
MASTER THESIS

IN

CONTROL SYSTEM’S ENGINEERING

Machine Learning approaches for Anomaly Detection in Industrial
IoT scenarios

Author:

Enrico CONVENTO

Supervisor:

Prof. Gian Antonio SUSTO

Co-Supervisor:

PhD. Chiara MASIERO

ACADEMIC YEAR: 2022/2023
Oct 3, 2022

http://

Abstract of thesis entitled

Machine Learning approaches for Anomaly Detection
in Industrial IoT scenarios

Submitted by

Enrico CONVENTO

for the degree of Master in Control System Engineering

at The University of Padua

in September, 2022

Machine learning has become a part of our daily life and is commonly used
across a wide range of industries. These methodologies have been applied in count-
less areas of application and their use is in continuous expansion. In particular, these
approaches play a key role in enabling Industry 4.0 and IoT scenarios. However,
many of the algorithm results cannot be understood and explained in terms of how
and why a specific decision was made. With the advancement of machine learning
research, several techniques and approaches have emerged in recent years, but only
a few studies have been produced regarding the end-user perspective. Therefore,
the lack of interpretability in this technology is the biggest obstacle to the spread of
these applications. Anomaly detection is a large field of machine learning technol-
ogy that has enormous applicability in industrial scenarios. In fact, it is extremely
relevant for the purposes of quality monitoring, predictive prevention and much
more. Furthermore, the strength of this type of approach is that it can be imple-
mented without the need for tagged data and obviously in this type of framework,
where the data is often "dirty", it is very peculiar not to have labelled data. Obvi-
ously, this last application is also affected by the interpretability problem that the
whole family suffers from. This thesis describes the development of an anomaly
detection system that is interpretable, which therefore aims at alleviating the prob-
lems introduced above by trying to focus as much as possible on the perspective of
the end-user. The two main topics are anomaly detection on the one side and the
interpretability of the models on the other.

Machine Learning approaches for
Anomaly Detection in Industrial IoT

scenarios

by

Enrico CONVENTO

September, 2022

COPYRIGHT ©2020, BY ENRICO CONVENTO

ALL RIGHTS RESERVED.

iii

Contents

1 Introduction 1
1.1 Main Goals . 1
1.2 Real-world industrial case . 5

2 Data exploration and features engineering 7
2.1 Data acquisition and pre-processing 7

2.1.1 Machine System Health (MaSH) platform 7
2.1.2 Data store and management . 10
2.1.3 Raw data structure . 10
2.1.4 Data preparation . 12

2.2 Feature Engineering . 12
2.2.1 Alarms information section . 12
2.2.2 Machine states . 16
2.2.3 Machine states transitions . 18
2.2.4 Recipe/Format/Speed . 22
2.2.5 Visualization techniques . 23

2.3 Representations: featurized data . 27
2.3.1 Representations 1,2,3 . 28
2.3.2 Representation 4 . 29
2.3.3 Representation 5 . 31
2.3.4 Some considerations . 33

3 Anomaly Detection 35
3.1 Anomaly Detection: an overview . 35

Types of anomalies . 35
AD algorithms . 37

3.2 Computational Aspects . 40
3.3 The isolation paradigm . 41
3.4 Isolation Forest . 41

3.4.1 How it works? . 42
3.4.2 Background: the Isolation Forest formally 43
3.4.3 Results . 45
3.4.4 AD results and considerations 47

Different time resolutions . 50
Test on other machines . 52
Data quality lack . 54

3.5 HDBSCAN . 56
3.6 HDBSCAN: interpretability . 58

4 Interpretability 61
4.1 Interpretability in Machine Learning: a brief introduction 61
4.2 Methods . 63

4.2.1 AcME . 63
How it works ? . 64
AcME: Anomaly Detection interpretability tool 66

4.2.2 DIFFI . 70
4.3 Comparison: normalized counts and TF-IDF 72

5 Conclusion 77
5.1 Proposed interpretable anomaly detection system 77
5.2 Future research direction . 79

A Appendix 81
A.1 Anomaly detection results . 81

A.1.1 Normal points . 81
A.1.2 Anomaly points . 83

A.2 HDBSCAN interpretability results . 86
A.2.1 Medoids . 86
A.2.2 Curse of dimensionality handling 91

1

Chapter 1

Introduction

1.1 Main Goals

Data-driven techniques are gaining more and more ground becoming more
powerful and complex, capable of performing incredible tasks. On the other hand
the techniques that aim to interpreting and explaining the answers provided by
these models are scarce and act as a bottleneck to the increasingly vast adoption
in the industrial world of these techniques. The trend that is being observed is that
of a strong interest in what is defined as interpretable machine learning. This shifts
the focus on models that humans understand and trust and all those methodologies
that make a model verifiable and understandable.

The main topic of the thesis is related to the development of an anomaly detection

system based on alarm sequences that is simple, interpretable and also capable of providing

the reasons why a sequence is considered anomalous.

2 Chapter 1. Introduction

Anomaly detection is a subfield of machine learning that deals with the con-
cepts of normal and anomalous. Given a set of data-objects or patterns, two families
can be observed, the first, the majority one, takes into account the most frequent and
therefore more "normal" patterns, on the other hand, the minority ensemble, com-
posed by the data that deviate significantly from the rest of the objects is defined
as the set of outliers which leads to the concept of anomalous. This separation can
be directly perceivable at times or may require a model to find out the same. Re-
gardless of the means to understand the deviant behavior of the data objects, their
presence in the data has strong practical implications. Therefore, anomalous extrac-
tion/detection aims to discover such objects in the data. It is not possible to impose
a sharp mathematical definition on outliers, as detecting them is strongly linked to
the context and to the application itself. Because of the foregoing, the accurate and
efficient detection of outliers in a data set is always challenging. Accordingly, con-
sidering an adequate definition and developing an acceptable method that meets the
requirements are one of the main part that compose an outlier detection problem.

Given the above understanding, the outlier detection problem can be funda-
mentally defined as: given a set of data objects, finds a specific subset of objects that
are remarkably dissimilar, exceptional and inconsistent with regard to the rest data.

Outlier detection is interesting to many researchers as a data cleaning task,
prior research in this regard talks about the practical significance of the outlier phe-
nomenon in real-life scenarios. Similarly, the growing number of research works
being published on this research topic is a candid indicator of the importance asso-
ciated with this task in the fields of data science and data mining. In this regard, a
few of the recent applications involving outlier detection methods are the identifi-
cation of misinformation and misbehavior on the web (Kumar et al., 2018), anomaly
detection from system logs in complex computer systems (Ranga Suri, Murty M,
and Athithan, 2019), modeling antisocial behavior in online discussion communities
(Cheng, Danescu-Niculescu-Mizil, and Leskovec, 2021) , characterizing a malignant
tumor in medical images for diagnosis (Wei et al., 2018) and many others.

Over the years, outlier detection has emerged as a significant data mining task
due to the general perception that outliers represent evolving novel patterns in data.
With the widespread use of data mining techniques in various application domains,
many methods exist for detecting outliers that meet various application specifica-
tions requirements. Therefore, picking an adequate method becomes a challenge in

1.1. Main Goals 3

its own right as it decides the course of the detection process as well as the ultimate
outcome.

Aligning with the case of interest, it must be said that AD is mainly an unsu-
pervised learning task aimed at detecting anomalous behaviors with respect to data.
In particular, it has an important role in many applications thanks to the capability
of summarizing the status of a complex system or observed phenomenon with a
single indicator called anomaly score and thanks to the unsupervised nature of the
task that does not require human tagging.

Typically, traditional AD techniques as LOF (Breunig et al., 2000), ABOD (Kriegel,
Schubert, and Zimek, 2008), Isolation Forest (Liu, Ting, and Zhou, 2009) are being
preferred over solutions based on DNNs, this is empathized if a IoT scenario is con-
sidered.

In order to explain a bit about this last comparison DNNs in general suffer of
one main problems that is linked to the fact that those models and in particular the
training process associated depends on the complexity of the task, the dimension-
ality and the available computational power. While "classical" machine learning
algorithms typically avoid these issues thanks to their structure and internal logic
which make them more efficient models. The Isolation Forest is one of the most
commonly adopted algorithms in the field of Anomaly Detection, due to its proven
effectiveness and low computational complexity. Some example can be observed in
Togbe et al., 2020, Chun-Hui et al., 2018 or Karev, McCubbin, and Vaulin, 2017.

Figure 1.1

As said previously, one major drawback affecting Isolation Forest and other
models used to perform anomaly detection is represented by the lack of interpretabil-
ity.

4 Chapter 1. Introduction

So if a macro theme is related to AD, the other one is linked to the interpretabil-
ity. This term can sound a little bit hazy, a non-mathematical definition of inter-
pretability can define it as “the ability to explain or to present in understandable
terms to a human” (Doshi-Velez and Kim, 2017). But why is it required to have this
property of interpretability? The problem is linked to the fact that while AD algo-
rithms have proven to be extremely useful and effective, the adoption of the latter is
very far from being an everyday thing in the industry.

This is actually a problem that goes to the root of every technology associated
with Machine Learning for decades. Choosing a model that was transparent to hu-
man practitioners or consumers often meant choosing straightforward data sources
and simpler model forms such as linear models, single decision trees, or business
rule systems. Although these simpler approaches were often adequate choices, and
still are today, they can fail in real-world scenarios when the underlying modelled
phenomena are nonlinear, rare or faint. On the other hand, highly effective models
are often black-box, i.e., it is hard to explain their predictions. However, the lack of
interpretability often hurdles the adoption of Machine Learning in practice.

The interpretability of the model attempts to fill this void by providing meth-
ods, even simple ones, that attempt to provide a machine-human connection (Ranga
Suri, Murty M, and Athithan, 2019; Hall and Gill, 2019).

1.2. Real-world industrial case 5

1.2 Real-world industrial case

The ultimate goal of the thesis, as previously anticipated, is interspersed with a real-
world case study. The interpretable AD system was developed for filling machines
produced by Galdi1. Galdi is a company located near Treviso that deals with the
design and development of automatic filling machines, paying maximum attention
to food safety and the repeatability of the performance of their machines over time.

The company offers different solutions and different products that go to cover a
large area of the market, from the packaging of milk, eggs, fresh products and much
more. The two main characteristics of Galdi are the customer-centered approach
and continuous improvement due to continuous experimentation that allows Galdi
to constantly expand the resources made available to the customer, in order to ac-
company him towards solutions capable of generating greater value, both in terms
of before and after sales. These solid foundations make the company not only a
partner of the world’s largest producers of liquid foodstuffs, but also a strong sup-
port for small farmers who want to package their products or discover new market
niches.

Motivated by the real-world industrial case, not only does the thesis deal AD
and ML interpretability, but also with issues related to the productive deployment of
ML solutions, ranging from the treatment of the raw data to the interaction with the
end users. The latter is crucial for the design of useful tools to help the operators in
managing the whole productive process in a symbiotic way with the filling machine.

1https://www.galdi.it/

7

Chapter 2

Data exploration and features
engineering

This chapter explains the data acquisition processes, the storage, the explo-
ration, the subsequent pre-processing to ensure that the data can be handled com-
fortably and then finally the feature extraction part. All of this refer to the features
engineering process, namely the process of using domain knowledge to select and
transform the most relevant variables from raw data when creating a predictive
model using machine learning or statistical modeling. The goal of feature engineer-
ing and selection is to improve the performance of machine learning algorithms.

2.1 Data acquisition and pre-processing

2.1.1 Machine System Health (MaSH) platform

The most complex part associated with data acquisition is carried by the Machine
System Health (MaSH) platform.

The monitoring of filling machines is one of the fundamental components to
enable constant reliability of the machines and compliance with production objec-
tives. In order to explain this, it is interesting to bring some estimates to understand

8 Chapter 2. Data exploration and features engineering

the importance of the monitoring of these machines, considering the current market
situation. Referring to the field of filling machines, we speak of average production
when around 7 million cartons/year are produced. This leads to the need to plan
packaging and delivery in a precise and reliable way. Obviously, if this happens
for a medium-small company, in the case of large food producers things get more
complex, production times become even more tight and thus a machine downtime
can represent a considerable economic and image damage.

To address this challenge, Galdi has developed a filling machine monitoring
system called MaSH ("Machine System Health")1, created with the aim of:

• Offering a detailed view of the efficiency of the machine

• Anticipating and prevent downtime

• Providing detailed production data

• Improving the work of operators and maintenance workers

HOW MASH WORKS MaSH is an in-house developed IoT system that monitors
the efficiency of filling machines by controlling a sensor system that provides data
for each part of the machine. The system synthesizes the production data of the ma-
chine(s) and translates them into a language useful for those who work on the ma-
chine by passing through a cloud platform. The system was developed in order to

1https://youtu.be/7xZ1X23KW6Q

2.1. Data acquisition and pre-processing 9

adapt to the needs of production managers, maintenance workers or generic opera-
tors even with little domain experience by selecting the most relevant and functional
information for their work.

To facilitate even more the use of MaSH in everyday life, the system is:

• equipped with a user-friendly interface

• securely accessible from any device: PC, smartphone, tablet

• integrated with management systems (ERP, MES, PLMS, CRM)

The MaSH system has been expressly designed to simplify the work of:

• OPERATORS

The great news introduced by the MaSH is linked to the possibility of antici-
pating the downtime of the filling machines, signaling any malfunctions even
before the operator can warn them. At the operator level it is very difficult to
filter the information provided by the machine as the quantity of alarms re-
ceived is enormous and this often leads to the use of a ’if it works then do not
touch’ policy with the consequence that the problem is reported when it is too
late. With MaSH, on the other hand, the system itself selects and communi-
cates the anomalies of the packaging machine.

