiltonian in Fourier space

Schematically:

HINT,3 =

∫︂
d3x⃗H3

∼
∫︂
d3x⃗

∫︂
d3p⃗1d

3p⃗2d
3p⃗3

(2π)9/2
f(τ)ζn,p⃗1ζn,p⃗2ζn,p⃗3e

i(p⃗1+p⃗2+p⃗3)·x⃗

=

∫︂
d3p⃗1d

3p⃗2d
3p⃗3

(2π)9/2
(2π)3δ(3)(p⃗1 + p⃗2 + p⃗3)f(τ)ζn,p⃗1ζn,p⃗2ζn,p⃗3 (9.5)

Symmetrizing in the three momenta:

HINT =

∫︂
d3p⃗1d

3p⃗2d
3p⃗3

(2π)3/2
δ(3)(p⃗1 + p⃗2 + p⃗3)·{︄

1

3
ϵ2a2 (p⃗1 · p⃗2 + p⃗1 · p⃗3 + p⃗2 · p⃗3) ζn,p⃗1ζn,p⃗2ζn,p⃗3+

− 1

3
ϵa2 (ϵ− η)′ ζ ′n,p⃗1ζn,p⃗2ζn,p⃗3+

− 1

3
ϵa2 (ϵ− η)′ ζn,p⃗1ζ

′
n,p⃗2

ζn,p⃗3+

− 1

3
ϵa2 (ϵ− η)′ ζn,p⃗1ζn,p⃗2ζ

′
n,p⃗3

+

− 1

6
ϵ2a2

2p21p
2
2 − 2p21p⃗2 · p⃗3 − 2p22p⃗1 · p⃗3 + ϵ

(︁
−p21p22 + (p⃗1 · p⃗2)2

)︁
p21p

2
2

ζ ′n,p⃗1ζ
′
n,p⃗2

ζn,p⃗3+

− 1

6
ϵ2a2

2p21p
2
3 − 2p21p⃗2 · p⃗3 − 2p23p⃗1 · p⃗2 + ϵ

(︁
−p21p23 + (p⃗1 · p⃗3)2

)︁
p21p

2
3

ζ ′n,p⃗1ζn,p⃗2ζ
′
n,p⃗3

+

− 1

6
ϵ2a2

2p22p
2
3 − 2p22p⃗1 · p⃗3 − 2p23p⃗1 · p⃗2 + ϵ

(︁
−p22p23 + (p⃗2 · p⃗3)2

)︁
p22p

2
3

ζn,p⃗1ζ
′
n,p⃗2

ζ ′n,p⃗3

}︄
(9.6)

Notice that in general both the scale factor and ϵ depend on time. But for Lucchin-Matarrese power-
law inflation ϵ = 1/p so we can factor it out, moreover η = ϵ so the terms with one time derivative
only cancel out.

9.2 Calculation

Substituting the interaction Hamiltonian (9.6) in (9.4) we obtain:

2M2
P ϵ

2Im

∫︂
dτ ′
∫︂
d3p⃗1d

3p⃗2d
3p⃗3

(2π)3/2
δ(3)(p⃗1 + p⃗2 + p⃗3)·{︄

a2(τ ′)

3
h000(p⃗1, p⃗2, p⃗3)⟨ζn,k⃗1(τ)ζn,k⃗2(τ)ζn,k⃗3(τ)ζn,p⃗1(τ

′)ζn,p⃗2(τ
′)ζn,p⃗3(τ

′)⟩+

− a2(τ ′)

6
h110(p⃗1, p⃗2, p⃗3)⟨ζn,k⃗1(τ)ζn,k⃗2(τ)ζn,k⃗3(τ)ζ

′
n,p⃗1

(τ ′)ζ ′n,p⃗2(τ
′)ζn,p⃗3(τ

′)⟩+

+ two derivative terms k⃗2 ←→ k⃗3 and k⃗1 ←→ k⃗3

}︄
(9.7)
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Using Wick’s theorem and keeping only connected terms:

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)2M

2
P ϵ

2Im

{︄
θk1(τ)θk2(τ)θk3(τ)·(︄∫︂

dτ ′θ∗k1(τ
′)θ∗k2(τ

′)θ∗k3(τ
′)a2(τ ′)

(︁
−k21 − k22 − k23

)︁
+

∫︂
dτ ′θ∗′k1(τ

′)θ∗′k2(τ
′)θ∗k3(τ

′)a2(τ ′)

(︃
− 1

4k21k
2
2

)︃(︁
−4(k41 + k42 − 4k21k

2
2 − k21k23 − k22k23) +

+ ϵ(k41 + k42 + k43 − 2k21k
2
2 − 2k21k

2
3 − 2k22k

2
3)
)︁
+

+ two derivative terms k⃗2 ←→ k⃗3 and k⃗1 ←→ k⃗3

)︄}︄
(9.8)

Using the modefunctions (6.30) we find integrals of three Hankel functions times some power of
conformal time.

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)2M

2
P ϵ

2A2 (cc∗)3 Im

{︄
(−τ)3νH(1)

ν (−k1τ)H(1)
ν (−k2τ)H(1)

ν (−k3τ)·(︄∫︂ τ

−∞(1−iϵ)
dτ ′(−τ ′)1+νH(2)

ν (−k1τ ′)H(2)
ν (−k2τ ′)H(2)

ν (−k3τ ′)
(︁
−k21 − k22 − k23

)︁
+

∫︂ τ

−∞(1−iϵ)
dτ ′(−τ ′)1+νH

(2)
ν−1(−k1τ

′)H
(2)
ν−1(−k2τ

′)H(2)
ν (−k3τ ′)·(︄

−
1

4k1k2

)︄(︁
−4(k41 + k42 − 4k21k

2
2 − k21k23 − k22k23)ϵ(k41 + k42 + k43 − 2k21k

2
2 − 2k21k

2
3 − 2k22k

2
3)
)︁
+

+ two derivative terms k⃗2 ←→ k⃗3 and k⃗1 ←→ k⃗3

)︄}︄
(9.9)

The problem we have to face now is computing the integral of three Hankel functions times some
power. First of all, to get a better understanding of what is going on, we will review the computation
in the standard slow-roll case, as in [27]: in this regime, the Hankel functions are assumed to be the
de Sitter ones, with ν = 3

2 , and we can take advantage of the explicit expression (A.7).

9.2.1 Standard slow-roll case ν = 3
2

The modefunctions for ζ are:

θk,DS(τ) = c

√︃
2

π

1

k3/2
(−i+ kτ)e−ikτ (9.10)

The scale factor is a(τ) = −A/τ where A
ϵ−→0−−−→ H−1

DS .

We will need the following integrals, see (A.8) in the Appendix:∫︂
dτ
eikT τ

τ
= −E1(ikT τ) (9.11)∫︂

dτ
eikT τ

τ2
= −e

ikT τ

τ
− ikTE1(ikT τ) (9.12)∫︂

dττeikT τ =
1

k2T
(1− ikT τ)eikT τ (9.13)
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The term without any time derivative in (9.8):∫︂ τ

−∞(1−iϵ)
θ∗k1(τ

′)θ∗k2(τ
′)θ∗k3(τ

′)a2(τ ′)dτ ′ =

=
2
√
2A2(c∗)3

π3/2(k1k2k3)3/2

∫︂ τ

−∞(1−iϵ)

[︃
i(k1k2 + k1k3 + k2k3) + k1k2k3τ

′ − kT
τ ′
− i

τ ′2

]︃
eikT τ ′dτ ′

=
2
√
2A2(c∗)3

π3/2(k1k2k3)3/2

(︃
k1k2 + k1k3 + k2k3

kT
+
k1k2k3
k2T

− ik1k2k3
kT

τ +
i

τ

)︃
eikT τ (9.14)

The term with two time derivatives:∫︂ τ

−∞(1−iϵ)
θ∗′k1(τ

′)θ∗′k2(τ
′)θ∗k3(τ

′)a2(τ ′)dτ ′ =

=
2
√
2A2(c∗)3

π3/2(k1k2k3)3/2
(−k21k22)

∫︂ τ

−∞(1−iϵ)
(i+ k3τ) e

ikT τ ′dτ ′

=
2
√
2A2(c∗)3

π3/2(k1k2k3)3/2
(−k21k22)

[︃
1

kT
+
k3
k2T

(1− ikT τ)
]︃
eikT τ (9.15)

and analogously for the other two permutations.

Approximating the three modefunctions outside the integral with the asymptotic expression for the
Hankel functions (A.6):

θk1(τ)θk2(τ)θk3(τ) ≃
i8

1
2
+ 1

1−ϵ

(︂
Γ
(︂
1
2 + 1

1−ϵ

)︂)︂3
(k1k2k3)

−( 1
2
+ 1

1−ϵ)c3

π3
(9.16)

Taking the imaginary part and then the limit for τ −→ 0, we find:

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

V 2
0

M8
P

2−10+ 3
1−ϵ e

2C
MP

√
2ϵ

π3/2k2T (k1k2k3)
2+ 1

1−ϵ

(1− ϵ)(1 + ϵ)3
(︂
Γ
(︂

1+ϵ
2(1−ϵ)

)︂)︂3
(ϵ− 3)2ϵ

·[︂
− 4(k1 + k2 + k3)

(︁
k41 + k42 + k43 − 2k21k2k3 − 2k1k

2
2k3 − 2k1k2k

2
3 − 10k21k

2
2 − 10k21k

2
3 − 10k22k

2
3

)︁
+

− 4(−k1 + k2 + k3)(k1 + k2 − k3)(k1 − k2 + k3)(k1 + k2 + k3)
3ϵ
]︂

(9.17)

Taking the limit ϵ −→ 0:

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

H4
DS

32M4
P ϵ

1

k31k
3
2k

3
3(k1 + k2 + k3)

·(︁
−k41 − k42 − k43 + 2k21k2k3 + 2k1k

2
2k3 + 2k1k2k

2
3 + 10k21k

2
2 + 10k21k

2
3 + 10k22k

2
3

)︁
(9.18)

Using the definition of fNL (5.14) with (9.17) we obtain:

fNL =
5

3

2−1− 1
1−ϵ
√
π(k1k2k3)

ϵ
1−ϵ (−1 + ϵ)ϵ

(k1 + k2 + k3)(k
3−ϵ
1−ϵ

1 + k
3−ϵ
1−ϵ

2 + k
3−ϵ
1−ϵ

3 )(1 + ϵ)Γ
(︂

1+ϵ
2(1−ϵ)

)︂ ·
(︂
2k21k2k3 + 2k1k

2
2k3 + 2k1k2k

2
3 + 2k21k

2
2(5− ϵ) + 2k21k

2
3(5− ϵ) + 2k22k

2
3(5− ϵ)+

− k41(1− ϵ)− k42(1− ϵ)− k43(1− ϵ)
)︂

(9.19)

This indeed behaves as we expect to lowest order in the slow-roll limit, see (5.19).

Now we turn to the case where the index ν inside the modefunctions in the integrals is generic. This
ν = 3

2 case will serve as a playground to validate procedures and test assumptions.
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9.2.2 Comments on the integrals

We have to deal with the integrals of three Hankels in (9.9). There are in the literature some results
for the integral of three Bessel functions. For example, Gervois [45] gives:∫︂ ∞

0
dt t1−ρJν(at)Jν(bt)

(︃
Jρ(ct)
Yρ(ct)

)︃
= any a, b, c ∈ R

=
1

π

√︃
2

π

(ab)ρ−1

cρ
(sinφc)

ρ− 1
2

⎛⎜⎝π

2
P

−ρ+ 1
2

ν− 1
2

(cosφc)

−Q−ρ+ 1
2

ν− 1
2

(cosφc)

⎞⎟⎠
|a− b| < c < a+ b

2abcosφc = a2 + b2 − c2 1

2
absinφc =

1

4

√︁
(c2 − (a− b)2) ((a+ b)2 − c2)

ρ > −1

2

{︄
ν + 1 > 0 for Jρ

ν + 1− ρ+|ρ|
2 > 0 for Yρ

(9.20)

∫︂ ∞

0
dt t1+ρJν(at)Jν(bt)

(︃
Jρ(ct)
Yρ(ct)

)︃
= any a, b, c ∈ R

=
1

π

√︃
2

π

(ab)−ρ−1

c−ρ
(sinφc)

−ρ− 1
2

⎛⎜⎜⎝
π

2
cosπρP

ρ+ 1
2

ν− 1
2

(cosφc)− sinπρQ
ρ+ 1

2

ν− 1
2

(cosφc)

−
π

2
sinπρP

ρ+ 1
2

ν− 1
2

(cosφc)− cosπρQ
ρ+ 1

2

ν− 1
2

(cosφc)

⎞⎟⎟⎠
|a− b| < c < a+ b

2abcosφc = a2 + b2 − c2 1

2
absinφc =

1

4

√︁
(c2 − (a− b)2) ((a+ b)2 − c2)

ρ <
1

2

{︄
ν + 1 + ρ > 0 for Jρ

ν + 1 + ρ−|ρ|
2 > 0 for Yρ

(9.21)

In a later work, Tyler [46] deals with the case where at least two functions share the same argument:∫︂ ∞

0
dxxαJl(x)Jm(x)Jn(βx) if

β

2
> 1

= 2−l−m−1 Γ
(︁
α+l+m+n+1

2

)︁
Γ (m+ 1)Γ (l + 1)Γ

(︁−α−l−m+n+1
2

)︁ (︃β
2

)︃−α−l−m−1

·

4F 3

(︃
l +m+ 1

2
,
l +m+ 2

2
,
α+ l +m+ n+ 1

2
,
α+ l +m− n+ 1

2
;

m+ 1, l +m+ 1, l + 1;
4

β2

)︃
(9.22)

converges if Re(α) <
3

2
(but

1

2
if β = 2) Re(α+ l +m+ n+ 1) > 0 (9.23)

In the particular case where ν = ρ:∫︂ ∞

0
dt t1+νJν(at)Jν(bt)

(︃
Jν(ct)
Yν(ct)

)︃
= any a, b, c ∈ R

=
2−ν−1

π
√
π
(abc)νΓ

(︃
ν +

1

2

)︃
1

∆2ν+1

(︃
1
0

)︃
|a− b| < c < a+ b

∆ =
1

4

√︁
(c2 − (a− b)2) ((a+ b)2 − c2)

|ν| < 1

2
(9.24)

49



9.2. Calculation Chapter 9. The bispectrum: in-in formalism . . .

Among all the cases shown in the paper, we are interested in the case |a− b| < c < a+ b that is when
the three parameters are the sides of a triangle, as is enforced by the Dirac delta.

This kind of integral has been studied also in [47]. The paper was written in jail, after his mentally
unstable author had killed four people in his department. This should already ring an alarm bell.

Unfortunately, the integrals we find in (9.9) cannot be rewritten in such a way that we recover any
of these cases. The problem is that we fail to reproduce the conditions on the indices of the Bessel
functions. Such conditions are required to make sure that the integrals converge. In particular,
problems arise for us as τ −→ −∞: our integrals diverge in that limit.

This makes sense, if we recall that we need to apply the iϵ prescription (7.17) at very early times
to ensure convergence. As Maldacena points out [27], we need to deform the integration contour so
that it includes some evolution in euclidean time which projects onto the true vacuum. Physically, we
know that the integrals must converge because well inside the horizon we are basically in Minkowski
space, the field oscillates rapidly and we expect no contribution. After we continue to euclidean time,
this is exactly what happens.

At this point, one possibility is to compute again the integrals from scratch, following the methods
employed in the literature but this time applying the iϵ prescription. For example, Tyler [46] uses the
Mellin transforms, taking advantage of the fact that the integral can be rewritten as two nested Mellin
transforms. In our case, this cannot be done directly because of the iϵ prescription: to follow this
approach, we should be able to define a “modified” Mellin transform using this integration contour.

Another possibility is to restrict our attention to the superhorizon regime, since physically we expect
to have no contribution when we are deep inside the horizon. Therefore we can approximate for −kiτ
small, and integrate from a cutoff 1/kmax up to some τ . This cutoff has been chosen so that all the
three wavelengths corresponding to k1, k2, k3 are outside the horizon. In the end we will be interested
in the bispectrum at the end of inflation τ −→ 0−.
Hopefully, we would like to find a finite term, plus corrections depending on the cutoff. Of course this
is a rough approximation, and the full result will depend on the ultraviolet cutoff that we set.
Unfortunately, we will see that the result only depends on the cutoff.

The plan is the following. We want to set:

cutoff ≡ − α

kmax
(9.25)

with α some numerical factor, and integrate from this cutoff to τ . Then we take the imaginary part
according to (9.8), and we send τ −→ 0− to compute the bispectrum at the end of inflation.
First we will take the standard ν = 3

2 case, to validate this procedure in a framework where we have
everything under control analytically. Then we repeat the same sequence of operations for generic ν.

9.2.3 Approximation on superhorizon scales: case ν = 3
2

In the standard slow-roll case, where we take the index of the modefunctions inside the integrals to
be ν = 3

2 , the modefunctions for ζ are:

θk,DS(τ) = c

√︃
2

π

1

k3/2
(−i+ kτ)e−ikτ (9.26)

Approximating on superhorizon scales, for −kτ ≪ 1, we obtain to lowest order:

θk,DS(τ) ≈ −
√︃

2

π

ic

k3/2
(9.27)

which is purely imaginary, therefore if we substituted in (9.8) and took the imaginary part we would
find zero. To obtain a non-vanishing result, we need to go to at least third order in the expansion:

θk,DS(τ) ≈ −
ic

3
√
2πk3/2

(︁
6 + 3k2τ2 − 2ik3τ3

)︁
(9.28)
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The scale factor is a(τ) = −A/τ .

