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1 Introduction

Quantum Mechanics is usually described through the Dirac formalism, dealing with Hilbert spaces %, smooth
functions € JZ and operators defined on the Hilbert spaces. Hence the mathematical language is the one of
complex analysis. In one dimension, physical states are represented as functions ¢ € L?(R) such that |¢(z)]?
is the probability distribution associated to the state with respect to the variable x € R, which can be either
the position ¢ or the linear momentum p. There is no probability distribution which depends both on ¢ and
p, because of the Heisenberg uncertainty principle, which forbids us to know with arbitrary precision both
position and linear momentum. Instead, physical observables are represented as self-adjoint operators acting
on physical states; in particular the operators Q and P associated to q and p fulfil the commutation rule
[Q P] QP — PQ = ih, where h is the reduced Plank constant.

The aim of this thesis is to describe Quantum Mechanics directly on the phase-space, like in Classical Mechanics.
However, differently from Classical Mechanics, we have to deal with the uncertainty principle, which does not
allow the construction of probability distributions with respect to both ¢ and p, but just of quasi-probabily
distributions. Moreover, while in Classical Mechanics the smooth functions representing observables commute
with each other, in Quantum Mechanics that should not happen as a consequence of quantization, which can
mathematically be seen as a deformation of the algebra of the smooth functions on the phase-space, the Poisson
algebra. In particular the point-wise product of the Poisson algebra must be deformed in a new operation, called
star-product, which is no more commutative. The formalism coming from such an operation allows an algebraic
description of Quantum Mechanics.

The first chapter of this thesis will be dedicated to the mathematical description of the star-product, following
Bordermann [2], Cattaneo [3] and Esposito’s [4] works: first of all it will be given a definition through properties
of this object, followed by a description of what a deformation of an algebra formally means. Then it will be
possible to give a definition of star-products as series and show that it fulfils the conditions required in the first
definition. In the end, the Kontsevich theorem and formula, which will explicate the terms of the series, will be
enunciated.

In the second chapter, based on Blaszak and Domanski’s paper [1], it will be discussed the physical description
in the star-product formalism: it will be defined what physical states and observables are and how it is possible
to study physical systems. In particular it will be shown how to deal with eigenvalues problems, time evolution
and mean values. At the end two physical systems, a free particle and a harmonic oscillator, will be presented.

First of all it is necessary to introduce basic notions of algebra, Poisson manifolds and the definition of multi-
differential operators. Then we will also recall the canonical quantization principle.

1.1 Basic notions of algebra

Definition 1.1. Let R be a ring with the unit 1; a left-module M over R is an abelian group (M, +ar) on which
it is defined an operation R x M — M such that, Vr,s € R and Yv,w € M :

1. r(v+m w) =rv 4y Tw;
2. (r+prs)v=rv+p sv;
3. (rs)v =r(sv);

4. lv=wn.

Definition 1.2. Let R be a ring with the unit 1; a right-module M over R is an abelian group (M, +pr) on
which it is defined an operation M x R — M such that, ¥r,s € R and Yv,w € M :

1. (v4pm w)r=rv+y rw;
2. v(r+g8) =rv -+ sv;
3. v(rs) = (rv)s;

4. vl =w.

Note 1. The difference between definitions 1.1 and 1.2 comes from the third condition. However, if the ring is
also commutative, a right-module differs from a left one just in a writing convention. In fact, for r,s € R and
veM, (rs)v=(sr)v=s(rv).

Definition 1.3. Let A be a left-module over the ring R and v : A x A — A an operation which satisfies the
R-bi-linearity condition: Vx,y,z € A and Vr,s € R,



v(re +a sy,z) =rv(z,z) +a sv(y, z) and v(z,re +4 sy) = rv(z,x) +4 sv(z,y).
An algebra over the ring R is given by the pair (A, v).

Definition 1.4. Let K be a field and (A,+4) a vector space over K. Letv: Ax A — A be an operation such
that satisfies the R-bi-linearity condition in respect of the +4 operation. An algebra over the field K is given
by the pair (A,v).

Definition 1.5. An algebra is associative/commutative if the operation v satisfies the commutative/associative
property.

Definition 1.6. An involution of an algebra (A, i) is an operation T on A, T: A — A, such that, Vf, g € A:
o (M =F;
o (u(f.9)" = (" f1);
o (ro+asy)l =1zt 445yl

Note 2. The most common example of involution of algebra is the complex conjuagtion function * : C — C
such that, Vz = x + iy € C, with z,y € R, z* =z — 1y.

Definition 1.7. A Lie algebra is an algebra (A,[.,.]) over a field equipped with the operation [.,.] such that,
Vf,g,h € A, it satisfies:

e bilinearity: [f,ag + Bh] = alf, g] + BIf, h] and [ag + Bh, f] = alg, f] + B[k, f]
e Jacobi Identity: [f,|g,h]] + [h,[f, g]] + [g, [, f]] = O;

o antisymmetry: [f,g] = —[g, f].
Note 3. The antisymmetry property implicates the nil-power property: [f, f] = —[f, f]=0Vf € A.
Definition 1.8. The [.,.] with the properties described above are called Lie brackets. Given a smooth manifold

M and two vector fields X, Y € X(M), [X,Y] :=LxY = =Ly X, where LxY denotes the Lie-derivation of Y
with respect to X.

Definition 1.9. A Lie Group is a group (G,-) where G is a smooth manifold and both the operations - :
GxG—G,a,b—a-band 1:G— G, a— a1 are smooth.

1.2 Poisson structures

Definition 1.10. Let L be a Lie algebra with the brackets {.,.}. The brackets {.,.} are called Poisson brackets
if they satisfy the Leibniz rule: Vf,g,h € L, {f,gh} = {f,g}h + g{f, h}.

Definition 1.11. A Poisson algebra (P, {,}) is a commutative associative algebra with a Lie algebra operation
{.,.} satisfying the Leibniz rule.

Definition 1.12. A Poisson manifold (M,{.,.}) is a smooth manifold M with a structure of Poisson algebra
{.,.} on the commutative associative ring C*°(M).

Definition 1.13. A Poisson tensor field II : M — TMATM is the only tensor field such that, Vf,g € C*(M),
{f,9} = T(df,dg). Given the atlas {(Ui, ¢i)}icr, in local charts (Ui, i = (xf,...,x")), using the Einstein
notational convention, II = ij% A 8%1.“ df = %dmf, dg = %dwﬁ and
. Of 0Og
H(df,dg) = II7F =L =
(df, dg) 0] 0

Note 4. The Poisson tensor field II is antisymmetric.

There is another possible definition for the Poisson tensor field, which does not involve the Poisson brackets;
so it is also possible to define a Poisson manifold with its Poisson tensor field and then to define the Poisson
brackets from it.

Definition 1.14. Let M be a m-dimentional smooth manifold and {(U;,¢; = (x},...,x7))}ier an atlas. Let 11
be an antisymmetric bi-vector field; using the Einstein convention over the indexes, in the chart (U;, ¢;) it takes
the form Il = ijﬁ A 6%. 1T is called a Poisson tensor field if satisfies the following condition Y, p,v:

0 0 0
HU/\%HMV + HUM%HVA + HO'V%HXM = 0 (].)



Definition 1.15. A Poisson Manifold is a pair (M,11) where M is a smooth manifold and I1 a Poisson tensor
field.

Proposition 1.1. Vf,g € C°(M), {f,g9}n :=1I(fd,dg) are Poisson brackets. Hence definition 1.13 is equiv-
alent to definition 1.14 and definition 1.12 to 1.15.

Proof. The only thing that should be proved is that the brackets {.,.}r satisfy the Jacobi rule. That comes
from the condition 1 in definition 1.14. O

1.3 Multi-differential operators

The discussion will take place in smooth manifolds, so the formulas and the mathematical expressions will be
written in local charts.

Definition 1.16. Let M be a smooth m-dimentional manifold and let {(U;, ¢; = (z},..,2™))}ies be an atlas.
A multi-index I = (i1,...,%m,) € N™ is a collection of index i1, ...,4m such that |I| := i1 + ... + i, and the
abbreviation for iterated partial derivatives is denoted by

ai1+---+im
(Ox1)ir. (D i

or :=

Definition 1.17. A differential operator of order n is a C-linear map D : C*>°(M,C) — C*(M,C) such that
in every local chart (U, ¢;) and Vf € C(M,C), D takes the local form:

U, *— Z DIa](f

IeN” |I|=n

D(f)

Ui))

where VI the function D! : U; — C is smooth.

Definition 1.18. A multi-differential operator of rank k (or a k-differential operator) and of order n D is a
C-k-multi-linear map: C°(M,C) x ... x C®°(M,C) — C*°(M,C) such that in local chart it is written:

k times

v, = > DIty (fy

I, I €N I T |=n

D(flv"'vfk)

Ul)alk (fk

Ui)v

where VI, ... Iy, DTvIx : U — C is smooth.

Note 5. Poisson brackets {.,.} are an example of bi-differential operator.

1.4 Canonical quantization

In Quantum Mechanics it is postulated that physical observables are mathematically described by self-adjoint
operators on Hilbert spaces 7. Firstly we shortly recall what these objects are.

Definition 1.19. Given 52, the common operators norm is defined as

JAll=inf {e= 0 || Ab]ze < cllle Vo e LAR)}.

Definition 1.20. An operator A is said to be bounded if there exists some ¢ € R such that || Ay 2 < |9
Vi) € L?(R).

Definition 1.21. Given the natural scalar product < Jo> on A, and a linear bounded operator /1, it is possible
to define the adjoint operator At as < Ao [ty >:=< 11 |Apy >.

