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Abstract 
 
 

Quantitative models are useful tools to support and accelerate the development of 

pharmaceutical manufacturing processes. The assessment of the predictive capability of such 

models is fundamental to enhance their usage in a systematic way. This is particularly 

important in a highly regulated sector such as the pharmaceutical industry, where model 

uncertainty evaluation may have to be quantified and filed if model results are to be included 

as part of a regulatory submission. In this work, an optimization framework has been 

developed, which defines the maximum allowable parametric uncertainty capable of 

guaranteeing a satisfactory prediction of both key performance indicators and critical quality 

attributes, which we will generically call key indicators. The proposed approach aims at 

quantifying the impact of model parameters with respect to a key indicator of interest, and 

assesses whether a statistically satisfactory estimation for all parameters is always necessary 

in order to meet the required prediction fidelity. The validity of the methodology is examined 

through the implementation on a direct compression process. Results demonstrate the 

possibility to implement a procedure where parametric uncertainty is explicitly optimised in 

order to target a pre-set fidelity performance of model predictions.   

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Riassunto esteso 
 
 

Nell’industria farmaceutica è sempre più diffuso l’utilizzo di modelli matematici al fine di 

descrivere le unità di processo che caratterizzano il settore. Tali modelli ampliano le 

conoscenze in merito ai sistemi analizzati e consentono di accelerarne ed ottimizzarne lo 

sviluppo facendo fronte all’elevato consumo di risorse e tempo legato alle campagne 

sperimentali. Tuttavia, il completo innesto di modelli quantitativi nell’ambiente 

farmaceutico è ad oggi limitato dalla mancanza di una procedura rigorosa che permetta di 

quantificare l’effettiva capacità di tali modelli di riprodurre in modo fedele la realtà. Un 

possibile approccio è stato recentemente proposto da Geremia et al. (2023) dove, attraverso 

l’utilizzo di una metodologia basata su tecniche statistiche multivariate, si stabilisce in quali 

circostanze si giunga alla predizione delle variabili di interesse entro un certo range di 

tolleranza prestabilito. Questo avviene non solo evidenziando l’incertezza riguardante la 

stima dei parametri, ma anche identificando quali siano i parametri di maggior influenza 

rispetto alle variabili analizzate. Tuttavia, l’approccio proposto in Geremia et al. (2023) 

prevede una linearizzazione del modello matematico e questo potrebbe rappresentare un 

limite all’efficacia del metodo. Per tale motivo, in questo lavoro si propone lo sviluppo e 

l’applicazione di una nuova metodologia in grado di mantenere fede alla forma originale del 

modello. L’interesse è sempre quello di stabilire quanto la predizione di una variabile 

dipenda dai parametri e dalla loro incertezza, servendosi però di tecniche diverse da quelle 

utilizzate in Geremia et al. (2023) per il conseguimento dell’obiettivo. La metodologia è 

stata interamente sviluppata utilizzando il software gPROMS® (Siemens Process Systems 

Engineering) sfruttando sia la possibilità del programma di rappresentare modelli dinamici, 

sia la vasta gamma di strumenti che questo mette a disposizione per l’analisi di sistemi. Il 

metodo sviluppato prevede una preliminare analisi di sensitività globale del modello al fine 

di classificare l’importanza dei parametri nei confronti della variabile di interesse. In seguito, 

cercando di migliorare la precisione con cui vengono stimati i parametri più impattanti, viene 

realizzata una pianificazione degli esperimenti basata su modello, dal quale deriva poi la 

possibilità di simulare un esperimento in silico che verrà utilizzato per una successiva stima 

parametrica. Infine, viene compiuta un’ottimizzazione sulle incertezze dei parametri stimati 

andando a determinare l’incertezza massima consentita per ciascun parametro al fine di 

mantenere la variabile di interesse all’interno di un intervallo desiderato.  

Per validare la metodologia descritta, questa è stata testata sullo stesso processo di 

compressione diretta utilizzato in Geremia et al. (2023), favorendo così un successivo 

confronto tra i due metodi. Il sistema si compone di un’unità operativa di compressione delle 

polveri, un’unità di disintegrazione delle compresse e un’unità di dissoluzione in vitro dei 

prodotti della disintegrazione; i modelli matematici di queste fasi del processo vantano 



 

 

rispettivamente sette, cinque e due parametri oggetto di stima. I risultati ottenuti per le unità 

di disintegrazione e di dissoluzione mostrano un’affinità tra le due metodologie; 

diversamente, per l’unità di compressione, il raggiungimento di un’accettabile fiducia del 

modello attraverso l’approccio proposto in questo progetto richiede tre esperimenti 

aggiuntivi rispetto al metodo basato su tecniche statistiche multivariate. La ragione è legata 

al fatto che l’approccio proposto non tiene conto del fatto che l’incertezza raggiunta nella 

stima di alcuni parametri potrebbe essere inferiore al limite massimo consentito e quindi 

compensare l’effetto di incertezza di altri parametri per i quali potrebbe essere accettabile un 

valore di incertezza superiore rispetto a quello ottenuto dall’ottimizzatore. Per far fronte a 

questo problema la metodologia è stata affinata attraverso un metodo adattativo che tiene 

conto dell’effettiva incertezza parametrica ottenuta dopo ciascuna stima. I risultati conseguiti 

a seguito dell’implementazione di questa metodologia si dimostrano soddisfacenti: per tutti 

e tre i modelli del processo a compressione diretta il numero di esperimenti necessario al 

raggiungimento della condizione di stop è pari a quello ottenuto attraverso il metodo 

proposto in Geremia et al. (2023). Questo suggerisce, inoltre, che almeno per il caso studio 

trattato, la linearizzazione del modello matematico non costituisce un limite. 
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List of symbols 
 
 

Acronyms   

   

API = active pharmaceutical ingredient 

CI = confidence interval 

CQA = critical quality attribute 

DAE = differential algebraic equations 

DC = direct compression 

DoE = design of experiments 

GSA = global sensitivity analysis 

KI = key indicator 

KPI = key performance indicator 

KS = knowledge space 

LV = latent variable 

LSA = local sensitivity analysis 

MBDoE = model-based design of experiments 

MC = Monte Carlo 

PC = principal component 

PCA = principal component analysis 

PLS = partial least squares  

R&D = research and development  

USP = Unites States Pharmacopeia  

   

Greek letters   

   

𝛽  = sensitivity of formulation to lubrication [−] 

𝛾  = lubrication rate constant [dm-1] 

𝛿𝑗 = acceptable tolerance in the model prediction for 𝐾𝑀,𝑗   

𝜹  = vector of acceptable tolerances 𝛿𝑗  

�́�  = Dirac delta function 

휀𝑖  = uncertainty of parameter 𝜃𝑖 

𝜺  = vector of parameters uncertainties 휀𝑖 

휀𝑖
ℎ = value of 휀𝑖 at scenario ℎ 

휀𝑖,𝑚𝑎𝑥  = maximum uncertainty of parameter 𝜃𝑖 performing the optimization 

on 𝑁 scenarios 

𝜺𝒎𝒂𝒙  = vector of maximum uncertainties 휀𝑖,𝑚𝑎𝑥 

휀𝑖,𝑚𝑎𝑥,𝑏  = maximum uncertainty of parameter 𝜃𝑖 performing the optimization 

on 2𝑛 boundary scenarios 

𝜺𝒎𝒂𝒙,𝒃  = vector of maximum uncertainties 휀𝑖,𝑚𝑎𝑥,𝑏 
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(휀𝑖,𝑚𝑎𝑥,𝑏)
(𝑘)

 = maximum uncertainty of parameter 𝜃𝑖 performing the optimization 

on 2𝑛 boundary scenarios at iteration 𝑘 

휀𝑠  = average porosity of the swollen product [−]  

𝜖𝑖𝑗𝑘 = measurement error 

𝜖̇  = erosion rate [m s-1] 

𝜃𝑖 = 𝑖th model parameter 

𝜽  = set of model parameters 𝜃𝑖  

𝜃𝑖
𝑖.𝑔.

 = initial guess for parameter 𝜃𝑖   

𝜃𝑖
ℎ = value of 𝜃𝑖 at scenario ℎ 

𝜽ℎ = set of parameters at scenario ℎ 

𝜃𝑖
0 = 𝑖th estimated model paramenter 

𝜽𝟎 = set of estimated model parameters 𝜃𝑖
0 

𝜣  = matrix of parameters combinations for PCA/PLS models 

𝜆  = swelling rate [s-1] 

𝜇  = liquid viscosity [Pa s]   

𝜈𝑖
ℎ = variable used both to consider different uncertainty signs and to 

characterize all the scenarios parameters combinations 

𝝂ℎ = vector of 𝜈𝑖 at each scenario ℎ    

𝜉𝑖 = 𝑖th relative uncertainty with respect to 𝜃𝑖
0 

𝝃 = vector of relative uncertainties 𝜉𝑖 

𝜉𝑖,𝑚𝑎𝑥 = 𝑖th relative maximum uncertainty with respect to 𝜃𝑖
0 

𝝃𝒎𝒂𝒙 = vector of maximum relative uncertainties 𝜉𝑖,𝑚𝑎𝑥 

𝜌𝑝  = density of particles [kg m-3] 

𝜎𝑖𝑗𝑘 = measurement standard deviation 

�̃�1
𝑟𝑠 = 𝑟𝑠th element of the inverse of the estimate of the residuals’ 

variance-covariance matrix 

𝜮𝑦  = variance-covariance matrix of measurements errors 

𝜏  = total stress [MPa] 

𝜏𝑜𝑟  = average tablet tortuosity [−]  

𝝋 = experiment design vector 

𝜙  = shape factor of particles [−] 

Ψ = Maximum Likelihood function 

   

Latin letters   

   

𝑎1  = extended Kushner parameter (1) [MPa] 

𝑎2  = extended Kushner parameter (2) [−] 

𝑎𝑠𝑓  = Kawakita model parameter (1) [−] 

𝐴𝑡  = tablet surface area [m2] 

𝑏1  = extended Kushner parameter (3) [−] 

𝑏2  = extended Kushner parameter (4) [−] 

𝐵𝐴𝑃𝐼  = rate of release of API [s-1]  
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𝑏𝑠𝑓  = Kawakita model parameter (2) [MPa-1] 

𝑪 = matrix of 𝜈𝑖
𝑗
 for the yeast fermentation problem  

𝐶2  = Peppas and Colombo parameter (1) [MPa] 

𝐶3  = Peppas and Colombo parameter (2) [MPa] 

𝑐𝐴𝑃𝐼  = bulk concentration of API [kg m-3] 

𝑐𝑠𝑎𝑡  = saturation concentration of API [kg m-3] 

𝑑ℎ  = tablet hydraulic diameter [m] 

𝐸  = elastic constant (1) [−] 

𝐹𝐿  = tablet fracture load [MN] 

𝐺0  = elastic constant (2) [MPa] 

𝐻𝑐𝑜𝑎𝑡  = thickness of the coating layer [m] 

𝐾  = extent of lubrication [m] 

𝓚  = response matrix for PLS model 

𝑘𝐴𝑃𝐼  = mass transfer coefficient of API [m s-1] 

𝑲𝑀  = vector of 𝐾𝑀,𝑗 

𝐾𝑀1 = key indicator of tablet press model (i.e., 𝑇𝑆) [MPa]  

𝐾𝑀2 = key indicator of disintegration model (i.e., 𝑡𝑑𝑖𝑠) [s]  

𝐾𝑀3 = key indicator of dissolution model (i.e., 𝐿𝐶) [%] 

𝐾𝑀,𝑗 = key indicator of the model  

𝐾𝑀,𝑗̅̅ ̅̅ ̅̅  = target value of 𝐾𝑀,𝑗  

𝑙  = particle size [m] 

𝑙0,𝐴𝑃𝐼  = particle size at the beginning of the process [m]  

𝐿𝐶  = label content [%] 

𝐿�̂�  = label content predicted by the model [%] 

𝐿𝐶𝑚𝑖𝑛  = minimum label content value for 𝐾𝑀3 acceptability [%]  

𝐿𝐶𝑚𝑎𝑥  = maximum label content value for 𝐾𝑀3 acceptability [%]  

𝑚  = number of parameter combinations via MC simulations 

𝑀1  = tablet press model 

𝑀2  = disintegration model 

𝑀3  = in vitro dissolution model 

𝑀𝑡  = tablet mass [kg] 

𝑀𝑡,0  = initial tablet mass [kg] 

𝑛  = number of parameters in the model 

𝑁  = total number of scenarios for the optimization problem resolution 

𝑛𝐴𝑃𝐼  = order of dissolution of API [−] 

𝑁𝐴𝑃𝐼  = number of dissolving API particles [−] 

𝑁𝑒𝑥𝑝 = total number of measurements taken during all the experiments 

𝑛𝑠  = swelling parameter [−] 

𝑁𝐾𝐼  = number of model key indicators 

𝑁𝐸 = number of experiments performed 

𝑁𝑀𝑖𝑗 = number of measurements of the 𝑗th variable in the 𝑖th experiment 
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𝑁𝑉𝑖 = number of variables measured in the 𝑖th experiment 

𝑂𝑏𝑗 = objective function of the optimization problem 

𝑃  = compaction pressure [MPa] 

𝑝𝑐  = capillary pressure [Pa] 

𝑃𝑑  = water penetration depth [m] 

𝑞  = number of responses for 𝑽(𝜽,𝝋) definition 

𝑅𝐴𝑃𝐼,𝑙  = particle dissolution coefficient [m2 s-1] 

𝑠𝑓   = solid fraction [−] 

𝑆𝑖 = first-order index of Sobol analysis 

𝑆𝑖,𝑗
𝜆   = similarity factor [−] 

𝑆𝑝   = shape factor of pores [−] 

𝑆𝑟 = matrix of partial derivatives of the 𝑟th equation in the model 

𝑆𝑇,𝑖 = total-effect index of Sobol analysis 

𝑡  = time [s] 

𝑡𝑑𝑖𝑠 = disintegration time [s] 

𝑡𝑑𝑖�̂�  = tensile strength predicted by the model [s] 

𝑡𝑑𝑖𝑠,𝑚𝑖𝑛  = minimum disintegration time value for 𝐾𝑀2 acceptability [s]  

𝑡𝑑𝑖𝑠,𝑚𝑎𝑥  = maximum disintegration time value for 𝐾𝑀2 acceptability [s]  

𝑡𝑒𝑥𝑝 = experimental duration 

𝒕𝒔𝒑 = vector of sampling times 

𝑇𝑡 2⁄   = half tablet thickness [m] 

𝑇𝑆  = tensile strength [MPa]  

𝑇�̂�  = tensile strength predicted by the model [MPa] 

𝑇𝑆0 = tensile strength at zero porosity [MPa]  

𝑇𝑆𝑚𝑖𝑛  = minimum tensile strength value for 𝐾𝑀1 acceptability [MPa] 

𝑇𝑆𝑚𝑎𝑥  = maximum tensile strength value for 𝐾𝑀1 acceptability [MPa] 

𝒖(𝑡) = vector of time-varying model control variables 

𝑢1 = dilution factor [h-1] 

𝑢2 = substrate concentration in the feed [g/L] 

𝑉(𝑦𝑗) = variance of the 𝑗th model output 

𝑉(𝜽,𝝋) = parameter variance-covariance matrix 

𝑉1,2,…,𝑘 = 𝑘th-order contribution of factor 𝑖 to the variance of the output 

𝑉𝑐  = coating volume [m3] 

𝑉𝑖 = first-order contribution of factor 𝑖 to the variance of the output 

𝑉𝑖,𝑙 = second-order contribution of factor 𝑖 to the variance of the output 

𝑉𝑚  = liquid volume in the vessel [m3] 

𝑉𝜃𝑖 = variance based first order effect for factor 𝜃𝑖 

𝑉𝜃~𝑖 = variance based first order effect for factor 𝜃~𝑖 

𝑤𝑙  = liquid content in the tablet [−] 

𝒙(𝑡) = vector of time-dependent state variables 

𝑥1 = biomass concentration [g/L] 
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𝑥1
0 = initial biomass concentration [g/L] 

𝑥2 = substrate concentration [g/L] 

𝑥𝐴𝑃𝐼  = mass fraction of API [−]  

𝒚(𝑡) = vector of measured outputs 

�̂�(𝑡)  = vector of outputs predicted by the model 

𝒚0  = vector of state variables initial conditions  

𝑧𝑖𝑗𝑘 = 𝑘th predicted value of variable 𝑗 in experiment 𝑖 

�̃�𝑖𝑗𝑘 = measured value of 𝑧𝑖𝑗𝑘 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 
 
 

In the pharmaceutical environment, there is a significant need to accelerate the development 

of industrial processes in order to maintain competitiveness of companies. Quantitative 

models have been increasingly employed to reduce time-demanding and resource-intensive 

experimental campaigns that are typical of this industrial sector. However, the use of 

modeling for pharmaceutical process development and optimization is not as widespread as 

it could be. This is mainly due to stakeholders lack of confidence in the prediction capability 

of a quantitative model to accurately represent both the real process and the key indicators 

of interest. The objective of this study is to address this issue by proposing an approach that 

allows to ensure an acceptable level of model fidelity. 

The Thesis is organised as follows.  

In Chapter 1 the context of modeling in the pharmaceutical environment is presented, 

underlining the difficulty related to its application due to the stakeholders reluctance. After 

discussing the methodology described in Geremia et al. (2023), which represents the term 

of comparison for this work, motivations and objectives associated to the definition of a 

more rigorous methodology are discussed.  

