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ABSTRACT

Our ability to recognize and categorize objects in our surroundings is a critical

component of our cognitive processes. Despite the enormous variations in each object's

appearance (Due to variations in object position, pose, scale, illumination, and the presence of

visual clutter), primates are thought to be able to quickly and easily distinguish objects from

among tens of thousands of possibilities. The primate's ventral visual stream is believed to

support this view-invariant visual object recognition ability by untangling object identity

manifolds. Convolutional Neural Networks (CNNs), inspired by the primate's visual system,

have also shown remarkable performance in object recognition tasks. This review aims to

explore and compare the mechanisms of object recognition in the primate's ventral visual

stream and state-of-the-art deep CNNs. The research questions address the extent to which

CNNs have approached human-level object recognition and how their performance compares

to the primate ventral visual stream. The objectives include providing an overview of the

literature on the ventral visual stream and CNNs, comparing their mechanisms, and identifying

strengths and limitations for core object recognition. The review is structured to present the

ventral visual stream's structure, visual representations, and the process of untangling object

manifolds. It also covers the architecture of CNNs. The review also compared the two visual

systems and the results showed that deep CNNs have shown remarkable performance and

capability in certain aspects of object recognition, but there are still limitations in replicating

the complexities of the primate visual system. Further research is needed to bridge the gap

between computational models and the intricate neural mechanisms underlying human object

recognition.
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INTRODUCTION

Our ability to recognize and categorize objects in our surroundings is a critical

component of our cognitive processes. Despite the enormous variations in each object's

appearance (Due to variations in object position, pose, scale, illumination, and the presence of

visual clutter), primates are thought to be able to quickly and easily distinguish objects from

among tens of thousands of possibilities ” ( DiCarlo & Cox, 2007; DiCarlo et al., 2012).

According to DiCarlo et al. (2012), this ability to quickly report the identity or category of an

object after only a brief glimpse of visual input is called "core object recognition" which they

considered to be at the heart of the brain's recognition system. Due to variations in object

position, pose, scale, illumination, and the presence of visual clutter, any single object can

produce an endless number of distinct images on the retina, making object

recognition computationally challenging. According to Pinto et al. (2008), “This invariant

problem is regarded as the computational crux of recognition”. However, it is believed that the

primate's ventral visual stream supports this view-invariant visual object recognition ability

(Tanaka, 1996; DiCarlo et al., 2012). But, how the brain solves this problem is still unknown.

DiCarlo and colleagues hypothesize that the ventral stream gradually “untangles” information

about object identity (DiCarlo & Cox, 2007; DiCarlo et al, 2012).

The primate’s ventral visual stream comprises a series of interconnected brain regions,

starting from the primary visual cortex (V1), and ending in the inferotemporal cortex (IT).

According to various researchers (Felleman & Van Essen, 1991; Riesenhuber & Poggio, 1999;

DiCarlo & Cox, 2007; DiCarlo et al., 2012), the ventral visual stream processes visual

information in a hierarchical manner, with each region specializing in detecting specific visual

features, such as edges, and shapes, and producing increasingly complex representations of

objects. V1 is the lowest area which processes simple features such as lines and edges, V2

intermediate, and V4 and IT are the highest areas which process high-level features such as

object parts and objects, and support object recognition. Lesion studies in monkeys have

demonstrated that damage to the IT cortex impairs object recognition (Holmes & Gross, 1984).

Deep convolutional neural networks (CNNs) are a type of artificial neural network that

has been shown to be highly effective in object recognition tasks (Krizhevsky et al., 2012).

These networks consist of multiple layers of artificial neurons that are trained to identify and

classify objects based on their features. Convolutional neural networks (CNNs) are designed

to mimic the processing of the primate ventral visual stream, with each layer of the network
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processing increasingly complex visual features. They are inspired by the architecture of the

primate's visual system, with multiple layers of processing units that extract features and

categorize objects (Krizhevsky et al., 2012). They are composed of multiple layers of

interconnected neurons, each layer is responsible for different levels of abstraction. The first

layer detects simple features such as edges, while subsequent layers detect increasingly

complex features such as object parts and textures. The final layer of a DCNN is responsible

for categorizing the input image based on its features. DCNNs are trained using supervised

learning on large datasets of labeled images. Recent studies have shown that deep CNNs can

achieve impressive performance in object recognition tasks. For example, Krizhevsky et al.