Definition 1.22. Given the natural scalar product < .|. > on S, and a linear operator A such that its domain
Dy = {1/1 e A ‘Ad) € %”} is dense in A, the adjoint operator AT is defined as < AT’I,ZJ1|'I/}2 >1=< ¢1|A¢2 >.

The domain D 4, is defined as D 4; := {wl e H ’ <1 |Apy >=< Plipa >, d € A, hy € DA}

Note 6. The definition is well given because of the density of D ; in S and the Riesz representation theorem,
which implicate that any ¢ € F such that < 1/)1|A’(/J2 >=< Plhy > with Py € D 4, Py € D 44 is unique.

Note 7. Note that Dy C D 4.



Definition 1.23. A linear operator A such that its domain D ; is dense in S is called hermitian if
< AT |y >=< Atpy[thg > Vipy, by € Dg.
Definition 1.24. A linear operator A is symmetric if its domain D ; is dense in S and it is hermitian.

Definition 1.25. An operator A is self-adjoint if it is linear, symmetric and such that its domain D ; is equal
to the domain of the adjoint operator D 41 (D ; =D 4:).

The Heisenberg uncertainty principle states that, for every self-adjoint operators 121, B defined on 7 , AA-AB >

‘@‘, where AX := % € R Vz € R, V self-adjoint operator X on # and V function | >€ 5 so,

given the position Q and the linear momentum P operators, AP- AQ > % Hence the Poisson Algebra used to
describe Classical Mechanics, where the position q and the linear momentum p commute with each other and
can be known with arbitrary precision, in Quantum Mechanics requires to be deformed in order to fulfil the
above principle: such deformation is called canonical quantization and is defined by the formula

where [A, B] := AB — BA and the brackets [.,.] replace the classical Poisson brackets {.,.}.

2 Star-product formalism

2.1 Definition of star-product throughout its properties

In Classical Mechanics we usually work with smooth functions defined on Poisson manifolds (M, {.,.}). The
operation which characterizes the Poisson algebra is the point-wise product, which is associative and commuta-
tive; in order to fulfill the canonical quantization, we want to deform the above operation into a star-product,
which shall be still associative but non-commutative. In such formalism the canonical quantization will take
the form

[f.9) = 1. 6], where f,g € C(M) and [f,g] = fxg~ g% /.

Furthermore, when A is very small with respect to the other physical quantities taken into consideration, which
means when we can say that h — 0, the classical limit must be respected.

Hence the star-product can be defined as a deformation of the commutative point-wise product which must
fulfil the canonical quantization; it should also satisfy the following natural conditions:

1. fx(g*h)=(f*g)*h (associativity);
2. fxg=f-g+0O(h) and [f,9] = {f, g} + O(h) (for h — 0, it must reproduce the classical limit);
3. fx1=1%f = f where 1 is the unit (1 must remain the unit).

2.2 Deformation of an algebra

As the star-product algebra is nothing but a deformation of the Poisson algebra, in order to describe the
star-product formalism, it is necessary to formally define what a deformation of an algebra is.

The discussion will take place in sets of formal power series, so we need to introduce some basic notions about
them. Their main feature is that, differently from the power series, there is no need of any notion of convergence,
as they are formal.

Let R be a ring and M a left-module over R.

Definition 2.1. A formal power series is a map a : N — M with coefficients in M such that a := Zf,io Ay,
where a, = a(r) € M, r € N and X is the formal parameter.

Proposition 2.1. Let M[A] and R[\] be the set of all formal series with coefficients in M and R respectively;
then M[A] is a left-module over the ring R[\] defined via the following operations:

e a+b:=3 7" A(a, +b);
o af =3l Ny = 20 A (X asBr—s);
o aa =30 N (XI_, asar_s),
Va=3 720 Nar, b=>7"0A"b. € M[A] and Voo =302 jXN'ap, B=D"" N B, € R[A].



It holds the following lemma, which won’t be proven:

Lemma 2.2. Given M, My, ..., My, left-modules over R and the R[\]-multi-linear map
¢ Mi[A] % ... x My[A] — M[A], for each r € N the map ¢, : My x ... x M, — M such that

dlaqy, - am) = Z A" Z Bs(A(1yrys s Ok)ry
r=0

0<s,71,...,m) <
s+ri+...+rp=r

is unique Va(y = Z:j:o ATy, -
Now we have the elements to define what an associative deformation of an algebra is.

Definition 2.2. Let (Ao, o) be an associative algebra over a ring R with the unit 1 (ug(a,1) = po(l,a) =
a Va € Ap); an associative deformation of (Ag, po) is given by a sequence of functions py, fia, ... : Agx Ag — Ag
with the following properties.

1370 o (s(pr—s(a,b), ¢) — ps(a, pir—s(b,¢))) = 0 Va,b,c € Ay and Vr € N (associative condition);
2. pr(a,1) = p-(l,a) =0 Vr > 1 (which guarantees that 1 remains the unit).
Proposition 2.3. Let be A := Ag[\] and the R[A]-bi-linear multiplication p := > o pur Va,b € Ag[A],

a=3ygar and b =32 b.. Then (A, p), where p(a,b) = Y72 A" (320, 4o ts(ar,by)), is an associative
algebra over the ring R[\].
Proof. Obvious from the Lemma 2.2 and the Definition 2.2. O

So, given the associative and commutative algebra (Ay, o) over the ring R, its formal associative deformation is
(A= A[N], p =372 A"p,) defined over the ring R[A]. It is also possible to define a Poisson bracket because
of the following proposition:

Proposition 2.4. Let (Ao, po) be a commutative algebra; let f,g € Ag; then {f, g} == p1(f,9) — (g, f) is a
Poisson bracket.

Proof. In order to show that {.,.} is a Poisson Bracket, it must be proved that both the Jacobi identity
(S {g.h}t + {h. {f,9}} + {g:{h. f}} = 0, h € Ap) and the Leibniz rule ({f,po(gh)} = po({f. g}, h) +

:U/O({f> h}7g)> hold.
The first one is a consequence of the linearity of u, Vr, of the associative condition at the second order in the

Definition 2.2 and of the commutative property of ug.
The second one follows from the associative condition at the first order:

0= po(pa(f,9),h) — po(f, 1(g, h)) + pa(po(f, 9), h) — i (f, po(g, h))

and, adding the same expression with f and h interchanged, we obtain:

0+0=0=[uo(u1(f,9),h) — po(f, p1(g,n)) + pa(po(f, 9), ) — pa(f; po(g, b))+
+ [,U/O(Ml(h’g>7 f) - Mo(h7M1(97 f)) + MI(MO(h"g>7 f) - Ml(h7M0(97 f))] = (2)
=po({f: 9} h) — po(f: {g: h}) + {0 (f,9), A} — {f, po(g, h) };

then we add the last expression with g and h interchanged and we subtract the same one with f and g
interchanged:

0=0+0~0=[po({f,g},h) — po(f, {9, h}) + {no(f, 9); h} — {f, 1o(g, h)}]+
+ [po({f:h}, 9) — wo(f {h, g}) + {ro(f h), gt — {fs o (R, 9) ]+
—[mo({g, f}:h) — po(g: {f: h}) +{rolg, £),h} — {9, po(f, h)}] =
=209, {f, h}) + 200 (h, {f, g}) — 2{f, no(g. h)}



2.3 Formal Poisson structures

Classical Mechanics is studied on Poisson manifolds, where the algebra is the one of the smooth functions. So,
given a Poisson manifold M, its Poisson algebra is (C*°(M,C),{.,.}), which is commutative over the ring C
with the point-wise product. This Poisson algebra is the one to be deformed in order to describe Quantum
Mechanics. This is why the main theme of this subsection is the notion of formal Poisson structure. As in the
last discussion, we will work on sets of formal series, so there will be no need of any notion of convergence.

Definition 2.3. Given a Poisson manifold (M,{,}) with its Poisson tensor field Ily and an atlas {U;, ¢;}icr,
a formal deformation of the Poisson tensor field 1y is a formal power series

Iy = i AT,
r=0

where Vr 11, € X2(M) is antisymmetric and such that, VA, u,v, 11 in coordinates satisfies:

9 o
0 4TIV T = 0, (4)

vo O y on O
SRl 0x°

A dao o0x°

Definition 2.4. Given the Poisson structure of (M, {.,.}) with its algebra (C*(M,C),{.,.}), a formal defor-
mation of the Poisson structure is the structure of (M, {.,.}x) with its algebra (C°(M,C)[A],{.,.}A) defined by
the deformed Poisson brackets:

T

{f.ghn =D N > (dfy.dae) |
r=0 0<i4,5,k,<r
i+j+k=r
where f =300 N fr, g = oo g A"gr € C(M,C)[A] and the 11 ’s € X2(M) are such that ILy = Y ;2 AL,
s a formal deformation of the Poisson tensor Ilg.
Note 8. The brackets {, }» are Lie brackets because they satisfy:
1. the Jacobi identity, because of the condition 4 of definition 2.3;
2. the antisymmetry, because of the antisymmetry of I1.
It can be proven that they satisfy also the Leibniz rule, then they are still Poisson brackets. O
Definition 2.5. A formal vector field is a power series X =Y ;2 AF Xy, € X(M)[N] where X, € X(M) Vk.

Note 9. Formal vector fields form a Lie algebra under the common [.,.| extended on X(M)[A] by bi-linearity.
The corresponding Lie group is the set of the symbols exp(AX) 1= > po o AF(X)*, where X € X(M)[N], whose
group structure is given by the Baker-Campbell-Hausdorff formula

A2 A3
exp (AX) exp (A\Y) = exp (/\X +AY + ?[X, Y]+ E([X, (X, Y]] - [V, [X,Y]]) + >

Definition 2.6. Two Poisson structures Iy = Y7 AFII; and IT} = 3"77  AFII), are equivalent if there exists
a formal vector field X € X(M)[A] such that

T}, = exp(AX).II) := exp(ALx)II) == Z o) Z (Lx, ) T
m 0<i,j,k,<m
i+j+k=m

o = exp(AX) is called a formal diffeomorphism.