Chapter 2 describes the mathematical techniques adopted in the definition of the algorithm 

(i.e., sensitivity analysis, model based design of experiments, parameters estimation, and 

optimization) focusing on the formulation of model, constraints, and objective function of 

the optimization problem. Later, a motivating example is discussed in detail.  

The methodology validity is then assessed in Chapter 3, where a direct compression process 

is used as a case study. The same process was also employed for the implementation of the 

systematic approach discussed in Geremia et al. (2023). In this way, a comparison of the 

results obtained with both methodologies is performed assessing whether the attainment of 

acceptable model fidelity is limited by one of the two methods.  

Chapter 4 underlines the limits of the optimization procedure suggesting a possible 

improvement. An enhanced algorithm is presented and applied to the same direct 

compression process in Chapter 3. Results obtained are commented and compared again 

with those achieved through the procedure discussed in Geremia et al. (2023). 

Some final remarks conclude the work. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 1 
 

Challenges in pharmaceutical 
manufacturing: modeling support to 

process development 
 
 

This chapter summarizes current challenges and trends in modeling for pharmaceutical 

manufacturing development, focusing on the requirements to attain a pre-set fidelity in 

model prediction. Later, a model evaluation framework capable to achieve this goal, 

proposed by Geremia et al. (2023), is briefly described. Finally, the motivations and 

objectives related to the formulation of a new methodology are presented.  

 

1.1. Modeling for pharmaceutical manufacturing  

Pharmaceutical manufacturing research and development (R&D) has traditionally relied on 

design of experiments (DoE) approaches to investigate the impact of process input 

parameters (i.e., operating variables, material properties) on product manufacturing and/or 

quality requirements. The experimental campaigns are generally very long and resource-

intensive (e.g., consuming a lot of active pharmaceutical ingredient (API), which is 

expensive during process development). Therefore, the use of quantitative models in 

pharmaceutical manufacturing has recently gained momentum to accelerate process 

development and optimization, as well as enhancing process understanding. 

Although modeling in pharmaceutical process environment has been demonstrated to be 

beneficial in saving substantial time and resources (Destro and Barolo, 2022), there is still a 

lack of confidence in the systematical use of quantitative models.  One of the main obstacles 

to their implementation is due to the reluctance from stakeholders towards models prediction 

capability with respect to key performance indicators (KPIs), and critical quality attributes 

(CQAs), which we will generically call key indicators (KIs) (Braakman et al., 2022). 

Moreover, many pharmaceutical processes involve very complex phenomena, and these may 

not be easily captured by first-principles models; this is particularly true for the 

manufacturing of small molecules and biopharmaceuticals. Thus, high in-house expertise 

and resources are still required (Polak et al., 2023). 

Pharmaceutical manufacturing processes typically comprise of many unit operations. Test 

units can be also modeled to assess whether a pharmaceutical product meets the required 

specifications.  

These mathematical models are generally defined by a set of differential algebraic equations 
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(DAEs) of the form: 

 

{

𝒇(𝒙(𝑡),  �̇�(𝑡), (𝜽), 𝒖(𝑡), 𝑡) = 0           

�̂� = 𝒈(𝒙(𝑡))                                           

𝑲𝑀 = 𝒉(𝒙(𝑡))                                        

   ,                                (1.1) 

 

where 𝒙(𝑡) is the vector of time-dependent state variables, 𝒖(𝑡) are the model control 

variables, 𝜽 is the set of unknown model parameters to be estimated, �̂�(𝑡) is the vector of 

outputs predicted by the model (which in general may differ from the measured ones 𝒚(𝑡)), 

and 𝑲𝑀 are the KIs on which constraints are imposed. These models can be used to describe 

both operating and test units, and to predict the values of the KIs. Therefore, quantitative 

mathematical models have the capability of explaining the phenomena taking place 

throughout the manufacturing process; in this way rational design decisions are supported. 

In recent years, there have been numerous instances of quantitative models application to 

the pharmaceutical industry, where more than one single unit operation is present. Just to 

give some references, Bano et al. (2022) guided the development of an industrial dry 

granulation process for immediate release tablets. Yang et al. (2022) design a recombinant 

adeno-associated virus drug manufacturing process. In Diab et al. (2022), mathematical 

models were used to find the optimal process setpoints to optimize the manufacturing 

process of API production. 

To increase the acceptance of quantitative models in pharmaceutical manufacturing 

development, it is necessary to employ standardized model evaluation methods for the 

assessment of model prediction fidelity (Zineh, 2019). Whenever a reliable mathematical 

model is available, its predictive capability with respect to the KIs strongly depends on the 

precision of model parameters estimates. 

In this context, the following questions need to be addressed: 

• since accounting for uncertainty in model predictions is fundamental, how can we 

quantitatively assess the model fidelity, so as to ensure an assigned confidence in the 

prediction of the model KIs?  

• should all model parameters be estimated in a statistically satisfactory way, or is it 

sufficient to focus on just a subset of them? What is the parametric precision that 

must be attained to satisfy the prediction requirements for the KIs? 

The objective of this work is to answer the questions above, and to aid the systematic use of 

mathematical models within pharmaceutical manufacturing.  

 

1.2. Methodology based on multi-variate statistical methods 

The aim is to enhance the usage of quantitative models within a pharmaceutical 

manufacturing environment. Geremia et al. (2023) proposed a systematic procedure, 
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combining model based design of experiments (MBDoE) with new methods based on data 

analytics to assess model fidelity and to support practitioners in model usage for 

pharmaceutical development. 

The methodology consists of four sequential steps: 

1. model identifiability and parameters ranking; 

2. impact of parameter uncertainty on the fidelity of model predictions; 

3. MBDoE and experimentation; 

4. parameter estimation. 

The overall procedure, depicted in Figure 1.1, is iteratively repeated until satisfaction of the 

stop criterion, which is attained when all predictions of model KIs are within the desired 

tolerance. 

 

 

The techniques adopted to implement the first and the second steps are briefly described in 

the following, while detailed descriptions of MBDoE and parameter estimation are presented 

in §2.1.2 and §2.1.3 respectively. 

 

1.2.1. Model identifiability and parameters ranking 

The objective is to characterize the parameter impact on the prediction of the selected KIs, 

so that the most influential parameters can be identified. Once it has been verified that all 

parameters can be estimated (Miao et al, 2011), the impact of model parameters on the KIs 

prediction is ranked with respect to each KI of interest. This is relevant in order to prioritize 

Figure 1.1. Schematic of the general framework proposed by Geremia et al. (2023) to 

quantify the model parameter impact on the prediction fidelity of model KIs. 
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the subsequent experimental effort (step 3 in Figure 1.1) for parameter estimation towards 

the most influential parameters (Saltelli et al., 2008).  

Different techniques, such as local and global sensitivity analysis (presented in §2.1.1), can 

be used to evaluate the influence of parameter estimates on selected KIs; Geremia et al. 

(2023) proposed an alternative approach based on PCA (Montgomery, 2013).  

The objective is to evaluate the relationship between the fidelity of a particular 𝐾𝑀,𝑗 and 

𝑛 model parameters that are affected by uncertainty. Therefore, a matrix 𝜣 [𝑚 × 𝑛] of 

𝑚 combinations of 𝑛 model parameters is built via Monte Carlo (MC) simulations according 

to the current ranges of parametric uncertainty, and the values of 𝐾𝑀,𝑗 for each parameters 

combination are computed exploiting the original model. At this point, PCA is used to 

summarize the information of 𝜣 by projecting the model parameters onto a coordinate 

system of independent variables called principal components (PCs). The influence and 

correlation of each model parameter is established based on the length of the projected 

loadings along the PCs, and mutual positions in the latent space; the greater the 𝜃𝑖 loading, 

the more influential that parameter is in the prediction of the 𝐾𝑀,𝑗 of interest. To avoid the 

scaling effect of different orders of magnitude of the model parameters, 𝜣 is autoscaled, i.e., 

data are mean-centered and scaled to unit variance (Wise and Gallagher, 2006).  

If compared to any traditional sensitivity analysis, one relevant advantage of the PCA 

methodology is the possibility to assess how variations in control variables affect the 

interaction between parameters and their relative ranking by comparing different PCA 

models (i.e., models obtained with different fixed operating conditions); this can be 

evaluated through the similarity factor, 𝑆𝑖,𝑗
𝜆 , whose mathematical definition is discussed in 

Gunther et al. (2009). 

Therefore, PCA represents an efficient method capable to define the correlation among 

parameters, their influence on 𝐾𝑀,𝑗 of interest, and their dependence on process manipulated 

variables.  

 

1.2.2. Impact of parameter uncertainty on the fidelity of model prediction 

The second step of the algorithm presented in Figure 1.1 aims at quantifying how uncertainty 

in parameter values impacts on the prediction fidelity of the model 𝑲𝑀, assessing whether 

or not the attained precision on the 𝑲𝑀 is acceptable. In order to assist the interpretation of 

these results, a partial least-squares (PLS) regression model is exploited to quantify the 

impact of each model parameter to the selected 𝐾𝑀,𝑗. 

Let 𝜣 [𝑚 × 𝑛] be the same matrix defined in §1.2.1, and 𝓚 [𝑚×𝑁𝐾𝐼] the correspondent 

response matrix of 𝑚 combinations of 𝑁𝐾𝐼 𝐾𝑀,𝑗 computed via the original model. The stop 

criterion (Figure 1.1) is reached when an acceptable 𝐾𝑀,𝑗 is achieved for all parameter 

combinations. This is evaluated through a PLS regression model (Geladi and Kowalski, 

1986), where both the regressor 𝜣 and the response variables 𝓚 are projected onto a common 
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latent space; since it is advisable to capture most of the variance in the input and output data, 

the selection of the significant latent variables (LVs) to build the model is typically executed 

employing a cross-validation procedure (Wold et al., 2001). In the latent space, the 

confidence limits are represented by a hyper-ellipsoid, which outlines the boundary of the 

knowledge space (KS) (MacGregor and Bruwer, 2008); only points falling within this region 

can be used for inference with the PLS model. As a matter of example, Figure 1.2 displays 

the projections of the calibration samples onto the score space as light blue circles, and the 

KS boundary as a green ellipse. 

 

 

Once the PLS model is defined, it can be inverted (Jaeckle and MacGregor, 2000), as shown 

in Figure 1.3, to determine the set of parameter combinations which guarantee that the 

prediction of the 𝐾𝑀,𝑗 of interest is within the range of desired tolerance. 

Bound values for the response prediction define the 𝐾𝑀,𝑗 acceptability region; if at least one 

projection falls outside the 𝐾𝑀,𝑗 acceptability region, as shown in Figure 1.3a, it is necessary 

to conduct further experiments to enhance the parameter precision. The stop criterion is 

reached only when all uncertainties fall inside the 𝐾𝑀,𝑗 acceptability region (Figure 1.3b). 

Therefore, the proposed methodology can be exploited to ensure pre-set requirements on 

parameters in the prediction of model KIs, establishing which are the most influential 

parameters and focusing only on their statistically acceptable estimation. One main 

advantage consists in the graphical representation of both parameter uncertainty and KIs in 

a common latent space, allowing for an easier interpretation of results.  

Figure 1.2. Illustrative example of PLS: projection of the calibration samples (light blue 

circles) onto the score space and KS boundary (green ellipse). 
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The procedure has been efficiently implemented on a direct compression process, leading to 

satisfactory findings for the modeling development in the pharmaceutical industry. 

 

1.3. Motivations and objectives 

The methodology proposed by Geremia et al. (2023) represents an efficient tool capable to 

assess whether or not an acceptable model fidelity is ensured and can be exploited for model 

evaluation. Nevertheless, it is based on a linear PLS model, i.e., an approximation of the 

rigorous model; this can represent a limit in the evaluation of model fidelity. 

The aim of this work is to find an alternative approach for the quantification of the 

parameters impact toward the prediction fidelity of model KIs, while overcoming the issue 

above. Therefore, a procedure will be proposed that relies on the original model (i.e., without 

any linearization). This methodology is computed trying to specify the maximum parametric 

uncertainty capable to guarantee acceptable model fidelity. To reach this goal, an 

optimization framework is presented in the following chapter.  

Figure 1.3. Illustrative example of PLS inverted model: (a) Case in which some 

projections of parameter uncertainty (red points) fall outside the 𝐾𝑀,𝑗 acceptability 

region (grey area). (b) Case in which all projections of parameter uncertainty (red points) 

fall inside the 𝐾𝑀,𝑗 acceptability region (grey area) 



 

Chapter 2 
 

Methodology 
 
 

This chapter firstly aims at providing a thorough overview of techniques and software tools 

adopted in this work. Later, the interest is focused on both the framework and application of 

a new method developed capable to ensure an acceptable fidelity of models analysed, whose 

general definition is the one presented in Equation (1.1) in §1.1. At the end, an example of 

the procedure’s implementation is presented.  

 

2.1. Software and mathematical tools 

The project development requires a dynamic process modelling and simulation software. In 

this study, Siemens Process System Enterprise’s advanced process modelling software 

gPROMS® Model Builder v. 7.0. has been adopted. Along with the capability to perform 

dynamic simulation and optimization, the power in advanced model parameter estimation 

and design of experiments should be mentioned. 

 

2.1.1. Sensitivity analysis 

Each physical model able to describe a specific process unit is characterised by factors on 

which responses depend (i.e., operating conditions/ model parameters). In this work, the first 

objective consists in assessing which model parameters have the greatest influence towards 

output variability.  

Sensitivity analysis provides metrics to rank the importance of parameters with respect to an 

output of interest: the larger the values of the metrics, the more sensitive the model response 

with respect to parameter changes (Saltelli et al., 2008). As a result, it is possible to underline 

those parameters to focus on during the subsequent parameter estimation activity (§2.1.3). 

Clearly, influential parameters have an important role towards the prediction of the output 

of interest, and so an accurate estimate is required on them; quite the opposite, non-

influential parameters can be fixed to nominal values. This reduction in the number of free 

parameters provides both greater confidence in model output predictions and a basis for 

model reduction (Braakman et al., 2022). 

Generally, sensitivity analysis can be classified into two main branches: 

• local sensitivity analysis (LSA): is a one-at-time method that considers single 

parameter perturbations around nominal value and often quantifies sensitivity by 

means of partial derivatives; 
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• global sensitivity analysis (GSA): focuses on output uncertainty over the entire input 

space, and typically resorts to sampling-based approaches. 

During this project GSA is adopted, that is generally recommended when very little 

preliminary information on parameter values is available (Saltelli et al., 2008). In particular, 

among all types of global sensitivity analysis techniques, the Sobol method is adopted. This 

is a variance-based methodology based on Saltelli (2002) in which the variance of the 𝑖th 

model output is decomposed as follow: 

 

𝑉(𝑦𝑗) = ∑ 𝑉𝑖
𝑘
𝑖=1 + ∑ ∑ 𝑉𝑖,𝑙

𝑘
𝑙=𝑖+1

𝑘
𝑖=1 +⋯+ 𝑉1,2,…,𝑘   ,                   (2.1) 

 
where 𝑉𝑖 expresses the first-order contribution of factor 𝑖 to the variance of the output, while 

𝑉𝑖,𝑙 and 𝑉1,2,…,𝑘 are the variance contribution due to second- and 𝑘th-order interactions. 

According to Sobol (1993, 2001), there are two types of variance-based sensitivity indices: 

a first-order (𝑆𝑖) index and a total-effect (𝑆𝑇,𝑖) index. The former represents the main effect 

of each parameter on the variance of the output and it is defined as: 

 

𝑆𝑖 =
𝑉𝜃𝑖

(𝐸𝜽~𝑖(𝑦𝑗|𝜃𝑖))

𝑉(𝑦𝑗)
   ,                                                 (2.2) 

 

where 𝑉𝜃𝑖(𝐸𝜽~𝑖(𝑦𝑗|𝜃𝑖)) indicates a variance based first order effect for a generic factor 𝜃𝑖. 

If a first-order index is large, then the corresponding parameter is influential on the output. 

The latter captures both the variance that can be attributed to a particular parameter, and all 

of its interactions with other parameters: 

 

𝑆𝑇,𝑖 = 1 −
𝑉𝜽~𝑖(𝐸𝜃𝑖

(𝑦𝑗|𝜽~𝑖))

𝑉(𝑦𝑗)
   ,                                            (2.3) 

 

where 𝑉𝜽~𝑖(𝐸𝜃𝑖(𝑦𝑗|𝜃~𝑖)) is the first order effect of 𝜽~𝑖, so that 𝑉(𝑦𝑗) minus 

𝑉𝜽~𝑖(𝐸𝜃𝑖(𝑦𝑗|𝜃~𝑖)) must give the contribution of all terms in the variance decomposition 

which do include 𝜃𝑖. If a total-effect index is small, then the corresponding parameter is non-

influential, and could be fixed during subsequent analysis. Total-effect index should be 

always higher than the first-order one.  

Formulae used to estimate the sensitivity indices are those proposed in Saltelli et al. (2010). 

Within gPROMS® the sensitivity analysis is performed through the Global System 

Analysis entity that allows investigating the system behaviour. Variability of selected 

outputs is computed after specifying the range of variability of each input of interest.  
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2.1.2. Model based design of experiments 

Model based design of experiments (MBDoE) techniques are fundamental for rapidly 

designing experiments containing the most informative data for use in estimation of model 

parameters (Galvanin et al., 2007). They are effective mathematical tools, which, starting 

from the knowledge of the system under study, bring to the maximization of the information 

content from the designed experiment.  

MBDoE is the first step of a relevant procedure that is composed of three sequential key 

activities:  

1. design of the optimal experiment, possibly based on previous knowledge of the 

process; 

2. execution of the new experiments: in this context they have been simulated in silico 

and so in a process based on an ideal reference parameter set. Random errors are, 

then, added to the output of interest, based on the sensor’s standard deviation;  

3. parameter estimation through both historical and new designed experimental set; 

discussed in §2.1.3. 

