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To my dear family and friends.

CÌnS��iK���
The road of a thousand ri starts from a step.
Japanese proverb.
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Abstract

The scientific research introduces important advantages to society, with the im-
provement of every day life and the increase of industrial production: the idea of
Industry 4.0 is becoming reality and the smart factories are growing all around the
world. The changing of industrial manufacture, lead human work in close contact
with robot. This collaboration yields benefit if it is ensure the safety of the op-
erator. In this research, two important aspects of human and robot cooperation
are analysed: the robustness of motion to parameter fluctuation and the control of
motion suppression in the case of collision with an obstacle. A novel linear actu-
ator, called Helical Motor, is proposed in order to achieve high performance and
high back drivability with a small size. The design of control gains are performed
in order to make system robust to model uncertainties. Furthermore, simulations
and experiments are conducted, with the variation of model parameters, in order
to verify the control performance. A new method for motion suppression, actu-
ated when the impact with an obstacle occurs, is developed and it is based on the
computation of kinetic energy. By simulation and experiment the robustness of the
proposed approach to parameter fluctuations is evaluated.
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Chapter 1

Introduction

1.1 Background

Nowadays, robots are largely used in many fields of human society, such as indus-
tries, medical treatment and human support [1]. Since human safety is one of the
priority, actuators applied to these robot have to be powerful and safe at the same
time.
Actually, electrical motors combining with high-reduction-ratio gears are largely
used in industrial robots in order to achieve high torque easily. On the other hand,
high-reduction-ratio gears produce large friction when the robot collides with an
obstacle. Moreover, the high performances in a compact size actuator are very im-
portant to reach a good result.
A novel high thrust force actuator with high backdrivability that matches previous
request is developed and it is called Helical Motor. Although this motor presents
good tracking results, the analysis of parameter fluctuations are important to pre-
dict the motion, when a load is applied, and to prevent model instability. Therefore,
the resulting trajectory can be correctly predicted and human can work in contact
with robotic arm driven by helical motor in a safety way.

1.2 Research Objectives

The aim of this research is to analyse the situations in which human and robot
cooperation could be dangerous. Precisely, the variation of motor parameters is
performed in order to study the behaviour of helical motor in situations different
from the nominal ones, while the suppression of joint motion, in case of collision
with obstacle, is examined to prevent environmental damages or people’s injuries.
Regarding the latter, a new method is derived, based on kinetic energy computation;
it can be applied in many situations because it does not require any adjustment of
a threshold value to suppress the motion.
The organization of this thesis can be described as follows. Chapter 2 provides a
brief introduction of helical motor, where the equations of motion, based on the
linearised model, are displayed and the control laws are introduced.
In Chapter 3 the system robustness is analysed and the transfer functions of model
are carried out. The model of system uncertain is introduced, precisely an inverse
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CHAPTER 1. INTRODUCTION 2

multiplicative perturbation model is considered.
In Chapter 4 and Chapter 5 the kinematic and dynamic equations of one-link and
two-link manipulators are implemented. In both cases, the Surface-mounted Per-
manent Magnet prototype is considered since it easily lends itself to be applied to
a robotic arm.
Chapter 6 analyses the impact environment: the model of collision is described and
the study of motion suppression is performed. In this context, a novel method to
stop the motion, based on kinetic energy computation, is introduced and it is called
Kinetic Energy Derivative Threshold .
In Chapter 7, the analysis of transfer functions is applied to the helical motor and
the variation of mass, inertia and magnetic constant is observed at system output.
It is extended in case of helical motor as joint of one-link and two-link manipulators.
Moreover, under the variation of nominal mass, the results of motion suppression
method are examined, considering both the proposed method (the Kinetic Energy
Derivative Threshold) and an existing one (called Calculating Brake Time).
Chapter 8 describes the experiment related to parameter fluctuations considering
the Interior Permanent Magnet prototype of helical motor and its response during
motion suppression approaches.
Chapter 9 contains the conclusion of the research.



Chapter 2

The Helical Motor

In this chapter a brief description of helical motor is provided, the linearised model
is introduced and the equations of the control system is described. In particular,
the PD law is applied to force and position control and two Disturbance Observers
are introduced to estimate disturbances in linear and rotary directions.

2.1 Introduction

The helical motor[2][3] is a novel high thrust force actuator with high backdrivability
composed by a mover and a stator with spiral shape. Its main advantage is the
capability of direct drive frictionless motion.
Permanent magnets are installed in the stator and two sets of three-phase windings
are applied to the mover. Thrust force and torque are generated by controlling two
inverters corresponding to the windings. The linear motion is extracted from screw
motion in order to drive a load and the mover moves spirally in the stator.
Figure 2.1 illustrates the Interior Permanent Magnet (IPM) and Surface-mounted
Permanent Magnet (SPM) prototypes of helical motor: the features of each type
are described in Appendix C.
When the mover is in contact with the stator, by the attractive force, which acts
between the stator core and the mover magnet, the system is in an uncontrolled
state: in this case current is applied to the winding to float the mover from the
stator. In this way, the magnetic levitation control is implement and the air gap
between the stator and the mover is kept constant.
Using the electromagnetic force and the gap displacement between stator and mover,
the levitation from the stator is performed and large frictional forces are avoid.
The spiral motor has two degree-of-freedom control. By controlling the air gap, the
angular control provided by q-axis current will give forward or backward thrust.
Gap displacement xg is computed through the difference between the linear position
x and the angular position θ of the mover (as shown in Equation (2.1)) and it is
measured by linear and rotary encoder:

xg = x− hθ (2.1)

h =
lp
2π

(2.2)

3



CHAPTER 2. THE HELICAL MOTOR 4

where lp is a lead length of the helix.
Total equations of the thrust f and torque τ are derived from the analysis of motion
model, described in Appendix B. In order to achieve motion control, the approxi-
mate model linearised around xg = 0 is considered.

f = Kgnxg +KfnId (2.3)

τ = KτnIq − hf (2.4)

The d-axis current is represented by Id and it mainly controls linear motion, whereas
Iq describes q-axis current and it is related to rotary motion. The parameters
Kgn ,Kfn and Kτn are the nominal values of magnetic force constant, thrust force
constant and torque constant, respectively.
Considering the external thrust fdis and torque τdis as disturbance affecting the
mover, the helical motor equations of motion are described in (2.5) and (2.6) 1.

Mẍ = f − fdis (2.5)

Jθ̈ = τ − τdis (2.6)

(a) IPM Spiral Motor (b) IPM Spiral Motor

(c) SPM Spiral Motor (d) SPM Spiral Motor

Figure 2.1: IPM and SPM Helical Motor Prototype

1The total forces and torques acting to the system are the follows: Mẍ is the motor trust with
mass M , Jθ̈ is the motor torque with inertia J , KfId is the force from d-axis current, KτIq is the
force from q-axis current and Kgxg represents the force generated during magnetic levitation.
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2.2 Acceleration Control

To perform acceleration control, motion equations are used and dq-axis reference
current equations are generated.
Solving Equations (2.5) and (2.6) and substituting Id, Iq, ẍ and θ̈ with the reference

values Irefd , Irefq , ẍref and θ̈ref , the acceleration control is achieved:

Irefd =
1

Kfn

(
Mnẍ

ref −Kgnxg + f̂dis

)
(2.7)

Irefq =
1

Kτn

(
Jnθ̈

ref + h
(
Kgnxg +KfnI

ref
d

)
+ τ̂dis

)
(2.8)

where Mn and Jn are mass and inertia nominal values, respectively.
The disturbance in the linear and rotary directions are estimated and compensated
by two Disturbance Observer (DOB), described in Appendix A, whose equations
are represented as follows.

f̂dis =
wd

s+ wd

(
KfnI

ref
d +Kgnxg+wdMnẋ

)
− wdMnẋ (2.9)

τ̂dis =
wdτ

s+ wdτ

(
Kgnxg−h

(
KfnI

ref
d +Kgnxg

)
+wdτJnθ̇

)
−wdτJnθ̇ (2.10)

Here, s is the Laplace operator, wd and wdτ are the cut-off frequencies in linear
and rotary motion. Figure 2.2 shown the two block diagrams of the disturbance
observers.

