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Abstract

This thesis deals with the ion-heating by low-frequency electromagnetic (e.m.) waves produced
in a magnetic reconnection event. During magnetic reconnection events a fraction of the mag-
netic energy is converted in kinetic energy of the particles. Despite the study of several heating
mechanisms that can contribute to the particle energization, the full mixture of mechanisms
operating are still an argument of debate. The ion heating by low-frequency waves is one of
the most interesting mechanisms because it could be applied to many types of plasmas, from
astronomical to laboratory ones.

In this thesis, we present a modelling of ion heating due to the interaction with a spectrum
of Alfvén waves. The Alfvén waves are the lowest frequency e.m. waves that can propagate
inside a magnetized plasma. In this thesis, these waves are computed as produced at magnetic
reconnection event simulated in 3D nonlinear MHD code. This heating model is based on the
hamiltonian formulation of the dynamics of the test-particle.

The ion heating will be studied in several different cases, varying the characteristics of the
Alfvén waves, such as the amplitude and the frequency. The duration of the interaction and the
mass of the test-particle will be also an argument of discussion.
The most interesting result is connected to the heating given by a broadband spectrum of the
magnetic modes excited during a reconnection event in a RFP plasma. The work in this thesis
is promising in showing a possible contribution of Alfvén waves to ion heating, comparable with
the experimental results.
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4.3 Simulations with a set of Alfvénic turbulences . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Simulations of several waves with same helicity . . . . . . . . . . . . . . . 54

2



4.3.2 Simulations with sets of different helicity waves . . . . . . . . . . . . . . . 55
4.3.3 Study of the heating as a function of the test-particle mass . . . . . . . . 58

4.4 Heuristic interpretation of the ion heating . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusions 64

A Appendices 66
A.1 Liouville’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Coordinates and Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Wave vector in cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . 67
A.4 Products of variables in Fourier space . . . . . . . . . . . . . . . . . . . . . . . . 68
A.5 Symplectic integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3



Introduction

This thesis summarizes the activities I have carried out and the results I have accomplished
during the 6 months collaboration with the Consorzio RFX, at the CNR research area in Padua.
Consorzio RFX is a laboratory where science and plasma technology is studied, in particular the
focus is on thermonuclear controlled fusion. It hosts two important experiments: the first one
is called NBTF (Nuclear Beam Test Facility) and the second one in RFX-mod (Reverse Field
eXperiment). NBTF studies the neutral beam injector for the ITER experiment, which is the
major international project of a thermonuclear fusion reactor presently under construction in
France. RFX-mod is a fusion experiment that studies the reverse-field-pinch (RFP) and Toka-
mak configurations. It is the largest RFP experiment in the world.

The main topic of this thesis is the ion heating by low-frequency electromagnetic waves produced
during a magnetic reconnection event. Ion heating and magnetic reconnection are fundamental
topics in plasma physics. They have been experimentally observed and studied in many experi-
mental devices, including the RFP ones.
The magnetic reconnection events change the magnetic topology of the magnetic field lines,
and are a topic of intense study: they are related to the action of plasma instabilities and the
main signature of a reconnection event is the release of magnetic energy that gets converted into
kinetic one. But the mechanism through which this energy is transferred to the particles is still
unknown. In years of study, many heating mechanisms were proposed, but none could elaborate
a satisfying answer to the problem.

One of the most studied heating mechanism is the ion heating by low-frequency waves. During
a reconnection event a large spectrum of electromagnetic turbulence, including Alfvén waves,
is generated. They are the e.m. waves with the lowest frequency that can propagate inside a
magnetized plasma. So, a heating mechanism that involves the presence of low-frequency waves
is a promising solution.

In this thesis, a 3D generalization of the ion-heating model of [1] is presented and discussed.
This thesis studies the ion energization given by a spectrum of Alfvén waves obtained at a mag-
netic reconnection event simulated in a 3D non-linear MHD modelling. This model describes
the plasma as a single fluid in an electromagnetic field, and represents one of the most suited
models used to study magnetic reconnection in plasma physics. The heating is studied with a
test-particle approach, simulating the wave-particle interaction by integrating the equations of
motion of the Hamiltonian formulation. The goal of the thesis is assess if particles can be heated
by the Alfvén waves produced during a reconnection event.

This thesis develops in 4 main chapters.
The first chapter introduces the concept of thermonuclear controlled fusion. At first, it will be
explained why the thermonuclear fusion is so important in the modern world and how we can
reach it. With this, it will also be discussed the magnetic confinement, which is the most critical
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issue of a fusion reactor.
At the end, there is a recap of the fusion devices, with a more detailed description of the reverse-
field-pinch configuration, which is the most important one for the understanding of this thesis.

In the second chapter, the modelling of ion heating is presented and discussed in details after a
short recap on resonance systems. The simulation code (the one that computes the equations
of motion of the particle) will also be described.

The third chapter is divided in three parts. In the first part, a detailed description of the
magnetohydrodynamic model (MHD) of a plasma is given. The main aspects of plasma insta-
bilities and magnetic reconnection phenomena will also be presented. In the second part, the
SpeCyl code is introduced: it is a code that numerically solves the equations of the MHD model.
This code allows the modelling of a cylindrical plasma in RFP configuration. The last part
consists of the description of the analysis performed on the SpeCyl data in order to obtain the
spectrum of the Alfvén waves produced in a magnetic reconnection event.

The fourth chapter summarizes all the results of the thesis. In the first part there is a pre-
sentation of the Alfvén waves parameters, obtained through the SpeCyl post-processing. There
is also a description of how these parameters become an input file for the simulation code.
In the second part, the results of hundreds of independent simulations are presented. They will
be divided in two main groups, the simulations with a single low-frequency wave and the ones
with a large spectrum of waves. The ion-heating will be analyzed by varying many simulation
parameters, such as the simulation time, the mass of the test-particle and the amplitude of the
waves. The results in terms of particle energization are promising and comparable with the
experimental results.
In the last part, an heuristic interpretation of the ion heating is presented.
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Chapter 1

Thermonuclear controlled fusion

In this chapter, a short recap of the basis of thermonuclear controlled fusion is presented.
In the first part, the most relevant nuclear fusions for thermonuclear reactors will be presented.
The problem of plasma confinement will be also discussed.
In the last part, we will focus on the fusion devices, in particular the main features of the
reverse-field-pinch configuration will be presented. This allows us to move to the RFX-mod
machine, which is an RFP device present in Padua, at Consorzio RFX. During the thesis, the
characteristic parameters of the RFX-mod machine will be used as reference values.

1.1 The fusion reaction

The study of the thermonuclear controlled fusion is fundamental in a world in which there is
an always higher request of energy, because it has the potential to offer an inherently safe and
inexhaustible source of energy.
The nuclear fusion is the process in which two light nuclei fuse together generating a new heavier
nucleus with the emission of energy in form of kinetic energy of the products. This is the process
that guarantees the heat production in the stars.
The easiest fusion reaction, which is the one that happens in stars with a mass lower (or equal)
to the Sun, is called pp-chain: it converts 4 protons into a helium atom, emitting 26,73 MeV
of energy for every cycle [2]. In the pp-chain (figure 1.1.1) the proton to neutron conversion
(step 1) and the He3 to He4 conversion (step 3) are governed respectively from weak and
strong interactions. These types of interactions are characterized by a very small probability
of happening, the first one has a lifetime of τw ≈ 109yr and the second one τs ≈ 105yr. The
cross-section of the reaction is the parameter that is used to define the reaction probability: low
cross-section means low probability.
The reason why the stars emit a huge amount of energy is that the low probability is compensated
by the enormous amount of particles (which are present in the star itself) that can interact for
unlimited time in thermal fusion conditions.

On the Earth, it is impossible use the pp-chain for controlled fusion because we cannot maintain
the fusion plasma for the time needed to have a significant number of fusion events. It is
necessary to find another type of fusion reaction that has an higher cross-section than the pp-
chain one. Another important factor which must be consider is that the reactants must be
plentiful in nature and easy to obtain.
There are many reactions that satisfy these requirements, but 4 are the simplest ones. All of
them require the presence of the deuterium D, which is an isotope of the hydrogen and it is very
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Figure 1.1.1: Representation of the pp-chain of a star. It can be divided in 3 steps: protons to
hydrogen conversion, hydrogen to helium-3 and helium-3 to helium-4.

common in nature. The 4 reactions are the following [3]:

1)D +D → He3 + n+ 3.27MeV

2)D +D → T +H + 4.03MeV

3)D + T → He4 + n+ 17.6MeV

4)D +He3 → He4 +H + 18.3MeV

(1.1.1)

Studying the cross-sections of these reaction, figure 1.1.2, it is possible to notice that the third
one, the reaction between D and T, has the higher cross-section for a large spectrum of opera-
tional temperatures. So, the D-T reaction has been selected as the most promising in order to
obtain thermonuclear controlled fusion.

Figure 1.1.2: Cross section [1 barn = 10−28m2] of the reactions (eq. 1.1.1) as a function of the
kinetic energy [keV] of the Deuterium [3].

This fusion reaction needs the presence of tritium T, which is another isotope of hydrogen. It
does not occur in nature because it is a radioactive gas with an half-life of 12 years, but it can
be produced quite easily using neutrons to fertilize lithium.

Li6 + n → T +He4 + 4.8MeV

Li7 + n → T +He4 + n− 2.5MeV
(1.1.2)

Due to the fact that the D-T reaction releases a neutron, it is possible to create a chain of
events: the D-T fusion reactions produce neutrons that we can make to interact with lithium,
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this interaction produces tritium that can be collected and used for other fusion reactions. So,
the primary fuel of the fusion reactor are deuterium and lithium, which are very common ele-
ments in nature: deuterium can be find in the water ( more or less one D atom every 7000 water
molecules) and lithium on earth (there are at least 16 millions of tons of Li).

In principle, the simplest approach to obtain fusion is to collide head-to-head two high en-
ergy beams, in this case composed by D and T. But this method is not practical due to the
fact that elastic collision cross-section is one order of magnitude higher than the fusion one.
Since ions undergoing elastic collisions are lost from the beam, it is impossible to have a positive
energy balance. So, it is needed a way to confine the plasma in a limited region for a time much
larger than the typical elastic collision-time in order to obtain a relevant number of fusion events.

1.2 Plasma confinement

The critical issue of a fusion reactor is the confinement of the plasma.
Plasma is an unstable state of matter. In order to confine it, an external force is needed. For
example, a star is a gravitationally-bound sphere of plasma inside which fusion occurs.
In a fusion reactor, the gravity cannot be used for the confinement because the quantity of
gas inside the chamber is very low. There are two alternative ways to confine the plasma: the
magnetic confinement and the inertial confinement. The first is based on the fact that magnetic
forces can confine charged particles along the perpendicular direction to the field, the second,
instead, induces fusion bombarding a solid target with high power laser beams. This makes the
compression of the inner part and allows to reach the fusion condition.
The magnetic confinement is the one adopted by the European Fusion Program.

When a particle with charge q and velocity v⃗ is put inside an electromagnetic field it expe-
riences a force, called Lorentz force, which is given by the following equation:

F⃗ = q(E⃗ + v⃗ × B⃗) (1.2.1)

Neglecting for the moment the electric field E⃗, this force makes the particle rotate around the
direction of the magnetic field B⃗. If the particle also has a component of the velocity parallel to
the B⃗ field, the resultant trajectory will be a spiral along the field direction. This fact can be
used to confine particles, but it works only in the orthogonal plane respect to B⃗. The Larmor
radius rL and the cyclotron frequency ωc are two fundamental quantities that describe this type
of motion: the first represents the radius of the circular orbit traveled by the particle and the
second the angular velocity:

rL =
mv⊥
qB

ωc =
qB

m
(1.2.2)

In order to confine also in the longitudinal direction, the best solution is to close the magnetic
field lines on themselves creating a torus. The simplest configuration is the toroidal solenoid:
a solenoid is close itself in a doughnut-shaped structure and the magnetic field is only directed
along the toroidal direction, which circles around the rotation axis (figure 1.2.1). The poloidal
direction, instead, circles around the minor radius of the torus.

The problem of this type of configuration is that the magnetic field inside the torus decreases
with the major radius: this can be easily demonstrated by applying the Ampere’s law as shown
in [3]. The final profile of the magnetic field is the following:

Bz =
µ0NI

2πr
(1.2.3)
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where N is the number of current loops along the toroidal direction and I the current.
This gradient of magnetic field leads the rapid loss of the plasma. The only way to overcome
this problem is to superimpose to the original magnetic field, which is called toroidal field, a
poloidal component by using external supplies. In this way, the particles experience a helical
magnetic field and all the effects of the drift velocity are cancelled by average due to opposite
contributions as the particles move around the torus (figure 1.2.1).

Figure 1.2.1: Representation of the superimposition of the toroidal magnetic field and the
poloidal one. The final result is a helical magnetic field that solves the problems of plasma
loss due to magnetic gradient.

1.3 Fusion devices

There are 3 main types of toroidal fusion configurations: the Tokamak, the Stellarator and the
Reverse Field Pinch (RFP).

The Tokamak is the most developed concept. It features a strong toroidal magnetic field pro-
duced by a set of toroidal field coils which approximate a toroidal solenoid (figure 1.3.1). In
the central hole, there is the primary circuit, which is nothing but a solenoid which is used to
vary the magnetic flux in the central hole. Due to the Faraday’s law, this variation induces an
electrical current which flows inside the plasma in the toroidal direction. This current, so-called
toroidal plasma current, is needed to generate the poloidal magnetic field component which is
essential to confine the plasma. The poloidal field is also provided by a set of poloidal coils.
Usually, the poloidal component of the field is one order of magnitude smaller than the other
one.
The Tokamak is the most promising fusion device because it allows to obtain a stable plasma
and it can maintain high temperatures for sufficient long time.

The main difference between the Stellarator and the Tokamak is that the first one has a more
complex geometrical structure: it has no more the toroidal symmetry. In fact, the Stellarator is
composed by a toroidal tube on which magnetic coils are enveloped along the toroidal direction
(figure 1.3.1). This structure generates a complex 3D magnetic field that is very different from
the Tokamak one. The advantage of this complex structure is that the magnetic confinement
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is reached without using a toroidal current: it is a current-less device. The complexity of the
design makes them more difficult to project, but this is compensated by the great stability of
the plasma: the presence of a toroidal current is the principal reason of plasma instabilities.
The RFP has some similarities to the Tokamak structure, and it will be discuss in details in the
next section.

Figure 1.3.1: Scheme of a Tokamak device (left) and a Stellarator (right).

1.3.1 The reversed-field-pinch

The reverse-field-pinch (RFP) is the third most developed fusion device. The research in the
case of RFP is not yet developed at the level of the largest tokamaks or stellarators due to the
better results obtained by the last two configurations in terms of plasma temperature.
The RFP is a toroidal pinch device that can be obtained from the Tokamak one with some
adaptation of the power supplies. In the same way, RFP devices can be used in tokamak con-
figuration. In fact, they have in common the same axisymmetric chamber, but in the RFP the
toroidal plasma current is one order of magnitude higher than the Tokamak’s one using the same
magnetic flux.

Due to the high level of the current, the poloidal magnetic field has the same magnitude of
the toroidal one. This is one of the main differences with the Tokamak devices. In figure 1.3.2,
it is possibile to see the comparison of the radial profile of the toroidal Bϕ and poloidal Bθ

magnetic field of Tokamak and RFP. It is possible to notice that the Bϕ component of the RFP
changes sign near the edge of the chamber. This is the reason of the name ”reversed field”.
This inversion can be measured through the reversal parameter F, which is the ratio between
Bϕ at the edge (a is the plasma minor radius) and the volume averaged value. The parameter
Θ is the so-called pinch parameter, which differs from F for the presence of the Bθ. These two
parameters are externally measurable and they are used to characterize the RFP operations and
allow to compare results of different experiments.

F =
Bϕ(a)

< Bϕ >
Θ =

Bθ(a)

< Bϕ >
(1.3.1)

The features of RFP give some potential technological advantages respect to the tokamak con-
figuration. First of all, the external coils have to produce only a small part of the magnetic field
because the bigger part is produced by the current which is flowing in the plasma. This means
that the structure of the external coils can be simpler: for example in a RFP superconductive
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Figure 1.3.2: Comparison of the radial profile of the magnetic field components Bθ and Bϕ of
Tokamak and RFP devices. It is possible to see the characteristic field inversion near the edge
for the RFP plasma.

materials are not required such as the related cooling systems.
Another advantage is that a RFP plasma could be heated up at higher temperatures using the
ohmnic heating, due to the fact that in it flows a very high current. So, it is possible to not
consider other types of heating, as radio-frequency and neutral beam injection.
On the other hand, RFP is characterized a mixture of magnetic modes (Chapter 3) that make
the magnetic field chaotic. This gives problems in terms of plasma confinement and heating.