(2012) introduced the AlexNet architecture, which achieved top performance in the 2012

ImageNet Large-Scale Visual Recognition Challenge. Since then, numerous studies have built

upon this architecture, achieving even better performance in object recognition tasks (He et al.,

2016).

This review aims to explore and compare the mechanisms of object recognition in the

primate's ventral visual stream and compare them to the state-of-the-art DCNNs. Comparing

the mechanisms of object recognition in the primate's ventral visual stream and DCNNs can

provide valuable insights into the cognitive processes involved in object recognition and the

development of more advanced artificial intelligence systems.

The main research questions of this review are:

1- To what extent have recent state-of-the-art deep convolutional neural network models

approached human-level object recognition?

2- How does the performance of deep CNNs compare to the performance of the primate ventral

visual stream in core object recognition tasks?

To answer these questions, this review aims to achieve the following objectives:

1- To provide an overview of the literature on primates’ ventral visual stream and deep

convolutional neural networks.

2- To compare and contrast the mechanisms underlying primates’ ventral visual stream and

deep convolutional neural networks.

3- To identify the strengths and limitations of each approach for core object recognition.
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This review is structured as follows: a brief overview of the primate’s ventral visual stream,

followed by a brief overview of the deep convolutional neural networks. Then a comparison

between the primate’s ventral visual stream and deep convolutional neural networks is

presented, then followed by key conclusions.
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CHAPTER 1: VENTRAL VISUAL STREAM

1.1. Structure

The primate’s ventral visual stream is believed to house important circuits that underlie

object recognition behavior. It’s divided into different visual areas (V1, V2, V4 and IT) based

on anatomical connectivity patterns, different anatomical structures and retinotopic mapping

(Felleman & Van Essen, 1991). Most of the visual field for areas V1, V2, and V4 have complete

retinotopic maps and each area can be seen as conveying a population-based re-representation

of visually presented images (see Fig. 1). However, within the IT complex, crude retinotopy

exists over the posterior portion (Boussaoud et al, 1991), but not in the central and anterior

regions ( Felleman & Van Essen, 1991). Stoerig and Cowey (1997) found that lesions in the

posterior ventral stream can result in total blindness in that area of the visual field, and Holmes

and Gross (1984) found that lesions or inactivation of anterior regions, particularly the inferior

temporal cortex (IT) can cause a selective deficits in the ability to distinguish between complex

objects. The ventral visual stream is thought of as a series of hierarchical processing stages that

encode image content (such as object identity and category) increasingly explicitly in

successive cortical areas (DiCarlo & Cox, 2007; DiCarlo et al., 2012; Felleman & Van Essen,

1991; Riesenhuber & Poggio, 1999). For instance, V1 neurons are defined as Gabor-like edge

detectors that extract rough object outlines (Carandini et al, 2005), despite the fact V1

population does not exhibit robust tolerance to complex image transformations (DiCarlo et al,

2012). The inferior temporal (IT) cortex, the highest processing stage of the ventral stream,

can, nevertheless, directly enable real-time, invariant object categorization (Hung et al., 2005;

Rust & DiCarlo, 2010). The Midlevel ventral area (V4) consistently shows intermediate

levels of object selectivity and variation tolerance (Rust & DiCarlo, 2010).
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Figure 1: Neuronal populations along the ventral visual stream (DiCarlo & Cox, 2007).
Here is shown a lateral schematic of a rhesus monkey brain.

1.2. Visual Representations

The inferior temporal cortex (IT), the highest level of the ventral visual stream in both

humans and other primates, is assumed to be where visual representations are created (Tanaka,

1996; Logothetis & Sheinberg, 1996). Numerous individual IT neurons have been found to

selectively respond to specific object classes, such as faces or other complex shapes, while also

displaying some tolerance for changes in object size and position, pose, illumination, and low-

level shape cues (Serre et al., 2007). Hung et al., (2005), focused on characterizing the initial

wave of neuronal population images that are successively produced along the ventral visual

stream as the retinal image is altered and re-represented on its way to IT (see Fig. 1) to better

understand how the ventral stream represents visual information. They discovered that at least

some core recognition can be supported by population representations in IT. In particular,

despite changes in object position and size, simple linear classifiers can quickly (within <300

ms from image onset) and reliably determine an object's category by reading the firing rates of

an IT population of ~200 neurons (Hung et al., 2005). It is useful to consider the elements that

make up such a representation even though it is unclear how the ventral visual stream creates

this powerful form of visual representation. In other words, a good representation is one that

makes it easy to determine a presence of an object or a face by simply putting a linear decision

function such as a hyperplane between the representations of two objects or faces ( see Fig.
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2b). A bad representation, on the other hand, is one where it is impossible to reliably distinguish

between two representations using a linear decision function ( see Fig. 2c).

