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Abstract

Object classification is a crucial task in deep learning, which

involves the identification and categorization of objects in im-

ages or videos. Although humans can easily recognize com-

mon objects, such as cars, animals, or plants, performing this

task on a large scale can be time-consuming and error-prone.

Therefore, automating this process using neural networks can

save time and effort while achieving higher accuracy. Our

study focuses on the classification step of human chromosome

karyotyping, an important medical procedure that helps di-

agnose genetic disorders. Traditionally, this task is performed

manually by expert cytologists, which is a time-consuming

process that requires specialized medical skills. Therefore,

automating it through deep learning can be immensely use-

ful. To accomplish this, we implemented and adapted existing

preprocessing and data augmentation techniques to prepare

the chromosome images for classification. We used ResNet-50

convolutional neural network, and Swin Transformer, coupled

with an ensemble approach to classify the chromosomes, ob-

taining state-of-the-art performance in the tested dataset.
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Abstract (italiano)

La classificazione di oggetti è un compito cruciale nel campo

del deep learning, che ne comporta l’identificazione e la cat-

egorizzazione in immagini o video. Sebbene gli esseri umani

possano facilmente riconoscere oggetti comuni, come automo-

bili, animali o piante, svolgere questo compito su larga scala

può essere dispendioso in termini di tempo e soggetto ad er-

rori. Pertanto, automatizzare questo processo utilizzando le

reti neurali può far risparmiare tempo e fatica, garantendo

al contempo una maggiore precisione. Il nostro studio si

concentra sulla fase di classificazione del cariotipo umano,

un’importante procedura medica che aiuta a diagnosticare dis-

turbi genetici. Tradizionalmente, questo compito viene svolto

manualmente da citologi esperti, un processo che richiede

molto tempo e competenze mediche specifiche. Pertanto, au-

tomatizzarlo attraverso il deep learning può essere estrema-

mente utile. Per raggiungere questo obiettivo, abbiamo im-

plementato e adattato tecniche esistenti di pre-elaborazione

e di aumento dei dati in modo da preparare le immagini dei

cromosomi per la classificazione. Quindi, abbiamo utilizzato

reti neurali convoluzionali di tipo ResNet-50 e lo Swin Trans-

former, assieme a tecniche di ensemble per classificare i cro-

mosomi, ottenendo risultati all’avanguardia sul dataset utiliz-

zato.
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Chapter 1

Introduction

Karyotyping is the laboratory medical procedure that allows to individuate the karyotype,

which is an organism’s complete set of chromosomes. Studying the size, number, and

shape of chromosomes is important to diagnose cancers and genetic disorders, such as

monosomy, trisomy or deletions at an early stage [1].

Chromosomes consist of DNA molecules containing genetic information. In a healthy

human cell there are 46 chromosomes [2], organized into 23 pairs. They include 22 pairs

of autosomes and a pair of sex chromosomes (X and Y in male cells and double X in

female cells). In order to study them, cytologists perform karyotyping by first taking cells

from the patient (specifically from peripheral blood, amniotic liquid or bone marrow) and

culturing them in vitro. During the metaphase stage of mitosis, chromosomes become

distinguishable and hence the cells are arrested. Subsequently, a staining technique is

employed to highlight the morphological features of the chromosomes, such as bands,

by applying a specific dye. One commonly used staining procedure is G banding, which

utilizes Giemsa staining to color the chromosomes, enhancing dark and light bands, length

and centromere position.

After the staining, a chromosome picture is taken through a microscope, producing a

micrograph. Cytologists visually inspect this image, examining chromosome features such

as size, shape, banding pattern, centromere position. Referring to the human idiogram

published by the International System for Human Cytogenomic Nomenclature (ISCN),

the specialists can organize and pair chromosomes according to these characteristics; also,

classes are assigned to each pair: there are 24 classes for males and 23 for females (because

there is no Y chromosome) [3]. The result of the karyotyping is a graphical representation

called a karyogram, illustrated in Figure 1.

While karyotyping is an essential procedure, it is also time-consuming and requires

skilled cytologists to work manually on cells. As a result, researchers have developed com-

putational techniques [4, 5, 6, 7] to automate it, often adopting artificial neural networks

to save time and effort.

The two main challenges of automated karyotyping are chromosome segmentation

and chromosome classification. The first replaces the manual metaphase detection, a
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2 Chapter 1. Introduction

Figure 1: Micrographic karyogram of human male using Giemsa staining. The
numbers indicate the classes of chromosomes.

procedure which requires cytologists to examine hundreds to thousands of metaphase

images, most of which contains debris and noises. The images are classified into analysable

and unanalysable according to the chromosome features, and only analysable ones are used

for karyotyping [3]. Artificial neural networks can recognize the analysable images and

then extract from them, through segmentation techniques, the chromosome instances.

These are randomly located within the image and often overlap and adhere together. By

defining chromosome geometric features such as area, bounding box, axis length and using

specific algorithms, including those based on machine learning, it is possible to extract

the chromosomes from the images and subsequently classify them [8].