The procedure above must be iteratively repeated, until the achievement of acceptable 

parameter estimation results (i.e., sufficient fidelity in model predictions and/or statistically 

satisfactory estimates) (Figure 2.1).  

The mathematical description of the MBDoE fundamentals is briefly presented, recalling 

what is exposed by Franceschini and Macchietto (2008). All experiment design variables are 

collected in a single design vector, 𝝋: 

 

𝝋 = 𝝋(𝒚𝟎, 𝒖(𝑡), 𝒘, 𝒕𝒔𝒑, 𝑡
𝑒𝑥𝑝)   ,                                         (2.4) 

 

where 𝒚𝟎 is a set of 𝒙 and �̇� sufficient to establish the initial conditions of the system, 𝒕𝒔𝒑 is 

the vector of sampling times, and 𝑡𝑒𝑥𝑝 is the experiment duration. The objective is to reduce 

the expected model parameter uncertainty region by acting on 𝝋, and this is mathematically 

intuitive translated into a decrease of the elements of the parameter variance-covariance 

matrix, 𝑽(𝜽,𝝋), defined according to Asprey and Macchietto (2002): 

 

𝑽(𝜽,𝝋) = [∑ ∑ �̃�1
𝑟𝑠𝑺𝑟

𝑇𝑺𝑠
𝑞
𝑠=1

𝑞
𝑟=1 ]

−1
   ,                               (2.5) 

 

where 𝑞 is the number of responses, �̃�1
𝑟𝑠 is the 𝑟𝑠th element of the inverse of the estimate of 

the residuals’ variance-covariance matrix. 𝑺𝑟 is the matrix of partial derivatives of the 𝑟th 

equation in the model with respect to the parameters 𝜽 calculated at the 𝑛 + 1 experimental 

points:  

 

𝑆𝑟 =
𝜕�̂�(𝝋,𝜽,𝑡)

𝜕𝜽
   .                                                  (2.6) 
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In order to compare the magnitude of different matrices, various real-valued functions have 

been suggested as metrics. Three common criteria are: 

• A-Optimality: minimise the trace of  𝑽(𝜽,𝝋), and thus minimises the dimensions of 

the enclosing box around the joint confidence region; 

• E-Optimality: minimise the largest eigenvalue of 𝑽(𝜽,𝝋), and thus minimises the 

size of the major axis of the joint confidence region; 

• D-Optimality: minimise the determinant of 𝑽(𝜽,𝝋), and thus minimises the volume 

of the joint confidence region. 

The meaning of each criterion is geometrically presented in Figure 2.2. 

From the algorithm perspective, the implementation of the MBDoE approach in gPROMS® 

occurs within the Experiment Design entity, that requires the construction of the 

Experiment entity, specifically of its …to be designed  section. This tool allows to 

specify the full details of an experiment that has to be set. Therefore, the user can indicate 

the nature of the experiment itself (dynamic or steady-state) and provide guesses for the 

initial conditions, the sensor and the values of manipulated variables that later are to be 

optimally determined by the MBDoE algorithm. Moreover, it is also possible to add some 

endpoint or interior-point constraints that need to be placed on the experiment that will be 

designed. 

Once the new test is specified, it is executed and later represented through the … performed 

section of the Experiment entity. This requires the specification of all the experiment 

conditions: the type (dynamic or steady-state), the initial conditions of the system, the values 

Figure 2.1. Schematic of MBDoE iterative procedure: (1) model-based design, (2) 

experiment execution, (3) parameter estimation. 
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of the time-invariant, piecewise constant and piecewise linear variables that are adjusted 

during the experiment, and finally the measured data and sensor used with also the possibility 

to describe the measurement variance model.  

 

 

In order to increase the maximum information obtainable from a designed experiment, the 

Experiment Design calculations should take into account any previously performed 

experiments. This may result in different regions of the operating space being explored from 

the point of view of yielding more knowledge of the model.  

 

2.1.3. Estimation of parameters 

A detailed process model is constructed from equations describing the physical and chemical 

phenomena that take place in the system and these equations usually involve parameters that 

must be calibrated to make the model predictions match reality.  

The software supports the parameter estimation through the Model Validation entity. 

Parameter estimation in gPROMS® is based on the Maximum Likelihood formulation which 

provides simultaneous estimation of parameters within the process physical model. 

When solving a Maximum Likelihood parameter estimation problem, gPROMS® attempts 

to determine values for the uncertain physical model parameters able to maximise the 

probability that the mathematical model will predict the measurement values obtained from 

the experiments. Assuming independent, normally distributed measurement errors, 𝜖𝑖𝑗𝑘, with 

zero means and standard deviations, 𝜎𝑖𝑗𝑘, this Maximum Likelihood goal can be captured 

through the following objective function (Bard, 1974): 

 

Figure 2.2. Geometric interpretation of the various design criteria. 
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Ψ = (
𝑁𝑒𝑥𝑝

2
) ∙ ln(2𝜋) + (

1

2
) ∙ 𝑚𝑖𝑛𝜃 ∑ ∑ ∑ [ln(𝜎𝑖𝑗𝑘

2 ) + (�̃�𝑖𝑗𝑘 − 𝑧𝑖𝑗𝑘)
2 𝜎𝑖𝑗𝑘

2⁄ ]
𝑁𝑀𝑖𝑗

𝑘=2
𝑁𝑉𝑖
𝑗=1

𝑁𝐸
𝑖−1    ,(2.7)   

 

where 𝑁𝑒𝑥𝑝 is the total number of measurements taken during all the experiments, 𝑁𝐸 is the 

number of experiments performed, 𝑁𝑉𝑖 is the number of variables measured in the 𝑖th 

experiment, 𝑁𝑀𝑖𝑗 is the number of measurements of the 𝑗th variable in the 𝑖th experiment, 

and �̃�𝑖𝑗𝑘 is the measured value of the 𝑘th predicted one of variable 𝑗 in experiment 𝑖, 𝑧𝑖𝑗𝑘. 

Once the estimation is performed, not only new values of parameters are achieved but also 

statistical information about both their confidence intervals (CIs) and t-value are available. 

If the 95% t-value of a parameter is lower than the reference one, that parameter is not 

estimated precisely: available data from experiments may not be sufficient and new ones are 

needed. 

As will be presented in §2.2.3, above all the knowledge attained from the Model Validation 

entity, the interest is focused on the 95% CIs: within the iterations of the new procedure 

described in this project, these are compared with the results of an optimization problem. 

 

2.1.4. Optimization 

Once a process is defined with all its features, we focus on the achievement of some specific 

purposes. More and more in industry there is the will to attain desired conditions in order to 

keep companies at a competitive level, and this is translated into an optimization of the 

processes. Therefore, an objective function is declared and this one must be satisfied through 

the manipulation of selected variables. 

From the algorithm point of view, gPROMS® supports an Optimization entity capable to 

optimize both the steady-state and the dynamic behaviour of a continuous or batch process. 

After the objective function definition, the user can choose either to maximise or to minimise 

it through the manipulation of time-invariant, piecewise constant, or piecewise linear 

variables, and whatever their nature initial guesses, lower bounds and upper bounds must be 

set. Considering the set of DAEs presented in Equation (1.1) in §1.1, a general optimization 

problem follows: 

 

{

min
𝒖(𝑡),𝜽

𝒙(𝑡)                      

𝒖𝑚𝑖𝑛 ≤ 𝒖(𝑡) ≤ 𝒖𝑚𝑎𝑥

𝜽𝑚𝑖𝑛 ≤ 𝜽 ≤ 𝜽𝑚𝑎𝑥      

   .                                            (2.8) 

 

Moreover, since the calculations refer to process units, it might be required to impose a target 

on the outputs. Therefore, the Optimization entity also allows the specification of end-

point equality, end-point inequality and interior path constraints. At the end, when all the 

decisions are made, the role of the optimization is to provide the values of the manipulated 
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variables of interest in order to reach the goal imposed on the objective function while 

satisfying all the constraints. 

 

2.2. Formulation of the optimization problem  

The objective of the research is to provide maximum uncertainties allowable on parameters 

ensuring a certain pre-set model fidelity. This goal is reached guaranteeing that one or more 

key indicators (KIs), are maintained inside a desired tolerance range at one single point in 

time or during the entire process duration. Since the interest is focused on the values of time-

independent parameters, treated as manipulated variables, assuring some constraints on other 

factors, the task can be translated into an optimization problem defined through the 

Optimization entity within gPROMS®. 

 

2.2.1. General structure 

The optimization is characterised by its own model, constraints, and objective function. 

The model is the one of the process under investigation, generally described by Equation 

(1.1) in §1.1. However, for the project purposes, the model structure of the optimization 

problem requires a different definition of parameters, leading to: 

 

{

𝒇(𝒙(𝑡),  �̇�(𝑡), (𝜽𝟎 + 𝜺), 𝒖(𝑡), 𝑡) = 0 

�̂� = 𝒈(𝒙(𝑡))                                           

𝑲𝑀 = 𝒉(𝒙(𝑡))                                        

   ,                               (2.9) 

 

where 𝜽𝟎 are the estimated parameters, and 𝜺 is the vector of uncertainties applied to those 

parameters. Each uncertainty, 휀𝑖, can be either positive or negative. 

Once the model structure is defined, the interest is focused on the desired constraints: 

 

(𝑲𝑀 −𝑲𝑀̅̅ ̅̅̅)
2 ≤ 𝜹2   ,                                             (2.10) 

 

where 𝜹 is the vector of acceptable tolerances in the model prediction for 𝑲𝑀, and 𝑲𝑀̅̅ ̅̅̅ are 

the target values imposed for 𝑲𝑀. Therefore, if for example in a reactor a temperature, �̅�, 

equal to 350°C is needed, and the acceptable tolerance, 𝛿, is set at 10%, from condition 

(2.10) the measured 𝑇 is constrained inside the range [315; 385]°C. 

Finally, the problem structure requires to delineate an objective function. The aim of this one 

is to find maximum uncertainties that can be applied simultaneously to all parameters 

ensuring that constraint (2.10) is fulfilled. Thus, it is defined as: 

 

𝑂𝑏𝑗 = 𝑚𝑎𝑥∏ 𝜉𝑖
𝑛
𝑖=1    ,                                            (2.11)                                   



22  Chapter 2 

 

where 𝑛 is the number of parameters in the model, and 𝜉𝑖 is the relative uncertainty with 

respect to 𝜃𝑖
0. Specifically: 

 

𝜉𝑖 = 휀𝑖 𝜃𝑖
0⁄    .                                                    (2.12) 

 

A good practice is to avoid a too low 𝑂𝑏𝑗, because it can provide numerical issues. We 

observed that if 𝑂𝑏𝑗 order of magnitude is at least 1, problems are reduced. Therefore, since 

𝜉𝑖 is imposed lower than 0.500, it may be reasonable to multiply the 𝑂𝑏𝑗 to 10𝛼, where 𝛼 

should be high enough to reach the goal. 

 

2.2.2. Code framework 

In order to reach the optimization scope, the code is built to calculate the maximum 

parameters uncertainty that ensures the specified constraints. Since 휀𝑖 can be either positive 

or negative, the possible parameter combinations refer to those obtainable considering all 

different 𝜺. Easily, the number of total combinations available is equal to 2𝑛, where 2 

represents the two possible signs (+ or −), i.e., the high and low bounds of each parameter. 

As a matter of example, the case with two parameters, 𝜃1 and 𝜃2, is presented: 

 
 Table 2.1. Example: all (𝜽0 + 𝜺) combinations for a model with two parameters. 

Combinations 𝜽𝟏 = 𝜽𝟏
𝟎 + 𝜺𝟏 𝜽𝟐 = 𝜽𝟐

𝟎 + 𝜺𝟐 

1
st

 휀1 > 0 휀2 > 0 

2
nd

 휀1 > 0 휀2 < 0 

3
rd

 휀1 < 0 휀2 > 0 

4
th

 휀1 < 0 휀2 < 0 

 

The interest is focused on the research of the maximum uncertainties allowable, 𝜺𝒎𝒂𝒙, and 

so for at least one 𝜽 it is expected that Equation (2.10) is at its equality condition. For clarity 

purposes, an example is presented on Figure 2.3, where 𝐾𝑀,𝑗 fidelity is assumed to be 

dependent on a single 𝜃𝑖; 휀𝑖,𝑚𝑎𝑥,𝑏 is the maximum uncertainty allowing to fulfil condition 

(2.10). 

This is attained within gPROMS® with the use of a composite model (i.e., a model that 

contains one or more other model entities as a sub-model). In particular, only one sub-model 

is used for the problem resolution, leading to a total of two models: 

• lower-level model: different scenarios are considered, each one characterised by the 

same set of equations but different variables values; 

• higher-level model: collects the various scenarios results. 

The number of scenarios evaluated at this point is equal to the number of total parameters 

combinations, 2𝑛. Once this is specified, each single 𝜃𝑖 at each single scenario ℎ, with 1 ≤

ℎ ≤ 2𝑛, must be defined: 
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𝜃𝑖
ℎ = (1 + 𝜉𝑖 ∙ 𝜈𝑖

ℎ) ∙ 𝜃𝑖
0   ,                                          (2.13) 

 

where 𝜃𝑖
ℎ is the value of parameter 𝑖 at scenario ℎ, and 𝜈𝑖

ℎ is a variable used both to consider 

different uncertainty signs and to characterize all the scenarios parameters combinations, 𝜽ℎ. 

Variable 𝜈𝑖
ℎ is defined as follow: 

 

𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ ℎ ≤ 2𝑛   𝜈𝑖
ℎ = {−1;+1}   𝑠. 𝑡.   𝝂ℎ ≠ 𝝂𝑘≠ℎ   ,       (2.14) 

 

 

The number of scenarios evaluated at this point is equal to the number of total parameters 

combinations, 2𝑛. Once this is specified, each single 𝜃𝑖 at each single scenario ℎ, with 1 ≤

ℎ ≤ 2𝑛, must be defined: 

 

𝜃𝑖
ℎ = (1 + 𝜉𝑖 ∙ 𝜈𝑖

ℎ) ∙ 𝜃𝑖
0   ,                                          (2.13) 

 

where 𝜃𝑖
ℎ is the value of parameter 𝑖 at scenario ℎ, and 𝜈𝑖

ℎ is a variable used both to consider 

different uncertainty signs and to characterize all the scenarios parameters combinations, 𝜽ℎ. 

Variable 𝜈𝑖
ℎ is defined as follow: 

 

𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ ℎ ≤ 2𝑛   𝜈𝑖
ℎ = {−1;+1}   𝑠. 𝑡.   𝝂ℎ ≠ 𝝂𝑘≠ℎ   ,       (2.14) 

 

In this way, parameter uncertainty at each scenario, 휀𝑖
ℎ, is identified as follows: 

Figure 2.3. Maximum uncertainty allowable, 휀𝑖,𝑚𝑎𝑥,𝑏 , on a parameter, 𝜃𝑖, in order to 

respect the constraint on the key indicator variable, 𝐾𝑀,𝑗, when a monotonic dependence 

between  𝜃𝑖 and 𝐾𝑀,𝑗 is assumed. 



24  Chapter 2 

 

휀𝑖
ℎ = 𝜉𝑖 ∙ 𝜈𝑖

ℎ ∙ 𝜃𝑖
0   ,                                               (2.15) 

 

while the general 휀𝑖: 

휀𝑖 = 𝜉𝑖 ∙ 𝜃𝑖
0   .                                                   (2.16) 

 

The optimization is directly performed on 𝜉𝑖, considering all parameters concurrently. Note 

that when handling complex models, converge issues may arise; therefore, a more detailed 

procedure should be adopted: 

1. optimize one or two parameters maintaining the others fixed; 

2. use the results attained both as initial guesses and upper bounds; add one or two more 

parameters on the optimization procedure: a maximum of four parameters are 

simultaneously considered at this point; 

3. repeat 2 until the final step is reached: all the parameters are evaluated 

simultaneously. 

Analysing the entire set of parameters, maximum uncertainties of interest are achieved: 

 

𝜺𝒎𝒂𝒙 = 𝝃𝒎𝒂𝒙 ∙ 𝜽
𝟎   .                                              (2.17) 

 

However, in Figure 2.3 a monotonic dependence is assumed between 𝜃𝑖 and 𝐾𝑀,𝑗 and this is 

not always expected. If a non-monotonic dependence occurs, as in the case of Figure 2.4, 

outcomes obtained with this optimization framework, 휀𝑖,𝑚𝑎𝑥,𝑏, are misleading since it 

provides only boundary values of uncertainty.  

 

Figure 2.4. Maximum uncertainty allowable, 휀𝑖,𝑚𝑎𝑥 , on a parameter, 𝜃𝑖, in order to 

respect the constraint on the key indicator variable, 𝐾𝑀,𝑗, when a non-monotonic 

dependence between  𝜃𝑖 and 𝐾𝑀,𝑗 is assumed.  
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To solve this issue, additional scenarios are introduced where 0 ≤ |휀𝑖
ℎ| ≤ |휀𝑖,𝑚𝑎𝑥|. 

Constraints on 𝑲𝑀 must be ensured not only for the firsts 2𝑛 scenarios, but for all scenarios, 

𝑁. In this way, the attained uncertainties guarantee that the acceptable tolerances on 𝑲𝑀 are 

respected for all combinations of parameters with uncertainties lower than 𝜺𝒎𝒂𝒙 (but not for 

those with higher ones).  