(a) Block Diagram of Rotation DOB

(b) Block Diagram of Linear DOB

Figure 2.2: Block Diagram of Linear and Rotation Disturbance Observers
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2.3 Gap and Position Control

Perform magnetic levitation with a stable control of the gap displacement avoids
any contact between the mover and the stator.
The gap controller consists of a PD-control that generates the gap displacement
acceleration reference ẍrefg , as shown in Equation (2.11)

ẍg
ref = Kpg

(
xrefg − xg

)
+Kdg

(
ẋrefg − ẋg

)
(2.11)

where Kpg and Kdg are designed by pole-placement of the gap response based on

Equations (2.5), (2.6) and control law (2.11) [4]. The reference value xrefg is given
by a zero power control[5].
Actually, a pair of complex conjugate poles are chosen in order to improve the
robustness of control to parameter fluctuations.
Position controller is based on PD-control law

ẍref = Kpx (xcmd − x) +Kdx (ẋcmd − ẋ) + ẍcmd (2.12)

where ẍref is the linear acceleration reference value and xcmd is the position com-
mand of the mover. The PD-control gains, Kpx and Kdx, are designed by pole
placement of the ideal linear position response with the same procedure followed
for the control gap gains. Also in this situation, a pair of complex conjugate poles
are chosen.

2.4 Force and Torque Control

Regarding force control, a proportional law with damping effect is used.

ẍref = Kpf

(
f ref − f̂ react

)
−Kdf ẋ (2.13)

The proportional gain Kpf and the damping factor Kdf are designed to improve the

robustness. The symbol f̂ react represents the estimated reaction force computed by
the Reaction Force Observer (RFOB) as follow.

f̂ react =
wreact

s+ wreact

(
KfnI

ref
d +Kgnxg + wreactMnẋ

)
− wreactMnẋ (2.14)

The angular acceleration reference θ̈ref is computed from the acceleration references
ẍref and ẍg

ref .

θ̈ref =
ẍref − ẍrefg

h
(2.15)



Chapter 3

Robustness of Control System

Robustness is an important problem in control-system design because real systems
are affected by external disturbances, noises and parameter fluctuations[6]. In this
chapter, the system transfer functions are analysed in order to understand which
parameter mainly affect the motion. Moreover, the model applied to uncertainties
is described.

3.1 Input Output Relationship

Actually, the real value of motor parameters is unknown and an approximation,
given by the nominal value, is used.
For this reason, the analysis of modelling errors is necessary in order to improve the
accuracy of results.
On the base of the block scheme in Figure 3.1, the transfer functions between the
linear acceleration reference and the linear acceleration and the rotary acceleration
are computed in (3.1) and (3.2), respectively.

ẍ

ẍref
=

Mns+Mnwd
Ms+Mnwd

(3.1)

θ̈

ẍref
=

Nxθ

Dxθ
(3.2)

Nxθ = JnMs4 + ((JnMn + JnM)wd + JnKdgMn) s3

+
(
JnMnw

2
d + 2JnKdgMnwd + JnKpgMn

)
s2

+
(
JnKdgMnw

2
d + 2JnKpgMnwd

)
s+ JnKpgMnw

2
d (3.3)

Dxθ = JMhs4 + ((JMn + JnM)hwd + JnKdgMh) s3

+
(
JnMnhw

2
d + (JnMn + JnM)Kdghwd + JnKpgMh

)
s2

+
(
JnKdgMnhw

2
d + (JnMn+JnM)Kpghwd

)
s+ JnKpgMnhw

2
d (3.4)

Here, the subscript n means the nominal value and the system quantities are in-
troduced in Chapter 2. The relationships underline the importance of mass and
inertia parameters to system outputs. Although Equation (3.1) shows the influence
of mass, the variance of magnetic force constant and inertia are performed in order
to test the response of the system to parameter uncertainties.
Finally the transfer function between the external force and the reference one is
computed, as in Equation (3.5). The response is strictly connected with mass pa-

7
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Figure 3.1: System Model

rameter.
fex
fcmd

=
Ne (s)

De (s)
(3.5)

Ne (s) = KdmpKpf Mn s
2 + (KdmpKpf Mnwd +Kpf KsprMn) s

+Kpf KsprMnwd (3.6)

De (s) = Ms3 + (((KpfM+ 1)−KpfMn)Mnwd+KdfMn+Kdmp)s
2

+ ((KdmpKpf+Kdf) Mnwd+Kspr)s+KpfKsprMnwd (3.7)

3.2 Modelling of System Uncertain

A mathematical model of any real system is an approximation of the true, physical
reality of the system dynamics.
The uncertainty can be classified into two categories: disturbance signals (which
includes input and output disturbance, sensor noise and actuator noise, etc.) and
dynamic perturbations (that represents the discrepancy between the mathematical
model and the actual dynamics of the system in operation).
The parameter fluctuations are modelled as an inverse input multiplicative pertur-
bation, as described by (3.8), where P(s) denotes the actual, perturbed system and
Pn(s) a nominal model description of the physical system.

Pn(s) = P (1 + α) (3.8)

The parameter α represents the uncertain that affects the real system. Figure 3.2
shows the block scheme of uncertainty model.
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Figure 3.2: Model of Uncertainty



Chapter 4

One-link Manipulator

In this section a planar one-link manipulator is analysed by derivation of kinematics
and dynamics equations[7][8]. The parameters used are described in Table 4.1, while
Figure 4.1(a) shows the considered robotic arm with a SPM-type helical motors as
manipulator joint.
In order to avoid misunderstandings in this chapter, the motor linear position and
gap displacement are represented respectively by r and rg, while x indicates the
position in the 2-D space. Figure 4.2 displays an example of one-link manipulator
actuating by the SPM prototype.

4.1 Mathematical Description

The considered set of generalized coordinates is q = [q1, q2, q3]
T = [r, α, β]T where

α is the angle between link and helical motor, β is the angle between links and r
represent the length of helical motor. The closed-chain system is virtually cut open
at the connection point between the rotor final point and the links; then the kinetic
energies are computed.

Km =
1

2
Mm

(
ẋ2mover + ẏ2mover

)
+

1

2
Ms

(
ẋ2stator + ẏ2stator

)
+

1

2
Jmα̇

2 +
1

2
Jsα̇

2

=
1

2
Mm

(
r2α̇2 + ṙ2

)
+

1

2

(
L2
sMs + Jm + Js

)
α̇2 (4.1)

Ka =
1

2
Ma(ẋ

2
link + ẏ2link) +

1

2
Jaβ̇

2

=
1

2

(
L3

2

2

Ma + Ja

)
β̇2 (4.2)

where (xstator, ystator) is the coordinate of stator final position, (xmover, ymover) is
the coordinate of mover final position and (xlink, ylink) is the coordinate of link.

10
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Their values are gauged as follow:

xstator = Ls cos (α) (4.3)

ystator = Ls sin (α) (4.4)

xmover = r cos (α) (4.5)

ymover = r sin (α) (4.6)

xlink =
L3

2
cos (β) + L1 (4.7)

ylink =
L3

2
sin (β). (4.8)

The considered manipulator is a planar arm and the Lagrangian is obtained as sum
of system kinetic energies:

L = Km +Ka. (4.9)

Equation of motion are computed using Lagrangian-Euler formulation, as in Equa-
tion (4.10) where Fi represents the generalized force.

d

dt

(
∂L(qi, q̇i)

∂q̇i

)
− ∂L(qi, q̇i)

∂qi
= Fi. (4.10)

The equation of the motion is derived from the analysis of the open-chain manip-
ulator (Figure 4.1(b)) and it is expressed by Equation (4.11), with B(q) ∈ R3×3

as the mass/inertia matrix and C(q, q̇) ∈ R3×1 as centrifugal/Coriolis matrix. The
gravity term is ignored because a planar arm is considered.

B(q)q̈ + C(q, q̇) = F (4.11)

The dynamical analysis require an additional term JTc λ as vector of constraint
forces, composed by the vector of Lagrange multiplier λ ∈ R2×1 and the Jacobian
of constraint equation Jc ∈ R2×3.