1.3.2 The RFX-mod device

The RFX-mod device is the largest RFP experiment in the world and it is located in Padua,
Italy, at Consorzio RFX.

The main parameters that defines the RFX-mod experiment are shown in the table 1.

Major radius R0 2.00 m

Minor radius a 0.459 m

Max plasma current I 2.0 MA

Max magnetic field B 0.7 T

Vacuum pressure Pv 10−10 Pa

Plasma pressure Pp 103 Pa

Plasma density np 5 · 1019m−3

Max electron temperature Te 1.5 KeV

Max duration discharge t 0.5 s

Table 1.1: Main parameters that define the RFX-mod device.

The toroidal device is composed by the toroidal vacuum vessel, magnetic systems for producing
plasma equilibrium and control, power supplies and diagnostics that surround the machine. The
machine is shown in figure 1.3.3 during its operational phase.
The internal wall, that directly faces the plasma, is composed by 2016 graphite tiles. This com-
position was chosen in order to sustain the thermal loads and to get a low-impurities flow inside
the plasma.
The vacuum vessel that allows reaching low pressures is composed by 72 wedge shaped elements
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that are sustained by the external mechanical structure. The magnetic system is composed by
3 windings: the toroidal field coils (48 coils) for the production of the toroidal magnetic field
Bϕ, the poloidal field coils (20 coils) for the Bθ production and the vertical coils (16), described
in [4]. The main aim of this system is to control the shape and position of the plasma.
The RFX-mod experiment also has a system of 192 saddle coils dedicated to plasma active con-
trol. Today, the RFX-mod device is facing a shut down to allow the upgrading of the device to
its second version, called RFX-mod2. The figure 1.3.4 shows a typical signal obtained during a

Figure 1.3.3: The RFX-mod device.

RFX-mod discharge. On the first row the reversal and pinch parameters, F and Θ, are shown.
On the second row the behaviour of the toroidal component of the magnetic field at the edge,
for the most significant MHD modes (that will be described in the chapter 3), is presented.
The third row shows the temporal behaviour of the electron temperature on the torus’ axis.
The maximum temperature reached in this kind of discharges is around 800 eV and the typical
density is n = 2 · 1019m−3 for Ip = 1.2MA .

Figure 1.3.4: Experimental data of the RFX-mod machine.
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Chapter 2

Modelling of ion heating

In this chapter, the modelling of ion heating is presented. It is a test-particle approach, in
which the dynamics of a particle, that interacts with a prescribed low-frequency wave, is studied
by the Hamiltonian description. Before its introduction, a recap of the concept of resonance is
presented. In the second part, a comparison of the normalizations used in this thesis is discussed.
In the last part, a general introduction to the simulation code is given. This will be useful for
the right interpretation of the final results.

2.1 Resonance of a system

The resonance is a physical phenomenon that can be studied in many sectors of physics, from
mechanics to electromagnetism. It becomes important everytime we are dealing with oscillatory
dynamical systems. In general, we have resonance when an external force Fext acts on a oscil-
lating system amplifying its amplitude in the time.
This happens only if the Fext is applied to the system with a precise frequency, the so-called res-
onance frequency. Often, systems possess a resonant frequency, which depends on their physical
characteristics such as the dimension and the mass: it is also called natural frequency.

The simplest case in which we can study the resonance is the harmonic oscillator:

m
d2x

dt2
= −ω2

0x (2.1.1)

Its natural frequency is given by ω0. This frequency does not depend on the amplitude of the
motion: it means that even if the kinetic energy of the mass increases, so the amplitude of the
motion increases too, the frequency of the oscillation does not change.

If we apply to the system an external force proportional to this frequency, for example Fext ∝
cos(ωot), this force will be in phase with the oscillator: it means that the oscillator, in its ref-
erence frame, will see the external force as constant. A constant force applied to the system
corresponds to a constant acceleration that will increase the kinetic energy, so the amplitude of
the oscillations. Applying the generical Fext = f0cos(Ωt), the equation 2.1.1 become [5]:

m
d2x

dt2
+ ω2

0x = f0cos(Ωt) (2.1.2)

By solving this differential equation for the initial condition x(0) = 0 and dx
dt (0) = 0 we obtain:

x(t) =
f0

m(ω2
0 − Ω2)

sin(Ωt) (2.1.3)
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In resonance condition, Ω = ω0, the position diverges: it means that the oscillations become
always bigger, so the kinetic energy increases.
So the resonance is a physical feature which can be used for the acceleration (or heating) of oscil-
lating objects. Another interesting case, connected to the topic of this thesis, is the acceleration
of charged particles inside a toroidal structure. As seen in section 1.2, charged particles can be
confined in a toroidal chamber thanks to the imposition of a magnetic field. In that case, the
natural frequency is the one of the periodic rotation along the toroidal direction, the cyclotron
frequency (eq. 1.2.2). In this case, it is possible to accelerate the particles by introducing in the
chamber an electromagnetic wave in phase with the particle motion: the particle will experience
a constant electric field that will heat it [6].

We remark the fact that the ion heating described in this thesis is not due to the resonance
between particle and wave. In fact, the Alfvén wave’s frequency is very lower than the cyclotron
frequency of the test-particle (as you will see in section 4.1.1). A possible interpretation of the
heating will be given in the last section 4.4.

2.2 Hamiltonian description of the heating modelling

The goal of this thesis is to try to generalize the ion heating modelling proposed in [1] to a
more complex 3D system and investigate if it could be a plausible heating mechanism in the
case at hand. In [1], a 1D modelling of ion heating is proposed, in which particles are made to
interact with a single Alfvén wave for a limited time. This phenomenum is studied by the 1D
Hamiltonian description of the wave-particle interaction.
In this thesis the idea is the same, studying the interaction between particles and a spectrum of
Alfvénic turbulence, but this time in a 3D magnetic field.
We want to see if the particles can be heated by the low-frequency waves that are produced
by a magnetic reconnection event in a reversed-field-pinch plasma. This is done by a non-self-
consistent test-particle approach, in which ions are mutually independent particles interacting
with a prescribed set of waves.

The logical steps of this type of calculation are basically two. First of all, it is necessary to
find and study the Alfvén waves produced in a RFP plasma. It is not possible to have experi-
mental results on the Alfvén waves propagation inside the chamber, the only result is given by
[7] in which the presence of Alfvén waves is shown at the edge of the chamber. For this reason,
the Alfvén waves used in this thesis are obtained by analyzing simulation data produced by
the SpeCyl code. All the details connected to the Specyl code, the 3D magnetic structure of a
RFP plasma and the computation of the Alfvèn waves produced by a reconnection event will
be explained in the next chapter.
The second step is to make the particles interact with these waves. By using a fortran90 code
solving the ion-heating model, this interaction was simulated for a huge number of particles and
the average energy gain was computed.

The modelling starts from considering a toroidal device of a RFP plasma, in which an equi-
librium magnetic field is present. The word ”equilibrium” refers to a static magnetic field,
whose components have a spatial dependence on the three toroidal coordinates (r, θ, ϕ), but
they do not depend on time. In order to simplify the calculations, we will use cylindrical co-
ordinates (r, θ, z) instead of toroidal ones. In the appendix A.2, there is a short description of
how cylindrical coordinates can be used for the toroidal description. The idea is to implement
a boundary condition along the z-direction in order to consider the periodicity of the toroidal
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shape: this allows to convert the z-axis in a new angular variable ϕ. During this thesis, z and ϕ
will be both used for the description of the toroidal direction.

A test-particle, with charge q and mass m, which is put inside the plasma, will start rotat-
ing along the toroidal direction with a spiraling trajectory and it will be confined in the radial
direction. This will be an adiabatic motion: the total energy of the particle will be conserved
through its trajectory. In this thesis, the test-particle will be almost always a hydrogen ion,
q = 1.6 · 10−19C and mH = 1.67 · 10−27Kg.
The test-particle motion can be described through its Hamiltonian. It is known from classical
mechanics that, in order to construct the Hamiltonian of a particle that interacts with an elec-
tromagnetic field, it in necessary to introduce the minimal coupling, which changes the canonical
momentum p⃗ in the quantity p⃗− qA⃗, with A the vector potential of the field [8].
The general structure of the hamiltonian of these types of systems is the following, in which
V (x⃗) is the scalar potential of the field:

H(x⃗, p⃗) =
1

2m
|p⃗− qA⃗|2 + qV (x⃗) (2.2.1)

In our case, we do not consider electric fields inside the chamber, so we set V (x⃗) = 0.
In order to implement the magnetic field inside this equation, its vector potential must be com-
puted, as described in section 3.6.3. The vector potential of the equilibrium field will be called
A⃗0,0(r, θ, z) = A⃗0,0(r) referring to the axisymmetric field of the SpeCyl code, section 3.4.

The particle will start to interact with the perturbation, that will make it oscillate. The particle
will be always confined inside the toroidal chamber due to the small magnitude of the pertur-
bation. The vector potential of perturbation field will be called A⃗m,n(r, θ, z), referring to the
mode (m,n) of the Fourier decomposition described in section 3.4.1.

The particle will feel a total electromagnetic field which is the superimposition of equilibrium
and perturbation ones. The j-th component of the total vector potential (j = r, θ, z) is simply
the sum of the two terms:

Aj(r, θ, z, t) = A0,0
j (r) +Am,n

j (r, θ, z, t) (2.2.2)

It was assumed that the Alfvén wave could be described as a plane wave, with an harmonic

function of the type f(r⃗, t) = fmaxe
i(k⃗·r⃗−wt), with k⃗ the wave vector and ω the wave frequency.

The simplest shape for a plane wave comes from neglecting the imaginary part. In this way, the
wave is described by an amplitude factor fmax multiplied to a cosine function cos(k⃗ · r⃗ − ωt).

The perturbation term of the equation 2.2.2 could be re-written in the following shape:

Am,n
j (r, θ, z, t) = Am,n

j (r) · cos(k⃗ · r⃗ − ωt) = Am,n
j (r) · cos(krr +mθ − nz

R0
− ωt) (2.2.3)

The Am,n
j (r) term, which represented the amplitude of the wave, is the radial profile of the j-th

component of the vector potential of the mode (m,n). This quantity was obtained directly from
the SpeCyl data, as described in the section 3.6.3.

In this system, it is also possible to neglect the collisions with other particles because the
typical ion-ion collision time is of the order of 10−4s, which is very higher than the scale time
τA ≈ 10−7s. This means that the thermalization of the particles induced by the collisions is
neglected (so we should talk about particle energization, and not heating, but we will use both
terms remembering this assumption).
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Once obtained the complete description of the vector potential, it can be substituted inside
the hamiltonian, eq. 2.2.1. It is an non-autonomous hamiltonian due to the presence of the
peturbation field.
The equations of motion, the Hamilton equations, have been numerically computed in the sim-
ulation code by using a symplectic integrator. This type of integrators is typically used for the
integration of Hamiltonian dynamical systems because it preserves the Poincarè integral invari-
ants of the Hamiltonian flow, without corrupting the long-time dynamics of the system. More
details about symplectic integrators can be find the appendix A.4 and in the papers [9-10].

2.2.1 Normalization of the main quantities

A convenient way to simplify the calculations is to introduce the normalization of all the equa-
tions of the system to some reference values.
In this thesis two different codes have been used: the fortran code, that computes the particle
motion, and the SpeCyl code, needed for the MHD modelling. These codes have been originally
written with different normalizations, so the translation of the SpeCyl data into a correct input
file for the simulation code is a delicate step.
For this reason, in this section we will present a detailed description of the two normalizations.

The physical quantities which are present in the SpeCyl code are normalized as follows: from
now, a normalized quantity will be described through a tilde on the top of the quantity.

• Time: normalized to the Alfvén time τA (eq. 2.2.20);

t = t̃ τA (2.2.4)

The Alfvén time is computed by the following equation:

τA =
a
√
µ0nimH

B
≈ (2.07 · 10−17)

n
1/2
e γ1/2

z1/2B
[s] (2.2.5)

in which ne is the electron density, γ is the ratio between the considered test-particle mass
and the hydrogen one, z the ratio between the number of electrons and ions in the system
and B the magnetic field.
The SpeCyl simulation used in this thesis considers an hydrogen plasma, whose Alfvén
time is τA ≈ 7.8 · 10−8s;

• Magnetic field: normalized to the max value of the z-component of axisymmetric field B0,0
z

computed by the SpeCyl code at r=0 and t=0;

B = B̃ B0,0
z (2.2.6)

• Length: normalized to the minor radius a of the RFX-mod experiment (Table 1);

r = r̃ a (2.2.7)

• Density: normalized to a fixed given density ρ0.

Given all these quantities, any other one that appears in the equations is automatically normal-
ized. For example, the velocity can be easily normalized through the normalization of time and
space:

v =
∆r

∆t
=

a∆r̃

τA∆t̃
= ṽ

a

τA
= ṽ vA (2.2.8)
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By definition, vA is the Alfvén velocity.

The fortran code equations, instead, have been normalized as follows:

• Mass: normalized to the test-particle mass;

m = m̃ mi (2.2.9)

• Electric charge: normalized to the test-particle charge;

q = q̃ ei (2.2.10)

• Time: normalized to the inverse of the cyclotron frequency of the test-particle;

t = t̃ ω−1
i (2.2.11)

For simplicity, in all then thesis we will express the time parameters of the code (such as
the simulation length) in units of τA, because is the typical time scale of the system.

There are two main equations that must be normalized: the first one is the definition of the
vector potential and the second one is the Hamiltonian, which returns the energy factor needed
for the conversion of the simulation output data.

The first one is quite simple, because it follows by the normalization of the magnetic field.
The starting equation is ∇×A = B and the normalization steps are the following:

1

a
∇̃ ×A = B̃B0,0

z ∇̃ ×A = B̃B0,0
z a → A = ÃB0,0

z a (2.2.12)

The normalization of the Hamiltonian needs the introduction of another quantity, the momen-
tum, which can be normalized by using the velocity:

p = mv = m̃miṽvA = m̃ṽ
ami

τA
→ p = p̃

ami

τA
(2.2.13)

Starting from the equation 2.2.1 the Hamiltonian becomes:

H =
1

2m̃mi
|p̃ami

τA
− q̃ÃeB0,0

z a|2 (2.2.14)

Now, it is possible to introduce the cyclotron frequency (eq. 1.2.2) of the particle in the equi-
librium field, which is normalized by the inverse of the Alfvén time:

ωc =
eB0,0

z

mi
→ ωc =

ω̃c

τA
(2.2.15)

Introducing this quantity in the potential vector term of the equation 2.2.13, it follows that

H =
1

2m̃mi
|p̃ami

τA
− q̃Ãamiωc|2 =

1

2m̃mi
|p̃ami

τA
− q̃Ãω̃c

ami

τA
|2 (2.2.16)

Now it is possible to take the ami
τA

term out of the parenthesis, raising it to the 2nd power. The
final step gives

H =
a2mi

2m̃τ2A
|p̃− q̃Ãω̃c|2 → H = H̃

a2mi

τ2A
(2.2.17)
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H̃ =
1

2
|p̃− Ã|2 (2.2.18)

This is the hamiltonian from which the Hamilton equations are performed by the simulation
code. The terms m̃, q̃ and ω̃c are all equal to 1 due to the normalization.
The term a2mi

τ2A
which must be multiplied to the normalized energy corresponds to 390keV . It

interesting to note that this value does not depend on the mass of the particle, in fact eq. 2.2.20
tells that τA ∝ √

mi. This means that if the test-particle is changed, the energy factor will be
the same.
For the normalization of the magnetic field, experimental data coming from the RFX-mod device
were observed. It was decided to use a value of B0,0

z = 1.3T , which corresponds to the magnetic
field of a toroidal plasma with a toroidal current of It = 1.3MA.