• MAINTENANCE WORKERS

To reduce machine downtime and in particular Mean Time Through Repair
(MTTR), the maintenance technician must be able to identify the cause of the
possible malfunction of the filler in the shortest possible time. To facilitate the
resolution of the problems of the most complex cases, MaSH gives access to
the alarm history, highlighting the recurring ones.

As mentioned, however, the system is designed precisely to prevent problems
with the filler: if the sensors signal a repetitive alarm or a drop in performance
in a certain area from the filler monitoring analysis in real time, MaSH sends
a push notification to the maintenance technician allowing it to carry out the
necessary checks before a problem occurs.

• REMOTE SUPPORT

Having machines scattered around the world, certain cases must be solved
remotely as some manufacturers cannot afford lasting stops. In cases where

10 Chapter 2. Data exploration and features engineering

Help Desk support is required, MaSH helps to significantly speed up the work
of technicians, both in terms of problem solving and resolution.

2.1.2 Data store and management

From the sensors, through the MaSH the management of data is done via Influx DB.
Influx DB is an open source time series database written in Go language which is de-
veloped by InfluxData. It is optimized for high-availability, faster retrieval of data,
and storage of time series data in fields such as operations monitoring, application
metrics, IoT sensor data and real-time analytics. InfluxDB is purpose-built for time
series data. Relational databases can handle time series data, but are not optimized
for common time series workloads. InfluxDB is designed to store large volumes of
time series data and quickly perform real-time analysis on it.

So, to summarize, the huge amount of data produced by the machine is saved
in a database managed by Influx DB. At this point, the data is ready to be recovered
and used.

2.1.3 Raw data structure

Figure 2.1: Table 1 structure example

The data used to build the AD system is downloaded from two tables, each of them
conveys different information.

The two tables have different structures due to the different aims for which they
are used. The first table keeps track of the alarms that have triggered associated

2.1. Data acquisition and pre-processing 11

with timestamps and other information including the serial number of the machine
in question and other fields associated to the recipe, the format or the speed. In
the Active Stop Reason (ASR) field there are the IDs of the alarms that have caused
a problem to the machine, each alarm has a meaning and it is associated with a
macro zone of the machine such as the transfer chain or some photocell. In Fig.2.1
an example of the appearance of the table is shown. The second table carries differ-
ent information, in particular the part that is taken into consideration concerns the
production states of the machine. Basically, this table describes the status changes,
pointing out the type of state, the alarms that made the machine switch to a different
state and the amount of time that the machine remained in this state. The available
states are described in the following table.

State Meaning
idle the machine is inactive waiting for new instructions

production the machine is working
downtime the machine is stopped by some non planned event

scheduled downtime the machine is stopped due to a planned event, for example
cleaning

performance loss scheduled or unscheduled times, e.g. due to start-up or
emptying times or supply of processing materials

In Fig.2.2 an example of the appearance of the table is shown.

Figure 2.2: Table 2 structure example

12 Chapter 2. Data exploration and features engineering

2.1.4 Data preparation

Before extracting the features from the data, the latter need to be processed. The
acquired data are made up of alarm sequences associated with the instant in time
when the alarm was triggered. Since it is not the single alarm that carries the whole
information but the sequence of alarms or conditions that carry information, what
is done is to break up the data into sequences of variable length, for example 2H,
4H, ..., 1D, obtaining a representation in which the various information are grouped
in the time window they belong to. In such a way, information about the content of
the series is stored in those sequences. This allows also to have different observation
points on the data, from a vision linked to the particular to a more global vision,
alleviating the sparsity and providing a more general perspective. Obviously going
up with the dimension of the time window will require more data. Consider 24H
of available data: if the splitting is performed per hour, then the result is about 24
sequences. On the other hand, if the chosen time window is daily only one sequence
is obtained, the example shown is very simple but makes the substance understand
well. Based on this representation, it is possible to extract the features.

2.2 Feature Engineering

Feature engineering is the automatic creation of new variables by extracting them
from the raw data. The purpose of this step is to automatically reduce the data
volume to a more manageable set for modeling. In the following sections, an expla-
nation of the techniques used to extract the feature and what kind of information
they carry in will be provided.

2.2.1 Alarms information section

Some methods of feature engineering include cluster analysis (Caruso et al., 2018),
text analysis, edge detection algorithms (Katiyar and Arun, 2014) and principal com-
ponent analysis (Shalev-Shwartz and Ben-David, 2014).

The approach used to extract features from the data draws inspiration from the
Natural Language Processing (NLP)(Manning and Schütze, 1999), in a nutshell all
the methods that embed ML and linguistics to understand how a language work, so
it could be seen as a statistical approach to the language analysis. The applications

2.2. Feature Engineering 13

associated with this tool are infinite and range from machine translation to senti-
ment analysis, but focusing in the case in question the main usage is to structure
data, transform unstructured text into normalized, structured data suitable for anal-
ysis or to drive machine learning algorithms. In our case, the techniques used refer
to the Bag-of-Words technique (Qader, M. Ameen, and Ahmed, 2019), an approach
for natural language processing that extracts the words (features) used in a sen-
tence, document, website, etc. and represents them by frequency of use and other
heuristics. To do this sklearn.feature_extraction.text provide CountVectorized and Tfid-

fVectorizer. CountVectorized implements a very simple mechanism, that is tokenizing
of the document provided, in which the document is the set of grouped alarms code,
and count the words’ occurrences, in which the "words" in this case are represented
by the alarm IDs, by doing so, a matrix of counts is obtained. The matrix of counts
is a matrix in which the columns are associated with the alarm IDs, the rows are
divided by time bands and in them there are the counts associated with the alarms,
an example of this and the overall process can be observed in Fig. 2.3.

Figure 2.3: Counts visualization example

A common problem seen when extracting features from text, is the problem

14 Chapter 2. Data exploration and features engineering

of "stop words" or words that appear frequently in the text and are uninformative,
for example, in English, “the”, “is” and “and”, would easily qualify as stop words.
This is even more emphasized in AD, as the anomalies can be seen as very peculiar
and rare sequences, so surely eliminating the redundancy will help to be more ef-
fective. For this the second approach, a common choice is to use TfidfVectorizer. It is
associated with TF-IDF technique, which abbreviation stands for Term Frequency -
Inverse Document Frequency, which is a way to attribute the importance of a word
in the text by referring to the entire collection of documents. Given a token t its
TF-IDF attribute is:

t f � id f (t) = t f (t, d) x id f (t) (2.1)

Where d is the document that is taken into account of which t belongs. The term
frequency is given by:

t f (t, d) =
Number o f occurences o f word t in document d

Number o f words in document d
(2.2)

which basically is a normalized count of the number of occurrences of t in a given
document. While the id f term is given by:

id f (t) = log
Number o f documents

Number o f documents with word t
(2.3)

With the inclusion of this term, a word will not get an “inflated” rating if it is present
in many documents. In conclusion, these types of techniques are capable of provid-
ing a lot of information about the words present in documents, but like everything
that is enjoyable, they also have downsides. First, no attention is paid to the sequen-
tial order of words in the text, this alone leads to the loss of context after the text has
been vectorized. Secondly, the semantic values of words are not taken into account,
each word is assumed to be independent of all others. Furthermore, as regards TF-
IDF, the calculation of the term idf is computationally expensive especially if we go
into the specific case of the alarm sequences in question as the amount of data is
not small and if it is thought from a dynamic perspective, then this inconvenience
becomes even worse.

2.2. Feature Engineering 15

Figure 2.4: Normalized counts visualization example

A trade-off between simple counts and TF-IDF, can be achieved by construct-
ing “normalized” counts. The basic idea is very naive and simple, consider a row
of the dataset, in a NLP perspective the “document”, transformed through simple
counts. At this point, take the values of the non-zero counts and add them together,
then divide the simple count associated with each alarm or word by the value of
the cumulative sum obtaining the normalized count, the process can be visualized
in Fig. 2.4. In conclusion, this representation uncovers a middle ground between
simple counts and the TF-IDF, since it is not exactly a count because there is this
"normalization" but that normalization process is more soft w.r.t TF-IDF in which it
is done considering the whole corpus of documents, while in the normalized counts
framework it is done considering only the current document.

In Fig. 2.5 it is possible to observe the result of the application of one of these
techniques in which, summarizing, each document which coincides with the set of
alarms that are triggered in the same time window, is “compressed” and represented
in features. The display has been enriched by explicitly adding counts and meanings
associated with the alarms to try to obtain something that can be easily interpreted
by the operators. The description of the alarms in the image has been obscured for
confidentiality reasons.

Figure 2.5: Alarms representation example

16 Chapter 2. Data exploration and features engineering

2.2.2 Machine states

As introduced above, beyond alarms, the second kind of information is associated
to the production intervals. The access to this further information allows to build a
more informative representation, enriching it with information that are quite differ-
ent from the previous ones but that are able to describe well the machine behavior.
Fig. 2.6 shows the average statistics about those production intervals. This is a good
way to describe the “average” behavior of the machine, for example it is shown
that the machine spends most of its time in production, downtime intervals cover a
smaller section, as follows from intuition. Anomalous sequences can have a struc-
ture that deviates significantly from this average scheme. For example, anomalous
sequences could be linked to strong variations of this basic structure such as equal
distributed states, namely a chart in which each state covers an equal area.

Figure 2.6: Time window composition over the whole dataset

Then putting the puzzle of concepts backs together, the first piece of informa-
tion that is interesting to deal with is associated with the time a machine remain in
a certain productive state. For example, considering a fixed time window, it is use-
ful to know how long the machine has been in production or in some other state.
To unify the representation, the result is not described in minutes or seconds but in
percentages, to provide information on the composition of the time window without
being linked to the size of the considered window.

2.2. Feature Engineering 17

To this it is also added a second piece of information, i.e., the knowledge of
how many times the machine changes state within the time window, because as
mentioned it is interesting to observe the composition of the time slot taken, but
not only that. A very important case that refers to this, which was provided by
domain experts, is the case where the machine stops many times but for a very short
duration. This is certainly an unwanted phenomenon and entering the number of
times the machine passes from one state to another can address the machine learning
algorithm to understand these kinds of situations. An example of the representation
that can be obtained is shown in Fig. 2.7.

Figure 2.7: Time windows composition representation example

The representation is composed by two sections, the red colored section repre-
sent the time window composition, while the green bar is linked to the "#changes"
features, namely it describes the number of times the machine change its state.

18 Chapter 2. Data exploration and features engineering

2.2.3 Machine states transitions

Figure 2.8: Machine state changes

The previous section explains how and why the information related to the com-
position of the time window is treated, however, the composition is not the only
important information, other knowledge can be provided to Machine Learning al-
gorithms to provide different concepts. As already introduced in the last part of the
last section, the number of times the machine changes state is an informative fea-
ture. The idea is to break into pieces this information in order to obtain a more clear
representation. To explain better, looking at the pie chart that takes into account the
average machine behavior in Fig. 2.6, the only information that can be extracted is
about the time window composition, all the information about the transitions from
one state to the other are lost. In Fig. 2.8 is show as a histogram the term “#changes”
as defined in the previous section but splitting the information referring to the type
of change, for example, if an alarm has altered the machine state to idle then the
type change is so labeled as idle. This type of visualization is very powerful because
it shows the same things of the previous section from a different point of view, fo-
cusing on “frequency” and not on “composition”, so for example, one thing that can
be noticed looking at the histogram is that the downtime bin is quite high, so this
means that a lot of changes leads to downtime, and this cannot be observed in Fig.

2.2. Feature Engineering 19

2.6 where the only insight about downtime is that it covers a small portion of the
overall time window.

(a) State composition (b) Changes comparison

Figure 2.9: Scenarios comparison

So with the same overall duration, it is interesting to understand how many
“interruptions” of the different types there have been. Let’s focus on an explanatory
example, consider two different time windows, both share the same time composi-
tion and the productive states are two, for simplicity. The time window composition
shared by the two scenarios is shown in Fig. 2.9(a). The number of changes of state
in the two cases considered is shown in Fig. 2.9(b). Notice that while in the first case
there was only two change of state, approximately the machine start in production
that move in downtime and then once the problem is solved, again in production,
in the second there were many more changes, the situation described before is re-
peated multiple times.

20 Chapter 2. Data exploration and features engineering

Figure 2.10: Example visualization

This simplified example helps to point out that also the frequency of the change
of state must be taken into consideration because having a machine that, as in the
second case, changes state many times hopping from one state to another is certainly
not efficient, or it can be a sign that the machine needs a maintenance check. The
two scenarios can be observed in Fig. 2.10.

Figure 2.11: Transitions visualizations

To add further information it is interesting to observe not only where the alarm
led but also what state it came from, for example there are situations in which there

2.2. Feature Engineering 21

are many changes, but they are between a state and itself for which they are not so
relevant, this kind of changes depends on the data communication system, while
there exists other cases in which the machine moved from one state to an other,
in this case the information can be useful to debug the behavior of the machine.
Substantially one dimension is added to the histogram of before, in such a way not
only the "next" can be observed but also the "previous", an example can be observed
in Fig. 2.11 where we can see the counts of the type of changes in a heatmap. To help
visualize and handle the data, the counts used are normalized by the total number
of changes in the time window. An example of what can be done connecting the
dots can be observed in Fig. 2.12 where the heatmap of before is flattened and plot
as a bar plot, also here a representation in percentages is used for convenience and
because it is better in transmitting the result.

Figure 2.12: Transitions representation example

22 Chapter 2. Data exploration and features engineering

2.2.4 Recipe/Format/Speed

Since this is an unsupervised scenario, as already mentioned above, the creation
of a representation is not scheduled but there is a need to combine various pieces
and the results often turn out to be inconclusive, although the basic ideas may seem
interesting. In this regard, other information has been added to the representation
as the type of recipe, the format used and also the working speed of the machine. At
first sight this is interesting information to deal with. For example, a recipe may be
more difficult than others to make and therefore it may lead to anomalous behaviors
with higher probability, or a similar thing can happen if the production speed is very
high.