The code structure on gPROMS® should adapt accordingly. The hierarchical sub-model 

decomposition is maintained, but on the lower-level model additional stochastic scenarios 

are evaluated. The definition for 𝜃𝑖
ℎ is as in Equation (2.13), where the following definition   

is adopted 𝜈𝑖
ℎ:  

 

𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛   𝜈𝑖
ℎ = {

{−1;+1}   𝑠. 𝑡.   𝝂ℎ ≠ 𝝂𝑘≠ℎ   𝑓𝑜𝑟  1 ≤ ℎ ≤ 2𝑛

 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−1,+1)                 𝑓𝑜𝑟  2𝑛 < ℎ ≤ 𝑁
   ,          (2.18)                             

 

where 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−1,+1) indicates a uniform distribution of values in the range [−1;+1], 

and 𝑁 is the total number of scenarios. Since 𝜉𝑖 is the same for all scenarios and 𝜈𝑖
ℎ is smaller 

in absolute terms for these new systems with respect to the first 2𝑛, situations with 

parameters higher than 𝜽𝟎 and lower than 𝜽𝟎 + |𝜺𝒎𝒂𝒙| are analysed, guaranteeing that all 

𝑲𝑀 constraints are respected. Thus, if there are conditions for 휀𝑖 smaller than 휀𝑖,𝑚𝑎𝑥,𝑏 where 

𝛿𝑗 is no more ensured, another 휀𝑖,𝑚𝑎𝑥 distinct from 휀𝑖,𝑚𝑎𝑥,𝑏 is provided by the optimization 

problem (Figure 2.4).  

This second code structure is significantly more computational demanding: the more the 

scenarios evaluated, the more the time requested. Therefore, as discussed §2.2.3, it is 

exploited only as at a final level.  

 

2.2.3. Procedure implementation 

Once the optimization framework is defined, we must assess whether the current knowledge 

on parameter uncertainty is sufficient. Therefore, we need to compare optimization outcomes 

with parameter estimates, and build an iterative scheme capable to reach an acceptable model 

fidelity. The total procedure comprises a maximum of four steps:  

1. MBDoE and experimentation; 

2. parameter estimation; 

3. optimization problem on 2𝑛 scenarios; 

4. optimization problem on 𝑁 scenarios. 

For each iteration a new experiment is performed to get both more precise and accurate 

parameters values. Specifically, the MBDoE is attained focusing on the most influential 

parameters specified by a preliminary Sobol analysis. Later, the optimization is executed on 

the estimates achieved at the same iteration, but this is done evaluating only the firsts 2𝑛 

boundaries scenarios and not the stochastic ones. Uncertainties given by the optimization are 
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later compared with the half of the 95% CIs, (95%CIs)/2, provided by the parameter 

estimation in order to assess whether the estimates precision is sufficient to reach the 

acceptable model fidelity. Even if for a single parameter a situation as the one presented in 

Figure 2.5 occurs, where 휀𝑖,𝑚𝑎𝑥,𝑏 is lower than the confidence interval, another iteration is 

needed starting again with a new MBDoE. These iterations are repeated until all maximum 

uncertainties allowable on parameters are larger than (95%CIs)/2, as shown in Figure 2.6. 

 

 

Figure 2.5. Comparison between maximum uncertainty, 휀𝑖,𝑚𝑎𝑥, allowable on a 

parameter, 𝜃𝑖, and the half of its 95% confidence interval: situation in which the former 

is lower than the latter. 

Figure 2.6. Comparison between maximum uncertainty, 휀𝑖,𝑚𝑎𝑥, allowable on a 

parameter, 𝜃𝑖, and the half of its 95% confidence interval: situation in which the former 

is higher than the latter. 
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If a parameter is characterized by a 휀𝑖,𝑚𝑎𝑥,𝑏 higher than the 50% of its estimated value, it is 

assumed that has very low influence on 𝑲𝑀 and so it is omitted during the evaluation of the 

stop condition. Therefore, an upper bound for 𝜉𝑖,𝑚𝑎𝑥 equal to 0.500 is set for those 

parameters.  

At this point, the optimization with stochastic scenarios must be performed to ensure that 

𝜺𝒎𝒂𝒙 found is acceptable. Two possible situations may occur: 

1. 𝜺𝒎𝒂𝒙 obtained with the optimization on 2𝑛 scenarios is satisfactory; 

2. 𝜺𝒎𝒂𝒙 obtained with the optimization on 2𝑛 scenarios is not satisfactory: 

a. the new 𝜺𝒎𝒂𝒙 achieved is larger than (95%CIs)/2; 

b. the new 𝜺𝒎𝒂𝒙 achieved is smaller than (95%CIs)/2. 

The stop condition with the definitive 𝜺𝒎𝒂𝒙 is reached only if 1 or 2.a occurs, otherwise 

another iteration is needed. 

The overall scheme of iterations is summarised in Figure 2.7. 

 

Figure 2.7. Complete scheme of iterations: after guesses for parameters are assumed, 

the loop containing MBDoE, parameters estimation, and optimization is computed until 

the desired outcomes are achieved; later an optimization on 𝑁 scenarios occurs. 
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Since 𝜺𝒎𝒂𝒙 provides a situation in which acceptable tolerance on 𝑲𝑀 is guaranteed, the state 

highlighted in Figure 2.6 ensures that the estimation on parameters is precise enough with 

respect to the same constraints on 𝑲𝑀. Thus, the last iteration certifies a state where a 

satisfactory model prediction is achieved.  

 

2.3. Application example  

The methodology discussed in the previous section is applied to a biomass fermentation 

process for baker’s yeast growth.  

 

 

2.3.1. Problem description 

Assuming Monod-type kinetics for biomass growth and substrate consumption, the system 

is described by the set of DAEs presented in Galvanin et al. (2007): 

 

{

𝑑𝑥1 𝑑𝑡⁄ = (𝑟 − 𝑢1 − 𝜃4) ∙ 𝑥1                    

𝑑𝑥2 𝑑𝑡⁄ = −(𝑟 ∙ 𝑥1 𝜃3⁄ ) + 𝑢1(𝑢2 − 𝑥2)

𝑟 = (𝜃1 ∙ 𝑥2) (𝜃2 +⁄ 𝑥2)                             
   ,                           (2.19) 

 

where 𝑥1 is the biomass concentration [g/L], 𝑥2 is the substrate concentration [g/L], 𝑢1 is the 

dilution factor [h-1], and 𝑢2 is the substrate concentration in the feed [g/L]. The experimental 

conditions that characterize a particular experiment are the initial biomass concentration 

𝑥1
0 = [1.000; 10.00] g/L, the dilution factor 𝑢1 = [5.000 × 10-2; 0.200] h-1, and the substrate 

Figure 2.8. Process scheme of a baker’s yeast fermentation (adapted from Asprey and 

Macchietto (2002). 
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concentration in the feed 𝑢2 = [5.000; 35.00] g/L. The initial substrate concentration 𝑥2
0 is 

set to 0 g/L and cannot be manipulated for experimental design purposes. Both 𝑥1 and 𝑥2 

can be measured during the experiment, and so 𝒙(𝑡) =  �̂�(𝑡). For the optimization purposes 

only 𝑥1 is selected as key indicator. Thus, the definition of the optimization problem can be 

formulated according to Equation (2.9): 

 

{
 
 
 

 
 
 
𝑑𝑥1 𝑑𝑡⁄ = (𝑟 − 𝑢1 − (𝜃4

0 + 휀4)) ∙ 𝑥1                  

𝑑𝑥2 𝑑𝑡⁄ = −(𝑟 ∙ 𝑥1 (𝜃3
0 + 휀3)⁄ ) + 𝑢1(𝑢2 − 𝑥2)

𝑟 = ((𝜃1
0 + 휀1) ∙ 𝑥2) ((𝜃2

0 + 휀2) + 𝑥2)⁄               

𝑥1(0) = 2.453                                                          

𝑥2(0) = 0                                                                   

�̂� = 𝒈(𝒙(𝑡))                                                              

𝐾𝑀 = 𝑥1̂                                                                      

   .                     (2.20) 

 

Constraints on 𝐾𝑀 are set as follows: 

 

(𝐾𝑀 − 𝐾𝑀̅̅ ̅̅ )
2 ≤ (10% ∙ 𝐾𝑀̅̅ ̅̅ )

2   ,                                      (2.21) 

 

where 𝐾𝑀̅̅ ̅̅  is identified as 𝑥1 at assumed process operating conditions but with “true” nominal 

values of parameters (Galvanin et al., 2007). Thus, the true process is presented in Table 2.2, 

 
Table 2.2.  Process settings at nominal conditions. 

Variable/Parameter Units Nominal 

𝑡 h 48.00 

𝑢1 h-1 0.190 

𝑢2 g/L 34.79 

𝜃1 - 0.310 

𝜃2 - 0.180 

𝜃3 - 0.550 

𝜃4 - 5.000 × 10-2 

 

where 𝑡 [h] is the time horizon of the process. At 𝑡 = 48 h, 𝑥1 = 𝐾𝑀̅̅ ̅̅ = 14.89 g/L, so: 

 
Table 2.3. Constraints on 𝑥1. 

𝑥1,𝑚𝑖𝑛  13.40 g/L 

𝑥1,𝑚𝑎𝑥 16.37 g/L 

 

2.3.2. Problem resolution 

The optimization problem (Equation (2.20)) requires initial guesses for model parameters. 

Average values within ranges given by Asprey and Macchietto (2002) are considered: 
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𝜃1,2,3 = [5 × 10−2;  0.980]  ⇒ 𝜃1,2,3
𝑖.𝑔.

= 0.515   ,                       (2.22) 

𝜃4 = [1 × 10−2;  0.980] ⇒ 𝜃4
𝑖.𝑔.
= 0.495   .                            (2.23) 

 

Based on this, a MBDoE is performed: the experiment is a dynamic one with initial guess 

for 𝑡 at 48 h and 𝑢1 and 𝑢2 settled as piecewise constant variables for ten time intervals.  

Global sensitivity analysis is carried out before the MBDoE (Table 2.4).  

 
Table 2.4. Sobol’s sensitivity indices for parameters with respect to 𝑥1. 

 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 

𝑺𝒊 0.246 3.300 × 10-3 0.565 0.104 

𝑺𝑻,𝒊 0.322 1.300 × 10-2 0.623 0.164 

 

As already underlined in §2.1.1, the index representing the first-order effect of parameters 

on the output should be lower with respect to the total-effect one. However, Table 2.4 shows 

that this condition is not verified for 𝜃2. The reason may be found in a strong correlation 

between parameters, while Sobol analysis considers them as independent factors (Song et 

al., 2016). Therefore, for the specific case-study under evaluation, all parameters are 

considered during the first MBDoE. Later, the new experiment achieved is applied to the 

true process, the one defined by Table 2.2 conditions, in order to obtain a set of experimental 

data. A normally distributed noise, with a mean of zero and defined by the covariance matrix 

∑𝑦, is added to the original dataset to reproduce the experimental error: 

 

∑𝑦 = [1 × 10
−2 0

0 5 × 10−2
]   ,                                        (2.24) 

 

Values attained are then used to perform a first estimation of parameters: 

 
Table 2.5. Estimation of model parameters: first iteration. 

 Units Value 95% CI 95% t-value 

𝜽𝟏
𝟎 - 0.325 0.153 2.12 

𝜽𝟐
𝟎 - 0.326 0.386 0.844 

𝜽𝟑
𝟎 - 0.553 1.402 × 10-2 39.43 

𝜽𝟒
𝟎 - 5.088 × 10-2 2.706 × 10-3 18.80 

Reference t-value (95%)    1.660 

 

Once values of 𝜽𝟎 are acquired, these are used inside Equation (2.20). At this point, since 

values of parameters different with respect to the nominal ones are obtained, an optimization 

on the process manipulated variables must be performed ensuring that the desired 𝐾𝑀̅̅ ̅̅  is 

achieved. The settings of the model after the first iteration are presented in Table 2.6. 
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Table 2.6. Process settings after the first estimation of parameters. 

Variable/Parameter Units Value 

𝑡 h 48.00 

𝑢1 h-1 0.193 

𝑢2 g/L 35.00 

𝜃1 - 0.325 

𝜃2 - 0.326 

𝜃3 - 0.553 

𝜃4 - 5.088 × 10-2 

 

Results attained in Table 2.5 are compared with 95% reference t-value: 1.660. In situations, 

as for 𝜃2, where the 95% t-value of the parameters is lower than the reference one, the 

parameters are not estimated precisely. 

Thus, the procedure discussed in §2.2.2 is computed on estimated parameters obtained from 

the first iteration. Since the model is characterized by four parameters, we analyze a total of 

16 possible combinations. For each scenario, the 𝜃𝑖
ℎ description is the one presented at 

Equation (2.13). Each 𝜽ℎ definition differs from the others for the 𝝂ℎ specification. All the 

𝝂ℎ can be collected in a single matrix 𝑪 to get a better interpretation of the different scenario. 

Therefore, for the specific case under analysis, 𝑪 is structured as: 

 

𝑪 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   1
−1
   1
   1
   1
−1
−1
−1
   1
   1
   1
−1
−1
−1
   1
−1

     

   1
   1
−1
   1
   1
−1
   1
   1
−1
−1
   1
−1
−1
   1
−1
−1

     

   1
   1
   1
−1
   1
   1
−1
   1
−1
   1
−1
−1
   1
−1
−1
−1

     

   1
   1
   1
   1
−1
   1
   1
−1
   1
−1
−1
   1
−1
−1
−1
−1

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 

   .                                      (2.25) 

 

Once all the combinations are defined, the optimization is performed on 𝜉𝑖 (Table 2.7). 

 
Table 2.7. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the first iteration. 

 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 

𝝃𝒊,𝒎𝒂𝒙 7.109 × 10-2  0.500*  4.546 × 10-2   0.152 

 

Consequently, following Equation (2.17), maximum uncertainties are obtained (Table 2.8). 
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Table 2.8. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

first iteration. 

 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 

𝜺𝒊,𝒎𝒂𝒙,𝒃 2.311 × 10-2  0.163*  2.513 × 10-2   7.752 × 10-3  

 

As expressed in §2.2.3, since 𝜉2,𝑚𝑎𝑥 (Table 2.7) is higher than 0.500, and so 휀2,𝑚𝑎𝑥,𝑏 is larger 

than the 50% of 𝜃2 estimated, this parameter is not considered during the final step of 

iteration. Table 2.9 reports the comparison between 𝜺𝒎𝒂𝒙,𝒃 and (95%CIs)/2 of the first 

estimation (see Table 2.5). 

 
Table 2.9. First estimation-optimization iteration: uncertainties comparison. 

 𝜽𝟏 𝜽𝟑 𝜽𝟒 

𝜺𝒊,𝒎𝒂𝒙,𝒃 2.311 × 10-2 2.513 × 10-2   7.752 × 10-3  

(95%CI)/2 7.666 × 10-2 7.011 × 10-3 1.353 × 10-3 

 

The stop criterion is attained if all (95%CIs)/2 are lower than the maximum uncertainties 

allowable given by the optimization procedure. Clearly, this is not achieved after the first 

iteration for 𝜃1. Starting from the subsequent iteration, MBDoE is performed on 𝜃1 only. 

The desired outcome is achieved after a total of three iterations. The final estimation of 

model parameters is reported in Table 2.10. 

 
Table 2.10. Estimation of model parameters: last iteration. 

 Units Value 95% CI 95% t-value 

𝜽𝟏
𝟎 - 0.327 5.826 × 10-3 56.10 

𝜽𝟐
𝟎 - 0.307 4.668 × 10-2 6.57 

𝜽𝟑
𝟎 - 0.557 7.125 × 10-3 78.21 

𝜽𝟒
𝟎 - 5.194 × 10-2 1.704 × 10-3 30.49 

Reference t-value (95%)    1.649 

 

Again, new 𝑢1 and 𝑢2 are defined in order to keep 𝑥1 at specification (Table 2.11). 

 
Table 2.11.  Process settings after the last estimation of parameters. 

Variable/Parameter Units Value 

𝑡 h 48.00 

𝑢1 h-1 0.190 

𝑢2 g/L 34.88 

𝜃1 - 0.327 

𝜃2 - 0.307 

𝜃3 - 0.557 

𝜃4 - 5.194 × 10-2 
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Later, another optimization on 𝜉𝑖 is carried out (Table 2.12). 

 
Table 2.12. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the last iteration. 

 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 

𝝃𝒊,𝒎𝒂𝒙 8.359 × 10-2  0.500*  4.577 × 10-2   0.155  

 

Results are stated in the form of maximum uncertainties (Table 2.13). 

 
Table 2.13. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

last iteration. 

 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 

𝜺𝒊,𝒎𝒂𝒙,𝒃 2.732 × 10-2  0.153*  2.55 × 10-2   8.074 × 10-3  

 

Again, 𝜉2,𝑚𝑎𝑥 is higher than 0.500, so it is not included in the 𝜺𝒎𝒂𝒙,𝒃 comparison to 

(95%CIs)/2 of the last estimation (Table 2.14). 

 
Table 2.14. Last estimation-optimization iteration: uncertainties comparison. 

 𝜽𝟏 𝜽𝟑 𝜽𝟒 

𝜺𝒊,𝒎𝒂𝒙,𝒃 2.732 × 10-2 2.550 × 10-2 8.074 × 10-3 

(95%CI)/2 2.913 × 10-3 3.562 × 10-3 8.518 × 10-4 

 

Since all (95%CIs)/2 are lower than the maximum uncertainties allowable given by the 

optimization procedure, the estimation might be acceptable. However, this condition must 

be verified, and this is done avoiding the possibility of situations like that of Figure 2.4 to 

occur. Therefore, a process simulation with more scenarios (e.g., 104) is considered. For all 

scenarios, the 𝜃𝑖
ℎ description is the one presented in Equation (2.13), where: 

• 𝜉𝑖 is the one outlined in Table 2.12 and is fixed for all the scenarios. 