2.2.2 Simulation code

The simulations of the motion of the particle which interacts with the Alfvén wave is performed
by a Fortran90 code. This code takes as input two different files:

• The first file contains the radial profile of the vector potential in cylindrical coordinates.
How these fields were computed is presented in the section 3.6.3;

• The second file is a list of parameters. They are divided in three groups: the first is for
the initial conditions of the particle, the second for the wave parameters and the last one
for the time parameters. The list is structured as follows:

- x0, y0, z0 are the cartesian coordinates of the initial position of the particle;
- vx0 , vy0 , vz0 the three components of the initial velocity;

- kr the maximum amplitude of the radial wave vector (see section 3.6.2);
- ωk the periodicity of kr along the radial direction (see section 3.6.2);
- ω the frequency of the Alfvén wave;

- tmax is the duration of the simulation;
- tf , ts, dt are the time parameters that define the shape function f(t) (that will be de-
scribed later in this section);
- h is the timestep;
- nhsave defines how much frequently the program has to write data in the txt file.

It was decided to compute the hamiltons’ equations of eq. 2.2.18 in cartesian coordinates,
because they are simpler to treat in these coordinates. This is the reason of the choice of the
initial conditions showed before.
On the other hand, it was necessary to make the code compatible with the input data that were
expressed in cylindrical geometry.
The idea was to make this coordinate change runtime by following a list of steps:

• Given Pt = (x, y, z) the position of the particle at time t in cartesian coordinates, the
related cylindrical coordinates are performed by the equations ρ =

√
x2 + y2 and θ =

arctg y
x ;

• The generic input quantity Q defined in cylindrical coordinates (such as the vector poten-
tial) must be calculated at that spatial position Pt = (ρ, θ, z). Due to the fact that the
quantity Q is usually defined in a radial mesh of 100 steps between [0, 1]a, it is necessary to
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do an interpolation of the data. It was checked the difference between linear and quadratic
interpolation and, after having noticed that there were no significant differences between
the two, the linear one was selected. Linear interpolation is performed only on the radial
and the θ directions, because the z-one is not influenced by this the change of coordinates.

• The matrix of change of variables from cartesian to cylindrical coordinates is inverted and
applied to the Q-vector computed in Pt. The final result is the Q-vector computed in Pt

in cartesian coordinates:Qr

Qθ

Qz

 =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

Qx

Qy

Qz

 −→

Qx

Qy

Qz

 =

cosθ −sinθ 0
sinθ cosθ 0
0 0 1

Qr

Qθ

Qz

 (2.2.19)


Qx(x, y, z, t) = Qr(ρ, θ, z, t)cosθ −Qθ(ρ, θ, z, t)sinθ

Qy(x, y, z, t) = Qr(ρ, θ, z, t)sinθ +Qθ(ρ, θ, z, t)cosθ

Qz(x, y, z, t) = Qz(ρ, θ, z, t)

(2.2.20)

This procedure has been applied to the vector potential, both axisymmetric and perturbation
one, and to the radial component of the wave vector.

In order to study a realistic case of wave-particle interaction, the simulation length must be
comparable with the duration of the simulated reconnection event. Exploring the temporal
evolution of many magnetic modes, it was decided to fix the simulation length to the value of
600τA, which is an average value observed.
The other time parameters (tf , ts, dt) define the structure of the shaping function f(t). This
function works as a switch: it starts and stops the perturbation. It has been introduced to
have the possibility to observe the behaviour of the system in three different steps, the initial
equilibrium, the perturbation phase and the final equilibrium.
It is necessary to set f(t) parameters in order to have a extremely slow switching-on/off with
respect to the typical time-scale of the system. A rapid variation of the magnetic field leads to

the generation of a electric field due to the Maxwell’s law ∇⃗ × E⃗ = −∂B⃗
∂t . Only with a slow

variation of the field it was possible to neglect the electric field contribution to the equation of
motion of the particle.
The f(t) shape was the following:

f(t) =
1

4

[
1 + tanh

(
t− ts
dt

)][
1 + tanh

(
tf − t

dt

)]
(2.2.21)

In figure 2.2.1, an example of the temporal evolution of the f(t) function is shown. In order to
have an interaction of the order of 600τA, the time parameters that defined the shape function
f(t) must be as tmax = 1000τA, tf = 0.2tmax = 200τA and ts = tmax(1 − 0.2) = 800τA, with a
dt = 0.2tf = 40τA.
The simulations that have been performed with different time parameters will be signaled during
the thesis.

The f(t) function has been applied to both eq. 2.2.2 and 2.2.3 as shown in the following
equation:

A⃗(r, θ, z, t) = A⃗0,0(r, θ, z) + A⃗m,n(r) · cos(krr +mθ − nz

R0
− ωt)f(t) (2.2.22)

The timestep h of the simulation was checked by performing many simulations varying the h-
value between [10−4, 10−2]ω−1

i . No relevant differences were noted varying the timestep in this
range. It was decided to set the h-value at h = 10−3ω−1

i = 2 · 10−2τA as a compromise between
computational costs and precision of the calculations.
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Figure 2.2.1: Example of the temporal profile of the f(t) function for a simulation of 1000τA. It
is possible to see that only in a region about 600τA wide the perturbation acts entirely.
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Chapter 3

MHD plasma modelling

The plasma is a complex system composed by different types of particles that interact trough
electromagnetic forces. There are many models that try to describe different characteristics of
the plasma.
In this chapter, a full description of the magnetohydrodynamic model (MHD) is presented. It is
fundamental for the description of plasma instabilities and also for the definition of the Alfvén
waves, that are considered in this thesis.
In the second part, there is a short description of the SpeCyl code, which numerically integrates
the equations of visco-resistive MHD model in cylindrical geometry. This code gave us the
instruments for obtain a full description of the Alfvénic turbulence that is generated inside a
RFP plasma during a magnetic reconnection event.
The last part shows the analysis performed on SpeCyl data in order to obtain the Alfvén waves
parameters. These parameters will be input files of the simulation code described in the previous
chapter.

3.1 Dynamical theories for plasmas

A dynamical theory is a physical theory with which the time evolution of a system can be
studied. Every dynamical theory, that can be defined in this way, must follow two fundamental
characteristics: it must have a way to describe the state of a system at time t by using a set
of variables and it must have a set of equations that describe the time evolution of these variables.

When we are talking about fluids and plasmas, there are many different levels of theory that can
be applied [11]. It is possible to start from the quantum level, in which the system is considered
to be composed by N quantum particles that can be described by using the N-particle wave
function, which evolves in time according to the Schroedinger’s equation.
If the typical dimension of the system is larger than the de Broglie wavelength λ = h

p , the
wave packets can be considered widely separated, so the quantum interference is negligible. In
that case, it is possible to move to next level, the classical mechanics, considering the system
composed by N classical particles which follow the Newton’s laws of motion.
If the number of particles N is very large, it becomes very hard to solve a system of 6N equations
of motion for positions and velocities of the particles. The successive level is the introduction
of a particle distribution function to describe the evolution in time of the system. This is the
typical level of the statistical mechanics.
From this, it is quite easy to move to the last level, the continuum level, in which the system is
not more considered as composed by particles, but as a single element.

In order to study a plasma, it is possible to start from a microscopic approach, defining a
particle distribution function f(x, v, t) and studying its time evolution. Applying the corollary
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of the Liouville’s theorem, which tells that the phase-space volume occupied by N particles
cannot change in time [A1], it is possible to obtain the Vlasov’s equation:

∂f(x⃗, v⃗, t)

∂t
+ v⃗ · ∇⃗xf(x⃗, v⃗, t) +

F⃗

m
· ∇⃗vf(x⃗, v⃗, t) = 0 (3.1.1)

It describes the time evolution of a distribution function in a system in which long-distance
interactions are included.
Introducing the distribution functions for ions and electrons, this equation leads to the two-fluid
model by computing the moment equations. A more detailed description can be find in [12]. In
this model the plasma is regarded as an inter-penetrating mixture of a negatively charged fluid
of electrons and a positive one composed by ions. Due to the fact that the Vlasov equation can-
not handle collisions, the two-fluid model will be appropriated only for non-collisional plasmas. .

If we want to re-introduce collisions in the plasma description, a set of new assumptions must be
included. The first one is connected to the length scale: the portion of fluid that is studied must

be larger than the Debye’s length λD =
√

ϵ0kTe
neqe

, which represents the distance beyond which

the electric field is screened by the motion of the free electric charges. Over the Debye’s length,
the plasma can be considered quasi-neutral. The second is the non relativistic approximation,
which neglects the second order of the Lorentz’s transformations of fields. These hypothesis
allow to consider the plasma as a single conductive fluid of electrons and ions. Starting from the
momenta equations, it is possible to derive the single-fluid model, which is known as magnetohy-
drodynamics model (MHD). It is one of the most used models for the studying of plasma systems.

The complete set of equations of the MHD model is the following:

Generalized Ohm′s law : E⃗ + v⃗ × B⃗ =
J⃗ × B⃗ −∇pe

en
+ ηJ⃗

Maxwell′s equations : ∇⃗ · B⃗ = 0 ∇⃗ × B⃗ = µ0J⃗ ∇⃗ × E⃗ = −∂B⃗

∂t

Continuity equation :
∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0

Equation of motion : ρ

[
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

]
= J⃗ × B⃗ − ∇⃗p+ ρν∇2v⃗

Induction equation :
∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) + η∇2B⃗

(3.1.2)

The main quantities of these equations are: electric field E, magnetic field B, current density J,
velocity field v, density ρ and pressure p.
There are also two fundamental parameters, the electrical resistivity η and the viscosity ν.
If we compare the MHD model with the hydrodynamic model for neutral fluids, we can notice
some important differences. First of all, the presence of the Ohm’s law and the Maxwell’s equa-
tions, due to the electromagnetic properties of the plasma. Another difference is the presence
of a magnetic force term inside the equation of motion. In the end, the induction equation is a
completely new equation. It is the magnetic version of the vorticity equation of fluids and, for
MHD model, it becomes a fundamental equation in order to have a full dynamical theory.

To summarize, a state in MHD model is described by 8 scalar variables: two thermodynamic
quantities (ρ, p), 3 components of the velocity field and 3 of the magnetic field.

This is the most general form of the model. Typically, two different versions are used:

• Ideal MHD model: the resistivity η and the viscosity ν of the plasma are considered equal
to zero (This allows to neglect the Ohm’s law);
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• Visco-resistive MHD model: the resistivity η and the viscosity ν must be considered, such
as the Ohm’s law.

A further simplification of the MHD model is the neglecting of the J⃗×B⃗−∇pe
en term in the gener-

alized Ohm’s law. This is possible when it is very low if compared with the other terms of the
equation. In that case, the generalized Ohm’s law becomes:

E⃗ + v⃗ × B⃗ = ηJ⃗ (3.1.3)

3.2 MHD equilibrium and instabilities

The MHD model can describe a wide range of dynamical properties, such as equilibrium and its
stability, of a wide range of plasmas, from astronomical to laboratory ones. In order to study
plasma equilibrium, the assumptions of stationary state and static plasma are needed, which
means that all the physical quantities do not depend on time and the velocity field is considered
v⃗ = 0. Usually, also the electric field E⃗ is considered as zero (quasi-neutrality).
Introducing these assumptions in the ideal MHD model, after some algebrical steps the force-
balance equation can be obtained [12]:

∇⃗p = J⃗ × B⃗ (3.2.1)

This equation tells that the pressure tries to move the plasma from hot to cold regions while
the Lorentz force opposes this tendency and generates the magnetic confinement.
Another interesting information given by this equation is that J and B are perpendicular to the
gradient of pressure. So they must lie on surfaces at a constant value of p wound around the
magnetic axis, the so-called magnetic surfaces.

Another way to see the equation 3.2.1, is to substitute this equation in the Ampére law ∇⃗× B⃗ =
µ0j, in order to obtain the pressure-balance equation:

∇⃗
(
p+

B2

2µ0

)
=

1

µ0
(B⃗ · ∇⃗)B⃗ (3.2.2)

All the algebraic steps can be found in [11].
In the left side there is the pressure, which is the sum of the kinetic pressure and a magnetic
pressure, and in the right side a term which is connected to the bending of the magnetic field
lines. When the magnetic field lines are bent the system tries to return to the original configu-
ration due to the presence of a magnetic tension that contributes to the total pressure.

When the equilibrium structure is clear, it is possible to move to a more important topic, the
plasma instabilities, the ideal and the resistive ones. But in order to understand, an introduction
to the concept of magnetic topology is needed.

3.2.1 Magnetic topology

In mathematics, topology is concerned with the properties of geometric objects that remain
unchanged under continuous deformations, such as stretching and twisting. When we refer to
magnetic topology, we mean the application of this type of studies to the magnetic field lines of
a system.
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The preservation of such properties can introduce some constrains on the dynamics of the system
that can create new types of problems, called topological, that are very difficult to approach.
If two magnetic configurations can be deformed one in the other in a continuous way, so with-
out cutting and pasting the field line, then these two configurations have the same magnetic
topology. In figure 3.2.1, it is possible see an example of the two different cases. Figures a and
b have the same topology because the b can be obtained from the other by envelop the N circle
on the M one. The figure c has a different topology because it is impossible to obtain it from a
without cutting and pasting the field lines.

Figure 3.2.1: Three different configurations for two magnetic field lines. Figure a and b have
the same magnetic topology, while c has a different one.

In the ideal MHD, in which the magnetofluid has zero resistivity, the induction equation (3.1.2)
becomes the following:

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) (3.2.3)

This equation has the same structure of the Kelvin’s vorticity theorem, with the substitution
of the vorticity ω with the magnetic field B. This analogue of the Kelvin’s theorem takes the
name of Alfvén theorem of the ”magnetic flux freezing”. The Alfvén theorem says that when
the magnetic field satisfies the equation 3.2.3, the magnetic field lines are ”frozen” inside the
plasma: if the plasma column moves in the space, the magnetic field lines move with it. So, if
two elements are connected by a field line they will always be connected independently of the
behaviour of the plasma. This theorem is the key of the study of the magnetic topology of a
system because it tells that the magnetic topology of a ideal MHD system cannot change. This
is an important constrain of the dynamics of the system because it means that the system can
only evolve trough magnetic configurations which are topologically equivalent.

3.2.2 Ideal instabilities

There are two destabilizing forces that can introduce instabilities inside a plasma, the one given
by the presence of a gradient of current (Current-driven instabilities) and the one given by the
gradient of pressure (Pressure-driven instabilities). β is a plasma parameter that can distinguish
the two different cases. It is the ratio between the kinetic pressure and the magnetic pressure
of a plasma. At low β, which means a well confined plasma, the driving force comes from the
radial gradient of the toroidal current, instead, at high β the pressure gradient contributes to
the instability too.

All these instabilities can be divided in two main groups: the ideal ones, which occur in a
perfectly conductive plasma, and the resistive ones, which depend on the resistivity of the
plasma. Due to the geometrical properties of the system, it is convenient to perform a Fourier
transform of the angular coordinates. In this way, these instabilities can be decomposed in a
infinite spectrum of Fourier modes, each one defined by a couple of integer numbers (m,n).
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A (m,n) couple defines a precise helicity of the field lines: during the thesis, we will use the
expression ”wave helicity” referring to their magnetic mode.

Ideal instabilities are perturbations of the plasma equilibrium that cannot change the mag-
netic topology of the system. These instabilities are ”ideal” in the sense that they would occur
even if the plasma is perfectly conductive.
The safety factor q is an important parameter that gives information about the helical structure
of the magnetic field.

q(r) =
r

R0

Bϕ(r)

Bθ(r)
= −m

n
(3.2.4)

It represents the number of poloidal turns that the magnetic field lines do every single toroidal
turn. The q behaviour has profound consequences in terms of plasma magnetohydrodynamic
stability [3].
If the m/n ratio of a magnetic mode satisfies the equation 3.2.4, it is called resonant mode
because it has the same periodicity of the magnetic field lines. The most common magnetic
modes inside a toroidal plasma are all the ones with the poloidal magnetic number m=1. These
are called kink modes: the plasma forms a single-helical structure along the toroidal axis.
For stability conditions, in a tokamak the q-value is always greater than 1. Instead, in RFP, the
q-value is always lower than 1. In figure 3.2.2 this difference can be noticed.

Figure 3.2.2: Comparison of the safety factor q radial profile between a Tokamak and a RFP
devices [3].

