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Preface

Modelling population dynamics trough differential equations is an old issue. A
basic model is the logistic equation. Thanks to the introducing partial derivatives,
one can study not only the variation of the total mass of the population, but also its
distribution in the territory. The equations that combines a diffusion process with a
variation of the density are called reaction-diffusion equations.

Since their introduction in two celebrated papers by Fisher [10] and by Ko-
mogorov, Pertovsky and Piskunov [14], reaction-diffusion equations appear in a vast
mathematical literature for their interest both for the modelling potential in a wide
range of fields, among which medicine, biology, and ecology, and for realising a new
class of PDEs, requiring new techniques and raising questions. The two main be-
haviours that a solution u of a reaction-diffusion equation may present are the inva-
sion and the extinction. If at large times the density of population tends to 0, then
we have extinction. On the other side, if at large times the population reaches its
maximum density all over the domain, then we say that there is invasion. In the
last case, many questions regarding the way the population invades the plane arise.
When one dimensional solution exists, then one can define the travelling fronts, that
are solutions propagating as waves. The speed at which the solution converge to its
limit is called asymptotic speed and it has been computed or estimated in many cases.

One interesting phenomenon to be investigated is how the presence of a trans-
portation system affects the spreading of a population or epidemics. This interest is
motivated by several concrete situations. One classic example is the spreading of the
“Black Death” plague in Europe during the 14th century [18]. It has been observed
that the silk road has speeded up the diffusion of the infection along its path. Then
the epidemic illness diffused in the inland, more slowly. Another example of a simi-
lar phenomenon is given by the recent spreading of the Processionary caterpillar in
Europe. The species is naturally invasive, but the unexpected speed of its diffusion
may be caused by the transport of some individuals by vehicles travelling on roads
through infested areas. The same situation happens with other species, like the Aedas
Albopictus mosquito.

A model for a diffusion in an environment with a faster diffusion line was first
introduced by Berestycki, Roquejoffre and Rossi in [6]. The field is modelled with
the halfplane Ω = R × R+ and the line with the x axis; the main idea is to use two
different variables for modelling the density of population along the line (u) and on
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the half plane (v). The system reads
∂tu(x, t)−D∂2

xxu(x, t) = νv(x, 0, t)− µu(x, t), x ∈ R, t > 0,
∂tv(x, y, t)− d∆v(x, y, t) = f(v), (x, y) ∈ Ω, t > 0,

−d∂yv(x, 0, t) = −νv(x, 0, t) + µu(x, t), x ∈ R, t > 0,

where the three equations describe, respectively, the dynamic on the line, the dy-
namic on the half plane and the exchanges of population between the line and the
half plane. On the line, the diffusion is faster than in Ω. The authors of [6] prove ex-
istence and uniqueness of a positive bounded stationary solution and show that given
a reasonable initial datum, the corresponding solution converges to the stationary
solution. Moreover, they show that the presence of the line increases the spreading
speed. Another version of the model with a reaction term on the line was presented
by the same authors in [7].

In this thesis, we present the road-field model with a different reaction term. We
take f depending on the density of population v and depending periodically on the
variable space y, and we take weaker hypotheses on f . Some similar hypotheses can
be found in the model by Berestycki, Hamel and Roques [3], that studies a reaction-
diffusion process in a periodic medium, but has no faster diffusion line. The model
we investigate combine the interest in the effects of a transportation network with the
need to have a heterogeneous medium, reflecting the natural environment [13]. Many
of the proofs that we are presenting in this work are combinations and adaptations
of the ideas of the three papers [6, 7, 3].

We prove the existence and uniqueness of solutions and we study the asymptotic
behaviour of them. The eigenvalue problem corresponding to the second equation
of the system, i.e. −dφ′′ − fv(y, 0)φ = λ0φ with φ periodic in y, has an important
role in the investigation of the asymptotic behaviours. By examining the periodic
eigenvalue and eigenfunction, we find some sufficient conditions entailing invasion and
extinction. In fact, the sign of λ0 tells whether the solution (u, v) ≡ (0, 0) is stable or
not. If (0, 0) is an unstable solution, then any solution of the system starting from a
nonnegative datum, different from 0, invades the domain. This result was also found
for the model in [3]. In the same article, Berestycki et al. also show that if (0, 0)
is unstable then any solution faces extinction. In our model, the presence of the
road increases the technical difficulties. We have to introduce a new hypothesis on
the eigenfunction in order to provide a sufficient condition for extinction. Without
this hypothesis, the question about the asymptotic behaviour is still open. Since
the conditions regarding spectral properties are not easy to verify, we provide some
handy and natural hypothesis entailing extinction. We show that by assuming f to
be symmetric in the space variable y we can have a complete characterisation of the
asymptotic behaviour of the solutions.
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Chapter 1

Introduction and main results

The aim of the thesis is to study a system of partial differential equations, mod-
elling a biological process in a periodical environment with a faster diffusion on a
line.

The domain of the spatial variables is Ω := R×R+ and the line where the faster
diffusion takes place is the boundary of Ω, thus the x axis. Let us take D, d, µ, ν
positive numbers and let f(y, v) : R+ × R → R be a function; later we will specify
the hypothesis on these quantities. We call v(x, y, t) the density of population in the
field and u(x, t) the density of population on the road. The system we consider reads

∂tu(x, t)−D∂2
xxu(x, t) = νv(x, 0, t)− µu(x, t), x ∈ R, t > 0,

∂tv(x, y, t)− d∆v(x, y, t) = f(y, v), (x, y) ∈ Ω, t > 0,
−d∂yv(x, 0, t) = −νv(x, 0, t) + µu(x, t), x ∈ R, t > 0,

(M)

where the three equations describe, respectively, the population dynamic on the line
depending on the population density u, the dynamic on the half plane depending on
the population density v and the exchanges between the line and the half plane.

We are interested in the existence and uniqueness and in the behaviour for large
time of the solution (u, v) of (M) with initial datum{

u|t=0 = u0 in R,
v|t=0 = v0 in Ω.

(0.1)

In this chapter we present in detail the hypotheses on the model, the context in
which this work is nested, the main results with their interpretation and finally a
glance at the open problems.

1.1 Explanation and hypotheses on the model

Let us focus first on the coefficients appearing in the equations, and then on the
reaction function.

The positive quantities ν and µ represent, respectively, the fraction of population
of the field moving to the road and the fraction of population of the road relocating
in the field. Of course, the movement of the population from the field to the road and
viceversa is balanced in the equations. On the road, where no reaction takes place,

1



2 Introduction and main results

there is a diffusion of the population and the incoming flow νv and the outgoing flow
−µu are the only factors that varies the mass of the population. In the field, the
exchange with the road appears as mixed boundary condition. The main reason to
introduce the road is to have a part of the environment where the individuals can
move faster. This is modelled by choosing D > d, thus a stronger diffusion coefficient
in the road.

The difficulties of this model come largely from the reaction function f , that acts
like a birth-death rate in the field. It takes two arguments, the spatial variable y and
the density of population v. The function f is Hölder continuous for some γ ∈ (0, 1)
with respect to y, locally uniformly with respect to v, and Lipschitz with respect to
v locally uniformly with respect to y. We want f to model a population dynamics,
hence we require f to have a stable state at 0 and to be negative if v is above some
saturation level M > 0, that is

f(y, 0) = 0 ∀ y ∈ R,
∃ M > 0 such that f(y,M) ≤ 0 ∀ y ∈ R.

Notice that this means that the saturation level is not necessarily 1, like in most part
of population dynamic model. Also, it possibly depends on the space.

To simulate a birth-death rate one requires f to satisfy the condition

∀ v1 < v2
f(y, v1)

v1

− f(y, v2)

v2

> 0 ∀ y ∈ R,

that is an hypothesis of type Kolmogorov-Petrovski-Piskunov [14] and it is a strong
concavity hypothesis. The new feature we are introducing in this work, that was not
present in the road-field model of [6], is the periodic dependence on the space for f ,
that is

f(y + `, v) = f(y, v) ∀ y ∈ R+, ∀ v ∈ R
for some fixed ` > 0. We expressly omit a positivity hypothesis on f , which was
taken in [6], in order to study deeper aspects of the model.

We spend some words also on the solutions. As u and v are supposed to be den-
sities of population, we want them to be nonnegative and also bounded. A function
describing a concrete quantity as a density of population is supposed to be regular;
therefore, we want u and v to be derivable twice in the space variables and once in
the time variable. So we impose even stronger requirements on u0 and v0, asking for
bounded and nonnegative functions, Hölder continuous with theirs derivatives up to
order 2. The existence of nonnegative bounded solutions is one of the results shown
in this thesis and it is an evidence of the good design of the model. Another evidence
of for that is the conservation of the total mass in the case f ≡ 0, as one can find in
[6].

1.2 Interest of the model in the context of the cur-

rent research

Reaction-diffusion equations of the type

∂tu−∆u = f(u)
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have first been introduced in two milestones articles by Fisher [10] and Kolmogorov,
Petrovsky and Piskunov [14] to study the spreading of an advantaging gene. The
applications to the equation were later extended to many other fields like medicine,
biology, physics, and ecology. Since the pioneering works, a vast literature was de-
voted to the investigation on the existence and uniqueness of the solutions and to
the study of their properties, among which the most celebrated is the spreading or
propagation on the domains, that is, the locally uniformly convergence of the solu-
tion to the saturation level as times goes large. In the basic cases where the level
of saturation is M = 1, one says that the equation exhibit the spreading property if
any solution starting from a compactly supported datum u0 ≥ 0, u0 6≡ 0 satisfies the
limit u(x, t)→ 1 as t→ +∞. Deeper spreading properties are studied by comparing
the solution to travelling fronts, i.e. planar fronts of the form U(x, t) = φ(x · e+ ct),
where e ∈ RN , |e| = 1 is the direction we are considering, c > 0 is the speed at which
the front is moving and φ satisfies

−φ′′ − cφ′ = f(φ), φ(−∞) = 1, φ(+∞) = 0.

One of the most outstanding result of Kologorov, Petrovsky and Piskunov [14] was
the existence of an asymptotic speed, that is, a minimum value c∗ from which on a
travelling front exists.

The largest part of the existing papers focus on homogeneous equations, that are
equations whose reaction function depends only on the solution u. The heterogeneous
extensions are obtained, for example, putting a space dependence in f , as we will see
below, or imposing the problem in domains where the geometry affects the form of
the solution [2]. Heterogeneous equations are a better choice for modelling popula-
tion dynamics; in fact, the literature shows that natural environments are far from
being homogeneous and present a mosaic of different habitats, often fragmented by
natural or artificial barriers like rivers or roads [13]. However, heterogeneous reaction-
diffusion equations raise difficulties with respect to the homogeneous case. Even the
definition of spreading and travelling front have to be adapted to the context and
the existence and the value of the asymptotic speed have to be discuss case by case.
Moreover, the behaviour of the fronts may change with the direction e.

Skipping a great part of what can be said about reaction-diffusion equations, we
here presents two recent models from which the work of this thesis was inspired.

The idea of of introducing a line with faster diffusion in the framework of reaction-
diffusion equation was first presented by Berestycki, Roquejoffre and Rossi in [6]. In
that paper, the reaction function on the field was an homogeneous function f(v)
with the KPP hypothesis, that is, a function with two stable states in 0 and 1 and a
sublinearity property:

f(0) = f(1) = 0, 0 < f(s) ≤ f ′(0)s ∀s ∈ (0, 1).