The second important stage in the karyotyping procedure is the classification of the

chromosome instances into 24 different types or classes, i.e., they are labeled from 1 to

22 and X, Y. Similar to segmentation, this process can be automated through convolu-

tional neural networks (CNNs) trained on large datasets of labeled chromosome images.

However, collecting such datasets from medical institutions can be challenging due to

privacy-related constraints. Additionally, due to their non-rigid body, chromosomes can

be bent or oriented in different ways, which makes their classification more difficult [9].

Differences in cell cultivation techniques and micrograph productions increase the problem

[10]. To address these issues, data augmentation and straightening techniques can be em-

ployed. The first one artificially produces more data samples starting from a base dataset

(images are modified by applying scaling, rotation, noise addition, blurring, or other trans-

formations), while the second can straighten bent chromosomes. These procedures can

achieve higher classification accuracy and are applied to the original chromosome images

before training the neural network for classification.

Our work focused on chromosome classification. We implemented a data augmenta-
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tion technique proposed by Lin et al. [11], as well as a common straightening procedure

[12] improved by Sharma et al. [13]. We introduced some modifications and improvements

to the baseline methods. Finally, we applied three different image processing techniques

based on the Features Transform (Fourier and Discrete cosine). The combination of them,

and the use of a ResNet-50/SWIN ensemble for the classification, show better results than

previous works.

The paper is organized as follows: in Section 2 we present the dataset used in this

work, as well as the methods used for data augmentation and classification. In Section 3,

we describe the performed experiments; moreover, we discuss the reported performance.

In Section 4 the conclusion and some proposals for future research are given.

The MATLAB source code of the methods here reported is freely available at:

https://github.com/MattiaDAngelo.

https://github.com/MattiaDAngelo
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Chapter 2

Materials and Methods

This section provides a complete description of the dataset used and the image processing

techniques mentioned above. In particular, Section 2.1 introduces convolutional neural

networks to better understand the context of this work, Section 2.2 introduces SWIN

transformer, Section 2.3 describes the dataset, Section 2.4 describes the data augmentation

technique, Section 2.5 describes the straightening procedure and Section 2.6 describes the

feature transform-based techniques.

2.1 A brief introduction to CNNs

Convolutional Neural Networks (CNNs) are powerful deep learning models commonly

used for image detection and classification tasks. They are designed to replicate how our

brain recognizes images, by extracting relevant features from them.

One of the key advantages of CNNs is their ability to be invariant to certain changes

in the image. For example, a CNN can still recognize a cat even if the image is resized,

rotated, or exposed to different lighting conditions if it has learned what features are

important for identifying a cat. To achieve this level of performance, CNNs are trained

on large datasets of images, with multiple samples of the same object to ensure that the

network learns the relevant features and can generalize to new, unseen, images.

A CNN is typically composed of some convolutional blocks used for feature extraction,

followed by fully connected layers used for classification. The network input is either a

grayscale image or an RGB image and the output is the class prediction.

A convolutional block is composed of one or more convolutional layers and a pooling

layer. Convolutional layers apply one or more filters to their input, performing a con-

volution operation. This allows the network to learn relevant features from the image,

producing a feature map. After one or more convolutional layers, it is common to include

a pooling layer: its purpose is to reduce the spatial size of the feature maps, which also

reduces the number of parameters and computation required in the network.

Finally, fully connected layers classify the image by mapping the learned features to

the output classes, i.e., they produce an output vector representing the predicted class

5



6 Chapter 2. Materials and Methods

probabilities for the input image.

2.1.1 ResNet-50

The ResNet-50 is a type of CNN architecture with 50 layers, introduced in 2015 by a

team of researchers at Microsoft Research [14].

In general, residual neural networks (ResNet) were introduced to solve the “vanishing

gradient problem”, a phenomenon that can occur during the training of deep neural

networks with many layers and makes it difficult to obtain accurate predictions.

ResNet-50 has been pretrained on the large ImageNet dataset and therefore can clas-

sify objects up to 1000 different categories [15].

2.2 A brief introduction to Transformers

Transformers are deep learning models used in the fields of natural language processing

(NLP), computer vision, and audio processing. First introduced in 2017 by Vaswani et

al. [16] they are now the most commonly used models for NLP problems [17] and can

also be applied to image classification tasks [18].

Transformers basically consist of a stack of encoders and a stack of decoders: the

encoding component takes a sentence to translate as input, tokenizes it, and applies

attention. The decoding component takes the result and outputs the sentence in a different

language.

The encoders consist of two sub-layers: self-attention and a feed-forward neural net-

work. Self-attention is key because it allows the transformer to ”understand” the structure

of the sentence and how the words are related to each other. The first step is embedding

the words of the sentence, i.e., turning them into vectors. The embeddings are packed into

a matrix and multiplied by some weight matrices to produce three more matrices called

query, key, and value. Then, it is possible to apply Equation (1) representing a normalized

matrix as the output of the self-attention layer. This expresses the ”similarity” of the

words to each other. The result is moved to the feed-forward neural network, allowing

the model to capture more complex relationships between the words.