If the formal parameter of the discussion below is & and the algebra is the one of the smooth functions over a
Poisson Manifold (C*°(M, C), {,}) with the point-wise product, then it possible to define the star-product as:

Definition 2.7. Let (M,{.,.}) be a Poisson Manifold. A structure of star-product on M is defined by the
following sequences of C-linear maps B,. : C*(M,C) x C*°(M,C) — C°(M,C) such thatVr >0 and Vf,g,h €
C>(M,C) fulfill the following conditions:

1. Fvery B, is a bi-differential operator;



2. BO(fa )
3. B1(f7 ) - ( f)=Af.9};
By(1,9) = B, (f,1) =0 Vr > 1;

5. Zs=0[ S( r_s(f,g),h)] :ZZ=0[BS(fa Br_s(g,h))].

The formal series

Q@ «

r=0
1s the star-product on M.
Lemma 2.5. The star-product in 2.7 is well defined.

Proof. The associativity of Definition 2.1 is satisfied by condition 5. The classical limit is implicated by condi-
tions 2 and 3. Finally it holds f x1 = 1 f = f because of condition 4 O

Note 10. As differential operator are linear operator, then the star product is a bi-linear operation.

Theorem 2.6. Let x be a star-product on the Poisson Manifold (M, {.,.}). Then the C[h]-left-module with the
star-product (C>° (M, C)[h],*) is an associative algebra over the ring C[h] and, Vf =3 02 (W frog=> e oA gr
€ C*(M,C)[n]

frg=> N > Bilfjo)
r=0 0<i,5,k,<m
i+j+k=m
Proof. 1t follows from the proposition 2.3. O

Lemma 2.7. The brackets [.,.] defined as [f,g] := 7 (f *g— g f) are Lie brackets which satisfy the Leibniz
rule with respect to the star-product.

Proof. They are Lie brackets as they satisfy:
e bilinearity, because of the bilinearity of the star-product;
e antisymmetry by definition;

e Jacobi identity:

J =, 1g, M + [n, [, 911 + g, [1, £1

=[lg,r1, /1 + 1S, 91, h] + [TR, £1, 4] ()
=—J=0.

The Leibniz rule is satisfied, because:

o h] = (P x (g ) = (g+ 1)+ )
(associativity) :%((f *g)xh—gx(h*f))

— o (Fxg) i (g ) )+ (g (F+h) = g (e )
_1f, gl xh-+ g . A

Note 11. The algebra (M, *,[.,.]) is a non commutative deformed Poisson algebra.

Definition 2.8. Let (M, {.,.}) be a Poisson Manifold and x, ¥ two star-products. They are equivalent if there
is an automorphism S : C*°(M,C)[h] — C°°(M,C)[h] which can be written as S = id + > 2 h"S,, where
Sp: C®(M,C) — C*(M,C) is C — linear and

f+g=8(87(f)*x57(9)



Note 12. It should be checked that ' maintains all the properties of the star-product. To simplify calculations,
only functions f,g,h € C(M,C) will be considered:

1. associativity, from the associativity of *:
FH(g* h) = [+ S(S7Hg)xSTH(h)) = S(STH(F) x [S™ (g) x ST (M)
= S([STHA *STHg) *STH(R) = S(STHS) * (STHg)) ¥ h (7)
= (f " g)* I;

2. classical limit:
e at the 0 order (fxg)o = (f*" g)o = f - g, by definition of x and of S;
e at the first order By(f,g) = B1(f,9) — f-51(9) —g- S1(f) + S1(f - g), then
Bi(fhg) - Bi(gvf) = Bl(fag) - Bl(gaf) = {fag}f
3. unit 12 S(1) = id(1)+ > pey h*Sk(0) by definition. Sk are C -linear functions, so Si(0) =0 and id(1) = 1,
then S(1) = 1.
O

To make what said above more understandable, it will be useful to give examples of star-products. To simplify
the discussion we choose as Poisson manifold M the space R2, so there is a unique local chart with the coordinates
(¢,p). The corresponding quantum mechanics operators are indicated as (4, p) and must satisfy the canonical
commutation rule. If we apply those operators on a function v(q), we obtain:

(@) (q) := q¥(q)

o)) = 1 20, )

Now let define the star-product with respect to a parameter o: given two functions f,g € C°°(M), then

eihagqizfih&gpc’zg = i (71)m(ih)n+m aa™ 8n+mf(‘]ap) anerg(qap)

f(a,p) %o 9(q,p) == [ aiml  ogiopm 9gmop”

k k—m —\m 8kf(qap) akg(Qap)
>U (_0) aqk—mapm aqmapk—m’

Il
NE
=|5
M-
N
3

|
where ¢ := 1 — ¢ and the binomial coefficient F = ki
m m!(k —m)!

Note that two star-products x, and %, are equivalent, in fact the automorphism S,_, such that f x, g =
Sp—o(So—p(f) *o (Se—p(g)) takes the form

Sp—o = €xp [zh(p - 0)888} .

In particular, Vo € R, all the possible %, are equivalent.

Proposition 2.8. The *x, defined in eq. 9 is a well-defined star-product.

Proof. Tt must be proved that x, fulfills the conditions in definition 2.1.



1. Associativity:

f*o (g *o h) :Z (Zk Z k m( 5’) [8]6 mamf]
m=0

k=0

m m S .]' j —n —\n[9j—nan n aj—n
Gopar (2 i Zom(j_n)!oﬂ (—0)" (05" g gllop0s"h] |] =
Jj=0

Sy Wy = e () gk )
= - - o o
k,j=0 k!]! o= = minl(k —m)l(j —n)! a P
m k—m
m!(k —m)! k—m—t j—n-+t
Z {[aj n+m— sanJr m— ][8n+saj n—+ h]}
= = sltl(m — s)i(k —m —t)! @ 7P
(10)
_ - (Zh)h . h! h—o ~\o
(f*a‘ g) *O‘ h Z h' Z 0'(h 0)|U (_J)
h=0 0=0
. [ahfoao i (lh)z ! il ifl(_—)l[aiflal f} [al aifl ] ] [aoahfoh] _
v P\ & £ l!(i—l)!g )19 IpJ11Y%% 7% =
o~ (i)t zh:zz: hla! Ghtil—o(_zyotl = (h-o)
— Z : i o(_o,)o . Z S A
o hlil =~ pr olnl(h —o)!(i —1)! s rl(h—o—r)!
0
. Z u|( ) 8h 080{[aéfl+hfofrazl)+ofuﬁ [aé+ra;7l+ug]}[aga}};fohk
u=0
computing the two expressions, it results that they are equal.
2. It is obvious that at the order 0 (f xg)o = f - g; at the first order
fog 99 0f
(fxg)1=1ih {an op (1 a)aq op
then
1 1
[f:9] = Z1f: 9] = [(f %o 9)1 = (9% [)1] + O(R)
_|,8199 _ 09 0f| _ |, 990f _ of 9g
{ dq Op =% dq dp 7 0q op =% dqop| o) (11)
_9f0g _0990f _
- . ok1 o*1
3. Taken the second expression in eq. 9, if £ > 1, both —————— =0 and ————— = 0. Then the only
8k—mqarnp 8mqak—rnp
non-null term of the summation is the one with & = 0, which implicates that f x, 1 = 1%, f = f.
O

In the cases 0 = 0 and 0 = % the star-product is called the Kuperschmidt-Manin product and the Moyal (or
Groenewold) product respectively.

2.4 Kontsevich’s theorem and formula

Now that the star-product has been defined, the problem is to study if and under which conditions such a
structure exists. This is why Kontsevich theorem is extremely important.

Theorem 2.9 (Kontsevich 1997). On every Poisson manifold (M,Ily) there exists a star-product. In particular,
the equivalence classes of star-products [x] on (M,Iy) are in bijection with the equivalence classes of formal
Poisson structures [I1] whose zeroth order is equal to Ilj.

Kontsevich also found an explicit formula for such a bijection. To write the formula we need to introduce some
mathematical structures.

10



Definition 2.9. A quiver I' is the datum of:

e a set Vi whose elements are called vertices;

e a set Er whose elements are called arrows;

o two maps t,s: Er — Vp associating to an arrow its target (t) and its source (s).
Definition 2.10. Given a quiver I', a loop is a an arrow a € Er such that t(a) = s(a).

Definition 2.11. Given a quiver T', a double arrow is a pair of arrows a,b € Er such that s(a) = s(b) and

t(a) = t(b).
Definition 2.12. An admissible quiver (or graph) of order n is a quiver I such that:
1. Vv ={1,..,n} U{L, R};
2. Er ={a1,b1,..c;pn,bpn};
3. Vi=1, s(a;) = s(b;) = i;
4. T has no loops nor double arrows.
Definition 2.13. The set of all the admissible quivers I' of order n is called G,,.

Kontsevich’s idea was to associate a particular bidifferential operator Br 1, to every admissible graph and to
weight it through a constant wr. Then the star-product between two functions is a weighted sum of all the
Br 1, applied to the two functions.