Now we compute the integrals. For example, the first one in (9.8) becomes:∫︂ τ

cutoff
dτ ′θ∗k1,DS(τ

′)θ∗k2,DS(τ
′)θ∗k3,DS(τ

′)a2(τ ′) = − 1

1890
√
2(k1k2k3)3/2π3/2(−τ)

·(︂
7560i− 3780i(k21 + k22 + k23)(−τ)2 − 1260(k31 + k32 + k33)(−τ)3 − 630i(k21k

2
2 + k21k

2
3 + k22k

2
3)(−τ)4+

− 315(k31k
2
2 + k21k

3
2 + k31k

2
3 + k21k

3
3 + k32k

2
3 + k22k

3
3)(−τ)5 +

(︁
168i(k31k

3
2 + k31k

3
3 + k32k

3
3)+

−189ik21k22k23
)︁
(−τ)6 − 105k21k

2
2k

2
3(k1 + k2 + k3)(−τ)7 + 60ik21k

2
2k

2
3(k1k2 + k1k2 + k2k3)(−τ)8+

+ 35k31k
3
2k

3
3(−τ)9

)︂⃓⃓⃓τ
cutoff

(9.29)

and similarly for the other contributions.
In the slow-roll limit, the bispectrum is:

Bsuperhorizon
ζ (k1, k2, k3) =

V 2
0

995328M8
P ϵk

3
1k

3
2k

3
3

(∗) (9.30)

(∗) =cutoff2
(︂
− 2880(k51 + k52 + k53)− 1728(k41k2 + k1k

4
2 + k41k3 + k1k

4
3 + k42k3 + k2k

4
3)+

+ 9216(k31k
2
2 + k21k

3
2 + k31k

2
3 + k21k

3
3 + k32k

2
3 + k22k

3
3) + 3456k1k2k3(k1k2 + k1k3 + k2k3)

)︂
+

cutoff4
(︂
432(k61k2 + k1k

6
2 + k61k3 + k1k

6
3 + k62k3 + k2k

6
3)+

+ 432(k51k
2
2 + k21k

5
2 + k51k

2
3 + k21k

5
3 + k52k

2
3 + k22k

5
3)+

− 1440(k41k
3
2 + k31k

4
2 + k41k

3
3 + k31k

4
3 + k42k

3
3 + k32k

4
3)+

− 432k1k2k3(k
3
1k2 + k1k

3
2 + k31k3 + k1k

3
3 + k32k3 + k2k

3
3)+

+ 4032k21k
2
2k

2
3(k1 + k2 + k3)

)︂
+

cutoff6
(︂
96(k61k

3
2 + k31k

6
2 + k61k

3
3 + k31k

6
3 + k62k

3
3 + k32k

6
3)+

− 96(k51k
4
2 + k41k

5
2 + k51k

4
3 + k41k

5
3 + k52k

4
3 + k42k

5
3)+

+ 144k1k2k3(k
5
1k2 + k1k

5
2 + k51k3 + k1k

5
3 + k52k3 + k2k

5
3)+

+ 144k21k
2
2k

2
3(k

3
1 + k32 + k33)− 288k1k2k3(k

3
1k

3
2 + k31k

3
3 + k32k

3
3)+

− 960k21k
2
2k

2
3(k

2
1k2 + k1k

2
2 + k21k3 + k1k

2
3 + k22k3 + k2k

2
3)− 2304k31k

3
2k

3
3

)︂
+

cutoff8
(︂
− 36k21k

2
2k

2
3(k

4
1k2 + k1k

4
2 + k41k3 + k1k

4
3 + k42k3 + k2k

4
3)+

+ 36k21k
2
2k

2
3(k

3
1k

2
2 + k21k

3
2 + k31k

2
3 + k21k

3
3 + k32k

2
3 + k22k

3
3)− 16k31k

3
2k

3
3(k

2
1 + k22 + k23)+

+ 144k31k
3
2k

3
3(k1k2 + k1k3 + k2k3) (9.31)

This is to be compared with Maldacena’s result (5.18):

BM
ζ (k1, k2, k3) =

− V 2
0

288M8
P ϵk

3
1k

3
2k

3
3(k1 + k2 + k3)

(︁
k41 + k42 + k43 − 10(k21k

2
2 + k21k

2
3 + k22k

2
3)− 2k1k2k3(k1 + k2 + k3)

)︁
(9.32)

There is not a clean value of the cutoff for which we recover this result. If we set (9.30) equal to (5.18),
the solutions we obtain for the cutoff are very complicated and depend on the three momenta k1, k2,
k3.
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One can try to study the expressions above in the equilateral limit or in the squeezed limit. Only in
the squeezed limit we find a simpler expression:

lim
k3≪k1,k2

BM
ζ = lim

k3≪k1,k2
Bsuperhorizon

ζ

V 2
0

72M8
P ϵk

3
1k

3
3

=
V 2
0

864M8
P ϵk1k

3
3

(︁
8cutoff2 − k21cutoff4

)︁
(9.33)

which leads to cutoff = −
√
2/k1 or cutoff = −

√
6/k1, that is, the cutoff roughly corresponds to the

conformal time when the short wavelength mode k1 crosses the horizon. However, this information is
not helpful in the general case.
Furthermore, this is only the third order approximation to the modefunctions. More correction terms
arise if one continues in the series expansion.

These results seem to indicate that it is not enough to set an ultraviolet cutoff and look at the
superhorizon evolution only. Taking into account the horizon crossing and properly treating the
subhorizon oscillations at τ −→ −∞ are probably crucial aspects to the computation.
This result is recovered in the case of generic ν. Of course the expressions are much more complicated,
but then in the slow-roll limit they boil down to the ones found above.

9.2.4 Approximation on superhorizon scales: case of generic ν

The modefunctions in this case are the usual (6.30). When approximated to superhorizon scales, up
to order (−τ)3, (−τ)2ν we get:

θk(τ) ≈ c
(︃
− i2

νk−νΓ(ν)

π
− i2−2+νk2−ν(−τ)2Γ(ν − 1)

π
+

2−νkν(−τ)2ν (1 + icot(πν))

Γ(ν + 1)

)︃
(9.34)

Substituting in (9.8) and taking the imaginary part we obtain:

Bsuperhorizon
ζ (k1, k2, k3) = 2M2

P ϵ
2A2(cc∗)3·[︄

8ν (Γ(ν))3

(k1k2k3)νπ3
(f1(k1, k2, k3)ReI1 + f2(k1, k2, k3)ReI2 + f3(k1, k2, k3)ReI3 + f4(k1, k2, k3)ReI4)

]︄
(9.35)

where Ii are the four integrals in conformal time and fi are functions of the three momenta only, that
can be read from (9.8).

Bsuperhorizon
ζ (k1, k2, k3) =

e
2C
MP

√
2ϵ
V 2
0

M8
P ϵ

(︂
c1(−cutoff)4+

4
1−ϵ + c2(−cutoff)2+

4
1−ϵ + c3(−cutoff)

3−ϵ
1−ϵ

+ c4(−cutoff)5+
2

1−ϵ + c5(−cutoff)3+
2

1−ϵ + c6(−cutoff)2

+ c7(−cutoff)4 + c8(−cutoff)6 + c9(−cutoff)8
)︂

(9.36)

where the coefficients c1, . . . , c9 depend on the momenta, analogous to the ones we found before, but
much longer. In the slow-roll limit, taking the leading order term in the expansion ϵ −→ 0, we recover
(9.30).

Again, this seems to indicate that the horizon crossing and a proper treatment of the highly oscillating
Hankel functions when τ −→ −∞ are crucial points, that cannot be overlooked by simply restricting
our attention to the superhorizon evolution.

9.3 Squeezed limit

In order to simplify the integrals in (9.8), we can study the bispectrum in the squeezed limit, in which
one of the three momenta is much smaller than the other two: say k3 ≪ k1, k2 and k1 ≈ k2. The long
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wavelength mode k3 is already out of the horizon, so we can approximate the modefunctions in the
limit k3τ ≪ 1. The short wavelength modes leave two Hankel functions with approximately the same
argument.

The modefunctions are (6.30), reported here for comparison, and the approximated modefunctions
are:

θk(τ) = c(−τ)νH(1)
ν (−kτ) θk,appr(τ) = −

i

π
2νck−νΓ(ν) (9.37)

θ′k(τ) = −ck(−τ)νH
(1)
ν−1(−kτ) θ′k,appr(τ) =

i

π
2−1+νck2−νΓ(ν − 1)(−τ) (9.38)

At this point we substitute into (9.8) the full modefunctions for the momenta k1 and k2 and the
approximated form on superhorizon scales for k3. In order to compute the integrals, we need to set
k1 = k2 already in the integrands.

We will need the following integrals (k = k1):∫︂
x
(︂
H(2)

ν (kx)
)︂2
dx (9.39)∫︂

x2H(2)
ν (kx)H

(2)
ν−1(kx)dx (9.40)

Notice that if one computes these integrals with Mathematica the results are not correct, they differ
from the ones given in the literature. In particular, the problem was found with Mathematica 12.3.1.0:
the problematic integral is the one containing a Bessel and a Neumann. The issue was reported to
the Wolfram Support.

The first integral is known [48,49]:∫︂
zCν(az)Dν(az)dz =

z2

4
(2Cν(az)Dν(az)− Cν−1(az)Dν+1(az)− Cν+1(az)Dν−1(az)) (9.41)

where z ∈ C and Cν(z), Dν(z) are any cylinder function Jν(z), Yν(z), H
(1)
ν (z), H

(2)
ν (z) or any non-

trivial linear combination of them, with coefficients independent of z or of ν.
In our case: ∫︂

x
(︂
H(2)

ν (kx)
)︂2
dx =

x2

2

(︃(︂
H(2)

ν (kx)
)︂2
−H(2)

ν−1(kx)H
(2)
ν+1(kx)

)︃
(9.42)

The second one can be obtained by applying the recurrence relation (A.2) and integrating by parts:

Cν−1(z) =
ν

z
Cν(z) +

∂Cν(z)
∂z

(9.43)

∫︂
x2H(2)

ν (kx)H
(2)
ν−1(kx)dx =

ν

k

∫︂
xH(2)

ν (kx)H(2)
ν (kx)dx+

1

k

∫︂
x2H(2)

ν (kx)
∂H

(2)
ν (kx)

∂x
dx (9.44)

∫︂
x2H(2)

ν (kx)
∂H

(2)
ν (kx)

∂x
dx =∫︂

∂

∂x

(︃
x2
(︂
H(2)

ν (kx)
)︂2)︃

dx−
∫︂

2x
(︂
H(2)

ν (kx)
)︂2
dx−

∫︂
x2
∂H

(2)
ν (kx)

∂x
H(2)

ν (kx)dx

=⇒
∫︂
x2H(2)

ν (kx)
∂H

(2)
ν (kx)

∂x
dx =

x2

2

(︂
H(2)

ν (kx)
)︂2
−
∫︂
x
(︂
H(2)

ν (kx)
)︂2
dx (9.45)

hence: ∫︂
x2H(2)

ν (kx)H
(2)
ν−1(kx)dx =

ν − 1

k

∫︂
x
(︂
H(2)

ν (kx)
)︂2
dx+

1

k

x2

2

(︂
H(2)

ν (kx)
)︂2

(9.46)
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First integral

The first integral in (9.8) is: ∫︂
θ∗k1(τ

′)θ∗k1(τ
′)θ∗k3,appr(τ

′)
(︁
a(τ ′)

)︁2
dτ ′ (9.47)

Collecting the factor A2(c∗)3 outside:

I1 = i

(︃
−2νk−ν

3 Γ(ν)

π

)︃
(−τ)2

2

(︃(︂
H(2)

ν (−k1τ)
)︂2
−H(2)

ν−1(−k1τ)H
(2)
ν+1(−k1τ)

)︃
(9.48)

In the slow-roll limit, we recover the expected result:

I1
ϵ−→0−−−→

√
2e2ik1τ (2i+ k1τ)

k31k
3/2
3 π3/2τ

(9.49)

Second integral

The second integral: ∫︂
θ∗′k1(τ

′)θ∗′k1(τ
′)θ∗k3,appr(τ

′)
(︁
a(τ ′)

)︁2
dτ ′ (9.50)

is analogous to the first one, with the substitution ν ↦−→ ν − 1.

Third integral

The third integral: ∫︂
θ∗′k1(τ

′)θ∗k1(τ
′)θ∗′k3,appr(τ

′)
(︁
a(τ ′)

)︁2
dτ ′ (9.51)

gives:

I3 = i

(︃
2−1+νk1k

2−ν
3 Γ(ν − 1)

π

)︃[︃
−
(︃
ν − 1

k1

(−τ)2

2

(︃(︂
H(2)

ν (−k1τ)
)︂2
−H(2)

ν−1(−k1τ)H
(2)
ν+1(−k1τ)

)︃
+

+
1

k1

(−τ)2

2

(︂
H(2)

ν (−k1τ)
)︂2)︃]︃

(9.52)

which in the slow-roll limit becomes:

I3
ϵ−→0−−−→ e2ik1τ

√
k3(−3 + 2ik1τ)√
2k21π

3/2
(9.53)

Substituting in (9.8), we obtain:

Bζ(k1, k2, k3) =2M2
P ϵ

2A2 (cc∗)3 Im [(Reout + iImout) ·
(f1(k1, k2, k3)I1 + f2(k1, k2, k3)I2 + f3(k1, k2, k3)I3 + f4(k1, k2, k3)I4)] (9.54)

where:

Reout = (−τ)3ν (Jν(−k1τ)Jν(−k2τ)Jν(−k3τ)− Jν(−k1τ)Yν(−k2τ)Yν(−k3τ)+
− Yν(−k1τ)Jν(−k2τ)Yν(−k3τ)− Yν(−k1τ)Yν(−k2τ)Jν(−k3τ) ) (9.55)

Imout = (−τ)3ν (Jν(−k1τ)Jν(−k2τ)Yν(−k3τ) + Jν(−k1τ)Yν(−k2τ)Jν(−k3τ)+
+ Yν(−k1τ)Jν(−k2τ)Yν(−k3τ)− Yν(−k1τ)Yν(−k2τ)Yν(−k3τ) ) (9.56)

are the real and imaginary part coming from the modefunctions outside θk1(τ)θk2(τ)θk3(τ), having
collected the factor c3 outside, and fi are functions of the three momenta only that can be read from
(9.8).
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In taking the limit for τ −→ 0, only the imaginary part of the three modefunctions outside survives:

lim
τ→0

Reout = 0 lim
τ→0

Imout =
8ν(k1k2k3)

−ν(ν − 1)3 (Γ(ν − 1))3

π3
(9.57)

Taking the squeezed limit k1 = k2 and k3/k1 ≪ 1:

Bsqueezed
ζ (k1, k2, k3) =

2−3+ 4
1−ϵ e

2C
MP

√
2ϵ

π2
V 2
0

M8
P

(1− ϵ)3
(︂
Γ
(︂
1
2 + 1

1−ϵ

)︂)︂4
(−3 + ϵ)2ϵ

(k1k3)
−1− 2

1−ϵ (9.58)

In the slow-roll regime, we recover Maldacena’s result [27]:

Bsqueezed
ζ (k1, k2, k3)

ϵ−→0−−−→
H4

DS

8M4
Pk

3
1k

3
3ϵ

(9.59)

We can write down the next orders in the expansion:

Bsqueezed
ζ (k1, k2, k3)

ϵ−→0−−−→
H4

DS

8M4
Pk

3
1k

3
3ϵ
+ (9.60)

+
CH4

DS

2
√
2M5

Pk
3
1k

3
3

√
ϵ
+ (9.61)

+
H4

DS

24M6
Pk

3
1k

3
3

(︃
12C2 − 7M2

P + 6M2
P log

(︃
4

k1k3

)︃
+ 12M2

Pψ(3/2)

)︃
+ (9.62)

+O(
√
ϵ)

where ψ(z) is the digamma function, defined as the logarithmic derivative ψ(z) =
1

Γ(z)

dΓ(z)

dz
.

9.4 The consistency relation

Maldacena in his seminal work [27] showed that there is a consistency relation between the index of
the scalar power-spectrum and the three-point correlation function in the squeezed limit:

lim
k3→0

Bζ(k1, k2, k3) = (1− ns)Pζ(k1)Pζ(k3) (9.63)

The squeezed limit of the three-point function is suppressed like (1 − ns) and vanishes for perfectly
scale-invariant perturbations. A proof of this can be found in [39].

9.4.1 Sketch of the proof and meaning

In the squeezed limit, one of the wavelengths is much longer than the other two: let us choose
k3 ≪ k1, k2 so that klong = k3 corresponding to the long wavelength mode and kshort = k1 ≈ k2
corresponding to the short wavelength mode. In the squeezed limit, the three-point function is roughly
a correlation of the long wavelength mode with the power-spectrum of the short wavelength mode:
⟨ζ

k⃗1
ζ
k⃗2
ζ
k⃗3
⟩ ≃ ⟨Pζ(k1)ζk⃗3⟩. The reason why the long and short modes should be correlated is the

following [39, 50]. The long wavelength mode will cross the horizon much earlier than the other two,
therefore it will act as a perturbation of the background on which the two short modes evolve. The
net effect is that the long wavelength mode changes the time t∗ at which the two short wavelength
modes cross the horizon by δt∗ = −ζk⃗3/H.
Following [39], we evaluate:

⟨ζ
k⃗1
ζ
k⃗2
ζ
k⃗3
⟩ ≃ ⟨

(︂
ζ
k⃗1

)︂2
ζ
k⃗3
⟩ = ⟨(ζshort)2 ζlong⟩ (9.64)

55



9.4. The consistency relation Chapter 9. The bispectrum: in-in formalism . . .

First we calculate the power-spectrum of short fluctuations when a long mode is present ⟨(ζshort)2⟩
⃓⃓⃓
ζlong

.