Attention(Q,K, V ) = Softmax(
QKT

√
Dk

)V (1)

In Equation (1), Q ∈ RNxDk is the query matrix, K ∈ RMxDk is the key matrix,

V ∈ RMxDv is the value matrix, Dk is the dimension of the keys, N is the length of the

queries and M is the length of the keys.

The decoders have both the self-attention layer and the feed-forward network, along

with an attention layer in the middle. The decoders produce new tokens based on the

encoder’s output until reaching an end-of-sentence token. The output is normalized, pro-

ducing probabilities associated with each word, and words with the highest probabilities
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are chosen, representing the translation of the corresponding input words.

Transformers have also been used for image classification. The ViT model [18] was

the first transformer to achieve results equivalent to or better than CNNs in image clas-

sification.

2.2.1 Swin

Swin [19] is another transformer model that has reached state-of-the-art performance in

vision tasks. It was inspired by the ViT model, introducing hierarchical feature maps

and shifted windows to improve performance and execution time. The SWIN pre-trained

model from the Timm library (https://timm.fast.ai/) is used in this work, with a

patch size of 4. To mitigate overfitting, we implemented a validation split, reserving 1/4

of the training set for validation purposes. Additionally, we resized the image dimensions

to 224 × 224 to match the required input size.

During the training process, we employed the AdamW optimizer with cosine anneal-

ing. To maintain network stability, we utilized a low learning rate of 10−4 and applied a

weight decay of 0.03. Our chosen batch size was 32, and for the loss function, we employed

the standard cross-entropy.

In order to enhance convergence, we monitored the minimum validation F1 score over

consecutive epochs. If no decrease was observed after five epochs, we further reduced the

learning rate to 10−5 and subsequently to 10−6. This adjustment aimed to improve model

performance. Ultimately, we saved the best-performing model, the one with the highest

F1 score during validation throughout the training process.

2.3 The dataset

The dataset used in this study was obtained from Lin et al.’s GitHub repository

(https://github.com/CloudDataLab/CIR-Net) and it contains 2986 G-band chromo-

some images. They represent 65 different karyotypes, of which 32 are male and 33 are

female; in particular, the dataset consists of 130 chromosomes per label from 1 to 22,

except for labels 8, 12, 16, and 19, which are associated with only 129 chromosomes.

Sex chromosomes are composed of 98 type X chromosomes labeled to 23, and 32 type

Y chromosomes labeled to 24. The images are grayscale with 8-bit color depth, which

means pixels have an intensity range from 0 (black) to 255 (white). The size is 224x224

pixels, with the background being black and the chromosome composed of shades of gray.

Figure 2 (a) illustrates an image of a type 8 chromosome from the dataset.

We also looked for other datasets that might be useful for testing purposes. For

convenience, we report here the papers and links to each of the datasets found: BioIm-

Lab dataset for segmentation [20] and BioImLab dataset for classification [21]; Passau

Chromosome Image Data (Pki-3) [22]; Guangdong Women and Children Hospital dataset

[23]. The first dataset contains 162 PAL-resolution quinacrine (Q)-banded prometaphase

https://timm.fast.ai/
https://github.com/CloudDataLab/CIR-Net
http://bioimlab.dei.unipd.it/Chromosome%20Data%20Set%204Seg.htm
http://bioimlab.dei.unipd.it/Chromosome%20Data%20Set%204Seg.htm
http://bioimlab.dei.unipd.it/Chromosome%20Data%20Set%204Class.htm
https://www.fim.uni-passau.de/en/research-and-professorships/former-chairs-professorships/mathematical-stochastics/chromosome-image-data
https://www.fim.uni-passau.de/en/research-and-professorships/former-chairs-professorships/mathematical-stochastics/chromosome-image-data
https://github.com/CloudDataLab/ChromosomeClusterIdentification
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images and 117 manual karyograms; the second dataset consists of 5.474 Q-band sin-

gle chromosome images; Pki-3 contains tiff-images of 612 human metaphase cells and

the associated karyograms using Giemsa staining; the Guangdong Women and Children

Hospital dataset contains tiff-images of 528 chromosome instances and 105 chromosome

clusters using Giemsa staining.

2.4 Data Augmentation

Data augmentation refers to a set of techniques used to manipulate and transform existing

data in order to artificially increase the number of samples in a dataset. The primary goal

of data augmentation is to improve the performance of deep learning models and prevent

overfitting. This procedure is commonly applied to image datasets, where it involves

using various methods such as geometric transformations, color space augmentations,

and random erasing [24].

The dataset described in Section 2.3 is relatively small and will bring to a not accurate

classification. In their work, Lin et al. [11] proposed a data augmentation algorithm called

CDA (Chromosome Data Augmentation), which generates additional data samples from

the original dataset: the algorithm introduces random variations in the position and

orientation of chromosomes within the images.

The key step of the CDA algorithm is to apply affine transformations to the original

chromosome images, which are grayscale. In computing, a grayscale image is represented

as a matrix of pixels. Its size is expressed as height and width, which are the number of

rows and columns of pixels, respectively. Affine transformations are commonly used on

such images to scale, rotate, or reflect them.