(a) UMAP visualization (b) Histogram counts

Figure 2.13: Recipe

However, discussing the results with domain experts, it turned out that none of
this information leads to useful results, i.e., no interesting pattern was detected. The
main causes attributed to this are associated to the fact that these quantities cannot
easily blended with the rest of the information and the fact that there is not enough
variability. This is highlighted in Fig. 2.13(a) and Fig. 2.14(a).a where the UMAP rep-
resentation of alarms plus the recipe and format information respectively does not
lead to the creation of interesting structures, and most of all it can be observed that
the machine task is modified very rarely. In Fig. 2.13(b) and Fig. 2.14(b) are shown
the number of different recipes or formats counting the number of the changes in a
time window of two hours. As it can be observed, typically things does not change
a lot in the time windows. As said, this does not carry a lot of information, unless
the time window to be considered is greatly enlarged.

2.2. Feature Engineering 23

Therefore, although this information is interesting, their use is not very useful
or in any case it requires some precautions such as the amount of data that would
make their use more valuable. This goes to highlight that finding ourselves in a real
case not every strategy can be applied and this is not a problem linked only to the
type of strategy but also to the trade-off made between effort and results.

(a) UMAP visualization (b) Histogram counts

Figure 2.14: Volume

2.2.5 Visualization techniques

Dimensionality reduction is a powerful tool to visualize and understand large, high
dimensional datasets. For the development of the AD system mainly two differ-
ent techniques were used, namely PCA and UMAP, in the next paragraphs a brief
introduction of the two techniques will be made.

PCA Principal component analysis (PCA) (Shalev-Shwartz and Ben-David, 2014)
is the process of extracting principal components and use them to obtain a "com-
pressed" representation of the data, what is typically done is to use the first principal
components and ignore the rest, for example in order to visualize some high dimen-
sionality data only 2 or 3 dimension are kept. In PCA, the reduction is performed
by applying a simple linear transformation to the original data. Assume the original
data is in Rd and we want to embed it into Rn(n < d) then we would like to find
a matrix W 2 Rn,d that induces the mapping x 7! Wx. Typically, this is achieved
by performing Singular Value Decomposition (SVD), since it can be shown that the
principal components are eigenvectors of the data’s covariance matrix ordered by
the eigenvalues magnitude. The n principal component are then the fist n eigen-
vectors which describe the direction in which data spread more, so what is done is

24 Chapter 2. Data exploration and features engineering

Figure 2.15: PCA visualization

to project the data exploiting the information contained in the eigenvectors. PCA
tries to preserve the global structure of data, when converting a high dimensional
data to a smaller one exploiting the information about the principal components it
preserves the global structure, but all the clusters are typically mapped as a whole,
due to this local structures might get lost. In conclusion, strengths of PCA are due to
the fact that PCA performs a linear transformation so it admits perfect recovery, it is
computationally inexpensive and it creates new axes that are directly interpretable
in terms of the original variables. On the other hand, the weakness of PCA are re-
lated to the simplicity of such technique, mapping from an high dimensional space
to a low dimensional one some times cannot be done by linear methods.

UMAP Sometimes the information contained in a set of variables can’t be ex-
tracted as a linear combination of these variables. In such situations, there are
a number of nonlinear dimension-reduction algorithms we can turn to, such as
t-Distributed Stochastic Neighbor Embedding (t-SNE)(Maaten and Hinton, 2008) and
Uniform Manifold Approximation and Projection (UMAP) (McInnes, Healy, and Melville,
2018). In brief, t-SNE is one of the most popular nonlinear dimension-reduction al-
gorithms. It measures the distance between each observation in the dataset and ev-
ery other observation, then randomizes the observations across (usually) two new
axes. The observations are then iteratively shuffled around these new axes until
their distances to each other in this low-dimensional space are as similar to the dis-
tances in the original high-dimensional space as possible. UMAP is another nonlin-
ear dimension-reduction algorithm that overcomes some of the limitations of t-SNE.
It works similarly to t-SNE (finds distances in a feature space with many variables
and then tries to reproduce these distances in low-dimensional space) but differs in
the way it measures distances.

2.2. Feature Engineering 25

UMAP is state of the art, having only been published in 2018 from McInnes
et al, it has a few benefits over the t-SNE algorithm. First, it’s considerably faster
than t-SNE, where the duration it takes to run increases less than the square of the
number of cases in the dataset. To put this in perspective, a dataset that might take t-
SNE hours to compress will take UMAP minutes. The second benefit is that UMAP
preserves both local and global structure, taking proper precautions.

So how does UMAP work? Well, UMAP assumes the data is distributed along
a manifold. A manifold is an n-dimensional smooth geometric shape where, for ev-
ery point on this manifold, there exists a small neighborhood around that point
that looks like a flat two-dimensional plane. In the simplest sense, UMAP con-
structs a high dimensional graph representation of the data then optimizes a low-
dimensional graph to be as structurally similar as possible.

Without delving into the theory related to the two algorithms, we note that the
biggest difference between the output of UMAP and t-SNE is this balance between
local and global structure: UMAP is often better at preserving the global structure in
the final projection. This means that inter-cluster relationships are potentially more
significant than in t-SNE. However, it is important to note that since UMAP and t-
SNE both necessarily deform the high dimensional shape of the data when projected
to smaller dimensions, any axis or distance in smaller dimensions is still not directly
interpretable in the way of techniques such as PCA. For this reason, treating the
UMAP representation with techniques that use distances, e.g. clustering with k-
means, could give misleading results if the representation is not done properly.

Although both UMAP and t-SNE produce somewhat similar results, the higher
speed, better preservation of the overall structure and more understandable param-
eters make UMAP a more effective tool for visualizing high-dimensional data es-
pecially in practice. Some results of the application of UMAP can be observed in
(Becht et al., 2018), the article contains a very thorough comparison between UMAP
and t-SNE which is performed on real data.

26 Chapter 2. Data exploration and features engineering

Figure 2.16: Visualization comparison

In practice, both PCA and UMAP tend to be used because while one gives us a
global perspective, the other maintains the local structure. Furthermore, techniques
such as t-SNE and UMAP are robust to outliers so in the case in question their use
is very useful. It can be observed in Fig. 2.16 what has been said, in particular as
regards the local structure of the graph.

Figure 2.17: Visualization comparison

As in everyday situations it is important to evaluate from different points of
view to extrapolate information that we may not be able to grasp directly, so using

2.3. Representations: featurized data 27

PCA and UMAP at the same time can help, especially during the data preparation
phase. The ability of UMAP to preserve the local structure of the clusters has made
us pay attention to the dense area that can be seen in Fig. 2.16. Notice that the PCA
visualization does not highlight any conglomeration of points. From a posteriori
analyses it was noted that this area is associated with sequences that are not very
informative, in particular these sequences contain only alarms with id "0", these
alarms indicate a reset of the machine from which we can also deduce why the
large number, however these sequences are useless in an AD scenario. This made
it possible to remove and further clean up the data obtaining a representation like
the one in Fig. 2.17 which is much clearer and furthermore this helps the machine
learning algorithm as it provides better data.

2.3 Representations: featurized data

The application of techniques related to ML in a real problem suffers from many
problems, and most of them are related to data and in particular to the quality and
the information content that the latter has. Often, when it comes to ML, it is thought
that the central part of the work is the modeling part. Usually, this part represents
a minimum percentage of the whole process, whereas the central part of a ML so-
lution is the data processing, because the performance of a ML solution is limited
by the quality of the training data. So the process that leads to the creation of a
representation that is representative enough, that has no informational biases is not
simple and can be said to be the most critical part of the design and this is even
more important in an unsupervised scenario. In this section, we want to highlight
the whole process that led to the creation of a representation that seems to have
some positive results. The representations that have been created are five, which are
outlined in the following table.

Representation Contents
1 counts
2 normalized counts
3 TF-IDF
4 counts/normalized counts/TF-IDF + machine state
5 counts/normalized counts/TF-IDF + machine state + state transitions

28 Chapter 2. Data exploration and features engineering

2.3.1 Representations 1,2,3

This section explains how the first three representations are made, the considera-
tions made for them are grouped into a single section since although the methods
exploited for their realization are slightly different, they should, in theory, carry the
same information. The information packed in them refers to the alarms part which
is the central and most informative part for the end user, so the first representa-
tions start from these basic and fundamental data. The extraction of the features
takes place as described in Sec. 2.2.1, respectively using simple counts, normalized
counts and TF-IDF.

Figure 2.18: PCA comparison

In Fig. 2.18 the three representations can be compared using PCA which gives
us a representation that is very reliable on a global level as PCA in a nutshell elimi-
nates the "non-principal" dimensions. At first analysis, it immediately appears that
representations 2 and 3 are very similar and differ a little with respect to 1. Given
the problem unsupervised nature, the deductions made largely refer to the theory
because it is not easy to understand what is right and what is not. From a theo-
retical point of view TF-IDF certainly provides us with a solution more robust than
the other two cases which, however, should not be neglected because on a practical
level they are much more efficient and simply achievable. Already at this level of
information it seems that representation 2 and 3 are very similar.

2.3. Representations: featurized data 29

Figure 2.19: UMAP comparison

In Fig. 2.19 the three representations can be compared via UMAP. This type
of visualization provides us with some more insight at the local level, since UMAP
can be tuned to be more focused on a global or local vision. In this case, noticing
differences or similarities between the three representations requires a little more
attention, however due to the bias of the previous analysis, it seems also here that
the representations based on normalized counts and TF-IDF have some similarity as
in the previous case. Here, unlike PCA, the structure at a local level is a little more
emphasized, in fact clusters formations can be immediately noticed.

2.3.2 Representation 4

Figure 2.20: Representation 4 scheme

30 Chapter 2. Data exploration and features engineering

The representation illustrated in this section is composed of two parts, it can be seen
as a more general extension of the previous ones. The first part of the representation
is realized as one of the representations 1/2/3, than only one of these will be used,
further consideration will be make in the following about this topic.

The second part is carried out using the information from the time window
composition as described in Sec.2.2.2, the data of these two blocks are intertwined
using the date and time information, in Fig. 2.21 a PCA and UMAP visualization
is available, in particular the representation make use of TF-IDF for the reasons al-
ready mentioned above. Summarizing the union of the two different information
leads to a representation that follows a diagram as in Fig. 2.20 which combines the
information of the alarms to that of the state of the machine. This allows to have
a representation that is able to better describe the link between an alarm and the
time window state composition. Where to be a little more explicit, the part of ma-
chine states is made up of the percentage in which the machine remains in a certain
production state, the available states are listed in table in Sec. 2.1.3

Figure 2.21: Representation 4

The insertion of the information relating to the state of the machine makes the
UMAP and PCA visualization, observable in Fig. 2.20, vary considerably from what
has been seen in the previous paragraph. In detail, it is observed how the data give
rise to more clusters, indicating that similar situations exist, patterns that resemble

2.3. Representations: featurized data 31

each other, unlike what happened in previous representations in which the graphi-
cal visualization was more scattered. It is important to keep in mind that the visu-
alization is in any case the result of a reduction in dimensionality which therefore
contains approximations, but it is important to make all the necessary considera-
tions to try to help the intuition to draw some insight that could prove useful for the
purpose of the analysis.

2.3.3 Representation 5

Figure 2.22: Representation 5 scheme

The last representation tries to condense even more information trying to help even
more the algorithm and the user, it comes up as a result of the comparison with
operators and domain experts regarding representation 4 and it tries to encapsulate
all the information useful for monitoring the behavior of the machine. Representa-
tion 5 is made up of three basic sections, the first created from the table with alarm
information, while the other two sections related to information from the produc-
tive intervals table. So here too, we find an extension of representation 4 to which
information relating to state transitions is added.

Recall from Sec. 2.2.3 that the state transitions part describes all transitions that
occur from one state to another, keeping track of the number of changes and labeling
them using the previous and next state. As already mentioned in the Sec. 2.2.2, the
“#changes” field has a considerable weight on the final result, so as consequence the
block associated to state transitions is added to the representation.

32 Chapter 2. Data exploration and features engineering

Figure 2.23: Representation 5

From the comparison of Fig. 2.23 and Fig. 2.21 not many differences are noticed,
this shows how the last added portion is certainly very important for the end user,
but it goes to level out minimal things as similar information is already contained in
the “#changes” field.

2.3. Representations: featurized data 33

2.3.4 Some considerations

As already anticipated during the whole process of creation of the representation
described in the previous paragraphs, there is no answer to the question "is this
representation correct?", we can make considerations and more but since there is no
supervisor it is not at all certain.

The most important considerations that have led to prefer one or another rep-
resentation will be made in the next chapters also using the results obtained by the
AD and various techniques of interpretability.

Another important consideration that has to be made concerns the amount of
data that is necessary for the algorithm to work without going into suboptimal con-
ditions. The Fig. 2.24 shows three years of data extracted from sequences concerning
the alarms part only, and each point is labeled with the year. What can be noticed
is that the structure of the points is substantially similar, there are no clusters that
stand out by partitioning the data for years, so this becomes an indicator that the
machine has always performed the same or similar task overall. Obviously this is
strongly related to the machine, in general the behavior is similar to that shown, as
a machine very rarely totally changes what it is doing. This factor is certainly to be
taken into consideration when bringing the system into production, as the system
must work in real-time, and it is necessary to make a trade-off of information loss
and memory efficiency.

Figure 2.24: Data amount comparison

34 Chapter 2. Data exploration and features engineering

Referring to the latter, it is necessary that the machine analyzed is only one
and data taken from multiple machines are never processed for various reasons,
including the main one, i.e. the fact that each machine performs slightly different
functions, for example it uses different formats, different recipes and also differ-
ent speeds, so using one machine already has a lot of variability, using data from
multiple machines further complicates the anomaly detection task emphasizing the
variability of the data.

