

A mio nonno Argeo

Abstract

Nowadays online presence is a must for every business. Nevertheless, many

small and medium enterprises struggle to be online due to a lack of expertise

and economic investments. A solution is creating a single and organized access

point where similar enterprises can aggregate. On top of that, it can also offer

better brand awareness and exposure on a national and international scale.

Thanks to decentralization, it is possible to remove any middle-person, such

as a webmaster, and avoid an expensive cloud solution. At the same time,

responsibilities have to be split among users: they are in charge of maintaining

and sustaining a common platform.

Finally, the goal of my work is to design and create a decentralized application

where similar SMEs can: aggregate, share their products, and get rewarded for

having an active role in the community. These core functionalities are achieved

by the combination of Ethereum and Swarm. Thanks to smart contracts, it is

possible to create an automated set of rules and a tokenomics to reward the best

users. Ethereum also handles user authentication. Instead, Swarm hosts the

website and serves as distributed storage system to save product images and

enterprise logos.

Sommario

Al giorno d’oggi la presenza online è fondamentale in ogni business. Nonostante

ciò, molte piccole e medie imprese sono scoraggiate da diversi ostacoli, come

la mancanza di conoscenze o dei fondi necessari per poter essere online. Una

possibile soluzione è creare una singola piattaforma dove unire imprese simili,

per tipo di prodotto o per target di clientela. Così facendo, ogni azienda partecipe

gode della visibilità nazionale e internazionale della piattaforma. Grazie alla

decentralizzazione, è possibile rimuovere figure terze, come ad esempio un

webmaster, o evitare di ricorrere a costose soluzioni in cloud. Allo stesso tempo

però gli utenti sono chiamati ad essere attivi nella gestione della piattaforma

per garantirne il mantenimento. Concludendo, il mio lavoro mira a progettare e

realizzare un’applicazione decentralizzata dove le imprese possano aggregarsi,

condividere i propri prodotti e ottenere ricompense se attive nella gestione della

piattaforma stessa. Queste funzionalità sono ottenute dalla combinazione di

due tecnologie: Ethereum e Swarm. Grazie alla prima, è possibile realizzare

un insieme di regole automatizzate e un sistema di ricompense per gli utenti

più attivi. Swarm invece funge da web host e allo stesso da sistema di storage

distribuito dove salvare le immagini dei prodotti e i loghi delle aziende.