1.3. Untangling Object Manifolds

According to DiCarlo et al., (2012), if we think of a population of neurons' response to a

specific view of an object as a response vector in a space whose dimensionality is determined

by the neurons in the population, an object undergoing an identity-preserving transformation

results in a different pattern of population activity that corresponds to a different response

vector. As a result, response vectors corresponding to all possible identity-preserving

transformations create a low-dimension in a high-dimensional space which is defined as "an

object identity manifold". To put it another way, a response of a population of neurons to an

image can be thought of as a point in a high-dimensional space where each axis represents

a response level of each neuron, and all the possible identity-preserving transformations of an

object will form a low-dimensional manifold of points in the population vector space (see Fig.

2a). Therefore, each object identity manifold will be significantly curved for neurons with

small receptive fields, such as retinal ganglion cells, and V1 cells (see Fig. 2c). Additionally,

the manifolds corresponding to different objects will become tangled (see Fig. 2d). At Higher

levels of visual processing, object identity manifolds are more flat, separated, or untangled as

neurons tend to maintain their selectivity for objects despite changes in view (see Fig. 2b).

Therefore, it is believed that object manifolds are gradually untangled by non-linear selectivity

and the application of invariance computations at each stage of the ventral visual stream's

processing (DiCarlo et al, 2012). As a result, a linear decision function, like a hyperplane, can

be used to simply separate or differentiate one object's manifold from all other object

manifolds.
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Figure 2: Object Untangling (DiCarlo & Cox, 2007). Here is shown object untangling. In a
neuronal population space, each axis is one neuron’s activity and the dimensionality of the
space is equal to the number of neurons.

CHAPTER 2: DEEP CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks are artificial neural networks that use convolutional

layers to extract features from images and have become a powerful tool for image recognition

and computer vision tasks. The first convolutional neural networks (CNNs) were inspired by

the work of Hubel and Wiesel (Hubel & Wiesel, 1962; 1968), who studied the primary visual

cortex of cats and found that simple cells respond to lines with a specific orientation, while

complex cells have a larger receptive field and are more location invariant. This work led to

the development of biologically inspired computational models for visual recognition,

including the Neocognitron (Fukushima, 1980) and the HMAX (Riesenhuber & Poggio, 1999),

which are early examples of CNNs. The Neocognitron consists of a cascade connection of

modular structures that mimic the organization of the visual cortex and has a degree of location

invariance and can recognize features in different positions. The HMAX model is a hierarchical

feedforward architecture, it consists of alternating layers of simple and complex cells that

detect increasingly complex features. The HMAX model has shown good accuracy in image

recognition and can achieve close to human-level performance on rapid object recognition

tasks (Chikkerur & Poggio, 2011). However, these early models consisted of only a few layers,

which made them less effective at recognizing complex patterns in images.
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The modern convolutional neural networks were also inspired by the structure and

function of the primate ventral visual stream (Hubel & Wiesel, 1962; 1968), and they process

information through a deep hierarchy of representations (typically 5 to 20 layers, hence the

name deep Convolutional Neural Networks) to enable the recognition of object categories. The

CNNs have become increasingly accurate over time, and are now capable of achieving close

to human-level performance on some rapid object recognition tasks (Krizhevsky et al., 2012).

The architecture of CNNs is composed of mainly three types of layers: convolutional, pooling,

and fully-connected (see Fig. 3). The convolutional layer applies filters to input data to extract

relevant features, while the pooling layer reduces the dimensionality of the features, and the

fully-connected layer performs classification based on the extracted features. In CNNs, a

Rectified Linear Unit (ReLU) is a commonly used non-linear activation function that

introduces non-linearity in one or more layers. This helps the network to learn complex features

and patterns from the input images. These networks are trained using a backpropagation

algorithm, which enables them to learn from their errors and increase their accuracy over time.