In the CDA algorithm, the images are rotated by a specific angle θ and then translated

by a randomly determined offset. Equation (2) formalizes the process:

x′ = A(θ)x+ b (2)

A(θ) =

[︄
cos(θ) −sin(θ)
sin(θ) cos(θ)

]︄
(3)

b =

[︄
roffset

coffset

]︄
(4)

In Equation (2), x denotes the original image; A(θ) is a rotation matrix formalized

in Equation (3); b is a translation vector formalized in Equation (4), where roffset and

coffset denote the pixel offset in rows and columns. x′ denotes the augmented image.

As said before, the translation offsets are randomly determined. It’s important to

choose them so the chromosomes are always within the boundaries of the images, or there

would be a loss of pixels. Therefore, we used the built-in MATLAB function regionprops,

which can return the position and the size of the smallest box containing the region, i.e.,
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the chromosome. Using this information, we can constrain the offsets to a specific range

so that shifting the chromosome horizontally or vertically ensures that it remains within

the image boundaries.

In some cases, multiple bounding boxes are returned for certain images in the dataset

due to the presence of artifacts such as non-black pixels outside the chromosome region.

To address this, we select only the largest bounding box from the set of bounding boxes,

as it corresponds to the rectangle that encloses the chromosome region.

The regionprops function requires a binary image that consists of pixels either 0

(black) or 1 (white). In the dataset used, common binarization techniques like Otsu’s

method did not yield satisfactory results. This is because some parts of the chromosome,

such as the bands, have similar shades of color to the black background, leading to loss

of chromosome borders as they are mistaken for the background. Therefore, we opted for

a simple binarization method where every pixel with a value greater than 0 is set to 1.

This approach separates the chromosome well from the background, coloring it white and

making it possible to apply the regionprops function (Figure 2 (b)). Note that if back-

ground pixel values are modified by other image processing techniques, this binarization

method may not be optimal. In such cases, alternative segmentation approaches may be

necessary.

(a) (b)

Figure 2: (a) Grayscale image of a type 8 chromosome and (b) its binary version,
including the chromosome bounding box.
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Algorithm 1 describes the data augmentation operation.

Algorithm 1 Chromosome Data Augmentation

Input: A chromosome image x

The chromosome label y corresponding to x
Output: The set of augmented images

1: augmented set← {}
2: for θ ← 15 to 345 step 15 do

3: xθ ← A(θ)x

4: xbw ← binarize xθ

5: bounding box← find largest chromosome bounding box using xbw

6: roffset ← calculate random vertical offset according to bounding box

7: coffset ← calculate random horizontal offset according to bounding box

8: b←

[︄
roffset

coffset

]︄
9: x′ ← xθ + b

10: augmented set← augmented set ∪ {(x′, y)}
11: end for

12: return augmented set

We apply Algorithm 1 for each image in the dataset and we generate a set composed

of original and augmented images.

As specified by Lin et al., we rotate each chromosome by 15 to 345 degrees in steps

of 15 degrees. Some examples are shown in Figure 3. As a result, each image generates

a total of 23 augmented images. The data augmentation is applied only to the training

images.

(a) (b) (c) (d)

Figure 3: Chromosome images rotated clockwise by (a) 60°, (b) 135°, (c) 240°,
(d) 330° and horizontally and vertically randomly shifted.

2.5 Straightening

The straightening procedure is a preprocessing step (i.e., something done before training

the neural network) aimed at removing the random curves and orientation of a chromo-

some by making it straight and vertical within the image. This allows the neural network

classifier to focus on other important features and refrain from learning to discriminate

based on curves and orientation, as seen in the CDA algorithm.
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We implemented in MATLAB a known straightening algorithm proposed in 2008 [12],

with improvements from a 2017 work [13], and some personal adaptations for improving

it.

The algorithm finds the bending centre of a curved chromosome, i.e., the point where

the latter is bent, and uses this information to straighten the chromosome. Here we

provide the description of the procedure.

2.5.1 Chromosome image binarization and bending centre locating

First, the chromosome grayscale image needs to be binarized. For the dataset in use,

we adopted the same binarization technique described in the data augmentation section,

so all the pixels greater than 0 are set to 1. The resulting binary image has a black

background and a white chromosome, as shown in Figure 4. Then, it is cropped to retain

only the chromosome.

(a) (b)

Figure 4: (a) Grayscale image of a type 5 chromosome and (b) its binary version.

Next, the algorithm calculates the horizontal projection vector of the binary image

by summing up the pixel values on each row. The horizontal projection contains the

morphological information of the chromosome. Analyzing its extrema, it is possible to

find the bending centre as explained below (to minimize the effects of small deflections on

the location of the extrema, we applied a Savitzky-Golay filter using the built-in MATLAB

function sgolayfilt, which smooths out the horizontal projection).