Notice that in the model of this thesis the hypothesis 0 < f(s) is missing, and that
is one of the reasons for the interest of the model. This work gives the ideas for a
great part of the basic properties of the model, such as the comparison principles
and the existence of solutions, but also focuses on the existence of planar front of
exponential type and the estimates of the asymptotic speed. The following work [7]
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by the same authors introduces a reaction term g(u) in the equation for the line. This
time, the difficulties impact also the form of the asymptotic solution, that has the
form (U, V (y)), while in the previous case it was simply ( 1

µ
, 1). Thank to this, more

general techniques to study the asymptotic behaviour of solutions were developed.
In both articles, comparing the results to the case with no line, an increase of the
asymptotic speed c∗ in the direction of the line was found and the dependence of c∗

from the parameters of the model was analysed in depth.
The second model that inspired this thesis is the diffusion in a periodically frag-

mented environment. Berestycki, Hamel and Roques analysed in the papers [3] and
[4] the equation

ut −∇ · (A(x)∇u) = f(x, u), x ∈ RN (2.2)

where the functions A and f are periodic in the spatial variable x. On the function f
they take the same hypotheses of the system (M); the only difference with the model
presented in this thesis is that our reaction function depends only on one spatial
variable, namely y. As the positivity requirement for f is missing, different behaviours
of the solutions appear. The authors distinguish between extinction, when u(x, t)→ 0
uniformly in RN as t → +∞, and invasion, when u(x, t) → p(x) uniformly in RN
as t → +∞, being p(x) is the (unique) stationary positive solution of the equation
(2.2). The most interesting result is the complete characterisation of the asymptotic
behaviour with the principal eigenvalue λ0, solution to{

−dψ′′ − fv(y, 0)ψ = λψ, y ∈ R,
ψ > 0, ‖ψ‖L∞[0,`] = 1, ψ(y) = ψ(y + `) ∀y ∈ R. (2.3)

Being more precise, the authors prove invasion when λ0 < 0 and extinction when λ0 ≥
0. This is due to the tight link between existence of subsolutions or supersolutions
and asymptotic limit of the solution of the equation. The astonishing naturalness of
this condition opens the door to further research of the predictions that can be made
on the solutions just studying the eigenvalue problem associated with the equation.
In this work, we look for similar conditions to study the asymptotic behaviour of
solutions

1.3 Statements of the main results

This is the first work, to our knowledge, on the system (M). Thus, our investi-
gation start from the very basic properties of the model, such as the existence and
uniqueness of the solution, and we also prove some technical tools like the comparison
principle, adapting the proofs of the work on the basic road-field model [6]. Following
the order of Chapter 2, we show

Theorem 1.3.1 (Comparison Principle). Let (u, v) and (u, v) be respectively a sub-
solution bounded from above and a super-solution bounded from below of (M) such
that u ≤ u, v ≤ v at t = 0. Then u ≤ u, v ≤ v for all t > 0; moreover, if u = u or
v = v at T > 0, then (u, v) = (u, v) in [0, T ).

After proving this fundamental result, an immediate consequence is the uniqueness
of the solution nonnegative bounded to the Cauchy problem associated with (M) and
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the datum (0.1). Showing the existence of the solution is instead a non standard
result. Many difficulties arise not only because of the non-homogeneous nature of f ,
but above all for the coupled system and the presence of a mixed border condition.
After a long path, we finally show

Theorem 1.3.2. Let (u0, v0) be a couple of bounded and nonnegative functions,
Hölder continuous with theirs derivative up to order 2. Suppose also that u0 and
v0 satisfies

− d∂v0(x, 0) = (µu0(x)− v0(x, 0)) . (3.4)

Then there is a classical solution (u, v) to the Cauchy problem (M) with initial datum
(u0, v0). Moreover, the solution (u, v) is bounded and nonnegative.

The most interesting part of the investigation is the study about the existence of a
positive, bounded stationary solution. We analyse this because of modelling reasons:
a density of population must be nonnegative, thus a nonzero stationary solution
gives the possibility to have some persistence of the species. More specifically, we
look for conditions on the elements of the system that entail extinction or invasion
similar to the ones studied in [3]. Surprisingly, the presence of the road causes new
phenomenons and the sign of the principal eigenvalue of the periodic system is not
sufficient to characterise the asymptotic behaviour. Therefore, new hypothesis had
to be introduced:

Hypothesis 1.3.3 (H1). The periodic eigenfunction φ solution to (2.3) satisfies

∂yφ(0) ≤ 0. (3.5)

This is a fine aspect of the spectral properties of (2.3) and but its appearance
arise naturally during the proofs of the results. We are able to prove the following:

Theorem 1.3.4. Let (u, v) be a solution of (M) with initial datum (0.1). Then:

• (Invasion): Suppose λ0 < 0. Then there exists a unique couple (q, p) station-
ary solution for (M) such that both q and p are positive and bounded. Moreover
q is constant and p is independent of x and, for every (u, v) solution of the
system raised from a nonnegative datum (u0, v0), we have u(x, t) → q and
v(x, y, t)→ p(y) locally uniformly as t→ +∞.

• (Extinction) Suppose that λ0 ≥ 0 and that the periodic eigenfunction φ so-
lution to (2.3) satisfies (H1). Then there is no positive stationary solution
to (M) and moreover for every nonnegative bounded solution (u, v) we have
u(x, t)→ 0, v(x, y, t)→ 0 locally uniformly as t→ +∞.

One other thing we can show is that for some ε > 0 we have p(y) > ε for all
y ∈ R+. Thus, p is separated from 0.

In a large part of the possible scenarios the theorem shows not only if the sta-
tionary solution is positive or not, but also the convergence of every solution to it.
This is a quite strong result and the presence of further cases make the model more
intriguing.

Since H1 is difficult to verify, we investigate some more natural hypotheses that
entail H1. We managed to have a complete characterisation of the asymptotic be-
haviour of solutions when the following hypothesis is satisfied:
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Hypothesis 1.3.5 (H2). For every fixed v ∈ R, f is symmetric in [0, `] with respect
to the centre y = 1

2
`, that is

f(y, v) = f

(
1

2
`− y, v

)
∀y ∈

[
0,

1

2
`

]
. (H2)

In fact, this condition implies the symmetry of the principal eigenfunction φ with
centre 0, thus, the condition H1 is satisfied. Hence, in the symmetric case, the sign of
the eigenvalue λ0 completely characterise the asymptotic behaviour of the solutions,
as for the model with no road.

1.4 Explanation and interpretation of the results

By studying the connections between the periodic eigenvalue λ0 and the eigen-
values on balls of radius R, which we call λR, we have a deep understanding of the
fundamental dynamic in the model. In fact, it is well known that the sign of the
eigenvalue determines if the corresponding eigenfunction behaves as a supersolution
or a subsolution. This mechanism is at the basis of the techniques used in [6], [3]
and in many other works. In this thesis, it was expected to have an overview on
the asymptotic behaviours by studying the sign of λ0. In the case λ0 < 0, as it was
expected, invasion happens. In fact, we are able to build some subsolutions with the
help of the eigenfunctions. Instead, in the case λ0 ≥ 0, the traditional methods were
not sufficient to show the extinction. We can build a supersolution, that is a key tool
to show extinction, only by adding a new hypothesis, thus H1. This shows that the
presence of a road is a challenging new feature for diffusion models. The presence
of the road may not be just a technical difficulty, but it is possible that it impacts
profoundly the dynamic with respect to the case with no faster diffusion lines.

1.5 Perspectives

One unexpected case appeared during the investigation, the case λ0 ≥ 0, φ′(0) >
0. The standard ideas do not apply to this case, so new techniques have to be tried
or developed, but this goes beyond the purposes of this thesis. At the moment, there
is no reason to think that in this case only one behaviour is possible. We would like
to find an example where a positive stationary solution exists. Some fine spectral
properties are possibly involved in the determination of the asymptotic behaviour of
solutions. This aspect is surprising and deserves further investigation.

One other classical feature that is studied in diffusion models is the propagation
speed. Considered the richness of the possibilities for the asymptotic behaviour, we
expect that the study of speed of propagation in different directions may enlight some
interesting and unknown phenomenon.



Chapter 2

Basic properties

The properties of the model we want to highlight in this work are, from one side,
the mathematical consistency and interest and from the other side, the behaviours
that can be recognized in natural phenomenons. This chapter deals with both tasks.
One of the main goals we show here is the existence and uniqueness of the nonnegative
bounded solution to the Cauchy problem related to (M) but, considering the following
theorems, the most useful and deep result in this chapter is the Comparison Principle.
It establishes the ordering of solutions from the ordering of initial data but, beyond
being a classic result required to every reasonable model, the comparison principle will
be a key tool in the proofs of many of the theorems that follow all along this thesis.
Moreover, the comparison theorem directly implies the uniqueness of a nonnegative
bounded solution to the Cauchy problem.

In the first section we state the basic version of the Comparison Principle and we
prove it; then we apply it for showing the uniqueness of the nonnegative and bounded
solution to (M). In the second section, we present another version of the Comparison
Principle which is more adapted to the geometry of the model. The last section is
devoted to the proof of the existence of solutions to (M); since the model is extremely
nonstandard, a long construction is needed. The proofs of the comparison principles,
the Liouville-type result and the existence are adaptations from the proofs of the
equivalent result you can find in [6].

2.1 Classic comparison theorem and uniqueness of

the solution

The first version of the Comparison principle concerns the ordering of a subso-
lution and a supersolution starting from two different initial data, which respect an
inequality on all the domain. Notice that it works as a strong maximum principle.

Theorem 2.1.1. Let (u, v) and (u, v) be respectively a subsolution bounded from
above and a super-solution bounded from below of (M) such that u ≤ u, v ≤ v at
t = 0. Then u ≤ u, v ≤ v for all t > 0; moreover, if u = u or v = v at T > 0, then
(u, v) = (u, v) in [0, T ).

7



8 Basic properties

Proof. In order to prove the result we first modify the problem and its solutions.
Take χ : R→ R such that

χ(0) = 0,
χ(z)′ = 0, z ∈ [0, 1],

limz→+∞ χ(z) = +∞,
(d+D)|χ′|+ (2d+D)|χ′′| ≤ 0 in R.

Fix ε > 0 and let k > 0, then set

(ǔ, v̌) = e−kt(u, v)

(û, v̂) = e−kt(u+ νε(χ(|x|) + t+ 1), v + µε(χ(|x|) + χ(y) + t+ 1))

h(y, t, v) = e−ktf(y, v · ekt)− kv.
(1.1)

Note that we can choose k such that the function h is nonincreasing in v thanks to
the Lipschitz hypothesis on f . In addiction, for every fixed time t ≥ 0 the funcions
û, v̂ go to infinity as the space variables go to infinity. As one can easily check, the
couples (ǔ, v̌) and (û, v̂) are respectively a sub- and a supersolution to the system

∂tu−D∂xxu = νv(x, 0, t)− (µ+ k)u, x ∈ R, t > 0,
∂tv − d∆v = h(y, t, v), (x, y) ∈ Ω, t > 0,

−d∂yv(x, 0, t) = −νv(x, 0, t) + (µ+ k)u, x ∈ R, t > 0,
(1.2)

and moreover ǔ < û and v̌ < v̂ at t = 0.
Assume by contradiction that the inequality does not hold for all the times, so

that there is

T := sup{τ > 0 | ǔ < û in R× [0, τ ], v̌ < v̂ in Ω× [0, τ ]} <∞.

Hence we have ǔ < û and v̌ < v̂ at t < T .
Thanks to the transformations (1.1), at a distance from the origin R large enough

we have û − ǔ > 1 and v̂ − v̌ > 1. Also, at t = 0 we have the strict inequalities
ǔ < û in [−R,R] and v̌ < v̂ in the closed set [−R,R]× [0,R], so for t small the strict
inequalities still hold because of the continuity of the functions. Therefore T > 0. At
t = T there must be a contact point x̃ ∈ R such that ǔ(x̃, T ) = û(x̃, T ) or (x̃, ỹ) ∈ Ω
such that v̌(x̃, ỹ, T ) = v̂(x̃, ỹ, T ); in fact, û and v̂ diverge at infinity while ǔ and v̌ are
bounded.

If the first case subsists, then

∂t(û− ǔ)−D∂xx(û− ǔ) + (µ+ k)(û− ǔ) ≥ ν(v̂ − v̌)(x, 0, t) ≥ 0

and û > ǔ at t = 0, hence for the strong maximum principle if û(x̃, T ) = ǔ(x̃, T ) then
û = ǔ for all 0 ≤ t ≤ T . This is impossible because of the strict inequality at t = 0.
So it must be û > ǔ and v̌(x̃, ỹ, T ) = v̂(x̃, ỹ, T ). Then

∂t(v̂ − v̌)− d∆(v̂ − v̌) ≥ h(v̂, y, t)− h(v̌, y, t)

and since h is Lipschitz-continuous, we can apply the maximum principle in the
Plancharèl-Lindelöf version [19]. Since v̂ ≥ v̌ in Ω× [0, T ], the condition

lim sup
R→+∞

{e−αR2

min
|(x,y)|=R

(v̂ − v̌)} = 0
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is satisfied. Thus, the minimum of v̂− v̌ must be attained on the parabolic boundary
of Ω× [0, T ]; considering also the conditions at t = 0, we have necessarily (x̃, ỹ, T ) =
(η, 0, T ) for some η ∈ R. But then

−d∂yv̂(η, 0, T ) ≥ −νv̂(η, 0, T ) + (µ+ k)û ≥ −νv̌(η, 0, T ) + (µ+ k)ǔ ≥ −d∂yv̌(η, 0, T )

and this is absurd because v̂(η, 0, T ) = v̌(η, 0, T ) and v̂ ≥ v̌ in Ω× [0, T ].
Now, due to the arbitrariness of ε, u ≥ u and v ≥ v in Ω× [0,∞). Suppose there

is (x, y) ∈ Ω a point of contact between the two at some t = T . Applying the strong
maximum principle in the same way as before we have u = u or v = v for t ≤ T .
Also, if u < u for all t > 0, then like before we have v < v.