• 𝜈𝑖
ℎ is the one presented in Equation (2.18). 

•  𝜃𝑖
0 is the one specified in Table 2.10 and is fixed for all the scenarios. 

Since among all the scenarios 𝑥1,𝑚𝑖𝑛 and 𝑥1,𝑚𝑎𝑥 do not exceed the constraints imposed on 

𝑥1, a situation as the one presented in Figure 2.3 occurs. Thus, uncertainties highlighted in 

Table 2.13 are the maximum allowable on parameters in order to both ensure the acceptable 

tolerance on 𝐾𝑀 and guarantee an adequate parameters prediction. 

Moreover, another consideration might be added by focusing on Table 2.12: the lower the 

𝜉𝑖,𝑚𝑎𝑥, the smaller the uncertainty allowable on 𝜃𝑖, and consequentially the more influent 

the parameter is on the 𝐾𝑀 under investigation. The impact of model parameters towards the 

prediction of 𝑥1 can be presented in the following decreasing order: 𝜃3, 𝜃1, 𝜃4 and 𝜃2. It is 
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important to notice how this result accurately reflects the scale obtained considering the 

total-effect indices, 𝑆𝑇,𝑖, underlined by the Sobol analysis in Table 2.4



 

Chapter 3 
 

Methodology application on direct 
compression process models  

 
 

This chapter focuses on the assessment of model fidelity for pharmaceutical tableting 

manufacturing and quality. This is achieved through the application of the overall 

methodology described in §2.2 to direct compression (DC) process models.  

 

3.1. Direct compression process models 

In the pharmaceutical field, direct compression (DC) is a manufacturing process aimed at 

producing oral solid dose tablets, which benefits from using only a small number of unit 

operations that are continuously enhanced in order to streamline specific requests.  

In this study, we are not considering blend or content uniformity or tablet weight variability. 

Only three models are evaluated (Figure 3.1):  

• the tablet press unit operation (𝑀1); 

• the tablet disintegration test unit (𝑀2); 

• the in vitro dissolution test unit (𝑀3). 

 

 

Moreover, the tablet press model is the only model concerning a real unit operation in the 

manufacturing process; however, the methodology we propose is general and thus the results 

are not affected by omission of the other previous unit operations in a typical DC line. The 

Figure 3.1. Direct compression (DC) process configuration. 
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other models represent test units for the assessment of product quality, and require 

information from the tablet press model, i.e., the lubrication extent attained in the upstream 

powder blending, and the compaction pressure exerted by the press. In this example, each 

model outputs a KI, i.e., the tensile strength from the tablet press unit operation, the 

disintegration time from the tablet disintegration test unit, and the API dissolution profile 

from the in vitro dissolution test unit.  

 

3.1.1. Direct compression process 

The first step of the DC process, as shown in Figure 3.1, is a tablet press unit that leads to 

the compaction of tablets. Dies are filled with powder, which is compressed through rigid 

punches: these bring to a plastic deformation of the powder increasing the contact surface 

between particles and so cohesive forces capable to form a dense compact. Finally, the 

product is ejected from the die. The quality and behaviour of the drug product greatly rely 

on the extent of lubrication, which should be carefully controlled during development and 

scale-up. Lubrication is applied to enhance the pharmaceutical tablets ejection process by 

diminishing the wall friction between the tablet and the die walls, resulting in a reduced 

ejection force. It also improves powder flowability, diminishing the possibility of powder 

adhering to metal surfaces during tablet compression, decreases tablet hardness and tensile 

strength, expands disintegration time and reduces dissolution rate (Nassar et al., 2021).  

Therefore, the compaction pressure, 𝑃 [MPa], and the extent of lubrication, 𝐾 [m], must be 

set and controlled to ensure the product requirements (i.e.,  𝑃 and 𝐾 are the two manipulated 

variables of the process). The output of interest is the tensile strength, 𝑇𝑆 [MPa], which is 

the first key indicator variable, 𝐾𝑀1, of the process. 

Pharmaceutical products need to fulfil strict regulations. Therefore, additional test units are 

considered (i.e., disintegration and dissolution test units). Particles initially disintegrate into 

granules, and then into primary particles: we assume the second mechanism to be very fast, 

and so negligible, with respect to the first one. The stages of tablet disintegration are complex 

and only partially understood (Markl et al., 2017). From a simplified perspective, the first 

stage of tablet disintegration is water penetration, whose rate depends on both wettability 

and porosity of the tablet. For tablets with high drug loading and highly soluble API, water 

penetration is typically negligible, and tablet disintegration mainly occurs at the solid-liquid 

interface according to a purely erosion-driven mechanism. On the other hand, if the rate of 

water penetration is not negligible and water is able to penetrate into the tablet matrix, a 

swelling step initiates leading to the enlargement of particles and the creation of intra-tablet 

stresses that can cause the tablet break-up. The swelling rate generally depends on the given 

formulation, while the level of stress required to break up the tablet is related to the tablet 

tensile strength. For some formulations, an intermediate situation where the disintegration 

of the tablet occurs mostly with an erosion-driven mechanism, but swelling is not negligible 
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since the rate of water penetration into the tablet is relatively fast, may arise. In this scenario, 

swelling modifies the “apparent” volume of the tablet and increases the solid-liquid interface 

subject to the erosion mechanism (Bano et al., 2022). 

As presented in Figure 3.1, the tensile strength measured after the tablet press unit is an input 

for the disintegration model. The output of interest is the time required for disintegration 

from tablet to granule, 𝑡𝑑𝑖𝑠 [s], which corresponds to the second key indicator variable, 𝐾𝑀2, 

of the process. 

Dissolution testing, generally called in vitro dissolution (or release) testing, has emerged as 

a very important tool in the generic pharmaceutical industry. It is very widely used in 

formulation development and approval of generic solid oral dosage forms, in monitoring the 

manufacturing process and as a quality control test. Moreover, it is utilized to predict the in 

vivo performance of certain products. In developing a dissolution test for a generic product, 

investigators should consider the official methods and standards published in the United 

States Pharmacopeia (USP). The USP describes different dissolution apparatuses and 

techniques, which can be used to develop an appropriate dissolution method based on the 

drug product characteristics (Anand et al., 2011). We refer to USP <701> dissolution test 

specifications. After the tablets disintegration into granules and then into primary particles, 

the rate of release and dissolution of each element of the formulation is analysed.  

Previous information on tablet press and disintegration are used in this final stage where the 

API dissolved, expressed as percentage of the label content, 𝐿𝐶 [%], represents the key 

indicator variable, 𝐾𝑀3 . 

 

3.1.2. Modular approach 

Different workflows are possible in order to apply the optimization procedure presented in 

this study. Within this chapter, the optimization technique on the direct compression process 

models is implemented using a modular approach. 

In a modular approach, the 𝑲𝑀 of all units are targeted sequentially and the model parameters 

are estimated on a sub-system basis. Practically, the goal is to obtain a reliable prediction of 

𝑲𝑀 following the process layout. For instance, let us consider the process in Figure 3.1. 

Initially, the focus is on the tablet press unit operation, where the 𝐾𝑀,𝑗 of interest is the tablet 

tensile strength (i.e., hardness). Once the tablet press model parameters are precise enough 

to guarantee sufficient tensile strength prediction fidelity, attention turns to the disintegration 

model. After achieving the required precision for the relevant parameters, the interest is 

focused on the API dissolution profile from the in vitro dissolution test unit. Since 

experiments are typically designed and implemented for one unit at a time, a modular 

approach can be convenient to organize the experimental campaign. On the other hand, it is 

assumed that the parametric precision attained on that unit will be sufficient to reach the 𝐾𝑀,𝑗 

fidelity required in subsequent units. 
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3.2. Tablet press unit operation 

The tablet press is the first unit of the DC process on which the optimization procedure 

defined in §2.2 is computed.  

The model is characterized by seven parameters: 𝑎1 [MPa], 𝑎2 [-], 𝑎𝑠𝑓 [-], 𝑏1 [-], 𝑏2 [-], 𝑏𝑠𝑓 

[MPa-1], and 𝛾 [dm-1]. 

 

 

 

The schematic representation for the tablet press unit is shown in Figure 3.2. 

 

3.2.1. Model for the tablet press unit operation 

Although they do not capture the complex stress state and inhomogeneity that may occur 

during compaction, the compression/compaction process has been described by multiple 

semi-empirical models relating both pressure to solid fraction for compressibility and solid 

fraction to tensile strength for compactability (Nassar et al., 2021).  

Tablet compressibility measures the variation in tablet porosity due to the pressure exerted 

by the tablet press; different models have been proposed in the literature to quantify this 

relationship. In this study, the approach proposed by Kawakita is used: 

 

{
𝑠𝑓 = [𝑎𝑠𝑓 ∙ (1 + 𝑏𝑠𝑓 ∙ 𝑃)]/(1 + 𝑎𝑠𝑓 ∙ 𝑏𝑠𝑓 ∙ 𝑃)

휀𝑡 = 1 − 𝑠𝑓                                                            
   ,                       (3.1) 

 

where 𝑠𝑓 is the tablet solid fraction [-], and 휀𝑡 is the tablet porosity. 

To account for the significance of lubrication, it is necessary to introduce a new variable, 𝛽 

[-], defined as the sensitivity of formulation to lubrication itself: 

Figure 3.2. Tablet press unit configuration. 
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𝛽 = 𝑎2 ∙ (1 − 𝑠𝑓) + 𝑏2   .                                            (3.2) 

 

Finally, tablet compactability is expressed through the Kushner equations, capable to 

describe the effect of lubrication on the tensile strength: 

 

{
𝑇𝑆 = 𝑇𝑆0 ∙ [(1 − 𝛽) + 𝛽 ∙ 𝑒

(−𝛾∙10∙𝐾)]

𝑇𝑆0 = 𝑎1 ∙ 𝑒
[𝑏1∙(1−𝑠𝑓)]                            

   .                               (3.3) 

  

For the optimization purposes, 𝑇𝑆 is selected as key indicator variable: 𝐾𝑀1. Thus, the 

definition of the optimization problem can be formulated according to Equation (2.9): 

 

{
 
 
 

 
 
 
𝑠𝑓 = [(𝑎𝑠𝑓 + 휀3) ∙ (1 + (𝑏𝑠𝑓 + 휀6) ∙ 𝑃)]/[1 + (𝑎𝑠𝑓 + 휀3) ∙ (𝑏𝑠𝑓 + 휀6) ∙ 𝑃]

𝛽 = (𝑎2 + 휀2) ∙ (1 − 𝑠𝑓) + (𝑏2 + 휀5)                                                                  

𝑇𝑆 = 𝑇𝑆0 ∙ [(1 − 𝛽) + 𝛽 ∙ 𝑒
(−(𝛾+𝜀7)∙10∙𝐾)]                                                           

𝑇𝑆0 = (𝑎1 + 휀1) ∙ 𝑒
[(𝑏1+𝜀4)∙(1−𝑠𝑓)]                                                                         

𝑇�̂� = 𝒈(𝒙(𝑡))                                                                                                            

𝐾𝑀1 = 𝑇�̂�                                                                                                                     

   . (3.4) 

 

Constraints on 𝐾𝑀1 are set as follows: 

 

(𝐾𝑀1 − 𝐾𝑀1
̅̅ ̅̅ ̅)

2
≤ (10% ∙ 𝐾𝑀1

̅̅ ̅̅ ̅)
2
   ,                                      (3.5) 

 

where 𝐾𝑀1
̅̅ ̅̅ ̅ is identified as 𝑇𝑆 at assumed process operating conditions but with “true” 

nominal values of parameters selected from Nassar et al. (2021), as reported in Table 3.1. 

 
Table 3.1.  Tablet press settings at nominal conditions. 

Variable/Parameter Units Nominal 

𝐾 m 99 

𝑃 MPa 214 

𝑎1 MPa 11.04 

𝑎2 - 1.091 

𝑎𝑠𝑓 - 0.463 

𝑏1 - -8.202 

𝑏2 - 0.326 

𝑏𝑠𝑓 MPa-1 2.460 × 10-2 

𝛾 dm-1 1.211 × 10-3 
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These conditions, which correspond to the ones of the true process, lead to 𝑇𝑆 = 𝐾𝑀1
̅̅ ̅̅ ̅ = 

2.000 MPa. Therefore, following Equation (3.5), bounds obtained for the tensile strength 

show 𝑇𝑆𝑚𝑖𝑛 = 1.800 MPa and 𝑇𝑆𝑚𝑎𝑥 = 2.200 MPa.  

 

3.2.2. Quantification of parameters uncertainty for the tablet press unit 

operation 

The optimization problem (Equation (3.4)) requires initial guesses for model parameters. 

These are randomly chosen inside a ±50% interval with respect to their nominal values 

(Table 3.2). 

 
Table 3.2. Initial guess,𝜃𝑖

𝑖.𝑔.
, for tablet press model parameters. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜃𝑖
𝑖.𝑔.

 14.81 1.433 0.394 -6.287 0.242 1.710 × 10-2 7.368 × 10-4 

 

The units of measurements are the ones in Table 3.1. Based on this, a MBDoE is performed. 

The tablet press is a steady-state model: at each experiment corresponds a single point of 

𝑇𝑆. However, since seven parameters need estimation from experimental measurements, the 

first parameters estimation requires at least seven points to supply CIs. Therefore, initially 

MBDoE is applied to design seven experiments to perform where different values are 

highlighted for the two time-invariant manipulated variables: the applied stress, 𝑃, and the 

extent of lubrication, 𝐾. 

Global sensitivity analysis is carried out before the MBDoE; results are reported in Table 

3.3, where the most influential model parameters are in boldface. 

 
Table 3.3. Sobol’s sensitivity indices for parameters with respect to 𝑇𝑆. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝑺𝒊 3.309 × 10-2 9.319 × 10-3 0.589 0.156 7.126 × 10-2 8.124 × 10-2 8.805 × 10-3 

𝑺𝑻,𝒊 4.471 × 10-2 1.004 × 10-2 0.630 0.177 9.631 × 10-2 9.297 × 10-2 9.628 × 10-3 

 

Higher influence of 𝑎𝑠𝑓, 𝑏1, and 𝑏𝑠𝑓 is highlighted with respect to other parameters. In 

particular 𝑏𝑠𝑓 is selected instead of 𝑏2 based on additional analyses discussed in Geremia et 

al. (2023). Therefore, for the specific case-study under evaluation, 𝑎𝑠𝑓, 𝑏1, and 𝑏𝑠𝑓 are 

considered during the first MBDoE. Later, manipulated variables obtained are applied to the 

true process, the one defined by Table 3.1 conditions, in order to obtain a set of experimental 

data; values attained are then used to perform a first estimation of parameters (Table 3.4). 
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Table 3.4. Estimation of model parameters: first iteration. 

 Units Value 95% CI 95% t-value 

𝒂𝟏
𝟎 MPa 11.93 0.210 56.95 

𝒂𝟐
𝟎 - 1.449 9.535 × 10-2 15.19 

𝒂𝒔𝒇
𝟎  - 0.413 4.230 × 10-3 97.61 

𝒃𝟏
𝟎 - -6.235 0.105 59.66 

𝒃𝟐
𝟎 - 0.205 1.758 × 10-2 11.67 

𝒃𝒔𝒇
𝟎  MPa-1 1.890 × 10-2 3.891 × 10-4 48.56 

𝜸𝟎 dm-1 7.365 × 10-4 2.050 × 10-4 3.593 

Reference t-value (95%)    1.943 

 

Once values of 𝜽𝟎 are acquired, these are used inside Equation 3.4. At this point, since new 

parameter values are obtained, an optimization on the process manipulated variables must 

be performed ensuring that the desired 𝐾𝑀1
̅̅ ̅̅ ̅, the one of the true process, is achieved. This 

leads to 𝐾 = 99 m and 𝑃 = 192 MPa. 

Thus, the procedure discussed in §2.2.2 is computed on estimated parameters obtained from 

the first iteration. Since the model is characterized by seven parameters, we analyze a total 

of 128 (i.e., 27) possible combinations.  

Once all the combinations are defined, the optimization is performed on 𝜉𝑖 (Table 3.5), 

 
Table 3.5. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the first iteration. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝝃𝒊,𝒎𝒂𝒙 1.354×10-2 6.046×10-3 6.31×10-3 9.328×10-3 9.833×10-2 1.363×10-2 5.536×10-2 

 

and maximum uncertainties are obtained (Table 3.6). 

 
Table 3.6. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

first iteration. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.162 8.761×10-2 2.573×10-3 5.816×10-2 2.016×10-2 2.576×10-4 4.077×10-5 

 

Table 3.7 reports the comparison between 𝜺𝒎𝒂𝒙,𝒃 and (95%CIs)/2 of the first estimation (see 

Table 3.4). 

 
Table 3.7. First estimation-optimization iteration: uncertainties comparison. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.162 8.761×10-2 2.573×10-3 5.816×10-2 2.016×10-2 2.576×10-4 4.077×10-5 

(95%CI)/2 0.105 4.768×10-2 2.115×10-3 5.226×10-2 8.791×10-3 1.946×10-4 1.025×10-4 
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The stop criterium is attained if all (95%CIs)/2 are lower than the maximum uncertainties 

given by the optimization procedure. As can be noticed in Table 3.7, this is not achieved for 

𝛾. Therefore, starting from the subsequent iteration, MBDoE is performed on 𝛾 only, 

designing a new optimal experiment. Every new experiment, together with the old ones, will 

be used to estimate all parameters. 