B(q)q̈ + C(q, q̇) = F − JTc λ (4.12)

where

B(q) =

Mm 0 0
0 Mmr

2 +MsL
2
s + Jm + Js 0

0 0
L2
3Ma

4 + Ja

 (4.13)

C(q, q̇) =

−Mmrα̇
2

2Mmrṙα̇
0

 (4.14)

Jc =

[
cos(α) −r sin(α) L2 sin(β)
sin(α) r cos(α) −L2 cos(α)

]
(4.15)

F =
[
fm 0 0

]T
=
[
(Kf Id + Kgrg) 0 0

]T
(4.16)

λ =
[
λ1 λ2

]T
. (4.17)

Furthermore, the relation of acceleration at the constraint satisfies the following
equation:

Jcq̈ + J̇cq̇ = 0. (4.18)

Finally contact force Fex ∈ R2×1 has to be considered when the end-effector of
the robot reacts with the environment: in this situation the geometric Jacobian
Jjacob ∈ R2×3 is computed in order to translate the external force in joint space.
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Then the motion equation is derived, as expressed by (4.19), where the dynamic of
the helical motor is included:

B(q)q̈ + C(q, q̇) = F + JTc λ+ JTjacobFex (4.19)B(q̈) JTc 0
Jc 0 0
0 0 Jm

q̈λ
θ̈

 =

−C(q̇, q) + F + JTjacobFex
−J̇cq̇
τm

 . (4.20)

Here, τm is the total torque equation of helical motor expressed in Equation (2.4)
and Jm is the moment of inertia about the motor rotation axis.

4.2 Workspace Position Control

The relationship between the motor liner position r and the angle β is expressed by
cosine theorem.

r =
√
L2
2 + L2

1 + 2L1 L2 cos(β) (4.21)

By differentiating with respect to time, the relation (4.21) is expressed in the velocity
dimension:

ṙ = − L1 L2 sin (β)√
2L1 L2 cos (β) + L2

2 + L2
1

β̇. (4.22)

The control variable is represented by angle β and a Proportional-Derivative control
law is implemented in order to compute the angular acceleration reference β̈ref

β̈ref = Kpβ(βref − β) +Kdβ(β̇ref − β̈) + β̈ref (4.23)

where

β = acos

(
r2 − L2

2 − L1
2

2L1 L2

)
(4.24)

β̇ = − r

L1 L2

√
1− (r12−L2

2−L2
1)

2

4L2
1 L

2
2

ṙ (4.25)

βref = acos(
r − L1

L3
) (4.26)

β̇ref = − L3ṙ

L3

√
(− r2 + 2L1r + L2

3 − L2
1)
. (4.27)

Then, the relation concerning the reference acceleration r̈ref is obtained by differ-
entiating with respect to time the Equation (4.22).
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Parameter Character V alue

Links Length L1 L2 L3 0.19, 0.095 0.35 [m]

Links Length L4 L5 L6 0.2, 0.08, 0.35 [m]

Nominal Mass of the Stator Ms 0.8 [kg]

Nominal Mass of the Mover Mm 0.5 [kg]

Nominal Mass of the Links Ma 0.42 [kg]

Nominal Inertia of the Stator Js 1.12 · 10−3
[
kg ·m2

]
Nominal Inertia of the Arm Ja 0.05

[
kg ·m2

]
Nominal Inertia of the Mover Jm 2 · 10−3

[
kg ·m2

]
Length of the Stator Ls 0.15 [m]

Length of the Helical Motor r [0.1965 , 0.2565] [m]

Table 4.1: Simulation Parameters of One-link and Two-link Manipulators

r1

L1

L3

β1
θ1

L2

y

x

(a) One-link Manipulator, Close-Chain

r

L1

L3

β1

L2
Ls

α1

Conneting Point

y

x

(b) One-link Manipulator, Open-Chain

Figure 4.1: One-link Manipulator
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Figure 4.2: Example of 0ne-link Manipulator



Chapter 5

Two-link Manipulator

In this section the kinematic model and the derivation of dynamic for a planar
two-link manipulator is carried out. Figure 5.1 shows the considered robotic arm,
where two SPM-type helical motors are installed as manipulator joints[9][10]. The
parameters used for derivation are summarized in Table 4.1. For simplicity, a planar
manipulator is analysed and the gravitational elements can be neglected. In order
to avoid misunderstandings, the motor linear position and gap displacement are
represented by r and rg respectively, while x indicates the position in the 2-D
space.

5.1 Mathematical Description

Consider q =
[
q1 q2 q3 q4 q5 q6

]
=
[
r1 r2 α1 α2 β1 β2

]
as the set of

generalized coordinates, where αi, i = 1, 2, is the angle between link and helical
motor, βi, i = 1, 2, is the angle between links and ri, i = 1, 2, represent the length
of helical motor. The closed-chain system is virtually cut open at the connection
point between the rotor-end and links (as in Figure 5.1(b)) in order to get motion
equations. Kinetic energies are computed as follows.

Km =
1

2
Mm,1(ẋ

2
mover,1 + ẏ2mover,1) +

1

2
Ms,1(ẋ

2
stator,1 + ẏ2stator,1) +

1

2
(Jm1 + Js1) α̇

2

+
1

2
Mm,2(ẋ

2
mover,2+ẏ2mover,2)+

1

2
Ms,2(ẋ

2
stator,2+ẏ2stator,2)+

1

2
(Jm2+Js2)α̇

2 (5.1)

Ka =
1

2
Ma,1(ẋ

2
link,1 + ẏ2link,1) +

1

2
Ma,2(ẋ

2
link,2 + ẏ2link,2) (5.2)

15
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where the coordinates of stators, movers and links end point are (xstator,ystator),
(xmover,ymover) and (xlink,ylink), respectively.

xstator,1 = Ls,1 cos (α1) (5.3)

ystator,1 = Ls,1 sin (α1) (5.4)

xmover,1 = r1 cos (α1) (5.5)

ymover,1 = r1 sin (α1) (5.6)

xlink,1 = L1 +
L3

2
cos (β1) (5.7)

ylink,1 =
L3

2
sin (β1) (5.8)

xstator,2 = L1 + L4 cos (α1) + Ls,1 cos (α1 + β2) (5.9)

ystator,2 = L4 sin (α1) + Ls,1 sin (α1 + β2) (5.10)

xmover,2 = L1 + L4 cos (α1) + r2 cos (α1 + β2) (5.11)

ymover,2 = L4 sin (α1) + r2 sin (α1 + β2) (5.12)

xlink,2 = L1 +
L3

2
cos (β1) +

L6

2
cos (β1 + β2) (5.13)

ylink,2 =
L3

2
sin (β1) +

L6

2
sin (β1 + β2). (5.14)

The considered manipulator is a planar arm and the Lagrangian is obtained as sum
of system kinetic energies:

L = Km +Ka. (5.15)

The equations of motion are computed using Lagrangian-Euler formulation, as in
Equation (5.16) where Fi, with i = 1...6 represent the generalized force.

d

dt

(
∂L(qi, q̇i)

∂q̇i

)
− ∂L(qi, q̇i)

∂qi
= Fi (5.16)

They are extended to the open link chain as in (5.17), with B(q) ∈ R6×6 as the
mass/inertia matrix, C(q, q̇) ∈ R6×1 as centrifugal/Coriolis matrix and JTc λ as
vector of constraint forces, where Jc ∈ R4×6 is the constraint Jacobian. The La-
grangian multiplier method is introduced to solve the equations of motion in the
case of binding force, with λ = [λ1 λ2 λ3, λ4]

T the vector of undetermined Lagrange
multiplier.

B(q)q̈ + C(q, q̇) = F + JTc λ (5.17)

F =
[
fm1 fm2 0 0 0 0

]T
=
[
(Kf1Id1 +Kg1rg1) (Kf2Id2 +Kg2rg2) 0 0 0 0

]T
(5.18)

Furthermore, the relation of acceleration at the constraint satisfies the following
equation:

Jcq̈ + J̇cq̇ = 0. (5.19)

Finally, contact force Fex ∈ R2×1 has to be considered when the robot end-effector
reacts with the environment: in this situation the geometric Jacobian Jjacob ∈ R2×6

is considered in order to translate the external force in joint space.
Then, the motion equation is derived, as shown by (5.20), where the dynamic of
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the helical motor is considered:

D(q)q̈ + C(q, q̇) = F + JTc λ+ JTjacobFex (5.20)D(q̈) JTc 0
Jc 0 0
0 0 Jm

q̈λ
θ̈

 =

−C(q̇, q) + F + JTjacobFex
−J̇cq̇
τm

 (5.21)

in which τm is the total torque equation of helical motor expressed in (2.4) and
Jm = diag (Jm,1 Jm,2) is the moment of inertia about the motor rotation axis of
joint 1 and joint 2.