In real space, the background mode is homogeneous ζlong(x) = ζ long and it can be reabsorbed into a

rescaling of the spatial coordinates x̄i ≡ eζlongxi. After this rescaling, the action in the new coordinates
no longer contains ζ long. Now, if ζ long were exactly constant, computing the two-point function on top
of the long wavelength perturbation would be equivalent to computing the two-point function in the
“displaced” coordinates:

⟨ζshort(x⃗1)ζshort(x⃗2)⟩ζlong = ⟨ζshort(x⃗1)ζshort(x⃗2)⟩ (9.65)

If ζlong is slowly varying instead we can evaluate it at the middle point x⃗+ ≡ 1
2(x⃗1+ x⃗2). The two-point

correlation function will be:

⟨ζshort(x⃗1)ζshort(x⃗2)⟩|ζlong(x) ≃ ⟨ζshort(x⃗1)ζshort(x⃗2)⟩ = ξshort(x⃗1 − x⃗2) = ξshort(|x⃗−|) (9.66)

where we have defined x⃗− ≡ x⃗1 − x⃗2 and ξ is the two-point function, i.e. the Fourier transform of the
power-spectrum:

ξ(x⃗) ≡
∫︂

d3k⃗

(2π)3/2
Pζ(k)e

ik⃗·x⃗ (9.67)

At this point we expand the coordinate rescaling as x⃗− ≃ x⃗− + ζlong(x⃗+)x⃗− + . . . and substitute in
the expression above:

⟨ζshort(x⃗1)ζshort(x⃗2)⟩|ζlong(x) ≃ ξshort(|x⃗−|) + ζlong(x⃗+) [x⃗− · ∇ξshort(|x⃗−|)] (9.68)

The three-point function is:

⟨ζshort(x⃗1)ζshort(x⃗2)ζlong(x⃗3)⟩ ≃ ⟨ζlong(x⃗3)ζlong(x⃗+) [x⃗− · ∇ξshort(|x⃗−|)]⟩

=

∫︂
d3k⃗long

(2π)3/2

∫︂
d3k⃗+

(2π)3/2

∫︂
d3k⃗short
(2π)3/2

eik⃗long·x⃗3eik⃗+·x⃗+⟨ζ(k⃗3)ζ(k⃗+)⟩Pζ(kshort)

[︃
k⃗short ·

∂

∂k⃗short

]︃
eik⃗short·x⃗−

=

∫︂
d3k⃗longd

3k⃗short

(2π)3·3/2
eik⃗long·(x⃗3−x⃗+)Pζ(klong)Pζ(kshort)

[︃
k⃗short ·

∂

∂k⃗short

]︃
eik⃗short·x⃗− (9.69)

Integrating by parts:

Pζ(kshort)

[︃
k⃗short ·

∂

∂k⃗short

]︃
eik⃗short·x⃗− =

∂

∂k⃗short
·
(︂
Pζ(kshort)k⃗shorte

ik⃗short·x⃗−
)︂
− eik⃗short·x⃗− ∂

∂k⃗short
·
(︂
k⃗shortPζ(kshort)

)︂
(9.70)

using:

∂

∂k⃗short
·
(︂
k⃗shortPζ(kshort)

)︂
= 3Pζ(kshort) + kshort

dPζ(kshort)

dkshort
= Pζ(kshort)

dln
(︁
k3shortPζ(kshort)

)︁
dlnkshort

(9.71)

and inserting 1 =
∫︁
d3k⃗3δ

(3)(k⃗long + k⃗3) we obtain:∫︂
d3k⃗longd

3k⃗shortd
3k⃗3

(2π)3·3/2
δ(3)(k⃗long+k⃗3)e

−ik⃗3·x⃗3e−ik⃗long·x⃗+eik⃗short·x⃗−Pζ(klong)Pζ(kshort)
dln
(︁
k3shortPζ(kshort)

)︁
dlnkshort

(9.72)
In order to recover the necessary arguments of the exponentials, we let k⃗long ≡ k⃗1 + k⃗2 and k⃗short ≡
−1

2(k⃗1 − k⃗2) so that:

⟨ζshort(x⃗1)ζshort(x⃗2)ζlong(x⃗3)⟩ ≃

= −
∫︂
d3k⃗1d

3k⃗2d
3k⃗3

(2π)3·3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)e

−ik⃗1·x⃗1e−ik⃗2·x⃗2e−ik⃗3·x⃗3Pζ(k1)Pζ(k3)
dln
(︁
k31Pζ(k1)

)︁
dlnk1

(9.73)
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Fourier transforming the left hand side:

lim
k3→0
⟨ζ

k⃗1
ζ
k⃗2
ζ
k⃗3
⟩ = − 1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)Pζ(k1)Pζ(k3)

dln
(︁
k31Pζ(k1)

)︁
dlnk1

=
1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)(1− ns)Pζ(k1)Pζ(k3) (9.74)

This link is a very powerful one, since it applies to all single-scalar field models of inflation, regardless
of the details of the potential and not necessarily in the slow-roll regime [50]. The argument only relies
on the fact that the long wavelength mode remains frozen outside the horizon and does not evolve,
which is true for single-scalar field models. Observing a disagreement with the consistency relation
would rule out the whole class of single-scalar field models. In this sense, the consistency relation can
be used as a “particle detector”, in that it diagnoses extra fields during the inflationary epoch [39].

9.4.2 The consistency relation in power-law inflation

We have obtained the squeezed limit for power-law inflation in (9.58):

Bsqueezed
ζ (k1, k2, k3) =

2−3+ 4
1−ϵ e

2C
MP

√
2ϵ

π2
V 2
0

M8
P

(1− ϵ)3
(︂
Γ
(︂
1
2 + 1

1−ϵ

)︂)︂4
(−3 + ϵ)2ϵ

(k1k3)
−1− 2

1−ϵ (9.75)

Recall that the power-spectrum in power-law inflation is:

Pζ(k) =
4

ϵ
1−ϵ e

C
MP

√
2ϵ
(1− ϵ)2

(︂
Γ
(︂
1
2 + 1

1−ϵ

)︂)︂2
π(3− ϵ)ϵ

V0
M4

P

k−1− 2
1−ϵ (9.76)

and the scalar spectral index is:

ns − 1 = − 2ϵ

1− ϵ
(9.77)

If we plug these results into the consistency relation (9.63), we can verify that it is indeed satisfied.

We find for fNL:

fNL = −5

6

ϵ

1− ϵ
(9.78)

This result does not come as a surprise, however the important point here is that we never made use
of the slow-roll assumptions. This is a new step that has never been fully studied in the literature
before. It is somehow reassuring that, even in the full model, we recover the consistency relation as
we expect.
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Chapter 10

A more “traditional” approach

In this chapter we perform the calculation in a “traditional” way, employing perturbation theory up
to second order and using Wick’s theorem to compute the three-point function. We mainly follow [22],
therefore we will work in the Poisson gauge with the gauge-invariant quantity R defined in (4.42) and
(4.45) and linked to ζ on superhorizon scales through (4.43) at linear order. Then we briefly discuss
how to make contact between the two variables.

The main steps of the calculation are the following:

• write down the perturbed Einstein equations up to second order;

• introduce the gauge-invariant comoving curvature perturbation R to first and second order;

• express all the quantities as a function of the (first-order) gauge-invariant comoving curvature
perturbation R(1) and of its time derivative R(1)′;

• go to Fourier space and compute the tree-level bispectrum, using Wick’s theorem to evaluate
the contractions.

The first two steps have already been explored in chapter 4 and chapter 6, what is left to do is ex-
pressing all the quantities in terms of the curvature perturbation and applying Wick’s theorem.
Again, we will encounter integrals of three Bessel functions or three Hankel functions, which we don’t
know how to solve. In this case, if we focus on superhorizon scales and set a cutoff in the integration
we do get a finite result. However, as we will see, we are still probably missing a piece, since we are
unable to recover the expected result in the slow-roll limit, which is our only consistency check.

10.1 Rewriting of R(2)

We recall the definitions of equations (4.42) and (4.45):

R = R(1) +
1

2
R(2) (10.1)

R(1) = ψ(1) +Hδ
(1)φ

φ′
0

(10.2)

R(2) =

(︄
ψ(2) +Hδ

(2)φ

φ′
0

)︄
+

(︂
ψ(1)′ + 2Hψ(1) +H δ(1)φ′

φ′
0

)︂2
H′ + 2H2 −Hφ′′

0
φ′
0

− 1

3
∂iω

(1)∂iω(1) (10.3)

The third term in R(2) vanishes in the Poisson gauge. Let’s deal separately with the first and the
second piece.
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R(2) =

(︄
ψ(2) +Hδ

(2)φ

φ′
0

)︄
⏞ ⏟⏟ ⏞

R(2)
2

+

(︂
ψ(1)′ + 2Hψ(1) +H δ(1)φ′

φ′
0

)︂2
H′ + 2H2 −Hφ′′

0
φ′
0⏞ ⏟⏟ ⏞

R(2)
1

(10.4)

The second piece R(2)
1 is quadratic in first order quantities. The first piece R(2)

2 is made of intrinsically
second order quantities.

In R(2)
1 we can use (4.18) to express δ(1)φ and δ(1)′φ in terms of ϕ(1) and ϕ(1)′, and we can use the

e.o.m. for ϕ(1) (4.25) to get rid of second time derivatives when they appear. Furthermore, we apply
the second order results (4.20), (4.23) and (6.16).
Then from the definition (4.42) it follows that:

ϕ
(1)

k⃗
= −4πGφ′2

0

H
1

k2
R(1)′

k⃗
(10.5)

ϕ
(1)′
k⃗

=
4πGφ′2

0

H
R(1)

k⃗
+

4πGφ′2
0

k2

(︃
1 +

4πGφ′2
0

H2

)︃
R(1)′

k⃗
(10.6)

This way we manage to express everything in terms of R(1) and R(1)′ and a time integral carrying the
kernel in (6.16).

Similarly in R(2)
2 :

R(2)

2,k⃗
=ψ

(2)

k⃗
+H

δ(2)φ
k⃗

φ′
0

=ϕ
(2)

k⃗
+

1

k2
γ
k⃗
+

H
4πGφ′2

0

(︄
ϕ
(2)′
k⃗

+Hϕ(2)
k⃗

+
1

k2
γ′
k⃗
−

1

k2
(︁
α
k⃗
− 8πGβ

k⃗

)︁)︄
(10.7)

where α, β, γ have been introduced before in chapter 4 and are quadratic in first order quantities,
therefore they are convolutions in Fourier space.

In R(2)
2 we will have:

R(2)

2,k⃗
= ϕ

(2)

k⃗

(︃
1 +

H2

H2 −H′

)︃
+ ϕ

(2)′
k⃗

H
H2 −H′⏞ ⏟⏟ ⏞

contains the time integral

+
1

k2

(︃
γ
k⃗
+

H
H2 −H′γ

′
k⃗

)︃
+

H
H2 −H′

(︃
− 1

k2
(︁
α
k⃗
− 8πGβ

k⃗

)︁)︃
⏞ ⏟⏟ ⏞

quadratic in first order quantities

So at the end the whole R(2) will be of the form:

R(2)

k⃗
=

(︃
1 +

H2

H2 −H′ +
H

H2 −H′
∂

∂τ

)︃
ϕ
(2)

k⃗
+

∫︂
d3p⃗1d

3p⃗2
(2π)3/2

δ(3)(p⃗1 + p⃗2 − k⃗)·{︂
g1(τ, k⃗, p⃗1, p⃗2)R

(1)
p⃗1
R(1)

p⃗2
+ g2(τ, k⃗, p⃗1, p⃗2)R

(1)
p⃗1
R(1)′

p⃗2

+ g3(τ, k⃗, p⃗1, p⃗2)R
(1)′
p⃗1
R(1)

p⃗2
+ g4(τ, k⃗, p⃗1, p⃗2)R

(1)′
p⃗1
R(1)′

p⃗2

}︂ (10.8)
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where the functions gi depend on time and on the momenta:

g1(τ, k⃗, p⃗1, p⃗2) =
k4 − 2k2(p21 + p22) + 3(p21 − p22)2

2pk4

g2(τ, k⃗, p⃗1, p⃗2) =−
1

2p(p− 1)p22k
4(−τ)

(︁
−9p(p21 − p22)2 + 6p(p21 + p22)k

2 − (2 + 3p)k4
)︁
+

− 1

2p(p− 1)p22k
4

(︁
3p22(p− 1)2(p21 − p22)2 − (p− 1)2(p21 + 3p22)p

2
2k

2
)︁
(−τ)

g3(τ, k⃗, p⃗1, p⃗2) =g2(τ, k⃗, p⃗2, p⃗1)

g4(τ, k⃗, p⃗1, p⃗2) =−
1

2pp21p
2
2k

4

(︁
3(p21 − p22)2(p21 + p22)− (3(p41 + p42) + 2p21p

2
2)k

2 + 2(p21 + p22)k
4
)︁
+

+
1

2p(p− 1)2p21p
2
2k

4τ2
(︁
3(p+ 1)(4p− 1)(p21 − p22)2+

−2(p+ 1)(4p− 1)(p21 + p22)k
2 + (3− 11p+ 18p2)k4

)︁
+

+
(p− 1)2τ2

2p2
(10.9)

The functions g1 and g4 are symmetric under exchange of the last two arguments, g2 and g3 are not,
but when summing both terms with one time derivative we recover the symmetry, as we must.

10.2 Applying Wick’s theorem

The tree-level bispectrum is:

⟨R
k⃗1
R

k⃗2
R

k⃗3
⟩ = 1

2
⟨R(1)

k⃗1
R(1)

k⃗2
R(2)

k⃗3
⟩+ 1

2
⟨R(1)

k⃗1
R(2)

k⃗2
R(1)

k⃗3
⟩+ 1

2
⟨R(2)

k⃗1
R(1)

k⃗2
R(1)

k⃗3
⟩ (10.10)

R(2) is given in (10.8). Therefore:

⟨R
k⃗1
R

k⃗2
R

k⃗3
⟩ = 1

2

∫︂
d3p⃗1d

3p⃗2
(2π)3/2

δ(3)(p⃗1 + p⃗2 − k⃗3)·{︄
⟨R(1)

k⃗1
R(1)

k⃗2

(︃
1 +

H2

H2 −H′ +
H

H2 −H′
∂

∂τ

)︃
ϕ
(2)

k⃗3
⟩

+ g1(τ, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
R(1)

k⃗2
R(1)

p⃗1
R(1)

p⃗2
⟩+ g2(τ, k⃗3, p⃗1, p⃗2)⟨R

(1)

k⃗1
R(1)

k⃗2
R(1)

p⃗1
R(1)′

p⃗2
⟩

+ g3(τ, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
R(1)

k⃗2
R(1)′

p⃗1
R(1)

p⃗2
⟩+ g4(τ, k⃗3, p⃗1, p⃗2)⟨R

(1)

k⃗1
R(1)

k⃗2
R(1)′

p⃗1
R(1)′

p⃗2
⟩

}︄
+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3

(10.11)

We have written schematically the last two pieces, but actually it is not enough to switch the two
momenta: there are some complex conjugates to take care of, and sometimes τ ←→ η.

We quantize as:

R̂(1)
(x⃗, τ) =

∫︂
d3k⃗

(2π)3/2

[︂
θ
k⃗
(τ)â

k⃗
+ θ∗−k⃗

(τ)â†
−k⃗

]︂
eik⃗·x⃗ (10.12)

with the usual modefunctions (6.30):

θk(τ) = c(−τ)νH(1)
ν (−kτ) α =

1 + p

2(p− 1)
ν =

3p− 1

2(p− 1)
α = ν − 1 (10.13)
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When performing the contractions, we will find pieces like:

⟨R̂(1)
q⃗1

(τ1)R̂
(1)
q⃗2

(τ2)⟩ = θq1(τ1)θ
∗
q1(τ2)δ

(3)(q⃗1 + q⃗2) ≡ GRR(q1; τ1, τ2)δ
(3)(q⃗1 + q⃗2)

⟨R̂(1)
q⃗1

(τ1)R̂
(1)′
q⃗2

(τ2)⟩ = θq1(τ1)θ
∗′
q1(τ2)δ

(3)(q⃗1 + q⃗2) ≡ GRR′(q1; τ1, τ2)δ
(3)(q⃗1 + q⃗2)

⟨R̂(1)′
q⃗1

(τ1)R̂
(1)
q⃗2

(τ2)⟩ = θ′q1(τ1)θ
∗
q1(τ2)δ

(3)(q⃗1 + q⃗2) ≡ GR′R(q1; τ1, τ2)δ
(3)(q⃗1 + q⃗2)

⟨R̂(1)′
q⃗1

(τ1)R̂
(1)′
q⃗2

(τ2)⟩ = θ′q1(τ1)θ
∗′
q1(τ2)δ

(3)(q⃗1 + q⃗2) ≡ GR′R′(q1; τ1, τ2)δ
(3)(q⃗1 + q⃗2)

(10.14)

10.3 Time-integrated piece

We focus first on the piece containing the time integral over the source, carried by ϕ(2). Recall from
equation (6.16):

ϕ
(2)

k⃗
(τ) = 2α ((1− p)τ)α [bJ(k)Jα(−kτ) + bY (k)Yα(−kτ)]

+
π

4i
(−τ)α

∫︂ τ

τi

dη(−η)1−α
[︁
H(1)

α (−kη)H(2)
α (−kτ)−H(1)

α (−kτ)H(2)
α (−kη)

]︁
S
k⃗
(η) (10.15)

The contribution from the homogeneus solution can be set to zero with the choice of the initial
condition. Let’s consider the inhomogeneous piece.

The source term can be rewritten in terms of R(1) and R(1)′, as shown before. Schematically:

S
k⃗
(η) =S1(η, k⃗, p⃗1, p⃗2)R

(1)
p⃗1

(η)R(1)
p⃗2

(η) + S2(η, k⃗, p⃗1, p⃗2)R
(1)
p⃗1

(η)R(1)′
p⃗2

(η)+

S3(η, k⃗, p⃗1, p⃗2)R
(1)′
p⃗1

(η)R(1)
p⃗2

(η) + S4(η, k⃗, p⃗1, p⃗2)R
(1)′
p⃗1

(η)R(1)′
p⃗2

(η) (10.16)

For example, if we consider the first contribution in (10.11) where the second order piece is associated
to k⃗3:

⟨R(1)

k⃗1
(τ)R(1)

k⃗2
(τ)

(︃
1 + p+ (p− 1)(−τ) ∂

∂τ

)︃
ϕ
(2)

k⃗3
(τ)⟩ =

=

∫︂
d3p⃗1d

3p⃗2
(2π)3/2

δ(3)(p⃗1 + p⃗2 − k⃗3)
(︃
1 + p+ (p− 1)(−τ) ∂

∂τ

)︃{︄
π

4i
(−τ)α·∫︂ τ

τi

dη(−η)1−α
[︁
H(1)

α (−k3η)H(2)
α (−k3τ)−H(1)

α (−k3τ)H(2)
α (−k3η)

]︁
·(︂

S1(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)

p⃗1
(η)R(1)

p⃗2
(η)⟩+

S2(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)

p⃗1
(η)R(1)′

p⃗2
(η)⟩+

S3(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)′

p⃗1
(η)R(1)

p⃗2
(η)⟩+

S4(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)′

p⃗1
(η)R(1)′

p⃗2
(η)⟩

)︂}︄
(10.17)

=

∫︂
d3p⃗1d

3p⃗2
(2π)3/2

δ(3)(p⃗1 + p⃗2 − k⃗3)
π

4i

{︄
(−τ)α

∫︂ τ

τi

dη(−η)1−α·

(p− 1)(−k3τ)
(︂
H(1)

α (−k3η)H(2)
α+1(−k3τ)−H

(1)
α+1(−k3τ)H

(2)
α (−k3η)

)︂
·(︂

S1(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)

p⃗1
(η)R(1)

p⃗2
(η)⟩+

S2(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)

p⃗1
(η)R(1)′

p⃗2
(η)⟩+

S3(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)′

p⃗1
(η)R(1)

p⃗2
(η)⟩+

S4(η, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
(τ)R(1)

k⃗2
(τ)R(1)′

p⃗1
(η)R(1)′

p⃗2
(η)⟩

)︂}︄
(10.18)
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where in the last step we have taken care of the time derivative.

Now we perform the contractions by applying Wick’s theorem. We only keep connected pieces, i.e.
the terms proportional to δ(3)(k⃗1 + k⃗2) will be discarded.
The parenthesis containing the vacuum expectation values gives:

(. . . ) =δ(3)(k⃗1 + k⃗2)δ
(3)(p⃗1 + p⃗2)

(︂
S1GRR(k1; τ, τ)GRR(p1; η, η) + S2GRR(k1; τ, τ)GRR′(p1; η, η)+

S3GRR(k1; τ, τ)GR′R(p1; η, η) + S4GRR(k1; τ, τ)GR′R′(p1; η, η)
)︂
+

δ(3)(k⃗1 + p⃗1)δ
(3)(k⃗2 + p⃗2)

(︂
S1GRR(k1; τ, η)GRR(k2; τ, η) + S2GRR(k1; τ, η)GRR′(k2; τ, η)+

S3GRR′(k1; τ, η)GRR(k2; τ, η) + S4GRR′(k1; τ, η)GRR′(k2; τ, η)
)︂
+

δ(3)(k⃗1 + p⃗2)δ
(3)(k⃗2 + p⃗1)

(︂
S1GRR(k1; τ, η)GRR(k2; τ, η) + S2GRR′(k1; τ, η)GRR(k2; τ, η)+

S3GRR(k1; τ, η)GRR′(k2; τ, η) + S4GRR′(k1; τ, η)GRR′(k2; τ, η)
)︂

(10.19)

When integrating over p⃗1 and p⃗2, the net result is a factor 2, thanks to the Dirac deltas. In fact S1
and S4 are symmetric under the exchange of the last two arguments, so they give straightforwardly
two equal terms; S2 and S3 are not symmetric, but the sum of the two terms is, so when adding the
pieces from both terms we find pairs of equal objects.