35

Chapter 3

Anomaly Detection

At this point, having the various representations obtained in the last chapter avail-
able, the next step will be discussed, i.e., anomaly detection. In this chapter the cho-
sen AD technique will be described starting from the definition of anomaly, passing
through the various algorithms available, up to the discussion of the results ob-
tained.

3.1 Anomaly Detection: an overview

What is Anomaly Detection? Starting from the basis it is necessary to provide a defi-
nition associated to the concept of outlier , the definition is not unique, but typically
an outlier is simply a data point that deviates considerably from the rest of the data
points in a given data set (Chandola, Banerjee, and Kumar, 2009). The process of
trying to identify these outliers or anomalies is referred to as anomaly detection.

When it comes to large and high dimensional datasets, very complex patterns
can be included that cannot be found simply manually inspecting the data, looking
for the point that is the furthest away from the data, adding the need for models and
algorithms.

Therefore, the study related to anomaly detection is very important and must
address various problems, ranging from the dimensionality problem to the inter-
pretability of these anomalies in a real world scenario.

Types of anomalies

In the domain of data science, there are basically four types of anomalies (Zoppi,
Ceccarelli, and Bondavalli, 2018). Understanding the logic behind them can have a

36 Chapter 3. Anomaly Detection

big impact on how they are handled, so an ad hoc solution can be developed to better
focus on one or to one other. Those macro categories are:

• Global Anomalies: Corresponding to data points that differ significantly from
the rest of the data points, global anomalies are known to be the most common
and intuitive form of anomalies. Usually, global anomalies lie very far from the
mean or median of any data distribution.

• Contextual or conditional anomalies: These anomalies have values that differ
significantly from those of other data points in the same context. For example,
let’s get into the case of Galdi, since each machine works in a similar but not
equal conditions, namely two machines are filling with two different products,
the response of the two machines can be different. Anomalies in one dataset
may not be anomalies in another, so in this case some information related to
where the data comes from is very relevant.

• Local Anomalies : Local anomalies are quite difficult to detect, since those
points can be seen as normal record since them are not too far from the normal
points. The name local anomaly came from the fact that such a kind of point
is only anomalous when compared with its close-by neighbourhood.

• Collective Anomalies: Anomalies can be clustered into an anomalous cluster,
in a nutshell anomalous objects that are tightly grouped because they have the
same anomalous character and are referred to as collective anomalies. Those
are quite difficult to be separated from the rest of the data.

3.1. Anomaly Detection: an overview 37

Figure 3.1: AD algorithms

AD algorithms

Now that the concept of anomaly has been introduced, it is useful to make a brief
summary of the anomaly detection techniques that are available. A majority of
the techniques can be categorized into classification-based, nearest neighbor-based,
subspace based, clustering-based and statistical techniques. An intuitive visualiza-
tion of the different categories can be observed in Fig. 3.1. For each of these ap-
proaches, the nature of the data may be supervised, semi-supervised or unsuper-
vised. In the following some of them will be introduced, focusing more on their pro
and cons.

Classification-based techniques Classification-based anomaly detection techniques
operate in a similar two-phase fashion. The training phase learns a classifier using
the available labeled training data. The testing phase classifies a test instance as nor-
mal or anomalous, using the classifier. Associated to this family of algorithms there
are neural networks-based, SVM-based and rule-based methods. The advantages of
classification-based techniques are as follows:

• Classification-based techniques can make use of powerful algorithms that can
distinguish between instances belonging to different classes

38 Chapter 3. Anomaly Detection

• The testing phase of classification-based techniques is fast, since each test in-
stance needs to be compared against the precomputed model

The disadvantages of classification-based techniques are as follows:

• Rely on the availability of accurate labels, which is often not feasible

Nearest neighbor-based techniques Nearest neighbor-based anomaly detection
techniques require a distance or similarity measure defined between two data in-
stances, the main assumption is associated to the fact that typically normal points
have many neighbors while the anomalies are located far from other points. The
advantages of nearest neighbor-based techniques are as follows:

• A key advantage of nearest neighbor-based techniques is that they are purely
data driven, unsupervised by nature and do not make any assumptions re-
garding the generative distribution for the data.

• Adapting nearest neighbor-based techniques to a different data type is straight-
forward and primarily requires defining an appropriate distance measure for
the given data.

The disadvantages of nearest neighbor-based techniques are as follows:

• For unsupervised techniques, if the data is not dense enough, or if the anoma-
lies hiding between normal points have close enough neighbors, the technique
fails to label them correctly resulting in missed anomalies.

• For semi-supervised techniques, if the normal instances in the test data do not
have enough similar normal instances in the training data, the false positive
rate for such techniques is high but that is, if you want, a problem related to
the data that affects the final result.

• Performing a closest neighbor technique relies heavily on a distance measure,
defined between a pair of data instances, which can effectively distinguish be-
tween normal and anomalous instances. Defining the distance measurements
between instances can be difficult when the data is complex, such as graphs,
sequences and so on.

3.1. Anomaly Detection: an overview 39

Clustering-based techniques Clustering is used to group similar data instances
into clusters. Even though clustering and anomaly detection appear to be funda-
mentally different from each other, several clustering-based anomaly detection tech-
niques have been developed. Several clustering-based techniques require distance
computation between a pair of instances, the key difference between the two tech-
niques, however, is that clustering-based techniques evaluate each instance with
respect to the cluster it belongs to, while nearest neighbor-based techniques analyze
each instance with respect to its local neighborhood. The advantages of clustering
based techniques are as follows:

• Clustering-based techniques can operate in an unsupervised mode.

• Such techniques can often be adapted to other complex data types by simply
plugging in a clustering algorithm that can handle the particular data type.

• The testing phase for clustering-based techniques is fast since the number of
clusters against which every test instance needs to be compared is a small con-
stant.

The disadvantages of clustering-based techniques are as follows:

• Performance of clustering-based techniques is highly dependent on the effec-
tiveness of clustering algorithms in capturing the cluster structure of normal
instances.

• Many techniques detect anomalies as a byproduct of clustering and hence are
not optimized for anomaly detection.

• Several clustering algorithms force every instance to be assigned to some clus-
ter. This might result in anomalies getting assigned to a large cluster, thereby
being considered as normal instances by techniques that operate under the
assumption that anomalies do not belong to any cluster.

• Several clustering-based techniques are effective only when the anomalies do
not form significant clusters among themselves.

• The computational complexity for clustering the data is often a bottleneck

40 Chapter 3. Anomaly Detection

3.2 Computational Aspects

This exploration is aimed at highlighting the practical significance of various com-
putational aspects that one may come across typically when dealing with the outlier
detection problem. Thus, the idea here is to point out what one should be concerned
with, in order to develop efficient techniques for outlier detection.

Impact of the Type of Data The data one encounters with regard to outlier de-
tection could be either categorical or numerical. Several algorithms that are pop-
ularly used on numerical data can’t be used on categorical data. Therefore, it is
necessary to devise acceptable techniques to process data described using categor-
ical attributes. In the context of outlier detection, the effectiveness of the detection
algorithm strongly depends on the interpretation or one’s perception about outliers
in the sense of categorical attributes. So, it becomes imperative to have an intuitive
definition for characterizing outliers and develop the detection algorithm accord-
ingly.

Unavailability of Labeled Training Data It is known that any machine learning
activity primarily belongs to one of the two learning modes: supervised and unsu-
pervised. The exact nature of the learning task is decided based on the availability
of labeled data. As discussed in the previous section, outlier detection is generally
considered as an unsupervised learning task due to lack of awareness on the kind
of outliers present in the data.

Exploring Outliers in High Dimensional Spaces Data related to different real-life
applications are accumulated by having a high cardinality which could mean a high
information content or a high redundancy. Typically, a small subset of features is
sought that retains the properties of the data without loss of important information.
This requires a feature selection process to reduce the impact of high dimensionality
on learning activity such as data clustering. When a data sample is represented as
a high-dimensional vector, it is difficult to distinguish between its closest and most
distant neighbors due to the curse of dimensionality. Feature selection should be
used as a means of dimensionality reduction formulating acceptable measures to
assess the relevance and redundancy of a specific feature associated with outlier
detection.

3.3. The isolation paradigm 41

3.3 The isolation paradigm

All these techniques have advantages, but typically they are linked by some draw-
backs that in some way make them similar. The vast majority of existing anomaly
detection approaches build a profile of normal instances, then identify anomalies as
those that do not conform to the normal profile. Their anomaly detection abilities
are usually a "side-effect" or by-product of an algorithm originally designed for an
other purpose than anomaly detection. This leads to two major drawbacks:

• these approaches are not optimized to detect anomalies as a consequence,
these approaches often under-perform resulting in too many false alarms (hav-
ing normal instances identified as anomalies) or too few anomalies being de-
tected

• any existing methods are constrained to low dimensional data and small data
size because of the legacy of their original algorithms

The next move is to introduce the concept of isolation, where the term isolation
means “to separate one instance from the rest of the instances”, to achieve this, the
isolation paradigm takes advantage of two quantitative properties of anomalies:

• they are the minority consisting of few instances

• they have attribute-values that are very different from those of normal in-
stances

In other words, anomalies are “few and different”.

3.4 Isolation Forest

Isolation forest is a machine learning algorithm associated to the field of anomaly
detection(Liu, Ting, and Zhou, 2009). In particular, it is classified as an unsuper-
vised learning algorithm that aims to identify anomalies by “isolating” outliers in
the data. In this particular case, the scenario can be considered unsupervised, i.e.
no such labels are known. One thing that should be clarified prior to the algorithm
explanation is the concept of the “instance isolation”. Most of other algorithms are
trying to model the normal behaviour, to learn the profile patterns. What is the
problem with that? Well, defining the normal behaviour. The boundaries of nor-
mal behaviour are not typically well-defined. In most cases, it is too expensive and

42 Chapter 3. Anomaly Detection

time-consuming to label the data and get the information of normal and anomalous
behaviour. The isolation forest tries to separate the anomalous instance from the
rest of the data (thus the term “isolation”) based only on the value of the features,
without referring to any measure of similarity or labels.

3.4.1 How it works?

Isolation Forest works by building an ensemble of trees, called isolation trees, for
a given dataset. A particular isolation tree is built upon a feature by performing
the partitioning. If we have a feature with a given data range, the first step of the
algorithm is to randomly select a split value out of the available range of values.
When the split value is chosen, the partitioning starts, each instance with a feature
value lower than the split value is routed in the one side of the tree, while each
instance with a feature value higher or equal than the split value is routed in the
opposite side of the tree. In the second step, another random split value is selected,
out of the available range of values for each side of the tree. This is recursively done
until all instances are placed into terminal nodes (leaves), or some of the criteria set
in the input parameters is met.

Figure 3.2: Isolation tree example

An anomaly score is used to have a measure of anomalous. So, in the iForest
algorithm, the anomaly score is determined by the path length from the root node
to the leaf in which the instance is placed. Since is it an ensemble, the average of

3.4. Isolation Forest 43

all the path lengths for a given instance is taken. Presumably the anomalies need
fewer random partitions to be isolated compared to "normal" points in the dataset,
so the anomalies will be the points which have a smaller path length in the tree, path
length being the number of edges traversed from the root node.

Outliers are usually few objects which are very different from the rest of the
data, therefore by using isolation trees there is a higher probability to pick a split
early in the tree-building process that may separate the outlier from the rest of the
data. In other words outliers are likely to be isolated after few splits and they will
end up in leaves at a small depth. This phenomenon can be visualized in Fig. 3.2.

3.4.2 Background: the Isolation Forest formally

The following contains a more detailed description of how the isolation forest works.
As said the isolation forest is an unsupervised AD algorithm leveraging an isolation
procedure to provide a measure of anomalousness, called anomaly score. As previ-
ously said, it works in a recursive way, partitioning data based on some features.
The basic idea is associate to the fact that the isolation procedure for outliers re-
quires a limited number of iterations, since those points typically have a structure
that differs a lot from the remaining data and for the inliers generally the isolation
requires more partitions. Although the algorithm takes the name of isolation forest,
the structure at its base is the isolation tree (IT). ITs are data-induced random trees.
To build an IT the algorithm consider two random quantities namely a splitting fea-
ture f(v) and a splitting threshold t(v).

Given a dataset D = {x1, x2, ..., xn} of p-dimensional data points each IT say
t is assigned to a bootstrap sample Dt ⇢ D and carries out an isolation procedure
based on the split tests associated to internal nodes. Each bootstrap sample share
the same size y. Data points that belong to Dt are called in-bag samples from the
tree perspective. Those subsets of the dataset are recursively partitioned until either
all point are isolated, namely it ends up in a leaf, or the IT reaches a predetermined
depth limit hmax = dlog2ye. To each data point xi is associated a score:

s(xi) = 2�
h(xi)
c(y) (3.1)

where the term h(xi) is the mean of h(xi), which represents the length of the branch
from root to leaf node, on the other hand the term c(y) is a normalization term

44 Chapter 3. Anomaly Detection

dependent on n that is the number of data points. It ranges in [0, 1] in particular if it
tends to "1" the point is classified as anomalous and vice versa around "0" there are
“normal” points.

The last step of the isolation forest algorithm labels data points thresholding on
the anomaly scores, building two partitions based on the "contamination" level:

• predicted inliers PI = {xi 2 D|ŷi = 0}

• predicted outliers PO = {xi 2 D|ŷi = 1}

Isolation Forest not only detects anomalies faster compared to other AD algo-
rithm, but it also requires less memory and this is one of the characteristics that
makes the algorithm applicable in an IoT scenario. In a nutshell, this happens be-
cause Isolation Forest isolates anomalies in the data points instead of profiling nor-
mal data points. As anomalies data points mostly have shorter tree paths than the
normal data points, trees in the isolation forest does not need to have a large depth
so a smaller max_depth can be used resulting in low memory requirement. By its
nature, Isolation Forest exhibits enviable performance when working with large or
redundant data as it is very efficient. stFalling in the specific case another strong
point is due to the fact that the model is always the same and does not require
particular tuning, on the other hand the use of neural networks would require a
particular tuning for each machine, which makes everything more expensive.