5.2 Workspace Position Control

The geometric Jacobian, that express the relation between end-effector and joint
velocity, is computed applying the derivation by time of the kinematic equation
(5.22):

xe =

[
L1 + L3 cos (β1) + L6 cos (β1 + β2)
L3 sin (β1) + L6 sin (β1 + β2)

]
(5.22)

where the relationship between the angle βi, i = 1, 2, and the motor length ri,
i = 1, 2, is obtained by the cosine formula

β1 = arccos

(
r21 − L2

1 − L2
2

2L1L2

)
(5.23)

β2 = arccos

(
r22 − (L3 − L4)

2 − L2
5

2(L3 − L4)L5

)
. (5.24)

Then, the differential kinematic equation is

ẋe = Jjacob(q)ṙ. (5.25)

Finally, by deriving the Equation (5.25) with respect to time, the relation describing
joints linear acceleration, as a function of end-effector velocity and acceleration, is
obtained

r̈ = Jjacob(q)
−1ẍe − Jjacob(q)−1J̇jacob(q)ẋe. (5.26)
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Figure 5.1: Two-link Manipulator



Chapter 6

Impact Control

In this section, the reaction force generated by the contact between an obstacle and
the robot end-effector is considered. A mathematical model of impact is provided
and the performance of two approaches for the suppression are analysed. Precisely,
the Kinetic Energy Derivative Threshold method is proposed in order to stop the
motion in all condition, with an universal threshold value; while the Calculating
Brake Time is an existing method based on momentum computation, whose main
purpose is to reduce the strength of the force. Finally, an impact detection method,
based on gap power, is described.

6.1 Model of Impact

The impact force is generated by the contact between the robot and obstacle and
it is strictly related to the kinetic energy of the manipulator. The environment
interacting with the end-effector can be represented by spring-damper model:

f react = Ksx+Kdẋ (6.1)

where the spring coefficient, Ks, and the viscous friction coefficient, Kd, are related
to the considered environment. Figure 6.1 illustrates the impact model.
In general Ks > Kd and high value of spring gain leads to large value of reaction
force. Moreover, the impact force is related to system kinetic energy: when the
collision takes place, the robot kinetic energy is mainly transformed in thermal
energy, that can cause damages and deformations. For this reason fast motion
suppression method is required.

6.2 Motion Suppression

Suppressing the impact force and motion is necessary to preserve the surrounding
environment and ensure human safety. In the past decades, many researchers stud-
ied the avoidance of collision forces. A mechanism was proposed to suppress them
in [11], where the impact force is passively reduced without any control. Sami Had-
dadin et al. [12] analysed many reaction strategies to decrease the potential danger.
Concerning the simple force control method, it could not be sufficient to guarantee
the work safety.
In this cases, the consumption of all kinetic energy is important in order to suppress

19
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Figure 6.1: Impact Model

the motion and the proposed method has to be applied universally, since different
situations could occur.
Using helical motor, a suited procedure to consume kinetic energy is obtained by
applying the maximum brake current in the opposite direction of motion after the
collision detection and shifting to the force control. In helical motor, it is necessary
to change in force control when the brake control is applied because it could lead
to gap instability due to high current values.

6.2.1 Kinetic Energy Derivative Threshold

The Kinetic Energy Derivative Threshold (KEDT) is an automatic threshold method
to suppress motion[13].
The kinetic energy, expressed by (6.2) can be calculated in real time by measuring
the spiral motor speed. The aim of this control is to suppress impact and to con-
sume all system kinetic energy.
An automatic threshold is used, based on the derivative of kinetic energy which is
computed as in equation (6.3).

E =
1

2
M · ẋ2 (6.2)

Ė = M · ẋ · ẍ (6.3)

In order to generate maximum thrust, a limit value for the d-axis current is provide
in opposite direction of the motor during brake control. At the same time, the q-axis
current achieves limit value for stabilizing gap because the generated high thrust
makes lose the compensation given by disturbance observer. A maximum torque is
supplied in the direction of stabilization, that is, the one for which xg converges to
0.
Finally, the motion is suppressed switching to the force control after the brake
control by governing the current with the acceleration control system described in
Section 2.2.
At impact time, if the kinetic energy increases and its derivative is positive, the
motion is stopped by brake control. The system equation that describes the current
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behaviour to suppress motion is shown in (6.4) and (6.5).

Irefd =

{
−Imaxd sign(ẋ) Ė> 0
1

Kfn

(
Mnẍ

ref −Kgnxg + f̂dis

)
Ė< 0

(6.4)

Irefq =

{
Imaxq sign(ẋg) Ė> 0
1

Kτn

(
Jnθ̈

ref + h
(
Kgnxg +KfnI

ref
d

)
+ τ̂dis

)
Ė< 0

(6.5)

6.2.2 Calculating Brake Time

The Caluculating Brake Time (CBT) method[14] is based on momentum computa-
tion because, when kinetic energy is calculated in real time, the influence of pseudo-
derivative could be not negligible. The momentum is derived by integrating both
sides of the motion equation:

Mẋ =

∫
(KfId +Kgxg − fex) dt. (6.6)

If it can be assumed that the external force and the magnetic attractive force do
not change while the braking force is applied, then impulse is the product of the
brake time,

Mẋimp =
(
KfI

limit
d +Kgxgimp − feximp

)
∆t (6.7)

where ximp, xgimp , and feximp represent the collision velocity, the collision gap dis-
placement and the impact force, respectively.
Finally, the braking time to consume kinetic energy is expressed by the following
equation

∆t =

∣∣∣∣∣ Mẋimp

KfI
limit
d +Kgxgimp − feximp

∣∣∣∣∣ . (6.8)

6.3 Impact Detection using Gap Power

The gap energy is a specific element of helical motor and it can be used in order
to detect the time of impact. The power is obtained by derivative of the estimated
work, L, that can be exerted on the gap by external force, as described in the
following equations

L =

∫
f̂exdxg (6.9)

∆L =
dL

dt
= f̂exẋg (6.10)

where f̂ex is the estimated force and ẋg is the gap velocity.
The gap velocity is set instead of the mover velocity ẋ because, even when x moves
greatly, the change in xg is small due to the gap control, so ∆L can be maintained
near 0. The proposed signal ẋg changes greatly only when a sharp disturbance, such
as a collision, is added.
Hence, the gap power becomes a good indicator since it reacts only at the collision
time.



Chapter 7

Simulation

The system robustness to parameter fluctuation is tested in simulation for the single
helical motor and for the one-link and two-link robotic arms.
Two different situations are analysed: the contactless case and the contact one.
In the first it is assumed no contact between the end-effector and obstacle, then
position and gap control affected by parameter fluctuations are checked. The second
considers the contact with an obstacle and the performance of the proposed motion
suppression method are analysed.

7.1 Introduction

In this section, the estimated behaviour under parameter fluctuations of helical
motor, one-link and two-link manipulators are analysed.
In all situations, the simulator code is implemented in C language and the plant
variables are calculated using Runge-Kutta method, after the realization of motion
equations.
Regarding the contact case, an hard obstacle is placed in front of the motor and
the collision is realized by a spring damper model, with Kspr = 100, 000 [N/m] and
Kdmp = 10 [N · s/m] as spring and damper coefficient, respectively. Furthermore,
the achievements of the proposed procedure is compared with a method for impact
force suppression, called Calculating Brake Time (CBT). In Calculating Brake Time
the momentum of the collision is recorded where it is assumed that all variables,
except speed, are invariant.

22
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7.2 Helical motor

In this section, IPM and SPM prototypes are considered, whose model parameters
are shown in Table 7.1 and Table 7.2, respectively.
The same control system is implemented for both motors in order to test the adapt-
ability of controllers when the model parameters change. The control gains are
designed by pole-placement of position and gap responses based on motion equa-
tions (2.5), (2.6) and control laws (2.12), (2.11) of position and gap. The gain values
are shown in Table 7.3.
Furthermore, a trapezoidal move profile is used for the creation of velocity reference
and noisy input variables are realized for a more realistic simulation.
Before starting trajectory tracking, the magnetic levitation has to be performed
in order to stabilize gap displacement. In simulation it is assumed that the gap
stabilization is done, in agreement with experiment results, and a null gap initial
displacement is set.
Regarding the contact case, the obstacle is placed at 0.009 [m] from the motor end-
effector in order to emulate the experiment setting.