Finally:

⟨R(1)
k1

(τ)R(1)
k2

(τ)

(︃
1 + p+ (p− 1)(−τ) ∂

∂τ

)︃
ϕ
(2)

k⃗3
(τ)⟩ =

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

π

2i

{︄
(−τ)α

∫︂ τ

τi

dη(−η)1−α·

(p− 1)(−k3τ)
(︂
H(1)

α (−k3η)H(2)
α+1(−k3τ)−H

(1)
α+1(−k3τ)H

(2)
α (−k3η)

)︂
·(︂

S1(η, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ∗k1(η)θ
∗
k2(η)+

S2(η, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ∗k1(η)θ
∗′
k2(η)+

S3(η, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ∗′k1(η)θ
∗
k2(η)+

S4(η, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ∗′k1(η)θ
∗′
k2(η)

)︂}︄

(10.20)

and then I will have the terms k⃗2 ←→ k⃗3 and k⃗1 ←→ k⃗3.

10.3.1 Parametrization of the source term

We rewrote the source as in (10.16), by explicitly writing α, β, γ and their derivatives all in terms of
R(1) and R(1)′. Following the suggestion in [51], we rewrite everything in terms of the maginudes of
the momenta, getting rid of scalar products thanks to the Dirac delta, which enforces k⃗1+ k⃗2+ k⃗3 = 0.
The normalization of the scale factor (6.5) has been used.

S1(τ, k⃗, p⃗1, p⃗2) = (10.21)

− 1

2p

1

k4
(︁
3(p21 − p22)2(p21 + p22) + (−6p41 − 6p42 + 4p21p

2
2)k

2 + 3(p21 + p22)k
4
)︁
+

1

τ2

[︃
1

(p− 1)2p

1

k4
(︁
3(4p− 1)(p21 − p22)2 − 2(4p− 1)(p21 + p22)k

2 + (3 + 2p)k4
)︁]︃

(10.22)
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S2(τ, k⃗, p⃗1, p⃗2) = (10.23)

1

(−τ)

[︄
− 1

2p(p− 1)

1

p22k
4

(︂
3(p21 − p22)2(p21 + p22 + 3pp22)+

− 2(3p41 + 2(1 + 3p)p42 − p21p22)k2 + (3p21 + (1 + 3p)p22)k
4
)︂]︄

+

1

(−τ)3

[︄
1

2p(p− 1)3
1

p22k
4

(︂
3(−2 + p+ 13p2)(p21 − p22)2+

− 2(−2 + p+ 13p2)(p21 + p22)k
2 + (6 + p(−17 + 31p))k4

)︂]︄

S2 and S3 are the same up to the exchange of p⃗1 ←→ p⃗2:

S3(τ, k⃗, p⃗1, p⃗2) = S2(τ, k⃗, p⃗2, p⃗1)

S4(τ, k⃗, p⃗1, p⃗2) = (10.24)

− 1

p

1

k4

(︂
− 3(p21 − p22)2 + 2(p21 + p22)k

2 + k4
)︂
+

1

τ2

[︄
1

2p(p− 1)2
1

p21p
2
2k

4

(︂
3(1− 8p)(p21 − p22)2(p21 + p22)+

+ 2(13p(p41 + p42) + 2(−2 + 3p)p21p
2
2)k

2 − (3 + 14p)(p21 + p22)k
4 + 4pk6

)︂]︄
+

1

τ4

[︄
2

p(p− 1)4
1

p21p
2
2k

4

(︂
3p(1 + p)(−2 + 5p)(p21 − p22)2+

− 2p(1 + p)(−2 + 5p)(p21 + p22)k
2 + (1 + 3p− 24p2 + 30p3)k4

)︂]︄

To compute the integrals over conformal time, it is convenient to single out the powers of time:

S1 −→
1

τ2
S1,2 + S1,0

S2 −→
1

(−τ)3
S2,3 +

1

(−τ)
S2,1

S3 −→
1

(−τ)3
S3,3 +

1

(−τ)
S3,1

S4 −→
1

τ4
S4,4 +

1

τ2
S4,2 + S4,0 (10.25)

where the Si,j are functions of k⃗, p⃗1, p⃗2 only. Again, S1,j and S4,j are symmetric under the exchange

k⃗1 ←→ k⃗2 while S2,j and S3,j are not.
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10.4 Non-integrated piece

The contribution from the remaining part of the three-point function, the one in (10.11) that does not
carry the integration over time, is:

⟨R
k⃗1
R

k⃗2
R

k⃗3
⟩
⃓⃓⃓
non-integrated piece

=
1

2

∫︂
d3p⃗1d

3p⃗2
(2π)3/2

δ(3)(p⃗1 + p⃗2 − k⃗3)·{︂
g1(τ, k⃗3, p⃗1, p⃗2)⟨R

(1)

k⃗1
R(1)

k⃗2
R(1)

p⃗1
R(1)

p⃗2
⟩+ g2(τ, k⃗3, p⃗1, p⃗2)⟨R

(1)

k⃗1
R(1)

k⃗2
R(1)

p⃗1
R(1)′

p⃗2
⟩

+ g3(τ, k⃗3, p⃗1, p⃗2)⟨R
(1)

k⃗1
R(1)

k⃗2
R(1)′

p⃗1
R(1)

p⃗2
⟩+ g4(τ, k⃗3, p⃗1, p⃗2)⟨R

(1)

k⃗1
R(1)′

k⃗2
R(1)′

p⃗1
R(1)

p⃗2
⟩
}︂

+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3

As before, applying Wick’s theorem and integrating over p⃗1, p⃗2:

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

{︂
g1(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ

∗
k1(τ)θ

∗
k2(τ)+

g2(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ
∗
k1(τ)θ

∗′
k2(τ)+

g3(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ
∗′
k1(τ)θ

∗
k2(τ)+

g4(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ
∗′
k1(τ)θ

∗′
k2(τ)

}︂
+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3 (10.26)

The functions gi have been given in (10.9).

10.5 Full bispectrum

We should now put together the time-integrated and the non-integrated pieces. Schematically:

⟨R
k⃗1
R

k⃗2
R

k⃗3
⟩

=
1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

{︄
i
π

2
(cc∗)2 k3(p− 1)(−τ)−4+3νH(1)

ν (−k1τ)H(1)(−k2τ)·∫︂ τf

τi

dη(−η)2+ν
(︂
H(1)

ν (−k3τ)H(2)
ν−1(−k3η)−H

(1)
ν−1(−k3η)H

(2)
ν (−k3τ)

)︂
·{︂(︂

(−τ)4S1,0(k⃗3, k⃗1, k⃗2) + (−τ)2S1,2(k⃗3, k⃗1, k⃗2)
)︂
H(2)

ν (−k1η)H(2)
ν (−k2η)+(︂

−k2(−τ)3S2,1(k⃗3, k⃗1, k⃗2)− k2(−τ)S2,3(k⃗3, k⃗1, k⃗2)
)︂
H(2)

ν (−k1η)H(2)
ν−1(−k2η)+(︂

−k1(−τ)3S3,1(k⃗3, k⃗1, k⃗2)− k1(−τ)S3,3(k⃗3, k⃗1, k⃗2)
)︂
H

(2)
ν−1(−k1η)H

(2)
ν (−k2η)+(︂

k1k2(−τ)4S4,0(k⃗3, k⃗1, k⃗2) + k1k2(−τ)2S4,2(k⃗3, k⃗1, k⃗2)+

+k1k2S4,4(k⃗3, k⃗1, k⃗2)
)︂
H

(2)
ν−1(−k1η)H

(2)
ν−1(−k2η)

}︂
+

g1(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ
∗
k1(τ)θ

∗
k2(τ) + g2(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ

∗
k1(τ)θ

∗′
k2(τ)+

g3(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ
∗′
k1(τ)θ

∗
k2(τ) + g4(τ, k⃗3, k⃗1, k⃗2)θk1(τ)θk2(τ)θ

∗′
k1(τ)θ

∗′
k2(τ)

}︄
+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3 (10.27)

As before, we need to integrate three Hankel functions times some power of conformal time. One can
try to set a cutoff and approximate to superhorizon scales, as attempted before in the in-in formalism
framework. The calculation is reported in Appendix B.
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The final result of this calculation is not yet ready to be compared with the in-in formalism approach:
there are some additional contribution, due to the different definitions of the gauge-invariant variables
ζ and R.

10.6 Comparison between the two approaches

The variable ζ as defined by Maldacena in the gauge (8.4) is equivalent to R at the linear level and
on superhorizon scales. We refer to [28] for a discussion about the different conventions used in the
literature, however at the linear level the definitions of R and of ζ all agree, up to a sign. But, when
we go to second order, things change. Maldacena [27] defines the variable through an exponential,
Acquaviva et al. [22] use a different variable.

Let us first consider these two definitions:

e2ζM = 1 + 2ζM + 2ζ2M +O(ζ3) 1 + ζ(1) +
1

2
ζ(2) +O(ζ3) (10.28)

Comparing the two, up to second order we can write the following relation:

ζM ≃ ζ(1) +
1

2
ζ(2) −

(︂
ζ(1)
)︂2

(10.29)

The bispectra are related as:

⟨ζ
M,k⃗1

ζ
M,k⃗2

ζ
M,k⃗3
⟩ = 1

2
⟨ζ(1)

k⃗1
ζ
(1)

k⃗2
ζ
(2)

k⃗3
⟩+ 2 perm.− ⟨ζ(1)

k⃗1
ζ
(1)

k⃗2

(︂
ζ(1)
)︂2
k⃗3
⟩+ 2 perm. (10.30)

so there is an additional contribution.

Acquaviva et al. worked in terms of the gauge-invariant variable R. As pointed out in [52], in the
uniform field or comoving gauge where δφ = 0 we have:

ζM = R(1)
A +

(︂
R(1)

A

)︂2
+

1

2
R(2)

A −
1

2

(︂
R(1)′

A + 2HR(1)
A

)︂2
H′ + 2H2 −Hφ′′

0
φ′
0

(10.31)

the last correction term comes from the fact that R(2)
A is not the curvature perturbation defined on

comoving hypersurfaces, as one can verify by setting δφ = 0 in the definition, and fails to be conserved
on large scales.

Therefore:

⟨ζMζMζM ⟩ =
1

2
⟨R(1)

A R
(1)
A R

(2)
A ⟩+ ⟨R

(1)
A R

(1)
A

(︂
R(1)

A

)︂2
⟩ − 1

2
⟨R(1)

A R
(1)
A

(︂
R(1)′

A + 2HR(1)
A

)︂2
H′ + 2H2 −Hφ′′

0
φ′
0

⟩+ 2 perm.

(10.32)

One can check that, even taking care of these additional contributions, the result shown in the Ap-
pendix (B.31) still does not match the slow-roll limit (5.19): the coefficients of the momenta are
different. This could be due to the integration procedure: as we have seen before, setting a cutoff and
only looking at superhorizon scales may be an intrinsically flawed procedure. This is a delicate point
and it is worthy of further investigation.
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Chapter 11

Climbing scalars

We now turn to the second part of this work, devoted to the analysis of a particular model for the onset
of inflation. The final goal will be to have a prediction for non-Gaussianity in this class of models,
here we will only present the first part of this project. We will study numerically the power-spectrum
for one of these models and discuss the expectations for the next steps.

11.1 Starting point: CMB anomalies

One of the anomalies in the CMB is the lack of power at large angular scales: with respect to ΛCDM,
there is a lack of power in the two-point correlation function of temperature anisotropies for angles
larger than ∼ 60◦, with a typical 2 to 3σ significance. This was already noticed by COBE and later
confirmed by WMAP and Planck, see [53] and references therein.
The CMB temperature power-spectrum is shown in Figure 11.1, the region we are interested in is the
low-ℓ region, corresponding to the largest angular scales. They correspond to the first wavelengths
that exited the horizon during the inflationary epoch1.

This anomaly can be explained as statistical fluctuation, but only if one accepts to be living in a very
particular realization of the ΛCDM model. We cannot blame systematics because different experi-
ments confirmed the effect. Furthermore, we cannot ascribe the effect to residual foreground emission,
because this should increase the power rather than reduce it, and the significance of the anomaly
grows when extending the Galactic mask which is a very conservative choice [53].

For completeness, we mention that there are two main possibilities in suppressing the low ℓ amplitudes
[3]:

• play with physics of the inflationary phase in the early Universe, in particular choose kinetic-
dominated initial conditions at the onset of inflation. The key point is the existence of a stage

1Let’s make contact between the wavenumber k and the angular scale ℓ. In the flat sky approximation, if DLS is the
comoving distance to the last scattering surface, a comoving length lcom at last scattering subtends an angle on the sky:

θ =
lcom
DLS

(11.1)

This is to be calibrated on the sound horizon, with Planck results [54]:

θs =
rs

dA(zs)
rs = 144.71± 0.60 Mpc, θs = (1.04131± 0.00062)× 10−2 (11.2)

Using lcom ∼
π

k
and θ ∼

π

ℓ
, we obtain:

ℓ ∼ kdA (11.3)
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Figure 11.1: Planck 2015 CMB power-spectrum of temperature fluctuations, compared with the base ΛCDM
fit, and residuals. From [55].

during which the velocity of the scalar field is not negligible, either before or during the observed
65 e-folds, so the usual slow-roll approach breaks down in that regime;

• attribute the suppression to late Universe physics, under the influence of an effective cosmological
constant. This would relate the suppression of CMB anisotropy power at horizon scales ∼ H−1 to
the smallness of the cosmological constant, which becomes dominant precisely at times ∼ H−1.
In this scenario, late time acceleration and low power on largest scales seem two unrelated
problems are linked in a “why now?” problem.

Of course in the following we will focus on the first one.

The primordial power-spectrum is usually parametrized in terms of an amplitude As and a tilt ns− 1
as:

Pζ(k) = As

(︃
k

k∗

)︃ns−1

(11.4)

where k∗ is a pivot scale. As we have already mentioned, Planck measures [31]:

As =
(︁
2.101+0.031

−0.034

)︁
× 10−9 ns = 0.9649± 0.0042 at 68%, k∗ = 0.05 Mpc−1 (11.5)

Lack of power at large angular scales is a typical manifestation of early departures from slow-roll, which
follow naturally the emergence from an initial singularity. When this happens, the power-spectrum
approaches a limiting behaviour in the infrared [53,56,57]:

Pζ(k) = As
k3

(k2 +∆2)2−
ns
2

(11.6)

where ∆ is a new physical scale that enters into play and controls the transition from large-scale
depression to the usual ns − 1 tilt. The new scale ∆ could be around 10−4 Mpc−1.

Comparison is shown in Figure 11.2, where 11.2a is the case of a perfect scale invariance.
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Figure 11.2: Comparison between the usual power law power-spectrum and the modified one.

11.2 Climbing scalars

A fascinating way to obtain a power-spectrum like (11.6) relies on the phenomenon of “climbing
scalars”. These arise in String Theory in a supersymmetry breaking scenario, which leaves behind a
leading exponential potential for a ubiquitous scalar degree of freedom, the dilaton ϕ, playing here the
role of the inflaton. Under certain conditions on the exponent, the scalar can be compelled to emerge
from the Big Bang while climbing up an exponential potential, then bounce back and slowly roll down,
thus injecting an inflationary phase. This happens for certain “critical” value of the exponent [1,2] and
beyond, and String Theory gives a sharp prediction for the exponent of the potential. Remarkably,
the transition occurs precisely at the value that is characteristic of orientifold models with “brane
supersymmetry breaking”. In this fashion, in their early Cosmology there is an upper bound for the
value of gs = eϕ, which is also the coupling constant of String Theory.
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In String Theory, one has to deal with a perturbation theory involving two parameters: the string
coupling constant gs, and the ratio between the string characteristic scale and the curvature radius of
the background geometry ls/R. Recall that ls =

√
α′, where the string tension is defined as 1/2πα′.

There may be issues with the expansion in ls/R, especially towards the initial singularity where α′

corrections are in principle large, but the perturbative expansion in gs is well under control thanks to
the climbing mechanism.

There are other reasons why these kind of models are interesting.
Naively, one could ask why the inflaton should be bound to slowly roll, when in the Early Universe
everything is moving “fast”. The climbing scalar models provide a natural mechanism to reach infla-
tion, starting from kinetic-dominated initial conditions, and to give inflation its initial impetus: the
scalar slows down while climbing, and if the key top-down exponential is supplemented by another
mild term, inflation can start in the ensuing descent.
In this fashion, these models motivate a new class of phenomena where inflation begins off the attrac-
tor. Numerical solutions show [2] that it is far less efficient to inflate off the attractor than on it, but
nonetheless it happens, and as the scalar looses its energy due to cosmic friction a slow roll is attained.
Finally, the claim behind these models is that we may be observing, on the largest scales, something
other than inflation, maybe a pre-inflationary phase. This would imply that inflation did not last
much longer than the approximately 60 e-folds needed to solve the horizon and flatness problems. As
we have already mentioned, this is connected to one of the most challenging issues arising in the EFT
approach to inflation, the “η-problem”.

We will now follow [1, 2] to illustrate the climbing phenomenon in the simplest model, consisting in
two exponential potentials. See also [58] and the class of integrable models in [59], which contain
analytic solutions of toy models that display clearly the transition from fast-roll to slow-roll via the
climbing. There are many other ways to achieve the climbing, since it is a universal phenomenon that
presents itself whenever the potential grows as eγϕ, with γ > γc, in an asymptotic region. Hence, if
the Starobinsky model is complemented by one such potential, climbing along it is inevitable, and
the ensuing descent combines slow-roll with the final oscillations in the well that end inflation. In
this fashion, one can provide a good fits to the CMB data [56], compatibly with small values of the
tensor-to-scalar ratio.

11.3 A simple model

Consider the class of low energy, four-dimensional actions for a single scalar field coupled to gravity:

S =

∫︂
d4x
√
−g
{︃
M2

P

R

2
− 1

2
(∂φ)2 − V (φ) + ...