Definition 2.14. Given a m-dimentional Poisson Manifold (M,Ily) with its atlas {U;, $;};er and a graph
I' € Gg, let I be a function such that

I:FEr ={a,....an,b1,....,0n} — {1,...,n}; as notation we will call I1(a;) = i;, I1(b;) = j;. A bi-differential
operator associated to an admissible graph Br i, is a bi-differential operator such that, Vf,g € C*°(M;C), in
coordinates takes the form

n

Brm,(f,9) = Z H H O1(x) (H#a”’)l(b"’)) H Or@) | (f) H 1) | (9)-
(L)

I:Er—{1,...n} |i=1 \zet-1() wet—1 zEt—1(R)

Definition 2.15. The constant wr associated to an admissible graph I € G,, is defined as:

1

wr = W /j{n dqj)al N d¢b1 JANAN d(ba" A\ d(ﬁb",

where:
H:={p e C| Im(p) > 0};
Hp = {(p1, - pn) € H"| pi # pj Vi # j};

¢:Ho — R, (p,q) — arg (ﬂ>,

q—p
o 7y Hy —> Ha (P1y s Pn) = (Ps(a), Pe(a)), where x € E and pr, = 0,pr = 1;
o ¢, — R, ¢p:=¢dom,.
Lemma 2.10. The integral in definition 2.15 converges absolutely.

Theorem 2.11 (Kontsevich formula). In local coordinates the bijection of the Kontsevich theorem 2.9 takes the
form:

Fro=S U0 S B ()
g = %l wrbr g \Jf;9),
k=0 reGy

where f,g € C*(M;C).
To better clarify the discussion, it will be useful to give a simple example: the Moyal product for the null
deformation of a constant Poisson tensor.

Let (M,II) be a m-dimentional Poisson Manifold such that, in coordinates, 9;I1¥ = 0 Vk,i,j = 1,...,m and
let IIj, be II;, = II. As 0,I1¥ = 0 Vk,1, j, the only contribution to the sum is given by the quivers I' such that
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t(a1) = t(az) = ... = t(an) = L and t(by) = t(ba) = ... = t(by) = R. Then, exchanging a; with b;, both wr and
I17(@ [ (b;) take a minus, then the total contribution remains the same. That allows us to write:

A n .
Z wFBF-,Hﬁ,(ﬁg) :(QT)Qn (/ dpa, N dpy, A ... N dga, N d¢bﬂ,) (H Hlkjk) (allalnf)(ajlajng)
recG, Hn k=1
. 2m)1"
it can be proven that Ao, N ddp, A ... N\ dog, N ddy, = N (12)
Hn
k=1

Then the Moyal product between two functions f, g takes the form:

frg= Z (Zn') (H H“”’“) (04,01, [) (0, ...0;, g) =: fe'™ &afg.
) k=1

n=0

3 Applications to Quantum Mechanics

Now that the star-product formalism has been described, we can study Quantum Mechanics using this formalism.

3.1 Observables, pure and mixed states
First of all we need to discuss which space we are dealing with.

Classical Mechanic is studied on phase spaces; in particular observables are smooth functions defined on a
Poisson manifold M and the admissible states of a physical system are described as Dirac § functions (pure
states) or probabilistic distributions (mixed states) on M.

By contrast Quantum Mechanics is typically developed on Hilbert spaces #, where pure states consist in
normalized vectors ¢ € . and physical observables are represented by self-adjoint operators acting on the

e A

The aim of defining the star-product is to describe Quantum Mechanics directly on the space of classical
observables (the ring of functions on the phase space M), starting with the algebra of observables and postponing
the construction of the Hilbert space . Then it must be postulated that physical states are functions in the
Hilbert space L?(M), the space of all square integral functions on M = R*M with respect to the Lebesgue
measure; hence physical states are represented as pseudo-probabilistic distributions, which means normalized
functions with respect to the L?-norm that could be also negative. This is why we need to construct the algebra
(L?3(M), %, ); so we must check that, Vf,g € L2(M), f x5 g € L?(M). In order to simplify the discussion, from
now on R? will be taken as M.

First we need the following theorem, which won’t be proven:

Theorem 3.1. The x, defined as in formula 9 can be written also in the following integral form:

(f %o 9)(a:p) =§1h // Ffla, 1€, m)g(q — a0, p — o&)et €17 de dy
:ﬁlh //f(q +on,p+ 56)3"9[(171)}(57”)6%(@*7}1)) dé dn,

where F f[q,pl(&,n) = ﬁ I f(q,p)efé(gq”’p) dqdp is the Fourier transform.

Theorem 3.2. Given the Schwartz space (M), Vi, ¢ € S (M), there holds
|V %6 Ol 2 < \/ﬁ 0] 12 |@]l 2. Furthermore there is an unique extension of the . from (M) on the whole

L?(M) such that the inequality holds.

Lemma 3.3 (Jensen’s inequality). Let p1 be a positive measure on a o-algebra MM in a set Q such that p(Q) = 1.
If f is a real function in L'(Q, 1) and ¢ : R — R is conver, then:

¢</Qfdu> < [ @o

Corollary 3.3.1. Let f,g € 8(R?), there holds:

< [[1stapldadp [ [ 1ta.0)Plo(a.) dadp

12

‘// f(a:p)g(q,p) dgdp




Proof. We choose 2 = R?, 9t = B(R?) (which is the o-algebra generated by the open spaces of R?), ¢(x) = 2
1
and dp(q,p) = (f[ l9(ap)| dgdp) " |9(q, p)|dgdp.

< (/ (@.p)] - 19(a p)|dqdp)2 B
:(// 'g(q’m'dqdpf ( /] |f(q7p)dqdp>2 < »

(Jensen’s inequality) < <// lg(q,p |dqdp> / |f(q,p)|? dgdp =

//ngpldqdp/ la(a.p)| - |f(q,p)|? dg dp.

Proof. (theorem 3.2). First we need to prove that x, on (M) is continuous with respect to the first and the
second argument separately.

‘/ f(a,p)g(a,p)dq dp

O

1 %0 12 =/ %y 6 dqdp =

2
1 ilgg_

(cq. 13) =W / / ] [ Fotaniemota—onp - agyer e agan| dgdp <
(15)

(corollary 3.3.1) [I?wlm // |F(&, )] —an,p — 0£)|2d€dn] dqdp =

:W IICﬂ/JHu 7. -
Similarly ||t %o 6172 < gz 172 1F6l[7:-

Now we choose an orthonormal basis {x;; € 8(M)}ijer of L?(M) such that xij o X = ﬁ&ilxjk.’fhe

existence and the properties of such a basis will be discussed in lemma 3.9, in theorem 3.10 and in its corollary
3.10.1.

Let ¢, ¢ € 8*(M) be two functions; they can be written as ¢ = Y7 _gaijxij and ¢ = Y775 bijxij. Thanks
to the continuity proved above, the star-product between the two functions takes the form:

e b= | Y @iy | %o [ D brxw :\/ﬁ Z (ZQ#}M) Xhj-

i,j=0 k,1=0 k,j=0

If the two functions v, ¢ € L?(M) instead of .(M), we can define the star-product between them with the
same formula, as {x; ;}i jer is a basis for L?(M). So the star-product can be extended on the whole L?(M) and
the extension is unique because .%(M) is dense in L?(M). Thanks to the inequality of Schwartz, there holds
also the following relation:

14 %o ¢||L2=F Z

k,j=0

2
1
<Z Czybk1> < Z Z |C’L]| |bk't|2 \/ﬁ H1/)||2Lz H(]’s”i? :

k,j=01=0

O
Now that we have proven that (L?(M),*,) is an algebra, we can start dealing with operators, which will turn
to be essential in the definitions of observables and states. The algebra of the operators Ag comes from the

deformed Poisson algebra Ag = (C™(M),*,) and its elements are of the form A = Ax, or A = x,4, A € Ag.
It will be seen that a particular kind of these operators acts on L?(M).

Definition 3.1. Given a function A € Ag, an operator function associated to A is given by:

1 ifea oA\ G
Ao(4:9) = 5+ / / FAlg,pl(, m)eh e RGN dyy dg
T
(16)
1 ign ia i
(Baker-Campbell-Hausdorff formula) = s // FAlq, pl(€,m)ertle” 5™ w78 dp dE,

where §,p are any operators such that they respect [§,p] = ih = §p — pq.
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Note 13. The formula 16 depends on the parameter o, which determines the type of ordering: standard (o =0),
anti-standard (o =1) and Weyl (o = 1 ).

Together with the deformation of the point-wise product in the star-product, it is necessary to deform also the
complex-conjugation involution of the algebra.

Definition 3.2. Given the the algebra Ag, it is possible to define the operation t Ag — Ag, [ r— =
Safﬁ'f* .

Lemma 3.4. T is an involution of the algebra Ag.
Proof. Tt follows from calcutions. O

Definition 3.3. A function f € Ag is called hermitian if ff(x) = f(—z).