The desired outcome is achieved after a total of five iterations. The final estimation of model 

parameters is reported in Table 3.8. 

 
Table 3.8. Estimation of model parameters: last iteration. 

 Units Value 95% CI 95% t-value 

𝒂𝟏
𝟎 MPa 11.04 0.133 82.75 

𝒂𝟐
𝟎 - 1.078 8.810 × 10-2 12.23 

𝒂𝒔𝒇
𝟎  - 0.456 3.332 × 10-3 136.98 

𝒃𝟏
𝟎 - -8.097 0.108 74.68 

𝒃𝟐
𝟎 - 0.326 1.023 × 10-2 31.82 

𝒃𝒔𝒇
𝟎  MPa-1 2.494 × 10-2 3.773 × 10-4 66.11 

𝜸𝟎 dm-1 1.210 × 10-3 1.172 × 10-4 10.3220 

Reference t-value (95%)    1.812 

 

Again, new 𝐾 and 𝑃 are defined in order to keep 𝑇𝑆 at specification, leading to 𝐾 = 99 m 

and 𝑃 = 213 MPa.  

Later, another optimization on 𝜉𝑖 is carried out (Table 3.9). 

 
Table 3.9. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the last iteration. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝝃𝒊,𝒎𝒂𝒙 1.353×10-2 8.117×10-2 6.223×10-3 1.060×10-2 4.190×10-2 1.376 × 10-2  5.296×10-2 

 

Results are stated in the form of maximum uncertainties (Table 3.10). 

 
Table 3.10. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

last iteration. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.150 8.747×10-2 2.841×10-3 8.581×10-2 1.364×10-2 3.432×10-4 6.408×10-5 

 

The comparison between 𝜺𝒎𝒂𝒙,𝒃 and (95%CIs)/2 after the last estimation is reported in Table 

3.11. 
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Table 3.11. Last estimation-optimization iteration: uncertainties comparison. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.150 8.747×10-2 2.841×10-3 8.581×10-2 1.364×10-2 3.432×10-4 6.408×10-5 

(95%CI)/2 6.674×10-2 4.405×10-2 1.666×10-3 5.421×10-2 5.117×10-3 1.886×10-4 5.862×10-5 

 

At this point all the (95%CIs)/2 are lower than the acceptable maximum uncertainty for each 

parameter. However, according to the algorithm (Figure 2.7 in §2.2.3) an additional check 

is required by running the optimization on 𝑁 scenarios. 

Results obtained show that evaluating all the scenarios 𝑇𝑆𝑚𝑖𝑛 and 𝑇𝑆𝑚𝑎𝑥 do not exceed the 

constraints imposed on 𝑇𝑆. Hence, the uncertainties presented in Table 3.10 are the 

maximum allowable in order to both ensure the acceptable tolerance on 𝐾𝑀1  and guarantee 

a faithful parameters prediction. 

Moreover, focusing on Table 3.9, the lowest relative uncertainties are for 𝑎𝑠𝑓 and 𝑏1. As 

stated in §2.3.2, the lower the 𝜉𝑖,𝑚𝑎𝑥, the more influent the parameter 𝜃𝑖 on the KI under 

investigation, 𝑇𝑆. Consequently, 𝑎𝑠𝑓 and 𝑏1 represent the most influential parameters for 

𝐾𝑀1, and this reflects the outcomes obtained by the Sobol analysis in Table 3.3.  

 

3.3. Disintegration test unit 

The analysis of the DC process proceeds with the second unit: disintegration.  

This model is characterized by five parameters: 𝐶2 [MPa], 𝐶3 [MPa], 𝜖̇ [m s-1], 𝑛𝑠 [-], and 

𝑆𝑝 [-]. 

 

 

 

 

 

 

 

Figure 3.3. Disintegration unit configuration. 
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Figure 3.3 represents a schematic depiction of the disintegration test unit. The dependence 

on the tensile strength underlines a connection with the tablet press model. Therefore, 

following a modular approach, calculations on disintegration unit are performed considering 

the values of tablet press parameters already obtained (Table 3.8). 

 

3.3.1. Model for the disintegration test unit 

Both erosion and swelling are considered (Markl et al., 2017). The first one is described as: 

 

𝑉𝑐 = (𝐻𝑐𝑜𝑎𝑡 − 𝜖̇ ∙ 𝑡) ∙ 𝐴𝑡   ,                                           (3.6) 

 

where 𝑉𝑐 [m
3] is the coating volume varying with time 𝑡 [s], 𝐻𝑐𝑜𝑎𝑡 [m] is the thickness of the 

coating layer, 𝐴𝑡 [m
2] is the tablet surface area. The dynamic evolution of the penetration 

depth due to swelling is modelled as: 

 

𝑑𝑃𝑑/𝑑𝑡 = [𝑃 (𝐹𝐿/𝐴𝑡)⁄ ]𝑛𝑠∙(𝑇𝑡 2⁄ −𝑃𝑑)/𝑇𝑡 2⁄ ∙ [(𝑑ℎ
2 ∙ 휀𝑠) (𝑆𝑝 ∙ 𝜏𝑜𝑟

2 ∙ 𝜇 ∙ 𝑃𝑑)⁄ ] ∙ 𝑝𝑐   ,  (3.7) 

 

where 𝑃𝑑 [m] is the water penetration depth, 𝐹𝐿[MN] is the fracture load, 𝑑ℎ [m] is the tablet 

hydraulic diameter, 𝜏𝑜𝑟 [-] is the average tablet tortuosity, 𝜇 [Pa s] is the liquid viscosity, 𝑝𝑐 

[Pa] is the capillary pressure, 𝑇𝑡 2⁄  [m] is the time-dependent half tablet thickness, and 휀𝑠 [-] 

represents the average porosity of the swollen product. The stress due to tablet expansion 

from swelling is defined according to Peppas and Colombo (1989): 

 

𝜏 = −𝑇𝑆 + 𝐶2 ∙ 𝑤𝑙 + 𝐶3 ∙ √𝑤𝑙   ,                                      (3.8) 

 

where 𝜏 [MPa] is the total stress, and 𝑤𝑙 [-] is the liquid content in the tablet. From 𝜏 it is 

possible to compute 휀𝑠 to be included in 𝑑𝑃𝑑 𝑑𝑡⁄  equation: 

 

𝜏 = [𝐺0 ∙ 𝑒𝑥𝑝[− (𝐸 ∙ 휀𝑠) (1 − 휀𝑠)⁄ ] ∙ 𝜆 ∙ 𝑡] 𝑇𝑡 2⁄⁄    ,                        (3.9) 

 

where 𝐺0 [MPa] and E [-] are elastic constants, and 𝜆 [s-1] is the swelling rate (Kuentz and 

Luenberger, 1998).  

The disintegration time, 𝑡𝑑𝑖𝑠, is defined as the time for which the tablet stops disintegrating 

(i.e., 𝑑𝑃𝑑 𝑑𝑡⁄ = 0), and for the optimization purposes it is selected as the key indicator 

variable, 𝐾𝑀2 , for the model under investigation.  

The optimization problem is formulated according to the structure of Equation (2.9): 
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{
 
 
 
 

 
 
 
 
𝑉𝑐 = (𝐻𝑐𝑜𝑎𝑡 − (𝜖̇ + 휀3) ∙ 𝑡) ∙ 𝐴𝑡                                                                                  

𝑑𝑃𝑑

𝑑𝑡
= [𝑃 (

𝐹𝐿

𝐴𝑡
)⁄ ]
(𝑛𝑠+𝜀4)∙[(𝑇𝑡 2⁄ −𝑃𝑑)/𝑇𝑡 2⁄ ]

∙ [(𝑑ℎ
2 ∙ 휀𝑠) ((𝑆𝑝 + 휀5) ∙ 𝜏𝑜𝑟

2 ∙ 𝜇 ∙ 𝑃𝑑)⁄ ] ∙ 𝑝
𝑐

𝜏 = −𝑇𝑆 + (𝐶2 + 휀1) ∙ 𝑤𝑙 + (𝐶3 + 휀2) ∙√𝑤𝑙                                                             

𝜏 = [𝐺0 ∙ 𝑒𝑥𝑝[− (𝐸 ∙ 휀𝑠) (1 − 휀𝑠)⁄ ] ∙ 𝜆 ∙ 𝑡] 𝑇𝑡 2⁄⁄                                                          

𝑃𝑑(0) = 1.000 × 10
−6                                                                                               

𝑡𝑑𝑖�̂� = 𝒈(𝒙(𝑡))                                                                                                               

𝐾𝑀2 = 𝑡𝑑𝑖�̂�                                                                                                                       

  . (3.10) 

 

Constraints on 𝐾𝑀2 are set as follows: 

 

(𝐾𝑀2 − 𝐾𝑀2
̅̅ ̅̅ ̅)

2
≤ (25% ∙ 𝐾𝑀2̅̅ ̅̅ ̅)

2
   ,                                    (3.11) 

 

where 𝐾𝑀2
̅̅ ̅̅ ̅ is identified as 𝑡𝑑𝑖𝑠 at assumed process operating conditions but with “true” 

nominal values of parameters (Table 3.12). 

 
Table 3.12.  Disintegration settings at nominal conditions. 

Parameter Units Nominal 

𝐶2 MPa 1.000 × 102 

𝐶3 MPa 1.000 × 102 

휀̇ m s-1 1.000 × 10-3 

𝑛𝑠 - 0.900 

𝑆𝑝 - 0.524 

 

These conditions, which correspond to the ones of the true process, combined with those 

expressed in Table 3.1 for tablet press, lead to 𝑡𝑑𝑖𝑠 = 𝐾𝑀2
̅̅ ̅̅ ̅ = 243 s. Therefore, following 

Equation 3.11: 𝑡𝑑𝑖𝑠,𝑚𝑖𝑛 = 180 s; 𝑡𝑑𝑖𝑠,𝑚𝑎𝑥 = 300 s. 

 

3.3.2. Quantification of parameters uncertainty for the disintegration test 

unit 

As for the tablet press unit, the initial guesses for disintegration parameters are arbitrarily 

chosen inside a ±50% interval with respect to their nominal values (Table 3.13). 

 
Table 3.13. Initial guess,𝜃𝑖

𝑖.𝑔.
, for disintegration model parameters. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝜃𝑖
𝑖.𝑔.

 63.00 1.410 × 102 1.300 × 10-3 1.019 0.688 

 

The units of measurements are the ones in Table 3.12. Taking this into account, a MBDoE 

is carried out. The disintegration is a dynamic model where, differently from the tablet press, 
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each experiment provides a trajectory of the key indicator variable of interest. Therefore, 

even if the model includes more than one parameter, a single experiment is sufficient to 

perform a first estimation. Since the dependence of the disintegration section to the tablet 

press, the values of manipulated variables provided by the MBDoE are those of previous 

unit: 𝑃 and 𝐾. 

Global sensitivity analysis is carried out before the MBDoE; results are reported in Table 

3.14, where the most influential model parameters are in boldface. 

 
Table 3.14. Sobol’s sensitivity indices for parameters with respect to 𝑡𝑑𝑖𝑠. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝑺𝒊 2.815 × 10-4 2.209 × 10-4 3.603 × 10-4 0.641 1.312 × 10-2 

𝑺𝑻,𝒊 3.992 × 10-4 3.731 × 10-4 5.042 × 10-4 0.881 0.101 

 

Therefore, for the case-study under evaluation, 𝑛𝑠 and 𝑆𝑝 are considered during the first 

MBDoE. The time-invariant values of 𝑃 and 𝐾 resulting from the design of experiments are 

then applied to the true process, the one specified by parameters in Table 3.12. Later, based 

on the set of experimental data attained, a first estimation of parameters is performed (Table 

3.15). 

 
Table 3.15. Estimation of model parameters: first iteration. 

 Units Value 95% CI 95% t-value 

𝑪𝟐
𝟎 MPa 52.23 7.475 × 105 6.987 × 10-5 

𝑪𝟑
𝟎 MPa 99.93 1.649 × 105 6.060 × 10-4 

�̇�𝟎 m s-1 1.480 × 10-3 0.373 3.969 × 10-3 

𝒏𝒔
𝟎 - 0.905 0.184 4.920 

𝑺𝒑
𝟎 - 0.535 0.547 0.978 

Reference t-value (95%)    1.683 

 

Then, the optmization on 2𝑛 boundary scenarios is computed. The model is characterized by 

five parameters, so a total of 32 (i.e., 25) possible combinations is evaluated.  

Once all the combinations are defined, the optimization is performed on 𝜉𝑖 (Table 3.16), 

 
Table 3.16. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the first iteration. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝝃𝒊,𝒎𝒂𝒙 0.500* 0.500* 0.500* 1.855 × 10-2 0.106 

 

and maximum uncertainties are obtained (Table 3.17). 
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Table 3.17. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

first iteration. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 26.11* 49.97* 7.402 × 10-4* 1.679 × 10-2 5.686 × 10-2 

 

Table 3.17 shows that for 𝐶2, 𝐶3, and 𝜖̇ the 𝜉𝑖,𝑚𝑎𝑥 is higher than 0.500. Thus, as expressed 

in §2.2.3, since for these parameters the maximum uncertainty allowable, 휀𝑖,𝑚𝑎𝑥,𝑏, is larger 

than the 50% of 𝜃𝑖
0, they are not considered during the final step of iteration. Table 3.18 

reports the comparison between 𝜺𝒎𝒂𝒙,𝒃 and (95%CIs)/2 of the first estimation (see Table 

3.15). 

 
Table 3.18. First estimation-optimization iteration: uncertainties comparison. 

 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 1.679 × 10-2 5.686 × 10-2 

(95%CI)/2 9.199 × 10-2 0.274 

 

The first iteration is not sufficient to reach the stop condition: 휀𝑖,𝑚𝑎𝑥,𝑏 is lower than 

(95%CI)/2 for both 𝑛𝑠 and 𝑆𝑝. Therefore, also for the next iteration the MBDoE is performed 

considering 𝑛𝑠 and 𝑆𝑝. 

The desired outcome is achieved after a total of five iterations. The final estimation of model 

parameters is reported in Table 3.19. 

 
Table 3.19. Estimation of model parameters: last iteration. 

 Units Value 95% CI 95% t-value 

𝑪𝟐
𝟎 MPa 88.72 3.895 × 104 2.278 × 10-3 

𝑪𝟑
𝟎 MPa 99.17 2.174 × 103 4.561 × 10-2 

�̇�𝟎 m s-1 9.835 × 10-4 6.964 × 10-2 1.412 × 10-2 

𝒏𝒔
𝟎 - 0.903 3.491 × 10-2 25.86 

𝑺𝒑
𝟎 - 0.533 0.110 4.853 

Reference t-value (95%)    1.652 

 

Another optimization on 𝜉𝑖 is carried out (Table 3.20). 

 
Table 3.20. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the last iteration. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝝃𝒊,𝒎𝒂𝒙 0.500* 0.500* 0.500* 2.001 × 10-2 0.116 

 

Results are stated in the form of maximum uncertainties (Table 3.21). 
 

 



48  Chapter 3 

 
Table 3.21. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

last iteration. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 44.36* 49.58* 4.918 × 10-4* 1.806 × 10-2 6.178 × 10-2 

 

Again, 𝜉𝑖,𝑚𝑎𝑥 is higher than 0.500 for 𝐶2, 𝐶3, and 𝜖̇, so these parameters are not included in 

the 𝜺𝒎𝒂𝒙,𝒃 comparison to (95%CIs)/2 of the last estimation (Table 3.22). 

 
Table 3.22. Last estimation-optimization iteration: uncertainties comparison. 

 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 1.806 × 10-2 6.178 × 10-2 

(95%CI)/2 1.746 × 10-2 5.495 × 10-2 

 

The outcomes achieved suggest an acceptable estimation: all (95%CIs)/2 are lower than the 

maximum uncertainties allowable given by the optimization procedure.  

Nevertheless, this result should be verified through the optimization on 𝑁 scenarios, which 

confirms that the findings 𝑡𝑑𝑖𝑠,𝑚𝑖𝑛 and 𝑡𝑑𝑖𝑠,𝑚𝑎𝑥 are fulfilled for all the scenarios, and so the 

stop condition is reached.  

Furthermore, focusing on Table 3.20, the lowest relative uncertainties are for 𝑛𝑠 and 𝑆𝑝. 

Therefore, as stated in §2.3.2, these parameters are the most influential on 𝐾𝑀2; this result 

reflects the outcomes obtained by the Sobol analysis in Table 3.14. 

 

3.4. In vitro dissolution test unit 

Finally, the in vitro dissolution is the last unit evaluated for the DC process. 

The model is characterized by two parameters: 𝑘𝐴𝑃𝐼 [m s-1], and 𝑛𝐴𝑃𝐼 [-]. 

As for the dissolution model, also in this case there is a dependence on previous units. 

Therefore, following a modular approach, calculations on the in vitro dissolution unit are 

performed considering both tablet press and disintegration values of parameters as the ones 

achieved at their last iteration, respectively presented in Table 3.8 and Table 3.19. 
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A schematic representation of the in vitro dissolution unit is shown in Figure 3.4.  

 

3.4.1. Model for the in vitro dissolution test unit 

The rate of release and dissolution of each element can be modelled using a population 

balance approach as proposed by Wilson et al. (2012). For this purpose, the individual 

components of the tablets are divided in three groups: API, soluble excipients, and insoluble 

excipients. 