}︃
(11.7)

We focus on spatially flat cosmology, for which the standard Friedmann-Lemâıtre-Robetrson Walker
metric reads:

ds2 = −dt2 + a2(t)dx⃗ · dx⃗ (11.8)

It will be useful to generalize this metric, considering a wider class:

ds2 = −e2B(x)dx2 + e2A(x)dx⃗ · dx⃗ (11.9)

which involves a “gauge function” B, and the scale factor has been written as a = eA. The “parametric
time” x and the actual cosmic time t measured by comoving observers are related through the function
B:

dt = ±eB(x)dx (11.10)

We will work with dimensionless variables:

dx =

√
3V

MP
dt χ =

1

MP

√︃
3

2
φ A =

A
3

(11.11)
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Making the gauge choice:
V e2B = V0 (11.12)

the Friedmann equation and the Klein-Gordon equation become:

dA
dx

=

√︄
1 +

(︃
dχ

dx

)︃2

(11.13)

d2χ

dx2
+
dχ

dx

√︄
1 +

(︃
dχ

dx

)︃2

+

[︄
1 +

(︃
dχ

dx

)︃2
]︄

1

2V

∂V

∂χ
= 0 (11.14)

A simple model that can experience the climbing is:

V = V0

(︂
e
√
6φ/MP + e

√
6γφ/MP

)︂
= V0

(︁
e2χ + e2γχ

)︁
0 < γ < 1 (11.15)

Here the first contribution is the “hard” exponential from String Theory, left behind by brane super-
symmetry breaking. The scalar is forced to emerge from the initial singularity while climbing up the
mild part of the potential, the second term, until it bounces against the String Theory wall, reverts
its motion and rolls back. The second term alone would give rise to Lucchin-Matarrese power-law
inflation [4], it is a “phenomenological” term that needs to be added in order for the scalar to drive
inflation at late times if γ < 1/

√
3. The initial climbing and reversal phases are the ones that can

leave imprints on the largest angular scales and cause the suppression (11.6).
The dynamics is determined by a single parameter, characterizing to which extent the scalar field feels
the impact with the steep portion of the potential.

11.3.1 Analytic solutions for the single exponential

Analytic solutions can be obtained for the class of single exponential potentials:

V = V0e
2γχ (11.16)

Equations (11.13) and (11.14) become:(︃
dA
dx

)︃2

−
(︃
dχ

dx

)︃2

= 1 (11.17)

d2χ

dx2
+
dχ

dx

√︄
1 +

(︃
dχ

dx

)︃2

+ γ

[︄
1 +

(︃
dχ

dx

)︃2
]︄
= 0 (11.18)

Notice that the equation for χ is effectively of first order. Furthermore, up to a field redefinition
χ ↦→ −χ, we can restrict ourselves to positive values of γ.

Equation (11.18) has an interesting analogy: it resembles the motion of a Newtonian particle in a
viscous medium, subject to a constant force [1]. The equation of motion is:

mv̇(t) + bv(t) = f v(t) = (v0 − vl)e−
bt
m + vl (11.19)

where vl = f/b is the limiting speed. As long as b is finite, there are two branches of solutions,
depending on whether the initial velocity v0 is larger or smaller than vl. As b −→ 0, the upper branch
disappears.
In our case too there are two branches of cosmological solutions if γ < 1, the climbing solution being
the branch that corresponds to v0 < vl. When we reach the “critical” value γ = 1, the descending
branch ceases to exist and only the climbing one is left.

We can solve the system (11.17)-(11.18) via the substitution:

dA
dx

= coshf
dχ

dx
= sinhf (11.20)
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Case 0 < γ < 1

There are two classes of solutions:

dχ

dx

⃓⃓⃓⃓
c

=
1

2

[︃√︃
1− γ
1 + γ

coth
(︂x
2

√︁
1− γ2

)︂
−
√︃

1 + γ

1− γ
tanh

(︂x
2

√︁
1− γ2

)︂]︃
(11.21)

dχ

dx

⃓⃓⃓⃓
d

=
1

2

[︃√︃
1− γ
1 + γ

tanh
(︂x
2

√︁
1− γ2

)︂
−
√︃

1 + γ

1− γ
coth

(︂x
2

√︁
1− γ2

)︂]︃
(11.22)

which, recalling that cothx− cschx = tanh(x/2), can also be rewritten as:

dχ

dx

⃓⃓⃓⃓
c

= − 1√︁
1− γ2

[︂
γcoth

(︂
x
√︁
1− γ2

)︂
− csch

(︂
x
√︁

1− γ2
)︂]︂

(11.23)

dχ

dx

⃓⃓⃓⃓
d

= − 1√︁
1− γ2

[︂
γcoth

(︂
x
√︁

1− γ2
)︂
+ csch

(︂
x
√︁

1− γ2
)︂]︂

(11.24)

Equation (11.21) describes a scalar field that emerges from the initial singularity climbing up the
exponential potential, then reverts its motion and eventually climbs down, while (11.22) describes a
field that emerges climbing down or descending. Both are shown in Figure 11.3. The system possesses
a double Z2 symmetry, it is left unchanged by the simultaneous transformation χ ↦→ −χ and γ ↦→ −γ.
This maps the two solutions into each other. The climbing solutions (11.21) initially climb up, then
revert their motion and go down. The stationary point depends on the value of γ: the larger it is, the
sooner in parametric time the solution reverses its motion. In our mechanical analogy, the climbing
solution would correspond to the branch v0 < vl.
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Figure 11.3: The climbing and descending solutions (11.21) and (11.22). Notice the analogy with the Newtonian
system. Both solution converge asymptotically to the limiting speed.

Close to the initial singularity:
dχ

dx
∼ ± 1

(1± γ)x
(11.25)

but in terms of cosmic time the dependence on γ disappears and the dynamics is initially dominated
by the kinetic terms:

dχ

dt
∼ ±1

t
(11.26)

In particular, we will focus on the climbing solution, for which the scale factor is given by:

dA
dx

=
1

2

[︃√︃
1− γ
1 + γ

coth
(︂x
2

√︁
1− γ2

)︂
+

√︃
1 + γ

1− γ
tanh

(︂x
2

√︁
1− γ2

)︂]︃
(11.27)
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The corresponding solutions are:

χ(x) = χ0 +
1

1 + γ
log sinh

(︂x
2

√︁
1− γ2

)︂
− 1

1− γ
log cosh

(︂x
2

√︁
1− γ2

)︂
(11.28)

A(x) = A0 +
1

1 + γ
log sinh

(︂x
2

√︁
1− γ2

)︂
+

1

1− γ
log cosh

(︂x
2

√︁
1− γ2

)︂
(11.29)

Notice that the integration constant A0 can be set to zero up to a rescaling of the spatial coordinates.
Instead, the integration constant χ0 does play an important role in dynamics. The solution is shown
in Figure 11.4.
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Figure 11.4: Climbing solution for different values of γ, the field χ(x) on the left and the scale factor a(x) on
the right. The initial value has been set to χ0 = −1.

In [56] the behaviour of the solutions (11.29), (11.28) close to the initial singularity x −→ 0 was studied.

χ(x)
x−→0∼ χ0 +

1

1 + γ
log
(︂x
2

√︁
1− γ2

)︂
(11.30)

A(x) x−→0∼ a0 +
1

1 + γ
log
(︂x
2

√︁
1− γ2

)︂
(11.31)

This approximation holds very well also in the case of the double exponential potential: in fact, the
first phase is mostly sensitive to the mild portion of the potential, the one depending on e2γχ.
The climbing phase ends at a turning point whose location, sensitive to χ0, determines to which
extent the scalar feels the first, “hard” exponential while reverting to a descending phase. Eventually,
if γ < 1/

√
3, the Universe will attain an accelerated expansion, again largely under the spell of the

mild exponential alone.

Lucchin-Matarrese attractor

For 0 < γ < 1, there is a special exact solution: the Lucchin-Matarrese attractor [4]. Both classes of
solution eventually approach in parametric time a limiting speed :

dχ

dx
= − γ√︁

1− γ2
dA
dx

=
1√︁

1− γ2
(11.32)

We can derive this limiting speed by requiring dχ
dx =const.

In cosmic time:

χ(t) = −1

γ
log

(︄
γ2√︁
1− γ2

√
3V0
MP

t

)︄
(11.33)

a(t) = e
χ0
3γ

(︄√
3V0
MP

γ2√︁
1− γ2

)︄1/3γ2

t1/3γ
2

(11.34)

73



11.3. A simple model Chapter 11. Climbing scalars

This is indeed power-law inflation a(t) ∝ tp with p = 1/3γ2 as in [15].

In conformal time:

τ − τ0 = −
MP e

−γχ0

√
V0

√︁
3(1− γ2)
1− 3γ2

e
− 1−3γ2√

1−γ2
x

(11.35)

Recall that τ is negative, according to our convention. The behaviour τ(x) is displayed in Figure 11.5.

5 10 15 20

-2.0

-1.5

-1.0

-0.5

Figure 11.5: Conformal time as a function of parametric time, for the attractor solution. As before γ = 0.1,
χ0 = −1 and V0 =MP = 1.

The corresponding expressions for the field and the scale factor are:

χ(τ) =
χ0

1− 3γ2
+

3γ

1− 3γ2
log

(︄√︄
V0

3M2
P

1− 3γ2√︁
1− γ2

(−τ)

)︄
(11.36)

a(τ) = e
− γχ0

1−3γ2

⎛⎝√︄3M2
P

V0

√︁
1− γ2

1− 3γ2

⎞⎠ 1
1−3γ2

(−τ)−
1

1−3γ2 (11.37)

that is, we recover (2.32) for the field, and the scale factor has the correct behaviour a(τ) ∝ (−τ)
p

1−p .

The limiting speed and the Lucchin-Matarrese attractor cease to exist when γ −→ 1−, in which case
the initial climbing phase of the second solution tends to shrink more and more towards the origin
and disappear. A single class of solutions remains, describing a climbing scalar.

About the scale factor normalization

Following [13], the definition of the scale factor should be, more rigorously:

a(t) = a∗

[︃
1 +

H∗(t− t∗)
p

]︃p
(11.38)

since this returns exactly de Sitter in the p −→∞ limit. In conformal time:

τ =

∫︂
dt

a(t)

τ − τ∗ = −
p

a∗H∗(p− 1)

(︃
1 +

H∗(t− t∗)
p

)︃1−p

a(τ) = a∗

[︃
a∗H∗(1− p)(τ − τ∗)

p

]︃ p
1−p

(11.39)
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What is a∗? Another way to fix the normalization is via the background equation of motion for the

field, with a(τ) = A(−τ)
p

1−p :

φ′′
0 + 2Hφ′

0 + a2
∂V

∂φ
= 0

(11.40)

This way we find, as before:

A =

⎛⎝e−γχ0

√︄
3M2

P

V0

√︁
1− γ2

1− 3γ2

⎞⎠ 1
1−3γ2

(11.41)

Its limit for γ −→ 0 is the inverse of the would-be de Sitter Hubble parameter, as expected:

lim
γ→0

A(−τ)
p

1−p = −1

τ

√︄
3M2

P

V0
≡ − 1

HDSτ
(11.42)

We can rewrite A in a more convenient way, getting rid of the exponent, if we collect the constants in
the expression for the field, reintroducing C as in (2.32):

φ0(τ) =MP

√︃
2

3

3γ

1− 3γ2
log(−τ) + C (11.43)

with:

C ≡MP

√︃
2

3

χ0

1− 3γ2
+MP

√︃
2

3

3γ

1− 3γ2
log

(︄√︄
V0

3M2
P

1− 3γ2√︁
1− γ2

)︄
(11.44)

The equation of motion gives:

A = e
− Cγ

MP

√︂
3
2

√︄
3M2

P

V0

√︁
1− γ2

1− 3γ2
(11.45)

Case γ = 1

The critical solution has a simpler form:

dχ

dx

⃓⃓⃓⃓
γ=1

=
1

2

[︃
1

x
− x

]︃
(11.46)

This is also the limit of the climbing solution in the case γ < 1 as γ approaches 1 from below, while
the descending solution becomes singular.

Case γ > 1

In the “overcritical” region, only one climbing solution survives:

dχ

dx

⃓⃓⃓⃓
γ>1

=
1

2

[︃√︃
γ − 1

γ + 1
cot
(︂x
2

√︁
γ2 − 1

)︂
−
√︃
γ + 1

γ − 1
tan

(︂x
2

√︁
γ2 − 1

)︂]︃
(11.47)

Near the initial singularity:
dχ

dx

⃓⃓⃓⃓
γ>1

∼ 1

(1 + γ)x
(11.48)

This time though the parametric time x only lives in a finite interval:

0 < x <
π√︁
γ2 − 1

(11.49)

The sharp change of the solutions at the critical value γ = 1 reminds of a phase transition. Recall
that for 0 < γ < 1 the Z2 transformations discussed above map the two branches of solutions into
each other, while for γ > 1 a single solution exist and that is mapped into itself, so the symmetry is
somehow recovered.
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Chapter 12

Focus on a particular model

12.1 Two-exponential potential

A particularly interesting class of potentials is [59]:

V = λ
(︂
e2γχ + e

2
γ
χ
)︂

(12.1)

with λ > 0 and 0 < γ < 1 so that the first term is a mild exponential while the second is a steep one.
For γ < 1/

√
3, the first term can drive an inflationary phase. The slopes of the two exponentials are

connected: the steeper the first one, the milder the second one. This model is interesting because it
offers relatively simple analytic solutions, at the price of linking the two slopes, which is anyway not
a big limitation.

We now follow [59] and briefly go through the main steps of their derivation.
We consider again the slight generalization of the FLRW metric given in (11.9):

ds2 = −e2B(x)dx2 + e2A(x)dx⃗ · dx⃗ (12.2)

where the parametric time x is linked to the cosmic time t through:

dt = ±eB(x)dx (12.3)

The sign can be chosen in order to recover the desired cosmology, as will be clear later.

We work with the dimensionless variables:

dx =

√
3V

MP
dt χ =

1

MP

√︃
3

2
φ A =

A
3

V =
1

M2
P

3

2
V (12.4)

The equations of motion for (A, χ) follow from the Lagrangian:

L = eA−B

[︄
−1

2

(︃
dA
dx

)︃2

+
1

2

(︃
dχ

dx

)︃2

− e2BV(χ)

]︄
(12.5)

For the potential (12.1) a convenient gauge choice is:

B = A (12.6)

which brings to:

L =
1

2

(︄(︃
dχ

dx

)︃2

−
(︃
dA
dx

)︃2
)︄
− e2Aλ

(︂
e2γχ + e

2
γ
χ
)︂

(12.7)
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The first part of the Lagrangian is “Lorentz invariant”, which suggest to perform the analogous of a
“Lorentz boost”:

ˆ︁A =
1√︁

1− γ2
(A+ γχ) (12.8)

ˆ︁χ =
1√︁

1− γ2
(χ+ γA) (12.9)

Now the Lagrangian has a separable form:

L =
1

2

⎛⎝(︃dˆ︁χ
dx

)︃2

−

(︄
d ˆ︁A
dx

)︄2
⎞⎠− λe2√1−γ2 ˆ︁A − λe 2

γ

√
1−γ2ˆ︁χ

(12.10)

and the resulting equations of motion for ˆ︁A and ˆ︁χ are independent and they have the form of energy
conservation relations: (︄

d ˆ︁A
dx

)︄2

= 2λ
(︂
e2

ˆ︁A√1−γ2
+ e2

ˆ︁A0

√
1−γ2

)︂
(12.11)(︃

dˆ︁χ
dx

)︃2

= 2λ

(︃
e
2ˆ︁χ0

√︂
1
γ2

−1 − e2ˆ︁χ
√︂

1
γ2

−1
)︃

(12.12)

Notice that ˆ︁χ cannot proceed arbitrarily along the steep exponential, but it is always bound to be less
than ˆ︁χ0, which is a manifestation of the climbing phenomenon.

The Hamiltonian constraint gives the relation between the two integration constants:

ˆ︁A0 =
1

γ
ˆ︁χ0 (12.13)

Defining:

ω2 ≡ 2λe2
ˆ︁A0

√
1−γ2

(︃
1

γ2
− 1

)︃
= 2λ

1− γ2

γ2
e2A0 (12.14)

the solutions for the scale factor and for the field are:

eA = eA0
[cosh (ω(x− x0))]

γ2

1−γ2

[sinh (ωγx)]
1

1−γ2

(12.15)

eχ = eχ0
[sinh (ωγx)]

γ

1−γ2

[cosh (ω(x− x0))]
γ

1−γ2
(12.16)

The parameter x0 is the one characterizing the evolution of the field and, in particular, how hard will
the impact with the steep exponential be.

The relation between parametric time and cosmic time is given by (12.3) with the gauge choice (12.6):

dt = ±eAdx = ±e

ˆ︁A− γˆ︁χ√︁
1− γ2dx (12.17)

which in our case gives:

dt = ±eA0
[cosh (ω(x− x0))]

γ2

1−γ2

[sinh (ωγx)]
1

1−γ2

dx (12.18)

There is an important remark to be made here. In order for the scale factor to describe an expanding
Universe, we should choose the minus sign. Large positive values of x translate into early cosmological
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epochs close to the initial singularity, while on the contrary small values of x translate into large values
of t.
This counter-intuitive relation will actually become useful when dealing with the problem numerically:
we will integrate in x from zero up to some value in parametric time, therefore larger upper extremum
of integration means we are looking further away in the past in cosmic time.

In conformal time:
dτ = −e

2
3
A(x)dx (12.19)

In Figures 12.2, 12.1 we show the behaviour of the scale factor and of the field (12.15), (12.16)
respectively. The plots are to be read from right to left: large parametric time corresponds to early
epochs, close to the initial singularity, then the field bounces against the steep portion of the potential,
reverts its motion and injects an inflationary phase. This system of coordinates kind of “compresses”
the inflationary phase close to x −→ 0.
The parameter γ is fixed a defines the model, the parameters (A0, x0) we are free to play with.

(a) Behaviour of the field, varying A0. (b) Behaviour of the field, varying x0.

Figure 12.1

(a) Behaviour of A(x), varying A0. (b) Behaviour of A(x), varying x0.

Figure 12.2

The impact of the scalar field impinging on the steep part of the potential is characterized both by
A0 and x0.
As can be seen in Figure 12.1a, decreasing A0 smooths the reversal of the field motion and simul-
taneously shifts it to larger parametric time, or earlier cosmological epochs. Moreover, it affects
the “velocity” of the field in parametric time towards the initial singularity. As we will show, the
asymptotic behaviour of the derivative only depends on the parameter A0 and not on x0:

dχ(x)

dx

x≫1−−−→ −
√
2λeA0

√︃
1− γ
1 + γ

(12.20)

Similarly, also increasing x0 shifts the maximum of the field towards larger x. However, the most
important effect in changing x0 is that it affects the height of the maximum along the vertical axis,
as can be seen in Figure 12.1b. Increasing x0 brings the peak higher, while varying A0 does not affect
the height.
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Schematically, A0 determines how drastic the impact of the field with the potential barrier will be,
x0 tells us how high the field gets to climb before reverting its motion and rolling down. The effect of
the two parameters is quite intertwined and the actual parametric time at which the reversal happens
depends on both of them.

A warning is in order. The dependence of our expressions (12.15), (12.16) on the parameters (A0, x0)
is quite complicated, it goes through hyperbolic sines and cosines. Therefore one cannot vary the
parameters arbitrarily: there is a certain range in which the effect on the dynamics is more evident.
See Figure 12.3. In particular, regarding x0, notice that the changes can be appreciated only inside a
small range of values, roughly [−0.1, 0.1], then there is a stabilization.