Parameter Character V alue

Nominal Thrust Constant Kfn 11.15 [N/A]

Nominal Torque Constant Kτn 0.105 [Nm/A]

Nominal Magnetic Constant Kgn 122000 [N/m]

Nominal Length of the Screw lp 22 · 10−3 [m]

Nominal Mass of the Mover Mn 0.7 [kg]

Nominal Inertia of the Mover Jn 13 · 10−5
[
kg ·m2

]
Cut-off Frequency of Thrust Disturbance Observer wd 500 [rad/s]

Cut-off Frequency of Torque Disturbance Observer wdτ 500 [rad/s]

Cut-off Frequency of Reaction Force Observer wreact 300 [rad/s]

Cut-off Frequency of Low Pass Filter Pseudo Derivative wdiff 2000 [rad/s]

Cut-off Frequency of Kinetic Energy Pseudo Derivative wE 40 [rad/s]

Sampling Period of Simulation Ts 1.0 [µs]

Sampling Period of Controller Tc 66.6 [µs]

Limit d-axis Current I limd 40 [A]

Limit q-axis Current I limq 40 [A]

Gap Power Threshold ∆Lthr 0.002 [W ]

Table 7.1: Simulation Parameters of IPM Prototype
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Parameter Character V alue

Nominal Thrust Constant Kfn 9.42 [N/A]

Nominal Torque Constant Kτn 0.194 [Nm/A]

Nominal Magnetic Constant Kgn 566000 [N/m]

Nominal Length of the Screw lp 20 · 10−3 [m]

Nominal Mass of the Mover Mn 0.3 [kg]

Nominal Inertia of the Mover Jn 2 · 10−3
[
kg ·m2

]
Cut-off Frequency of Thrust Disturbance Observer wd 600 [rad/s]

Cut-off Frequency of Torque Disturbance Observer wdτ 600 [rad/s]

Cut-off Frequency of Reaction Force Observer wreact 300 [rad/s]

Cut-off Frequency of Low Pass Filter Pseudo Derivative wdiff 2000 [rad/s]

Sampling Period of Simulation Ts 10 [µs]

Sampling Period of Controller Tc 66.0 [µs]

Limit d-axis Current Irefd 40 [A]

Limit q-axis Current Irefq 40 [A]

Table 7.2: Simulation Parameters of SPM Prototype

Parameter Character V alue

Proportional Gain of Gap Controller Kpg 42925.0

Derivative Gain of Gap Controller Kdg 410.0

Proportional Gain of Position Controller Kpx 1217.0

Derivative Gain of Position Controller Kdx 67.0

Proportional Gain of Force Controller Kpf 0.1

Damping gain of Force Controller Kdf 200.0

Table 7.3: Simulation Parameters of Control

7.2.1 Contactless Case

The transfer functions between acceleration and acceleration reference, computed
in Section 3.1, underline the important role of mass and inertia parameters, then
Mn and Jn variation are tested. Moreover, the magnetic constant Kg is considered
because it is closely linked to gap displacement.
Concerning the IPM prototype, a variation α = |0.7| of nominal value in Equation
(3.8) is applied and the results are displayed in Figures 7.1 .
Concerning nominal mass, low values lead gap error to high displacement, especially
when the linear position is not constant; also the position tracking is affected by
mass and the error is small when velocity is not constant. The nominal inertia
affects the gap tracking as mass but it induces high current in q-axis values, since
both variables are connected to rotary motion. The cause of this behaviour could
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be found in the introduced quantized noise in the control variables.
The results shows that the system is more robust to magnetic constant fluctuation
because it is not directly related to system output variables, as mass and inertia
are. Figure 7.2 shows the simulation results of SPM helical motor, where α =
|0.5| is considered. The same achievements of IPM prototype are reached: the
position tracking is more sensitive to mass variation and gap displacement has large
oscillations for Mn and Jn small. Also in this situation, a higher inertia produces
important oscillations in q-axis current.
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Figure 7.1: IPM Helical Motor, Parameter Variations
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Figure 7.2: SPM Helical Motor, Parameter Variations

7.2.2 Contact Case

The transfer function (3.5) shows that the mass parameter plays an important role
in force response and the proposed method, based on kinetic energy computation,
closely depends on mass. For those reasons, only the mass variation is performed
in order to test the results of motion suppression.
In Figure 7.3 the estimated responses of kinetic energy, linear velocity and reaction
force of IPM helical motor are displayed with the uncertainty value of |0.5|.
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According to the experimental case, the value of force reference is zero and the Gap
Power method, with threshold of 0.002 [W ], is used for the detection.
The KEDT method has smaller undershoot than the CBT one in linear velocity,
when the collision takes place. Furthermore, the kinetic energy converges faster to
zero.
The reaction force is higher in KEDT, since its aim is to suppress motion, and not
to reduce the collision force. Considering α = −0.5, the responses given by the two
methods are the same, the reason can be guessed in the small value of mass.
The proposed method is more robust to nominal mass variation and regarding
parameters related to the motion, high values lead to better performance.
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Figure 7.3: IPM Prototype, Contact Case
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7.3 One-Link Manipulator

In this section the one-link manipulator moved by helical motor is analysed. In
particular, only the SPM prototype is considered since it is more suitable as robot
actuator than IPM type. The plant and control values are shown in Table 7.4.
Input signals are not affected by noise for a better analysis and a trapezoidal move
profile is computed. Regarding the obstacle position, it is set far from motor initial
point, as illustrated by Figure 7.4.

Figure 7.4: One-link Manipulator, Obstacle Position

7.3.1 Contactless Case

As suggested by Section 3, the nominal mass variation follows Equation (3.8) and
the value α equal to 0, 3 and 7 is applied.
When the nominal and real values coincide, the system is unstable. The reason can
be guessed in the mass matrix: in this case its value is smaller and the disturbance
observer can not compensate the error[15]. In Figure 7.5 is described the system
behaviour with uncertainty mass. The value Mn = 4 [Kg] (α = 7) is chosen for the
next simulations in order to analysed the variation without any error given by mass
parameter.
Concerning nominal inertia, a variation of α = |0.7| is imposed and system response
is displayed in Figure 7.6. The trajectory tracking is not affected both in joint and
end-effector domains. The gap displacement is different from its reference value
when the arm velocity is not constant. Under the same condition the q-axis current
has higher values if the nominal inertia is large: since both inertia and Irefq are
related to rotary motion, wider current has to be provided when velocity change.
Finally, the magnetic constant parameter is varied with α = |0.7| as in Figure 7.7.
In this situation there are not any changes in trajectory and velocity tracking with
respect to the reference value. Moreover, the q-axis current does not present large
value when velocity is not constant: Kg is strictly related to r and θ displacement.
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Figure 7.5: One-link Manipulator, Nominal Mass Variation
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Figure 7.6: One-link Manipulator, Nominal Inertia Variation
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Figure 7.7: One-link Manipulator, Nominal Magnetic Constant Variation

7.3.2 Contact Case

The nominal mass is varied considering the uncertainty parameter α equal to 3,
7 and 11. In this situation the impact detection is based on the force value and
not on the gap power threshold because, since it is an ideal case, the errors given
by detection are avoided. The result is described in Figure 7.8. Testing the linear
velocity of end-effector, the motion is completely suppressed after 0.1 [s] in both
approaches, but the proposed one presents a large oscillation when the mass is
high: the reason can be guessed in the high overshoot of force response that cause
a large variation in arm position when the impact is detected. The same result is
underline by kinetic energy response, where in Calculating Brake Time the energy
converges to zero in 0.2355 [s] instead of 0.2531[s] of KEDT when a small mass is
used. The reaction force in end-effector domain has large overshoot in the proposed
method caused by the important role of mass in kinetic energy. In both case, the
worst situation happens when the nominal value coincides with the lowest one,
because the system behaviour is the slowest.
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Figure 7.8: One-link Manipulator, Contact Case
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Parameter Character V alue

Links Length L1 L2 L3 0.19, 0.095, 0.35 [m]

L4 L5 L6 0.2, 0.08, 0.35 [m]

Nominal Thrust Constant Kfn 9.42 [N/A]

Nominal Torque Constant Kτn 0.194 [Nm/A]

Nominal Magnetic Constant Kgn 566000 [N/m]

Nominal Length of the Screw lp 20 · 10−3 [m]

Nominal Mass of the Mover Mn 0.5 [kg]

Nominal Inertia of the Mover Jn 2 · 10−3
[
kg ·m2

]
Cut-off Frequency of Thrust Disturbance Observer wd 600 [rad/s]

Cut-off Frequency of Torque Disturbance Observer wdτ 600 [rad/s]

Cut-off Frequency of Reaction Force Observer wreact 600 [rad/s]