Remark 2.1.2. We can easily extend this result to the case of generalized sub- and
supersolutions, recalling that a generalized subsolution is the supremum of a set of
subsolutions and a generalized supersolution is the inferior of a set of supersolutions.
Since the comparison principle holds for every couple of sub- and supersolutions, it
holds for the generalized couple.

Now we can apply the theorem we just proved to show a uniqueness result.

Theorem 2.1.3. There is at most one nonnegative bounded solution to the Cauchy
problem (M) with initial datum (u0, v0).

Proof. Suppose by contradiction there are two nonnegative bounded solutions (u1, v1)
and (u2, v2) with the same initial data (u0, v0). Then by the comparison principle u1 ≤
u2 and v1 ≤ v2; exchanging the roles of (u1, v1) and (u2, v2) we find the equality.

2.2 Generalized Comparison Principle

Even though Theorem 2.1.1 applies also to generalized sub- and supersolutions,
the geometry of the domain may require the use of more general comparison princi-
ples.

Theorem 2.2.1 (Generalized Comparison Principle). Let E ⊂ R × (0,∞), F ⊂
Ω × (0,∞) be connected open sets. Take (u1, v1) and (u2, v2) be two subsolutions of
(M) bounded from above and such that

u1 ≤ u2, on (∂E) ∩ (R× (0,∞)),

v1 ≤ v2, on (∂F ) ∩ (Ω× (0,∞)).

We define

u(x, t) =

{
max(u1, u2), if (x, t) ∈ E,
u2, otherwise,

v(x, y, t) =

{
max(v1, v2), if (x, y, t) ∈ F ,
v2, otherwise,

and we impose

u(x, t) > u2(x, t)⇒ v(x, 0, t) ≥ v1(x, 0, t), (2.3)

v(x, 0, t) > v2(x, 0, t)⇒ u(x, t) ≥ u2(x, t). (2.4)
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Then for every (u, v) supersolution of (M) bounded from below such that u ≤ u and
v ≤ v at t = 0, we have u ≤ u, v ≤ v for all t > 0.

Remark 2.2.2. The hypotesis (2.3) and (2.4) can be relaxed; however, for simplicity
of notation we require it everywhere.

Proof. Applying Theorem 2.1.1, it is easy to see that u2 ≤ u, v2 ≤ v for all t > 0.
Assume by contradiction that (u, v) is below (u, v) at some point. Setting χ, ε, h, k
as in the precedent proof and making the same transformations, namely setting

(ǔi, v̌i) = e−kt(ui, vi)

(ǔ, v̌) = e−kt(u, v)

(û, v̂) = e−kt(u+ νε(χ(|x|) + t+ 1), v + µε(χ(|x|) + χ(y) + t+ 1))

we find two subsolutions and one supersolution for the problem (1.2), as checked
before. Moreover, (û, v̂) is strictly above (ǔ2, v̌2) for all t > 0. By continuity of the
solutions we can say there exists T < ∞ such that ǔ < û, v̌ < v̂ for all t < T and
ǔ(x̃, T ) = û(x̃, T ) for some x̃ ∈ R or v̌(x̃, ỹ, T ) = v̂(x̃, ỹ, T ) for some (x̃, ỹ) ∈ Ω.
Observe that it must be (x̃, T ) ∈ E or (x̃, ỹ, T ) ∈ F , and the points cannot be at the
border thanks to the condition (2.3).

Consider first the case when ǔ(x̃, T ) = û(x̃, T ) for some x̃ ∈ R. As known,
ǔ2(x̃, T ) < û(x̃, T ) = ǔ(x̃, T ) = ǔ1(x̃, T ) and (x̃, T ) ∈ E. Thus, since the functions
are continuous and E is an open set, there exists δ > 0 such that ǔ1 > ǔ2 in (x̃ −
δ, x̃ + δ) × (T − δ, T + δ) ⊂ E. Set Q = (x̃ − δ, x̃ + δ) × (T − δ, T ). By hypothesis
(2.3) in Q at y = 0 we have v̌1 ≤ v̌ < v̂. Then

∂tǔ−D∂xxǔ+ (µ+ k)ǔ ≤ v̌(x, 0, T ) < v̂(x, 0, T )

and by the strong maximum principle, as ǔ1 ≤ û on the parabolic boundary of Q,
since there is a contact point between the two then ǔ1 ≡ û in all Q, contradiction to
the fact that the first contact is at t = T .

So we take the case where ǔ1 < û for all t ≤ T and v̌(x̃, ỹ, T ) = v̂(x̃, ỹ, T ) for some
(x̃, ỹ, T ) ∈ F . There exists a neighbourhood A ⊂ F of (x̃, ỹ) open in the topology of
Ω such that in Q = A × (T − ρ, T ) ⊂ F we have v̌2 < v̌1. If ỹ 6= 0 then (x̃, ỹ, T ) is
not in the parabolic boundary of Q and applying the strong maximum principle we
have v̌1 = v̂ in Q, which is impossible. If indeed ỹ = 0, by hypothesis (2.4) we get
ǔ1(x̃, T ) ≤ ǔ(x̃, T ); thus

ν(v̂− v̌1)(x̃, 0, T )− d∂y(v̂− v̌1)(x̃, 0, T ) ≥ µ(û− ǔ1)(x̃, T ) ≥ (µ+ k)(û− ǔ)(x̃, T ) > 0

and the lefthandside is negative since (v̂−v̌1)(x̃, 0, T ) = 0 because (x̃, T ) is the contact
point, ∂y(v̂ − v̌1)(x̃, 0, T ) ≥ 0 because for no y > 0 there is contact. Hence we reach
a contradiction.

2.3 Existence of a solution

It not standard to derive the existence of a solution to the Cauchy problem asso-
ciated with system (M) because of its peculiar form. In fact, the system is coupled,
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it has a nonlinear reaction term that depends also on the space and the system also
has a mixed border condition type equation. Taking inspiration from Appendix A of
[6], we build a classical solution as a limit of subsolutions through different steps.

Theorem 2.3.1. Let (u0, v0) be a couple of bounded and nonnegative functions,
Hölder continuous with theirs derivative up to order 2. Suppose also that u0 and
v0 satisfies

− d∂v0(x, 0) = (µu0(x)− v0(x, 0)) . (3.5)

Then there is a classical solution (u, v) to the Cauchy problem (M) with initial datum
(u0, v0). Moreover, the solution (u, v) is bounded and nonnegative.

The condition (3.5) is just needed for mathematical reasons. Instead, for mod-
elling reasons, we are only interested in nonnegative and bounded initial data: it is
not admissible for a population density to be negative or infinitely growing. Similarly,
we want u and v to stay nonnegative and bounded. This theorem completely fulfil
the modelling requests.

The rest of this section is devoted to the proof of the existence theorem.

Proof. We begin the construction of the solution in five steps. First we set the initial
couple (u1, v1) = (u0, 0), where u0 is the initial datum. Then we set the couple
(un, vn) as solution to the systems{

∂tun(x, t)−Du′′n(x, t) = νvn−1(x, 0, t)− µun(x, t), x ∈ R, t > 0,
un(x, 0) = u0(x), x ∈ R, (3.6)

and 
∂tvn(x, y, t)− d∆vn(x, y, t) = f(y, vn), (x, y) ∈ Ω, t > 0,
νvn(x, 0, t)− d∂yvn(x, 0, t) = µun(x, t), x ∈ R, t > 0,
vn(x, y, 0) = v0(x, y), (x, y) ∈ Ω.

(3.7)

Our aim is to show that the sequence (un, vn) converges to the solution of the problem
(M) with initial datum (0.1).

Step 1. We show the existence of un and vn solutions to the systems (3.6) and
(3.7).

We first solve (3.6), finding un from a given vn−1. With the change of variables

zn(x, t) = un(
√
Dx, t)eβt

we obtain the equivalent system{
∂tzn − z′′n = νvn−1(

√
Dx, 0, t)eβt, x ∈ R, t > 0,

zn|t=0 = u0(
√
Dx), x ∈ R, (3.8)

if β = −µ. Hence, it is sufficient to solve (3.8), that is a simple parabolic equation
with fixed potential and initial datum. This is a classical problem and, provided that
vn−1 is Hölder continuous for some γ ∈ (0, 1) and u0 is bounded and continuous, then
there is a classic solution to it and its construction is described by Ladyzhenskaya,
Solonnikov and Uraltseva in Chapter 4, Section 14 of [17]. The hypothesis are easy to
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verify: the function u0 is bounded and continuous by hypothesis; regarding vn−1, for
n = 2 the properties are true and for larger n they will be shown during the further
steps. Operating the backward change of variable we can solve (3.6). The obtained
solution un is Hölder continuous and, since u0 ∈ C2,γ(R), then

‖un‖C1+γ,2+γ(R×(0,+∞)) ≤ c(‖vn−1‖Cγ(R×(0,+∞)) + ‖u0‖C2+γ(R))

where c is a positive constant not depending on vn−1 and u0.
Now we solve (3.7) given v0 and un. Once again, the system can be led to a

simpler one by a change of variables, namely

wn := vn − v0 −
µ

ν
(un − u0).

Doing the maths, wn is the solution to the problem ∂twn − d∆wn = f̃(x, y, t, wn), (x, y) ∈ Ω, t > 0,
νwn(x, 0, t)− d∂ywn(x, 0, t) = 0, x ∈ R, t > 0,
wn|t=0 = 0, (x, y) ∈ Ω,

where

f̃(x, y, t, wn) = f(y, wn + v0 +
µ

ν
(un − u0))− µ

ν
(∂tun − d(un − u0)′′).

However this system is still more complicated because of the dependence on wn of
f̃ . We can apply Theorem 13.24 in [16] that guarantees the existence of a classical

solution vn in the weighted Hölder space H
(−1−δ)
2+α (Ω) under some conditions, that

we are now verifying. The operator ∂tw − d∆w is uniformly parabolic and, as −d
and f̃ do not depend on ∇w, it is easy to say they are O(|∇w|2). Moreover f̃ is
Hölder continuous in x, y, t, and w, because all its components are so. Slitly more
complicated is to show that there exists b0, b1,M0 ∈ R such that

wf̃(x, y, t, w) ≤ b0d|∇w|2 + b1w
2

for all w > M0. But it holds

f̃(x, y, t, w)

w
≤
f(y, w + v0 + µ

ν
(un − u0))

w + v0 + µ
ν
(un − u0)

w + v0 + µ
ν
(un − u0)

w
+

µ
ν
(∂tun − d(un − u0)′′)

w

≤ fv(y, 0)
w + v0 + µ

ν
(un − u0)

w
+

µ
ν
(∂tun − d(un − u0)′′)

w
≤ b1

so for w sufficiently large there is a constant b1 for which the inequality is satisfied.
Thus we found for all n ∈ N a couple of classical solutions (un, vn).

Step 2. We want uniform L∞ estimates for un and vn in the whole set of definition
of them.
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We already have that for each n ∈ N the functions un and vn are bounded, but
we want to have a uniform bound for all n ∈ N. We are showing by induction that

0 ≤ un ≤
H

µ
, 0 ≤ vn ≤

H

ν
,

where

H := max{νM, ν‖v0‖L∞(Ω), µ‖u0‖L∞(R)}.

The case n = 0 is trivial, since the initial couple is (0, v0). Given that the result is
true for n−1, we show that it is true for n. The function u = 0 is clearly a subsolution
for the system (3.6) and the function u = H

µ
is a supersolution for the same system.

We now want to apply the Phragmèn-Lindelöf principle, which is a version of the
maximum principle that applies for parabolic operators in unbounded domains [19].
It requires the conditions

lim sup
R→+∞

{e−αR2

min
|x|=R

(un − u)} = 0, lim sup
R→+∞

{e−βR2

min
|x|=R

(u− un)} = 0

for suitable α > 0, β > 0. Since by the first step the function un is bounded, the limit
is 0 and the hypotheses are satisfied. Thus, the principle gives that that un − u ≥ 0
and u− un ≥ 0, so H

µ
≥ un ≥ 0.

For the study of vn a supplementary passage is needed because of the presence of
the nonlinear term f . There exists σ > 0 large enough to guarantee that the function
g(y, t, v) = f(y, v)e−σt − σv is decreasing in v; in fact, taking v > w one has

g(y, t, v)− g(y, t, w) =
f(y, v)− f(y, w)

v − w
· e−σt(v − w)− σ(v − w)

and the fraction is bounded because f is Lipschitz. Then the function sn = vne
−σt is

a solution to the system
∂tsn(x, y, t)− d∆sn(x, y, t) = g(y, t, sn), (x, y) ∈ Ω, t > 0,
νsn(x, 0, t)− d∂ysn(x, 0, t) = µun(x, t)e−σt, x ∈ R, t > 0,
sn(x, y, 0) = v0(x, y), (x, y) ∈ Ω.