For a straight chromosome, the global minimum point in the horizontal projection

vector corresponds to the centromere, the thinner part of a chromosome [25]. This point

often corresponds to the bending centre of a curved chromosome. However, since the

horizontal projection vector is strongly dependent on the position of the chromosome and

its degree of bending, locating just the global minimum point would not be effective. To

overcome this, the algorithm rotates the binary image from 0° to 180° by steps of 10° and
analyzes the corresponding projection vectors. It is found that the actual bending centre

corresponds to the global minimum point between two locally global maxima with similar

amplitudes. Since there is a projection vector for each rotated image, the correct bending

centre is selected in the image that presents the minimum rotation score S, defined in

Equation (5):
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S = w1 ×R1 + w2 ×R2 (5)

R1 =
|P1 − P2|
P1 + P2

(6)

R2 =
P3

P1 + P2

(7)

In Equations (6) and (7), P1 and P2 represent the values of the two locally global

maxima, while P3 represents the value of the global minimum located between them. R1

describes the relation between the two maxima: if they have similar amplitudes, then

R1 will be smaller. R2 describes the relative amplitude of the global minimum between

the two maxima. In Equation (5), w1 and w2 are the tuning parameters whose selection

influences the location of the bending centre. The location of the global minimum point

P3 in the horizontal projection vector identifies the bending axis of the chromosome, i.e.,

a horizontal line which divides the chromosome into two arms; the outermost point of

intersection between the chromosome and the bending axis is the actual bending centre

of the chromosome. The opposite point, i.e., the last chromosome pixel along the same

bending axis with respect to the bending centre, we called unjoined point and will be used

in a further process. An idea of the process explained above is presented in Algorithm 2.

Algorithm 2 Rotation Score Calculation

Input: A chromosome grayscale image x and its binary version xbw
The tuning parameters w1, w2

Output: The rotated grayscale image x′

The rotated binary image x′bw
The index of the global minimum in the horizontal projection vector

1: S ← Inf
2: index← 0
3: θS ← 0
4: for θ ← 0 to 180 step 10 do
5: x′bw ← A(θ)xbw
6: horizontal projection← calculate the horizontal projection vector of x′bw
7: horizontal projection smoothed ← apply a Savitzky-Golay filter to

horizontal projection
8: P3 ← calculate the global minimum
9: P1, P2 ← calculate the two global maxima around P3

10: Sθ ← w1 ×R1 + w2 ×R2

11: if Sθ < S then
12: S ← Sθ

13: index← index of P3 inside horizontal projection smoothed
14: θS ← θ
15: end if
16: end for
17: x′ ← A(θS)x
18: x′bw ← A(θS)xbw
19: return x′, x′bw, index
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Figure 5 illustrates the smoothed horizontal projection, the corresponding bending

axis and the bending centre. The chromosome shown has been rotated counterclockwise

by 20°, which corresponds to the lowest rotation score S in this case.

Figure 5: From the left: type 5 chromosome image rotated counterclockwise by
20° (yellow line: bending axis; red circle: bending centre; green circle: unjoined
point), the corresponding smoothed horizontal projection (black circles: maxima
points; red circle: minimum point identifying the bending axis).

A point on the tuning parameters w1, w2 described in Equation 5: these weights affect

the performance of the straightening procedure; they can be chosen by visually analyzing

the bending axis in the chromosome images. We found that setting w1 to 0.67 and w2 to

0.33 produced good results.

2.5.2 Chromosome arms straightening and final image creation

The chromosome image is now divided along the bending axis into two sub-images, each

containing an arm of the chromosome (upper and lower). Both sub-images are rotated

from -90° to 90° by steps of 10° using a rotation matrix. For each rotation, the vertical

projection vector is calculated by summing up the pixel values on each column. The

vertical projection vector with minimum width is associated with the arm in a vertical

position within the image (see Algorithm 3). The coordinates of the bending centre and

the unjoined point in both sub-images are recalculated in the vertical image after the

rotation.

As can be seen in Algorithm 3, the operation is applied to both the binary image and

the grayscale image. The two sub-images are then cropped to retain only the chromosome

arms; this will be useful in the alignment procedure. Figure 6 shows the result.

Finally, the two arms must be aligned and connected. Thinking of the image pixels

to be in a Cartesian plane, with the origin in the upper left corner and the horizontal

axis toward the right, we compute the difference between the x-coordinate of the bending

centre in the upper and lower arm, resulting in a horizontal shift called shift x. Then,

we need to move to the right the image with the leftmost bending centre: to avoid losing

arm pixels, the selected image’s right border is padded with |shift x| black pixel columns

and it is moved by |shift x|. This ensures that the two arms are perfectly aligned along
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Algorithm 3 Chromosome Arm Straightening

Input: A chromosome arm grayscale image x and its binary version xbw
Output: The grayscale straightened arm x′

The binary straightened arm x′bw
1: width← Inf
2: α← 0
3: for θ ← −90 to 90 step 10 do
4: x′bw ← A(θ)xbw
5: vertical projection← calculate the vertical projection vector of x′bw
6: widthθ ← calculate the number of non-zero elements in vertical projection
7: if widthθ ¡ width then
8: width← widthθ
9: α← θ
10: end if
11: end for
12: x′ ← A(α)x
13: x′bw ← A(α)xbw
14: return x′, x′bw

(a) (b) (c) (d)

Figure 6: (a), (b) Straightened upper arm and (c), (d) lower arm. Red circle:
bending centre; green circle: unjoined point.

the x-coordinate of the bending centre. The coordinates of the points are then updated

to always refer to the same pixels.