(a) Behaviour of the field, varying A0. (b) Behaviour of the field, varying x0.

Figure 12.3

12.2 Asymptotic behaviours

Since the full expressions can be complicated to deal with, it will be useful to study the asymptotic
behaviours of the scale factor and of the field.

12.2.1 Late cosmological epochs (small x)

Small parametric time x corresponds to late cosmological epochs, therefore we expect the system to
have reached the Lucchin-Matarrese attractor in this regime. Expanding (12.15) and (12.16) for small
x we find:

eA
x≪1−−−→ eA0 (cosh(x0ω))

γ2

1−γ2 (γω)
− 1

1−γ2 x
− 1

1−γ2 (12.21)

eχ
x≪1−−−→ eχ0 (cosh(x0ω))

− γ

1−γ2 (γω)
γ

1−γ2 x
γ

1−γ2 (12.22)

Figure 12.4: Full expression and Lucchin-Matarrese attractor, for A0 = 0 and x0 = 0. Notice the different scale
on the x axis.
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Using (12.19), the change of variable in this regime becomes:

τ ≃ −Kx1−
2

3(1−γ2) (12.23)

K ≡ (2λ)
− 1

3(1−γ2) e
− 2γ2

3(1−γ2)
A0 3

1− 3γ2
(︁
1− γ2

)︁1− 1
3(1−γ2)

(︄
cosh

(︄
√
2λeA0x0

√︁
1− γ2
γ

)︄)︄ 2γ2

3(1−γ2)

(12.24)

As a consistency check, we can substitute x ∼ (−τ)1+
2

1−3γ2 into (12.21) and (12.21). We obtain that

a(τ) ∝ (−τ)
3

−1+3γ2 and φ(τ) ∝ log(−τ), which are the expressions for power-law inflation [59].

12.2.2 Early cosmological epochs (large x)

Close to the initial singularity, the systems experiencing the climbing all show a universal behaviour.
The Mukhanov-Sasaki potential Ws =

z′′

z in (8.9) has the asymptotic form:

Ws
τ−→−∞−−−−−→ − 1

4(τ − τ0)2
(12.25)

where τ0 marks the initial singularity [2, 56]. It would be like solving the Mukhanov-Sasaki equation

with ν = 0, as a matter of fact the solutions in this regime are of the type H
(1)
0 (−kτ).

In order to find asymptotic expressions for the scale factor and for the field, we look at their derivatives.
The derivative of A(x) approaches a constant value:

dA(x)
dx

x−→∞−−−−→ −
√
2λeA0

√︃
1− γ
1 + γ

(12.26)

The constant of integration can be fixed by looking at the full expression for A(x) and keeping only
the most relevant exponentials in the hyperbolic functions.

A(x) ≃ A0 + log2−
√
2λeA0

√︃
1− γ
1 + γ

(x− xγ + x0γ) (12.27)

Similarly for the field:

χ(x) ≃ −
√
2λeA0√︁
1− γ2

(x(1− γ)− x0) (12.28)

Figure 12.5: Full expression and asymptotic behaviour at early epochs, for A0 = 0 and x0 = 0.

The change of variable in this limit becomes:

τ =
3

21/3
√
2λ

√︃
1 + γ

1− γ
exp

{︄
−A0

3
− 2
√
2λeA0 (x(1− γ) + x0γ)

3
√︁
1− γ2

}︄
(12.29)
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12.3 Perturbations

The equation of motion for ζ in conformal time is:

ζ ′′k + 2
z′

z
ζ ′k + k2ζk = 0 (12.30)

In terms of parametric time, we obtain:

dt = −eAdx d

dτ
= −e−

2A
3
d

dx

d2

dτ2
= e−

4A
3

(︃
−2

3

dA
dx

d

dx
+

d2

dx2

)︃
(12.31)

d2ζk
dx2

+ 2

(︄
d2χ
dx2

dχ
dx

−
d2A
dx2

dA
dx

)︄
dζk
dx

+ e
4A
3 k2ζk = 0 (12.32)

The quantity in parenthesis multiplying the first derivative term is:

d2χ
dx2

dχ
dx

−
d2A
dx2

dA
dx

=

d
dx

(︃
dχ
dx
dA
dx

)︃
dχ
dx
dA
dx

(12.33)

This equation is difficult to solve numerically, due to singularities that arise when x −→ 0 and spoil the
numerical integration. We need to rephrase the problem in terms of a more convenient variable.

Previously, we introduced the Mukhanov-Sasaki variable as v = zR in order to get rid of the first
derivative term and obtain an equation resembling an harmonic oscillator. In a similar fashion we can
define1:

z̃ ≡
dχ
dx
dA
dx

z̃ζ ≡ ṽ (12.34)

d2ṽ

dx2
+

(︄
e

4A
3 k2 −

d2z̃
dx2

z̃

)︄
ṽ = 0 (12.35)

At late epochs, corresponding to x −→ 0, we recover the well-known power-law inflation solution.

Furthermore z̃
x−→0−−−→ −γ which gives ṽ ≃ −γζ.

Equation (12.35) is the one we have to solve numerically.

12.3.1 Mukanov-Sasaki potential and a consistency check

As pointed out in [2] and later works on the subject, all the relevant information is contained in the
Mukhanov-Sasaki potential Ws =

z′′

z , see equation (8.9). The Mukhanov-Sasaki potential reaches the
limiting behaviour on the Lucchin-Matarrese attractor:

Ws
τ−→0−−−→

ν2 − 1
4

τ2
(12.36)

while towards the initial singularity τ0 it approaches:

Ws
τ−→τ0−−−−→ −1

4

1

(τ − τ0)2
(12.37)

These asymptotic behaviours indicate that at some point Ws is bound to cross the horizontal axis.
Moreover, this generic structure of the Mukhanov-Sasaki potential is universal to all the systems that
experience the climbing.

As a consistency check, we have computed z =
√
6MP e

A/3 dχ
dx

(︁
dA
dx

)︁−1
and the Mukhanov-Sasaki po-

tential for large x, close to the initial singularity, and we recover indeed the universal behaviour.

The potential Ws is displayed in Figure 12.6 for two sets of parameters. The dashed lines represent
the asymptotic behaviour at early times.

1To make contact with the notation of [2], z =
√
6MP az̃ and ṽ = 1√

6MP
Q. Our ṽ is, aside from an irrelevant constant,

the rescaled Mukhanov-Sasaki variable Q.
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(a) (b)

Figure 12.6

12.3.2 Bunch-Davies initial conditions

In order to solve the second order differential equation (12.35) we need to impose initial conditions. We
know that, when the modes are deep inside the horizon, the modefunctions vk must be asymptotically
the Minkowski ones:

vk(τ) ∼
1√
2k
e−ikτ (12.38)

Then we can fix ṽk by rescaling ṽk = vk√
6MP a

.

A way to approach the problem is to solve the e.o.m. (8.9) with the asymptotic form of z′′

z given in
(12.37). We find the familiar result, with ν = 0:

vk(τ) =
√
−τ
[︂
c1(k)H

(1)
0 (−kτ) + c2(k)H

(2)
0 (−kτ)

]︂
(12.39)

and imposing the Bunch-Davies prescription c2 = 0 and c1 =
√
2

π .
Using (12.29) to change variable and rescaling to get ṽk we finally obtain:

ṽBD
k (x) =

1

4MP
ie−

1
2
A0
√
π

(︃
1

2λ

1 + γ

1− γ

)︃1/4

·

H
(1)
0

(︃
−k 3

21/3
√
2λ

√︃
1 + γ

1− γ

)︃
exp

{︄
−A0

3
− 2

3

√
2λeA0 (x(1− γ) + x0γ)

3
√︁
1− γ2

}︄
(12.40)

One can check that using the e.o.m. for ṽk (12.35) and the asymptotic behaviour of the scale factor
and the field (12.27), (12.28) we obtain the same result. In that case, we would find the following
equation:

d2ṽk
dx2

+ bedxṽk = 0 (12.41)

b ≡ k224/3e4A0/3e
− 4

3

√
2λeA0γ√
1−γ2

x0
d ≡ −4

3

√
2λeA0

√︃
1− γ
1 + γ

(12.42)

The solutions are Hankel functions of index 0 and argument
2
√
bedx

d
, as found above.

12.4 Numerical solution

Equation (12.35) has been solved numerically, with Mathematica 12.3.1.0.
The command ParametricNDSolve was used, to find a solution ṽk(x) with k as parameter. Schemat-
ically:

83



12.4. Numerical solution Chapter 12. Focus on a particular model

parSol[γ_?NumericQ ,A0_?NumericQ ,x0_?NumericQ , λ_?NumericQ ,
xi_?NumericQ ,xf_?NumericQ ,xic_?NumericQ] := ParametricNDSolve[

eq ,vtilde(xic) == vtildeBD(xic), vtilde '(xic) == vtildeBD '(xic),
vtilde ,{x,xi ,xf},k,WorkingPrecision ->MachinePrecision

This is done for a given range of wavenumbers from kmin ∼ 10−2 to kmax ∼ 102. The integration is
carried out from xi to xf, the Bunch-Davies initial conditions (12.40) are imposed at a time xic.

Ideally, one would like to integrate up to x = 0, but since there are divergencies this cannot be done:
the final time of integration is chosen to be as small as possible, to ensure that all the wavelengths of
interest are well outside the horizon by then.
The time xic at which we impose the Bunch-Davies initial conditions needs some care. It has to be
very large, to make sure that we are still on the climbing phase. As a matter of fact, the whole point of
the climbing phenomenon is that the field cannot emerge from the initial singularity while descending,
it can only climb up the potential; but if we look at later times, we may see it either climbing or
descending already, depending on the free parameters. Therefore we need to set initial conditions as
early as possible. This is a delicate point and can lead to artifacts in the final results, like oscillations
that are clearly not physical.

To compute the power-spectrum, we should evaluate k3

2π2
1

(z̃(x))2
ṽk(x)v

∗
k(x)
˜ at the end of inflation x = 0.

Again, we cannot go numerically at x = 0 therefore we have to set with choosing a xPS as small as
possible. The crucial point is that we must evaluate the power-spectra at a time much later than the
freeze-out time of the last mode of interest kmax [60]. Since xi has been chosen this way, it can also
be used to evaluate the power-spectrum.

mySol = parSol[γsol ,A0sol ,x0sol ,λsol ,xisol ,xfsol ,xicsol]

curlyPnumeric[k_] := Module[

{vtilde=vtilde[k]/. mySol},

k3

2π2
1

(ztilde[x])2
(vtilde[x]/. mySol)Conjugate[vtilde[x]/. mySol]

/.{γ->γsol ,A0 ->A0sol }/.x->xPS
]

To be compared with the power-spectrum computed on the Lucchin-Matarrese attractor, power-law
inflation. Both power-spectra were Planck normalized at k = 100, so that we have well reached the
attractor.

Three cases are studied in the following. Figure 12.7 displays the behaviour of the field for three sets
of parameters, Figure 12.9 shows the corresponding power-spectra Pk(k).

We recover the main qualitative features of the power-spectrum in the presence of a climbing scalar,
studied in [2, 56]:

• a suppression of the power-spectrum for low-k with respect to the attractor;

• a pre-inflationary peak, that may be displaced from the attractor.

The meaning of the peak is the following. During the pre-inflationary kinetic dominated phase of
the climbing, the power-spectrum is suppressed Then, as the field starts to slow down against the
hard exponential, the power-spectrum goes up. When the field reverts its motion and rolls down, it
initially accelerates again, which tricks the power-spectrum into another suppressed phase. Eventually,
the expansion of the Universe takes over and the field slows down, approaching the attractor: the
power-spectrum reaches the kns−1 behaviour.

According to the analysis in [56], the peak is an overshoot which can present itself when the actual
Mukhanov-Sasaki potential Ws happens to emerge from the horizontal axis more steeply than the
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Figure 12.7

attractor curve. This is always the case for the three potentials displayed in Figure 12.8, and indeed
we do see the peak in all the power-spectra in Figure 12.9.
The characteristics of the peak depend on the nature of the impact against the potential barrier. If the
field strongly bounces against the steep portion of the potential, and climbs higher up the potential
barrier, then the peak moves towards lower k and further away from the attractor.

The first power-spectrum in Figure 12.9 shows a mild bounce against the potential barrier, there is a
peak and then we soon reach the attractor. The other two cases show a more drastic scattering, for
which the peak moves towards lower values of k: in the second case the field climbs much higher than
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(a)

(b)

(c)

Figure 12.8: Full Mukhanov-Sasaki potential, compared to the asymptotic behaviours (dashed): in red the
Lucchin-Matarrese attractor, in gray the asymptotic behaviour close to the initial singularity.

86



Chapter 12. Focus on a particular model 12.4. Numerical solution

(a)

(b)

(c)

Figure 12.9

the attractor solution (see the corresponding plot in Figure 12.7), in the third case it does not and
the peak in the power-spectrum is less pronounced.

Previous numerical studies like the one in [56] have shown that the pre-inflationary peak can actually
move even further from the attractor than what we observe here. This is probably due to the very
nature of this specific model we are studying: the two exponents are linked. If we look at the mild
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potential e2γχ and fit γ ≃ 0.08 to the CMB data, then the steep portion of the potential e
2
γ
χ
becomes

really steep. We basically have a vertical wall and, even playing with the parameters (A0, x0), the
scalar field cannot climb arbitrarily high. In other words, we have little variability in the dynamics.
However, we still manage to observe in the power-spectrum the features that are peculiar to the
climbing phenomena.
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Future prospects

13.1 Next steps

The final goal of this work will be having a prediction for fNL in the class of models that experience
the climbing phenomenon, for which Lucchin-Matarrese power-law inflation is the attractor solution.
The next step will be a numerical study of the bispectra in this type of models. It may be that
the particular two-exponential potential with exponents γ and 1

γ is not the best suited one for this
study, for two main reasons: because the change of coordinates to parametric time compresses the
inflationary phase very close to x = 0, and because the steepness of the “hard” exponential strongly
limits the dynamics of the field. One could abandon the idea to have analytic expressions for the scale
factor and the field, and write a more generic code that deals with everything numerically.

Roughly, we expect primordial non-Gaussianity to be enhanced due to the suppression in the power-
spectrum at low-ℓ. We can do a back-of-the-envelope calculation, based on Maldacena’s consistency
relation (9.63).
In single-field inflation, we expect that:

lim
k3→0

Bζ(k1, k2, k3) = (1− ns)Pζ(k1)Pζ(k3) (13.1)

where ns − 1 is the logarithmic derivative of the dimensionless power-spectrum associated with the
short wavelength mode k1.
If we parametrize the infrared suppression in the power-spectrum as in equation (11.6), then:

ns(k)− 1 =
d

dlogk
log

(︄
As

k3

(k2 +∆2)2−
ns
2

)︄

= 3− (4− ns)
k2

k2 +∆2
(13.2)

Therefore the consistency relation becomes:

lim
k3→0

Bζ(k1, k2, k3) = 4π4A4
sk

ns−4
short

(︁
k2long +∆2

)︁−3+ns
2
(︁
k2long(1− ns)− 3∆2

)︁
(13.3)

to be compared with the standard case ns(k) = ns and ∆ = 0:

lim
k3→0

Bζ(k1, k2, k3) = 4π4A4
s (klongkshort)

ns−4 (ns − 1) (13.4)

There are two competing effects here. On the one hand ns changes as a consequence of the low-k
suppression, and we expect this to enhance the bispectrum. On the other hand, though, Bζ ∝ P 2

ζ and
one of them, the power-spectrum associated to the long wavelength mode, is suppressed.

89



13.1. Next steps Chapter 13. Future prospects

From the point of view of fNL:

fNL = − 5

12
(1− ns(k)) (13.5)

where the last equality is nothing but the consistency relation, which we expect to recover since we
are looking at a single field model. Indeed, both sides give:

fNL =
5

12

k23(ns − 1) + 2∆2

k23 +∆2
(13.6)

where k3 is the long wavelength mode, k3 ≪ k1, k2. The form of the power-spectrum (11.6) and in
particular the appearance of the new scale ∆ bring about a scale dependence in the non-Gaussianity
parameter. Furthermore, fNL changes sign: it approaches 5

4 as k3 −→ 0, but for k3 large enough it
approaches the usual expression − 5

12(1 − ns) which is negative, with the scalar spectral index we
observe. A plot is shown in Figure 13.1a. The scalar spectral index ns has been fixed to the Planck
fit (5.23) ns = 0.9649± 0.0042, for the new scale ∆ we use the result of [58]:

∆ = (0.351± 0.114)× 10−3 Mpc−1 at 99.4% C.L. (13.7)
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Figure 13.1: Plot of the non-Gaussianity parameter (13.6). The standard result − 5
12 (1− ns) is dashed, for

comparison. An enlarged view of the low-k region is provided in Figure 13.1b, where we can appreciate that
fNL changes sign at a scale of about ∼ 10∆ for this value of ns.

For completeness, in Figure 13.2 we also display the plot accounting for the errors on the parameters
ns and ∆.
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Figure 13.2

This is a first, rough expectation. However, the third order action (8.10) is much more complicated
and rich, and contains many vertices. This contribution we have just computed is only one among the
possible terms, maybe not even the most important one.
Only the full calculation will tell us whether this rough prediction captures the underlying physics.
This needs to be studied numerically.
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13.2 Future observational prospects

Having detailed predictions for fNL is a key point for our understanding of inflation. In the following
decade, a lot of new data will be available, both on the CMB and on the large-scale structure sides,
that will help us discriminate among different scenarios. Large-angle CMB anisotropies have been
able to constrain the bispectrum amplitude in various momentum configurations with a sensitivity of
∆fNL ≳ O(10). Upcoming galaxy surveys aim at ∆fNL ∼ O(1), a theoretical thresholds that marks
the separation between fundamentally different mechanisms for inflation.

13.2.1 Cosmic Microwave Background

As we have already mentioned, CMB experiments have an intrinsic limitation at low ℓ given by cosmic
variance [33] while at high ℓ they are limited by Silk damping. The state-of-the-art Planck 2018 results
for fNL are already close to this fundamental limit [30]: more experiments will come, but there is not
much room for improvement on constraining non-Gaussianity from the CMB alone. We briefly present
some forecasts for the future missions CORE and LiteBIRD.

LiteBIRD (Lite satellite for the study of B-mode polarization and Inflation from cosmic background
Radiation Detection) and CORE (Cosmic Origins Explorer) are both fourth-generation full-sky, mi-
crowave band satellites, after COBE, WMAP and Planck.

LiteBIRD was selected as “Large Mission” by the Japanese space agency JAXA [61], launch is planned
for 2028. It will be the first mission fully devoted to the CMB polarization, with the primary goal of
detecting primordial gravitational waves through the B-mode polarization of the CMB. It will cover
the frequency range 34-448 GHz with a typical angular resolution of 30 arcmin at 100 GHz (compare
with Planck’s resolution of 33-5 arcmin).