Proportional Gain of Gap Controller Kpg 42925

Derivative Gain of Gap Controller Kdg 410

Proportional Gain of Position Controller Kpx 1217

Derivative Gain of Position Controller Kdx 67

Proportional Gain of Force Controller Kpf 0.01

Derivative Gain of Force Controller Kdf 100

Table 7.4: Simulation Parameters of One-link and Two-link Manipulator

7.4 Two-link Manipulator

In this section only the SPM prototype is considered, the plant and control param-
eters used in simulation are shown in Table 7.4.
A trapezoidal move profile is applied for the creation of arm velocity reference. In
this situation, the inputs signals are not affected by quantize noise in order to ob-
tain results of easy understanding. The obstacle position is set different from motor
starting point, as displayed in Figure 7.9
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Figure 7.9: Two-link Manipulator, Obstacle Position

7.4.1 Contactless Case

The mass parameter is very important for trajectory tracking of robotic arm and
when the nominal value coincides with the real one the system becomes unstable as
show in Figure 7.10.
From the Equation (3.8) of parameter fluctuation model, a variation of α = 3 and
α = 11 are performed in order to improve system stability. The arm tracking error
is close to zero when a higher nominal value is used, especially in case of constant
velocity. Regarding gap displacement, in the worst case, the oscillations are larger
than in the first joint: it is due to the big linear position displacement and to the
small value of mass matrix B(q).
Since large values of uncertain lead to better performances, in the further studies,
Mn = 6 [Kg] (α = 11) will be considered in order to perform a good analysis of
inertia and magnetic constant fluctuations.
In Figure 7.11, α = |0.7| is applied to inertia nominal value. The variation does not
affect the trajectory tracking, both in joint and end-effector domains. The q-axis
current acquires high negative value when a position change occurs and α is 0.7:
both inertia and Irefq current are related to rotary motion and a great value of
current is required in order to guarantee the stability.
Finally, the nominal magnetic constant parameter is changed with uncertainty α =
|0.7| in Figure 7.12. The variation does not influence the trajectory and reference
velocity tracking, both in joint and end-effector domains. The variation of Kg does
not interest system performance as nominal mass or inertia, because this parameter
is not directly related to system output variables, like linear and rotary position, as
the previous.
The above analysis reveals the importance of parameter fluctuation applied to the
first joint: in this case the helical motor is subjected to inner variations and to ones
given by the second joint. For this reason, motor one is more sensible to parameter
variations than the second.
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Figure 7.10: Two-link Manipulator, Nominal Mass Variation
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Figure 7.11: Two-link Manipulator, Nominal Inertia Variation
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Figure 7.12: Two-link Manipulator, Nominal Magnetic Constant Variation

7.4.2 Contact Case

In this case the nominal mass is varied considering the uncertainty parameter α
equal to 3, 7 and 11.
The results of the proposed method (KEDT) and of Calculating Brake Time (CBT)
are compared. The suppression is applied to both joints: in this way, when the im-
pact happen, all motors are controlled.
Figure 7.13 shows the simulation results and it can be seen that the two methods
have close performance and the motion is suppressed in 0.15 [s]. The mainly dif-
ference appears in the kinetic energy of the second joint: even if in the proposed
method are reached higher values, due to the different suppression approach, the
energy converges to zero at the same time.
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Figure 7.13: Two-link Manipulator, Contact Case



Chapter 8

Experiment

The results concerning helical motor obtained in simulation are verified considering
only the IPM prototype. Two different situations are analysed: the contactless case
and the contact one. In the first it is assumed no contact between the motor and
obstacle, while the second considers the contact with an object and the performance
of the proposed motion suppression method are analysed.

8.1 Experimental Set-up

The configuration of the experimental instruments and the block digram of its
structure are shown in Figure 8.1. The IPM helical motor is considered and the
DSP is implemented by the My Way Engineering Co., Ltd. In particular the PE -
Expert 3 is provided as the computing unit: it is a power electronics control system
equipped with a high-performance DSP whose clock frequency is 225 [MHz]. The
specification of each experimental components is described in Table 8.1.
Furthermore, an elastomer implements the hard obstacle which is set at 0.009 [m]
from the motor end-effector, as display in Figure 8.2.

Component Specification V alue

DSP : PE - Expert 3 Dead time 20 [ns]- 10.22 [µs]

Carrier frequency 10 [Hz]- 200 [kHz](3 phase PWM)

Inverter : MWINV-4R222 Rated output capacity 4.2 [kV A]

Rated output current 11 [A]

Rated output voltage 0− 220V [V ]

Linear encoder : RGH24X30D00A Resolution 1 [µs]

Rotary encoder : MG-30 Resolution 2/20000 [rad]

Table 8.1: Experiment Specifications
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(a) Experiment Environment

Helical Motor

Load Cell
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Computer
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(b) Structure of Experimental Equipment

Figure 8.1: Experiment Environment
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(a) Experiment Environment, Obstacle

(b) Elastomer, Frontal View (c) Elastomer, Top View

Figure 8.2: Contact Environment

8.2 Experiment Results

In this section, the IPM prototype is considered and its plant and control parameters
are shown in Table 8.2: the model coincides with the one considered in simulation,
while control gains are chosen suited to the experimental set-up.
Concerning the contact case an elastomer implements the hard obstacle and it is
placed in front of the motor. Furthermore, the achievements is compared with a
method for impact force suppression, the Calculating Brake Time (CBT).
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Parameter Character V alue

Nominal Thrust Constant Kfn 11.15 [N/A]

Nominal Torque Constant Kτn 0.105 [Nm/A]

Nominal Magnetic Constant Kgn 122000 [N/m]

Nominal Length of the Screw lp 22 · 10−3 [m]

Nominal Mass of the Mover Mn 0.7 [kg]

Nominal Inertia of the Mover Jn 1.26 · 10−4
[
kg ·m2

]
Cut-off frequency of Torque Disturbance Observer wdτ 500 [rad/s]

Cut-off frequency of Reaction Force Observer wreact 500 [rad/s]

Cut-off frequency of Low Pass Filter Pseudo-Derivative wdiff 3000 [rad/s]

Cut-off frequency of Kinetic Energy Pseudo-Derivative wE 400 [rad/s]

Proportional Gain of Gap Controller Kpg 25600

Derivative Gain of Gap Controller Kdg 320

Proportional Gain of Position Controller Kpx 8100

Derivative Gain of Position Controller Kdx 180

Proportional Gain of Force Controller Kpf 0.1

Damping gain of Force Controller Kdf 0

Cut-off frequency of Thrust Disturbance Observer wd 500 [rad/s]

Sampling Period of Controller Ts 83.3 [µs]

Resolution of Linear Encoder − 1 [µs]

Resolution of Rotary Encoder − 4× 5000 [pulse/r]

Limit q-axis Current I limq 8 [A]

Limit d-axis Current I limd 12 [A]

Gap Power Threshold ∆Lthr 0.09 [W ]

Table 8.2: Experiment Parameters

8.2.1 Contactless Case

In this section, the results are shown in Figure 8.3. Even if experimental system
is more sensible to parameter values, the simulation results of mass and magnetic
force constant variations are confirmed: according to Section 7.2, lower values of
mass produce higher tracking error for gap and position displacement. Moreover,
the real system is still robust to Kg and its variation causes smaller changes.
Increasing inertia, the current values change with high frequency, especially when
the velocity is constant, as suggested in Section 7.2 and the controlled variables,
xg and x, become unstable. For this reason the experiment is conducted using
α = |0.2|.
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Figure 8.3: IPM Prototype, Experimental Results for Contactless Case

8.2.2 Contact Case

In this section, the performance of motion suppression methods are tested.
The impact is detected when the gap power is more than a prefixed threshold, sets
at 0.09 [W ] for all cases. This value is higher than the one used in simulation be-
cause of the disturbances introduced by the real motor. The time motion from zero
to 0.01 [m] is set at 0.2 [s] in order to analyse the case of high velocity impact.
In Table 8.3 the Root Mean Square of kinetic energy for each experiment is com-
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puted. All variation are performed four times, in order to improve the reliability of
results. The evaluated function considers the samples from the impact detection:
in this case, the energy before the contact is neglected. High variations lead to high
kinetic energy because of the mass value. The results confirmed the repeatability
of experiment and validate the accuracy of both methods.
Figure 8.4 shows the kinetic energy, force, linear velocity and position for α equal
to −0.5, 0 and 0.5 respectively, related to sets with the closest root mean square
value.
The behaviour with smaller variation are similar in the two approaches as in simu-
lation. The kinetic energy is lower in the the proposed method for α = 0.5 and the
linear velocity has a little overshoot as get in Section 7.2. The best performance is
given by lower mass value: the force peak is small and the suppression acts imme-
diately in both cases.
Related the robustness of parameter fluctuation, is not possible determine which
approach is better, because the results are very close, especially for α equal to −0.5
and 0. On the other hand, the proposed method is robust to mass uncertainty
because the variation of the responses obtained in each cases is similar.