3.2.3 Resistive instabilities

If the resistivity of the plasma is different from zero, the properties of the system change. The
induction equation has the following shape, the one in the equation 3.1.2:

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) + η∇2B⃗ (3.2.5)

The Alfvén theorem is no more valid, making it possible to the magnetic field to change its own
topology. In particular this is more visible when the term ∇2B becomes larger than the first
one, so in presence of a large gradient of the magnetic field. Since large gradient of magnetic
field corresponds to large current densities, due to Ampére’s law, these regions are called current
sheets. In these zones, it is possible the cutting and pasting of the field lines.

In figure 3.2.3, a schematic representation of a magnetic reconnection event is shown.
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It the upper figure, the current sheet is defined by a dashed line which divides two regions
where the magnetic field has two different directions. There, it is present a large gradient of the
magnetic field, which means that the ∇2B term becomes relevant in the induction equation.
The magnetic field starts to diffuse in direction of the dashed line, from both the regions and
they fuse together: this is the so-called magnetic reconnection event. This can create the typical
magnetic islands, which are the circular structures that can be seen in the lower figure.
It is a loop process, in fact the decrease of the magnetic field in the two regions causes a re-
duction of the magnetic pressure, which is most relevant component of the total pressure in a
high β plasma. The lowering of the pressure generates a force that tends to restore the initial
configuration moving other magnetic field from other regions to the current sheet. So, while
the field is lost in the current sheet, other new magnetic field is taken from the other regions in
order to substitute it.

Figure 3.2.3: Schematic example of magnetic reconnection phenomena in a resistive plasma.
The dashed line represents the current sheet. In the lower figure these is the representation of
two magnetic islands of a tearing mode instability.

The interesting feature of the a reconnection event is the release of magnetic energy, converted
in kinetic energy and thermal energy of the plasma. This can be observed by the acceleration
of particles to very high velocities and the generation of waves and turbulence.
The solar flares, which are big explosions on the surface of the Sun with emission of high tem-
perature plasma, are believed to be caused by magnetic reconnection events.
Resistive instabilities occur at surfaces with rational values of the safety factor q. At these
surfaces the magnetic field lines break and reconnect to form magnetic islands as illustrated in
figure 3.2.3. This instability takes the name of Tearing mode instability.

Another way to interpret this instability are the sawtooth oscillations. It is a periodic re-
laxation of the core temperature and density of the plasma. This can be explained through the
value of the safety factor in the core, q0. Usually the temperature of the core is increased by the
ohmnic heating. This reduce locally the resistivity, which means an increasing of the current
flow and a decreasing of q0. When q0 < 1, the resistive mode (m,n) = (1,1) becomes relevant
and the sawtooth oscillations appear (figure 1.3.3). These oscillations make the core plasma to
crash, mixing it with the external plasma, reducing the core temperature and returning to the
initial configuration.
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Figure 3.2.4: Time dependence of q0 ans n0 during sawtooth oscillations.

3.3 Alfvén waves

The Alfvén waves (AW), or hydro-magnetic waves, are a class of low-frequency waves that can
be studied through the ideal MHD model. They are believed to be the carrier of the magnetic
energy inside the plasma system [11].
Every type of wave has its own restoring force that generates the oscillating behaviour. In the
case of AW there are two possible restoring forces: the one connected to magnetic tension B2

µ0

and the other connected to pressure gradients. Due to this, there are two different groups of
waves: the Shear Alfvén waves (SAW) and the Compressional Alfvén waves (CAW).

The SAWs can be generated by the magnetic tension. It’s possible to imagine that magnetic
tension acts on the magnetic field lines as the elastic tension acts on a stretch rope. When an
external force tries to bend the rope, the elastic tension opposes to this force, trying to restore
the equilibrium position. In the same way, the magnetic tension tries to cancel the effects of the
magnetic perturbations on the magnetic lines, generating an oscillating motion. Figure 3.3.1
illustrates the behaviour of these types of waves.

Due to the parallelism with the elastic tension, it’s possible to obtain the propagation velocity
as the ratio of the tension, in this case the magnetic one, and the density ρ, as in the elastic
case. The vA is called Alfvén velocity:

vA =

√
B2

µ0ρ
(3.3.1)

The CAWs, instead, are a mixture of two different types of waves: the acoustic and the magnetic
waves. For this they are also called Magneto-Acoustic waves.
While in acoustic waves the pressure is generated by the only kinetic pressure, in CAWs the
pressure has also a component connected to the presence of the magnetic field, called magnetic
pressure B2

2µ0
. So, Alfvén waves are generated by both restoring forces: the propagation of these

waves is related to the alternated compression and rarefaction not only of the plasma, but also
of the magnetic field lines. In figure 3.3.1 the nature of CAWs is schematized.
The typical velocity of CAWs is given by:

vM =
√
c2s + v2A, (3.3.2)

28



where cs =
√

γp0
ρ is the sound-speed, which is the velocity of the acoustic waves, and vA the

Alfvén velocity.

The CAWs can be also divided in two other different modes, called fast-mode and slow-mode.
In the fast one, the restoring forces, which act on the system, are in phase making the wave
propagate fast. In the other case, the forces are out of phase.

Figure 3.3.1: a) Shear Alfvén Waves (SAW). b) Compressional Alfvén Waves (CAW).

3.4 The SpeCyl code

SpeCyl is a code that numerically solves the equations of the visco-resistive MHD in cylindrical
geometry (eq. 3.4.1), under some assumptions [13].
The first assumption is that the equations are solved in the limit of β → 0, that corresponds to
the assumption that the kinetic pressure of the plasma is negligible compared to the magnetic
one. This assumption can be used to describe the dynamics of a strongly current-driven plasma
like the one in the RFP configuration. Another assumption is on the mass density, which is
considered stationary ρ(r).

The resulting MHD equations are the following:

∇⃗ · B⃗ = 0

∇⃗ × B⃗ = J⃗

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ = J⃗ × B⃗ + ν∇2v⃗

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗)− ∇⃗ × ηJ⃗

(3.4.1)

Thanks to the normalization described in section 2.2.1, the electrical resistivity η and the vis-
cosity ν of the plasma become adimensional parameters. If we define the respective time scale
of the two parameters, τη and τν , it is possible to find a relation with the Lundquist number S
and the magnetic Reynolds number R:

η =
τA
τη

= S−1

ν =
τA
τν

= R−1
m

(3.4.2)

The Lundquist number is defined as the dimensionless ratio between the Alfvén wave crossing
time scale to the diffusion timescale, instead, the Reynolds magnetic number is the ratio between

29



the magnetic induction rate to the diffusion rate:

S =
µ0LvA

η
Rm =

UL

η
(3.4.3)

where L is the typical length scale and U the velocity scale.

The last assumption of SpeCyl code is that viscosity and electrical resistivity are independent
on time, but they have a radial profile of the form A(r) = A0

(
1 + arb

)
, where A(r) is a generic

quantity, A0 its value in the center and a,b real numbers.
In particular were used: aη = 20, bη = 10 and aν = 0.

3.4.1 Fouries modes

An helpful way to describe quantities in cylindrical geometry is to apply the Fourier’s transform
along the angular directions θ and ϕ, obtaining the decomposition of the quantity in Fourier’s
modes (m,n). The SpeCyl code adopts this description as well : it returns the Fourier compo-
nents of the magnetic and velocity field for a set of magnetic modes (m,n), as a function of time:
Bm,n

j (r, t) and vm,n
j (r, t) (for j = r, θ, ϕ).

From these values it is possible to reconstruct a single component of the field in the real space
using an Fourier anti-transform:

Bj(r, θ, ϕ, t) =
M∑

m=−M

N∑
n=−N

Bm,n
j (r, t)ei(mθ+nϕ) (3.4.4)

There are two important assumptions to do on the last equation. The first one is to assume that
B−m,−n = B∗

m,n, where * indicates the complex conjugate. This guarantees to work with real
quantities such as every physical quantity. The second one is the values of the M,N quantities,
which define the spectrum of Fourier modes that are considered. From the mathematical point
of view, those numbers should be very large in order to obtain a very precise result. But, from
a physical point of view, they should be a compromise between interesting results and compu-
tational costs.

The selected ranges of M,N values are the ones that resonate with the safety factor q(r) near the
axis. Observing figure 1.3.3 and considering an aspect ratio similar to the RFX-mod experiment,
it is possible notice that one of most unstable modes is the (m,n) = (1,-8).
For this reason, the ranges were selected around the ratio m/n = 8 (figure 3.4.1):

• m=0 → n ∈ [-25,0];

• m=1 → n ∈ [-55, 10];

• m=2 → n ∈ [-50,-5];

• m=3 → n ∈ [-60,-15];

• m=4 → n ∈ [-70,-25].
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Figure 3.4.1: Spectrum of the calculated mode in a typical SPECYL simulation of an RFP
plasma. The blue line represent the helicity h = m/n = 8.

3.5 SpeCyl dataset description

The Specyl simulation analyzed in this thesis has the following characteristics.
Plasma flow was taken to be vanishing at r=a. The boundary conditions admit a magnetic field
not purely tangent to the shell, with an imposed radial component, i.e. helical boundary con-
ditions on Br(a). The dissipation parameters (eq. 3.4.2) are S = 1

η = 106 and Rm = 1
ν = 106.

The simulation time step is 10−4τA and fields were saved every 0.1τA.
The simulated plasma is considered composed by only hydrogen atoms.

In figure 3.5.1 and 3.5.2, there is the temporal dynamics of selected quantities coming from
SpeCyl computation. It is shown the temporal evolution of the magnetic field radial compo-
nents of the mode (0,0) and the mode (1,-7). From these pictures, two important considerations
can be discussed.

The first one is on the field structure of the mode (0,0), the so-called axisymmetric mode.
The particular feature of this mode is that it depends only on the radial coordinate r. This can
be easily seen observing the equation 3.4.4 and introducing the fact that m=n=0.
As consequence of ∇⃗ · B⃗ = 0, the B0,0

r (r) component must be zero everywhere.
The axisymmetric mode is what we call ”equilibrium field” in the modelling of ion heating (sec-
tion 2.2). Actually, observing the figure 3.5.1, it is possible to notice that it is not perfectly
constant in time. For the test-particle simulation, it has been taken at a fixed temporal instant
inside the reconnection event, in order to remove the temporal dependence.

The second consideration is about the behaviour of the mode (m,n) in the temporal window
of [38600,39100]τA, evidenced by the blue dashed lines. These rapid changes and multiple os-
cillations of the magnetic field components are a clear signal of the presence of a magnetic
reconnection event. This is an example of a typical temporal window that will be described in
the section 3.6.1.
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Figure 3.5.1: Magnetic field temporal evolution of the axisymmetric mode (0,0) in the radial
position r/a=0.9, performed by the SpeCyl code. It is important to notice that B0,0

r = 0 ∀t.

Figure 3.5.2: Magnetic field temporal evolution of the mode (1,-7) in the radial position r/a=0.9,
performed by the SpeCyl code. A magnetic reconnection event is evidenced by the two blue
vertical dashed lines. These lines define also the temporal window used for the FFT (section
3.6.1).

3.5.1 Pre-processing of SpeCyl data

In order to learn the structure of the simulation’s data and, at the same time, obtain some
quantities that may be useful in the other sections, some preliminar calculations were performed.

The goal of these exercises is to study the structure of the Fourier space and to learn how
it is connected to the real space. One of the most important properties of the Fourier space
is the non-linearity of the product of variables. This is called convolution, which tells that a
non-linear variable in the real space is given by the infinite sum of all the possible combinations
of the modes of that variables in the Fourier space.
In these exercises we will show how the convolution can make the computation of relevant quan-
tities, such as the magnetic energy and the electric field, more difficult to approach.

If we define two real variables, as Bi and vj , and we also define their Fourier decomposition
following the definition of the equation 3.4.4 considering respectively the modes (m,n) and
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(m’,n’) for the two variables, their product is given by the following equation:

vjBi =
∑
m̃,ñ

(∑
m,n

Bm,n
i vm̃−m,ñ−n

j

)
ei(m̃θ+ ñz

Ro
) (3.5.1)

(vjBi)m̃,ñ =
∑
m,n

Bm,n
i vm̃−m,ñ−n

j (3.5.2)

in which
m̃ = m′ +m ñ = n′ + n (3.5.3)

The full derivation of this equation can be found in the appendix A.4.
The equation 3.5.1 tells that the element [Bivj ]m̃ñ, which is a single mode (m̃, ñ) of a product
of two variables in the real space, is given by the sum of the all possible products of the two
variables with such modes (m,n) and (m’,n’) that satisfy the particular condition 3.5.3. But in
order to obtain the product of the real variables, equation 3.5.1, it is necessary to sum over all
the possible couples (m̃, ñ).

Given the i-th component of the magnetic field by the equation 3.4.4, in order to compute
the magnetic energy it is necessary to calculate the product of the i-th component with itself,
due to the definition

Em =
B2

2µ0
=

1

2µ0

3∑
i=1

BiBi (3.5.4)

This can be done using the equation 3.5.1, with twice the same field component Bi instead of
different ones. The resulting equation takes the form:

BiBi =
∑
m̃,ñ

(∑
m,n

Bmn
i Bm̃−m,ñ−n

i

)
e
i
(
m̃θ+ ñz

R0

)
(3.5.5)

From the computational point of view, the problem is the calculation of all the possible combi-
nation of m,m’ and n,n’ that satisfy the equations in 3.5.3. The complete range of (m,n) values
used for this computation is the one defined in the section 3.4.1.
The computational trick is to fix a value for m̃ and ñ, compute all the possible couples (m,m’)
and (n,n’) that satisfy the equation 3.5.3 and than translate them in terms of B,v products. A
python code was developed in order to compute this calculations.

The computation of the electric field starting from the magnetic field given by the simulation
needed some more computational steps. The idea was to use the Ohm’s equation, computing
the two terms separately:

E⃗ = −v⃗ × B⃗ + η∇⃗ × B⃗ (3.5.6)

They are two cross products in cylindrical coordinates. The second one, which is the curl of the
magnetic field, is the simpler term to compute because it does not contain products of variables,
but only spatial derivatives of the magnetic field. In cylindrical coordinates, it has the form:

∇⃗ × B⃗ =


1
r
∂Bz
∂θ − ∂Bθ

∂z
∂Br
∂z − ∂Bz

∂r
1
r

(
∂(rBθ)

∂r − ∂Br
∂θ

)

r̂θ̂
ẑ

 (3.5.7)

The other term, instead, has a lot of products of variables in Fourier space.
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As in the previous step, the cross product can be developed in the following shape:

v⃗ × B⃗ =

Bzvθ −Bθvz
Brvz − vrBz

Bθvr −Brvθ

r̂θ̂
ẑ

 (3.5.8)

All the products inside this equation have to be computed with the related version of the equation
3.5.1. It must be applied in the same way of the calculation of the magnetic energy.
Once performed all these steps, the electric field was computed as the sum of the two parts.
The convolution is the principal reason of why we will work in the real space in the following
sections.

3.6 Alfvénic turbulence extraction from SpeCyl simulation

The main parameters of the Alfvén waves that are required in order to apply the modelling of
ion heating are the frequency of the wave, the wave vector and its amplitude. These quantities
are needed to complete the vector potential of equation 2.2.3.
The three parameters need different types of calculations, which will be described in the follow-
ing pages. The amplitude is computed starting from the original magnetic field given by the
SpeCyl simulation, while the frequency and the wave vector are derived from the perpendicular
component of the field respect to the direction of the equilibrium field component.
The parallel field has be neglected simply because the other component showed more defined
peaks in the spectrograms. In this way, it was possible to avoid errors due to the peaks selection.

Before starting with any type of calculation, the first step is to translate the SpeCyl data
from the Fourier space to the real space, using the Fourier anti-transform of the magnetic field.
This is necessary in order to obtain a real signal B⃗(r, θ, ϕ, t) which is more easy to be studied
and analyzed.

The complete anti-transform of the j-component (j = r, θ, z) of the field is given by:

Bj(r, θ, ϕ, t) =
1

2

∑
m,n

[
Bm,n

j (r, t)ei(mθ+nϕ) +Bm,n
j (r, t)e−i(mθ+nϕ)

]
(3.6.1)

Bj(r, θ, z, t) is the j-th component of the total magnetic field. This equation is clearly a sum over
all the possible modes of terms, that are the sum between a complex number and its conjugate,
indicated by the over-bar. This is done in order to obtain a real magnetic field, which is the one
that we usually measure in the experiments. In order to apply this equation it is necessary the
definition of the two angular variables θ, ϕ in a specified range, usually [0, 2π].