(3.9)

The function s = 0 is a subsolution to the system; the function s = H
ν

is a superso-
lution, since f(y, s) < 0 for s > M . Once again, sn − s and s− sn are bounded, but
to apply the Pharagmèn-Lindelöf principle it is also required to have

∂t(sn − s)− d∆(sn − s) = g(y, t, sn)− g(y, t, s) ≥ 0

and the analogue for ssn. The last inequality is strict at t=0; then, if there is a point
(x̃, ỹ, t̃) ∈ Ω× (0,+∞) where the equality holds and t̃ is the first time for which this
happens, we can reach an absurd using the strong maximum principle in a restricted
cylinder of Ω× (0, t̃) having (x̃, ỹ, t̃) on the top face. Hence sn−s ≥ 0 and s−sn ≥ 0,
thus H

ν
≥ vn ≥ 0.
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Step 3. We find some W 2,1
p estimates on compact sets for un and vn, uniformly in

n ∈ N.
We fix ρ > 0, δ > 0, T > 0 and 1 < p < ∞. The Agmon-Douglis-Nirenberg

interior estimates we have

‖un‖W1,2
p ([−ρ,ρ]×[δ,T−δ]) ≤ c

(
‖vn−1(x, 0, t)‖Lp([−ρ−1,ρ+1]×[0,T ]) + ‖u0‖L∞([−ρ−1,ρ+1])

)
≤ c

(
‖vn−1‖L∞(Ω) + ‖u0‖L∞(R)

)
≤ cH

where c is a constant depending on D, ν, µ, ρ, δ, p, T and H was defined in Step 2.
Consider Qρ := (−ρ, ρ)×(0, ρ) ⊂ Ω. Using the same estimates for vn in Qρ× [δ, T−δ]
we have

‖vn‖W2,1
p (Qρ×[δ,T−δ]) ≤ c

(
‖f(vn)‖Lp(Qρ×[ 1

2
δ,T− 1

2
δ]) + ‖v0‖L∞(Qρ+1)+

+ ‖un‖W1,2
p ([−ρ−1,ρ+1]×[ 1

2
δ,T− 1

2
δ])

)
≤ cH

where c depends on ν, µ, d, f, ρ, δ, T, ε. Hence, on compact sets the functions un
and vn have bounded W 2,1

p norms, uniformly on n ∈ N.

Step 4. We show the existence of a subsequence of (un, vn)n∈N that is converging
to a couple (u, v) in C2,1 on compact sets.

We chose p > 3; then we can use the general Sobolev inequalities for k > n
p

where

n is the dimension and k is the order of the derivative (see for examples Theorem 6
in Chapter 5, Section 6 of [9]). We have

‖un‖C0,γ([−ρ,ρ]×[δ,T−δ]) ≤ c‖un‖W2,1
p ([−ρ,ρ]×[δ,T−δ]) ≤ cH,

‖vn‖C0,γ(Qρ×[δ,T−δ]) ≤ c‖vn‖W2,1
p (Qρ×[δ,T−δ]) ≤ cH

where c is a constant not depending on n and

γ =

⌊
2

p

⌋
+ 1− 2

p
.

Also, for p→∞ we have γ → 1.
Let us show that the function fn(x, y, t) := f(y, vn) is in C0,γ on the bounded set

where we have estimates on vn, thus

‖fn(x, y, t)‖C0,γ(Qρ×[δ,T−δ])

:= sup
Qρ×[δ,T−δ]

|f(y, vn(x, y, t))− f(y, vn(x, y, t))|
|(x, y, t)− (x, y, t)|γ

≤ sup
Qρ×[δ,T−δ]

|f(y, vn(x, y, t))∓ f(y), vn(x, y, t)− f(y, vn(x, y, t))|
|(x, y, t)− (xy, t)|γ

≤ sup
[0,ρ]

|f(y, vn(x, y, t))− f(y, vn(x, y, t))|
|y − y|γ

+ Lipvf sup
Qρ×[δ,T−δ]

|vn(x, y, t)− vn(x, y, t)|
|(x, y, t)− (x, y, t)|γ

≤ Lipyf + Lipvf · ‖vn‖C0,γ(Qρ×(δ,T−δ)).

(3.10)
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Now we use Schauder’s Theorem (see for example Theorem 10.1 in Chapter IV of
[17]) to estimate the C2,γ norm of un and vn in some restriction of the domains. It
holds that

‖un‖C2,1,γ([−ρ,ρ]×[δ,T−δ]) ≤ c
(
‖vn−1‖C0,γ(Qρ×[δ,T−δ])

+ ‖u0‖C2,γ [−ρ,+ρ] + ‖un‖C0,γ([−ρ,ρ]×[δ,T−δ])
)

≤ cH

‖vn‖C2,1,γ(Qρ×[δ,T−δ]) ≤ c
(
‖fn‖C0,γ(Qρ×[δ,T−δ])

+ ‖v0‖C2,γ(Qρ) + ‖vn‖C0,γ(Qρ×[δ,T−δ])
)

≤ cH.

Hence, we show that the C2,1,γ norms of un and vn are uniformly bounded on every
compact subset of Ω × (0,+∞). By the compact injection C1,2,γ ↪→ C1,2, we have
that the sequence {(un, vn)}n∈N has a subsequence {(unk , vnk)}k∈N converging in C1,2

on every compact subset of Ω× (0,+∞); thanks to the arbitrariness of the domain,
the limit holds in C1,2

loc . Let us call (u, v) the limit of the subsequence.

Step 5. We show that (u, v) is a solution to (M).
If we show that the sequences {un}n∈N and {vn}n∈N are increasing, then the whole

sequence {(un, vn)}n∈N converges to (u, v). Hence, substituting u and v in (3.6) and
(3.7), it is clear that (u, v) is a solution of (M).

So the only thing we have to do is to show that {un}n∈N and {vn}n∈N are increasing.
First we prove the initial step; the starting function is v1 ≡ 0, and we have

∂(u3 − u2)−D(u3 − u2)′′ + µ(u3 − u2) ≥ ν(v2 − v1)(x, 0, t) ≥ 0

because of v2 is nonnegative. As in Step 2, we use the parabolic maximum principle
on unbounded domains and we have that u3 ≥ u2. The induction step for un is
identical, given the inequality for vn. The initial step for vn is trivial, since v1 ≡ 0.
Then, as in Step 2, we can apply the transformation g(y, t, v) = f(y, v)e−σt− σv and
sn = vne

−σt, that preserves the order of vn−1 and vn. Then we can write

(sn−sn−1)h(x, y, t) = g(y, t, sn)−g(y, t, sn−1) =
g(y, t, sn)− g(y, t, sn−1)

sn − sn−1

· (sn−sn−1)

and, as we showed above, h is bounded. Hence we have

∂t(sn − sn−1)(x, y, t)− d∆(sn − sn−1)(x, y, t) + h(x, y, t)(sn − sn−1) = 0.

but on the boundary sn(x, 0, t) ≥ sn−1(x, 0, t). Hence by the maximum principle
sn ≥ sn−1 and the prove is completed.
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Chapter 3

Asymptotic behaviour of solutions

The most urgent question that arises studying a model in population dynamics
is if the species will survive or not. We want to investigate such question for model
we defined in the introduction. Our aim is to find necessary and sufficient conditions
which guarantee the densities of population not to converge to 0 as time goes to
infinity. We are able to prove a complete result only in some special cases that we
will specify later, but, under the general assumptions we made on the model, still
some significant results on the asymptotic behaviour of solutions hold. This chapter
is devoted to two theorems for invasion and extinction, as defined in Chapter 1, and
gives some ideas about the open cases.

Section 3.1 is an introduction to the tools that are used in the statement of the
theorems. Then in Section 3.2 we give a sufficient condition for survival and invasion.
A sufficient condition for extinction is given in Section 3.3. The conclusive section
concerns a case when the conditions are also sufficient as well as further comments
on the hypotheses.

3.1 Principal eigenvalues in bounded domains and

in unbounded periodic domains

Taking inspiration from the work of Berestycki, Hamel and Roques [3], we would
like to describe the long time behaviour of solutions to our problem (M) in terms
of fine properties of eigenvalues and eigenfunctions related to single equations of the
system. We start with giving a short introduction to the subject.

First of all, we recall the definition of eigenvalue and eigenfunction in a ball; the
same holds also for any bold smooth domain (compare [19]). Let BR := BR(0, R) be
the ball in R2 of radius R > 0 and centre (0, R), so that (0, 0) is on the boundary
of BR. Let f(y, v) : R × R → R be the extension by periodicity on the y variable
of the reaction term of the model. The eigenvalue problem related to the equation
−d∆v = f(y, v) is{

−d∆φR − fv(y, 0)φR = λφR, in BR(0, R),
φR|∂BR(0,R) = 0, ‖φR‖L∞(BR(0,R)) = 1,

(1.1)

and its solution is a couple of eigenvalue and eigenfunction (λ, φR) where λ ∈ R

17
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and φR 6≡ 0 is a real function defined on BR. Krein-Rutman theory [15] provides
existence and uniqueness of an eigenfunction ϕR, positive in BR, related to a simple
real eigenvalue λR, that also satisfies λR ≤ <(λ) for all eigenvalue λ, where <(λ) is
the real part of λ, which is possibly complex. We are showing these results in the
next subsection. The value λR and the positive function ϕR are called respectively
principal eigenvalue and principal eigenfunction for the problem −d∆v = f(y, v) in
the ball BR with Dirichlet boundary condition.

It is also well known that the principal eigenvalue λR decreases as R increases;
this is also shown in the proof of Lemma 3.1.7 of Subsection 3.1.2. Thus, the quantity

lim
R→+∞

λR

is well defined but it may be equal to −∞. The limit is called generalized principal
eigenvalue [5]. Remark that limR→+∞ λR < 0 if and only if λR < 0 for some R.

Beyond that, we will also need to generalize the concept of eigenvalue in the case
of a periodic medium in dimension 1. A couple (λ, ψ) with ψ 6≡ 0 is a solution to the
periodic eigenvalue problem if it solves{

−dψ′′ − fv(y, 0)ψ = λψ, y ∈ R;
‖ψ‖L∞[0,`] = 1, ψ(y) = ψ(y + `) ∀y ∈ R. (1.2)

Krein-Rutman theory still applies thanks to the periodicity of f in the variable y, as
shown in next the subsection. We call λ0 and φ respectively principal eigenvalue and
principal eigenfunction to the periodic problem.

The theorem presented in Subsection 3.1.1 assures the existence and uniqueness of
a couple (λ0, φ) solution to (1.2) such that φ > 0 and λ0 ≤ <(λ) for every eigenvalue
of (1.2) λ. The same result can be derived for (λR, φR) in the case of a bounded
domain with only few changes in the proofs.

In [3] it is shown an interesting and non obvious property that connects the
eigenvalues in the bounded domain and in the unbounded domain:

Proposition 3.1.1. Using the notation from above, limR→+∞ λR = λ0.

Even if the proposition seems natural and predictable, it may not hold true for
all the eigenvalues problems. Indeed, the arguments we use are strictly related to the
form of the operator −∆v, which is elliptic and self-adjoint.

Proposition 3.1.1 is a key point of this thesis and a significant step toward a deep
comprehension of the behaviour of solutions. In fact, this permits to connect the
two main tools that are used in the theorems explaining the asymptotic behaviours
of solutions: the principal eigenfunction in the ball, that plays a role in showing the
existence of a positive solution, and the principal eigenfunction in the unbounded
domain, which is related to the non-existence of a positive solution. Therefore, in
further theorems we will use λ0 as a threshold value between the two possibilities.

We are now presenting the existence and uniqueness of λ0 and λR in the first
subsection. Then, we will prove Proposition 3.1.1 in the second subsection.
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3.1.1 Principal eigenvalue and eigenfunction for a periodic
problem

In order to be complete and self-contained, we show the existence and unique-
ness of the principal eigenvalue and eigenfunction of the problems (1.1) and (1.2).
The system (1.2) has the peculiarity of being defined in a periodic medium, hence
the eigenfunctions are required to be periodic. As for the classic notion of principal
eigenvalue, the general approach given by Krein-Rutman theorem applies to our dif-
ferential operator. We start presenting the theory of Krein-Rutman and a consequent
statement that applies to nonlinear partial differential operators. Then we will show
the precise result for the two cases we are interested in.