For instance, LeCun et al. (1989) demonstrated that Convolutional Neural Networks (CNNs)

trained with supervised learning using the backpropagation algorithm could accurately classify

handwritten digits. However, it wasn't until when an 8-layer CNN, called AlexNet (Krizhevsky

et al., 2012), trained with backpropagation, surpassed the state-of-the-art performance on the

ImageNet challenge, that CNNs gained widespread attention. Since then, many different CNN

architectures have been explored, varying parameters such as network depth, pooling layer

placement, number of feature maps, and training procedures (He et al., 2016).

Figure 3: CNN Architecture ( Krizhevsky et al., 2012). Here is shown the architecture of
CNN with different types of layers.
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CHAPTER 3: COMPARING VENTRAL VISUAL STREAM AND DEEP

CONVOLUTIONAL NEURAL NETWORKS

Since convolutional neural networks were first developed, their performance and

complexity have improved compared to earlier models of object recognition. But it's unclear

whether these new models are close to achieving object recognition representation performance

that is comparable to that shown in the IT cortex, or to put it another way, "is a question that

has yet to be answered". Drawing from five studies (Yamins et al., 2014; Cadieu et al., 2014;

Khaligh-Razavi and Kriegeskorte, 2014; Kubilius et al., 2016; Rajalingham et al., 2018), here

this review try to examine if these models are capable of achieving object recognition

performance somewhat identical to the primates’. A detail account on all the findings in the

five studies that compare the representational performance of IT cortex to convolutional neural

networks are given below.

Methods:

A comprehensive literature search was conducted to identify relevant studies published

between 2012-2022, with a focus on studies comparing the performance of deep CNNs and the

primate ventral visual stream in object recognition tasks. The search was conducted through

Scopus, Web of Science and Google Scholar. Five studies were selected that investigated the

performance of deep CNNs and the primate ventral visual stream in object recognition tasks.

The selected studies were critically evaluated based on their research design, methodology, and

key findings.

Results:

Yamins et al., (2014), used high-throughput computational techniques to identify a

neural network model that matches human performance on challenging object categorization

tasks and found that a model's categorization performance is strongly correlated with its ability

to predict individual neural unit responses and they identified a high-performing neural

network model (HMO or hierarchical modular optimization) that matches human performance

on object recognition. The authors also found that even though the model was not explicitly

designed to match neural data, its output layer accurately predicts neural responses in the

highest ventral visual area (IT cortex) (see Fig. 5) and its middle layers predict responses in the
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midlevel visual area (V4 cortex)(see Fig. 4), suggesting that top-down performance constraints

shape intermediate visual representations.

Figure 4: V4 neural response predictions (Yamins et al., 2014). The figure shows the
HMO’s middle-layer (L3) accurately predicts neural responses in V4.

Figure 5: IT neural response predictions (Yamins et al., 2014). The figure shows the HMO’s
top-layer accurately predicts neural responses in IT.
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Cadieu et al. (2014), used a novel extension of kernel analysis (Montavon; Braun; and

Muller, 2011) that measures precision as a function of complexity and compared the

performance of three deep convolutional neural networks: models described in Krizhevsky et

al. 2012, Zeiler & Fergus 2013, and Yamins et al. 2014 or HMO, and three other biologically

relevant representations including V1-like, V2-like, and HMAX models to the neural

representations of the primate IT cortex. Before comparing the neural and model

representations, the authors evaluated the absolute representational performance of various

models on a computationally difficult task. They found that the V1-like and V2-like models

performed poorly on the task, while the HMAX model performed slightly better. However, the

three convolutional deep neural networks (DNNs) outperformed all other models. The Zeiler

& Fergus 2013 model performed the best, followed by the Krizhevsky et al. 2012 model and

the HMO model (see Fig. 6). To compare the performance of the IT neural representation to

model representations, the authors took steps to ensure a fair comparison. They fixed the

number of neural samples and model features and added noise to the model representations to

correct for experimental noise. They estimated an experimental neural noise model based on

the observation that spike counts of neurons are approximately Poisson and used this to produce

noise-matched model representations for comparison using kernel analysis. They used kernel

analysis curves to evaluate the precision of these representations and found that the IT neural

representation performed better than the V4 neural representation, and was only matched by

the top-performing DNN of Zeiler & Fergus 2013 after correcting for sampling and noise (see