Definition 3.4. Given an operator A, € AQ associated to the function A € Ag, its adjoint operator Al s
defined as

— //gﬁA* —&,—n)e —£1€G—np+(5—0)] de dn.
A 27h

Theorem 3.5. Given a function A € Ag, Al = Az

o

Proof. Applying the change of coordinate (£,n) — (—§, —n), the expression in the above integral gets:

Al = 5 h//gA* 3 Ti)eh [¢4—np+(5—5)¢n] de dn = Ax.
™

O
For further use it will be useful to introduce the operators ¢,p , such that [@ gj = —ih; operators A(g, ;zj) are
defined as: )
@)= oy [ [ FACmeRete bmiekoe dy g a7
== 27h
Defined the operator associated to a given function, we want to study how it acts on a function v € L?(M).
Definition 3.5. Given two functions A € Ag and ¢ € L*(M),
AL *o 1= Axg 1),
AR x5 1 1= 1 %, A.
Theorem 3.6. Let us define 4., po and an gjo as
do = q+1ho0py, P, :=p—1hody,
o o R , (18)
4, =0;=q— iha Op, P, =Dy =p+ thody.
For any function A € Ag,
AL*U - AO’(qAO')ﬁO')7
AR*O’ - Aa(q ’ﬁo)
Proof. Tt is trivial to check that ¢,, p, and q p _are well defined operators of the type ¢, p and ¢, p, which
means that they fulfil the commutation rules in deﬁnltlon 16 and above formula 3.1. Then we must note that,
expanding a smooth function f(x 4 a) in Taylor series, we obtain
e —
flzo+a =: f(xo)e“g” = %% f (1) (19)
j=0

Hence the star-product can be formally written in the form
AL *o ’(/) = A*U ?ﬂ = A(q + iho’apvp - Zh&aq)w = A(dmﬁa)i/%

AR o ) = kg A= Alq — ih68y,p + ihody ) = A(q_,p_ ).
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Now, using identity 19,
e%éde_%nﬁz/)(q,p) :e%(£q+iha<9p)e—%(np—ihr?@q)dj(q,p)

—er€4p=0p o= 1NP =50 ¥(q,p)

i i i = (20)
(Baker-Campbell-Hausdorff formula) =e# %~ #Pen M=% =% (¢, p)
—ctSemFm et (q — 5y, p — o).
Then, using formula 16 and the above equation,
S 1 _ i(eq—
(Aoliosto))(ap) = 5oy [ [ FAC (G - omp = o)k ) de g = (s 0)(a.p)
because of equation 13.
Similarly we obtain
[As(q, .0, )¥(a:p) = (¥ %4 A)(q,p)-
O

According to the above theorem, given a smooth function A and a set

Dapw, :={f € L*(M) |Ax, f € L*(M)}, then the star-product between A and any function ¢ € D4, ., can be

seen as an operator Apkq : D, ., — C°(M), 1) — Ax,0); similarly, given D ., = {f € L*(M) |f »» A € L*(M)},
we can define the operator Agx, : Dapy, — C°(M), ¥ — ¢ %, A.

Note 14. Note that operators of the form Apx, and Ag*, are also linear by definition of star-product 2.7.

Proposition 3.7. Given a function A € Ag, the adjoint operators of its corresponding operators Apxs and
Apx, are equal to the adjoint-operators of its involution A'.

Proof.
(AL*U)T :A:rf((jg’ﬁ”) = A;((j’ﬁ) = (507514*)0*(075) (Q(ﬂﬁo’) (21)
:(AT)E(quﬂﬁa) = (Af)L*U = AE*U
(Anso)t =AL0,.2,) = 45(d,8,) = (So-047)o—(0-0)(d,.,) (22
=(AN5(d,.p,) = (AN pro =1 A,
O

Lemma 3.8. Both the operators (Apx,) and (Arx,) are hermitian if and only if the function A € Aqg is
hermitian.

Proof. Tt follows from the definitions of hermitian operators and functions, from identity 19 and from definition
3.4. O
Now we can define what an observable is in the star-product formalism.
Definition 3.6. An observable is a hermitian function A € Ag such that, both D4, ., and Dap., are dense
in L2(M) and D4, +, = Diatwyy Das, = QAE*U'
We can also define pure and mixed states in the discussed formalism.
Definition 3.7. A pure state is a function pyure € L?(M) such that:

® Ypure s hermitian;

® Vpure o Ypure = o= Vpure;

o [l = 1.

Definition 3.8. A mixed state is a linear combination of pure states, each one weighted with its own probability:

Vmized = Zpﬂ/’r where 0 < p,. <1, Zpr =1, 1, is a pure state.
T r

15



Definition 3.9. Mized and pure states can be generically called states, physical states or admissible states.

Definition 3.10. Given an admissible state x € L*(M), its quantum distribution function is p = \/217}1)(.

Later it will be proved that p is a proper quasi-probabilistic distribution function, which is equivalent to say that
it is normalized, but does not require to be non-negative. This last property means that p is not a distribution
function, so cannot describe the probability of finding a particle in the generalized coordinates (g,p): this
is a result of the Heisenberg uncertainty principle. By contrast, it is possible to define density probability
distributions in only one variable, called marginal distributions: P(q) := [ p(q,p) dp, P(p) := [ p(q,p) dg.

To further study states properties, we need to better discuss the form of the space L?(M) and its basis. L?(R?)
is isomorphic to the tensor product between L?(R)* and L?*(R), where L*(R)* is L?(R)-dual space, which can
be identified taking the complex-conjugation of functions as duality map * : L?(R) — L?(R)*. So, given the
functions 1, ¥, Y9, ¢, ¢1, d2 € L2(R), the tensor product is defined as:

(¢" ®@¥)(q,r) = ¢"(q)¥(r)

and the scalar product induced on L?(R?) is determined by the identity:

< 1 @Y1]s @y >p2=< da|d1 >p2< P1|thy > .

As we want to study physics on the phase space M = R? using some generalized coordinates (q,p) such that
q %o P — P *o q = ih, we need to find an isomorphism between L?(R?) and L?(M) depending on the particular
*, chosen. Such transformation can be constructed by composing the two following isomorphisms: given
X € L*(R?),

L Foxr)(@.p) = g5 [ x(a,r)e” 77" dr;

2. Tyx(q,7) :=x(¢ —or,q + or).

Hence, the Hilbert space L?(M) can be defined as L?(M) := F,.T,[L*(R)* @ L?(R)] = L?(R)* ®, L?*(R). The
generators of L?(M) take the form:

C@.0) = (6 90 V)a.p) = o= [ I = or)ila+or)dr
and the star-product is determined by:

< P] Qo V1|05 @ 2 >p2=< ¢2|p1 >12< P1]tha > 12,
where ¢y, g2, 11,192 € L2(M). Tt is also possible to induce a basis on L?(M):

Lemma 3.9. Given the orthonormal basis {¢;}ier of L*(M), {Xij}ijer, Xij := ¢} ®o ¢; is a orthonormal basis
for L2(M).

Corollary 3.9.1. Given x = ¢* @, ¥ € L*(M), with ¢ =, a;¢p; and ¢ =Y, bi¢;. Then x = Zi,j CijXij =
> i arbiXig
Proof. It follows from the definition of x;; and the C-linearity of the tensor product. O

The basis {x;;}:,jer has got an interesting property:
N )

i Xkj
V2rmh nAN

Corollary 3.10.1. Given two functions x1 = ¢} @ Y1, X2 = @5 Q5 P2, then

Theorem 3.10. X;; %o Xk =

1 *
X1 *o X2 :\/ﬁ < P1|hg >z (95 ®g ¥1);

! (23)
*o =< > 1 Q6
X2 ko X1 = P2|th1 > 12 (9] @5 Y2)
Proof. Tt comes from the C-(anti)bilinearity of both the scalar and the tensor products. O

We can now prove some useful properties of physical states.

Theorem 3.11. Every pure state Vpure € L*(M) takes the form Ypure = ¢* ®, ¢, for some normalized
¢ € L?(R). Conversely, every function 1 € L>(M) of the above form is a pure state.
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Proof. Tt is obvious that every function v of the above form in hermitian and normalized; also

1
wpure *o '(/}pure :\/ﬁ < ¢|¢ > ((b* Qq (b)

:7(¢* Qo d)) =

X (24)
\/ﬁd]pure-
S0 Ypure is a pure state.

Now we will prove that every pure state is in the above form. p,,. can be written as ¥pyre = El ; CijXij the
cij’s are the ij-components of a matrix ¢. As szwe is hermitian, idempotent and normalized, then the matrix
¢ must fulfill the same properties: éf = ¢, é2 = ¢, tr(¢) = 1. From the spectral theorem follows that, if a matrix
is hermitian, there exists a unitary matrix 7' such that a := = TteT is diagonal and real, which is equlvalent to
say that ¢;; = >, Z’k(ak(Sk,l)le >k Ty ;arTy; with ap € R Vk. Hence

’(/)pure = Z T]:Zakaj(qu R d)j) = Zak (Z TK1¢1> Qo ZTk]¢j = Zak(djz (2 wk})a
N k i 7 k

with ¢, = 3. Tii¢;. Condition ¢? = ¢ implies that, Vk, af = ax and > k@ = 1, which is true if and only if
ap, = 0, ; for some k; so the function ¥,yre = 1/);; ®q V3, O

The above theorem states, in other words, that there is a one to one correspondence between pure states of the
phase space Quantum Mechanics and the vectors in L?(R), commonly used in the classical formalism.

Theorem 3.12. Every quantum distribution function p associated to an admissible state x € L?*(M) is a
quasi-probabilistic distribution.

Proof. Firstly it will be proved for pure states:
— /[ vptandadr—— [[ " 5, 6)(ap)dad
\/ﬁ pure\d, D) aq p_\/% o q,p)aqap
1 4
(specifying F,. T, ) =57 /// e nP"d*(q — ar)d(q + or) dqdpdr

(using —/e wdp=6(—r // *(¢g —ar)p(q + or)dgdr

(becase [ f(a)dla @) do = fla) ) = [ 6" (@)o(a)dg = 1

For mixed states there holds:

\/21”7 /¢mixed(Qap) dqdp :\/% // <Zp7'wr(%p)> dqdp

:\/% Zpr (/ Zﬁr(q,p) dq dp) (26)
(1 is a pure state Vr) = Zpr -1

(25)

O
Theorem 3.13. Every admissible state x =Y, pr(¢) Qo ¢r) satisfies:
1
p)dp = :
Nore /x(q p)dp zk:pkldm(q) o
27

[ xa.pda =3 mizenlslw)l.
k

gp
St
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Proof. In the proof we will consider only the pure states, because the extension to mixed states is trivial and
similar to the last one.