We start by giving some notation. Let X be a Banach space. A cone K ⊂ X is a
closed convex set such that:

1. for all λ ≥ 0 one has λK ⊂ K;

2. K ∩ (−K) = {0}.

A cone can induce a partial ordering on X in the following way: if v − u ∈ K then
we say u ≤ v. If X is taken with this partial order, then K is called the positive cone
of X. If K −K = X, i.e. if the set {v − u | v, u ∈ K} is dense in X, then K is
a total cone. If the interior K̊ is non empty, then it is called a solid cone. It easy to
see that a solid cone is also a total cone: let the ball Br(x0) be contained in K̊. For
all x ∈ X, x 6= 0 we have that there exists x̃ ∈ Br(x0) and r′ < r such that

x̃− x0 =
r′

‖x‖X
x

where ‖ · ‖X is the norm that make X a Banach space. But for all λ ≥ 0 we have

λK ⊂ K. Choosing λ =
‖x‖X
r′

we obtain λx̃, λx0 ∈ K and

λx̃− λx0 = x.

Let Ω be a bounded domain in RN . For example, the cone K of the nonnegative
functions in X = Lp(Ω) is a cone satisfying K − K = X, but K̊ is empty. Instead
the cone C of nonnegative functions in Y = W k,p is a solid cone for k ≥ 2, p > 1.

In the dual space X∗ we are able to define the dual cone of K as the set K∗ := {l ∈
X∗ | l(x) ≥ 0 ∀x ∈ K}. K∗ is not necessarily a cone. It is indeed a closed and convex
set, and λK∗ ⊂ K∗ for any λ ≥ 0; but it is not generally true that K∗∩(−K)∗ = {0}.
However if K is a total cone then the last condition is verified and K∗ is a cone in
X∗, as we are showing now. Take l ∈ K∗ ∩ (−K∗), then l(x) ≥ 0 and −l(x) ≥ 0
for all x ∈ K, so l(x) = 0 for all x ∈ K. But K being total means K −K = X, so
l(x) = 0 for all x ∈ X. It must be l ≡ 0 and the condition is satisfied.

We recall that the spectral radius of T is the largest absolute value of an eigenvalue
of T . Last, T ∗ denotes the dual operator of T . We are now ready to give the Krein-
Rutman theorem, taken by [15].
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Theorem 3.1.2 (Krein-Rutman). Let X be a Banach space, K ⊂ X a total cone and
T : X → X a compact linear operator strongly positive with respect to the ordering
induced by K (i.e., T (K) ⊂ K); let the spectral radius r(T ) be positive. Then r(T )
is an eigenvalue with an eigenvector u ∈ K \ {0} such that T (u) = r(T )u. Moreover
r(T ∗) = r(T ) is an eigenvalue of T ∗ with eigenvector v∗ ∈ K∗.

This widely known result apply, among the others, to the theory of principal
eigenvalues. The link between the two of them is the following theorem. Let us first
recall that an eigenvalue r of T is simple if there exits v 6= 0 such that Tv = rv and
if (T − rI)nw = 0 then w ∈ < v >.

Theorem 3.1.3. Let X be a Banach space, K ⊂ X a solid cone, T : X → X a
compact linear operator which is strongly positive, that is T (K \ {0}) ⊂ K \ {0}.
Then

• r(T ) > 0, and r(T ) is a simple eigenvalue with an eigenvector v ∈ K̊; there is
no other eigenvalue with a positive eigenvector.

• <(λ) < r(T ) for all eigenvalues λ 6= r(T ).

Applying the latter to the objects involved in (1.2), we can show the existence
and uniqueness of the principal eigenvalue and eigenvector satisfying the two usual
properties. The presented proof is an adaptation of the proof for the eigenvalue
problem in a bounded domain given by Rafael de la Llave (University of Texas at
Austin) in some lecture notes.

Theorem 3.1.4. There exists a unique solution (λ0, φ) to the eigenvalue problem
(1.2) such that φ > 0 and for any λ eigenvalue, possibly complex, we have

λ0 ≤ <(λ)

and equality holds only if λ0 = λ.

Proof. Let S be the circle of length `, then X = C1,α(S) is the set of function that
are periodic in R with period `. Remark that the natural norm on this set is the
same norm of C1,α[0, `], thus

‖u‖C1,α(S) = sup
x∈[0,`]

|u(x)|+ sup
x∈[0,`]

|u′(x)|+ sup
x,y∈[0,`],x 6=y

|u′(x)− u′(y)|
|x− y|α

.

We set K = {v ∈ C1,α(S) | v ≥ 0} and we claim that K is a solid cone. Trivially
K is a cone: it is closed and convex; also, v ≥ 0 implies θv ≥ 0 for all θ ≥ 0; then
v ≥ 0 and v ≤ 0 implies v = 0. If K contains a ball, then it is also a solid cone. Take
u0 ∈ K̊, thus u0 periodic on R with period ` and u > 0. On the compact set [0, `]
we have u > 2ε for some ε > 0. Hence each function v in the ball with centre u0 and
radius ε, Bε(u0), satisfies v > ε in S, thus Bε(u0) ⊂ K̊.

By the hypothesis we took on our model, the function fv(y, 0) is bounded, hence
there is ξ ∈ R such that fv(y, 0) + ξ < 0. Now consider the operator Tξ : X → X,
where Tξ(u) = v if

−d v′′ − (fv(y, 0) + ξ)v = u.
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This operator is well-posed if for all u ∈ X there is v ∈ X satisfying the previous
equation. Take the Sobolev space H1(S). Putting the problem in a weak formulation,
we can use Lax-Milgram theorem for coercive operators. In fact, taking ϕ ∈ H1(S),
we have

< Tξv, ϕ >=

∫ `

0

d v′ϕ′ − (fv(y, 0) + ξ)vϕ dy.

The operator we obtain is coercive and continuous with respect to the norm of H1(S).
The problem is thus ∫ `

0

d v′ϕ′ − (fv(y, 0) + ξ)vϕ dy =

∫ `

0

uϕ dy.

Also
∫ `

0
uϕ dy a linear and continuous function of ϕ for any u ∈ H1(S) fixed. This

completes the hypotheses of Lax-Milgram theorem, hence for all u ∈ H1(S) there
exists v ∈ H1(S) solving Tξ(u) = v. Having by Sobolev injection (Theorem 6 in
Chapter 5, Section 6 of [9]) H1(S) ↪→ C0,α(S), we can use Schauder estimates for
elliptic equations (compare [12], Chapter VI), having that the problem Tξ(u) = v is
satisfied in classical sense; on [`, 2`] ⊂ [`− 1, 2`+ 1] Schauder estimates gives

‖v‖C2,α[`,2`] ≤ k(‖v‖C0,α[`−1,2`+1] + ‖u‖C0,α[`−1,2`+1]).

But ‖v‖C0,α[`−1,2`+1] = ‖v‖C0,α[`,2`] and the latter is bounded by ‖u‖H1(S) as a conse-
quence of Lax-Milgram theorem [8]. Last, the compact injection C2,α(S) ↪→ C1,α(S)
implies that Tξ is a compact operator.

Take u > 0, then
−d v′′ − (fv(y, 0) + ξ)v > 0.

Suppose by the absurd that min v ≤ 0, so there exists a minimum point y0 ∈ [0, `]
such that v(y0) ≤ 0. Then, v′′(y0) ≥ 0 and (fv(y0, 0) + ξ)v(y0) ≥ 0. But so we get

0 ≥ −d v′′ − (fv(y, 0) + ξ)v = u > 0

and this is impossible, so it must be min v > 0, hence v > 0. So Tξ is strictly positive.
Being all hypotheses satisfied we can apply Theorem 3.1.3, which guarantees the

existence and uniqueness of a positive number µ := r(Tξ) and of v ∈ K̊ that satisfy
Tξ(v) = µv, that is

−d v′′ − (fv(y, 0) + ξ)v =
1

µ
v.

Hence the couple
( 1

µ
+ ξ, v

)
is the unique solution to the eigenvalue problem (1.2)

satisfying v > 0 and moreover we have

1

µ
+ ξ > <

(1

ν
+ ξ
)

for any other ν eigenvalue to Lξ, that means λ0 > <(λ) for any λ first term of a
solution to (1.2). Thus the proof is complete.
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Now we prove the same result for the problem in the ball. The proof is taken
from the lecture notes cited above.

Theorem 3.1.5. There exists a unique solution (λR, ϕR) to the eigenvalue problem
(1.1) such that ϕR > 0 and for any λ eigenvalue, possibly complex, we have

λR ≤ <(λ)

and equality holds only if λ0 = λ.

Proof. Take X := C1,α
0 (BR(0, R)) with the usual norm. We have to show that the

set K := {v ∈ X | v ≥ 0 in BR(0, R)} is a solid cone. As in the previous proof,
the only nontrivial passage is to show that K has nonempty interior, but this time
notice that any function v ∈ X vanishes on ∂BR(0, R). Take u0 ∈ K such that for
every unitary vector ζ ∈ R2 normal to ∂BR(0, R) in the point P and pointing in an
outward direction; we have

∂u0

∂ζ
(P ) < 0.

Since ∂BR(0, R) is a compact set, there exists ε > 0 such that ∂u0
∂ζ

> 2ε in ∂BR(0, R).

Fix R′ < R such that R−R′ << ε. There exists δ > 0 such that u0 > 2δ in BR′(0, R).
Let % := min{ε, δ}. Hence taking B%(u0) ⊂ X, for all u ∈ B%(u0) one has that u > δ
in BR′(0, R) and ∂u

∂ζ
> ε. Using an elementary application of MacLaurin expansion

one can see that in the annulus of thickness R−R′ in BR(0, R) the function u is still
positive, hence u ∈ K. Then u0 ∈ K̊ and K is a solid cone.

Let ξ ∈ R be such that fv(y, 0) + ξ < 0 in BR(0, R). Consider the operator
Tξ : X → X defined by Tξ(u) = v if

−d∆v − (fv(y, 0) + ξ)v = u.

We show that for any u ∈ X we have that Tξ(u) is well defined. Take the Sobolev
space H1

0 (BR(0, R)) ⊃ X. For any ϕ ∈ H1
0 (BR(0, R)) we have

< Tξv, ϕ >=

∫
BR(0,R)

d∇v∇ϕ− fv(y, 0)vϕ dxdy

and the problem is∫
BR(0,R)

d∇v∇ϕ− fv(y, 0)vϕ dxdy =

∫
BR(0,R)

uϕ dxdy.

The hypotheses of Lax-Milgram theorem are easily verified, thus for all u ∈ X there
exists v ∈ H1

0 (BR(0, R)) such that Tξ(u) = v in the weak sense. Now by Sobolev
injection H1

0 (BR(0, R)) ↪→ C0,α
0 (BR(0, R)) ([9], Theorem 6 in Chapter 5, Section 6)

we have
‖u‖C0,α

0 (BR(0,R)) ≤ c‖u‖H1
0 (BR(0,R))

and using Schauder theory ([12]) one has that v is a classical solution and

‖v‖C2,α
0 (BR(0,R)) ≤ c

(
‖u‖C0,α

0 (BR(0,R)) + ‖v‖C0,α
0 (BR(0,R))

)
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Using again that ‖v‖C0,α
0 (BR(0,R)) is bounded by ‖u‖H1

0 (BR(0,R)) and the compact injec-

tion C2,α
0 (BR(0, R)) ↪→ C0,α

0 (BR(0, R)), the operator Tξ is compact.

We now prove that Tξ is strongly positive. Take u ∈ K̊, then Tξ(u) = v satisfies

−d∆v − (fv(y, 0) + ξ)v = u.

We have to show that v ∈ K̊ and by what we said at the beginning of the proof it
is sufficient to show that v > 0 in BR(0, R) and ∂v

∂ζ
< 0, being ζ the normal unitary

vector pointing outward. Since u ≥ 0 and fv(y, 0)+ξ < 0, by the maximum principle,
the first holds. Since v = 0 on ∂BR(0, R), on any point at the boundary we can use
Hopf’s principle (see [19]) and have ∂v

∂ζ
< 0. Thus Tξ is strongly positive.

The conclusion follows exactly as in the previous proof.

3.1.2 Proof of Proposition 3.1.1

We first prove two lemmas and then present the proof of Proposition 3.1.1, showing
that lim

R→+∞
λR = λ0. Actually, we will prove a slightly stronger result. The proof of

this subsection are all taken from [3].
Take z ∈ R and denote with BR(0, z) the ball with radius R > 0 and centre

(0, z). Let λzR and ϕzR be respectively the principal eigenvalue and the principal
eigenfunction, solution to the problem{

−d∆ϕzR − fv(y, 0)ϕzR = λzRϕ
z
R, in BR(0, z),

ϕzR|∂BR(0,z) = 0, ‖ϕzR‖L∞(BR(0,z)) = 1, ϕzR > 0 in BR(0, z).

For all the discuss that follows, we continue to denote the principal eigenfunction and
eigenvalue of the periodic problem with φ and λ0, as defined at the beginning of this
section. The following lemma presents an intuitive fact:

Lemma 3.1.6. For all z ∈ R and R > 0, one has λzR > λ0.