Focusing only on the API, the dynamic evolution of the number of particles, 𝑁𝐴𝑃𝐼, is 

modelled as: 

 

𝜕𝑁𝐴𝑃𝐼 𝜕𝑡⁄ = 𝐵𝐴𝑃𝐼 ∙ �́� ∙ (𝑙 − 𝑙0,𝐴𝑃𝐼) + 𝑅𝐴𝑃𝐼,𝑙 ∙ (𝜕𝑁𝐴𝑃𝐼 𝜕𝑡⁄ )   ,                (3.12) 

 

where 𝐵𝐴𝑃𝐼 [s
-1] is the rate of release of API from the tablet, 𝑙 [m] is the particle size at given 

𝑡, 𝑙0,𝐴𝑃𝐼 [m] is the initial particle size of API, 𝑅𝐴𝑃𝐼 [m
2 s-1] is the API dissolution coefficient, 

and �́� is the Dirac delta function. Following the assumptions discussed in Bano et al. (2022), 

𝐵𝐴𝑃𝐼 can be expressed as: 

 

𝐵𝐴𝑃𝐼 = 𝜌𝑝
−1 ∙ [𝑥𝐴𝑃𝐼 (𝜙 ∙ 𝑙0,𝐴𝑃𝐼

3 )⁄ ] ∙ (𝜕𝑀𝑡 𝜕𝑡⁄ )   ,                         (3.13) 

 

where 𝑥𝐴𝑃𝐼 [-] is the mass fraction of the API, 𝜌𝑝 [kg m-3] is the particles density, 𝜙 [-] is 

the shape factor of particles (𝜙 = 𝜋/6 for spherical particles), and 𝑀𝑡 [kg] is the tablet mass. 

The API dissolution coefficient, 𝑅𝐴𝑃𝐼, can be described as: 

 

𝑅𝐴𝑃𝐼,𝑙 = 𝑘𝐴𝑃𝐼 ∙ (𝑐𝑠𝑎𝑡 − 𝑐𝐴𝑃𝐼)
𝑛𝐴𝑃𝐼   ,                                   (3.14) 

Figure 3.4. Disintegration unit configuration. 
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where 𝑐𝑠𝑎𝑡 [kg m-3] is the API saturation concentration, and 𝑐𝐴𝑃𝐼 [kg m-3] is the API bulk 

concentration. the liquid content in the tablet. Usually, the extent of dissolution is defined as 

the percentage of dissolved label content, 𝐿𝐶 [%]: 

 

𝐿𝐶 = 100 ∙ [(𝑐𝐴𝑃𝐼 ∙ 𝑉𝑚) (𝑥𝐴𝑃𝐼 ∙ 𝑀𝑡,0)⁄ ]   ,                             (3.15) 

 

where 𝑉𝑚 [m3] is the liquid volume in the test vessel, and 𝑀𝑡,0 [kg] is the initial mass of the 

tablet. 

For the optimization purposes, 𝐿𝐶 is selected as the in vitro dissolution model key indicator 

variable, 𝐾𝑀3 .  

The optimization problem is formulated as follow: 

 

{
 
 
 
 

 
 
 
 
𝜕𝑁𝐴𝑃𝐼 𝜕𝑡⁄ = 𝐵𝐴𝑃𝐼 ∙ �́� ∙ (𝑙 − 𝑙0,𝐴𝑃𝐼) + 𝑅𝐴𝑃𝐼,𝑙 ∙ (𝜕𝑁𝐴𝑃𝐼 𝜕𝑡⁄ )

𝐵𝐴𝑃𝐼 = 𝜌
𝑝
−1 ∙ [𝑥𝐴𝑃𝐼 (𝜙 ∙ 𝑙0,𝐴𝑃𝐼

3 )⁄ ] ∙ (𝜕𝑀𝑡 𝜕𝑡⁄ )                      

𝑅𝐴𝑃𝐼,𝑙 = (𝑘𝐴𝑃𝐼 + 휀1) ∙ (𝑐𝑠𝑎𝑡 − 𝑐𝐴𝑃𝐼)
(𝑛𝐴𝑃𝐼+휀2)                      

𝐿𝐶 = 100 ∙ [(𝑐𝐴𝑃𝐼 ∙ 𝑉𝑚) (𝑥𝐴𝑃𝐼 ∙ 𝑀𝑡,0)⁄ ]                             

𝐿𝐶(0) = 0                                                                            

𝐿�̂� = 𝒈(𝒙(𝑡))                                                                     

𝐾𝑀3 = 𝐿�̂�                                                                              

  .                  (3.16) 

 

Moreover, constraints on 𝐾𝑀3 are set: 

 

(𝐾𝑀3̅̅ ̅̅ ̅ − 15%) ≤ 𝐾𝑀3 ≤ 𝐾𝑀3
̅̅ ̅̅ ̅   ,                                      (3.17) 

 

where 𝐾𝑀3
̅̅ ̅̅ ̅ is identified as 𝐿𝐶 at assumed process operating conditions but with “true” 

nominal values of parameters (Table 3.23). 

 
Table 3.23.  In vitro dissolution settings at nominal conditions. 

Parameter Units Nominal 

𝑘𝐴𝑃𝐼  m s-1 2.300 × 10-12 

𝑛𝐴𝑃𝐼  - 1.000 

 

These conditions, which correspond to the ones of the true process combined with those 

expressed in Table 3.1 and in Table 3.12 for tablet press and disintegration unit respectively, 

lead to 𝐿𝐶 = 𝐾𝑀3
̅̅ ̅̅ ̅ = 80 %. Thus, following Equation (3.17): 𝐿𝐶𝑚𝑖𝑛 = 65 % and 𝐿𝐶𝑚𝑎𝑥 = 

80 %. 
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3.4.2. Quantification of parameters uncertainty for the in vitro dissolution 

test unit 

As for the tablet press unit, the initial guesses for disintegration parameters are arbitrarily 

chosen inside a ±50% interval with respect to their nominal values (Table 3.24). 

 
Table 3.24. Initial guess,𝜃𝑖

𝑖.𝑔.
, for disintegration model parameters. 

 𝒌𝑨𝑷𝑰 𝒏𝑨𝑷𝑰 

𝜃𝑖
𝑖.𝑔.

 2.996 × 10-12 0.762 

 

The units of measurements are the ones in Table 3.23. Based on this, a MBDoE is executed. 

Similarly to disintegration, in vitro dissolution is described by a dynamic model where, 

differently from the tablet press, each experiment provides a trajectory of the key indicator 

variable of interest. Therefore, even if the model includes more than one parameter, a single 

experiment is sufficient to perform a first estimation. Since the dependence to the tablet 

press, the values of manipulated variables provided by the MBDoE are those of previous 

unit: 𝑃 and 𝐾. 

Global sensitivity analysis is carried out before the MBDoE; results are reported in Table 

3.25, where the most influential model parameters are in boldface. 

 
Table 3.25. Sobol’s sensitivity indices for parameters with respect to 𝐿𝐶. 

 𝒌𝑨𝑷𝑰 𝒏𝑨𝑷𝑰 

𝑺𝒊 0.275 1.165 × 10-2 

𝑺𝑻,𝒊 0.353 1.333 × 10-2 

 

Therefore, the first MBDoE is performed considering only 𝑘𝐴𝑃𝐼. Later, the new experiment 

achieved is applied to the true process, the one defined by Table 3.23 conditions. Based on 

the set of experimental data attained, a first estimation of parameters is performed (Table 

3.26). 

 
Table 3.26. Estimation of model parameters: first iteration. 

 Units Value 95% CI 95% t-value 

𝒌𝑨𝑷𝑰
𝟎  m s-1 2.226 × 10-12 9.432 × 10-16 2.360 × 103 

𝒏𝑨𝑷𝑰
𝟎  - 1.100 1.521 × 10-3 9.538 × 102 

Reference t-value (95%)    1.652 

 

Then, the optmization on 2𝑛 boundary scenarios is computed. The model is characterized by 

two parameters, so a total of 4 (i.e., 22) possible combinations is evaluated.  

Once all the combinations are defined, the optimization is performed on 𝜉𝑖 (Table 3.27), 
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Table 3.27. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the first iteration. 

 𝒌𝑨𝑷𝑰 𝒏𝑨𝑷𝑰 

𝝃𝒊,𝒎𝒂𝒙 1.882 × 10-3 4.950 × 10-3 

 

and maximum uncertainties are obtained (Table 3.28). 

 
Table 3.28. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

first iteration. 

 𝒌𝑨𝑷𝑰 𝒏𝑨𝑷𝑰 

𝜺𝒊,𝒎𝒂𝒙,𝒃 4.163 × 10-15 5.446 × 10-3 

 

Table 3.29 reports the comparison between 𝜺𝒎𝒂𝒙,𝒃 and (95%CIs)/2 of the first estimation 

(see Table 3.26). 

 
Table 3.29. First estimation-optimization iteration: uncertainties comparison. 

 𝒌𝑨𝑷𝑰 𝒏𝑨𝑷𝑰 

𝜺𝒊,𝒎𝒂𝒙,𝒃 4.163 × 10-15 5.446 × 10-3 

(95%CI)/2 4.716 × 10-16 5.767 × 10-4 

 

Results obtained show that a single iteration is sufficient to reach a situation in which 𝜺𝒎𝒂𝒙,𝒃 

is greater than (95%CIs)/2 for all parameters. 

Once again, this condition must be verified: the optimization is performed considering also 

stochastic scenarios. 

The findings attained underline that 𝐿𝐶𝑚𝑖𝑛 and 𝐿𝐶𝑚𝑎𝑥 do not exceed the constraints imposed 

on 𝐿𝐶. Thus, the uncertainties presented in Table 3.28 are the maximum allowable on 

parameters in order to both ensure the acceptable tolerance on 𝐾𝑀3 and guarantee a faithful 

parameters prediction. 

Furthermore, focusing on Table 3.27, the lowest relative uncertainties is for 𝑘𝐴𝑃𝐼. 

Consequentially, as stated in §2.3.2, this is the most influential parameter on 𝐾𝑀3 and this 

reflects the outcomes obtained by the Sobol analysis in Table 3.25.  

 

3.5. Comments on results 

The application of the optimization procedure on DC process models provides satisfying 

results: for all the units a condition where 𝜺𝒎𝒂𝒙 is greater than (95%CIs)/2 is obtained. The 

number of experiments required to reach the stop condition for each unit is summarized in 

Table 3.30. 

 



Methodology application on direct compression process models 53                                                                                                                                                      

 

 
Table 3.30. Optimization procedure: number of experiments required to reach the stop 

condition for each unit. 

Unit Exp 

Tablet press 11 

Disintegration 5 

Dissolution 1 

 

As discussed in §1.2, methodologies based on multi-variate statistical methods represent 

another approach to ensure whether or not an acceptable model fidelity is achieved. Table 

3.31 summarises the number of experiments required when the methodology proposed by 

Geremia et al. (2023) was implemented.  

 
Table 3.31. Methodologies based on multi-variate statistical methods: number of 

experiments required to reach the stop condition for each unit. 

Unit Exp 

Tablet press 8 

Disintegration 5 

Dissolution 1 

 

It can be observed, that the results are identical for the disintegration and dissolution test 

units, while for the tablet press unit operation, the optimization procedure appears to be less 

efficient and requires three additional experiments.  

In the following chapter, the reasons for such differences are discussed, and an improved 

optimization procedure is presented and tested in order to reduce the number of iterations 

needed to guarantee an acceptable model fidelity.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4 
 

Enhanced optimization procedure  
 
 

Within this chapter an improvement of the optimization procedure defined in §2.2 is 

presented. Later, the implementation of this new technique to the DC process models is 

discussed. 

 

4.1. Definition of the improved optimization procedure 

The reason associated to the development of a new optimization approach is related to the 

strict conservatism of the former methodology; the enhanced optimization aims at the 

possibility of ensuring an acceptable model fidelity with a reduced number of iterations. 

 

4.1.1. Previous optimization limits and possible solution 

The application of the optimization procedure to the direct compression process models 

provides satisfying findings. However, outcomes achieved with methodologies based on 

multi-variate statistical methods (§3.5) suggest that, sometimes, the optimization technique 

may overestimate the number of required experiments to reach the stop condition, at least if 

compared to the methodology proposed in Geremia et al. (2023).  

As a matter of example, we can refer to the second iteration of the tablet press model 

presented in Table 4.1; units of measurements of parameters are those defined during the 

tablet press unit definition (§3.2). 

 
Table 4.1. Second estimation-optimization iteration: uncertainties comparison. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜽𝒊
𝟎 11.09 1.088 0.455 -7.961 0.321 2.445×10-2 1.202×10-3 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.150 8.225×10-2 2.823×10-3 8.420×10-2 1.366×10-2 3.356×10-4 6.249×10-5 

(95%CI)/2 8.935×10-2 5.523×10-2 2.128×10-3 6.650×10-2 7.272×10-3 2.395×10-4 1.559×10-4 

 

Since 휀𝛾,𝑚𝑎𝑥,𝑏 is lower than its (95%CI)/2, the stop condition is not achieved at the second 

iteration and another one is needed. 

However, if (95%CIs)/2 reported in Table 4.1 are assumed as 𝜺 inside the model of the 

optimization problem defined for the tablet press (Equation (3.4) in §3.2.1), constraints on 

𝐾𝑀1 are fulfilled. This is a consequence of the precision in the estimation of some parameters: 
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for 𝜽, except 𝛾, the (95%CI)/2 is lower than 휀𝑖,𝑚𝑎𝑥, and this “compensate” for a larger 

uncertainty in 𝛾. 

In this way a limitation of the actual optimization procedure is highlighted: the current 

optimization calculates 𝑂𝑏𝑗 as the maximum product of all 𝜉𝑖 (Equation (2.11) in §2.2.1), 

but the solution may provide very high 𝜉𝑖 for some parameters and very low 𝜉𝑖 for others.  

A possible solution to this problem may result in fixing an upper bound for the maximum 

uncertainty allowable on parameters. Thus, after the application of the optimization 

procedure, if for a parameter 𝜃𝑖, 휀𝑖,𝑚𝑎𝑥 > (95%CI)/2, then (95%CI)/2 is set as upper bound 

for 휀𝑖,𝑚𝑎𝑥 at the next iteration. A graphical example is presented in Figure 4.1. 

 

 

It is worth declaring that CIs are not always numerically stable: sometimes a parameter 

estimation may lead to 95%CIs higher than the ones achieved at the previous iteration. This 

is probably related to the occurrence of local minima where the estimation settles during its 

calculations. Therefore, a new condition is added to the improved optimization: if for a 

parameter 𝜃𝑖, 휀𝑖,𝑚𝑎𝑥 > (95%CI)/2, then 휀𝑖,𝑚𝑎𝑥 at the next iteration is set at the maximum 

(95%CI)/2 between the one of the current and the previous estimation. 

As a consequence of setting a limit to the maximum uncertainty for some parameters, a larger 

uncertainty may be achieved for the others. In this way, there is a greater possibility that less 

iterations are required to obtain 휀𝑖,𝑚𝑎𝑥,𝑏 > (95%CI)/2 for all parameters. 

 

4.1.2. New procedure implementation 

The objective of the improved optimization framework is still the research of a condition 

where the current knowledge on parameter uncertainty is sufficient to reach an acceptable 

model fidelity. Therefore, as for the previous optimization, we need to compare the 

Figure 4.1. Improved optimization framework. 



Enhanced optimization procedure  57                                                                                                                                                      

 

uncertainties with the parameter estimates and build an iterative scheme capable to reach a 

stop condition. The procedure still comprises a maximum of four steps:  

5. MBDoE and experimentation; 

6. parameter estimation; 

7. optimization problem on 2𝑛 scenarios; 

8. optimization problem on 𝑁 scenarios. 

Nevertheless, additional intermediate decisions are required, as illustrated in Figure 4.2, and 

commented on in the following. 

Starting with the problem resolution, initial guesses for parameters are defined. Based on 

this, a new experiment is performed to get both more precise and accurate parameters values. 

In particular, the MBDoE is carried out by focusing only on the most influential parameters 

as specified by a preliminary Sobol analysis. The values of manipulated variables provided 

by the MBDoE are applied to the true process in order to obtain a set of experimental data 

produced in silico. Later, a first estimation of parameters is executed, and then an 

optimization on 2𝑛 boundaries scenarios is performed. Uncertainties given by the 

optimization are compared with (95%CIs)/2 provided by the parameter estimation: even if 

for a single parameter 휀𝑖,𝑚𝑎𝑥,𝑏 is lower than the confidence interval, another iteration is 

needed starting again with a new MBDoE. 

The phases described for the first iteration are the same of the previous optimization 

problem; differences between the two methods may occur starting with the second iteration. 