Now, we can just copy all the pixels of the two sub-images in a new image that

corresponds to the straightened version of the original chromosome. Obviously, in the

upper part of the image there will be the upper arm, and in the lower part of the image

there will be the lower arm (Figure 7).

The last step of the algorithm, proposed by Sharma et al. [13], involves reconstructing

the area of the chromosome lost during the straightening. This is performed on the

grayscale image by connecting the unjoined points through a straight line and filling the

enclosed area with the mean value of the non-black pixels at the same horizontal level.

This reconstructs the missing part and preserves the horizontal bands of the chromosome.

However, this procedure doesn’t give optimal results with the binarization technique we

used: chromosome border pixels are dark but not completely black and therefore are

included in the binarization; when reconstructing the missing area, they lower the mean

resulting in an overall color that is darker than it should be; moreover, they result in a
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(a) (b)

Figure 7: (a) Binary and (b) grayscale image of the straightened chromosome.

non-homogeneous shade of color, as shown in Figure 8 (c). To produce a more uniform

color, each pixel value in the area enclosed by the bending centre points and the unjoined

points (upper and lower) is replaced with the mean of the surrounding non-black pixels

(using a radius of 1), resulting in a smoother color that still preserves the shade of the

chromosome bands (Figure 8 (b)).

(a) (b) (c)

Figure 8: (a) The straightened chromosome image with reference points (red and
green circles). (b) The corresponding filled version. (c) The same chromosome
but using the mean value of the non-black pixels to reconstruct the missing area.

Finally, the algorithm pads the borders of the straightened image with black pixels

to resize it to the same size as the original image, before returning it as the final output,

illustrated in Figure 9.

2.5.3 Algorithm improvements

The effectiveness of the straightening procedure can be enhanced by applying it only to

the bent chromosomes. Since the upright tightest fitting rectangle for a straight chromo-

some contains fewer black pixels compared to a bent one, it is possible to automatically

determine whether a chromosome is bent or straight. We applied this idea by manually
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Figure 9: The final straightened chromosome image.

selecting 1014 visibly straightest chromosomes from the original dataset of 2986 images,

i.e., those chromosomes with arms forming an angle of approximately 180°. Then, we

binarized each image and calculated the whiteness value W [13], defined as the ratio of

the sum of white pixels and the area of the tightest fitting rectangle of the chromosome.

The closer W is to 1, the straighter the chromosome is. We used the MATLAB function

regionprops to find the rectangle, i.e., the bounding box. We selected a whiteness thresh-

old WT of 0.667, meaning that only chromosomes with W < WT are considered bent and

therefore are sent for further straightening. Using this method, we identified 1472 bent

chromosomes from the original dataset.

To improve classification accuracy, we added some check conditions to the straight-

ening algorithm: not all bent chromosomes can be effectively straightened due to their

particular shapes and the effects of the weights w1 and w2 in Equation 5. In general, we

consider an effective straightening to be one in which the chromosome arms are vertical

and oriented correctly (i.e., not upside down). Thus, we check the relative location of

the bending center and the unjoined point in both the upper and lower arm images: if

these conditions are not met, the algorithm stops and returns the original chromosome

image. This approach avoids incorrectly straightening 447 chromosomes, resulting in a

more robust dataset composed of original and well-straightened images.

2.5.4 Additional tests

We evaluated the effectiveness of the proposed straightening technique by applying it to

some chromosome images from two different datasets [20, 22]. The first dataset contains

Q-band chromosome images with a black background, while the second contains G-band

chromosome images with a white background. As the binarization technique described

in the previous sections works better with black backgrounds, we modified it to handle

white backgrounds as well. We achieved this by computing the complement of the white

background image, which turns the background black. We apply the straightening pro-

cedure to this modified image and finally, we restore its original color by computing the

complement again. The straightening procedure worked well on the chromosome images

from both datasets, as shown in Figures 10 and 11.
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(a) (b) (c) (d) (e)

Figure 10: Type (a) 1, (b) 2, (c) 3, (d) 11, (e) 23 Q-band chromosome images
and their straightened version.

(a) (b) (c) (d) (e)

Figure 11: Type (a) 3, (b) 4, (c) 6, (d) 11, (e) 23 G-band chromosome images
and their straightened version.

2.6 Feature Transform-based techniques

To enhance the contrast, blur, and add noise to the chromosome images, three image

processing methods are utilized. These involve the use of a 2-D Fast Fourier Transform

(FFT) for the first two techniques and a 2-D Discrete Cosine Transform (DCT) for the

third one. For each image, three new images are created.