Besides that there are two other problems that can be encountered when dealing
with anomaly detection: swamping and masking. Swamp is a situation of misiden-
tifying normal instances as abnormal, which can occur when normal and abnormal
instances are close to each other. Masking is the situation of mistakenly identifying
anomalous instances as normal, which frequently occur when they are collectively
in a dense area, in order to “hide” their presence, as described in Sec. 3.1. Sub-
sampling in isolation forest allows to build a model that is resistant to these two
effects.

In short, the characterizing aspects associated with isolation forest are:

• The characteristic of isolation trees enables to exploit subsampling, something
that it is not feasible in all the other existing methods.

3.4. Isolation Forest 45

• isolation forest exploit no distance or density measures to detect anomalies.
This eliminates a major computational cost of distance calculation in all distance-
based and density-based methods.

• isolation forest is efficient as its execution requires a linear time complexity
with a small constant and a minimal memory requirement; it is an algorithm
with constant training time and space complexities.

• isolation forest has the capacity to scale up to handle extremely large datasets
and high dimensional feature vectors.

3.4.3 Results

The isolation forest is a classic machine learning algorithm based on a random tree
so the parameters that control its structure are easily understandable. For training
the isolation forest the parameters that have to be considered are:

• number of isolation trees (n_estimators), the number of IT employed by the
algorithm

• number of samples (max_samples), the number of samples to draw from the
dataset to train each estimator (isolation forest sampling)

• number of features to draw from the dataset to train each base estimator
(max_features)

• bootstrap, used to select if the bootstrapping is done with or without replace-
ment

• n_jobs, can be used to scale up the training by making use of more workers

• contamination of the data set, i.e. the proportion of outliers in the data set

The PyOD library1 was used for the implementation, but a Sklearn one is also
available2, the parameters in both cases are more or less the same, only slight alter-
ations on the denominations. The model was trained on the previously representa-
tions, with contamination value set to 5%, using 100 isolation trees as default. The
results obtained can be observed in Fig. 3.3, making use of UMAP and PCA respec-
tively. From the results obtained, it can be observed that the algorithm performs
its task, isolating the outliers which are highlighted in red while normal points are

1https://pyod.readthedocs.io/en/latest/_modules/pyod/models/iforest.html
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

46 Chapter 3. Anomaly Detection

color in grey. Consider that to train the model about one year of data coming from
a single machine is used, the training duration is in the order of a minute or less so
even without scaling up, excellent results are obtained considering the amount of
data.

Figure 3.3: IForest results visualization example

Obviously this type of graph only provides a visual intuition of the result, to
understand well, it is useful to observe the anomaly score distribution, the result
in question can be observed in Fig. 3.4. Looking at the histogram some insight
about the outliers distribution can be obtained, in particular one can observe that
the algorithm perform quite well breaking the range of variation of the anomaly
score in a fairly defined way. From the results it can be seen that the vast majority of
points are classified with a low score namely as "normal", while the more the score
increases and one moves to the right in the histogram, the points are classified as
anomalous, as said the separation between anomalous and normal is well defined.
To create the histogram in the figure, the decision_function (X) function was used,
due to this the resulting anomaly scores are remapped to [-0.5, 0.5], because it is
the standard for all the AD algorithms of the library, so it differs from the original
anomaly score [0, 1] interval, but this is only a clarification because the concept is
the same.

3.4. Isolation Forest 47

Figure 3.4: Anomaly score

3.4.4 AD results and considerations

In the following paragraph, it is explained how the results of the anomaly detection
process are analyzed and "validated". As previously mentioned, the isolation forest
model has been trained using all the defined representations, in particular a year of
data is used with an hourly time window using data extracted from a single ma-
chine. To analyze the results, the process is composed by two steps, the first step
is performed with no knowledge about the machine, an intuitive analysis is done
using only data knowledge and then searching for recurring patterns or intriguing
statistics, if something is discovered then move to the second step, the results have
been passed under the attention of domain experts, who have confirmed whether
or not their labeling as anomalous or not or in general some feedback were pro-
vided. This two-step feedback process permits to have a little “supervision” even
if everything is done in a completely unsupervised way. The evolution of the rep-
resentation is the result of this validation process, in particular of the exchange of
information with the domain experts which has led to a final representation that
tries to cover the most critical aspects from the point of view of the machine and
also go to help the detection algorithm. The first three representations turned out
to be quite inconclusive as despite some fairly recurrent structure was recognized,
no abnormal behaviors were noted. The consequence of this was to think to a more
complex representation, as the fear was that the first three representations were a
bit sparse and because of this not able to carry enough information. The previous

48 Chapter 3. Anomaly Detection

deductions lead to the construction of representations 4 and 5, which contain much
more information.

Starting from representation 4, what have been notice is that recurring struc-
tures emerge much more easily, both labeled as normal and as anomalous. In par-
ticular, what is observed is very interesting. Points classified as normal have a very
low "#changes" value and typically the state in which the machine has spent most
of its time is that of production, recall that this came out also in Sec. 2.2.2, in which
the analysis on the average behaviour of the machine shows that the machine stay
mostly in production state, while the information about the state changes was not
detected in any of the previous studies. On the other hand, points classified as
anomalous show a high “#changes” value and the composition of the time window
is also very diversified. This then identifies strange sequences as sequences in which
the machine state hops in various configurations frequently, this is consistent with
the intuition as if in a single time window many changes are observed one can think
of something that is actually strange. The results in this case were confirmed by the
domain experts, in addition to what can be observed simply without knowing any-
thing about the machine, they confirmed that the combinations of alarms associated
with the anomalous sequences were actually correlated or not.

Figure 3.5: Normal point example

3.4. Isolation Forest 49

It is important to point out that there exists two family of high "#changes" value
points, the first group contain all the points in which the machine hops from one
state to another very frequently, while the second group include all the point in
which the machine has a high value of state changes, but the state is always the
same. This second situation could seem strange but it is very common as it de-
scribes a situation in which the machine restart multiple times, so basically it does
not change its state.

The construction of the last representation is the result of this last analysis in
which it is noted that the number of state changes is important but must be differen-
tiated since, as already said, situations can be found that have a structure similar to
an anomaly but which they are not due to the type of status change. Therefore, the
content related to transitions is introduced, which does not seem to provide a great
improvement, however it certainly helps to increase the precision of the detection,
"forcing" the algorithm to observe certain aspects more carefully.

Figure 3.6: Anomaly point example

In Fig. 3.5 and Fig. 3.6 two examples can be observed, in which representation
5 is used, respectively a normal and an anomalous point, in which it is possible
to observe what has been highlighted. No points relating to representation 4 are
reported, as the result is almost the same for the two images provided if the part
of the representation relating to the state transitions is removed. While the first

50 Chapter 3. Anomaly Detection

three representations are not reported in the form of a bar graph as they did not
lead to actual results but were a fundamental step to understand how to enrich the
representation. In the App. A other examples are available. The description of the
alarms in the images has been obscured for confidentiality reasons.

Different time resolutions

As already mentioned in Sec. 2.3.4 the amount of data that is necessary for the algo-
rithm to work without leading in underfitting conditions is a point that cannot be
neglected. As seen before the type of data does not change a lot throughout the life
of a machine as the machine always performs very similar tasks. The problems arise
for the learning algorithm when the amount of data is not enough, although isola-
tion forest is a classic machine learning algorithm it can fail if the data is extremely
few. One of the characteristics that the developed AD system must have is that of
being able to use different resolutions, as already mentioned above, the use of reso-
lutions with "large" time windows can be dangerous. In the following are reported
the AD results visualization using time window respectively of 2H,4H and D. The
amount of data considered is always one year, the visual effect is clear enough to
show how the amount of sequences considered decreases as the time window size
grows. The consequence of that is that the learning algorithm suffers a bit the data
scarcity and the results obtained with the time windows set as daily appears strange.

3.4. Isolation Forest 51

(a) 2H time window

(b) 4H time window

(c) D time window

Figure 3.7: AD results visualization

52 Chapter 3. Anomaly Detection

In Fig.3.8 an example of anomaly extracted with daily resolution is shown, this
sequence is labelled as anomalous with a very high score but on the other hand it
seem quite "normal". In conclusion, it is necessary to carefully analyzes the amount
of data available before proceeding with the AD procedure. This topic is extremely
important in practice, because the algorithm have to deals with a fixed amount of
data and it have to be updated in order to guarantee the functioning of the isolation
forest. In practice, the strategy adopted to tackle this problem is the one of oversam-
pling in order to obtain more sequences even though the data quantity is fixed. The
description of the alarms in the image has been obscured for confidentiality reasons.

Figure 3.8: Anomaly point example

Test on other machines

The analysis of the development of the AD system described in this thesis mainly
refers to a single machine, this in addition to providing coherently linked results ap-
pears necessary since extracting and analyzing data coming from several machines
blend all data together is not a good choice. The explanation for this is due to the
fact, as already explained, that although the machine model is always the same then

3.4. Isolation Forest 53

it is adapted to the customer’s requests, every customer use different recipes or dif-
ferent kind of products, this means that each machine performs similar functions but
not exactly the same. Recall that already consider only one machine embeds a lot
of variability due to factors such as the recipe, the speed, the format an other small
changes that make the machine’s task vary a lot. In conclusion, using data from
multiple machines at this level is dangerous if consistent results are to be obtained.

Figure 3.9: UMAP representation of multiple machines

However, it is important to provide complete results in order to test the anomaly
detection system on other machines. Some tests were performed on four other ma-
chines. The representation used is the fifth exploiting the normalized counts, the
time windows chosen were those of one hour and two hours. In conclusion, it can
be said that similar results are obtained testing the system on different machines but
at the local level things are a bit different. In Fig. 3.9 the previous exposed con-
cepts can be visualized, the visualization consider data obtained from four different
machines, those data have been featurized and then plotted using UMAP with a
focus on the global structure. The result are interesting, because they confirm the
fact that the use of blended data can be dangerous or misleading, in the sense that
as it can be observed that the four representations gather together and the division
among them is very unambiguous. In conclusion, results that are obtained from one
machine cannot be exploited for the other unless the situation allows it, namely the

54 Chapter 3. Anomaly Detection

machines have to perform exactly the same function. Maybe this could be used for
future developments in going to optimize the work of a machine by comparing it
with other machines to improve performance, perhaps by changing speed, the type
of formats or other.

Data quality lack

Another interesting point that was revealed by the AD results is the one associated
to the data quality lack. This problem is linked with the data but the isolation forest
empathize it because of how it works, recall that the algorithm label as anomalous
points that deviate significantly from the rest of the data then if a sequence appear
as very rare that for sure it will be labelled as anomalous. The problem with this is
that anomalous does not mean faulty from the standpoint of the machine.

Figure 3.10: Example of misleading sequence

In Fig. 3.10 it is shown one case that highlights this problem, as it can be ob-
served the sequence has a very high anomaly score, looking at it one can observe
that the value of the feature %scheduled_downtime is very high, with some domain
knowledge one can understand that there is nothing of anomalous because the ma-
chine is cleaning itself. The algorithm label this point as anomalous, the problem is

3.4. Isolation Forest 55

linked to the scarcity of this kind of data that will make this sequence rare and so,
strange. To sum up, it is important to check the data quality, or in order to alleviate
the problem one can show to the algorithm more sequences similar to this in order
to decrease the rareness of this sequence. The description of the alarms in the image
has been obscured for confidentiality reasons.

56 Chapter 3. Anomaly Detection

3.5 HDBSCAN

HDBSCAN is a clustering algorithm developed by Campello, Moulavi, and Sander
(McInnes, Healy, and Astels, 2017). It extends DBSCAN by converting it into a hier-
archical clustering algorithm and then using a simple but working idea to extract a
flat clustering based on the stability of clusters.

In the following an intuition about how HDBSCAN works will be provided.
Starting from the fundamentals, the problem that has to be solved is to perform
clustering on data in which the clusters have different shapes and sizes and can
also have very different densities and furthermore could be corrupted by noise or
some kind of outlier. Tackling the problem with a classic algorithm such as k-means
surely does not get good results as this algorithm exactly assumes that the clusters
have certain geometric properties and moreover it takes a predetermined number
of clusters. HDBSCAN approaches the problem does not look for clusters with a
predefined shape, but it looks for regions in the data that are denser than the sur-
rounding space, it behaves basically as a density clustering algorithm. Formally
defining what a cluster is can be misleading or in any case strictly context-specific,
with this clarification in the HDBSCAN context a cluster is an highly dense regions
separated by sparse regions, a visual insight can be provided by fig.3.11.

Figure 3.11

The fact is that in practice this type of well-defined distributions are nowhere
to be found, but something a little more convoluted as shown in Fig. 3.12 is faced,
however here it is not so easy to understand what can be defined as a cluster or not.
To cope with this, the elder brother of the algorithm in question, DBSCAN sets a
resolution to have a clear definition of what is or is not a cluster. The fact is that this
doesn’t work well for clusters with different densities. To get rid of this problem,

3.5. HDBSCAN 57

HDBSCAN first builds a hierarchy to figure out which peaks end up merging to-
gether considering also the order, basically by getting multiple level-sets at different
values of l as in Fig. 3.12. Some may naively think that this is done by running DB-
SCAN multiple times, however this is not exactly the case but it approximates well
the basic functioning, it also can be useful to visualize what the algorithm does. So
if basically it behaves as a density based method, in the second step it exploits the
hierarchy to cluster data, so as point out HDBSCAN is not a standard clustering
method, indeed it can be defined as a mix between a density based and a hierarchy
based algorithm.