If it necessary to compute the j-th field component of a single mode (m,n), the equation 3.6.1
reduce to the following one:

Bm,n
j (r, θ, ϕ, t) =

1

2

[
Bm,n

j (r, t)ei(mθ+nϕ) +Bm,n
j (r, t)e−i(mθ+nϕ)

]
(3.6.2)

At this point, the basic idea is to divide the magnetic field of the mode (m,n) in two different
components, one parallel to the equilibrium magnetic field and the other perpendicular to it.
This method allows to distinguish the two fundamental directions inside the cylindrical structure.
In order to do this, the versor of the equilibrium field was computed as the ratio between the
field components and the modulus of the field:

B̂0,0
j (r, θ, ϕ) =

B0,0
j (r, θ, ϕ)

|B0,0(r, θ, ϕ)|
(3.6.3)
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Given the versor, the computation of the Bm,n
∥ and Bm,n

⊥ is easily performed by using the
following relations:

Bm,n
∥ (r, θ, ϕ, t) = B⃗m,n(r, θ, ϕ, t) · B̂0,0(r, θ, ϕ)

Bm,n
⊥ (r, θ, ϕ, t) =

[
B⃗m,n(r, θ, ϕ, t)× B̂0,0(r, θ, ϕ)

]
× B̂0,0(r, θ, ϕ)

(3.6.4)

The same process was also applied to the velocity field, using the equilibrium velocity field and
obtaining vm,n

∥ (r, θ, ϕ, t) and vm,n
⊥ (r, θ, ϕ, t).

3.6.1 Study of the wave frequency spectrum

Once given the magnetic signal as a function of time, it is possible to apply to it a fast Fourier
transform (FFT) in time in order to obtain the spectrogram of the signal.
A spectrogram is a graph that displays the strength of a signal over time (or space) for a given
frequency range. Using a color spectrum, it points to the frequencies where the signal’s energy
is highest. This is usually done to observe which are the fundamental frequencies that compose
the signal itself.

The FFT algorithm needs a temporal window of the signal in which to be applied. For ev-
ery magnetic mode (m,n), we want to apply the FFT to temporal section connected to the
magnetic reconnection events.
In figure 3.5.2, it is possible to observe an example of temporal window selection for the magnetic
mode (1,-7). It is possible to see that there is not a precise way to define a temporal window,
because the magnetic reconnection event has not a defined duration. But at the same time, we
are interested in define a time order of magnitude of the event. Analyzing and comparing a
large spectrum of magnetic modes, we can conclude that the event has a duration in the range
of [500, 700]τA. An average temporal window of 600τA has been selected and applied to each
magnetic mode.

The spectrograms have been computed for every magnetic mode with m=0 and m=1, because
they are the ones with the higher amplitudes.
The picture 3.6.1 represents the spectrogram of the magnetic and the velocity ⊥ and ∥ field
components of the magnetic mode (1,0).
It is possible to note that most of the information can be found at low frequency. The perpen-
dicular component of the fields seems to be composed by a more spread set of frequencies than
the respective parallel component. It is also possible to notice that only in the Bparallel compo-
nent there is no a power distribution along the radial direction, but it seems to be almost uniform.

From the spectrograms it is possible to extract the main frequencies that compose the origi-
nal signal at a fixed radial position. Following the structure of the radial mesh, 100 different
radial positions have been analyzed singularly (one for each position on the mesh), extracting
one plot of power spectrum and frequency for each position.
Each one of these plots has been submitted to a self-made python code that finds the most
relevant power peaks at low-frequency and saves them.
Following this computation, the radial profiles of the frequency of the most important peaks
have been obtained for each magnetic mode. It was noticed that the frequency of single peak
did not change much along the radial direction. For this reason it was decided to assume the
frequency as a constant, independent of the radius.

The picture 3.6.2 shows the power-frequency plot extracted from the spectrogram at a fixed
radial position r/a = 0.9. The orange crosses highlight the peaks of the power spectrum under
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the threshold ω̃ < 1.0. We decided to select only the first peaks for two principal reasons, the
first is that they correspond to low-frequency waves (≈ 105Hz) in the Alfvénic range, the second
is that their power is the highest one.

Figure 3.6.1: Spectrogram of the parallel and perpendicular components of velocity and magnetic
fields of the magnetic mode (1,0). The colorbar on the right shows the meaning of the colors:
the red highlights the presence of high power peaks. All the plots show the presence of an high
low-frequency content distributed all along the radial direction.

Figure 3.6.2: Power spectrum-frequency plots of the perpendicular and parallel components of
magnetic and velocity fields of the mode (1,0) computed at radial position r/a = 0.9. The orange
crosses highlight the power peaks selected by the python code, under the ω̃ < 1 threshold. The
small figure on the right of the plots are zooms of the [0,0.1]ω̃ region. It is possible to notice that
the ⊥ components have more energetic peaks than the respective ∥ ones, at same frequency.
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3.6.2 Derivation of the wave vector

The wave vector describes how many radians a wave passes per unit distance, related to the
wavelength λ through the relation k = 2π

λ .
Let us consider a wave vector k of a single wave which is travelling in the θ and z directions,
while having m oscillations in the θ one and n in the z one, during a complete lap around the
torus. This k⃗ will have the following shape:

k⃗ = krr̂ + rkθθ̂ + kz ẑ (3.6.5)

Thanks to the application of the Fourier transform along the angular coordinates, the angular
components of k⃗ become:

kθ =
2π
2πr
m

=
m

r

kz =
2π
2πR0
n

=
n

R0

(3.6.6)

where R0 is the major radius of the RFX-mod experiment (table 1).
The reasons of this type of result can be found in the appendix A.3

The computation of the radial component kr instead is more complicated. It cannot be de-
rived from simple relations, but it must be computed from the simulation data.
The basic idea is to create two signals Sr and Sr+dr defined as following:

Sm,n
r (r, t) =

∑
j

am,n
j (r)eiω

m,n
j (r)t

Sm,n
r (r + dr, t) =

∑
j

am,n
j (r + dr)eiω

m,n
j (r+dr)t

(3.6.7)

These equations represent the Fourier anti-transformation of the perpendicular component of
the magnetic field mode (m,n) at different radial positions.
Sm,n
r (r, t) represents the perpendicular component of the magnetic mode (m,n) at position r,

and it is defined as the sum over all the j-peaks of the correspondent amplitude-frequency plot

of the product between am,n
j (r), which is the amplitude of the j-peak at r position, and eiω

m,n
j (r)t

term, in which ωm,n
j (r) is the frequency of the j-peak in the same position.

Sm,n
r+dr(r + dr, t) represents the same signal computed in a radial position which differs from the

first one by a factor dr, a single step of the radial mesh.

As we will see, from the phase difference between the two signals it is possible to computed
the radial kr of the wave.
In order to simplify the computation, only the first peak of every field component is introduced
in the equations 3.6.7. This is a quite good approximation because the first peak’s amplitude is
always the dominant one.

Sm,n
r (r, t) = am,n

1 (r)eiω
m,n
1 (r)t

Sm,n
r (r + dr, t) = am,n

1 (r + dr)eiω
m,n
1 (r+dr)t

(3.6.8)

From section 3.6.1, a simplification can be introduced: the frequency can be considered constant
along the radial direction, so ωm,n

1 (r) = ωm,n
1 (r + dr).

At this point, it is assumed that these signals are given by the propagation of a wave with
wave vector kr. In order to obtain a plane-wave description, we have to introduce the factor
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eikrr in the signal. So, we decided to identify the phase of the complex number am,n(r) as the
plane-wave term. It is possible to rewrite the previous equations in a new shape:

Sr(r, t) = |am,n(r)|eiϕeiωm,n(r)t

Sr(r + dr, t) = |am,n(r + dr)|eiϕ′
eiω

m,n(r)t
(3.6.9)

in which ϕ = krr +∆ and ϕ′ = kr(r + dr) + ∆. kr and ∆ (generic phase) must be the same in
the two signals because they represent the propagation of the same wave.

Combining the two signals, it is possible to obtain the wave vector kr.
The first step is to define two new quantities:

Gr =
Sr(r, t)

|am,n(r)|
e−iωm,n(r)t = eiϕ

Gr+dr =
Sr(r + dr, t)

|am,n(r + dr)|
e−iωm,n(r)t = eiϕ

′
(3.6.10)

By applying the natural logarithm to the ratio of these two quantities it is possible to obtain
the kr term:

Gr+dr

Gr
=

eiϕ
′

eiϕ
=

ei(kr·(r+dr)+∆)

ei(kr·r+∆)
(3.6.11)

ln

[
Gr+dr

Gr

]
= i(ϕ′ − ϕ) = ikrdr (3.6.12)

kr =
∆ϕ

dr
=

dϕ

dr
(3.6.13)

This equation means that the wave vector kr of the wave which is propagating from r to r+ dr
is given by the variation of the phase of the wave along the same direction, which coincide with
the definition of space derivative of the phase.

3.6.3 Computation of the wave amplitude

As described in the section 2.2, the wave amplitude corresponds to the vector potential of the
magnetic field of the perturbation.
The vector potential A⃗ of the magnetic field can be computed knowing that its curl corresponds
to the magnetic field:

B⃗ = ∇⃗ × A⃗ (3.6.14)

Developing this equation in cylindrical coordinates, a system of 3 non-linear differential equations
is obtained. This represents the cylindrical components of the magnetic field as a function of
the components of the vector potential:

Br(r, θ, z) =
1

r
∂θAz(r, θ, z)− ∂zAθ(r, θ, z)

Bθ(r, θ, z) = ∂zAr(r, θ, z)− ∂rAz(r, θ, z)

Bz(r, θ, z) =
1

r
[∂r(rAθ(r, θ, z))− ∂θAr(r, θ, z)]

(3.6.15)

It is possible to notice that even if the eq. 3.6.14 depends in general on the time, the system
of 3.6.15 does not depend on it. In order to simplify the vector potential computation, it was
decided to fix a single temporal instant in order to remove the time dependence.
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In section 4.3, a full explanation of this choice is given.
The vector potential can be written as follows:

A(r, θ, z) =
[
Ar(r)e

i(mθ− nz
R0

)
, Aθ(r)e

i(mθ− nz
R0

)
, Az(r)e

i(mθ− nz
R0

)
]

(3.6.16)

In this way, the angular derivatives become very easy to compute and the exponential part can
be simplified with the one given by the magnetic field component. The resulting system of linear
equations becomes the following:

Br(r) =
imAz(r)

r
+

inAθ(r)

R0

Bθ(r) = −i
n

R0
Ar(r)− ∂rAz(r)

Bz(r) =
Aθ(r)

r
+ ∂rAθ(r)− im

Ar(r)

r

(3.6.17)

A general property of the vector potential is that it does not change if the gradient of a generic
scalar function is summed to it (Gauge invariance).

A′(r, t) = A(r, t) +∇Φ (3.6.18)

It was decided to choose the gauge that gives Ar(r) = 0 for every position. In this way the
system is reduced from three variables to only two.

For the case B0,0 the computation of eq. 3.6.17 becomes simpler:A0,0
z (xj+1) = A0,0

z (xj)− drB0,0
θ (xj)

A0,0
θ (xj+1) = dr

[
B0,0

z (xj) +A0,0
θ (xj)(1− 1/xj)

] (3.6.19)

in which xj is the j-th position of the radial mesh and dr in the mesh step, defined as dr =
xj+1 − xj .

In the more general case Bm,n, the Br(r) component is different from zero and this makes the
resolution more difficult. After some computational steps, the final equations are the following:

Am,n
z (xj+1) =

xj+1

im

[
Bm,n

r (xj+1)− i
n

R0
Am,n

θ (xj+1)

]
Am,n

θ (xj+1) =
dr

xj

[
xjB

m,n
z (xj)−Am,n

θ (xj)
]
+Am,n

θ (xj)

(3.6.20)

This system of equations, in which the 2 unknown quantities are the potential vector radial
components, has been solved numerically. The numerical solution of the second equation was
used to compute the first one.
The obtained data of the vector potential have been also checked inserting them in the equation
3.6.16 and reconstructing the magnetic field. It was compared with the original one in order to
check the validity of the resolution method.
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Chapter 4

Results

This chapter summarizes all the results obtained in this thesis. They will be divided in three
different sections.
The first one is related to the SpeCyl post-processing (described in the previous chapter) in
which the Alfvén waves parameters have been extracted from the simulation.
The second section shows the first results obtained simulating the interaction of a particle with
a single low-frequency wave. Two different cases will be shown, the mode (1,-7) and the mode
(1,-8). The heating will be studied as a function of the simulation length and the amplitude of
the waves. In third section, simulations with different sets of waves will be presented. In this
case, the heating will be studied varying the combination of waves. The mass dependency of the
heating will be also explored. In the end, a possible interpretation of the ion heating is given by
the study of the Hamiltonian of the particle.

4.1 Results of SpeCyl post-processing

During the thesis, more than 20 different magnetic modes have been analyzed singularly following
the procedures described in chapter 3. All the obtained results are qualitatively similar, with
some differences only in terms of wave amplitudes. For this reason, it was decided to show in this
section only two of these modes: the modes (1,-7) and (1,-8). These modes have been selected
due to their huge difference in terms of perturbation amplitude.

4.1.1 Computation of the wave frequency

The computation of the Alfvén waves parameters starts from the spectrogram analysis of the
parallel and perpendicular components of the SpeCyl fields, described in section 3.6.1.
For the FFT, it is necessary to decide a temporal window that has to contain magnetic recon-
nection event. Due to the fact that the reconnection event does not have a well-defined duration,
it was decided to select an average window of 600τA, that was applied to each magnetic mode.

The spectrograms, for these cases, revealed a low-frequency content in both velocity and mag-
netic fields of all the magnetic modes. In figures 4.1.1 and 4.1.2, the spectrograms of the magnetic
modes (1,-7) and (1,-8) are shown. It is possible to see that, in both cases, the relevant part of
the spectrogram is at frequency lower than ω̃ < 0.1 (that correspond to ∼ 1 MHz).
This confirms the presence of a large spectrum of low-frequency waves during a magnetic recon-
nection event in the simulated RFP plasma. For the magnetic field components, the spectral
content is distributed all along the radial direction, while in v⊥ it is concentrated in the center
of the cylinder.
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Figure 4.1.1: Spectrogram of the parallel and perpendicular components of velocity and magnetic
fields of the magnetic mode (1,-7). The colorbar on the right shows the meaning of the colors:
the red highlights the presence of high power peaks. All the plots show the presence of an high
low-frequency content distributed all along the radial direction.

Figure 4.1.2: Spectrogram of the parallel and perpendicular components of velocity and magnetic
fields of the magnetic mode (1,-8). The colorbar on the right shows the meaning of the colors:
the red highlights the presence of high power peaks. All the plots show the presence of an high
low-frequency content distributed all along the radial direction. vparallel seems to have the lower
energy spectrum.

These spectrograms have been analyzed singularly as described in section 3.6.1. From each
spectrogram, 100 different plots have been created by cutting the spectrogram at every radial
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point of the mesh, spaced by 0.01 r/a. In this way it was possible to observe the behaviour of
2D power-frequency plots as a function of the radial position.
These graphs present a huge number of different power peaks which represent the most important
Fourier components of the original signal. By using a built-in python function scipy.find peaks,
the amplitude and the frequency of the first 5 peaks for each plot has been saved.
In figures 4.1.3 and 4.1.4, the power-frequency plots at r/a=0.3 position of the two magnetic
modes (1,-7) and (1,-8) are presented, for ω̃ < 3. The orange crosses correspond to the peaks
found by the python code below a frequency threshold of ω̃T = 1.0. The small rectangle in the
right of each plot is a zoom of the lowest frequency zone.

As an example, the frequency in SI units of the first peaks for the two magnetic modes (1,-
7) and (1,-8) is:

ω̃1,−7
1st = 0.042 ≈ 6.2 · 105Hz

ω̃1,−8
1st = 0.052 ≈ 7.6 · 105Hz

(4.1.1)

For the conversion in SI units, the Alfvén time τA can be computed by the using the experimen-
tal equation 2.2.20, with ne = 2.3 · 1019m3, γ = 1, z = 1 and B = 1.3T which are the typical
values of the RFX-mod experiment.
For an hydrogen plasma, the Alfvén time is: τA ≈ 7.8 · 10−8s. These frequencies have been
compared with the ones in [14], in which the same SpeCyl simulation has been studied.
In the same way, it is possible to obtain the cyclotron frequency of an hydrogen ion by using
the eq. 1.2.2: ωH

c ≈ 2.4 · 107Hz.
So, comparing this result with eq. 4.1.1, it is possible to confirm that the considered waves have
frequencies very lower than the resonance frequency (section 2.1).