Fig. 7a). This suggests that the IT neural representation is quite competitive and effective for

object recognition, despite the limitations of the recordings. The authors compared the

performance of models and neural representations for single-unit neural recordings. Due to

increased noise and fewer trials, the single-unit noise and sample-corrected model

representations achieve lower precision than multi-unit noise and sample correction. The

analysis shows that the single-unit IT representation performs better than the HMO

representation, slightly worse than the Krizhevsky et al. 2012 representation, and is

outperformed by the Zeiler & Fergus 2013 representation (see Fig. 7b). The authors computed

the area under the curve from kernel analysis curves to obtain a summary number, omitting

models with near-zero performance (i.e. V1-like, V2-like, and HMAX). They vary the number

of multi-unit recording samples and features, and correct for neural noise by adding a matched

neural noise level to the model representations and found that the Zeiler & Fergus 2013 deep

neural network (DNN) performs similarly to the IT multi-unit representation, and both the
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Krizhevsky et al. 2012 and Zeiler & Fergus 2013 DNNs outperform the IT single-unit

representation after correcting for noise and sampling effects (see Fig. 8a). These findings are

particularly interesting because they suggest that the DNNs can perform well even with limited

training examples, where a simpler representation is necessary for generalization. The authors

measured linear-SVM (support vector machine) generalization performance of neural and

model representations and found that the Zeiler & Fergus 2013 representation achieved

generalization comparable to the IT multi-unit neural sample for a simple linear decision

boundary, which was consistent with the results obtained from kernel analysis (see Fig. 9). The

authors measured the performance of the model representations as encoding models of the IT

multi-unit responses and found that the Krizhevsky et al. 2012 and the Zeiler & Fergus 2013

DNNs achieved higher prediction accuracies than the HMO model (see Fig. 10). However, no

model was able to fully account for the explainable variance in the IT multi-unit responses.

The authors used representational similarity analysis (Kriegeskorte et al., 2008) to measure

how similar the two representations are, they computed object-level representational

dissimilarity matrices (Kriegeskorte et al., 2008) for model and neural representations and

measured the Spearman rank correlations between the model-derived RDM and the IT multi-

unit RDM. The results showed that there remains a gap between DNN models and IT

representation when measured with object-level representational similarity (see Fig. 11a).

Figure 6: kernel analysis curves of neural and model representations (Cadieu et al., 2014).
The figure shows precision of different models in performing object recognition tasks. The
curves plot precision against complexity.
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Figure 7: Kernel analysis curves of sample and noise-matched neural and model
representation (Cadieu et al., 2014). The figure shows deep neural networks perform better
than the V4 cortex sample, and some model representations rival or surpass the IT cortex
representation in both multi-unit and single-unit analysis.

Figure 8: Effect of sampling the neural and noise-corrected model representations
(Cadieu et al, 2014). The figure shows deep neural networks outperform the V4 cortex sample,
and the Zeiler & Fergus 2013 representation outperforms the IT cortex representation in
comparison to the measured sample for both multi-unit and single-unit analysis.
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Figure 9: Linear-SVM generalization performance of neural and model representations
(Cadieu et al, 2014). The figure shows the Zeiler & Fergus 2013 deep neural network (DNN)
representation achieves comparable performance to the IT multi-unit neural representation, and
both outperform the Krizhevsky et al. 2012 DNN representation.

Figure 10: Neural and model representation predictions of IT multi-unit responses
(Cadieu et al, 2014). The figure shows the Zeiler & Fergus 2013 DNN achieved comparable
performance to the IT cortex multi-unit representation.
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Figure 11: Object-level representational similarity between model and neural
representations (Cadieu et al 2014). The figure shows the most recent DNNs offer
compelling models of primate object recognition representations that rival with the
representational performance of IT cortex.

Khaligh-Razavi and Kriegeskorte (2014), investigated how well computational models

can explain the representation of visual objects in the inferior temporal (IT) cortex of humans

and monkeys. They looked at the models' ability to categorize objects and how well their

internal representations matched the IT cortex's representational geometry. They included

some biologically inspired models such as HMAX, and several models from computer vision

such as DCNNs. The authors found that better-performing models were more similar to IT

representations in terms of their categorization performance and representational

dissimilarities. They also found that models trained through supervised learning, such as deep

convolutional neural networks, performed better in categorizing objects and explaining the IT

representational geometry than unsupervised models.

Kubilius et al., (2016), conducted several experiments. In experiment 1, they evaluated

the ability of convolutional neural networks (CNNs) to recognize objects based on their shape.