These techniques are applied to grayscale images. If necessary, input RGB images are

converted to grayscale and restored to RGB after processing. The methods are described

in the following steps:

I. First technique

1. Apply FFT to the grayscale chromosome image.

2. Shift the zero frequency component to the center of the frequency-domain.

3. Create a mask made of 1s with the same dimensions as the transformed and

frequency-shifted image; this will preserve only selected frequencies in step 7.

4. Create two 2-D grids to represent the x and y coordinates.
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5. Use the grids to compute the euclidean distance and get a colored distance

matrix R (see Figure 12).

6. Select a radius (threshold) r = 2 and set to zero the values of the mask inside

this radius using the values of distance matrix R as coordinates.

7. Apply the mask to the transformed image.

8. Apply the inverse Fourier Transform (iFFT) to get the blurred grayscale image,

visible in Figure 13 (b).

Figure 12: The distance matrix R.

II. Second technique

This technique is similar to the previous one, except that the zero frequency is not

shifted:

1. Apply FFT to the grayscale image.

2. Sort and store in an array the elements (IDs) of the transformed image by their

intensity values.

3. Select a value p = 0.5 that represents the percentage of points in the trans-

formed image that will be set to zero.

4. Randomize the IDs array and set a portion of the elements corresponding to

the selected percentage p to zero in the transformed image.

5. Apply the inverse Fourier Transform (iFFT) to recover the filtered grayscale

image. The result is shown in Figure 13 (c).

III. Third technique

This method uses the Discrete Cosine Transform (DCT) for image processing instead

of the Fourier Transform:

1. Convert the input RGB image to grayscale.

2. Apply the DCT to the grayscale image to obtain its frequency components.

3. Set to zero a low frequency range, which is a 10x10 square in this case.

4. Apply the inverse DCT (iDCT) to obtain the processed grayscale image (Figure

13 (d)).
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(a) (b) (c) (d)

Figure 13: (a) Type 6 chromosome image and the corresponding results after
applying (b) first technique, (c) second technique and (d) third technique.
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Chapter 3

Results

This section describes the evaluation metrics, the experiment settings and the experimen-

tal results on the methods presented.

3.1 Metrics

We evaluated the performance of the ResNet-50 using typical metrics: precision, recall,

accuracy, F1 score (F1), which can be compared to the ones obtained by other studies.

In the context of multi-class classification, precision is defined as Equation (8), recall as

Equation (9), accuracy as Equation (10), F1 as Equation (11).

precision =
1

M

M∑︂
i=1

TPi

TPi + FPi

(8)

recall =
1

M

M∑︂
i=1

TPi

TPi + FNi

(9)

accuracy =
1

N

M∑︂
i=1

TPi (10)

F1 =
1

M

M∑︂
i=1

2× TPi

2× TPi + FNi + FPi

(11)

In the above equations, TPi stands for True Positives, i.e., chromosomes of type i are

correctly classified as type i; FPi stands for False Positives, i.e., chromosomes of type i

are incorrectly classified as type j; FNi stands for False Negatives, i.e., chromosomes of

type i are incorrectly classified as type j (∀ i ̸= j). M is the number of chromosome types

and N is the number of chromosome images in the test set.
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3.2 Experiment settings

To classify the chromosomes, we utilized the ResNet-50 pre-trained on ImageNet. In line

with transfer learning, we fine-tuned the pre-trained network by replacing its last three

layers, responsible for image classification, with a fully connected layer, a softmax layer,

and a classification layer adapted to handle the number of chromosome classes. We trained

the ResNet-50 network with the following hyperparameters: mini-batch of 30, epochs of

20, and a learning rate of 0.001. The 5-fold cross-validation is used as a test protocol: so

we have five different training-test splits: for each split, 80% of the images belong to the

training set, 20% to the test set.

For a subset of tests, we also used SWIN; due to computational issues, we used only

a subset of the tests reported for ResNet-50.

3.3 Experimental results

This section presents the performance achieved by the ensemble proposed in our study

and those from some previous research, all tested on the same dataset with the same

testing protocol. The experimental results are presented in Table 3.1.

Table 3.1: Experimental results.

Method Precision Recall Accuracy F1

Vanilla-CNN [6] 0.8800 0.8600 0.8644 0.8700

SiameseNet [7] 0.8800 0.8700 0.8763 0.8700

CIR-Net [11] 0.9600 0.9600 0.9598 0.9600

ResNet-50

None(1) 0.8834 0.8767 0.8808 0.8775

None(10) 0.9246 0.9157 0.9216 0.9157

CDAst8(1) 0.9609 0.9524 0.9588 0.9547

CDAst3(1) 0.9706 0.9663 0.9715 0.9676

CDA(1) 0.9765 0.9743 0.9759 0.9749

CDA(10) 0.9822 0.9748 0.9812 0.9772

STR(10) 0.9834 0.9787 0.9822 0.9803

FT(10) 0.9846 0.9810 0.9836 0.9822

CDA(5) + STR(5) 0.9858 0.9814 0.9849 0.9831

CDA(3) + STR(3) + FT(3) 0.9864 0.9831 0.9856 0.9843

Swin

None(1) 0.9579 0.9502 0.9578 0.9523

CDA(1) 0.9886 0.9854 0.9886 0.9857

CDA(3) + STR(3) + FT(3) 0.9966 0.9963 0.9963 0.9964
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METHOD(n) means the use of a network ensemble; in particular, n stands for the

number of neural networks used. Their predictions are fused by sum rule, e.g. None(10)

means that we combine 10 networks trained using None, CDA(3) means that we combine

3 networks trained using CDA.