Executing the optimization at a specific iteration 𝑘 > 1, findings of iteration 𝑘-1 are 

analysed: if for a generic parameter, 𝜃𝑖, (휀𝑖,𝑚𝑎𝑥,𝑏)
(𝑘−1)

is greater than ((95%CI)/2)(𝑘−1), then 

an upper bound is set for the uncertainty at iteration 𝑘, i.e., it is imposed that (휀𝑖,𝑚𝑎𝑥,𝑏)
(𝑘)
= 

((95%CI)/2)(𝑘−1). However, as stated in §4.1.1, the CIs attained for 𝜽𝟎 at the new iteration 

𝑘, ((95%CIs)/2)(𝑘), may be higher than the ones at the previous iteration, 

((95%CIs)/2)(𝑘−1). Therefore, following a more conservative approach, whenever 

(휀𝑖,𝑚𝑎𝑥,𝑏)
(𝑘−1)

> ((95%CI)/2)(𝑘−1), the maximum uncertainty at iteration 𝑘 is defined as: 

 

(휀𝑖,𝑚𝑎𝑥,𝑏)
(𝑘)
= 𝑚𝑎𝑥 ( ((95%CI)/2)(𝑘−1), ((95%CI)/2)(𝑘) )   .                  (4.1) 

 

Once this new condition is imposed, the overall procedure is repeated, as for the original 

optimization procedure, until all maximum uncertainties allowable on parameters are larger 

than (95%CIs)/2. Moreover, also in this methodology, if a parameter is characterized by 

휀𝑖,𝑚𝑎𝑥,𝑏 higher than the 50% of its estimated value, it is assumed that it has very low 

influence on 𝑲𝑀 and so it is omitted during the evaluation of the stop condition. Therefore, 

an upper bound for 𝜉𝑖,𝑚𝑎𝑥 equal to 0.500 is set for those parameters.  
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After 𝜺𝒎𝒂𝒙,𝒃 > (95%CIs)/2 is obtained, the optimization with stochastic scenarios must be 

performed to ensure that 𝜺𝒎𝒂𝒙,𝒃 found is acceptable. Two possible situations may occur: 

3. 𝜺𝒎𝒂𝒙,𝒃 obtained with the optimization on 2𝑛 scenarios is satisfactory; 

4. 𝜺𝒎𝒂𝒙,𝒃 obtained with the optimization on 2𝑛 scenarios is not satisfactory: 

Figure 4.2. Complete scheme of iterations for the improved optimization procedure: after 

guesses for parameters are assumed, the loop containing MBDoE, parameters 

estimation, and optimization is computed until the desired outcomes are achieved; later 

an optimization on 𝑁 scenarios occurs. 
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a. the new 𝜺𝒎𝒂𝒙 achieved is larger than (95%CIs)/2; 

b. the new 𝜺𝒎𝒂𝒙 achieved is smaller than (95%CIs)/2. 

The stop condition with the definitive 𝜺𝒎𝒂𝒙 is reached only if 1 or 2.a occurs, otherwise 

another iteration is needed. 

The overall scheme of iterations is summarised in Figure 4.2, where it is possible to highlight 

that if at iteration 𝑘, condition (휀𝑖,𝑚𝑎𝑥,𝑏)
(𝑘−1)

> ((95%CI)/2)(𝑘−1) does not occur, then the 

iteration 𝑘 for the improved optimization is equal to the one defined with the previous 

methodology (see Figure 2.7 in §2.2.3) 

Since 𝜺𝒎𝒂𝒙 provides a situation in which acceptable tolerance on 𝑲𝑀 is guaranteed, and 

𝜺𝒎𝒂𝒙 > (95%CIs)/2, then the estimation on parameters is precise enough with respect to the 

same constraints on 𝑲𝑀. Thus, the last iteration certifies a state where a satisfactory model 

prediction is achieved. 

 

4.2. Application: DC process models 

After the definition of the enhanced optimization procedure, this is applied to the DC process 

models to assess whether it would lead to the stop condition with a reduced number of 

iterations. Results for the tablet press unit operation and for the disintegration test unit are 

shown in the followings. The improved optimization cannot be tested on the in vitro 

dissolution model, since already only one iteration is needed.   

 

4.2.1. Tablet press 

As already stated in the previous section, the first iteration steps for the two methodologies, 

described in §2.2.3 and in §4.1.2 respectively, show no differences. For sake of clarity, the 

results that were obtained in §3.2.2, after the first iteration, are reported again in Table 4.2. 

 
Table 4.2. Improved optimization: first iteration results. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜽𝒊
𝟎 11.93 1.449 0.413 -6.235 0.205 1.890×10-2 7.365×10-4 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.162 8.761×10-2 2.573×10-3 5.816×10-2 2.016×10-2 2.576×10-4 4.077×10-5 

(95%CI)/2 0.105 4.768×10-2 2.115×10-3 5.226×10-2 8.791×10-3 1.946×10-4 1.025×10-4 

 

Since 휀𝛾,𝑚𝑎𝑥,𝑏 < (95%CI)/2, then another iteration is required. Thus, a new MBDoE is 

executed trying to increase the precision on 𝛾, since it is the only parameter for which the 

휀𝑖,𝑚𝑎𝑥,𝑏 > (95%CI)/2 condition is not satisfied; values achieved of manipulated variables are 

then applied to the true process (Table 3.1 in §3.2.1) leading to a new set of experimental 

data. Later, this is used together with the experimental dataset attained during the first 

iteration in order to perform a second estimation of parameters (Table 4.3). 
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Table 4.3. Estimation of model parameters: second iteration. 

 Units Value 95% CI 95% t-value 

𝒂𝟏
𝟎 MPa 11.09 0.179 62.08 

𝒂𝟐
𝟎 - 1.088 0.110 9,853 

𝒂𝒔𝒇
𝟎  - 0.455 4.256 × 10-3 1.068 × 102 

𝒃𝟏
𝟎 - -7.961 0.133 59.89 

𝒃𝟐
𝟎 - 0.321 1.454 × 10-2 22.11 

𝒃𝒔𝒇
𝟎  MPa-1 2.445 × 10-2 4.791 × 10-4 51.03 

𝜸𝟎 dm-1 1.202 × 10-3 3.118 × 10-4 3.856 

Reference t-value (95%)    1.895 

 

Once values of 𝜽𝟎 are acquired, these are used inside the model of the optimization problem 

(Equation (3.4) in §3.2.1). Moreover, since new parameter values are obtained, an 

optimization on the process manipulated variables must be performed ensuring that the 

desired 𝐾𝑀1
̅̅ ̅̅ ̅, the one of the true process, is achieved. This leads to 𝐾 = 99 m and 𝑃 = 213 

MPa. 

At this point, following the new optimization flowchart (Figure 4.2), we must assess if at the 

previous iteration for some parameter 휀𝑖,𝑚𝑎𝑥,𝑏 > (95%CI)/2 occurs. This condition arises for 

all parameters except for 𝛾, so an upper bound must be fixed for their maximum uncertainty. 

However, the limit has to be the maximum value between the (95%CI)/2 of the first and the 

second iteration. Therefore, outcomes achieved at the two iterations are grouped in Table 

4.4, where the maximum (95%CI)/2 for each parameter is in boldface. 

 
Table 4.4. First and second iteration: (95%CI)/2 comparison; maximum (95%CI)/2 for 

each parameter is in boldface. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 

((95%CI)/2)1 0.105 4.768×10-2 2.115×10-3 5.226×10-2 8.791×10-3 1.946×10-4 

((95%CI)/2)2 8.935×10-2 5.523×10-2 2.128×10-3 6.650×10-2 7.272×10-3 2.395×10-4 

 

Once the largest (95%CIs)/2 are selected, these are set as 𝜺𝒎𝒂𝒙,𝒃 for the optimization on 128 

(i.e., 27) boundary scenarios during the second iteration; the resulting 𝝃 are presented in 

Table 4.5. 

 
Table 4.5. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the second iteration with the improved optimization procedure. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝝃𝒊,𝒎𝒂𝒙 9.446×10-3 5.075×10-2 4.680×10-3 8.349×10-3 2.734×10-2 9.798×10-3 0.135 

 

Results are also presented in the form of maximum uncertainties (Table 4.6). 
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Table 4.6. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

second iteration with the improved optimization procedure. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.105 5.523×10-1 2.128×10-3 6.650×10-2 8.791×10-3 2.395×10-4 1.623×10-4 

 

Finally, the comparison between 𝜺𝒎𝒂𝒙,𝒃 and the (95%CIs)/2 must be performed considering 

the confidence intervals of the current iteration: ((95%CI)/2)(2). Outcomes are reported in 

Table 4.7. 

 
Table 4.7. Improved optimization: second iteration results. 

 𝒂𝟏 𝒂𝟐 𝒂𝒔𝒇 𝒃𝟏 𝒃𝟐 𝒃𝒔𝒇 𝜸 

𝜺𝒊,𝒎𝒂𝒙,𝒃 0.105 5.523×10-2 2.128×10-3 6.650×10-2 8.791×10-3 2.395×10-4 1.623×10-4 

(95%CI)/2 8.935×10-2 5.523×10-2 2.128×10-3 6.650×10-2 7.272×10-3 2.395×10-4 1.559×10-4 

 

Results demonstrate that, by setting 휀𝑖,𝑚𝑎𝑥,𝑏 = (95%CI)/2 for the parameters where a 

sufficient precision has been reached, the allowable uncertainty on 𝛾 can increase and 

become larger than its (95%CI)/2. Findings are confirmed after the evaluation of all 𝑁 

scenarios. 

 

4.2.2. Disintegration 

Following the new methodology, as for the tablet press, the most relevant outcomes of the 

first iteration for the disintegration test unit (Table 4.8) are presented grouping those obtained 

in Table 3.15 and Table 3.18 (§3.3.2) with the previous optimization procedure. 

 
Table 4.8. Improved optimization: first iteration results. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝜽𝒊
𝟎 52.23 99.93 1.480 × 10-3 0.905 0.535 

𝜺𝒊,𝒎𝒂𝒙,𝒃 - - - 1.679 × 10-2 5.686 × 10-2 

(95%CI)/2 - - - 9.199 × 10-2 0.274 

 

Since for 𝐶2, 𝐶3, and 𝜖̇ the 𝜉𝑖,𝑚𝑎𝑥 is higher than 0.500 (Table 3.16 in §3.3.2), they are not 

considered during the 𝜺𝒎𝒂𝒙,𝒃 and (95%CIs)/2 comparison. Results show that 휀𝑖,𝑚𝑎𝑥,𝑏 is lower 

than (95%CI)/2 for both 𝑛𝑠 and 𝑆𝑝; thus, another iteration is required. Since no parameter 

shows 휀𝑖,𝑚𝑎𝑥,𝑏 greater than (95%CI)/2, the second iteration for the improved optimization is 

equal to the one of the previous technique. The first time that 휀𝑖,𝑚𝑎𝑥,𝑏 > (95%CI)/2 occurs 

is in the fourth iteration, which is characterized by the parameters estimation presented in 

Table 4.9. 
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Table 4.9. Estimation of model parameters: fourth iteration. 

 Units Value 95% CI 95% t-value 

𝑪𝟐
𝟎 MPa 90.31 5.334 × 104 1.693 × 10-3 

𝑪𝟑
𝟎 MPa 99.83 3.002 × 103 3.325 × 10-2 

�̇�𝟎 m s-1 9.820 × 10-4 8.079 × 10-2 1.215 × 10-2 

𝒏𝒔
𝟎 - 0.903 3.651 × 10-2 24.74 

𝑺𝒑
𝟎 - 0.534 0.117 4.56 

Reference t-value (95%)    1.654 

 

The optmization on 2𝑛 boundary scenarios is then computed on the estimates, leading to the 

𝜉𝑖 reported in Table 4.10, 

 
Table 4.10. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the fourth iteration. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝝃𝒊,𝒎𝒂𝒙 0.500* 0.500* 0.500* 1.976 × 10-2 0.113 

 

and later to maximum uncertainties (Table 4.11).  

 
Table 4.11. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the 

fourth iteration. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 45.15* 49.92* 4.910 × 10-4* 1.785 × 10-2 6.036 × 10-2 

 

Again, Table 4.11 shows that for 𝐶2, 𝐶3, and 𝜖̇ the 𝜉𝑖,𝑚𝑎𝑥 is higher than 0.500, and so these 

are not considered during the 𝜺𝒎𝒂𝒙,𝒃 and (95%CIs)/2 comparison in Table 4.12. 

 
Table 4.12. Fourth estimation-optimization iteration: uncertainties comparison. 

 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 1.785 × 10-2 6.036 × 10-2 

(95%CI)/2 1.826 × 10-2 5.848 × 10-2 

 

Differently from the findings attained at the first iteration (Table 4.8), 휀𝑖,𝑚𝑎𝑥,𝑏 greater than 

its (95%CI)/2 occurs for 𝑆𝑝. Therefore, at the fifth iteration, the additional steps introduced 

with the algorithm discussed in §4.1.2 are applied: an upper bound will be set to 휀𝑆𝑝,𝑚𝑎𝑥,𝑏 

during the optimization on 2𝑛 boundaries scenarios. 

The estimates of parameters obtained at the fifth iteration are those presented in Table 3.19 

(§3.3.2). At this point, the optimization must be performed fixing a limit to 휀𝑆𝑝,𝑚𝑎𝑥,𝑏, and 

this is chosen as the maximum between ((95%CI)/2)(4) and ((95%CI)/2)(5); the value of 

interest is reported in boldface in Table 4.13. 
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Table 4.13. Fourth and fifth iteration: (95%CI)/2 comparison; maximum (95%CI)/2 is in 

boldface. 

 𝑺𝒑 

((95%CI)/2)(4) 5.848 × 10-2 

((95%CI)/2)(5) 5.495 × 10-2 

 

Once the largest (95%CI)/2 is selected, this is set as 휀𝑖,𝑚𝑎𝑥,𝑏 for 𝑆𝑝 during the optimization 

on boundary scenarios: relative uncertainties achieved, 𝝃, are presented in Table 4.14, 

 
Table 4.14. Maximum relative percentage amounts, 𝜉𝑖,𝑚𝑎𝑥, obtained for different 

parameters at the fifth iteration with the improved optimization procedure. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝝃𝒊,𝒎𝒂𝒙 0.500* 0.500* 0.500* 2.111 × 10-2 0.110 

 

and maximum uncertainties are reported in Table 4.15. 
 

Table 4.15. Maximum uncertainties, 휀𝑖,𝑚𝑎𝑥,𝑏, obtained for different parameters at the fifth 

iteration with the improved optimization procedure. 

 𝑪𝟐 𝑪𝟑 �̇� 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 44.36* 49.58* 4.918 × 10-4* 1.906 × 10-2 5.848 × 10-2 

 

Finally, the comparison between 𝜺𝒎𝒂𝒙,𝒃 and the (95%CIs)/2 must be performed considering 

the confidence intervals of the current iteration: ((95%CI)/2)(4). Results are reported in 

Table 4.16, excluding 𝐶2, 𝐶3, and 𝜖̇ since their 𝜉𝑖,𝑚𝑎𝑥 is higher than 0.500 (Table 4.14). 

 
Table 4.16. Improved optimization: fifth iteration results. 

 𝒏𝒔 𝑺𝒑 

𝜺𝒊,𝒎𝒂𝒙,𝒃 1.906 × 10-2 5.848 × 10-2 

(95%CI)/2 1.746 × 10-2 5.495 × 10-2 

 

Results show that all (95%CIs)/2 are lower than the maximum uncertainties allowable for 

the model parameters. In this case, the stop condition is reached at the same iteration 

obtained in §3.3.2 with the previous procedure. Thus, the application of the new optimization 

procedure to the disintegration test unit does not provide any additional improvement with 

respect to the previous optimization discussed in §2.2.3. 
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4.3. Comments on results 

The application of the enhanced optimization procedure on DC process models provides 

satisfying results: for all the units a condition where 𝜺𝒎𝒂𝒙 is greater than (95%CIs)/2 is 

obtained. Additionally, for the tablet press unit operation, less iterations are needed with 

respect to the original optimization to achieve a condition where acceptable model fidelity 

in ensured. The number of experiments required to reach the stop condition for each unit is 

summarized in Table 4.17. 

 
Table 4.17. Enhanced optimization procedure: number of experiments required to reach 

the stop condition for each unit. 

Unit Exp 

Tablet press 8 

Disintegration 5 

Dissolution 1 

 

The total number of experiments to be performed is identical for all units to those obtained 

in Table 3.31 (§3.5) implementing the methodology proposed by Geremia et al. (2023). We 

can conclude that the two approaches lead to comparable results to ensure the pre-set 

acceptable model fidelity.  

 

 



 

Conclusions 
 
 

The optimization problem developed in this study proved to be an effective tool for 

overcoming fidelity issues related to modeling in the pharmaceutical industry, specifically 

to address the following tasks: 

• how to determine the most influential model parameters on the prediction of key 

indicators; 

• assess whether the prediction of desired key indicators is ensured by analysing the 

parametric uncertainty.  

Differently from other approaches, such as the one proposed in Geremia et al. (2023), the 

optimization method presented in this study strives to achieve the goal in a more rigorous 

way, by thoroughly examining the mathematical model without any linearization. The new 

procedure aims at establishing the maximum uncertainties allowable on model parameters 

to keep the key indicators within the desired range. 

The new methodology was applied to the direct compression process analysed in Geremia 

et al. (2023), where three models are present: tablet press unit operation, disintegration test 

unit, and in vitro dissolution test unit. In this way, it was possible to compare the outcomes 

obtained from both methodologies. An acceptable model fidelity was ensured with the same 

number of required experiments for the disintegration and dissolution models, while three 

additional experiments were required for the tablet press model, when the approach proposed 

in this Thesis was used. The reason of this difference was attributed to the strict conservatism 

of the objective function definition within the optimization problem. 

Therefore, the optimization framework was relaxed in order to take advantage of the 

precision already attained during the estimation of the model parameters. Results showed 

that in this way it was possible to use as many experiments as in Geremia et al. (2023) in 

order to target the required model fidelity towards the key indicators. Additionally, the 

optimization procedure indirectly suggested that the model linearization employed in the 

methodology based on multi-variate statistical methods does not restrict the ability to obtain 

reliable predictions for direct compression process models. 

The actual optimization framework, similarly to the approach defined in Geremia et al. 

(2023), sets a limit equal to 50% to the maximum relative uncertainty evaluated for 

parameters. When a parameter meets this condition, it is assumed to have very low influence 

on the key indicator of interest and so it is excluded from the evaluation of the stop condition. 

This assumption may have an impact on the actual reliability a model may achieve, and 

should be further explored as future work. Furthermore, similarly to Geremia et al. (2023), 

the proposed optimisation procedure should be applied and tested on the overall systems 

model, where all unit models are accounted for simultaneously. 
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