CORE was proposed to ESA [62]. It aims to map the polarization to detect primordial gravita-
tional waves from inflation, probe neutrino masses, constrain shape and amplitude of primordial
non-Gaussianity, map the galactic polarized dust emission and the galactic magnetic field. CORE
will map the sky in temperature and polarization in the frequency range 60-600 GHz, with angular
resolution of 5 arcmin at 200 GHz.

Forecasts on the non-Gaussianity parameters for these missions are shown in Table 13.1. LiteCORE-
80, LiteCORE-120, LiteCORE-150 are three configurations with varying angular resolution, thanks
to a larger telescope of 80 cm, 120 cm, 150 cm respectively. CORE-M5 or MiniCORE is a possible
downscoped version, with a 80 cm telescope, covering the reduced 100-600 GHz frequency range. All
the CORE configurations assume ℓmax = 3000, except for LiteCORE-80 which has ℓmax = 2400, while
the much lower resolution LiteBIRD has ℓmax = 1350.
For comparison, the Planck 2018 results are shown [30]. The last column is an ideal full-sky and
noiseless experiment with ℓmax = 3000.

LiteCORE-80 LiteCORE-120 CORE-M5 LiteBIRD Planck 2018 ideal
T local 4.5 3.7 3.6 9.4 5.6 2.7
T equilat 65 59 58 92 66 46
T orthog 31 27 26 58 36 20

E local 5.4 4.5 4.2 11 28 2.4
E equilat 51 46 45 76 161 31
E orthog 24 21 20 42 86 13

T+E local 2.7 2.2 2.1 5.6 5.1 1.4
T+E equilat 25 22 21 40 47 15
T+E orthog 12 10.0 9.6 23 23 6.7

Table 13.1: Forecasts from [62] for the 1σ error bars on fNL for the standard shapes local, equilateral, orthogonal.
The results from Planck are not forecasts, they are real measured error bars [30].

Compared to Planck, the CORE configurations provide just a modest improvement in temperature-
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only (as expected since Planck already is nearly cosmic variance limited in temperature), but a very
significant improvement in polarization-only, for a final improvement in full T+E of about a factor of
2. Because of its lower resolution, LiteBIRD performs significantly worse, with final T+E error bars
comparable to the current ones from Planck.

However, this is still not enough. The crucial threshold lays at fNL = 1, because observing fNL > 1
would rule out single-field models of inflation. This threshold lays below cosmic variance.

We briefly mention an alternative probe from the CMB that could be promising: spectral distortion
anisotropies [63].
Spectral distortions are created by processes that drive matter and radiation out of thermal equilib-
rium, after thermalization becomes inefficient at redshift z ≲ 2 × 106 (energy-releasing mechanisms
that heat the baryonic matter, or inject photons or other electromagnetically interacting particles).
The distorsions are caused by energy exchange between electrons and photons through Compton scat-
tering. They are usually characterized as y-type distortions and µ-type (or chemical potential): the
former probes the thermal history during recombination and reionization, the latter forms at earlier
epochs and directly probes events in the pre-recombination era.
Spectral distorsions can be used to probe local-type primordial non-Gaussianity at small scales. In
fact, non-Gaussian couplings between short and long wavelength modes create inhomogeneities in the
amplitude of the small-scale power, which in turn lead to an anisotropic spectral distortion that cor-
relate with tracers of the long wavelength modes. Cross correlations of T and E with µ-distorsions
anisotropies would probe the squeezed configuration of the bispectrum, thus offering an interesting
way to complement other probes. The measurement of µ− T cross correlation will set the first upper
bound on f localNL on small scales, k ≈ 740 Mpc−1.

13.2.2 Large-scale structure

While the CMB is mostly linear physics, large-scale structure is highly nonlinear and much more
complicated.
The galaxy/halo bias is expected to depend on fNL, in the following way. Galaxies are biased tracers
of the underlying dark matter distribution, much like observing lights on Earth at night would not
faithfully reveal the distribution of the land beneath. Roughly:

bias ≡ clustering of galaxies

clustering of dark matter
=

(︂
δρ
ρ

)︂
halos(︂

δρ
ρ

)︂
DM

(13.8)

The theory predicts the density fluctuations for dark matter, while observations probe halos and
galaxies. If we parametrize δg(k, z) = bδDM(k, z) then the power-spectra are related through:

Pg(k, z) = b2PDM(k, z) (13.9)

The bias function can be scale-dependent, and this is where non-Gaussianity enters into play. In the
seminal works [64,65] it was shown that:

b(k) = bG + fNL
const

k2
(13.10)

Let’s parametrize the Bardeen gravitational potential Φ as:

ΦNG(x) = ϕ(x) + fNL

(︁
ϕ2(x)− ⟨ϕ2⟩

)︁
(13.11)

where ϕ is a Gaussian field. Within this sign convention, positive fNL leads to overdense region being
more evolved and producing more clusters than their Gaussian counterparts, while on the contrary
negative fNL will produce deeper voids and leave overdense regions less evolved [65]. In other words,
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large value of f localNL implies larger amplitudes in the 2-point clustering of galaxies at large separations
than expected in the standard ΛCDM paradigm [66].

The contribution to the bias induced by primordial non-Gaussianity is amplified at large scales. There-
fore the clustering of large-scale structure objects offers a way to measure the non-linear parameter
fNL which is complementary to the CMB.

Studies of the galaxy bispectrum indicate that an accuracy in determining local fNL of order σfNL
∼

few is achievable. Not only can this provide independent constraints on scales smaller than those
probed by CMB, but also the constraints can be comparable to, if not better than, those from CMB.
The best limit one can achieve from an all-sky survey up to redshift ∼ 5 should reach f localNL ∼ 0.2 and

f equilNL ∼ 2, an order of magnitude better than the best limits achievable by CMB [67].

Constraints from present surveys are not competitive with Planck, or at most comparable, depending
on the shape. Different combinations of probes have been studied, see for example [66, 68]. Current
results favour positive f localNL , but do not rule out f localNL = 0.

Improvements are expected in the near future.
The near-infrared spectroscopic and photometric galaxy survey Euclid [69], through the combination
of lensing, galaxy clustering and clusters, can constrain ∆fNL ∼ 2: this is competitive and possibly
superior to future CMB experiments.
The first all-sky spectral survey SPHEREx is expected to be sensitive to |f localNL | ∼ 1 with an error
σfNL

= 0.87 [70]: it will provide a bound on f localNL that will be even ∼ 6 better than the corresponding
expected constraint from the Euclid spectroscopic sample, and a similar factor with respect to the
current CMB-based bound.
The spectroscopic surveys of SKA (Square Kilometer Array) will be able to constrain the non-
Gaussianity parameter down to σfNL

= 1.54 for the full survey [71].

13.3 Conclusions

In this thesis work we have focused on computing the bispectrum of primordial curvature perturbations
in power-law inflation [4]. An analytic expression in the squeezed regime k3 ≪ k1, k2 has been derived,
without the usual slow-roll assumption:

Bsqueezed
ζ (k1, k2, k3) =

2−3+ 4
1−ϵ e

2C
MP

√
2ϵ

π2
V 2
0

M8
P

(1− ϵ)3
(︂
Γ
(︂
1
2 + 1

1−ϵ

)︂)︂4
(−3 + ϵ)2ϵ

(k1k3)
−1− 2

1−ϵ (13.12)

We have verified that Maldacena’s consistency relation [27] is verified for the full model, whereas in
the literature so far it has been studied in the slow-roll regime only.
It would be desirable to have an analytic expression of the equilateral bispectrum as well, since the
squeezed and equilateral configurations are the most important ones when confronting models with
observations. However, as we have seen, the integrals are difficult to deal with analytically and the
equilateral case will probably have to be studied numerically.

Furthermore, we have discussed a class of models, motivated by the phenomenon of climbing scalars
in String Theory, that may lead to a suppressed power-spectrum at low ℓ [1, 2]. Power-law inflation
is the attractor solution at late times for these models. The power-spectrum for a particular model
has been studied numerically: the qualitative features we observe are well-known and peculiar to the
systems experiencing the climbing, however the power-spectrum for this specific potential had never
been presented before.
The next step will be to extend the analysis to the bispectrum, and compare the results with the
behaviour on the attractor.

Having neat predictions for primordial non-Gaussianity is of crucial importance. Future observational
prospects are bright: the upcoming missions, especially on the large-scale structure side, are likely
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to measure fNL down to a fundamental threshold, that will shed light on the very nature of the
mechanism of inflation.
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Appendix A

Useful expressions

A.1 Bessel and Hankel functions

We refer to [49] and [48] for the following list of properties of the Bessel and Hankel functions.

The Hankel functions are defined as:

H(1)
ν (z) = Jν(z) + iYν(z) H(2)

ν (z) = Jν(z)− iYν(z) (A.1)

Let Cν(z) denote Jν(z), Yν(z), H
(1)
ν (z), H

(2)
ν (z), or any non-trivial linear combination of these func-

tions, the coefficients in which are independent of z and ν. The following recurrence relations hold:

Cν−1(z) + Cν+1(z) =
2ν

z
Cν(z) (A.2a)

Cν−1(z)− Cν+1(z) = 2
∂Cν(z)
∂z

(A.2b)

The Bessel and Neumann functions have the following asymptotic behaviour for small arguments:

Jν(z)
z−→0−−−→ 1

Γ(ν + 1)

(︂z
2

)︂ν
0 < z <

√
ν + 1 (A.3)

Yν(z)
z−→0−−−→ − 1

π
Γ(ν)

(︂z
2

)︂−ν
Reν > 0 or ν = −1

2
,−3

2
,−5

2
, . . . (A.4)

Asymptotically for large argument:

H(1)
ν (x) ∼

√︃
2

πx
ei(x−ν π

2
−π

4 )

H(2)
ν (x) ∼

√︃
2

πx
e−i(x−ν π

2
−π

4 ) (A.5)

For small arguments, the Hankel functions have the following asymptotic behaviour:

H(1)
ν (z)

z−→0−−−→ − i
π
Γ(ν)

(︂z
2

)︂−ν
Reν > 0

H(2)
ν (z)

z−→0−−−→ i

π
Γ(ν)

(︂z
2

)︂−ν
Reν > 0 (A.6)

There are explicit expressions for Hankel functions of certain indices. For ν = 3/2:

H
(1)
3/2(z) = −i

√︃
2

π
z−3/2(1 + iz)e−iz (A.7)
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A.2 Exponential integral

∫︂ τe

−∞(1−iϵ)
dτ
eikT τ

τ
= −E1(ikT τe) (A.8)

Where the exponential integral is defined as:

Ei(x) =

∫︂ x

−∞

et

t
dt = −

∫︂ ∞

−x

e−t

t
dt x ∈ R (A.9)

E1(z) =

∫︂ ∞

z

e−t

t
dt z ∈ C, |arg(z)| < π (A.10)

For x > 0:
− E1(x) = Ei(−x) (A.11)

For z ∈ R or C off the negative real axis:

E1(z) = −γ − logz −
∞∑︂
k=1

(−z)k

k · k!
(A.12)

where γ is the Euler-Mascheroni constant γ ≈ 0.577.
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A first attempt to deal with the
traditional calculation

As an attempt to deal with the integrals of three Hankel functions appearing in (10.11), we try to
approximate the functions on superhorizon scales and set a cutoff in the integration. We deal with the
time-integrated piece (10.20) and the remaining non-integrated piece separately, then we put them
together.

B.1 Approximation on superhorizon scales: time-integrated piece

For small arguments, the Hankel functions have the asymptotic behaviour (A.5):

H(1)
ν (z)

z−→0−−−→ − i
π
Γ(ν)

(︂z
2

)︂−ν
Reν > 0 (B.1)

and H
(2)
ν (z) =

(︂
H

(1)
ν (z)

)︂∗
.

We want to compute (10.20) and the corresponding contributions from the other two momenta:

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

π

2i

{︄
(−τ)αθk1(τ)θk2(τ)

∫︂ τ

τi

dη(−η)1−α·

(p− 1)(−k3τ)
(︂
H(1)

α (−k3η)H(2)
α+1(−k3τ)−H

(1)
α+1(−k3τ)H

(2)
α (−k3η)

)︂
·(︂

S1(η, k⃗3, k⃗1, k⃗2)θ∗k1(η)θ
∗
k2(η) + S2(η, k⃗3, k⃗1, k⃗2)θ

∗
k1(η)θ

∗′
k2(η)+

S3(η, k⃗3, k⃗1, k⃗2)θ∗′k1(η)θ
∗
k2(η) + S4(η, k⃗3, k⃗1, k⃗2)θ

∗′
k1(η)θ

∗′
k2(η)

)︂}︄
+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3 (B.2)

From (6.30) we have:

θk(τ) = c(−τ)νH(1)
ν (−kτ) θ′k(τ) = −ck(−τ)νH

(1)
ν−1(−kτ)

and recall that α = ν − 1.
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The time integrals to be computed are:

H
(2)
α+1(−k3τ)

∫︂ τ

τi

dη(−η)1−αH(1)
α (−k3η)·(︂

S1(η, k⃗3, k⃗1, k⃗2)θ∗k1(η)θ
∗
k2(η) + S2(η, k⃗3, k⃗1, k⃗2)θ

∗
k1(η)θ

∗′
k2(η)+

S3(η, k⃗3, k⃗1, k⃗2)θ∗′k1(η)θ
∗
k2(η) + S4(η, k⃗3, k⃗1, k⃗2)θ

∗′
k1(η)θ

∗′
k2(η)

)︂
−H(1)

α+1(−k3τ)
∫︂ τ

τi

dη(−η)1−αH(2)
α (−k3η)·(︂

S1(η, k⃗3, k⃗1, k⃗2)θ∗k1(η)θ
∗
k2(η) + S2(η, k⃗3, k⃗1, k⃗2)θ

∗
k1(η)θ

∗′
k2(η)+

S3(η, k⃗3, k⃗1, k⃗2)θ∗′k1(η)θ
∗
k2(η) + S4(η, k⃗3, k⃗1, k⃗2)θ

∗′
k1(η)θ

∗′
k2(η)

)︂
≡H(2)

α+1(−k3τ)I1 −H
(1)
α+1(−k3τ)I2 (B.3)

I1 =

∫︂ τ

τi

dη(−η)1−αH(1)
α (−k3η)·[︃(︃

S1,0(k⃗3, k⃗1, k⃗2) +
1

(−η)2
S1,2(k⃗3, k⃗1, k⃗2)

)︃
θ∗k1(η)θ

∗
k2(η)+(︃

1

(−τ)
S2,1(k⃗3, k⃗1, k⃗2) +

1

(−τ)3
S2,3(k⃗3, k⃗1, k⃗2)

)︃
θ∗k1(η)θ

∗′
k2(η)+(︃

1

(−τ)
S3,1(k⃗3, k⃗1, k⃗2) +

1

(−τ)3
S3,3(k⃗3, k⃗1, k⃗2)

)︃
θ∗′k1(η)θ

∗
k2(η)+(︃

S4,0(k⃗3, k⃗1, k⃗2) +
1

(−τ)2
S4,2(k⃗3, k⃗1, k⃗2) +

1

(−τ)4
S4,4(k⃗3, k⃗1, k⃗2)

)︃
θ∗′k1(η)θ

∗′
k2(η)

)︂]︃
(B.4)

I2 =

∫︂ τ

τi

dη(−η)1−αH(2)
α (−k3η)·[︃(︃

S1,0(k⃗3, k⃗1, k⃗2) +
1

(−η)2
S1,2(k⃗3, k⃗1, k⃗2)

)︃
θ∗k1(η)θ

∗
k2(η)+(︃

1

(−τ)
S2,1(k⃗3, k⃗1, k⃗2) +

1

(−τ)3
S2,3(k⃗3, k⃗1, k⃗2)

)︃
θ∗k1(η)θ

∗′
k2(η)+(︃

1

(−τ)
S3,1(k⃗3, k⃗1, k⃗2) +

1

(−τ)3
S3,3(k⃗3, k⃗1, k⃗2)

)︃
θ∗′k1(η)θ

∗
k2(η)+(︃

S4,0(k⃗3, k⃗1, k⃗2) +
1

(−τ)2
S4,2(k⃗3, k⃗1, k⃗2) +

1

(−τ)4
S4,4(k⃗3, k⃗1, k⃗2)

)︃
θ∗′k1(η)θ

∗′
k2(η)

)︂]︃
(B.5)

The first piece, proportional to S1, is:

I1,1 =c
∗c∗S1,0

∫︂ τ

τi

dη(−η)2+νH
(1)
ν−1(−k3η)H

(2)
ν (−k1η)H(2)

ν (−k2η)+

c∗c∗S1,2
∫︂ τ

τi

dη(−η)νH(1)
ν−1(−k3η)H

(2)
ν (−k1η)H(2)

ν (−k2η)

≃c∗c∗ i
π3

(ν − 1)2 (Γ(ν − 1))3 23ν−1 k3
(k1k2k3)ν

·(︃
S1,0

∫︂ τ

τi

dη(−η)3−2ν + S1,2
∫︂ τ

τi

dη(−η)1−2ν

)︃
(B.6)
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I2,1 =c
∗c∗S1,0

∫︂ τ

τi

dη(−η)2+νH
(2)
ν−1(−k3η)H

(2)
ν (−k1η)H(2)

ν (−k2η)+

c∗c∗S1,2
∫︂ τ

τi

dη(−η)νH(2)
ν−1(−k3η)H

(2)
ν (−k1η)H(2)

ν (−k2η)

≃− c∗c∗ i
π3

(ν − 1)2 (Γ(ν − 1))3 23ν−1 k3
(k1k2k3)ν

·(︃
S1,0

∫︂ τ

τi

dη(−η)3−2ν + S1,2
∫︂ τ

τi

dη(−η)1−2ν

)︃
(B.7)

Set:

− η ≡ x (B.8)

I1,1 =(c∗)2
i

π3
(ν − 1)2 (Γ(ν − 1))3 23ν−1 k3

(k1k2k3)ν
·(︃

−S1,0
1

4− 2ν
x4−2ν

⃓⃓⃓xf

xi

− S1,2
1

2− 2ν
x2−2ν

⃓⃓⃓xf

xi

)︃
if ν ̸= 2, ν ̸= 1

I2,1 =− I1,1 (B.9)

In a similar fashion, we compute all the other integrals. The second piece, proportional to S2, is:

I1,2 =c
∗c∗(−k2)S2,1

∫︂ τ

τi

dη(−η)1+νH
(1)
ν−1(−k3η)H

(2)
ν (−k1η)H(2)

ν−1(−k2η)+

c∗c∗(−k2)S2,3
∫︂ τ

τi

dη(−η)−1+νH
(1)
ν−1(−k3η)H

(2)
ν (−k1η)H(2)

ν−1(−k2η)+

≃− c∗c∗
(︃
i

π

)︃3

(ν − 1) (Γ(ν − 1))3 23ν−2 (−k22k3)
(k1k2k3)ν

·(︃
S2,1

∫︂ τ

τi

dη(−η)3−2ν + S2,3
∫︂ τ

τi

dη(−η)1−2ν

)︃
=− (c∗)2

i

π3
(ν − 1) (Γ(ν − 1))3 23ν−2 k22k3

(k1k2k3)ν
·(︃

−S2,1
1

4− 2ν
x4−2ν

⃓⃓⃓xf

xi

− S2,3
1

2− 2ν
x2−2ν

⃓⃓⃓xf

xi

)︃
if ν ̸= 2, ν ̸= 1

I2,2 =− I1,2 (B.10)

The third piece, proportional to S3, is like the previous one, but with k⃗1 ←→ k⃗2. Recall that
S2,i(k⃗3, k⃗2, k⃗1) = S3,i(k⃗3, k⃗1, k⃗2).