Figure 3.12: Running DBSCAN with different resolutions

To choose if is it better to keep this cluster or split it up into its sub-clusters,
it looks at which one “persists” more. Where the persistence measure that is as-
sociated to the cluster stability is represented by the areas of the different colored
regions in the hierarchy plot. So exploiting this artless idea, HDBSCAN is able to
decide how to cluster together points.

Figure 3.13: HDBSCAN

58 Chapter 3. Anomaly Detection

3.6 HDBSCAN: interpretability

After what has been explained in the previous section, obviously it is not so obvious
to understand where this method can be exploited in the case in question. Despite
the vast generality linked to clustering techniques, in this case the approach serves
as a "interpretability" technique to try to extract a summary structure of the points
classified as anomalous from the anomaly detection procedure. After several at-
tempts with other clustering techniques, some problems linked with the data has
arisen. The data treated has substantially two problems, it is strongly scattered and
the dimensionality is high, in particular the p features are in general around the
thousand since this is the number of available alarms. A small summary scheme on
clustering techniques can be observed in Fig. 3.14.

Figure 3.14: Clustering algorithms

The use of techniques such as k-means that make assumptions about the type
of distribution or shape of the cluster are certainly to be discarded a priori given
the type of data and its sparsity. A different reasoning occurs regarding hierarchical
clustering techniques, since these are not suitable for large datasets due to high time

3.6. HDBSCAN: interpretability 59

and space complexity. Therefore, density-based techniques remain outside, how-
ever here the problem remains that they present resolution parameters that cannot
be tuned without some information on the data or concrete display that cannot be
obtained because all the visualization are strong approximation of the data distribu-
tion. Recall also that highly sparse data does not help those kinds of methodologies.
Therefore, the use of HDBSCAN which is quite "unsupervised" compared to the
other algorithm is a good choice, as shown by the results, even if it is placed in
front of large and high dimensional data it provides interesting results, obviously
without scaling up the whole process. It must be point out that also HDBSCAN
fails with very high dimensional data, the official documentation point out that the
optimal number of features lies in the range beetween 50 and 1003, from what was
said before there seem to be some inconsistencies but this is because in general there
are thousand of alarms and so thousand of features but in a single machine the
amount of alarms that are actually observed are much less, however a number that
lies within the optimal range for HDBSCAN.

After this extensive introduction on why HDBSCAN was preferred over other
methods, the following section illustrates how it was used and the results obtained.

To extract a summary structure of the anomalies the whole dataset is used, the
isolation forest model is trained on it, as before the contamination level is kept to
5%. At this point, the isolation forest has classified a 5% of the data as anomalous.
Afterwards, HDBSCAN is run on this anomalous subset, the clustering results can
be observed in Fig. 3.15, the extracted cluster are nine and it is also interesting to
observe that many points are labelled as noise. Recall that the aim of this proce-
dure is about interpretability, points grouped together in cluster represent families
who share similar characteristics providing standard structure anomalies that can
be used as comparison with new points or can describe the whole anomalous be-
haviour of a machine.

3https://hdbscan.readthedocs.io/en/latest/faq.html

60 Chapter 3. Anomaly Detection

Figure 3.15: HDBSCAN results on anomalies

The medoids of each cluster were analyzed, the medoid in this case represents
the typical structure that the points have in a certain cluster, thus obtaining what
was first called the summary structure of the cluster.

Obviously, another possible choice would have been to use the centroid, how-
ever the centroids were not used as they would have formed "synthetic" centers
not linked to the real datum, which would have had a logic only in a mathematical
sense. The use of the medoid allows to find the real point closest to the center with-
out adding other errors since the data is already very complicated to summarize.

61

Chapter 4

Interpretability

This chapter deals with the issue of interpretability. It is divided into two macro-
sections, the first introduces the concept of interpretability and the techniques used,
describing how they work and their pros and cons, while the second part deals with
the use of these techniques, in particular the central part concerns the evaluation of
representations obtained through these tools.

4.1 Interpretability in Machine Learning: a brief intro-
duction

Machine learning models can be surprisingly good at making predictions, but they
often cannot provide explanations for their predictions in terms that humans can
easily understand. The number of characteristics from which they draw conclu-
sions can be so huge and their calculations so complex, that it may be impossible to
determine exactly why an algorithm produces the answers it provides.

This is why the concept of “interpretability” is introduced (Molnar, 2022). There
is a common misconception in the context of machine learning between explainabil-
ity and interpretability. While they are closely related, it’s worth eliminating the
differences, if only to see how complicated things can get once you start delving
deeper into machine learning systems.

Interpretability concerns the extent to which cause and effect can be observed
within a system. Or, to put it another way, it is the extent to which you are able to
predict what will happen, given a change in the input or algorithmic parameters. It
is the ability to look at an algorithm and say yes, I can see what’s going on here.

62 Chapter 4. Interpretability

Explainability, meanwhile, is the extent to which the internal mechanics of a
deep learning machine or system can be explained in human terms. It’s easy to miss
the subtle difference with interpretability, but consider it this way: Interpretability
is about the ability to discern mechanisms without necessarily knowing why, while
Explainability is being able to literally explain what’s going on.

Why interpretable results? The title of the paragraph is associated with a ques-
tion that naturally arises when a problem is observed from this point of view. Inter-
pretability is crucial for several reasons, currently must compensate for incomplete
interpretability with judgement, experience, observation, monitoring and diligent
risk management including a thorough understanding of the datasets used. The
need for interpretability arises from an incompleteness in problem formalization,
which means that for certain problems or tasks it is not enough to get the prediction
but the model must also explain how it came to the prediction, because a correct
prediction only partially solves your original problem. So in a schematic way not
only the what but also the why and the how are important.

Interpretable machine learning techniques can generally be grouped into two
categories (Molnar, 2022): intrinsic interpretability and post-hoc interpretability, de-
pending on the time when the interpretability is obtained. Intrinsic interpretabil-
ity is achieved by building self-explanatory models which integrate interpretabil-
ity directly to their structures. The family of this category includes decision tree,
rule-based model, linear model, attention model, etc. In contrast, the post-hoc one
requires creating an external model to provide explanations for an existing model.

In a nutshell, intrinsically interpretable models typically are a simpler model
and can be interpreted by looking directly at their internal parameters, of course
simplicity make easier the interpretability part but on the other and make those
model less performing. The post-hoc ones requires an external model to deal with
interpretability due to their complex structure that cannot be explained by looking at
the internal parameters, consider for example a deep convolutional neural network.
So conversely to before high performance model are typically more opaque than
simpler models.

Similarly, but not equally, model-specific or model-agnostic methods can be treated.
As the names suggest, model-specific interpretation tools are limited to specific
model classes, while model-agnostic tools can be used on any machine learning
model.

4.2. Methods 63

Based on the above categorization, further differentiation split the interpretabil-
ity types in two: global interpretability and local interpretability. Global interpretabil-
ity means that users can understand how the model operates globally by inspecting
the structures and parameters of a complex model. On the other hand, local inter-
pretability locally examines an individual prediction of a model, trying to figure out
why the model makes the decision it makes. These two types bring different bene-
fits. Global interpretability could clarify the inner working mechanisms of machine
learning models and thus can increase their transparency. Local interpretability will
help uncover the causal relations between a specific input and its corresponding
model prediction. Those two help users trust a model and trust a prediction, re-
spectively, providing explainability and interpretability. Since the other main topic
of the thesis is about anomaly detection, it is also interesting to study the link be-
tween the latter and the interpretability. Anomaly detection is a machine learning
task that can be considered in general unsupervised, a tool as the interpretability can
be very useful, consider for example a local interpretation about a point classified as
anomalous, this can help the user to perform Root Cause Analysis and subsequently
identify suitable corrective actions, if necessary. On a design level, interpretability
can be useful to evaluate in a more quantitative way the algorithms employed and
much more.

4.2 Methods

4.2.1 AcME

AcME is novel a methodology, called Accelerated Model-agnostic Explanations
(Dandolo et al., 2021), it works with each regression or classification model, pro-
viding both global and local interpretability, and at the same time it is also com-
putationally efficient, a requirement that in a IoT scenario is wonderfully desirable.
Among the interpretability methods that provide both global and local explanation
there is SHapley Additive exPlanation (SHAP). This technique is quite popular and
provided with some specific extensions in order to work better adding some model
informations. The fact is that due to its logic it is computationally burdensome and
it is also quite complex from a theoretical point of view. SHAP is considered state-
of-art, in the following many comparisons will be performed with AcME reporting
the results obtained in the paper.

64 Chapter 4. Interpretability

Computational speed is a factor that must kept into consideration but also the
amount of data and the way it process is a main factor, this becomes even more im-
portant in an IoT context where the amount of data is considerable, often in the form
of live streams with extremely fast update. Besides, a fast update of data leads to a
more frequent retrain of the machine learning models, and when a model changes,
it is necessary to rerun the entire interpretability procedure, which worsens the com-
putational burden associated to SHAP.

AcME basically perform a sensitivity analysis relying on perturbation of the
data based on quantiles of the empirical distribution for each features, perturbations
w.r.t. a so called baseline vector x

b. A baseline vector x
b is used to deal with both local

and global interpretability, the choice of this vector changes a bit in the two cases.

How it works ?

Let is start by treating first global interpretability. Assume that the dataset is made of
data points composed by p features, the procedure starts by computing the baseline
vector:

xb = x = [x1, x2, ..., xj, ..., xp] (4.1)

For global interpretability it is composed by the average point computed on the
dataset. Then it creates a varaible-quantile matrix Zj 2 RQxp where Q is the selected
number of quantiles that will be used to evaluate the importance of each feature.
The rows of such matrix coincide with the baseline vector except for one component
which is substituted by the Q quantiles.

Zj =

2

66664

zj,0

zj,1/(Q�1)
...

zj,1

3

77775
=

2

66664

x̄1 x̄2 . . . xj,0 . . . x̄p

x̄1 x̄2 . . . xj,1/(Q�1) . . . x̄p

...
...

x̄1 x̄2 . . . xj,1 . . . x̄p

3

77775
(4.2)

To be more robust, it can be avoided the use of quantile 0 and 1, limiting the range of
Q to an interval that excludes the possible outliers, typically Q is made range from
0.1 to 0.9. At this point the predictions associated with the variable-quantile matrix

4.2. Methods 65

are computed :

ŷj =

2

66664

ŷj,0

ŷj,1/(Q�1)
...

ŷj,1

3

77775
=

2

666664

f
�
zj,0

�

f

⇣
zj,1/(Q�1)

⌘

...
f
�
zj,1

�

3

777775
(4.3)

By comparing the synthetic predictions associated with the rows of the variable
quantile matrix with the prediction associated to the baseline vector, an importance
score representing the relevance of the j-th feature can be computed.

Ij =
1
Q

Q

Â
q=1

��Dj,q
�� (4.4)

Dj,q =
ŷj,q � f

�
xb�

q
var

�
ŷj

�
�
max

�
ŷj

�
� min

�
ŷj

��
(4.5)

Where the term Dj,q is defined as standardized effect, close to the well-known stan-
dard score in which the second multiplicative factor accounts for the overall impact
of the variable in terms of how the applied perturbations spread out the predic-
tions. Indeed, it is reasonable that the wider the range of changes in the prediction,
the more relevant the variable is for the model. For the interpretation of individual
predictions, i.e. the case of local interpretability, the baseline changes from x

b = x to
x

b = x
⇤, namely it is set equal to the specific data point x

⇤.

AcME is typically less expansive in terms of computing powers, since it only
needs to apply the model on Qxp observations. The number of samples N only
affect the computations of the quantiles, but the effect is not comparable to what
happen in SHAP.

Given ad dataset of N points, for each data point xi KernelSHAP samples K
coalitions, where K is a parameter that depends on p. Then, it applies the model that
has to be interpreted to each coalition mapping each group to the original feature
space. Finally, KernelSHAP uses the K predictions as a training dataset to fit a local
linear model, than once the Shaply values are obtained an importance measure can
be provided.

66 Chapter 4. Interpretability

AcME: Anomaly Detection interpretability tool

Another feature that has increased the interest in AcME is the fact that the algorithm
can be used in an AD scenario, in particular an unsupervised scenario in which
each data point is associated with a score that quantifies the abnormal behavior of
themselves. Exploiting the local interpretability, we could focus on a sample and
use AcME to evaluate how changes in the input feature values would impact the
corresponding anomaly score.

This kind of analysis can be performed thanks to the nature of AcME. In order
to analyze the feature importance in terms of AD, the model is fitted locally, so pro-
vided a data point it builds the feature importance table associated. The table con-
tain the predictions associated to the variable-quantile matrix, which are expressed
in terms of anomaly score. From this table, the features that lead to a change in
anomaly score such that a point changes from anomaly to normal or vice versa are
taken and return. As example, consider the predictions associated to only one fea-
ture if the there is a change of sign in the anomaly score predictions this means that
such feature is able to change the classification of such point otherwise it is not.

The visualization can be a bit complex, but it is substantially very simple. The
output graphics of this tool allow you to view the trend of the anomaly score accord-
ing to the value of a certain feature. So when the value of the feature "j" vary, this
variation is displayed on the axis y, the corresponding value of the anomaly score
can be observed in x. In addition to this, the view adds the colors to discriminate
between values that lead to the abnormal or normal.

The use of this tool provided by AcME is extremely powerful and interesting,
especially if provided as an extra to try to best eviscerate the results of the AD algo-
rithm that run on the machine.

The results obtained using the tool on Representation 4 will be illustrated below,
obviously only some examples will be proposed of all the cases analyzed. Recall
that the Representation 4, as described in Sec. 2.3.2, is composed of two parts, the
first one is linked to the alarms while the second one describe the time window
composition. The points observed using this tool can be divided into three families
according to their behavior: extremely anomalous, strongly normal and “hopping”
points.