V ariation
Methods

CBT KEDT

α = −0.5 1.1366 · 10−4 2.9608 · 10−5

3.6298 · 10−5 2.2400 · 10−5

3.6298 · 10−5 3.2242 · 10−5

4.2833 · 10−5 2.4127 · 10−5

Mean 5.7271 · 10−5 2.7094 · 10−5

α = 0 7.0749 · 10−5 6.8701 · 10−5

5.6044 · 10−5 5.8754 · 10−5

6.4526 · 10−5 7.0224 · 10−5

6.8625 · 10−5 6.6351 · 10−5

Mean 6.4986 · 10−5 6.6007 · 10−5

α = 0.5 8.6887 · 10−5 8.2590 · 10−5

1.0641 · 10−4 1.1151 · 10−4

1.2791 · 10−4 1.3218 · 10−4

1.0467 · 10−4 1.1835 · 10−4

Mean 1.0647 · 10−4 1.1116 · 10−4

Table 8.3: Root Mean Square of Kinetic Energy
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Figure 8.4: Experimental Results of Contact Case
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Conclusion

The analysis of robustness to parameter fluctuation for helical motors is performed
in different situations. The contactless case is tested as well as the contact one,
where the validity of proposed approach for motion suppression, called Kinetic En-
ergy Derivative Threshold, is compared with an existing method, called Calculating
Brake Time.
Furthermore, mathematical models of one and two link manipulators are derived in
order to test robustness of the SPM spiral motor as applied joint.
For each situation the simulation results are analysed and only the performance of
IPM helical motor is tested in experiment.
In chapter 7, Section 7.2, two different prototypes of helical motor are used. Re-
garding IPM motor, inertia and magnetic constant do not influence the trajectory
tracking as the mass variation does: higher value of mass lead to better performance.
Moreover, the system results to be sensible to high inertia values that causes im-
portant oscillations to Irefq current. Good results are obtained for Kg variation.
The work is extended to the SPM prototype and the result confirms the previous
achievement: higher mass parameter values are more advisable. By using the same
control gain values, the IPM prototype can resist to an higher parameter uncertain-
ties.
Concerning the motion suppression, small values of mass lead to the same results
while, with high value, the velocity converges to zero faster in Kinetic Energy Deriva-
tive Threshold.
In Section 7.3 the behaviour of SPM helical motor applied as joint to one-link
manipulator is analysed. Since the mass matrix depends on the posture, the accel-
eration control system tends to be unstable: it can be avoid by acting on nominal
mass in order to design the nominal mass matrix higher. Moreover, the inertia
influences Irefq current, especially when the velocity is not constant. The Kinetic
Energy Derivative Threshold has important oscillations in velocity and kinetic en-
ergy response, but the motion is suppressed at the same time of Calculating Brake
Time approach.
In Section 7.4 the first joint of the two-link robotic arm is more sensible to param-
eter fluctuations because of the second helical motor placed near its end.
In Chapter 8 the performance of IPM spiral motor are tested. Even if the real
system is more sensitive to parameter changing, the simulation achievements about
nominal mass, inertia and magnetic constant are confirmed. In this situation, an

45
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upper bound for inertia variations has to be fixed, otherwise the acceleration control
system becomes unstable.
The experiment shows that Kinetic Energy Derivative Threshold is robust to pa-
rameter fluctuation and all kinetic energy is consumed after the collision.
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Appendix A

Disturbance Observer

The Disturbance Observer (DOB) is used in the motion-control field to suppress
disturbances (such as external force, error model,...) or to make a closed-loop system
stable. K. Ohnishi introduced it to estimate disturbances from model information
[16]. Because of its simple structure[17] and its easy understanding, the DOB is
used in many applications and it can be applied on nonlinear models.

A.1 Problem Formulation

Consider the system described by:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + d(t)

where x ∈ Rn is the state variable, u ∈ Rp is the control input, y ∈ Rm is the system
output, d ∈ Rm is the disturbance, A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n. Assuming
(C,A) detectable and (A,B) stabilizable, the transfer function between input and
output is:

W (s) = C(sI −A)−1B, W (s) ∈ Rm×p. (A.1)

Supposing that u(t) and y(t) are available but the disturbance d(t) is unavailable, the
disturbance observer as disturbance estimator is used. The estimation is based on
the measurement of the input and the output and the general form of the disturbance
observer is written as:

d̂(s) = G1(s)y(s) +G2(s)u(s). (A.2)

where d̂(s) = L(d̃(t))1, d̂(t) ∈ Rm, G1 ∈ Rm×m and G2 ∈ Rm×p. Then, d̂(s) is a
disturbance observer for any disturbance if, for any x(0), u(t) and d(t), is satisfied:

lim
t→∞

(
d(t)− d̂(t)

)
= 0. (A.3)

1The symbol L(·) indicates the Laplace operator.

48



Appendix B

Mathematical Model of Helical
Motor

B.1 Magnetic Circuit and Circuit Equations

In the spiral motor, the radial direction is supported by a linear bush and the axial
force is controlled by the electromagnetic force of the coil winding and the magnet
of the mover. In this case, the mover is attracted to the stator by the attractive
force acting between the stator and the mover magnet (uncontrolled state). For
this reason an appropriate current is applied to the winding in order to perform the
magnetic levitation control and the air gap xg is kept constant between the stator
and the mover. In Figure B.1(a), the relationship between the axial position x and
the rotation angle θ is described. The case of uncontrolled state is represented in
Figure B.1(b): at the time of the magnetic levitation control, the mover is separated
from the stator and it is floating in the horizontal direction; otherwise the stator
and the mover are in contact one with the other.
The air gap displacement is related to linear and rotary motion by the following
relation

xg = x− lp
2π
θ. (B.1)

In Figure B.2 is described the layout of polar coordinates expression of the motor

and the equivalent magnetic circuit for a SPM prototype, where Rg =
3p(lg−xg)

Sµ0
is

the magnetic resistance of the front part of air gap of each phase, R′g =
3p(lg+xg)

Sµ0 is

the magnetic resistance of the back part1 and Rm = 3plm
Sµm

is the magnetic resistance
of the permanent magnet. The quantity c(θ)If is a spatial function of magneto-
motive force caused by the permanent magnet and dependent on the overlapping
angle between the permanent magnet and the winding. Through fundamental wave
component of Fourier series expansion, it can be approximated by a cosine function

c(θ) = k cos(θ), where k = 6
√
3

π2 . Furthermore, If = Br
lm
µm

indicates the equivalent

magnetization current of the permanent magnet of the front gap, I ′f is the magne-
tization current of the back gap, µ0 and µm is the permeability in the vacuum and

1In order to distinguish the front and the back side, an apostrophe (’) is added to the parameter
relating to the back side.
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in the permanent magnet respectively2.
The nomenclature and the values of motor parameters are shown in Table B.1 and
B.2.

Parameter Description

Br Residual flux density

f Thrust force of the mover

Ii i-axis current on forward side windings

I ′i i-axis current on backward side windings

If Magnetization current of the permanent magnet

J Moment of inertia of the mover around the axis

k Fundamental Fourier component of c(θ)

lg Nominal length of gap

lm Thickness of magnet

lp Lead length of the screw

M Mass of the mover

n Number of turns of windings

p Number of pole pairs

q Number of mover layers

S Gap area of cross section

τ Torque of the mover

x Linear position of the mover

xg Gap displacement

θ Rotary position of the mover

Table B.1: Nomenclature

For simplicity, it is assumed that the permeability in the permanent magnet µm coincides with
the one in the vacuum µ0.