The experiment uses a stimulus set of common objects presented in different formats, including

color images, grayscale images, and silhouettes (see Fig. 12a), and compares the performance

of CNNs and human observers in recognizing the objects. The results show that CNNs can

maintain a robust and accurate performance even when all non-shape cues are removed (see

Fig. 12b), demonstrating their ability to extract perceptually relevant shape dimensions for
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object recognition. In experiment 2, the authors investigated whether convolutional neural

networks (CNNs) develop representations that capture perceived shape dimensions rather than

physical form. They used a stimulus set of novel shapes with orthogonal physical and perceived

dimensions (see Fig. 13a) and found that deep models tended to cluster stimuli based on their

perceived similarity (see Fig. 13b), whereas shallow models were better at capturing physical

dissimilarity (see Fig. 13c). The correlation analysis showed that deep models captured

perceived shape better than shallow models, and shape preference gradually increased

throughout all CNNs layers (see Fig. 13d). The authors also tested whether deeper neural

networks are better at capturing perceptual similarities between letters from different fonts (see

Fig. 14a) and found that deep models were more sensitive to differences between fonts and

captured perceived similarity of letters significantly better than shallow models (see Fig. 14d).

The results suggest that deeper networks have a general property of forming perceptually-

relevant representational spaces and are more robust than other models in certain scenarios. In

experiment 3, the authors tested the sensitivity for non-accidental properties using a stimulus

set of geon triplets (see Fig. 15a) based on the Recognition-by-Components (RBC) theory

(Biederman et al., 1987) which suggests that object recognition is based on shape properties

known as non-accidental, which remain invariant under natural variations such as lighting and

viewpoint and the theory predicts that humans perceive changes in non-accidental properties

more readily than equivalent changes in metric properties. Kubilius et al. (2016), found that

deep neural networks showed a higher than-chance performance in discriminating between

stimuli, with deeper networks performing slightly better than shallower ones (see Fig. 15b). In

experiment 4, Kubilius et al., (2016), investigated the extent to which CNNs capture semantic

human category judgments. They found that deep models captured some semantic structure in

the stimuli, but the learned representations in CNNS are largely based on shape and not

category (see Fig. 16c,d).
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Figure 12: Object Categorization (Kubilius et al., 2016). a) shows examples of objects
used in object categorization. b) shows the deep neural networks can represent perceived
shape and achieve high accuracy in object recognition.

Figure 13: Model preference for shape (Kubilius et al., 2016). The figure shows (a) stimulus
set of shapes with orthogonal physical and perceived dimensions, (b) the deep models tended
to cluster stimuli based on their perceived shape rather than physical shape, while (c) shallow
models were better at capturing physical similarity, and (d) the deep models captured perceived
shape better than shallow models.
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Figure 14: Model preference for shape (Kubilius et al., 2016). The figure shows a) stimulus
set of six letters from six constructed fonts, b) comparison of the model outputs to human shape
judgments, c) shallow models are better at capturing physical similarity, and d) deep models
are better at capturing perceived shape similarity than shallow models.

Figure 15: Examples of geons (Kubilius et al., 2016). The figure shows a) examples of geon
triplets, and b) the model's performance in discriminating between stimuli with metric and non-
accidental variants. Deeper networks tend to perform better than shallower ones.
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Figure 16: categorical representations in CNNs (Kubilius et al., 2016). The figure shows
how convolutional neural networks (convnets) represent categorical information and shape in
visual objects. a) stimulus set of objects with largely orthogonal shape and category
information. b) shows convnets represent perceived shape and semantic category in parallel,
with a clear separation between natural and man-made objects. (c-d) A correlation between
model representations and human shape (c) and category (d) judgments.

Rajalingham et al., (2018) compared object recognition behavior of primates and

artificial neural network models (DCNNs) using a series of behavioral metrics. Both biological

and artificial visual systems were tested on the same set of images and characterized at multiple

resolutions. The goal was to compare the behavioral signatures of the two systems and

determine if they were statistically indistinguishable. At the object-level behavioral

comparison, the authors found that deep convolutional neural network (DCNN) models had a

higher similarity to human behavior than a baseline pixel model or a low-level V1 model (see

Fig. 17). At the Image-level behavioral comparison, to determine the purely image-level

behavioral variance, the authors computed the normalized image-level signature, which is

obtained by subtracting the object-level discriminability from the one-versus-all image-level

signature. The results showed a significant divergence between DCNNs and primates, with