\/%/X(qap) dp :ﬁlh //¢*(q_5r)¢(q+ar)67%prdrdp
(using 4 properties) = / 5(r)¢*(q — ar)p(q + or) dr = |6(q) %

1 1 * - —ipr
\/ﬁ/x(q,p) dg =5 //¢ (q—or)p(q+or)e dq dp (28)

(r1=q—0r, o =q+or = r=2a1+ x2)

27Th/ o* (1) ehp th(xq)e™ #PT 2 dxy dxy

(gt s s )

=|F[z)(p)?

O

Like in the classical formalism, to states functions it is possible to associate density operators, but a further
construction is required. First of all note that to every function y € L?(M) it is possible to associate an operator
% € L2(M) defined as ¥ := V2whixk,. L?*(M) also inherits a scalar product from L2(M): given x1,x2 €
L*(M), then < X1|X2 >,»:=< X1|x2 >r2; there holds also the Cauchy-Schwartz inequality: IX1X2llz2ar) <

X1l 72 (ar) X2l 2 (ar)- It will be proved that L2(M) is isomorphic to another well known space.

Definition 3.11. Given the space of the bounded operators acting on L2(R) B(L3(R), and two operators
A, B € B(L2(R)), the Schmidt scalar product is defined as < A|B >g2:= tr(ATB).

Definition 3.12. The space of Hilbert-Schmidt operators acting on L*(R), 8?(L*(R)), is the space of all the
operators A such that | Al|sz :=< A]A >g2< +00.

Lemma 3.14. Given any operator A € $2(L2(R)), ||A| < ||Alls2. Then 82(L*(R)) C B(L?(R)

Definition 3.13. Given y = ¢* ®, ¢ € L?(M), the density operator associated to x is an operator defined as
p =< ¢|. >12 ¢ acting on L*(R).

Lemma 3.15. p defined as above (definition 3.13) is a Hilbert-Schmidt operator. Conversely, every p €
82(L3(R)) can be written as p =< ¢|. >12 ¥, where 1, ¢ € L*(R).

The following theorem proves that L?(R) can be naturally identified with 82(L?(R)).

Theorem 3.16. For every X € L2(M), ¥ = 1 ®4, p, where p € $2(L2(R)). Conversely, ¥ density operator
p€S(LAR)), 1 ®, p € LE(M).

Moreover, given X1 =1 ®¢ p1, then X2 =1 &4 p2, < X1X2 >j2=< p1P2 >s2.
Proof. Let x be x = ¢* ®, ¥ and the basis functions ;; = ¢; ®, ¢;. Then

>A(Xij =V QWhX *o Xij = V 27Th(¢* R ¢) *o (qﬁ: Qo ¢J)

. . A . (29)
=< ¢loj >12 (9] ®p V) = ¢] @0 (p¢5) = (1 @5 p)Xij

What proved until now implies that to every x;; corresponds the operator x; = 1 ®4 pi; =< ¢i|. > 12 (1Qs ¢;).
Then < Xij| Xk >72= 0itdji =< pPij|pri >s2, which implies the equality < x1|x2 >j2=< p1]p2 >s2. O

Hence all the density operators associated to pure states ¥pyre = ¢* @, ¢ take the form ppyre =< @|. >12 ¢; as
the mixed states can be written as Y¥mized = ZT pri),. with 1, pure states, then also ppizeqd = Zr DrPr-

Note 15. The discussion has been developed on = L*(M), but can be extended to a larger family of Hilbert
spaces, such as L*(M, p) where u is a positive measure, throughout an isomorphism S which acts in the same
way of the isomorphism in definition 2.8.
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3.2 Eigenvalues problem and time evolution in the star-product formalism

Now that we have studied the form that physical states and observables take in the star-product formalism, we
will consider the eigenvalues problem and the time evolution.

In the above section it has been shown that functions in Ag can be seen as operators Apxy, Ar*xs € AQ acting
on L?(M) such that their domains can be defined as D4, ., = {f € L*(M) [Ax, f € L*(M)}, Dapu, =
{f €L*(M) |f*, A€ L? (M)}7 it will be proved in the below theorem, which is a key-result for the Quan-
tum Mechanics description, that in fact, given a function y = ¢* ® ¢ € L?*(M), Arx, acts on v and
Apxy on ¢. So Apx, and Agr%, can be see also as operators acting on L?(R); then the domains Da, .,
and D4, defined as above are isomorphic to D4, (g5 = {6 € L*(R) [A,(¢,p)¢ € L*(R)} and D 45

{¢ € L*(R) |A,(q,p)¢ € L*(R)}, respectively.

Theorem 3.17. Let A be a function € Ag and x € L*(M) such that x = ¢* @, ¥, with ¢,¢ € L*(R).
o Ifp€Da,(ip), then AL xo X = ¢* @0 Ac (4, D)Y;
o If$ €Dy as then Agxs x = (AL(4,0)0)” ®, ¢,

where ¢ :== q and p := —ihd, are the canonical operator of position and linear momentum.

(@.0) "=

Proof. Given x € L?(M) and A € Ag, then we have
AL *o X = Ao(dosPo)X = OL,
Ap*o X = As(G5,P5)X = PR
X, ¢ and ¢r can be rewritten as
x(q.p) = €X' (a.p),  drla.p) = e, p),

x(a,p) = e“FPxr(q,p),  ¢r(g,p) = R PPR(q,p).
Using the Baker-Campbell-Hausdorff formula, we obtain

e#€do o= HMPo peLap _ echpe%deef%nﬁov
€45 ,—Enps crap — ,CRrAP ,EEQL —EnDP;
e e e = e“RIP¢ e ,

with
QU = {, +thocpq = q+ihocrq + iho0,, P, = Do —thocrp = p —thocrp — 1hody,

Qf; = 4z —ihocrq = q — ithocrq — thad,, 15; = Pz + thocrp = p + thocrp + ihody,
such that [Q, P,] = ih and [Q%, PX] = —ih.

Then, from the first equation, we have:

which get, taking ¢y, = —%6‘
Ao(ﬁilq + 1ho Oy, *ihﬁaq)X/L =97,
Ay (07 q —ih&0,,iha0,)Xr = ¢'p-
Then, applying the anti-Fourier transform to both the sides with respect to the p-variable:
AO’(C_Tilq + or, 7Zh5-aq)3j;1XIL(qa 7’) = ffgld)i(q, T)a
AU(a._lq - 6Ta Zh‘oaq)g:;lX/R(qa T) = 3:;1¢;%(Q7 T)'
Now we apply the following change of coordinates:
(r=6""q+or,r) = 0,=05 ‘0,

(ér = o tq—ar, r) = 0, = 0*18&%

and the equations get the simpler form:

Ag (€L, —ihde, ) Fy X1 (En,m) = T, ¢ (Ep. ),
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AG‘(&’R’ ZhaER)?;lxll%(va 7“) = gj;ld)/R(va T‘),
where &7, and £ represent the operators associated to the position, while —ih0¢, and —ihdg, the ones associated
to the linear momenta. In these coordinates it is easy to see that, if we chose x such that

Fy X (€nyr) = Coép)ri(r) and 5, Xk (Er, ) = Ch(ER)RR(r),

with (1, (R, K, kr € L?(R), as it happens with physical states before applying the two isomorphisms discussed
above (3.1), then

Fy o (En,r) = ¢o(€n)ri(r) and Fy ' ¢R(Er, m) = YR(ER)RR(T),

for some 91,9 € L?(R), which means that the operators act only on one function:
Ao (§r, —ih0g, )CL(§r) = Yr(éL),

Al (Er, ~ihde, )CR(ER) = YR(ER),
because in L?(R) (A (Er,ih0e,))" = Al (&g, —ihO¢y, ). Now we can find x both from e“* 9y’ and e“"9%y/,:

1 __1 _i( +—71)
= G g+ or)kp(r)e” ®VTO WP gy

_ 1 L i
y=r+o"0) :\/QTh/CL(quGy)HL(y—U Yq)e” TP dy

(30)
== [ Glo g = onma(rye kOO
2mh
_ 1 N _ _ i
y=r=c :\/ﬁ/CR(q —oy)rr(y + o0 g)e TP dy,
which implies that
rp(y—o'9) = Crla—0y),  rr(y+0'q) =Culg+oy).
We explicit also ¢y, = e“Z% ¢ and ¢pr = e“R%P ¢, using the above relations for k1, and kg:
AL *e X = 0L :\/% /1/11,(5_16] + JT)RL(r)e_%(T"’FIQ)p dr
™
1 i
o /m(q +0y)Crlg —oy)e " dy
:(C}k% 2 wL)(qap> = (C}*% Qg AG’( Aaﬁ)CL) (Q7p)
, (31)
AR *o X = ¢r :\/ﬁ /w}}(o_lq - 5r)/~eR(r)e—%(r—a*1q)p dr
1 * — _ i
~Varh /¢R<q — y)CLg + oy)e” P dy
=Wk @0 C1)(@.) = | (AL@D)CR)" @0 Ci (0.9)
O

Corollary 3.17.1 (eigenvalues problem). Given A € Ag, every solution of the x,-genvalue equation A, x =
ax, with a € C, is of the form: Y. ¢ ®, 1;, where the ¢;’s are arbitrary functions € L*(R), the s € L*(R)
are the a-eigenvector of the problem Ay (q,p)Y; = ath; and n is the degeneracy of the a-eigenspace.

Similarly, given B € Ag, every solution of the ,-genvalue equation x x, B = by, with b € C, is of the form:
ST o @q hi, where the ;s are arbitrary functions € L*(R), the ¢}s € L*(R) are the b*-eigenvector of the
problem B} (G, p)v; = b*y; and n is the degeneracy of the b*-eigenspace.