A(n)+B(n) means that we combine by sum rule the ensemble A(n) and B(n).

None refers to the use of a neural network without any data augmentation technique.

CDA is the Chromosome Data Augmentation algorithm detailed in Section 2.4; CDAstx(1)

means that we keep only one image for every x images created by CDA, so it is a subset

of CDA.

STR is the straightening procedure described in Section 2.5, using this approach

we apply straightening procedure to both training and test images, moreover, after the

straightening procedure we apply CDA to the training set; while FT refers to the use of

the Feature Transform-based techniques presented in Section 2.6, we apply this method

to one image out of every three images in the training set, adding the new images to the

original training set, then we apply CDA to the expanded training set.

Because of the computation time for SWIN, we run only a subset of the tests launched

for ResNet-50. From the results reported in Table 3.1 we can get the following conclusions:

• None(1) achieves significantly lower performance than the network trained using an

expanded training set. None(10) outperforms None(1), but its performance is not

comparable to that achieved by CDA(10). CDA(1) outperforms both CDAst8(1)

and CDAst3(1), it is clear that in this application data augmentation is a very

important step.

• CDA(10) clearly outperforms CDA(1).

• The best performance, considering a single data augmentation approach, is obtained

by STR(10).

• The CNN ensemble trained with different augmentation methods can outperform

each of its components, e.g., CDA(3) + STR(3) + FT(3) outperforms STR(10).

• The best result among CNN methods is obtained by CDA(3) + STR(3) + FT(3),

which achieved an accuracy of 98.56%.

• SWIN performs significantly better than ResNet-50, confirming the same conclu-

sions: the ensemble performs significantly better than the stand-alone network;

furthermore, we calculated the area under the ROC curve of the SWIN ensemble,

obtaining an excellent 0.9999.

We added the learning curve (see Figure 14) of the baseline network (i.e., without

data augmentation), which obtains zero loss error, so it perfectly classifies the training

after a few training epochs; clearly, the CNN is likely to overfit the training data, so it is

important to increase the size of the training ensemble to reduce the risk of overfitting.
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Figure 14: learning curve of a stand-alone ResNet-50.

The primary drawback of the suggested ensemble is the longer computation time it

requires. While the preprocessing methods are not computationally intensive, the main

computational demand lies in performing inferences with the set of CNNs. Nonetheless,

using a Titan RTX 24 GB, it is possible to classify using ResNet-50 a batch of one

thousand images in just 1.945 seconds (therefore, an ensemble of 10 ResNet-50 networks

can classify 100 images in ∼2 seconds). The data augmentation approaches and the

training of ResNet-50 are implemented in Matlab (we have used the 2023a version); for

SWIN we used the Python Timm library.

Finally, we should stress the main cons of using this data set as a benchmark, we have

no information about which karyotype a given image belongs to, so chromosome images

are randomly split in 5-fold cross-validation; a better testing protocol should be splitting

whole karyotypes between training and testing (i.e., a whole karyotype with all images in

the training or test set).
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Conclusions

In this study, we focused on automating the karyotyping procedure, specifically the clas-

sification of human chromosome images. We provided an overview of the context and an

in-depth analysis of three image processing and data augmentation techniques that we

adopted to achieve state-of-the-art performance:

• A data augmentation algorithm called CDA was used to generate additional samples

from the original dataset. This algorithm introduces different spatial orientations

to the chromosomes, effectively diversifying the training data.

• We implemented a straightening procedure that utilizes projection vectors to straighten

the chromosomes. This step removes curves from the subjects, allowing the neural

network to learn other important features.

• In the end, we employed three feature transform-based techniques to create more

images and alter their appearance through manipulations such as blur and contrast

adjustments. These techniques contributed to further enhancing the diversity and

variability of the training data.

To evaluate the effectiveness of our methods, we conducted experiments on a dataset

comprising 2986 human chromosome images. The dataset was used to create five folds

for training and testing purposes. Furthermore, we partially used two additional datasets

to evaluate the effectiveness of the straightening procedure.

For the classification, we utilized a ResNet-50/SWIN neural network combined with

an ensemble approach. This method allows for high accuracy and robust predictions,

resulting in state-of-the-art performance.

As future work, we plan to conduct tests on other datasets. The overall performance

could be improved by processing the unstraightened curved chromosomes; this can be

achieved by finding new tuning parameters or employing different algorithms. Further-

more, considering alternative neural network architectures or ensembles could further

improve performance.

25



26 Chapter 4. Conclusions

All the code was written in MATLAB or Pytorch, and it is freely available on GitHub

at https://github.com/MattiaDAngelo, ensuring accessibility for the research commu-

nity.

https://github.com/MattiaDAngelo
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