I1,3 =− (c∗)2
i

π3
(ν − 1) (Γ(ν − 1))3 23ν−2 k21k3

(k1k2k3)ν
·(︃

−S3,1
1

4− 2ν
x4−2ν

⃓⃓⃓xf

xi

− S3,3
1

2− 2ν
x2−2ν

⃓⃓⃓xf

xi

)︃
if ν ̸= 2, ν ̸= 1

I2,3 =− I1,3 (B.11)
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And the fourth piece, proportional to S4, is:

I1,4 =c
∗c∗
∫︂ τ

τi

dη(−η)2−ν(−η)2νH(1)
ν−1(−k3η)H

(2)
ν−1(−k1η)

H
(2)
ν−1(−k2η)(k1k2)·(︃

S4,0(k⃗3, k⃗1, k⃗2) +
1

(−τ)2
S4,2(k⃗3, k⃗1, k⃗2) +

1

(−τ)4
S4,4(k⃗3, k⃗1, k⃗2)

)︃
≃− c∗c∗

(︃
i

π

)︃3

(Γ(ν − 1))3 23ν−3 k21k
2
2k3

(k1k2k3)ν
·(︃

S4,0
∫︂ τ

τi

dη(−η)5−2ν + S4,2
∫︂ τ

τi

dη(−η)3−2ν + S4,4
∫︂ τ

τi

dη(−η)1−2ν

)︃
=c∗c∗

i

π3
(Γ(ν − 1))3 23ν−3 k21k

2
2k3

(k1k2k3)ν
·(︃

−S4,0
1

6− 2ν
x6−2ν

⃓⃓⃓xf

xi

− S4,2
1

4− 2ν
x4−2ν

⃓⃓⃓xf

xi

− S4,4
1

2− 2ν
x2−2ν

⃓⃓⃓xf

xi

)︃
if ν ̸= 3, ν ̸= 2, ν ̸= 1

I2,4 =− I1,4 (B.12)

In performing the integrals, we assumed ν ̸= 1, 2, 3. For sure ν > 3/2, and it asymptotically reaches
3/2 in the de Sitter limit p −→ ∞. In terms of the exponent of the potential γ, ν = 2 implies γ = 1/3
and ν = 3 implies γ = 1/

√
5. These values are both much larger than the one found in [56]: they found

γ ≈ 0.08 in order to fit the large-k behaviour of the observed power-spectrum, with scalar spectral
index ns ≈ 0.96. Hence we should not be worried about these conditions.

Now we put the four pieces together:

I1 =I1,1 + I1,2 + I1,3 + I1,4

≃(c∗)2 i2
3ν−4

π3
(Γ(ν − 1))3

k3
(k1k2k3)ν

·{︄
x2−2ν

⃓⃓⃓xf

xi

(︃
4(ν − 1)S1,2 − 2k22S2,3 − 2k21S3,3 +

1

ν − 1
k21k

2
2S4,4

)︃
+

x4−2ν
⃓⃓⃓xf

xi

(︃
4
(ν − 1)2

ν − 2
S1,0 − 2

ν − 1

ν − 2
k22S2,1 − 2

ν − 1

ν − 2
k21S3,1 +

1

ν − 2
k21k

2
2S4,2

)︃
+

x6−2ν
⃓⃓⃓xf

xi

(︃
1

ν − 3
k21k

2
2S4,0

)︃}︄
I2 =− I1

The extrema of integration xi and xf correspond to τi and τ respectively. We want all the three
wavelength corresponding to k1, k2, k3 to be outside of the horizon when we integrate, hence −kiτ ≤ 1
for the smallest wavelength or equivalently the largest k:

xi =
1

kmax

We will want to compute the bispectrum at the end of inflation, τ = 0, but for now we keep it there.
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Putting together the pieces, (B.2) becomes:

⟨R
k⃗1
(τ)R

k⃗2
(τ)R

k⃗3
(τ)⟩

⃓⃓⃓
time-integrated piece

=
1

2

1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

π

2i
k3(p− 1)(−τ)νθk1(τ)θk2(τ)

(︂
H(2)

ν (−k3τ)I1 −H(1)
ν (−k3τ)I2

)︂
+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3

=
1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

π

4i
k3(p− 1)c2(−τ)3νH(1)

ν (−k1τ)H(1)
ν (−k2τ)2Jν(−k3τ)I1

+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3 (B.13)

The additional factor 1
2 comes from the definition of the second order perturbation R(2).

Notice that the last step, where the Bessel function appears, is necessary: we cannot approximate for
small argument before that, otherwise the two Hankel functions in parenthesis add up to zero. The
Bessel function grasp the next order in the approximation.
The asymptotic behaviour of the Bessel functions is given in (A.3) and (A.4):

Jν(z)
z−→0−−−→ 1

Γ(ν + 1)

(︂z
2

)︂ν
0 < z <

√
ν + 1 (B.14)

Yν(z)
z−→0−−−→ − 1

π
Γ(ν)

(︂z
2

)︂−ν
Reν > 0 or ν = −1

2
,−3

2
,−5

2
, . . . (B.15)

The condition on z translates into −kiτ <
√
ν + 1, but ν > 3/2 so in the most restrictive case

−kiτ ≤ 1.5, which is true anyway since we are putting ourselves on superhorizon scales.

The time-integrated piece becomes:

⟨R
k⃗1
(τ)R

k⃗2
(τ)R

k⃗3
(τ)⟩

⃓⃓⃓
time-integrated piece

=
1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

(︃
−2−5+4ν

π4

)︃
(c∗c)2

k2+2ν
3

(k1k2k3)2ν
p2 − 1

3p− 1
(Γ(ν − 1))4 ·

(−τ)2ν
(︃
x2−2ν

⃓⃓⃓xf

xi

F2(k⃗3, k⃗1, k⃗2) + x4−2ν
⃓⃓⃓xf

xi

F4(k⃗3, k⃗1, k⃗2) + x6−2ν
⃓⃓⃓xf

xi

F6(k⃗3, k⃗1, k⃗2)

)︃
+ k⃗2 ←→ k⃗3 + k⃗1 ←→ k⃗3 (B.16)

where:

F2(k⃗3, k⃗1, k⃗2) =4(ν − 1)S1,2(k⃗3, k⃗1, k⃗2)− 2k22S2,3(k⃗3, k⃗1, k⃗2)− 2k21S3,3(k⃗3, k⃗1, k⃗2)+

+
1

ν − 1
k21k

2
2S4,4(k⃗3, k⃗1, k⃗2) (B.17)

F4(k⃗3, k⃗1, k⃗2) =−
1

ν − 2

(︂
−4S1,0(k⃗3, k⃗1, k⃗2)(ν − 1)2 + 2k22(ν − 1)S2,1(k⃗3, k⃗1, k⃗2)

+2k21(ν − 1)S3,1(k⃗3, k⃗1, k⃗2)− k21k22S4,2(k⃗3, k⃗1, k⃗2)
)︂

(B.18)

F6(k⃗3, k⃗1, k⃗2) =
1

ν − 3
k21k

2
2S4,0(k⃗3, k⃗1, k⃗2) (B.19)

(B.20)

Then we have the other two terms in (B.2), the ones that we have always written very schematically
k⃗2 ←→ k⃗3 and k⃗1 ←→ k⃗3. Their final contribution will be equal to the first one, that we have
computed explicitly, but with the momenta exchanged.
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The whole time-integrated piece, after adding up the three contributions, is:

⟨R
k⃗1
(τ)R

k⃗2
(τ)R

k⃗3
(τ)⟩

⃓⃓⃓
time-integrated piece

=
1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

(︃
2−5+4ν

π4

)︃
(c∗c)2

p2 − 1

3p− 1
(Γ(ν − 1))4 (−τ)2ν ·(︃

x2−2ν
⃓⃓⃓xf

xi

F2(k⃗1, k⃗2, k⃗3) + x4−2ν
⃓⃓⃓xf

xi

F4(k⃗1, k⃗2, k⃗3) + x6−2ν
⃓⃓⃓xf

xi

F6(k⃗1, k⃗2, k⃗3)

)︃ (B.21)

The functions Fi are symmetric under exchange of any pair of arguments.

F2(k⃗1, k⃗2, k⃗3) = −k21(k2k3)−2νF2(k⃗1, k⃗3, k⃗2)− k22(k1k3)−2νF2(k⃗2, k⃗1, k⃗3)− k23(k1k2)−2νF2(k⃗3, k⃗1, k⃗2)

F4(k⃗1, k⃗2, k⃗3) = −k21(k2k3)−2νF4(k⃗1, k⃗3, k⃗2)− k22(k1k3)−2νF4(k⃗2, k⃗1, k⃗3)− k23(k1k2)−2νF4(k⃗3, k⃗1, k⃗2)

F6(k⃗1, k⃗2, k⃗3) = −k21(k2k3)−2νF6(k⃗1, k⃗3, k⃗2)− k22(k1k3)−2νF6(k⃗2, k⃗1, k⃗3)− k23(k1k2)−2νF6(k⃗3, k⃗1, k⃗2)
(B.22)

B.2 Approximation on superhorizon scales: non-integrated piece

Approximating the Hankel functions as in (A.6), the contribution from k⃗3 is:

δ(3)(k⃗1 + k⃗2 + k⃗3)
2−

11
2
+4ν

π11/2
(c∗c)2

1

k2ν1 k
2ν
2 k

4
3

(p+ 1)2

(p− 1)4p2
(Γ(ν − 1))4 ·(︂

G0(k⃗3, k⃗1, k⃗2) + (−τ)2G2(k⃗3, k⃗1, k⃗2) + (−τ)4G4(k⃗3, k⃗1, k⃗2)
)︂

(B.23)

where:

G0(k⃗3, k⃗1, k⃗2) = p2
(︁
(1 + p)

(︁
−3(k41 + k42) + 2(k21 + k22)k

2
3 + 6k21k

2
2

)︁
+ (−19 + 13p)k43

)︁
G2(k⃗3, k⃗1, k⃗2) = p(p− 1)2

(︁
−2(k21 + k22)k

4
3 + 3p(k21 − k22)2(k21 + k22)− p(3k41 + 3k42 + 2k21k

2
2)k

2
3

)︁
G4(k⃗3, k⃗1, k⃗2) = (p− 1)4k21k

2
2k

4
3 (B.24)

Analogous contributions will come from k⃗2 ←→ k⃗3 and k⃗1 ←→ k⃗3 but with the momenta exchanged
accordingly.
Adding up the three pieces and collecting all the powers of τ :

⟨R
k⃗1
(τ)R

k⃗2
(τ)R

k⃗3
(τ)⟩

⃓⃓⃓
non-integrated piece

= δ(3)(k⃗1 + k⃗2 + k⃗3)
2−

11
2
+4ν

π11/2
(c∗c)2

1

(k1k2k3)2(2+ν)

(p+ 1)2

(p− 1)4p2
1

k41k
4
2k

4
3

(Γ(ν − 1))4 ·(︂
G0(k⃗1, k⃗2, k⃗3) + G2(k⃗1, k⃗2, k⃗3)(−τ)2 + G4(k⃗1, k⃗2, k⃗3)(−τ)4

)︂ (B.25)

G0(k⃗1, k⃗2, k⃗3) = k2ν1 k
4
2k

4
3G0(k⃗1, k⃗3, k⃗2) + k41k

2ν
2 k

4
3G0(k⃗2, k⃗1, k⃗3) + k41k

4
2k

2ν
3 G0(k⃗3, k⃗1, k⃗2)

G2(k⃗1, k⃗2, k⃗3) = k2ν1 k
4
2k

4
3G2(k⃗1, k⃗3, k⃗2) + k41k

2ν
2 k

4
3G2(k⃗2, k⃗1, k⃗3) + k41k

4
2k

2ν
3 G2(k⃗3, k⃗1, k⃗2)

G4(k⃗1, k⃗2, k⃗3) = k2ν1 k
4
2k

4
3G4(k⃗1, k⃗3, k⃗2) + k41k

2ν
2 k

4
3G4(k⃗2, k⃗1, k⃗3) + k41k

4
2k

2ν
3 G4(k⃗3, k⃗1, k⃗2) (B.26)

The functions Gi are symmetric under exchange of any pair of momenta.
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B.3 Full bispectrum: time-integrated piece and non-integrated piece
together

Putting together the contribution from (B.21) and (B.25) we obtain:

⟨R
k⃗1
(τ)R

k⃗2
(τ)R

k⃗3
(τ)⟩

= δ(3)(k⃗1 + k⃗2 + k⃗3)
2−

13
2
+4ν

π11/2
(c∗c)2 (Γ(ν − 1))4

(︂
B0(k⃗1, k⃗2, k⃗3) + (−τ)2νB2ν(k⃗1, k⃗2, k⃗3)+

+(−τ)2B2(k⃗1, k⃗2, k⃗3) + (−τ)4B4(k⃗1, k⃗2, k⃗3) + (−τ)6B6(k⃗1, k⃗2, k⃗3)
)︂

(B.27)

B0(k⃗1, k⃗2, k⃗3) =
(p+ 1)2

(p− 1)4p2
1

(k1k2k3)2(2+ν)
G0(k⃗1, k⃗2, k⃗3)

B2ν(k⃗1, k⃗2, k⃗3) = −
p2 − 1

3p− 1
(−τi)2−2ν

(︂
F2(k⃗1, k⃗2, k⃗3) + (−τi)2F4(k⃗1, k⃗2, k⃗3) + (−τi)4F6(k⃗1, k⃗2, k⃗3)

)︂
B2(k⃗1, k⃗2, k⃗3) =

p2 − 1

3p− 1
F2(k⃗1, k⃗2, k⃗3) +

(p+ 1)2

(p− 1)4p2
1

(k1k2k3)2(2+ν)
G2(k⃗1, k⃗2, k⃗3)

B4(k⃗1, k⃗2, k⃗3) =
p2 − 1

3p− 1
F4(k⃗1, k⃗2, k⃗3) +

(p+ 1)2

(p− 1)4p2
1

(k1k2k3)2(2+ν)
G4(k⃗1, k⃗2, k⃗3)

B6(k⃗1, k⃗2, k⃗3) =
p2 − 1

3p− 1
F(k⃗1, k⃗2, k⃗3) (B.28)

Writing down explicitly the coefficient of the modefunction c and the scale factor normalization A:

⟨R
k⃗1
(τ)R

k⃗2
(τ)R

k⃗3
(τ)⟩

= δ(3)(k⃗1 + k⃗2 + k⃗3)
2−

23
2
+4ν

π7/2
e

2C
MP

√︂
2
pV 2

0

M8
P

(p− 1)4

(1− 3p)2
(Γ(ν − 1))4

(︂
B0(k⃗1, k⃗2, k⃗3)+

+(−τ)2νB2ν(k⃗1, k⃗2, k⃗3) + (−τ)2B2(k⃗1, k⃗2, k⃗3) + (−τ)4B4(k⃗1, k⃗2, k⃗3) + (−τ)6B6(k⃗1, k⃗2, k⃗3)
)︂

(B.29)

Evaluating the full bispectrum (B.29) at the end of inflation τ = 0 we obtain:

⟨R
k⃗1
R

k⃗2
R

k⃗3
⟩

=
1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)

4−5+2ν

π2
e

2C
MP

√︂
2
pV 2

0

M8
P

(Γ(ν − 1))4
(p− 1)4

(1− 3p)2
B0(k⃗1, k⃗2, k⃗3)

=
1

(2π)3/2
δ(3)(k⃗1 + k⃗2 + k⃗3)
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Rewritten in terms of ϵ only:
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In the slow-roll limit ϵ −→ 0 and introducing the would-be Hubble parameter in de Sitter case H2
DS ≡

V0/3M
2
P , the leading order contribution is:

1

(2π)3/2
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2
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3
2 + 13k41k2k3 + 5 perm.

)︂
(B.32)

As we have mentioned, there are additional contributions coming from the definitions of the different
gauge-invariant variables, see equation (10.32). However, even taking care of the extra terms, this
result still does not reproduce Maldacena’s in the slow-roll limit.
This could be due to the integration procedure: setting a cutoff and restricting our attention on
superhorizon scales may result in missing some important contribution at horizon crossing. This point
needs to be further investigated.
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M. Mignoli, J. Mohr, C. Neissner, K. Noddle, M. Poncet, M. Scodeggio, S. Serrano, N. Shane, J. L.
Starck, C. Surace, A. Taylor, G. Verdoes-Kleijn, C. Vuerli, O. R. Williams, A. Zacchei, B. Altieri,

110



Bibliography Bibliography

I. Escudero Sanz, R. Kohley, T. Oosterbroek, P. Astier, D. Bacon, S. Bardelli, C. Baugh, F. Bel-
lagamba, C. Benoist, D. Bianchi, A. Biviano, E. Branchini, C. Carbone, V. Cardone, D. Clements,
S. Colombi, C. Conselice, G. Cresci, N. Deacon, J. Dunlop, C. Fedeli, F. Fontanot, P. Franzetti,
C. Giocoli, J. Garcia-Bellido, J. Gow, A. Heavens, P. Hewett, C. Heymans, A. Holland, Z. Huang,
O. Ilbert, B. Joachimi, E. Jennins, E. Kerins, A. Kiessling, D. Kirk, R. Kotak, O. Krause, O. La-
hav, F. van Leeuwen, J. Lesgourgues, M. Lombardi, M. Magliocchetti, K. Maguire, E. Majerotto,
R. Maoli, F. Marulli, S. Maurogordato, H. McCracken, R. McLure, A. Melchiorri, A. Merson,
M. Moresco, M. Nonino, P. Norberg, J. Peacock, R. Pello, M. Penny, V. Pettorino, C. Di Porto,
L. Pozzetti, C. Quercellini, M. Radovich, A. Rassat, N. Roche, S. Ronayette, E. Rossetti, B. Sar-
toris, P. Schneider, E. Semboloni, S. Serjeant, F. Simpson, C. Skordis, G. Smadja, S. Smartt,
P. Spano, S. Spiro, M. Sullivan, A. Tilquin, R. Trotta, L. Verde, Y. Wang, G. Williger, G. Zhao,
J. Zoubian, and E. Zucca, “Euclid Definition Study Report,” arXiv e-prints, p. arXiv:1110.3193,
Oct. 2011.
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