DCNN models being significantly less human-consistent than primates (see Fig. 18). The

authors also tested modifications to the DCNN models to see if they could better match the

primate visual system behavior. The authors tried changing the input to be more primate-like,
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modifying the transformation from the internal model feature representation to the behavioral

output, and fine-tuning the internal filter weights of the model. However, none of these

modifications led to a significant improvement in the model's ability to accurately capture the

image-level signatures of primates. Furthermore, Rajalingham et al., (2018) investigated

whether certain image attributes, such as size, eccentricity, pose, and contrast, could explain

the differences in performance between deep convolutional neural network (DCNN) models

and primates in object recognition tasks and found that while the Inception-v3 (Szegedy et al.,

2013) visual system model exhibited similar performance dependencies as primates, these

image attributes could only explain a small portion of the variance in the DCNN models'

residual signatures. Therefore, other factors likely contribute to the models' failure to capture

primate image-level signatures.

Figure 17: Object level comparison to human behavior (Rajalingham et al., 2018). The
figure shows deep convolutional neural network (DCNN) models have higher similarity to
human behavior than a baseline pixel model.
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Figure 18: Image level comparison to human behavior (Rajalingham et al., 2018). The
figure shows a significant divergence between DCNNs and primates, with DCNN models being
significantly less human-consistent than primates.

CONCLUSION

In conclusion, the studies conducted by Yamins et al. (2014), Cadieu et al. (2014),

Khaligh-Razavi and Kriegeskorte (2014), Kubilius et al. (2016), and Rajalingham et al. (2018)

provide valuable insights into the performance and representational abilities of computational

models and deep convolutional neural networks (CNNs) in object recognition tasks compared

to the primate visual system.

Yamins et al. (2014) demonstrated that the performance of a neural network model in

object categorization tasks strongly correlates with its ability to predict individual neural unit

responses. They identified a high-performing neural network model (HMO) that matches

human performance on object recognition, and found that its output layer accurately predicts

neural responses in the IT cortex. The study suggests that top-down performance constraints

shape intermediate visual representations.

Cadieu et al. (2014) compared the performance of different computational models,

including deep CNNs, on challenging object recognition tasks. The deep CNNs outperformed

other models, with the Zeiler & Fergus 2013 model performing the best. When comparing

model representations to the IT neural representation, after correcting for noise and sampling
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effects, the Zeiler & Fergus 2013 deep CNN performed similarly to the IT multi-unit

representation. These findings highlight the competitive performance of deep CNNs and their

ability to generalize with limited training examples.

Khaligh-Razavi and Kriegeskorte (2014) investigated the ability of computational

models, including deep CNNs, to explain the representation of visual objects in the IT cortex.

They found that better-performing models showed greater similarity to IT representations in

terms of categorization performance and representational dissimilarities. Supervised learning

models, such as deep CNNs, performed better in categorizing objects and explaining IT

representational geometry compared to unsupervised models.

Kubilius et al. (2016) conducted experiments to evaluate the ability of CNNs to recognize

objects based on shape and perceptual dimensions. Deep models demonstrated robust and

accurate performance in object recognition tasks even when non-shape cues were removed.

Deep CNNs captured perceived shape dimensions better than shallow models and showed

sensitivity to differences between fonts. Additionally, deep models performed slightly better

than shallow models in discriminating between stimuli with non-accidental properties.

However, the learned representations in CNNs were largely based on shape rather than

category.

Rajalingham et al. (2018) compared the object recognition behavior of primates and

artificial neural network models, specifically deep CNNs. The results indicated that DCNN

models had higher similarity to human behavior than baseline pixel models or low-level V1

models at the object-level behavioral comparison. However, at the image-level behavioral

comparison, significant divergence was observed between DCNNs and primates, with DCNN

models being less human-consistent. Modifications to the DCNN models did not lead to

significant improvements in capturing the image-level signatures of primates. The study also

found that certain image attributes could only explain a small portion of the differences in

performance between DCNN models and primates.

Overall, these studies collectively emphasize the progress and challenges in developing

computational models for understanding human object recognition. DNNs have shown

remarkable performance and capability in certain aspects of object recognition, but there are

still limitations in replicating the complexities of the primate visual system. Further research is

needed to bridge the gap between computational models and the intricate neural mechanisms

underlying human object recognition.
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