4.2. Methods 67

Regarding the first category we find points with an extremely high anomaly
score, vice versa the points that are in the second category have a very low score.
The points that are most interesting to observe with this tool are the points of the
third category, the elements that compose this family are quite peculiar, they are not
too much anomalous but not enough normal, any small change can cause the point
to fall into one of the other two categories.

Let’s analyze the results starting from the first category, those points are ex-
tremely anomalous there are no values of their features that can make them more
"normal", this is quite an interesting point since this means that the algorithm is
strongly “convinced” that those are anomalies. The most interesting results were
obtained by observing the other two categories. Points belonging to the second cat-
egory tend to have a very similar behavior, they have some features that in some
way can make the point anomalous. What typically happens is shown in Fig. 4.1,
the point remains normal as long as the value of the feature in question, in this case
the alarm A401, takes on very high values, in this way an anomaly is obtained, oth-
erwise the point remains classified as normal. This obviously brings attention, in
the specific case in question, to the alarm A401 which in a practical case should be
analyzed more carefully. Another interesting thing, referring to the representation
that uses counts and information relating to the state of the machine, is that in this
case the phenomenon only concerns the features associated with the alarms and not
those relating to the state of the machine.

Figure 4.1: Typical behavior for points of the second category

More interesting phenomena can be observed by analyzing the points that have
a score close to 0, namely the points that are part of the third defined category. In
Fig. 4.2 we find a behavior that is often observed by analyzing this type of points,
those present features that could have a very influential effect on the classification

68 Chapter 4. Interpretability

of this type of points, it is observed that typically for low values of these features the
points become "more normal" and vice versa if the feature assume higher values. If
you want, this is consistent with intuition as, as mentioned, these points are “neither
too anomalous nor too normal”.

Figure 4.2: Comportamento tipico per punti della terza categoria

Also in this category it seems that the features related to the state of the ma-
chine have a greater weight. For example, in some points it is observed that the
effect of the "#changes" feature which, as mentioned in Sec. 3.4.4, seems to have a
considerable effect when it comes to distinguishing anomalies from normal points.
In particular, it is observed that for low values of this feature the points are classi-
fied as normal and vice versa if the value is very high, it is also noted that when it
assumes extremely low values the point risks being classified as anomalous.

Figure 4.3: Typical behavior for points of the third category

Even when we go to analyze the effect of the “% production_time” feature,
we observe interesting things that are partly consistent with what was said in Sec.
3.4.4, that is, for high values of this feature the points have a "normal" behavior, vice

4.2. Methods 69

versa the less the machine remain in production the more the behavior is labeled as
anomalous.

Figure 4.4: Typical behavior for points of the third category

Something similar to the previous considerations can be said for the “% down-
time_time” feature, from what can be observed in Fig. 4.5 it is noticed an opposite
behaviour w.r.t. the previous analyzed feature, namely high value of this feature
classify the point as anomalous. Also in this case the intuition is confirmed by the
data, namely more time the machine stops in a single time window more an anoma-
lous situation is detected.

Figure 4.5: Typical behavior for points of the third category

70 Chapter 4. Interpretability

4.2.2 DIFFI

Among the most prominent model-agnostic approaches algorithms that are highly
exploited there are LIME for local explanation and PDP (Partial Dependence Plots)
to provide information about the global behavior or as last there is SHAP. It must be
said that model-agnoistic tools for interpretability typically shows some drawbacks,
the main one is associated to the fact that the process that permits to those tools
to get some prediction is delicate, as typically it is based on the manipulation of
the input and the evaluation of the effect that such changes have on the output.
The creation of synthetic data could lead to instability and raising doubts about the
actual information conveyed by the method. The name DIFFI means Depth-based
Isolation Forest Feature Importance(Carletti, Terzi, and Susto, 2020) . The DIFFI
approach is based on very basic computations on quantities that naturally emerge
from the principles governing the IF model. The nature of such method is model-
specific and it tries to reflect the logic inside the IF and a post-hoc method preserving
the performance of and established and effective AD focusing on providing global
and local explanations. The fact that such method is able to provide both global an
local interpretability guarantee a good flexibility.

In the following paragraph a brief explanation of the functioning of the algo-
rithm will be provided. DIFFI relies on two hypothesis which lead to the definition
of feature importance in an AD scenario.

A split test associated with a feature deemed as important should:

h1) induce the isolation of anomalous data points at small depths (i.e. close to the
root), while relegating regular data points to the bottom end of the trees

h2) produce higher imbalance on anomalous data points, while ideally being use-
less on regular points

Global DIFFI In order to provide an intuitive point of view of what is inside the
algorithm in case of global interpretability, start considering a single Isolation Tree t

and associate to it, a subset of the full dataset Dt ⇢ D. To visualize it, look at the red
square in Fig.4.6. The IF algorithm partition this bootstrap sample Dt into PI,t and
PO,t, respectively, the partitions associated to inliers and outliers.

At this point define the Cumulative Feature Importances (CFIs), those coefficients
are associated to the two hypothesis above, in particular CFIs are updates iteratively

4.2. Methods 71

Figure 4.6: DIFFI scheme

by a quantity show in the following:

D =
l(v)
ht(x)

(4.6)

Where the numerator is associated to the hypothesis h2, while the numerator
reflects hypothesis h1. Respectively the term l(v) is defined as Induced Imbalance

Coefficient (IIFs) and measure the strangeness of a split, while the term ht(x) denotes
the depth of the leaf node (in tree t) associated with data point x. At this point extend
the reasoning to more trees so in the end the CFIs are averaged all over the forest.
The GFI (Global Feature Importance) coefficient is given by:

GFI =
IO

CO

II

CI

(4.7)

Where the terms CO and CI are called features counter and have more o less the
same purpose of the idf term in TF-IDF.

Local DIFFI At the local level things changes a little due to the fact that in the
local case some quantities cannot be computed as the IICs, since only one sample is

72 Chapter 4. Interpretability

considered, and all quantities associated to predicted inliers are neglected, since the
focus now is on the interpretation of predicted outliers.

Given a predicted outlier xO, the corresponding Local Feature Importance(LFI) is:

LFI(xO) =
I

loc

O

Cloc

O

(4.8)

where C
loc

O
and the I

loc

O
have similar meaning as in the global case. The main differ-

ence is associated to the update which becomes:

Dloc =
1

ht(xO)
�

1
hmax

(4.9)

Where the second term is a correction term that makes sure that the CFI is no up-
dated when the leaf node associated to the predicted outlier xO is at maximum depth
of the tree. Basically it prevents the updates of the CFI also in case the point under
examination is not isolated.

4.3 Comparison: normalized counts and TF-IDF

A large part of the work done with these techniques of interpretability is linked to
the comparison made between normalized counts and TF-IDF, as already exposed
in Sec. 2.3.1 the use of one or the other technique has different implications at im-
plementation level, obviously if the choice was done considering only at theoretical
perspective then it would fall on TF-IDF. This is because it is the technique that is
more robust, it allows to “weigh” every word on all available data and not only
on each document, this peculiarity makes it excellent when many “stop-words” are
present. The normalized counts, as already said, attempt to emulate this technique
using lot less information but being much more efficient both in terms of memory
and time. If a dynamic environment is added to the recipe than the characteristics
of the last have to be taken into consideration, as the calculation of the term IDF in
a dynamic framework with a limited memory amount could be really problematic.

The analysis carried out is about global interpretability of the two models trained
on the two different representations, because to understand if the two are exchange-
able it is necessary to understand if the models "think" in the same way even if
trained on different representations. Local interpretability is also used to provide

4.3. Comparison: normalized counts and TF-IDF 73

further results to confirm or deny the global interpretability outcome. The tech-
niques used are those exposed in the previous sections, it has opted for these tech-
niques due to various factors. The use of AcME is certainly linked to its adaptability
and computational efficiency, especially if it is put on the level of SHAP. The prob-
lem of AcME, if that can be said, is that its logic overlooks the small details, as it
does not make any intake on the model but treats a black box playing with the fea-
tures. Here DIFFI comes into play which, designed and developed to deal with the
isolation forest, therefore a technique that is based on the model itself which makes
it much less applicable in general but perhaps more precise in a highly specialized
case like this one.

The graphs in Fig. 4.7 and Fig. 4.8 show the summary plots provided by AcME
which refer to the global interpretability of the isolation forest models trained on the
two different representations. The summary plot is composed as follow, on the two
axes x and y are represented respectively the values of the standardization effect for
the Q perturbations based on quantiles and the corresponding features in order of
importance. The color represents the quantile level of the feature, from low (marked
in blue) to high (marked in red). What is derived from their observation is interest-
ing as it seems that the first 15 features used by the two algorithms are exactly the
same, the order changes a little but the concept is that the models rely on the same
things to provide a result.

Figure 4.7: AcME summary plot: normalized counts

74 Chapter 4. Interpretability

Figure 4.8: AcME summary plot: Tf-IDF

In Fig. 4.9 a comparison can be made in terms of global interpretability of the
two models as before but this time the results come from the use of DIFFI. Also in
this case the outcomes are similar to the previous ones but not so much as although
some features are the same, the two graphs do not exactly coincide as before with
AcME, even if as mentioned above there are some similarities.

Figure 4.9: DIFFI global importance comparison

To confirm what has been said above, some further analysis are performed as
global interpretability brings similar results but not good as using AcME as previ-
ously said. In particular, DIFFI is used to perform a local interpretability procedure
in which a bunch of points is taken and examined.

4.3. Comparison: normalized counts and TF-IDF 75

The following images contain bar plots that schematize the importance values
associated with the features in descending order. On the left we find the results as-
sociated with the normalized counts while on the right those for TF-IDF, as can be
seen at first sight, although the importance values are different, the features used in
the prediction of the single point are exactly the same in both cases, thus confirming
the not entirely convincing results obtained previously. Obviously, to say this many
points have been analyzed, and it should also be pointed out that treating every-
thing only at the local level would not have led to a complete and coherent analysis.
The structure of the points themselves was removed from the images as it was not
informative.

76 Chapter 4. Interpretability

At this point, before drawing final considerations, it is interesting to make a
comparison between the two interpretability techniques used to try to best extrapo-
late the information coming from one or the other.

First of all it is necessary to point out that there is no a better technique, but
each of them has its strengths and weaknesses. The first method, AcME, perform
a sensitivity analysis and certainly allows to detect all the features that are rele-
vant in terms of variation of the result, however the model-agnostic nature of AcME
can lead to skip some details that could be relevant. On the other hand DIFFI and
its model-specific nature permits to have a different point of view. DIFFI seeks to
reflect the actual logic that governs the behavior of the IF, the features that this al-
gorithm classifies as more relevant are those that tend to “unbalance” the tree in a
very emphasized way. In conclusion, after highlight that the results provided by the
two tecniques cannot be compared because the idea behind them is too different,
the fact that the results tend in the same direction is very interesting as it means that
despite trying to solve the problem from two different angles the result is the same
and therefore this adds a certain degree of robustness to the solution. Therefore the
result of this analysis leads to say that the two representations, respectively normal-
ized counts and TF-IDF are interchangeable, consequently the fact that the first of
the two is more efficient for the reasons already explained, leads to drop the choice
on it.

77

Chapter 5

Conclusion

5.1 Proposed interpretable anomaly detection system

In order to conclude, in this final section a brief summary about the thesis is pro-
posed and than we will move to the "Proposed interpretable anomaly detection sys-
tem". The thesis chapters are ordered following the development process of the
whole system, from the raw data handling, passing through the creation of the fi-
nal representation and the application of anomaly detection techniques and inter-
pretability methods.

The main goal was the development of an interpretable anomaly detection sys-
tem built in order to improve the efficiency of the filling machines produced by
Galdi since market standards are growing more and more requiring more and more
performing and efficient machines. In the end, the system make use of the Repre-
sentation 5 the one that is composed by the parts regarding alarms, time window
state composition, time window state transitions since this is the representation that
better describes the filling machine providing a complete description of the latter.

The anomaly detection algorithm employed is the isolation forest, algorithm
that fits perfectly mainly because it works well in unsupervised situations, it is ef-
ficient and also very robust. Interpretability has been used on two different levels,
at the design level it is used as a tool to evaluate the algorithms and identify the
most suitable representation, at the user level instead it performs the function of
helping the user to understand well the choices of the algorithm and therefore to
make it more transparent. In addition, the validation process was obviously done
by referring to domain experts and technicians.

78 Chapter 5. Conclusion

The graphics have been designed together with the Galdi technicians so that
they are understandable and useful. An example can be observed in Fig. 5.1, re-
member that the latter are composed of four parts and knowing the structure facil-
itates the reading of the graph. The part highlighted in blue contains information
about the serial number of the machine, the time window in which the anomaly
was detected and also the percentage of what is considered anomalous. The other
parts highlighted in yellow, red and purple respectively describe the three compo-
nents of the final representation. The description of the alarms in the image has been
obscured for confidentiality reasons.

Figure 5.1: Visualization example

The "Proposed interpretable anomaly detection system" in its first version will
provide automatic email in case of anomaly, including the graph and a link to the
MaSH, something similar to the one in Fig. 5.2, so that the user has this tool available
to perform Root Cause Analysis and step in, if required, with suitable actions for the
problem encountered.

5.2. Future research direction 79

Figure 5.2: Automatic mail example

At the moment the prototyping phase is almost completed and the system will
soon be moved to production.