Proof. Suppose λzR − λ0 ≤ 0. The function ϕzR is positive in BR(0, z), vanishes on
∂BR(0, z) and solves

− d∆ϕzR − fv(y, 0)ϕzR − λ0ϕ
z
R = (λzR − λ0)ϕzR ≤ 0 (1.3)

in the ball BR(0, z). The function φ is positive on the closed ball BR(0, z), hence for
all κ > 0 small enough we have κϕzR < φ. Take

κ∗ = sup{κ > 0 | κϕzR < φ in BR(0, z)}.

It is trivial that κ∗ > 0 and also, by continuity of the two functions, κ∗ϕzR ≤ φ in
BR(0, z), and there is y such that κ∗ϕzR(y) = φ(y). Recalling that ϕzR|∂BR(0,z) = 0
while φ is always positive, it must be y ∈ BR(0, z). We have also

−d∆φ− fv(y, 0)φ = λ0φ

in BR(0, z), while in the same set the inequality (1.3) holds, thus ϕz is a subsolution
of the equation satisfied by φ. Hence, since the nonnegative function φ−κ∗ϕzR touches
its minimum 0 inside BR(0, z), for the strong maximum principle we have φ ≡ κ∗ϕzR
in BR(0, z). But this is impossible because of the boundary conditions on ϕzR. Hence
it must be λzR > λ0.
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Lemma 3.1.7. For all z ∈ R, the function R 7→ λzR is decreasing.

Proof. Let 0 < R1 < R2 be two positive numbers and z ∈ R. Suppose by the absurd
that λzR2

≥ λzR1
. Then we have ϕzR2

> 0 in the closed ball BR1 . Applying the same
procedure of the previous lemma with ϕzR2

at the place of φ and ϕzR1
at the place

of ϕzR, we find an absurd using the strong maximum principle. Hence it must be
λzR2

< λzR1
.

We end the introduction about principal eigenvalues with the proof of the Propo-
sition 3.1.1, but we actually prove that λzR

R→+∞
= λ0.

Proof of the Proposition 3.1.1. Let us call L the elliptic operator defined by Lv =
−d∆v − fv(y, 0)v. Notice that the weak formulation of the problem Lv = f gives a
self-adjoint operator in H1

0 (BR(0, z)): for v, w ∈ H1
0 (BR(0, z)) we have that

< Lv, w >=

∫
BR(0,z)

[d∇v∇w − fv(y, 0)v w]dxdy =< v,Lw > .

Hence, using Rayleigh Quotient’s formula (given for example in [12], Chapter 8 Sec-
tion 12) we infer

λzR = min
ψ∈H1

0 (BR(0,z)), ψ 6≡0
Qz
R(ψ),

where

Qz
R(ψ) =

∫
BR(0,z)

[
d|∇ψ|2 − fv(y, 0)ψ2

]
dx∫

BR(0,z)
ψ2

.

We call DR−1(0, z) the closed ball with centre (0, z), as BR(0, z), and radius R − 1.
Then we take a family of functions {χR}R≥2, bounded in C2(R2) and such that

χR(x, y) = 1 if (x, y) ∈ DR−1(0, z),
χR(x, y) = 0 if (x, y) /∈ BR(0, z),
0 ≤ χR ≤ 1.

Now set ψR = φχR, then ψR ∈ C2
0(BR(0, z)). We rewrite Qz

R(ψR) in the following
lines in order to get an upper bound for its value. Notice that, being ψR regular and
vanishing at the border, we can take the problem in the strong sense, thus

Qz
R(ψR) =

∫
BR(0,z)

[
− d(∆ψR)ψR − fv(y, 0)ψ2

R

]
dx∫

BR
ψ2
R

.

The numerator is∫
BR(0,z)

[
− d(∆ψR)ψR − fv(y, 0)ψ2

R

]
dxdy =

=

∫
DR−1(0,z)

[
− d(∆φ)φ− fv(y, 0)φ2

]
dxdy+

+

∫
BR(0,z)\DR−1(0,z)

[
−d(∆(φχR))φχR−fv(y, 0)(φχR)2

]
dxdy.
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We now look separately at the two addenda. By the definition of φ, for the first we
have ∫

DR−1(0,z)

[
− d(∆φ)φ− fv(y, 0)φ2

]
dxdy =

∫
DR−1(0,z)

[
λ0φ

2
]
dxdy. (1.4)

Then we look for an estimate for the second term. Recalling the definition of ψR =
φχR, with φ and χR bounded in C2(R2), we can say that (∆ψR)ψR and fv(y, 0)ψ2

R

are bounded. Also,

Vol(BR(0, z)\DR−1(0, z)) = c(R2 − (R− 1)2) = cR

for some constant c, not depending on R. So it is trivial that∣∣∣ ∫
BR(0,z)\DR−1(0,z)

[
− d(∆(φχR))φχR − fv(y, 0)(φχR)2

]
dxdy

∣∣∣ ≤ cR

for some c, possibly different, and in the same way∣∣∣ ∫
BR(0,z)

ψ2
R dxdy −

∫
DR−1(0,z)

φ2 dxdy
∣∣∣ ≤ cR.

As the function φ is positive, does not depend on x and depends periodically on y,
there exists α > 0 such that φ(y) ≥ α for all y ∈ R and for all z ∈ R. Thus

1 ≤

∫
BR(0,z)

ψ2
R dxdy∫

DR−1(0,z)
φ2dxdy

=

∫
BR(0,z)

ψ2
R dxdy +

∫
DR−1(0,z)

(φ)2 − (φ)2dxdy∫
DR−1(0,z)

φ2 dxdy

≤ c
R

α(R− 1)2
+ 1

where c > 0 is a suitable constant, independent of R. As R→ +∞ we have∫
BR(0,z)

ψ2
R dxdy∫

DR−1(0,z)
φ2dxdy

→ 1. (1.5)

Likewise we can estimate:∫
BR(0,z)\DR−1(0,z)

[
− d(∆ψR)ψR − fv(y + z2, 0)(ψR)2

]
dxdy∫

DR−1(0,z)
φ2dxdy

≤ c
R

(R− 1)2
→ 0. (1.6)

Thus combining equations (1.4), (1.5) and (1.6) we obtain

Qz
R(ψR) =

(∫
BR(0,z)\DR−1(0,z)

[
− d(∆(φχR))φχR − fv(y, 0)(φχR)2

]
dxdy∫

DR−1(0,z)
φ2dxdy

+

+

∫
DR−1(0,z)

[
λ0φ

2
]
dxdy∫

DR−1(0,z)
φ2dxdy

)
·

∫
DR−1(0,z)

φ2dxdy∫
BR(0,z)

ψ2
R dxdy

,

hence

Qz
R(ψR) ≤

(
λ0 + c

R

(R− 1)2

)
·
(
c

R

(R− 1)2
+ 1
)
→ λ0.

Thus Qz
R(ψR)→ λ0 as R→ +∞. So it is clear that lim

R→+∞
λzR ≤ λ0. But from Lemma

3.1.6 we have lim
R→+∞

λzR ≥ λ0. So the two values are equal.
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3.2 Invasion

We here present a sufficient condition for the existence and uniqueness of a sta-
tionary solution that furthermore provides the convergence of any solution raised from
a nonnegative datum to the stationary solution. Using the notation of the previous
section, we are now ready to give the following:

Theorem 3.2.1. Suppose λ0 < 0. Then there exists a unique (q, p) stationary solu-
tion for (M) such that both q and p are positive and bounded. Moreover q is constant
and p is independent of x and, for every (u, v) solution of the system raised from a
nonnegative datum (u0, v0), u(x, t)→ q and v(x, y, t)→ p(y) as t→ +∞.

In a modelling point of view, survival is certain when the solution (u, v), raised
from a reasonable initial datum, remains positive and distant from 0. In this context,
a nonnegative bounded stationary solution (q, p) represents an admissible equilibrium
situation for the population densities. What is said in the theorem is that a negative
λ0 permits the existence of an equilibrium solution, that this solution is positive and
bounded (thus the theorem is also a Liouville-type result), and that every solution
converges to the equilibrium. These are some remarkable facts, similar to the ones
shown in [3] and [7] for comparable models.

This section is devoted to the proof of Theorem 3.2.1. The principal idea is
contained in the uniqueness lemma of Subsection 3.2.2. Another lemma, presented
in the first subsection, will be useful in order to make the main body the proof in
Subsection 3.2.3 more readable.

3.2.1 A convergence lemma

During the proof of Theorem 3.2.1 we will find some solutions monotone in time.
Thanks to this lemma we can see that their limits are stationary solutions for (M).
The proof is adapted from [7].

Lemma 3.2.2. Let (u, v) be a bounded solution of (M) such that u and v are mono-
tone in time. It holds that u → U , v → V as t → +∞. Moreover (U, V ) is a
stationary solution of (M).

Proof. Let us first notice that taken an increasing diverging sequence {tn}n∈N, for
any fixed (x, y) ∈ Ω, we have

lim
n→+∞

u(x, tn) = U(x), lim
n→+∞

v(x, y, tn) = V (x, y)

converging pointwise because u and v are monotone and bounded. Moreover U, V
are not depending on t.

Fix T > 0, we take the sequence {tn}n∈N such that tn − tn−1 < T for all n ∈
N. Define un(x, t) := u(x, tn), vn(x, y, t) := v(x, y, tn) and consider the sequence
{(un, vn)}n∈N. We want to find a subsequence converging in C2

loc(Ω), hence we use
the well known classic inequalities. Take δ > 0 small and ρ > 0 and 1 < p < +∞;
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then by the Agmon-Douglis-Nirenberg interior estimates (cite? Questa stima me l’hai
detta a voce e non riesco a trovarla da nessuna parte)

‖un‖W2,1
p ([−ρ,ρ]×[δ,T−δ]) ≤ c

(
‖vn−1(x, 0, t)‖Lp([−ρ−1,ρ+1]×[0,T ]) + ‖u0‖L∞([−ρ−1,ρ+1])

)
≤ c

(
‖vn−1‖L∞(Ω) + ‖u0‖L∞(R)

)
≤ cH

where c depends on D, ν, µ, ρ, δ, p, T and H depends on ‖vn‖L∞(Ω), ‖u0‖L∞(R)

that are finite because u0, v0, u, v are bounded. Set now Qρ := (−ρ, ρ)× (0, ρ) ⊂ Ω,
for vn we obtain

‖vn‖W2,1
p (Qρ×[δ,T−δ]) ≤ c

(
‖f(vn)‖LpQρ+1×[0,T ]) + ‖v0‖L∞(Qρ+1)+

+ ‖un‖W2,1
p ([−ρ−1,ρ+1]×[ 1

2
δ,T− 1

2
δ])

)
≤ cH,

where c depends on d, f, ρ, δ, T and H is still bounded since f, u, v are bounded.
We apply the general Sobolev inequalities for k > n

p
where n is the dimension and k

is the order of the derivative (see for examples Theorem 6 in Chapter 5, Section 6 of
[9]). We have

‖un‖C0,γ([−ρ,ρ]×[δ,T−δ]) ≤ c‖un‖W2,1
p ([−ρ,ρ]×[δ,T−δ]) ≤ cH,

‖vn‖C0,γ(Qρ×[δ,T−δ]) ≤ c‖vn‖W2,1
p (Qρ×[δ,T−δ]) ≤ cH,

where c is a constant not depending on n and

γ =

⌊
2

p

⌋
+ 1− 2

p
.

Since tn − tn−1 < T , we can say that ‖un‖C0,γ([−ρ,ρ]×(δ,+∞)) and ‖vn‖C0,γ(Qρ×(δ,+∞) are
uniformly bounded for all n ∈ N.

Last step uses Schauder theory. We set gn(x, y, t) := f(y, vn(x, y, t)), in (3.10) in
Chapter 2 we show that gn ∈ C0,γ(Qρ × [δ, T − δ]). Now, for each n ∈ N . Hence
each vn now is solution to

∂tvn − d∆vn = gn.

By Schauder theorem in parabolic case (Theorem 10.1 in Chapter IV of [17]) we have,

‖un‖C2,1,γ([−ρ,ρ]×[δ,T−δ]) ≤ c
(
‖vn−1‖C0,γ(Qρ×[δ,T−δ])

+ ‖u0‖C2,γ [−ρ,+ρ] + ‖un‖C0,γ([−ρ,ρ]×[δ,T−δ])
)

≤ cH,

‖vn‖C2,1,γ(Qρ×[δ,T−δ]) ≤ c
(
‖fn‖C0,γ(Qρ×[δ,T−δ])

+ ‖v0‖C2,γ(Qρ) + ‖vn‖C0,γ(Qρ×[δ,T−δ])
)

≤ cH.