2
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Parameter Description V alue

Br Residual flux density 1.21 [T ]

lg Nominal length of gap 1.0 [mm]

n Number of turns of windings 50

p Number of pole pairs 2

q Number of mover layers 4

S Gap area of cross section 907.9
[
mm2

]
− Number of stator layers 6

Table B.2: Parameters of Helical Motor

(a) Cross-sectional View

xg 6= xg0 xg = xg0

(b) Magnetic Levitation Control

Figure B.1: Spiral Motor Structure
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(front) (back)

(w)

(u)

(v)

(a) Helical Motor in Polar Coordinates

(b) Magnetic Circuit of Helical Motor

Figure B.2: Spiral Motor in Polar Coordinates and the Equivalent Magnetic Circuit

Considering the front side of the magnetic circuit in Figure B.2, the total in-
terlinkage flux Φ = [Φu,Φv,Φw,Φm]T for each current is defined as Φ = LI, where
I = [Iu, Iv, Iw, Im]T is the current vector and L is the inductance matrix:

L = P


n2 −n2

2 −n2

2
3
2knc0

−n2

2 n2 −n2

2
3
2knc1

−n2

2 −n2

2 n2 3
2knc2

3
2knc0

3
2knc1

3
2knc2

(
3k
2

)2
 . (B.2)

Here, P = 2
3(Rg+Rm) is the permeance for one-phase current and ci = cos

(
pθ − 2π

3 i
)
.

Defining the voltage vector V = [Vu, Vv, Vw, Vf ]T of each windings, the voltage
equations of the spiral motor are:

V = RI + L
dI

dt
+ θ̇

∂L

∂θ
I + ẋ

∂L

∂x
I (B.3)

In order to apply a field oriented control to the spiral motor, the dq-axis model
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has to be derived. From the conversion matrix from three phases to two phases Cc
and the transformation matrix from a stationary coordinate system to a rotating
coordinate system Ct, the transformation matrix C to dq coordinates is expressed
as follows.

Cc =


√

2
3 cos(0)

√
2
3 cos(23π)

√
2
3 cos(43π) 0√

2
3 sin(0)

√
2
3 sin(23π)

√
2
3 sin(43π) 0

1√
3

1√
3

1√
3

0

0 0 0 1

 (B.4)

Ct =


cos(pθ) sin(pθ) 0 0
− sin(pθ) cos(pθ) 0 0

0 0 1 0
0 0 0 1

 (B.5)

C = CcCt =


√

2
3c0

√
2
3c1

√
2
3c2 0

−
√

2
3s0 −

√
2
3s1 −

√
2
3s2 0

1√
3

1√
3

1√
3

0

0 0 0 1

 (B.6)

where si = sin
(
pθ − 2π

3 i
)
.

Then, the dq-axis current and voltage are represented by the follows equation:

Idq = [Id, Iq, I0, If ]T = CI (B.7)

Vdq = [Vd, Vq, V0, Vf ]T = CV = CRCT Idq + CLCT İdq

+ θ̇C
∂L

∂θ
CT Idq θ̇CL

∂CT

∂θ
Idq + ẋC

∂L

∂x
CT Idq (B.8)

where the subscript d, q and 0 are related to d-axis, q-axis and zero-phase values,
respectively.
Finally, the dq-axis voltage equations for the front and back part are described in
(B.9) and (B.10).[

Vd
Vq

]
=

[
R+ Ld

(
d
dt

)
0

0 R+ Lq
(
d
dt

)] [Id
Iq

]
+ Φ

[
ẋg
l−xg
pθ

]

+
ẋg

l − xg

[
Ld 0
0 Lq

] [
Id
Iq

]
+ pθ̇

[
0 −Lq
Ld 0

] [
Id
Iq

]
(B.9)[

V ′d
V ′q

]
=

[
R+ L′d

(
d
dt

)
0

0 R+ L′q
(
d
dt

)] [I ′d
I ′q

]
+ Φ′

[
ẋg
l−xg
pθ

]

+
ẋg

l − xg

[
L′d 0
0 L′q

] [
I ′d
I ′q

]
+ pθ̇

[
0 −L′q
L′d 0

] [
I ′d
I ′q

]
(B.10)

Here, Φ is the field flux of permanent magnet, Lq and Ld are the dq-axis inductance,
l = lg + lm is the gap length and R is the winding resistance.
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B.2 Equations of Motion

The thrust f and the torque τ generated by the motor are obtained from the forward
and backward part:

f =
1

2
ITdqC

∂L

∂x
CT Idq

=
1

l − xg

(
ΦfId

1

2

(
LdI

2
d + LqI

2
q + LfI

2
f

))
(B.11)

f ′ =
1

l − xg

(
Φ′fI

′
d

1

2

(
L′dI

′2
d + L′qI

′2
q + L′fI

′2
f

))
(B.12)

τ =
1

2
ITdqC

∂L

∂θ
CT Idq

= pΦfIq + p(Ld − Lq)IdIq

− lp
2π

1

l − xg

(
ΦfId

1

2

(
LdI

2
d + LqI

2
q + LfI

2
f

))
(B.13)

τ ′ = pΦ′fI
′
q + p(L′d − L′q)I ′dI ′q

− lp
2π

1

l − xg

(
Φ′fI

′
d

1

2

(
L′dI

′2
d + L′qI

′2
q + L′fI

′2
f

))
. (B.14)

Defining the total thrust ftot and torque τtot of the spiral motor, the equations of
motion in linear and rotary directions are described in (B.17) and (B.18).

ftot = pq(f + f ′) (B.15)

τtot = pq(τ + τ ′) (B.16)

Mẍ = ftot −Df ẋ− df (B.17)

Jθ̈ = τtot −Dτθ − dτ (B.18)

where Df , Dτ are the friction coefficients for linear and rotary motion, respectively,
and df , dτ are external force and torque applied to the mover.

B.3 Linear Approximation Motion Model

The control system of helical motor is based on the linear approximation model of
equations (B.11)-(B.14): the Taylor expansion around xg = 0 is applied and only
the first order coefficient is extracted.
It is supposed that the dq-axis currents are current-controlled so that Id = −I ′d and
Iq = I ′q. Furthermore, it is introduced the suffix ”0” to indicate the parameter value
around xg = 0.
Finally, the the torque constant Kτ , the thrust constant Kf and the magnetic at-
traction force constant Kg are defined.
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ftot = pq

(
2Lf0I

2
fxg

l2 − x2g
+

2lΦf0Id
l2 − x2g

)
(B.19)

'
(

2pqLf0I
2
f

l2

)
xg +

(
2pqΦf0

l

)
Id (B.20)

= Kgxg +KfId (B.21)

τtot '
(
2p2qΦf0

)
Iq −

lp
2π
ftot (B.22)

= KτIq −
lp
2π

(Kgxg +KfId) . (B.23)

The motion model is written through the linear approximate motion equations of
the helical motor:

Mẍ = Kgxg +KfId − df (B.24)

Jθ̈ = KτIq −
lp
2π

(Kgxg +KfId)− dτ . (B.25)



Appendix C

Types of Helical Motor

The helical motor is a linear actuator that converts rotational motion into linear
motion. It has a spiral structure for both the mover and the stator, two systems of
three phase windings are arranged on the stator side and permanent magnets are
located on the mover side. Since it has a helical structure, the area where the stator
faces the mover is larger, the magnetic flux can be utilized with high density and
high thrust can be obtained.
Two different types of spiral motor are developed, the Interior Permanent Magnet
(IPM) and the Surface-mounted Permanent Magnet (SPM).

C.1 Interior Permanent Magnet (IPM)

The IPM motor is characterized by the location of the permanent magnet that is
embedded in a slot provided in the mover. High precision helical curved surface is
realized and the mechanical strength is significant. Moreover, both the mover and
the stator, shown in Figure C.1(a), are made of silicon steel. Furthermore, since
the magnet is embedded so as not to move, it makes possible to protect the magnet
from impact and is more robust than the SPM type. However, since the magnetic
flux returns inside the mover core, the output is lowered compared with the SPM
type.

C.2 Surface-mounted Permanent Magnet (SPM)

The mover and the stator of SPM motor is displayed in Figure C.1(b). The Surface-
mounted Permanent Magnet motor is a model in which the structure magnet is stuck
on the surface of the mover. When a large impact is applied to the stator, the spiral
motor may be damaged. Since this type of surface magnet can produce greater
thrust than the magnet embedding type (IPM type), the SPM type is looking at
the use as a direct acting joint of the robot. Three phase windings are wound on
both sides of the stator.
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(a) Stator and Mover of IPM Prototype (b) Stator of IPM Prototype

(c) Stator and Mover of SPM Prototype

Figure C.1: Stator and Mover of IPM and SPM Prototype
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