Proof. Tt is sufficient to prove the first part of the theorem, because the second one can be shown similarly. The
eigenvalues problem in the statement is equivalent to

Ao (Er, =i, )T X (Ep,m) = aF, X (€por) = @Y ki i(r) i),

where (£,,7) are the ones defined in the proof of theorem 3.17, {;};cs is a basis for the a-eigenspace and
the xf, ;s € L*(R) as F,'x}, € L*(R?); through the same manipulations used in theorem 3.17 it results that

Ky iy —aq) = é;(q —ay). O
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Corollary 3.17.2. Given x1 = ¢} Q4 V1 and Xo = ¢ Qo V2, with 1,92, ¢1, 02 € L*(R) and a function
Ac Ag, then
< X1|AL %o X2 >r2=< ¢a|d1 >12< P1|As (¢, D)2 > 12

<X1lAr %o X2 >12=< AL, D)d2|01 >12< Yilth2 >12=< d2| Ao (§,5)01 >12< Yilth2 > 12 -
Proof. 1t is an obvious consequence of the theorem 3.17. O
Corollary 3.17.3. Given y = ¢* ®, ¢ € L*(M) and A € Aq, then
(Azxe) x = ¢" ®5 AL(@, )0
(Arxo)' X = (A5(8,9)8)" @q ¥
Proof. Tt is an immediate consequence of corollary 3.17.2 and of proposition 3.7. O

Corollary 3.17.4. Given A € Ag and a pure state Ypyre = ¢* Q4 ¢, with ¢ € L*(R) such that A, (4, p)d = ag,
then
A %o wpure = C“/}purey (AR*U)“/}pure = a*i/}pure-

In particular, if A is an observable,
(AL*G)T’ll)pure = AL *o d)pure = a’lppure; (AR*U)“/}pure = AR *o ¢pu7’e = ai/}purev

with a € R.
Proof. Tt is an immediate consequence of corollary 3.17.3 and of definition of observables. O

Another important consequence of theorem 3.17 is that an operator A, ({,,ps) can be written as A, (4y,ps) =
1®4 Ay (4, p). From theorem 3.17 and 3.16 follows also that observables A with respect to x = ¢*®, 1 € L*(M)
can be seen both as:

e operators of the form A, (gy,ps) acting on L?(M)-function operators of the form X = v2mhxx,;

e operators of the form A,(g,p) acting on density operators defined as < ¢|. >r2 . In this case the
composition between the two operators is defined as:

A(§,9)p =< ¢|. > [Ac (4. D)Y]  pA (4, ) =< AL(q,p)¢|. > 1.

The equivalence between the two formulations is given by:

Ag(lo Do) =1 @5 Ag(@,0)p D As(Gos Do) = 1 @4 pA (4, D).

Definition 3.14. Let A € Ag be an observable and let X € L?(M) a state with its quantum distribution function
Q
pi= \/2lThX' The mean value of the observable A with respect to the state x is given by

<A>= //(A *o p)(¢, p) dg dp.
Note 16. Note that, given f,g € C°(M), from theorem 13 it follows the equality

//(f *o 9)(q,p) dgdp = //(g *o [)(q,p) dg dp;

then the above definition can be given also as < A >,:= [[(p*s A)(q,p) dgdp.

Theorem 3.18. Let A € AQ be an observable and let x = Y., prby = > prdt @4 ¢, with the ¢l.s € L*(R),
be a mized state with its corresponding density operator p = py < ¢p|. >12 ¢r. Then

< A >, =tr(pA, (4, D))
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Proof.

<A >X=\/% Zk:pk //(A *o Vi) (¢, p) dg dp
(theorem 3.17) :\/% gpk // (91 @0 (Ac(d,P)or)] (g, p) dg dp

:% Zpk // 6i(q — o) (A (G, P)or) (g + or)e™ #P" dr dg dp
k

32
(using 5 properties) =~ pi. [ [ 6i(a -~ 1) (Aad.9)60)(a + 07)3(r)dr d ()
k
=" [ Gila)(Aa(a on)la) da
k
=3 b < GxlAol@,D)6x > 1= 1r(5As(0,5)
k
O
Corollary 3.18.1. Given the same hypothesis theorem 3.18,
<A> =Y pr <Yl AL ko Y >
; (33)
:Zpr < AR %o Pr >0
Proof.
<A >X=Zpk- < k|As (4, D)k > 12
k
(¢r’s are normalized) :Zpk < Ok|dr >12< dk|As (4, D) Pr >12 (34)
k
(by definition) = " p, < ¥y |AL *o ¥ >
and similarly,
< A >y = Zpk < Okl As (G, D) Pk > 12
k
= Zpk < o AL(G, D) b >12< drldr >12 (35)
k
= Zpr < Yp|AR Ko Pr >0
O

Note 17. As observables correspond to operators which are in particular hermitian, the mean value is always
a real number.

It is now possible to derive the following importan physical result:
Theorem 3.19. Let A € Ag be an observable and let pyre € L?(M) be a pure state. Then the commutator
[A, X] =A *o '(/)pure - ¢pure *o A=0 Zf and only ZfA *o 7/1177“«@ = ¢pure *o A= C”y[}pure; fOT some a € R.
Proof. Obviously if A *; Ypure = Ypure *o A = apure, then [A, Ypure] = apure — a¥pure = 0.
Conversely, if [A, {pyure] = 0, then

A *o wpure *o wp'm‘e = wpure *o A *o wpure-
The first side is equal to

1 1

1
A *o \—7—=Ypure) = —A *o ure —
( 27h Ypure) U 27h

= ¢ @o As(q, D)0
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Then
1

v2rh

1, . -
:\/ﬁw @5 @) %o [0 @0 (As(d,D)0)]

A *o ’l/)pure = wpure *o A *o wpure

(36)

(from theorem 3.10.1) = < 9|As(q,D)P >12 (0" ®o @)

2rh
=a.

O

In Quantum Mechanics, time evolution is governed by an Hamiltonian H: given the state x € L?(M), the
quantum counterpart of the Liouville’s theorem takes the form:

WX _[H, x| = 0.
ih>, [H,x] =0

Moreover H requires to be an observable and physically can be seen as the energy associated to the system.
The equation can be expressed also using the time evolution function U (t):

O[U(#) %o X(0) %o (U(t)~"]

ih ot = H xg [U(t) %0 X(0) %o (U(H)™"] = [U (1) %0 X(0) %o (U(E) ™' %0 H
=
-1
(magf)) % [X(0) %o (U()71] + [U(#) 50 X(O)] %o <6(U§?)> N

= (H %6 U(£))bxox(0) %o (U()™'] = [U(#) %o x(0)] %o (U(t) ™" *o H)
The relation must be true Vx(0) € L?(M), which implies:

md(gt(t) — Hy o U(t)
[H,Ut)] =0

k times

which also commutes with H; the functions U(t) form a one parameter (t) group; the inverse U(¢)~! is given
by U(—t) = U(t)", which means that U(t) is a unitary function.

Definition 3.15. A state x is called stationary if

Theorem 3.20. Ae pure state Ypure € L*(M) is stationary if and only if Ypure is an eigenvector of the
Hamiltonian H, which is equivalent to say that Hp *o Ypure = HR *o Vpure = EVpure for some E € R,
corresponding to the energy of the system in the state Ypyre.

Proof. tpure is stationary if and only if [H, ¥pyure] = 0, if and only if (theorem 3.19) Hy % Ypure = Hr*o Ypure =
EvYpyre for some F € R O

Working with density operators p € §2(L?(R)), there holds the Neumann equation

9p

h@t

[H(T(q’ﬁ)7 [)] =0.

Stationary states are the ones such that ih% = [H,(q,p), p] = 0. If the state is pure, then p =< ¢|. > ¢ for
some ¢ € L*(R) and the Neumann equation equation takes the form:

op
ih 8’; =[H, (3,). )
06 (37)
< ih %) > ot < 0l > 1% = < “H (4, 5)6| > 6+ < 9. > Ho(d. )6,
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which is equivalent to the Schréodinger equation

0
ST = H, (4,5)0

and the state is stationary if and only if H,(§,p)¢ = E¢. The time evolution of density operators is described
by unitary operators defined as

Uy (§,p,t) = e #Ho@D1

hence p(t) takes the form:

in fact
% <;Hﬂ(lj7p) UU((j’ﬁ? t)ﬁ(O)Uﬂ'(quﬁa 7t)+
# U0 0900) (5 Ho(0.0)) V(a5 1)
(1o, 1), Ho 0,)) = 0) = = % [Ho(d,9)00) — pHo (4,5 =

Given the mean value < A >, (o) of an observable Ae AQ, we want to find its time evolution;

( )(qp)dqdp—lﬁ[ //A*ax )(q,p) dgdp — //( *o X(t )(q,p)dqdp}

d<A>() 814 ]
(t)

(38)

i@ S

=1

where %—’? # 0 if and only if A explicitly depends on time ¢. On the other side, using the Liouville equation
together with note 16, we obtain:

( *o )(qp)dqdp F /A*o (H xo x(t) = x(t) %o H)](q,p)] dqdp
:ﬁ / (Ao Hto x(6)(0.9) — (Ao x(8)) %0 H](a.p)} dqdp
= [ (e B x(0)a.0) = [ 4 (At (0 a)} dadp )

o [[ s = 4 ), 0O 0]

=< [A,I:[] >X(t)
Then ) .
Ld<A> 0A AN
’LhTX(t) =1th < E > x(t) + < [A,H] >X(t) . (40)

In the above description states depend on time, while observable don’t, a part from some explicit dependence;
such choise is called the Schréodinger picture. There is an equivalent picture, the Heisenberg one, in which states
do not depend on time, while observables do. Then equation 40 takes the form:

L d < A(t) > L OA(t S
ih at x(0) =1h < ai ) >2(0) + < [A(t),H] >(0)> (41)
from which follows that ) )
dA(t OA(t . .
ih di ) =1ih 815 ) + [A(t), H]. (42)

Again 94()

# 0 if and only if A(t) explicitly depends on time t. If we assume that A(t) has no explicit
dependence on time ¢, then the differential equation ihd‘zit) = [A(t), H] is solved by some A(t) of the form
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A(t) = [U(=t) %0 A kg Ut)] ko 0ot A(t) = [U(=t) %5 Axy U(t)]r%e, where U(t) = ex 71", Indeed
= [ (A©) v [0(0) v x(0) 20 U (0] e ) da
- / / {[A(0) %5 U(t) % X(0)] %0 U(—1)}(q.p) dq dp

(43)
— [ A0 0) w0 400) 50 U @) 50 x(O) M) dady
=< A(t) >(0) -
Similarly, operators of the type A,(q,p,t) undergo a similar equation:
dAo‘ A3A7t aA s sy Ao PN
ih (;tp ) (aqtp 2 [A5 (4, p,t), Hy (4, P)], (44)

which is solved by
with U(q,p, t) = e~ nHe(@p),

3.3 Physical example: free particle and simple harmonic oscillator

Once that the star-product formalism has been studied, it is possible to apply it on some physical examples. In
particular this thesis will treat a free particle and a simple harmonic oscillator.