As ρ and δ are arbitrary, the estimates are valid on every compact subset of R or Ω.
By the compact injection C(1,2),γ ↪→ C1,2 we can finally say that there is a subsequence
nk, k ∈ N such that {(unk , vnk)}k∈N is converging to some (U, V ) in C1,2

loc . This also
means, (U, V ) solves (M). But we showed at the beginning of this proof that the
pointwise limit of {(un, vn)}n∈N is (U, V ), independent of t. Thus, U ≡ U, V ≡ V
and (U, V ) is a stationary solution of (M).
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3.2.2 Uniqueness of positive bounded stationary solution
independent of x

As it will be clear at the end of Subsection 3.2.3, the uniqueness of the solution
to the stationary system

U ≡ constant, V ≡ V (y)
−dV ′′ = f(y, V ), y ∈ (0,+∞)
νV (0) = µU
V ′(0) = 0.

(2.7)

implies the uniqueness of the stationary solution to the main system (M). Moreover
this lemma will be a central point of the proof of the convergence of a solution issued
from a nonnegative datum to the stationary solution.

The idea that the uniqueness of the solution to helps in showing the convergence
result comes from [7]. However, the differences in the systems require also some
original contribution; we have to show that a solution V must be separate from 0
using some sliding methods.

Lemma 3.2.3. Let λ0 < 0. System (3.2.2) admits at most one positive bounded
solution (U, V ).

Proof. We prove the lemma by contradiction. Let (U1, V1), (U2, V2) be two positive,
bounded solutions of (3.2.2). Without loss of generality we can say U1 ≤ U2, hence
V1(0) ≤ V2(0). Notice that if they are equal, then V1 and V2 coincide in (0, +∞)
because of Cauchy-Lipschitz uniqueness theorem. Thus we can assume U1 < U2,
V1(0) < V2(0).

Let us first show that there exists ε > 0 such that V1 > ε for any y ∈ R+. Since
λ0 < 0, there is R > 0 such that λR < 0. We can construct a subsolution to (3.2.2)
in the following way. Take R large enough to have λR < 0 and also R > 3`, take
ϕR solving the eigenvalue problem (1.1). Thanks to the continuity of f in v and the
derivability in v = 0, we can use MacLaurin expansion to say there exists κ > 0 small
enough to have

f(y, κϕR) > fv(y, 0)κϕR + λRκϕ.

Then, extending κϕR to 0 outside BR, we obtain a generalised subsolution Z for the
first equation of (3.2.2). Notice that ϕR and consequently Z are functions in two
variables, while V1 and V2 are defined on R. However, we can extend V1 and V2 to
functions of all Ω just taking them constant with respect to the x variable. Since the
support of Z is compact, decreasing κ if necessary, we can suppose V1 > Z. Take a
point c ∈ BR−2`(0, R), then there exists a ball U , centred in c and with radius r > `
and η′ > 0, such that Z|U > η′. Consider now for n ∈ N the translated function
Zn(x, y) := Z(x, y − `n). Suppose by the absurd that for some n we have V1 ≯ Zn,
so

m = inf{n ∈ N | V1 > Zn} < +∞.

By decreasing κ if necessary we can have V1 ≥ Zm with at least one contact point
ξ. It has to be ξ ∈ BR(0, R + `m) because Zm ≡ 0 outside BR(0, R + `m) and V1 is
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nonzero for hypothesis. In BR(0, R + `m) we have

−d∆(V1 − Zm) ≥ f(y, V1)− f(y, Zm) = h(y)(V1 − Zm)

where h is a bounded function because f is Lipschitz, and moreover V1 − Zm ≥ 0,
V1 − Zm(ξ) = 0. Hence we can apply the strong positivity property (taken from
lecture notes by Henri Berestycki) and obtain V1−Zm ≡ 0, that is impossible. Then
for any n ∈ N we have V1 > Zn. Since for y > R − ` there exists x ∈ R such that
the point (x, y) belongs to a translation of the ball U , then for y > R − ` it holds
V1(y) > η′. Defining

0 < ε < min

{
min

[0, R−`]
V1, η

′
}

we get V1 > ε for all y ∈ (0,+∞).

We take the function ρ(y) =

(
V2

V1

)
. Consider V 2

1 ρ
′ and suppose by the absurd

that there exists δ > 0 such that

V 2
1 ρ
′ > δ ∀ y ∈ R+.

Since V1 is bounded then this is equivalent to say ρ′ > σ for suitable σ > 0. This
means that ρ is an unbounded function since it is C2(R+) and has an always positive
derivative. But V1 > ε, hence it must be V2 unbounded. By the hypothesis on V2 we
reached an absurd.

Hence there exists a sequence {ηn}n∈N such that lim
n→+∞

V 2
1 (ηn)ρ′(ηn) = 0. We take

the main equations of (3.2.2) for V1 and V2; integrating a combination of the two we
have

lim
n→+∞

1

d

∫ ηn

0

V1V2

(
f(y, V1)

V1

− f(y, V2)

V2

)
= lim

n→+∞

∫ ηn

0

(−V ′′1 V2 + V1V
′′

2 )dy

= lim
n→+∞

− V ′1V2(ηn) + V1V
′

2(ηn)

= lim
n→+

V 2
1 (ηn)ρ′(ηn).

But by hypothesis V1, V2 > 0 and by an hypothesis we take on f in the model we
have

f(y, V1)

V1

>
f(y, V2)

V2

for all y ∈ (0,+∞). Hence the left-hand side is positive while the right-hand side
goes to 0. This is absurd.

We would like to make some comments about the properties of the stationary
solution V , that matters to us because we are going to show that it is the limit of
each solution in the case λ0 < 0.

Remark 3.2.4. As observed in the proof, there exists ε > 0 such that V > ε
everywhere. Hence, for every point (x, y) ∈ Ω we will have v(x, y, t) > ε

2
for t large

enough; thus the density of population will be distant from 0 and invasion will happen.
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Remark 3.2.5. We clarify here that V is not as easy to compute as one may wish.
First of all, V is different from the principal periodic eigenfunction φ because

−dV ′′ = f(y, V ) 6= fv(y, 0)V + λ0V

for f a general function with the hypotheses required in the model. Then, notice
that the function V is not necessarily periodic in y. In fact, there are some boundary
condition in 0 but not on other points, so the system giving V is not periodic.

3.2.3 Proof of theorem (3.2.1)

By hypothesis λ0 < 0, thus for R ∈ R large enough we have λR < 0. On the ball
BR(0, R) we can solve uniquely the problem{

−d∆ϕR − fv(y, 0) = λRϕR in BR(0, R),
ϕR|∂BR(0,R) = 0, ‖ϕR‖L∞(BR)(0,R), ϕR > 0 in BR(0, R).

As shown in the precedent proof, the function κϕR extended by 0 is a generalised
subsolution in Ω for the equation ∂tv − d∆v = f(y, v).

The couple (0, κϕR) is a subsolution to (M), because
−d∆κϕR ≤ f(y, κϕR) (x, y) ∈ Ω,
−D∂2

xx 0 ≤ 0 x ∈ R,
−∂yκϕR ≤ 0 x ∈ R,

where the latter is implied by Hopf lemma for ϕR, which attains his minimum at the
boundary of BR.

Consider the solution (u, v) issued from the nonnegative datum (u0, v0) 6= (0, 0).
For the strong maximum principle, at t = 1 (u, v) is positive at all points. Thus, since
κϕR has compact support, possibly decreasing κ, at t = 1 we have 0 < u, κϕR < v.
Let (u, v) be the solution issued from (0, κϕR) starting at time t = 1. Since the initial
datum is a subsolution but not a solution for the stationary system, at t = 1 (u, v)
is increasing. Afterwards it keeps increasing: take the solution issued from the same
datum starting at time t = 1 + ε, since at the initial time it is smaller than (u, v)
by the comparison principle it must always be strictly smaller than (u, v), so for all
times (u, v) is increasing. Here we can apply Lemma 3.2.2 and find that u → U1,
v → V1 as t → +∞ and (U1, V1) is solution of (3.2.2). The solution (u, v) is always
above (u, v), thus

0 < U1(x) ≤ lim inf
t→+∞

u(x, t),

V (x, y) < V1(x, y) ≤ lim inf
t→+∞

v(x, y, t).

We can also prove that U1, V1 do not depend on x. Since (0, κϕR) is not a solution,
at t = 2 the solution (U1, V1) will be strictly above it; hence, there exists h0 > 0
such that for all h0 > h > 0 both κϕ+

R = κϕR(x + h, y) < V1(x, y, 2) and κϕ−R =
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κϕR(x − h, y) < V1(x, y, 2) hold. Hence, since the limit of the solutions issued from
(0, κϕ±R) at t = 2 is (U1(x±h), V1(x±h, y)), by the strong maximum principle we get

U1(x± h) ≤ U1(x),

V1(x± h, y) ≤ V1(x, y).

But this implies that equality must hold for all 0 < h < h0, so U1 and V1 are
independent of x .

It is very easy to find a stationary supersolution for (M). Consider

V := max{‖v0‖∞,
µ

ν
‖u0‖∞, M}

reminding that M is the quantity such that for v ≥ M we have f(y, v) ≤ 0 for all

y ∈ R+. Now setting U :=
ν

µ
V the couple (U, V ) is a supersolution because

0 ≥ f(y, V ) (x, y) ∈ Ω,
0 ≥ νV − µU = 0 x ∈ R,
0 ≥ µU − νV = 0 x ∈ R.

With a procedure similar to the one before, we take the solution (u, v) issued from
(U, V ). Since at t = 0 the solution (u, v) is below (u, v), by the comparison principle
we have that the order is maintained for all t ∈ (0,+∞). In addition, since the
initial datum (U, V ) is a supersolution but not a solution, at the initial time (u, v) is
decreasing and it keeps decreasing, as we can easily see taking the solution starting
at t = ε from the datum (U, V ) and applying the comparison principle. Notice that
(u, v) must always be positive because they are bounded by (u, v). Lemma 3.2.2
applies to (u, v), giving a stationary solution (U2, V2) with the property

lim sup
t→+∞

u(x, t) ≤ U2(x) ≤ U

lim inf
t→+∞

v(x, y, t) ≤ V2(x, y) ≤ V.

Since the initial datum (U, V ) does not depend on x, also U2 and V2 are independent
of x. More precisely, we can repeat in an easier case the argument we used for the
subsolution: translating U, V in the x variable we find the translations of U2, V2,
but as the initial datum is invariant by translation, by unicity we have that U2 and
V2 coincide with all theirs translations.

At this point we have two stationary bounded positive solutions (U1, V1) and
(U2, V2) which are also independents of x. Lemma 3.2.3 says that they must coincide,
so U1 ≡ U2 =: q and V1 ≡ V2 =: p, and (q, p(y)) is a stationary positive bounded
solution for (M). Additionally,

q ≤ lim inf
t→+∞

u(x, t) ≤ lim sup
t→+∞

u(x, t) ≤ q

p(y) ≤ lim inf
t→+∞

v(x, y, t) ≤ lim inf
t→+∞

v(x, y, t) ≤ p(y).

This means that every solution (u, v) issued from a nonnegative datum converges
pointwise to (q, p) as t→ +∞. Notice that this implies that (q, p) is the unique sta-
tionary positive solution. By the absurd let (q′, p′) be another nonnegative stationary
solution, then the previous observation says that the solution issued from (q′, p′) must
converge to (q, p), in contradiction to the fact that (q′, p′) is a stationary solution.
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3.3 Extinction

Since we saw that λ0 < 0 implies, among the others, that the population survives,
we would like to say that for λ0 ≥ 0 the population reaches the extinction, as was
found in [3]. But the scenario is more complex than expected. Surprisingly, a new
hypothesis have to be added in order to guarantee an extinction theorem similar to
the ones that we find in the literature. The new condition to be added is the following:

Hypothesis 3.3.1 (H1). The periodic eigenfunction φ solution to (1.2) satisfies

∂yφ(0) ≤ 0. (H1)

The condition H1 is a fine property of the eigenfunction φ and we have no easy
way to verify for a system whatever. We will later discuss about some more natural
and handy hypotheses that implies H1.

Now we will complete our results on asymptotic behaviour of solutions by giving
the following theorem. The proof is an adaptation of the analogue in [3], but the
presence of the road raised many more cases to verify.

Theorem 3.3.2. Suppose that λ0 ≥ 0 and that the periodic eigenfunction φ solu-
tion to (1.2) satisfies H1. Then there is no positive stationary solution to (M) and
moreover for every nonnegative bounded solution (u, v) we have u→ 0, v → 0 locally
uniformly.