Figure 4.1.3: Power spectrum-frequency plots of the perpendicular and parallel components of
magnetic and velocity fields of the mode (1.-7) computed at radial position r/a = 0.3. The orange
crosses highlight the power peaks selected by the python code, under the ω̃ < 1 threshold. The
small figure on the right of the plots are zooms of the [0,0.1]ω̃ region.
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Figure 4.1.4: Power spectrum-frequency plots of the perpendicular and parallel components of
magnetic and velocity fields of the mode (1.-8) computed at radial position r/a = 0.3. The orange
crosses highlight the power peaks selected by the python code, under the ω̃ < 1 threshold. The
small figure on the right of the plots are zooms of the [0,0.1]ω̃ region.

4.1.2 Computation of the radial wave vector kr

The next wave parameter, that was computed, is the wave vector k⃗. The angular components
of this vector are already defined in the section 3.6.2 through geometrical considerations. The
computation of the radial component is the only left. Applying the calculations of the section
3.6.2, the radial profile of the kr component is performed for all the modes.

These calculations have shown several problems. One of the most important is related to the
definition of the phase implemented in the python routine which was used. This routine com-
putes the phase in the range [−π, π]. When the absolute value of the phase becomes higher
than π, it is normalized again between [−π, π]. This can create big jumps of the phase that are
catastrophic in the derivative computation (eq. 3.6.13).
For this reason, all the radial profiles of the phases have been analyzed and all the jumps have
been corrected summing a term ±2π.
In figures 4.1.5 and 4.1.6, there is an example of this correction applied to the two example
modes (1,-7) and (1,-8). In both cases, there are huge jumps of the phase: the (1,-7) mode
presents a single jump at r/a = 0.3, while the other mode shows 5 jumps between [0.4,0.8]a.
These jumps correspond to the enormous peak that can be seen at the same radial position in
the respective right figures, blue curves. The orange curves are the ones corrected as described
before. It is possible to see that the big jumps disappear.

Another problem is connected to the singular behaviour of the radial wave vector. It seems
to oscillate around the kr = 0 value, with a non-periodic high-amplitude oscillation. It can be
seen in both right plots of 4.1.5 and 4.1.6. The rapid variation of this quantity can influence the
behaviour of the Alfvén wave, changing its phase with a non-regular pattern (eq. 2.2.3).
In order to avoid this type of problem, it was decided to approximate the radial profile of kr by
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using a smoother function. In both cases, it was decided to use a sine function with an average
amplitude. The red curves in the figures correspond to these functions. The precise analytical
profile is the following:

km,n
r (r) = −k̃m,n

avg · sin(ωm,n
avg r) (4.1.2)

kavg corresponds to an average amplitude that was decided by observing the behaviour of the
oscillations. Instead, ωavg is the spatial frequency of the oscillation. It was decided to put as
first approximation ωavg = 2π, making the wave vector to have a single period along the total
radial direction.

Figure 4.1.5: The left graph represents the radial profile of the phase difference between the
two signals described in 6.3.3, computed for the mode (1,-7). On the right, the radial profile of
kr, which is nothing but the spatial derivative of the left graph. The red curve represents the
approximation of the real plot. At r/a ≈ 0.3 it is possible to see a jump of the phase described
in 4.1.2.

Figure 4.1.6: The left graph represents the radial profile of the phase difference between the
two signals described in 6.3.3, computed for the mode (1,-8). On the right, the radial profile of
kr, which is nothing but the spatial derivative of the left graph. The red curve represents the
approximation of the real plot. At r/a ≈ 0.4 and between [0.6;0.7] it is possible to see many
jumps of the phase described in 4.1.2.

The two average values used for the example modes (1,-7) and (1,-8) of the kr-amplitude are:

k̃1,−7
avg = 10.0 ≈ 22m−1

k̃1,−8
avg = 20.0 ≈ 44m−1

(4.1.3)
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During the simulations, it was decided to try to change kavg in order to understand how much
it could influence the Alfvén wave behavior and how much we were modifying the system due
to this approximation. It was observed that the kr contribute to the phase of the wave was very
small, so the approximation cannot change the final results too much.

4.1.3 Computation of the wave amplitude

The calculation on the Alfvén waves is the computation of the vector potential of the modes,
which is connected to the wave amplitude. The calculations of the section 3.6.3 have been per-
formed by a python code.
Due to the fact that the SpeCyl code computes the time evolution of the radial profile of the mag-
netic modes, it is necessary to choose a temporal instant in which compute the vector potential
of the magnetic modes. It was decided to choose it in the middle of the magnetic reconnection
event. Other points inside the reconnection temporal window show the same behaviour.

We recall that the results are obtained in the gauge that cancels the radial component of the
vector potential. The radial profile of the axisymmetric vector potential components is presented
in figure 4.1.7. The figures in 4.1.8 represent the vector potential of the example modes (1,-7)
and (1,-8).
An important characteristic that can be observed in these figures is that the vector potential
components (dashed lines) have a smooth radial profile. This is relevant during the simulation
phase, in particular during the change of coordinates from the cylindrical ones to the cartesian
ones. As described in section 3.2.2, this change is performed by interpolating the data of the
vector potential. The smooth profile allows us to use a linear interpolation, which is the simpler
and the faster type of interpolation. The second order interpolation, the parabolic one, was also
performed. But it was not noted any difference between it and the linear one. Also for this
reason, the linear interpolation was built into the code.

Figure 4.1.7: The radial profiles of the vector potential components of the axisymmetric field.
With them, the magnetic field computed through this potential is superimposed to the initial
magnetic field.
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Figure 4.1.8: The two graphs represent the radial profile of the vector potential components of
the two modes, 1,-8 on the left and 1,-7 on the right (dashed lines). With them, the respective
magnetic field is plotted.

4.2 Simulations with a single low-frequency wave

A set of single-wave simulations has been performed for the magnetic modes (1,-7) and (1,-8)
in order to better understand the dynamics of the system. We are interested in to study the
temporal evolution of the test-particle energy, in particular to find evidences of energization.
They have been performed for different times higher than 1000τA. It was decided to study some
random simulation lengths before moving to the magnetic reconnection temporal window.

By observing the temporal evolution of the energy of the test-particles, it is possible to no-
tice both cases of heating and not-heating. In figure 4.2.1, there is an example of this behaviour.
In the first plot, there is the temporal evolution of a set of 4 particles, each starting in the same
spatial point, but with different initial energies.
Consider this figure: from 0 to 300τA, the particles conserve their energies. This happens thanks
to the shaping function f(t) (figure 2.2.1), which acts as a perturbation-switch. It makes the
perturbation to reach the its full amplitude around 300τA and to start reducing at 1700τA.
Without the perturbation, the particle moves inside an equilibrium field adiabatically. Between
these limits, the particle starts to interact with the wave until the perturbation is switched-off
and the system returns to the equilibrium. The particle energy oscillates with a sinusoidal-like
shape from its initial energy to an higher one, and this amplitude of oscillation does not depend
on the initial energy.
It is possible to see that there are many different possible results: the blue particle, with an
initial energy of 4eV, returned to its initial energy, the yellow one, 24eV, lost energy in the
interaction and the other two, 50eV and 73eV, gained different amounts of energy.

A similar structure can be observed in the second figure. In this case, particles with the same
energy, 24eV, started their trajectory from different initial points. In this case, two particles
had a strong heating while the others returned near to the original energy.

The statistical behaviour of these type of heating is clear. A particle can or cannot be heated,
depending only by its initial conditions. To make the results significant from the statistics point
of view, only the average energy gained by a set of independent simulations will be considered.
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Figure 4.2.1: Temporal evolution of the energy fro two different sets of simulations. At left, 5
particles with different initial energies, but with the same initial position. At right, viceversa,
same energies but different positions. In both cases, it is possible to note the increasing of the
energy for some particles.

In figure 4.2.2, there is an example of the temporal evolution of another relevant variable, the
squared modulus of the kinetic momentum. The simulation that it refers to is the red one that
can be observed in the left figure of 4.2.1. The temporal behaviour of the kinetic momentum is
clear. It is possible to see that the particle, which is in the equilibrium field in the first part of
the simulation, changes the amplitude of the oscillation due to the interaction with the wave.
At the end, after the wave disappears, the system return to an equilibrium configuration, but
the momentum oscillates around an higher value, which is a clear evidence of energization.

Figure 4.2.2: The squared modules of the kinetic momentum of a particle as a function of time.
The difference between the initial and the final values evidences a relevant acceleration.

In figure 4.2.3, two examples of particle trajectory are presented in the xyz plane. On the left
figure, it is possible to see the 3D trajectory of a particle inside the toroidal chamber with the
only equilibrium field. While the particle rotates around the z-direction (toroidal direction), it
makes a smaller (and faster) spiral rotation along the other directions. On the right picture, it
is possible to observe the trajectory in the presence also of a low-frequency wave with helicity
(1,-7). The perturbation modifies the regularity observed in the left figure introducing some
irregularities in both the two spiral motions.
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Figure 4.2.3: Trajectory of the particle in the xyz plane in two different conditions: in the
presence of the only equilibrium field (left) and in the presence also of an Alfvén wave of the
mode (1,-7). The z-axis (vertical) is translated in terms of toroidal laps. It is possible to notice
how the trajectory loses its regularity due to the presence of a perturbative term.

4.2.1 Check of the energy convergence

The first study I performed is the relation between the average energy gained by the particles
and the length of the simulation. It is reasonable to think that the average gained energy does
not depend on the interaction time between the wave and the particle. Over long periods, the
gains and the losses of energy balance themselves and the average energy converges to a final
value. Only in low-periods simulation it is possible to have different value of energy because the
system has not already reached the stability.

In figure 4.2.4, the average energy gained by the particles is plotted as a function of the length
of the simulations. These times correspond to the complete duration of the simulation, so they
also include the time needed from the f(t) function to switch on/off the perturbation. This time
is usually 1/5 of the total simulation length (section 2.2.2).
Every point in the graph is the average of 180 independent simulations of particles with initial
energy lower than 100eV that interact with a single (1,-7) low-frequency wave, the one with
lower frequency in the spectrogram.
It is possible to see the exact behaviour described previously. From 0 to 1000τA, the average
energy decreases, but over than, the energy remains stable in time.
The error bars are simply computed by the mean squared displacement (msd) of the related set
of simulations. The fact that the error bars’ size reduces with the length of the simulations is
due to the fact that longer simulations have a bigger number of data and the msd is proportional
to the inverse of the number of points.

This gives robustness to our results, because it shows that the average energization does not
depend on when the perturbation is switched-off in respect to the particle motion. It allowed
us to set the total simulation length to the 1000τA, without including in the results errors due
to the no reached energy convergence.
A possible way to improved this result is to repeat the same calculation varying the shape of
f(t). It may show that the average energization does not depend on how the perturbation is
inserted in the system.
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Figure 4.2.4: Average energy gained by the particles as a function on the simulation length. It is
possible to see that the gain converges after the time of 1000τA. The error bars were computed
by the mean squared displacement of the data. The big size of the errors bars of the faster
simulations are due to the minor quantity of data.

4.2.2 Study of the heating as a function of the wave-amplitude

The ion energization should have a strong dependence on the wave amplitude: in our modelling
the amplitude corresponds with the vector potential, so a higher amplitude corresponds to more
energetic magnetic modes.
In order to study this relation, it has been decided to perform simulations varying the amplitude
of the single waves. The simplest way to do this is to introduce an multiplicative factor α and to
apply it to the definition of the j-esimal component of the perturbation field of equation 2.2.3:

Am,n
j (r, θ, z, t) = α ·Am,n

j (r) · cos(k⃗ · r⃗ − ωt)f(t) (4.2.1)

The multiplicative factor α was varied in a range of [0.5,12].
Another reason of the introducing the α is that we do not know actually the real amplitudes
of the magnetic modes, we only have the results of the MHD modelling. With this amplitude
scan, we want to show that the ion energization is always present if the perturbation is active
(α > 0).

Figure 4.2.5 shows the average energy gained by the particles as a function of the amplitude fac-
tor α, for two different waves: (1,-7) and (1,-8). For every α-value, 180 independent simulations
have been performed. It was considered particles with initial energies lower than 100eV and
initial positions between [0.1,0.4]r/a. The energy limit was chosen for two principal reasons: the
first is that 100eV is the order of magnitude of the particle energy observed in the RFX-mod
machine, and the second is that the integration of the equations of motion starts to diverge with
too high energies. It was decided to start with particles in the inner part of the cylinder because
the vector potential seems to be more regular in that region.

This figure shows two important results. The first one is that the average energy gain is posi-
tive for both magnetic modes and increases with the α value. This is the evidence that an ion
energization is occurring in the simulations and it depends on the wave amplitude.
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The orange curve, mode (1,-7), shows that the heating rapidly changes when the wave amplitude
is increased from its magnitude. For α < 1, the gained energy jumps near to the zero value very
quickly. This is consistent with the ion-heating model, because when α = 0, the system is only
composed by the axisymmetric field and the particle cannot be heated. For α > 1, the heating
increases rapidly to tens of eV.
The blue curve, instead, increases with a very low rate: it can be also noticed a steps-like be-
haviour of the energy. It is reasonable to think that the two curves should show the same profile,
but with different scales due to the big difference of amplitudes of the two modes, showed in
figure 4.2.6.

The second result is that different waves with same amplitude can heat the particles by the
same amount of energy. In figure 4.2.6, it is shown the ratio between the modules of amplitudes
of the vector potential components of the two magnetic modes (left) and the ratio between the
axisymmetric mode and the two perturbations (right).
The first shows that the magnetic mode (1,-7) is at least 5/6 times bigger than the other one.
The second one shows that there is, almost everywhere, at least one order of magnitude of dif-
ference between equilibrium and perturbation fields. From the first image, we can assume that
if the ratio of the two amplitude factors α1,−8/α1,−7 becomes of the order of 6, the amplitudes
of the two waves can be considered equivalent.
So, the red dashed line in figure 4.2.5 shows that the blue points near to α = 12 starts to have
similar energy gain to the orange point at α = 2. This is an interesting result that confirms that
the wave amplitude is the most relevant parameter involved in the ion acceleration.

Figure 4.2.5: Average energy gain of the particles as a function of amplitude factor f. Every
point is given by the average of 180 independent simulations. It is possible to see that the
average heating is proportional to the wave amplitude, for both modes. The red dashed line
shows that waves with same amplitude produce the same heating.
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Figure 4.2.6: Left: Ratio between the absolute value of the vector potential components of the
mode 1,-7 and the mode 1,-8. Right: ratio between the absolute value of the axisymmetric field
vector potential and the two modes. The y-axis presents the log-scale due to the huge difference
between equilibrium and perturbation fields.

4.2.3 Temporal evolution of energy distribution

An interesting result is given by the study of the temporal evolution of the energy distribution
of a set of particles. It allows us to estimate the percentage of particles that are energized by
the wave and to see if there are population of particles at precise energies.
The figure 4.2.7 shows 6 snapshots, one every 200τA, of the temporal evolution of the energy
distribution of a set of 1000 independent simulation of cold ions. With the term cold we mean
particles with initial energy lower than 1eV. This simulation was performed with a single wave,
the first peak of the (1,-7) spectrum. The multiplying factor was set to α = 4 in order to better
observe the energy distribution.

The first image represents the initial configuration of the simulation, 1000 independent cold
particles distributed at energy lower than 1eV. The small red figure on the right of each plot
represents the perturbation vector potential as a function of the time. It is possible to see that,
thanks to the shaping function f(t), the wave starts at 200τA and ends to 800τA. The vertical
blue line represents the temporal instant of the snapshot.
The second plot corresponds to the time instant in which the perturbation reaches the maximum
amplitude, i.e. when the f(t) function becomes 1. It is possible to notice that as soon as the
perturbation is introduced particles start to be heated. The third and the fourth plots show
the behaviour of the energy during the interaction with the complete wave. By studying this
phase more in detail, it is possible to see that the energy distribution changes continuously. In
particular, it was possible to notice an oscillating behaviour: the energies seem to increase until
values near 300eV and then they return to low energies. By observing the correspondent wave
amplitude on the graphs, it seems that when the wave increases its amplitude the energies are
increasing too, and viceversa.