The Hamiltonian of a free particle is H = 2, where m is the particle mass and can be taken as unitary (m = 1).
Ix
ot

A solution can be of the form of a plain wave:

Given a pure state y = ¢* ®, ¢, the Liouville equation is: ih
¢ 9%*¢

equation: th— = —.
quation: 4 T g2

= [H, x|, which is equivalent to the Schrédinger

2 .
—F 5 tenpa

e

s

which is not in L?(R); then the physical solution will be a linear combination of wave functions:

i

et B tehpa dp =

o(q,t) = g(p, )i dp, f e L*(R).

7] T vk

Then the state y takes the form

* 1 _ i in'(g—& * E; o
X(Q7p7t) = ((b Ry (b)(q’p’t) = (277}1)3/2/6 7 PT (/g(p/,t)ehp (q—ar) dp/) (/g(p/,t)ehp (q+or) dp/) dr.

Taking the function f(p) of a Gaussian-like form:

_ (p—p0)*>
e 4(ap)?
f(p) - (27T)1/4(Ap)1/2 1)
o(q,t) gets
_ (p— po)?
4(ap)? —i2y ipg
T Sy e B
p2 (a— ’T”O)Z 4—1i-x5 PO 2
h. e 1ap)? e TAq(Aqtinph) 1Az HaEp— zﬁm}
(AgAp=3) = d
2’ " 2nh(2m) /A (Ap)1/? )
it q— ZA*I,JUO 2Ap\/Aq
Y=z t+t57P— —, then dp = ———
4Ap 2h 2V Ag/Aq + iApt VAq + iApt
2

e 4(ap)? (q - ZApPO)
= ex .
(2m)V/4\/Aq + iApt P 4(Aq)? + 4iAgApt
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Hence, choosing o = %, x(q,p,t) results to be:

=1V

kd ) 2 ) ) 2 )
e 2Ap? ip'r‘ [(Q—%T)‘Fl%zpo] (Aq+zApt)2+[(<1+2%2r)—z§%po] (Aq—iApt)
x(g,p,t) = ) e 18q(Aq%+Ap2eT) dr
2/ h(Ag? + Ap?t
2 2
Aqr2_27 Ap.qH.éAq?po_éAqT)p_Ap_p,?)T+Am_2q2+2Aq_p0t2_4Aq_p0qt

4Aq(Ag2+Ap2t2) dr

277\/h Aq + Ap?t2) /

3 (%) -4 (4’
om /(A2 + Ap*t?)
Ag \/ii(qut-%AA—quo—%‘fp—Ap-th)
2" JVAq

21/Aq(A? + Ap2t?)

3 (5%) -3 ()’
VT AqAp

Then we can calculate the expectation values as:

1 1
<q>yn= Wors //q*1/2 x(g,p,t)dgdp < p>y4= Wors //p*1/2 x(q,p,t) dqdp
1 1
<@ > = oz // @ *12 X(q,p,t)dgdp < p* >y )= N //p2 12 X(a,p,t) dgdp  (47)

<Ag > = \/< P>y —<a>Yy <Ap>y = \/< P2 >y — <P >3

2 2
. A A
i \/51,<Ap-qt+7:qpp —7:[11717—Ap-pt2)
V2" VAq

(46)

4Aq(Aq2+Ap2t2) dr

y= , then dr = \/8(A% + Ap?t?) —

It will be explicitly calculated only the first mean value just to give an example:

< q>x(t):\/% //q*uz x(q,p,t) dgdp
—/ :m// NG~ 0+ 50RO gy dyay
:\/21771// 27771 //27Tﬁ~ih5/(£)5(?7)x(qf %n,erff,t)e%“q’””) dﬁdn] dq dp
—= |/ :—m//mé(n)a( (0= g+ 560 ) de o] dadp
:\/‘%// 85( 277 D+ 5 t)er(€a- "”)> L:Om:odqdp
- // [Zq 9Aq (q;qpt> N 2211 (pOA_ppﬂ eé(p%/;;ZTi:Agt)g dadp

1 7%(q—p1)2 _ ih //_lﬁ
\/W/qe z dq] dp N 2apx(q,p7t)dpdq

0dq = pot.

(48)

po P
2
\/27rAp /

1

/ —1( dp __ih
\/27rAp \V2mh
Similarly we obtain:

<g>ypm=Dpot < q2 >y t)= qu + Ap2t2 + pth < Agq > )=V Ag? + Ap?t?

<p>y=Po <P’ >y=Ap°+p; < Ap>=Ap

It is interesting to note that < Aq >, ) - < Ap >y (> Agq-Ap = % Vvt € R and the equality is true if and only
if t =0.

The Hamiltonian of the harmonic oscillator is H = % + %wqu, where the mass m can be taken again as
m = 1 to simplify calculations. Then the Hamiltonian reads H = %(p2 + w?¢?) and the eigenvalues problem
takes the form H *x, x = Erx, X *« H = Fgrx. Like in the common formalism, it is useful to introduce the
destruction and construction functions:

a(qp):wq+ip a:wq—ip
’ V2hw V2hw '
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such that ax, = (ax,)', ax, = (ax,)' and [a,a] = 1. Using these functions as coordinates, the Hamiltonian
takes the form: H = hw(d*, a + 1) =: hw(N + 1). The function N := @ %, a is hermitian as NT = (@ *, a)' =
a' x, @' = @%, @ = N, hence it is an observable; then the eigenvalues problem gets: N x; Xnm = "Xnm,
Xnm *¢ IN = MXnm, which brings to:

1 1
§)Xnma Xnm *o H = EpXpm =: hw(m + E)Xnm-

It is possible to show that the eigenvalues of N are integer and non negative and the operators associated to a
and a act in the following way:

H %5 Xnm = EnXnm = hw(n +

a*g Xnm = \/EX(nfl)ma G *g Xnm = VN + 1X(n+1)m7
Xnm *o @ = VM + IXn(’m-‘rl)a Xnm *o @ = V1M — 1Xn(m—1)'

Hence

A *g ... kg A*sX00 *o A *g ... *g A,
————
n times m times

which, for o = %, becomes:

max{m,n}
= 1 n m n+m-m—k _n— =
o (0,) = > o () () @rran e o)

Im)!
nim: k=0

To find xoo(a, @) we need to solve the equations system

axg Xoo =0
X00 *o @ =0
As formula 13 works only if the coordinates (g, p) fulfill the commutation rule [q, p] = ih, while [a,a] = 1, we

need to introduce the coordinate @ := ih - a such that [a,a’] = ih; then Xoo(a,@’) := xo0(a, a(a’)); also we must
note that Yoo %5 @’ = ik - Yoo *» @ = 0. Then, taking o = %:

- _ 1 _ - 1 1 0 ie
a*1/2 Xoo(a,a’) =55 // Fala,a’)(&,m)Xoo(a — 577761/ - *f)eh(fa 19 d¢ dn

7// 2rh - ih - 6'(€)6(1)Xoo(a — %n,a — *5) #(&a=n9) e dn

B 1 3X00(CL— 5n,a — *f) 1 ., 1 i(ga—na’)
_—zh//6 [ o _75) +hGX00( §Tlaa —55) e d§ dn
. 10a’ Oxoola,a) | i _
= zh[ 595 % + haXOO(aa a)
_ 10x00(a,a) N
=3 9a + aXOO(fLa a)=0
= xo0(a,a) = f(a)efZ‘m.
Similarly:

1 dxoo(a, a)
2 o0a

— xo0(a,@) = Ce™2% where € € C is the normalization constant.

Xoo(a a ) *1/2 a =ih |: + ELXOO(CL, (_1,):| =0

The associated quasi-probability distribution function pgo(g,p) = ﬁx(}o( a(q,p),a(q,p)) = - e*ﬁ(“%f“’z),

hence C = ,/ﬁ. Then

1 n\ (m 1 L) 22
_ — _ 1 k ! 92 n+m-m—k _n—=k — 55 (W ¢“+p*)
Prm (4, ) = prm(q,p,t = 0) E (—1)"k (k)(k:)( yrtmgm=kg, e

Time evolution is described by

— i (En—Em)t —itw(n—m)t

—im i Ht
Pm (0, 0,1) = €x)}y %o pum(q,p) %o €f),, =€ Pnm(q,p) = € Pnm (4, D);

if m = n, p,, represents a pure stationary state, then p,,(p, ¢,t) = pnn(p, q) Vt.
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