5.2 Future research direction

Machine learning play a key role in enabling Industry 4.0 and IoT scenarios. The
thesis shows the strength of this technology which will take root more and more
in the next few years. It has been demonstrated that even in a real case subject to
real problems a data-driven approach can be used. The effectiveness of the anomaly
detection algorithms has already been fully demonstrated in real scenarios, how-
ever they still lack a certain transparency which, as already mentioned, is leading
toward what is defined as interpretable machine learning. In the case in question,
an attempt was made to narrow this gap, to obtain results that are not only an end
in themselves but can fulfil the actual needs of the end users.

The type of approach chosen is a possible solution, many others are possible as
it is possible to introduce improvements that impact on the data, on the representa-
tion to try to obtain something more focused on the customer in order to better solve
his needs, such as it is also possible to change the algorithms, introduce themes of
continual learning or methodologies that allow to improve the customer’s perfor-
mance by observing similar situations and solutions adopted.

81

Appendix A

Appendix

A.1 Anomaly detection results

A.1.1 Normal points

82 Appendix A. Appendix

A.1. Anomaly detection results 83

A.1.2 Anomaly points

84 Appendix A. Appendix

A.1. Anomaly detection results 85

86 Appendix A. Appendix

A.2 HDBSCAN interpretability results

A.2.1 Medoids

A.2. HDBSCAN interpretability results 87

88 Appendix A. Appendix

A.2. HDBSCAN interpretability results 89

90 Appendix A. Appendix

A.2. HDBSCAN interpretability results 91

A.2.2 Curse of dimensionality handling

This paragraph explains a topic that is not central to the thesis but that has been
tested to try to solve the problem that afflicts HDBSCAN or in general any machine
learning algorithm that has to deal with high-dimensional data which are also very
scattered, the idea is introduced in Sec. 3.2.

The basic idea is to help the learning algorithm by subjecting the data to a
feature selection procedure, then passing through a dimensionality reduction tech-
nique before applying the chosen method which goes from a clustering algorithm to
improve its preforms, to an anomaly detection algorithm as it can work with clearer
data.

Some examples of this are reported in (Allaoui, Kherfi, and Cheriet, 2020) and
(Xie, Girshick, and Farhadi, 2016), in particular the technique exploited in the first
paper make use of UMAP as dimensionality reduction before applying a clustering
algorithm, the choice of UMAP comes from the fact that as said the algorithm main-
tain both local and global structure providing a compressed representation of that
raw data that is quite reliable. Some of the results provided by the article can be seen
in Fig. A.1, obviously the results are excellent and for this reason it is important to
say a few words about this, even in the case in question.

Figure A.1: Results on well known datasets

Following the idea also in our case some nice but not completely reliable results
were obtained, although the technique used even at an intuitive level seems able to

92 Appendix A. Appendix

function it is very primitive, in a totally unsupervised case, using such a method
without any precautions or information about any label could be very misleading.

The manipulation of the output of a dimensional reduction technique must be
done very carefully, otherwise any interpretation can be very misleading or wrong
because the dimensional reduction help with handle the dimensionality problem
but it will certainly result in the loss of functionality, perhaps noisy or true charac-
teristics, but a priori, it is not feasible to provide a concrete answer to this.

In conclusion, the results can be interpreted if there is an a priori labelling or
some domain information that can be exploited in some way, focus for example on
the well known MNIST dataset, each datapoint have a label or if it did not have it,
however, one would be able to distinguish by hand a good result and bad one.

93

Bibliography

Allaoui, Mebarka, Mohammed Lamine Kherfi, and Abdelhakim Cheriet (2020). “Con-
siderably improving clustering algorithms using UMAP dimensionality reduc-
tion technique: a comparative study”. In: International Conference on Image and Sig-

nal Processing. Springer, pp. 317–325.
Becht, Etienne et al. (2018). “Dimensionality reduction for visualizing single-cell

data using UMAP”. In: Nature Biotechnology 37, pp. 38–44.
Breunig, Markus M. et al. (2000). “LOF: Identifying Density-Based Local Outliers”.

In: Proceedings of the 2000 ACM SIGMOD International Conference on Management

of Data. SIGMOD ’00. Dallas, Texas, USA: Association for Computing Machinery,
93–104. ISBN: 1581132174. DOI: 10.1145/342009.335388. URL: https://doi.org/
10.1145/342009.335388.

Carletti, Mattia, Matteo Terzi, and Gian Antonio Susto (2020). “Interpretable anomaly
detection with diffi: Depth-based feature importance for the isolation forest”. In:
arXiv preprint arXiv:2007.11117.

Caruso, Giulia et al. (June 2018). “Cluster Analysis as a Decision-Making Tool: A
Methodological Review”. In: pp. 48–55. ISBN: 978-3-319-60881-5. DOI: 10.1007/
978-3-319-60882-2_6.

Chandola, Varun, Arindam Banerjee, and Vipin Kumar (2009). “Anomaly detection:
A survey”. In: ACM Comput. Surv. 41, 15:1–15:58.

Cheng, Justin, Cristian Danescu-Niculescu-Mizil, and Jure Leskovec (2021). “An-
tisocial Behavior in Online Discussion Communities”. In: Proceedings of the In-

ternational AAAI Conference on Web and Social Media 9.1, pp. 61–70. URL: https:
//ojs.aaai.org/index.php/ICWSM/article/view/14583.

Chun-Hui, Xiao et al. (2018). “Anomaly Detection in Network Management System
Based on Isolation Forest”. In: 2018 4th Annual International Conference on Network

and Information Systems for Computers (ICNISC), pp. 56–60.
Dandolo, David et al. (2021). AcME – Accelerated Model-agnostic Explanations: Fast

Whitening of the Machine-Learning Black Box. DOI: 10.48550/ARXIV.2112.12635.
URL: https://arxiv.org/abs/2112.12635.

https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1007/978-3-319-60882-2_6
https://doi.org/10.1007/978-3-319-60882-2_6
https://ojs.aaai.org/index.php/ICWSM/article/view/14583
https://ojs.aaai.org/index.php/ICWSM/article/view/14583
https://doi.org/10.48550/ARXIV.2112.12635
https://arxiv.org/abs/2112.12635

94 Bibliography

Doshi-Velez, Finale and Been Kim (2017). Towards A Rigorous Science of Interpretable

Machine Learning. DOI: 10.48550/ARXIV.1702.08608. URL: https://arxiv.org/
abs/1702.08608.

Hall, Patrick and Navdeep Gill (2019). An Introduction to Machine Learning Inter-

pretability. An Applied Perspective on Fairness, Accountability, Transparency, and Ex-

plainable AI. 2nd ed. URL: https : / / www . oreilly . com / library / view / an -
introduction-to/9781492033158/.

Karev, Dimitar, Christopher B. McCubbin, and Ruslan Vaulin (2017). “Cyber Threat
Hunting Through the Use of an Isolation Forest”. In: Proceedings of the 18th Inter-

national Conference on Computer Systems and Technologies.
Katiyar, S. K. and P. V. Arun (2014). Comparative analysis of common edge detection

techniques in context of object extraction. DOI: 10.48550/ARXIV.1405.6132. URL:
https://arxiv.org/abs/1405.6132.

Kriegel, Hans Peter, Matthias Schubert, and Arthur Zimek (Dec. 2008). “Angle-based
outlier detection in high-dimensional data”. English. In: Proceedings of the 14th

ACMKDD International Conference on Knowledge Discovery and Data Mining. 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ; Conference date: 24-08-2008 Through 27-08-2008. United States: As-
sociation for Computing Machinery, pp. 444–452. ISBN: 978-1-60558-193-4. DOI:
10.1145/1401890.1401946.

Kumar, Srijan et al. (2018). “MIS2: Misinformation and Misbehavior Mining on the
Web”. In: Proceedings of the Eleventh ACM International Conference on Web Search and

Data Mining. WSDM ’18. Marina Del Rey, CA, USA: Association for Computing
Machinery, 799–800. ISBN: 9781450355810. DOI: 10.1145/3159652.3160597. URL:
https://doi.org/10.1145/3159652.3160597.

Liu, Fei Tony, Kai Ting, and Zhi-Hua Zhou (Jan. 2009). “Isolation Forest”. In: pp. 413
–422. DOI: 10.1109/ICDM.2008.17.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing Data using t-
SNE”. In: Journal of Machine Learning Research 9.86, pp. 2579–2605. URL: http://
jmlr.org/papers/v9/vandermaaten08a.html.

Manning, Christopher D. and Hinrich Schütze (1999). Foundations of Statistical Natu-

ral Language Processing. Cambridge, MA, USA: MIT Press. ISBN: 0262133601.
McInnes, Leland, John Healy, and Steve Astels (2017). “hdbscan: Hierarchical den-

sity based clustering”. In: The Journal of Open Source Software 2.11, p. 205.

https://doi.org/10.48550/ARXIV.1702.08608
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://www.oreilly.com/library/view/an-introduction-to/9781492033158/
https://www.oreilly.com/library/view/an-introduction-to/9781492033158/
https://doi.org/10.48550/ARXIV.1405.6132
https://arxiv.org/abs/1405.6132
https://doi.org/10.1145/1401890.1401946
https://doi.org/10.1145/3159652.3160597
https://doi.org/10.1145/3159652.3160597
https://doi.org/10.1109/ICDM.2008.17
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

Bibliography 95

McInnes, Leland, John Healy, and James Melville (2018). UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction. DOI: 10.48550/ARXIV.1802.
03426. URL: https://arxiv.org/abs/1802.03426.

Molnar, Christoph (2022). Interpretable Machine Learning. A Guide for Making Black Box

Models Explainable. 2nd ed. URL: https://christophm.github.io/interpretable-
ml-book.

Qader, Wisam, Musa M. Ameen, and Bilal Ahmed (June 2019). “An Overview of
Bag of Words;Importance, Implementation, Applications, and Challenges”. In:
pp. 200–204. DOI: 10.1109/IEC47844.2019.8950616.

Ranga Suri, N. N. R., Narasimha Murty M, and G. Athithan (2019). “Outlier Detec-
tion”. In: Outlier Detection: Techniques and Applications: A Data Mining Perspective.
Cham: Springer International Publishing, pp. 13–27. ISBN: 978-3-030-05127-3. DOI:
10.1007/978-3-030-05127-3_2. URL: https://doi.org/10.1007/978-3-030-
05127-3_2.

Shalev-Shwartz, Shai and S. Ben-David (2014). Understanding Machine Learning: From

Theory to Algorithms. Cambridge University Press. ISBN: 9781107057135. URL: http:
//www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html,
/bib / shalev - shwartz / shalev2014understanding / Understanding _ Machine _
Learning.pdf.

Togbe, Maurras Ulbricht et al. (2020). “Anomaly Detection for Data Streams Based
on Isolation Forest Using Scikit-Multiflow”. In: Computational Science and Its Ap-

plications – ICCSA 2020 12252, pp. 15 –30.
Wei, Qi et al. (2018). “Anomaly detection for medical images based on a one-class

classification”. In: Medical Imaging 2018: Computer-Aided Diagnosis. Ed. by Nicholas
Petrick and Kensaku Mori. Vol. 10575. International Society for Optics and Pho-
tonics. SPIE, p. 105751M. DOI: 10.1117/12.2293408. URL: https://doi.org/10.
1117/12.2293408.

Xie, Junyuan, Ross Girshick, and Ali Farhadi (2016). “Unsupervised Deep Embed-
ding for Clustering Analysis”. In: Proceedings of the 33rd International Conference on

International Conference on Machine Learning - Volume 48. ICML’16. New York, NY,
USA: JMLR.org, 478–487.

Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli (2018). “On algorithms
selection for unsupervised anomaly detection”. In: Pacific Rimm Dependable com-

puting Conference (PRDC18). IEEE. ISBN: 978-153865700-3. DOI: 10.1109/PRDC.
2018.00050.

https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.48550/ARXIV.1802.03426
https://arxiv.org/abs/1802.03426
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1109/IEC47844.2019.8950616
https://doi.org/10.1007/978-3-030-05127-3_2
https://doi.org/10.1007/978-3-030-05127-3_2
https://doi.org/10.1007/978-3-030-05127-3_2
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html,/bib/shalev-shwartz/shalev2014understanding/Understanding_Machine_Learning.pdf
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html,/bib/shalev-shwartz/shalev2014understanding/Understanding_Machine_Learning.pdf
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html,/bib/shalev-shwartz/shalev2014understanding/Understanding_Machine_Learning.pdf
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html,/bib/shalev-shwartz/shalev2014understanding/Understanding_Machine_Learning.pdf
https://doi.org/10.1117/12.2293408
https://doi.org/10.1117/12.2293408
https://doi.org/10.1117/12.2293408
https://doi.org/10.1109/PRDC.2018.00050
https://doi.org/10.1109/PRDC.2018.00050

	Introduction
	Main Goals
	Real-world industrial case

	Data exploration and features engineering
	Data acquisition and pre-processing
	Machine System Health (MaSH) platform
	Data store and management
	Raw data structure
	Data preparation

	Feature Engineering
	Alarms information section
	Machine states
	Machine states transitions
	Recipe/Format/Speed
	Visualization techniques

	Representations: featurized data
	Representations 1,2,3
	Representation 4
	Representation 5
	Some considerations

	Anomaly Detection
	Anomaly Detection: an overview
	Types of anomalies
	AD algorithms

	Computational Aspects
	The isolation paradigm
	Isolation Forest
	How it works?
	Background: the Isolation Forest formally
	Results
	AD results and considerations
	Different time resolutions
	Test on other machines
	Data quality lack

	HDBSCAN
	HDBSCAN: interpretability

	Interpretability
	Interpretability in Machine Learning: a brief introduction
	Methods
	AcME
	How it works ?
	AcME: Anomaly Detection interpretability tool

	DIFFI

	Comparison: normalized counts and TF-IDF

	Conclusion
	Proposed interpretable anomaly detection system
	Future research direction

	Appendix
	Anomaly detection results
	Normal points
	Anomaly points

	HDBSCAN interpretability results
	Medoids
	Curse of dimensionality handling