The fifth figure of 4.4.7 corresponds to the instant at which the perturbation started to de-
crease due to the f(t) function. At this time, two different populations of particles can be
noticed, one at low energy (E < 100eV ) and one at high energy (E > 260eV ).
During the complete switching-off of the perturbation, reached in the sixth picture, the two
populations merge creating an undefined final distribution.
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Figure 4.2.7: Temporal evolution (From left to right and from top to bottom) of the energy
distribution of a set of 1000 cold particles. The red curve shows the amplitude of the perturbation
and the vertical blue line the temporal instant of the snapshot. In the last figure, it is possible
to see that there is population of particles that are heated by the wave.

The peak at low energy (6-th figure) contains almost the 50% of the initial particles, it means
that the other 50% have been energized by the wave. The two biggest populations are between
[0,50]eV and [150,230]eV. There is no evidence of particles heated at temperatures higher than
250eV.

It is possible to note that the final energy distribution is not the Maxwell-Boltzmann one,
which is the one expected in an equilibrium plasma. The reason of this difference is the assump-
tion of neglecting particle interactions. Without collisions, particles cannot thermalize inside
the plasma, so they cannot reach the M-B distribution [11].
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The same type of study was also applied to simulations with different temporal lengths. It
was noticed that for the longer ones, the behaviour was the same. The oscillating central part
became longer, but the final distribution was basically the same.
The shorter ones usually ended with a final distribution more spread in energy. It was more
difficult the see the secondary population at high energy because they were more equally dis-
tributed along the x-axis.

4.3 Simulations with a set of Alfvénic turbulences

A further generalization of the heating modelling is given by the introduction of multiple differ-
ent low-frequency waves that propagate inside the system. This generalization makes the system
more similar to the real case, in which, during a magnetic reconnection event in a RFP plasma,
a large spectrum of Alfvénic turbulences is generated and all of them interact with the particles.
The ion heating is not a linear heating, so it is not sufficient to increase the number of the
perturbations to expect a higher energization. In principle, the interference between the waves
could annihilate the heating.

The modelling equations can be easily generalized to the presence of a N-number of waves by
introducing in the vector potential, equation 2.2.22, other terms connected to different waves.
This generalization has two different applications that will be studied separately: the first one is
to introduce in the system waves with different helicity and the second one is to combine several
waves with same helicity (so extracted from the same spectrogram). The second case will be
discussed in the next section.
In the real case, the complete spectrum of Alfvénic turbulence is a sum of the two described
situations. The version of eq. 2.2.22 for the different helicity case is the following:

A⃗(r, θ, z, t) = A⃗0,0(r) + α
∑
m,n

A⃗m,n(r) · cos(k⃗m,n · r⃗ − ωm,nt)f(t) (4.3.1)

The first simple case is considering the presence of both the magnetic modes (1,-7) and (1,-8).
The main reason of this calculation is the possibility to compare the results with the single-wave
simulations, described previously in figure 4.2.5.
The equation 4.3.1 could be written as:

A⃗(r, θ, z, t) = A⃗0,0(r) + α · A⃗1,−7(r) · cos(k1,−7
r r + θ +

7z

R0
− ω1,−7t)f(t)+

+ α · A⃗1,−8(r) · cos(k1,−8
r r + θ +

8z

R0
− ω1,−8t)f(t)

(4.3.2)

It was decided to apply the same multiplying factor α for the two waves, in this way it was
possible to maintain constant the ratio between the amplitudes.

In figure 4.3.1, there is a representation of the energy of the particles that interact with the
combination of the modes (1,-7) and (1,-8) as a function of the time. On the left plot particles
have same initial position, but different initial energy and, on the right, the contrary. Comparing
this image with the 4.2.1, it is possible to note that the main difference is the change of ampli-
tude of the oscillations during the interaction phase. In this case, the oscillations appear less
regular both in amplitude and frequency, while in the previous case they could be approximated
to a sinusoidal shape. This is clearly an effect of waves interference. Also in this case there is
evidence of energization.
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The blue points of figure 4.3.2 represents the average energy gained by particles interacting
with the same combination of modes, as a function of α. Each point was obtained by the aver-
age of 180 independent simulations, with the same initial conditions described in section 4.2.2.
Comparing this curve with the ones in figure 4.2.5 (the single-wave simulations), it is possible to
notice a linear behaviour of the heating. The curve given by the combination of the two modes
is comparable with the sum of the two single-wave curves.

Figure 4.3.1: Temporal evolution of the energy for two different sets of simulations. At left, 5
particles with different initial energies, but with the same initial position. At right, viceversa,
same energies but different positions.

4.3.1 Simulations of several waves with same helicity

As mentioned before, it is possible to generalize the eq. 2.2.22 in the case of N waves obtained
from the same spectrogram, so with the same helicity. In the spectrograms of section 4.1, it is
possible to see that each mode (m,n) has many low-frequency peaks with amplitudes comparable
to the biggest one. For completeness, it was decided to observe the difference in energization
between the cases of single wave and a set of these low-frequency peaks.
The equation 2.2.22, for the given mode (m,n) with N different waves taken from its spectrogram,
can be written as follows:

A⃗(r, θ, z, t) = A⃗0,0(r) + α

N∑
p=1

Rp · A⃗m,n(r) · cos(k⃗m,n · r⃗ − ωm,nt)f(t) (4.3.3)

The Rp factor represents the ratio between the first peak amplitude and the one of the p-esimal
peak; it is always lower than 1 (Rp = 1 in case of p=1). These factors were computed by using
the amplitude values given by the spectrograms, such as in the figure 4.1.3.

This type of simulations has been performed for the two magnetic modes (1,-7) and (1,-8)
in order to observe the difference with the single-wave interactions. In both cases, only the first
5 peaks of the spectrograms have been considered. There are two main reasons of this choice.
The first is that we did not want to insert waves with too high frequency (the 5-th peak has a
frequency of ≈ 2.9 · 106Hz), and the second is that the amplitudes become very low (one order
of magnitude lower than the first peaks, Rp < 0.1) and they are not relevant.

In figure 4.3.2, the orange and the green points represent the results of these simulations. It
can be noticed than in both cases there is an increasing of the average heating in respect to
the single-wave simulations. This effect is more visible for the orange curve. This is due to the
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bigger amplitude of the mode (1,-7). In that case, the secondary peaks contribute more to the
heating than the (1,-8) case. The fact that the orange curve shows a heating of 40eV for the
value α = 0.5 instead of going to zero means that 5 half-amplitude (1,-7) waves are sufficient to
heat a particle, while this is not true for the (1,-8) mode.

Figure 4.3.2: Average energy gain of the particles as a function of amplitude factor f. Every
point is given by the average of 180 independent simulations. It is possible to see that the
average heating is proportional to the wave amplitude, for both modes.

4.3.2 Simulations with sets of different helicity waves

The generalization of the modellling to a set of low-frequency waves is necessary in order to
study more real systems. In a RFP plasma, there is a huge quantity of different waves that
are generated during a magnetic reconnection event, as seen in the spectrogram analysis. These
waves propagate inside the plasma a they can interact with the particles, heating them.
It is interesting to study the evidence of ion-heating due to the interaction with this huge set of
different helicity waves.

The simulation code cannot sustain the presence of too many waves, because the integration
algorithm starts to fail when the magnetic field becomes too chaotic. A reasonable compromise
is the selection of a set of the most energetic modes of the system and the study of the particle
interaction with the sum of these modes.
The easier way to select these magnetic modes is to observe their kinetic and magnetic energies.
Figure 4.3.3 shows the average magnetic energy of the spectrum of all magnetic modes m=0
and m=1, computed by the SpeCyl code. Modes with m > 1 were not considered because their
energy was lower than the others.
The average is computed along the temporal window of the magnetic reconnection event and
also along all the radial direction. The modes (1,-7) and (0,-1) are the most energetic ones.
Around them, there are many other modes that are also important: from (1,-13) to (1,-7) for
the m=1 and from (0,-6) to (0,-1) for m=0. These will be the two sets of magnetic modes from
which the low-frequency waves will be extracted.
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It was decided to test the energization for both the sets of waves separately, in order to ob-
serve the heating difference between the m=0 and the m=1 modes. For both cases, only the
first peak of the spectrograms has been considered in order to not overload the simulation code.
The vector potential equations of the two different sets are the following:

m = 1 → A⃗(r, θ, z, t) = A⃗0,0(r) + α

−7∑
n=−13

A⃗1,n(r) · cos(k1,nr r + θ +
nz

R0
− ω1,nt)f(t) (4.3.4)

m = 0 → A⃗(r, θ, z, t) = A⃗0,0(r) + α
−1∑

n=−6

A⃗0,n(r) · cos(k0,nr r +
nz

R0
− ω0,nt)f(t) (4.3.5)

Figure 4.3.3: Average magnetic energy spectrum of all m=0 and m=1 modes. It is possible to
notice that the most relevant modes are then ones (1,-13:-7) and (0,-6:-1).

As in the previous cases, sets of 180 simulations starting with energy lower than 100eV and
initial position between [0.1;0.4]r/a have been performed for several multiplying factor α, and
the average energy gained has been computed.
In figure 4.3.4, the average energy gained is plotted as a function of the α value. It is clear
that there is a huge difference between the two sets of waves. The blue curve, which represents
the m = 1 modes, increases rapidly with the α factor. At the level α = 1, which is the case of
not-modified waves, the average energy gained is of the order of 80eV. The set of m=0 modes,
instead, is flat until the value α = 5 in which the heating starts to be evident. The increasing
behaviour is still very slow. This is probably due to the big difference in wave amplitudes be-
tween the two modes.
Another possible reason of this difference is that the magnetic modes with m=0 are more active
in the outer region of the plasma and, in this simulations, the particles started their trajectory in
the central region of the cylinder. Another set of simulations has been performed with particles
starting near the surface of the cylinder, but not relevant heating difference was noticed.

In figure 4.3.5, an example of the trajectory of a test-particle which interacts with the set of m=1
modes is shown. If we compare this trajectory with the ones in figures 4.2.3, it is possible to see
that motion is completely different. In this case, the trajectory is no more regular and it changes
rapidly direction and rotation frequency. This is due to the chaotic field that is given by the
mixture of different magnetic modes. The right picture of 4.3.5 shows the temporal evolution of
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Figure 4.3.4: Average energy gain by the particles as a function of multiplying factor f. The two
curves represent the sum of the main modes in a RFP plasma divided for different m values.
Every point is given by the average over 180 independent simulations.

the energy of the particle along the same trajectory. It can be noticed that the particle increases
its energy rapidly in the first part of the trajectory (blue zone) and in the rest of the simulation
the energy oscillates around the average value of 100eV. This is another possible way to study
the ion heating.

Figure 4.3.5: Trajectory of a test-particle that interacts with the set of the most energetic m=1
modes described in 4.3.2. On the right, temporal evolution of the energy of the test-particle (in
the same trajectory) is described by the colorbar. Comparing with figure 4.2.3, it is possible to
notice that the trajectory becomes complicated (and no more regular) as soon as the number of
perturbations increases.
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4.3.3 Study of the heating as a function of the test-particle mass

Another interesting result is given by the studying of the energization as a function of the mass
of the test-particle.
In the paper [15], the mass-dependency of the ion-heating is studied in a RFP experiment during
a magnetic reconnection event. It is shown that the heating seems to have a dependency on the
particle mass, ∆E ∝ m0.52. This result was obtained by studying 3 different plasmas (Hydrogen,
Deuterium and Helium).

This is an interesting result because it is in contrast with the result obtained by the study-
ing of the simple case of a particle that experiences the Lorentz force (eq 1.2.1). Given the
equation of motion of the particle it is possible to obtain the velocity by integrating in time, as
shown in eq. 4.3.6. If we substitute this expression of the velocity in the kinetic energy of the
particle Ek = 1

2mv2, it is possible to see that Ek ∝ m−1.
So the temperature T, which is computed by averaging the Ek with a velocity distribution, is
also proportional to the inverse of the mass.

m
dv⃗

dt
= q(E⃗ + v⃗ × B⃗) → v⃗ =

q

m

∫
(E⃗ + v⃗ × B⃗)dt (4.3.6)

The difference between the two results is a signal of the presence of a physical phenomenum
which is not fully understood.

In this section we want to try to replicate the results described in [15], considering the heating
of different ions due to the interaction with a set of low-frequency waves.
In order to consider an equivalent case to [15], we have to impose a strong assumption on SpeCyl
data. In fact, the SpeCyl simulation, which is used all along the thesis, has been performed con-
sidering a hydrogen plasma. This choice is connected to the plasma density that it is used to
normalize the MHD equations (section 2.2.1).
We will assume that the same simulation can describe other types of plasmas, such deuterium
and tritium ones, with the same perturbation spectra of the hydrogen one.
In order to have more significant results, it will be possible to perform new SpeCyl simulations
with different plasma densities. This could not be done in this thesis due to time constraints.

Deuterium and a tritium have been chosen because they have the same electric charge of the
hydrogen and their mass can be easily express as mD = 2mH and mT = 3mH .
The change of the test-particle induces a cascade of changes in the normalizations described in
the section 2.2.1 needed for the simulation code. In fact, the code integrates the Hamilton’s
equations of the eq. 2.2.18 considering the normalized mass m̃ = 1. In order to maintain the
same structure for the hamiltonian, the equation 2.2.9 must be changed, using the mass the j-th
ion mj instead of the hydrogen one. The same must be applied to the equation 2.2.10 if the new
ion has a different electric charge. The cyclotron frequency of the ion must be also modified due
to these changes.
In order to change the type of plasma, instead, we have to modify the normalization of the
Alfvén time, eq. 2.2.4, which depends on the mass of the particles of the plasma. This will
modify the frequencies of the waves extracted form the spectrograms and the duration of the
fortran simulations.

It was decided to perform two different sets of simulations, one changing both test-particle
and plasma and one changing only the test-particle (so using the original hydrogen plasma).
The second case could be interesting for studying the energization of impurities present inside
the plasma.
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Sets of 180 simulations have been performed for each ion with the set of magnetic modes m=1,
described in the section 4.3.2, with α = 1.
In figure 4.3.6, the average energy gained by the 2 ions is plotted as a function of the ion mass,
normalized to the hydrogen one.
The orange points correspond to the case of different test-particles in hydrogen plasma, while
the blue ones are given by the assumption of different plasmas.
In both cases it is possible to see that the energization increases with the mass of the test-
particle, but this increasing depends on the type of the plasma. The blue dashed line represents

the function g = EH

√
mj

mH
(EH is the energy gained by the hydrogen) which is the behaviour

obtained by experimental data [15].

Figure 4.3.6: Average energy gained by three different ions (H,D,T) during the interaction with
the set of the most energetic m=1 modes of SpeCyl simulation. The mass in normalized to the

hydrogen mass. The dashed blue line shows the behaviour of a function g ∝
√

mj

mH
, which is the

one obtained in [15]. It is possible to see that the blue points are well described by this curve.
The orange curve shows the behaviour of the orange points.
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4.4 Heuristic interpretation of the ion heating

In [1], the ion heating by Alfvén waves was studied in order to try to explain the problem of the
solar corona heating.
In that paper, a new picture for the ion heating mechanism was proposed. For measured waves
amplitude, ion orbits were shown to cross quasi-periodically one or several separatrices in phase
space. A separatrix is a trajectory in the phase space that has infinite period and divides
different types of motions of a system. In figure 4.4.1, it is shown a simple case of a separatrix.
It represents the phase space of the classical pendulum and it is possible to note that the red
line, the separatrices, divide the phase space in the three different regions which correspond to
different types of motion. Between the two red lines there is the classical oscillating motion of
the pendulum, and out of them it starts to do clockwise or counter-clockwise rotations due to
the high momentum.
The new mechanism sustains that each separatrix crossing cancels the adiabatic invariance and
yields to a very strong energy transfer from the wave, and thus particle heating.

Figure 4.4.1: Example: the red line represents the two separatrices in the phase space of the
classical pendulum system. They divide the phase space in three different regions.

This mechanism was studied in a simple 1D case, by the Hamiltonian description of the wave-
particle interaction. The Hamiltonian was of the following shape:

H1 =
p2

2
+ V (x) =

p2

2
+

x2

2
−Asin(x− ωt+ ϕ) (4.4.1)

This is two variable function (x, Px) in which the potential term is the one of a harmonic oscil-
lator modulated by a sinusoidal term.