Proof. Taking k ∈ R such that
ν

µ
φ(0)− d

µ
∂yφ(0) ≥ k ≥ ν

µ
φ(0), the couple (k, φ) is a

supersolution to the system (M), extending φ(y) in R2 simply taking φ(x, y) = φ(y);
in fact, 

−d∆φ− f(y, φ) > −d∆φ− fv(y, 0)φ ≥ λ0φ ≥ 0, y ∈ R+

0 ≥ νφ(0)− µk,
−d∂yφ(0) ≥ −νφ(0) + µk.

Nevertheless, (k, φ) and all its multiples are not solution to (M) because the first
inequality is strict.

Now assume by contradiction that the couple (q, p) is a nonnegative stationary
solution to our problem. As k and φ are positive and bounded, we can define

γ∗ := inf{γ ∈ R|γk > q(x) ∀x ∈ R, γφ(x, y) > p(x, y) ∀(x, y) ∈ Ω} <∞.

Suppose γ∗ > 0, otherwise p = 0 and q = 0. So we have inf
x∈R

(γ∗k − q) = 0 or

inf
(x,y)∈Ω

(γ∗φ− p) = 0.

Suppose the second does not hold, so the first must hold. Then there is a sequence
{xn}n∈N in R such that lim

n→+∞
(γ∗k − q)(xn) = 0. Possibly passing to a subsequence,

xn → x or xn → ±∞.
If xn → x, then the minimum of the function γ∗k − q is 0 and it is reached at

x ∈ R. We set Γ ⊂⊂ R an open connected set such that x ∈ Γ. In Γ we have

−D∆(γ∗k − q) ≥ νφ(0)− µk − νp(x, 0)− νq.
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Since γ∗k−q ≥ 0 on Γ, the strong positivity property (taken from some lecture notes
by Henri Berestycki) gives γ∗k − q ≡ 0 in Γ and, taking a sequence of sets invading
R, we have γ∗k − q ≡ 0 in R. The latter is absurd because (γ∗k, p) is not a solution,
in fact

γ∗k ≥ ν

µ
γ∗φ(0) >

ν

µ
p(x, 0),

where the last inequality holds for the supplementary hypothesis inf
(x,y)∈Ω

(γ∗φ−p) > 0.

Then assume xn → +∞, the case with−∞ being analogous. We take the sequence
of functions

qn(x) = q(x+ xn),

pn(x, y) = p(x+ xn, y).

Our aim is to build a convergent subsequence of {(qn, pn)}n∈N and then apply the
maximum principle to the limit (q∞, p∞). Fix 1 < p < +∞ and ρ > 0, set Qρ :=
(−ρ, ρ)× (0, ρ), then we can use the Agmon-Douglis-Nirenberg esitimates and find

‖qn‖W 2,p(−ρ,ρ) ≤ c(‖qn‖L∞(−1−ρ,1+ρ) + ‖pn‖Lp(Ω)) ≤ cH,

‖pn‖W 2,p(Qρ) ≤ c(‖f(pn)‖Lp(Qρ+1) + ‖qn‖W 2,p(−1−ρ,1+ρ)) ≤ cH

for c depending only on f, D, µ, ν, ρ, L and H depending on sup q, sup p. Then,
by Sobolev injection ([9])

‖qn‖C0,α(−ρ,ρ) ≤ c‖qn‖W 2,p(−ρ,ρ),

‖pn‖C0,α(Qρ) ≤ c‖pn‖W 2,p(Qρ)

for some α ∈ (0, 1). To complete last passage, we first have to show that gn := f(pn)
belongs to C0,α(Qρ). This was also shown in (3.10) in Chapter 2. Then by Schauder
esitimates (see [12]) we have

‖qn‖C2,α(−ρ,ρ) ≤ c‖pn‖C0,α(Qρ) ≤ cH

‖pn‖C2,α(Qρ) ≤ c(‖gn‖C0,α(Qρ) + ‖qn‖C2,α(−ρ,ρ)) ≤ cH.

Being ρ arbitrary, the sequence {(qn, pn)}n∈N is bounded in C2,α
loc and moreover since

C2,α
loc ↪→ C2

loc we can take a subsequence converging in C2
loc to a couple (q∞, p∞). Notice

that (q∞, p∞) is still a solution to (M). By construction, q∞(0) = lim
n→∞

q(xn) = γ∗k.

Applying the previous part of the case inf
x∈R

(γ∗k − q) = 0 we reach an absurd. Hence

it must be inf
(x,t)∈Ω

(γ∗φ − p) = 0. Then there exists a sequence (xnk , ynk) such that

lim
n→N

(γ∗φ − p)(xn, yn) = 0 and γ∗k − q > 0 in R. Suppose there is a subsequence

(xnk , ynk) converging to some (x, y) ∈ Ω. We have

−d∆(γ∗φ− p) ≥ f(y, γ∗φ)− f(y, p) =: h(x, y)(γ∗φ− p)

in Ω with h(x, y) bounded and γ∗φ− p ≥ 0. Then we can apply the strong positivity
property to γ∗φ − p in a neighbourhood of (x, y) in Ω. Hence we have γ∗φ − p ≡ 0,
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but this is absurd since γ∗φ cannot satisfies the equality on the first equation of the
system.

The cases where xn → ±∞, yn → y with y > 0 are treated with the same
arguments of convergence used for the case of inf

x∈R
(γ∗k − q) = 0. The case yn → +∞

is even easier, since q is not affected by translation.
We have left the cases where yn → 0. Suppose (xnk , ynk)→ (x, 0) with x ∈ R. If

xn → ±∞, using the same arguments as before we can reduce to the case of xn → x.
As before, γ∗φ−p is a nonnegative function that satisfies −d∆(γ∗φ−p) > 0 in Ω and
−d∂y(γ∗φ − p) ≥ 0 and we also know that it reaches its minimum at the boundary
point (x, 0). But Hopf’s Lemma says −∂y(γ∗φ − p) < 0. This is a contradiction, so
it cannot be neither inf

x∈R
(γ∗k − q) = 0 nor inf

(x,t)∈Ω
(γ∗φ− p) = 0. Hence γ∗ = 0 and the

only bounded nonnegative stationary solution is (0, 0).
We now want to show that every solution (u, v) raised from a nonnegative

bounded datum converges to (0, 0). Take n ∈ R such that nk > supx∈R u0(x) and
nφ > sup(x,y)∈Ω v0(x, y). Consider the solution (u, v) starting from the initial datum
(nk, nφ). As was shown in 3.2.3, since (nk, nφ) is a supersolution, then (u, v) is de-
creasing at t = 0 and it keeps decreasing. Hence we can apply Lemma 3.2.2 to (u, v)
and we find that u → U , v → V as t → +∞ with (U, V ) stationary nonnegative
bounded solution of (M). But we have just proved that (0, 0) is the only stationary
nonnegative bounded solution, hence U ≡ 0 and V ≡ 0.

By the comparison principle 2.1.1, we have that being 0 ≤ u0 < kn and 0 ≤ v0 <
nφ, for all t ≥ 0 one has 0 ≤ u ≤ u and 0 ≤ v ≤ v. From what was said before, we
have u→ 0 and v → 0 pointwise as t→ +∞.

3.4 The symmetric case and further comments on

the hypothesis H1

Hypothesis H1 is quite difficult to verify. Thus, we aim to find some other prop-
erties, more easy to verify, entailing H1. We have the following:

Hypothesis 3.4.1 (H2). For every fixed v ∈ R, f is symmetric in [0, `] with respect
to the centre y = 1

2
`, that is

f(y, v) = f

(
1

2
`− y, v

)
∀y ∈

[
0,

1

2
`

]
From this symmetry we can infer many interesting properties for f . For example,

Proposition 3.4.2. If f periodic in y with period ` satisfies hypothesis (3.4.1), then
f is symmetric on the interval

[
1
2
`, 3

2
`
]

with respect to the point y = `.

Proof. Let v ∈ R be fixed. The thesis of the proposition is equivalent to show that

for every z ∈
[
`,

3

2
`
]

we have f(z, v) = f(`− z, v). Directly by hypothesis (3.4.1) we

have that for all y ∈
[1

2
`, `
]

we have f(y, v) = f
(1

2
` − y, v

)
and by the periodicity
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of f we obtain f
(1

2
`− y, v

)
= f

(3

2
`− y, v

)
. Now call z =

3

2
`− y. Then z ∈

[
`,

3

2
`
]

and
1

2
` − y =

1

2
` − z +

3

2
` = 2` − z. So the previous equality reads now and

f(2`− z, v) = f(z, v). But using f periodicity f(`− z, v) = f(z, v), as desired.

So f has several points that work as centre of symmetry: y =
1

2
`, y = `, and

all the points y ∈ R+ whose distance from one of these is an entire multiple of the
period `.

Now we look at the principal eigenfunction φ, solution to periodic eigenvalue
problem, and its derivative in 0, φ′(0).

Proposition 3.4.3. Let f satisfies hypothesis (3.4.1). Then the principal eigenfunc-
tion φ is symmetric in the interval

[
1
2
`, 3

2
`
]

with respect to the point y = `. Thus,
φ′(0) = 0.

Proof. Recall the eigenvalue problem related to the equation −d∆v = f(y, v). The
couple (λ0, φ) where λ0 is the principal eigenvalue and φ is the principal eigenfunction
is the only solution to the system{

−d∆φ− fv(y, 0)φ = λ0φ, in R+;
φ > 0 in R+, ‖φ‖∞ = 1, φ(y) = φ(y + `) ∀y ∈ R+.

Extend f(y, v) by periodicity on the first variable so that f is defined in the whole R2.
Then, by hypothesis (3.4.1) and by Proposition 3.4.2, f is symmetric with respect
to 0 in the variable y, that is f(y, v) = f(−y, v) for all y ∈ R, v ∈ R. Hence
fv(y, 0) = fv(−y, 0) for all y ∈ R. So exchanging y with −y in the system, we obtain
the system {

−d∆φ− fv(−y, 0)φ = λ0φ, in R+;
φ > 0 in R+, ‖φ‖∞ = 1, φ(y) = φ(y + `) ∀y ∈ R+.

whose unique solution must be φ(−y). But, being the two systems identical, we have
φ(y) ≡ φ(−y). So φ is symmetric with respect to the point y = 0, and this implies
φ′(0) = 0.

The last proposition tells that the condition (3.4.1) on f implies φ′(0) = 0, so in
particular φ satisfies hypothesis H1 from the previous section and we don’t have the
nasty problem of studying the behaviour of φ′. Briefly,

Theorem 3.4.4. If f satisfies (3.4.1), then the sign of the principal eigenvalue λ0

characterise the asymptotic behaviour of the solution (u, v) to the system (M).

The function f needs to satisfy a bunch of properties, but it is still possible to
provide examples.

Example 3.4.5. Consider the function f(y, v) = d(cos(y)+cos2(y))v−v2 with d > 0.
It verifies all the hypotheses required in the model: we have the modelling features
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f(y, 0) = 0 and, since d(cos(y) + cos2(y)) is bounded, there exists M > 0 such that
f(y,M) < 0 for all y ∈ R+. Then for all 0 ≤ v1 < v2 it holds

f(y, v1)

v1

− f(y, v2)

v2

= d(cos(y) + cos2(y))− v1 − d(cos(y) + cos2(y)) + v2

= v2 − v1 ≥ 0,

so also the concave hypothesis is satisfied. Trivially f is periodic in the variable y
with period ` = π. Moreover, f fulfils condition (3.4.1) since it is symmetric with
respect to the origin for any fixed v ∈ R. This is a simple case where it is possible
for us to show also that φ′(0) = 0. In fact, the system{

−d∆φ− d(cos(y) + cos2(y))φ = λ0φ, in R+;
φ > 0 in R+, ‖φ‖∞ = 1, φ(y) = φ(y + `) ∀y ∈ R+,

has the easy solution (−d, ecos(y)−1). Let us verify that φ is the solution: the second
derivative reads

φ′′(y) = (− cos(y) + sin2(y))ecos(y)−1 = (− cos(y) + 1− cos2(y))ecos(y)−1

and substituting φ′′ in the equation we have

d cos(y)− d+ d cos2(y)− d cos(y)− d cos2(y) = −d

so (−d, ecos(y)−1) is a solution. We have that φ(y) = ecos(y)−1 is periodic with period π,
positive and its maximum is φ(0) = e0 = 1. As expected, φ′(0) = − sin(0)ecos(0)−1 =
0. However λ0 = −d < 0, hence the first case holds and the population spreads all
over the domain Ω.

There are several situation where φ′(0) > 0 and Theorem (3.3.2) does not applies.
In these cases, the behaviour is not clear yet. We are convinced that one can construct
a case with λ0 ≥ 0, φ′(0) > 0 but the population do not reaches the extinction.
However the construction of such an example is beyond the purposes of this thesis
and could be done in further research works.
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