In figure 4.4.2, three temporal instants of the 1D potential seen by the particle is shown (The
figures are taken from [1]). It was possible to see that the system creates periodically a separa-
trix, whose shape changes periodically from a single-loop (central picture) to a double-loop one
(right picture), until it disappears again.
It was seen that particle are accelerated by the crossing of these pulsating separatrices.

The hamiltonian of the 3D heating modelling presented in this thesis (eq. 2.2.17) is a function
of 6 variables (r⃗, P⃗ ). The higher complexity does not allow to verify if the same heating mecha-
nism is acting also in this case, in particular it is impossible to separate the kinetic part of the
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Figure 4.4.2: 3 temporal steps of a pulsating separatrix, black line. In the first image there is
no separatrix. In the second it rounds a single-peak system and in the third ir rounds two peaks
with a double-loop shape [1].

hamiltonian from the potential one. The 6D Hamiltonian can be written as following:

H(r⃗, P⃗ ) =
P 2
r

2
+

(Pθ − rAθ)
2

2r2
+

(Pz −Az)
2

2
(4.4.2)

The only possible way to study the shape of a 6D Hamiltonian is to choice 2 of the possible
variables and to observe 2D sections of the energy. This method does not guarantee to have a
full description of the separatrix crossing, but it allows to have a partial vision of the system.
We have tried many different variable combinations and some interesting results have been ob-
tained observing the phase-space along the x-y directions, near the center of the cylinder (r/a
< 0.4).

The figure 4.4.3 shows the temporal evolution (in total 200τA) of the phase-space seen by the
particle, which is represented by the red dot. This particles is interacting with a single (1,-7)
wave, with α = 5.
The snapshots must be read from left to right and from the top to the bottom. The color map
goes from blue, which means low H, to white, which indicates a peak of the hamiltonian.
It is possible to notice that the structure of the Hamiltonian of the particle changes continuously
in time. In the first row, the system shows a double-peak configuration in which the right peak
is gradually vanishing.
The second row shows that for a small period of time (≈ 50τA) the system remains with a single
peak that seems to move from the left to the right part of the plot. In the third row, a secondary
peak is gradually increasing the left part of the plots while the primary peak starts to vanish
and, in the last row, the system slowly returns to the single peak configuration also present in
the second row.

During all this process, the particle (red dot) is moving through these peaks following the
trajectory described in figure 4.2.3. It is possible to notice that the figures of 4.4.3 have some
similarities with the ones taken from the paper [1] (figure 4.4.2). The system seems to oscillate
between single and double peak configurations: this could be a sign of the presence of a pulsating
separatrix. This is only an heuristic conclusion, many other studies could be applied in order to
better observe this mechanism, but in this thesis we limit presentation due to time problem.
An example of these studies could be to observe the temporal evolution of two 3D plots, one for
the three spatial directions and one for the momenta, and comparing them with 2D sections as
figure 4.4.3.
In this way, it maybe possible to observe a jump in the momenta space (so an increasing of
energy) in correspondence of what we think could be a separatrix crossing.
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Figure 4.4.3: Temporal evolution (From left to right and from top to bottom) of the potential
seen by the particles in the phase-space during a simulation. The red dot represents the particle.
It is possible see a change of structure of the potential, which moves from a single maximum to
a double maxima one and viceversa. This could be the sign of a pulsating separatrix.
The 12 snapshots represent a time of 200τA of a simulation with a single wave of the mode (1,-7).
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But, there is a big difference between the modelling presented in the paper and the one of
this thesis: the paper shows that the energization happens only if the amplitude of the waves
is higher than a precise threshold. The results obtained in this thesis show, instead, that the
heating seems to have a smooth profile as a function of the multiplicative parameter α.
This is very interesting for the following reason: the heating is possible only if there is a mech-
anism that induces particle decorrelation, it must make the particles to forget which was their
initial position and energy. In case of stochastic heating, the presence of many different waves
is the heating factor.
In [1], it was shown that the decorrelation is possible also with a single wave, but it is necessary
that its amplitude is comparable with the equilibrium field (which is the threshold).
In this thesis, it is shown that the heating depends on the amplitude, but there is no a threshold.
So, the mechanism that induced energization in this thesis is still unknown.
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Chapter 5

Conclusions

The work presented in this thesis deals with ion heating by Alfvén waves produced in a magnetic
reconnection event. The goal stated at the beginning was to observe if particles can be heated
by the interaction with a set of low-frequency electromagnetic waves.
The work has been done by using a test-particle approach and the Hamiltonian description of the
wave-particle interaction. The Alfvèn waves have been obtained from a magnetic reconnection
event of a RFP plasma simulated with a 3D non-linear MHD code.
The heating has been studied for different combinations of Alfvénic perturbations, starting from
the simplest case of a single wave and concluding with the set of the most energetic magnetic
modes active during the reconnection event.
Hundreds of simulations have been performed varying many different parameters, such as the
simulation length, the mass of the test-particle and the amplitudes of the perturbations. A
statistical analysis of the energy distribution was also performed.
The most significant results obtained are summarized in the following points:

• By studying the energy temporal evolution of a test-particle which interacts with an
Alfvénic turbulence computed by a 3D non-linear MHD modelling of a RFP plasma, it
is possible to see an average increasing of the energy due to the wave interaction. This
is proportional to the number of the perturbations active in the system and their ampli-
tudes. The obtained results are comparable with the experimental ones of the major RFP
experiments;

• The average energy gained by the test-particles has been studied as a function of the
simulation length. It is observed that ion heating is independent on the interaction time
with the Alfvén waves. The convergence of the energy is important for the reliability of
the results;

• From a statistical analysis of the energy distribution of a set of 1000 independent simula-
tions with a single perturbation, it is observed that at least the 50% of the test-particles
are heated by the wave interaction;

• The ion heating has been studied as a function of the mass of the test-particle. By studying
different test-particles in a hydrogen plasma, it is possible to see that the heating increases
with the mass of the ion. A similar bahaviour is observed with the strong assumption
of considering different type plasmas with the same Alfvénic turbulence computed by the
SpeCyl code for the hydrogen case.

Despite the interesting results obtained, this thesis is only a starting point of research. There
are many ways in which these results could be implemented and improved, and also many other
systems that could be explored.
In the following points we will present a list of some of the possible improvements that could be
applied and some future applications:
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• One of the problems encountered in this thesis is the failure of the symplectic integrator of
computing the particle trajectory for a too widespread number of Alfvénic perturbations.
It would be possible to introduce a new integrator in order to observe the heating of the
combination of all the magnetic modes computed by SpeCyl, which is nearer to the real
case;

• By performing new SpeCyl simulations for different types of plasmas, it would be possible
to obtain a more significant results to be compared with the experimental results of [15].
Due to the length of the simulations involved, it was not possible to do it during the thesis
period;

• Another interesting result could be given by the changing of the shaping function f(t).
Introducing new functions with different temporal profiles may be show different heating
properties. It would be also interesting to introduce f(t) function comparable to the real
crashing profile of the fields during a reconnection event;

• An interesting future application could be the studying of different plasmas configurations,
such as tokamak devices. It would be interesting to compare the ion heating with different
types of Alfvénic turbulences.
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Appendix A

Appendices

A.1 Liouville’s theorem

Liouville’s theorem is one of the most important theorems of statistical mechanics. Lets consider
the trajectory in the phase-space of a single component of an ensemble. We define ρe(qs, ps, t)
the density of particles of that ensemble.
The theorem states that the time derivative of this density as we move along the selected
trajectory is zero:

Dρe
Dt

= 0 (A.1.1)

If (qs,ps) and (qs + δqs, ps + δps) are two successive states of the system at time t and t + δt
then:

Dρe
Dt

= lim
δt→0

ρe(qs + δqs, ps + δps, t+ δt)− ρe(qs, ps, t)

δt
(A.1.2)

Making a Taylor expansion of the term ρe(qs + δqs, ps + δps, t+ δt and substituting it into this
equation we have:

Dρe
Dt

=
∂ρe
∂t

+
∑
s

q̇s
∂ρe
∂qs

+
∑
s

ṗs
∂ρe
∂ps

(A.1.3)

The next step is to show that the right side of this equation in equal to zero. This can be done
by deriving the equation of continuity of mass.
Given ρ the density of the system, the mass will be the integral of the density over a volume V.
The mass can change only due to a mass flux across the surface bunding that volume

∂

∂t

∫
ρdV = −

∫
ρv · ds (A.1.4)

By applying the Gauss’ theorem, the equation of continuity follows:

∂ρ

∂t
+∇ · (ρv) = 0 (A.1.5)

If now we introduce in this equation the ρe and v = (q̇s, ṗs) defined in the first part and we use
the Hamilton’s equations, it can be shown that:

∂ρe
∂t

+
∑
s

q̇s
∂ρe
∂qs

+
∑
s

ṗs
∂ρe
∂ps

+ ρe
∑
s

(
∂q̇s
∂qs

+
∂ṗs
∂ps

)
= 0 (A.1.6)

An important corollary of this theorem is the following. Suppose that there are n ensemble
points inside the initial phase-space volume dnqsd

nps and after some time it becomes dnq′sd
np′s.

If the two densities are ρe and ρ′e, it follows that:

ρed
nqsd

nps = ρ′ed
nq′sd

np′s (A.1.7)

Since the Liouville theorem implies that the density cannot change in time, it follows that
dnqsd

nps = dnq′sd
np′s which means that the volume in tha phase-space cannot change.
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A.2 Coordinates and Fourier transform

The cylindrical coordinates (r,θ,z) are defined as the polar coordinates in the x-y plane, with
the z which represents the distance from that plane. In simple scheme is shown in figure A.1.
The simplest way to work with a toroidal geometry is to extend the cylindrical coordinates with
a precise boundary condition. In fact, the torus is nothing but a cylinder that is closed to itself
along the z-direction.
The trick is to define the z coordinate as follows: z = R0ϕ, where R0 is the major radius of the
torus. In this way, a periodic boundary condition is set along the z direction: it is possible to
substitute the z coordinate with another angular coordinate ϕ. Given R0, every time that we
make a lap around the torus, we are moving of z = 2πR0 which corresponds to a complete circle
of ϕ = 2π:

ϕ = 2π

[
z

2πR0

]
=

z

R0
(A.2.1)

So, the toroidal coordinates can be defined as (r,θ,ϕ). In figure A.2.1, there is a schematic
representation of the toroidal coordinates.

Another possible way to work with toroidal geometry is to use a Fourier expansion over the
angular directions. For example, a generic field A can be written as:

A(r, θ, ϕ) =
∑
m,n

Amn(r)e
i(mθ+nϕ), (A.2.2)

where m,n are a pair of integer indices and Amn(r) is the Fourier component of the mode (m,n).
In this case, the component A(0,0) is the axisymmetric part of the field.
This type of reference is helpful to describe field perturbations.

Figure A.2.1: Schemes of cylindrical coordinates (left) and toroidal coordinates (right).

A.3 Wave vector in cylindrical coordinates

The differential arc-length along a coordinate curve ui, which I denote by dl(i) is [1],

dl(i) = |dR(i)| =
√
dR(i)R(i) (A.3.1)

and

dR(i) =
dR

∂ui
dui = eidu

i =
√
giidu

iêi (A.3.2)

implying that:
dl(i) =

√
giidu

i (A.3.3)

In cylindrical geometry this means that dl = drr̂ + rdθθ̂ + dzẑ. From these considerations,
the computation of the angular component of the wave vector is very simple. For example,
to compute kθ we have to divide 2π for the integration of rdθ along one cycle in the poloidal
direction. This quantity coincide with r(2π/m). The analogous can be done for the z component.
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A.4 Products of variables in Fourier space

Given two variable Bi and vj defined as the equation X, with mode numbers respectively (m,n)
and (m’,n’), their product can be performed in the following way:

vjBi =
∑
m′,n′

∑
m,n

vm
′,n′

j ei(m
′θ+n′ϕ)Bm,n

i ei(mθ+nϕ) (A.4.1)

vjBi =
∑
m′,n′

∑
m,n

vm
′,n′

j Bm,n
i ei(m+m′)θei(n+n′)ϕ (A.4.2)

Using a property of the delta function, it is possible to simplify the notation introducing new
mode numbers m̃ and ñ, that are defined as m̃ = m+m′ and ñ = n+ n′:

ei(m+m′)θ =
∑
m̃

eim̃θδm̃,m+m′ ei(n+n′)ϕ =
∑
ñ

eiñϕδñ,n+n′ (A.4.3)

Applying this property to the 8.6 equation it follows that:

vjBi =
∑
m′,n′

∑
m,n

vm
′,n′

j Bm,n
i

∑
m̃

eim̃θδm̃,m+m′
∑
ñ

eiñϕδñ,n+n′ (A.4.4)

vjBi =
∑
m̃

∑
ñ

eim̃θeiñϕ
∑
m,n

∑
m̃−m,ñ−n

Bm,n
i vm̃−m,ñ−n

j (A.4.5)

Equation 8.9 follows from the application of the Kronecker delta after the consideration that
δm̃,m+m′ = δm̃−m,m′ . The same holds also for the ñ case.
At this point it is possible to re-write the equation,

vjBi =
∑
m̃,ñ

(∑
m,n

Bm,n
i vm̃−m,ñ−n

j

)
ei(m̃θ+ñϕ) (A.4.6)

which is the one presented in the equation x. I follows that:

(vjBi)m̃,ñ =
∑
m,n

Bm,n
i vm̃−m,ñ−n

j (A.4.7)

A.5 Symplectic integrators

The symplectic integration of Hamiltonian dynamical systems is by now an established tech-
nique. Standard integrators do not generally preserve the Poincaré integral invariants of a
Hamiltonian flow and cannot hope to capture the long-time dynamics of the system.
Typically their numerical diffusion causes orbits to be attraced to elliptic orbits, or, creates
completely unphysical attractors.The non-conservation of integral invariants presumably cor-
rupts the long-time statistics of the flow.

Symplectic integrators are a numerical integration scheme for Hamiltonian systems. They are
designed for the numerical solution of Hamilton’s equations:

ṗ = −∂H

∂p
q̇ =

∂H

∂q
(A.5.1)

The time evolution of these equations is a symplecto-morphism, meaning that it conserves the
symplectic 2-form dp × dq. A numerical scheme is a symplectic integrator if it also conserves
this 2-form. Symplectic integrators also might possess, as conserved quantity, a Hamiltonian
which is slightly perturbed from the original one. By virtue of these advantages, the SI scheme
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has been applied to the calculations of long-term evolution of chaotic Hamiltonian systems.

A widely used class of symplectic integrator is formed by the splitting methods. Assume that
the Hamiltonian is separable:

H(q, p) = T (p) + V (q) (A.5.2)

The set of Hamiltonian’s equations given by this equation can be expressed as:

ż = z,H(z) (A.5.3)

in which z=(q,p) denotes the canonical coordinates and , is a Poisson bracket. Given DH = ·, H
an operator that returns the Poisson bracket, the previous equation can be written as:

ż = DHz → z(τ) = eτDHz(0) (A.5.4)

The symplectic integrators scheme approximates the time-evolution operator eτ(DH) by the
product of operators as:

eτ(DH) = eτ(DT+DV ) =
k∏

i=1

eciτDT ediτDV +O(τk + 1) (A.5.5)

where ci and di are real numbers, k is an integer, the order of the integrator, and
∑k

i ci =∑k
i di = 1.

Each operator provides a symplectic map, so their product is also a symplectic map. Since
D2

T z = {{z, T}, T} = {(q̇, 0), T} = (0, 0) , we can conclude D2
T = 0. So, by using a taylor series

to the exponentials:

eaDT =
∑
n=0

(aDT )
2

n!
(A.5.6)

with a real number. Combining the two previous equations and extending the concept to DV ,
we get:

eaDT = 1 + aDT

eaDV = 1 + aDV

(A.5.7)

In concrete, [
q
p

]
→
[
q + τci

∂T
∂p (p)

p

]
(A.5.8)

[
q
p

]
→
[

q

p− τdi
∂V
∂q (q)

]
(A.5.9)

Note that both of these maps are practically computable.
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[10] Finn, J.M., Chacòn, L. Volume preserving integrators for solenoidal fields on grid. Phys.of
Plasmas 12, 054503(2005).

[11] Choudouri, A.R. The physics of fluids and plasmas. An introduction for astrophysicists.
Cambridge Univerisity Press (1998).

[12] Nishikawa, K., Wakatani, M. Plasma Physics. Springer, third edition (2000).
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