Contents

List of Figures xi

List of Code Snippets xiii

List of Acronyms xv

1 Introduction 1

2 State of the Art 5

2.1 An Overview . 5

2.2 Open Issues . 8

2.3 Data Persistence . 9

2.4 URL Mapping . 10

2.5 Content Visibility and Social Incentives 12

2.5.1 Steemit . 13

2.5.2 Curation Markets . 13

2.5.3 Etherna . 14

2.5.4 D.tube . 14

3 Ethereum 17

3.1 The World Computer . 17

3.2 Smart Contracts . 19

3.3 Consensus Mechanism . 21

3.4 Ethereum Name Service . 24

4 Ethereum Swarm 27

4.1 Overlay network . 27

4.1.1 Kademlia Connectivity . 28

4.1.2 Storage Model . 29

ix

CONTENTS

4.2 Incentive System . 32

4.2.1 Bandwidth Incentives . 32

4.2.2 SWAP . 34

4.2.3 Storage Incentives . 36

5 CMS Design and Implementation 39

5.1 Requirements . 39

5.2 Stack Design . 42

5.2.1 Back-end Development . 43

5.2.2 Enter the blockchain . 45

5.2.3 Accessing the Swarm . 46

5.2.4 Front-end interface . 49

5.2.5 Entering the website . 50

5.3 Test Environment . 54

5.4 Tokenomics . 56

5.4.1 Token Design . 57

5.5 Implementation . 59

5.5.1 Back-end code . 60

5.5.2 Front-end code . 75

5.5.3 A Meaningful Example . 78

6 Conclusions and Future Works 81

References 83

Acknowledgments 89

A Smart Contracts 91

A.1 Migrations.sol . 91

A.2 SwarmAd.sol . 92

A.3 SwarmAdGovernor . 101

A.4 SwarmAdRewarder . 108

A.5 SwarmAdReputationPoints . 110

B Testing scripts 113

B.1 SwarmAdTest.js . 113

B.2 GovernorTest.js . 115

x

CONTENTS

C Front-end 119

C.1 Home . 119

C.2 Register . 120

C.3 CreateItem . 123

C.4 Showcase . 127

C.5 EnterpriseShowcase . 128

C.6 SwarmAd.js . 129

C.7 SwarmClient.js . 131

xi

List of Figures

3.1 Example of GHOST fork choice rule [43] 24

3.2 ENS resolving name mechanism [6] 25

4.1 Comparison between IPFS and Swarm retrieval system [51] 29

4.2 A Binary Tree Chunk [51] . 31

4.3 Feed structure [51] . 32

4.4 Downloading of a chunk . 33

4.5 Uploading of a chunk [51] . 34

4.6 Basic functioning of SWAP protocol [51] 35

5.1 dApp architecture . 44

5.2 How a user will connect to the app 53

5.3 How a node owner will connect to the app 53

5.4 Bee-factory containers . 55

xi

List of Code Snippets

4.1 "Console interaction with stamps endpoint" 36

5.1 "A simple example of Bee-js functionalities" 50

5.2 "Updating the web interface via a Swarm Feed" 51

5.3 "Pre-computing addresses" . 61

5.4 "Access control in SwarmAd" . 62

5.5 "Deploying smart contracts" . 63

5.6 "Defining Enterprise" . 64

5.7 "Querying Enterprise struct" . 64

5.8 "Defining Product" . 65

5.9 "Create a new product" . 65

5.10 "Superlike function" . 66

5.11 "Defining Poll" . 68

5.12 "Calling Governor to create a poll" 69

5.13 "Moving an Enterprise from waiting list" 70

5.14 "Procedure to close the poll" . 71

5.15 "Making ERC20 token non-transferable" 72

5.16 "Rewarder computes interests" . 74

5.17 "Minting and burning RPs" . 74

5.18 "Redeeming Community Token" 75

5.19 "Setting up the Home" . 76

5.20 "Querying SwarmAd" . 77

5.21 "Upload an image via web interface" 78

5.22 "Create an enterprise via web interface" 78

A.1 Migrations.sol . 91

A.2 SwarmAd.sol . 92

A.3 SwarmAdGovernor.sol . 101

A.4 SwarmAdRewarder.sol . 108

xiii

LIST OF CODE SNIPPETS

A.5 SwarmAdReputationPoints.sol . 110

B.1 SwarmAdTest.js . 113

B.2 GovernorTest.js . 115

C.1 Home.jsx . 119

C.2 Register.jsx . 120

C.3 CreateItem.jsx . 123

C.4 Showcase.jsx . 127

C.5 EnterpriseShowcase.jsx . 128

C.6 SwarmAd.js . 129

C.7 SwarmClient.js . 131

xiv

List of Acronyms

ABI Application Binary Interface

BMT Binary Merkle Tree

BLS Boneh-Lynn-Shacham

BNS Blockchain Naming System

CAC Content Addressed Chunk

CID Content Identifier

CLI Command Line Interface

CMS Content Management System

CT Community Token

CRUD Create Read Update Delete

DAO Decentralized Autonomous Organization

dApp Decentralized App

DeFi Decentralized Finance

DHT Distributed Hash Table

DISC Distributed Immutable Store of Chunks

DOSN Decentralized Online Social Network

EIP Ethereum Improvement Proposal

ENS Ethereum Name Service

xv

LIST OF CODE SNIPPETS

EOA Externally Owned Account

ERC Ethereum Request for Comments

EVM Ethereum Virtual Machine

GHOST Greediest Heaviest Observed SubTree

IPFS InterPlanetary File System

IPNS InterPlanetary Name System

NFT Non Fungible Token

PO Proximity Order

PoS Proof-of-Stake

PoW Proof-of-Work

SME Small Medium Enterprise

SOC Single Owner Chunk

SPA Single Page Application

SWAP Settle With Automated Payments

SWCT SwarmAd Community Token

SWRP SwarmAd Reputation Point

RBAC Role-Based Access Control

TLV Total Locked Value

TTL Time To Live

UI User Interface

VP Voting Power

xvi

1
Introduction

Web3 is gaining more and more interest among Internet users. The idea of

building a decentralized web is catching because it means moving away from

single central authorities. Decentralization cannot be achieved by a single and

atomic task but we have to reach several different goals, such as giving data

ownership back to the users or creating a censorship-free web [1]. Obviously, it

is not a trivial mission: developers need tools such as blockchains or distributed

storage systems onto which they can build their Decentralized App (dApp)s.

On top of that, these applications must reach certain popularity among users.

This is why as a direct consequence of Web3 hype, the technology stack to build

dApps has evolved quickly and the market demand has grown as well. This is

highlighted by the Total Locked Value (TLV) of Web3-related smart contracts,

which reached a peak of 193.14 billion USD in December 2021 [2]. Even if a

standard in Web3 development hasn’t settled yet, many technologies succeeded

to reach a "production-ready" state or at least a more mature build in comparison

with previous years.

Under these considerations, it is clear that the view on Web3 has changed.

Starting from the decentralized Content Management System (CMS) designed

and developed by Martini [3], the goal of my thesis is to improve it by adopting

solutions that were not feasible in 2019 because of the lack of maturity of some

technologies.

After a deep and accurate analysis, I found the following three main issues:

1. Data Persistence: InterPlanetary File System (IPFS) doesn’t ensure the
long-term persistence of data we upload on our platform

1

2. Naming: because of the decentralized structure, it is difficult to provide a
secure and human-readable point of access

3. Content visibility: lacking a central authority, we cannot suggest content
as in Web 2.0, where an algorithm is in charge of what we will see. We
need an incentive system to push quality content in a fair and rewarding
way for both creators and users.

The proposed solutions for issues (1) and (3) will share the same line of the

reasoning we can see in Martini’s work: members of the community must be

responsible for maintaining and moderating it, creating a loop where seeking

personal advantage leads to generating an advantage for the whole community.

In other words, we will build an incentive system to reward good behavior.

Long-term persistence is fundamental to making our social platform fair. In-

deed IPFS, like any other distributed storage which doesn’t provide a storage

incentive, saves data like in a cache [4]. As a consequence, popular data are

more likely to be stored while unpopular one could be very rare or even lost.

Without storing incentives, the threat of building an amnesic and fragmented

Web is real.

As we will see in further chapters, the solution I have chosen for data persis-

tence is adopting Ethereum Swarm as a storage layer [5]. It is a decentralized

storage system with built-in incentives for forwarding and storing data. As a

consequence, it has a self-sustainable economy where nodes are rewarded for

being active and it is also able to ensure long-term persistence.

The solution to issue (2) is straightforward and it relies on the interaction be-

tween Swarm Feeds, a special type of memory chunk we will describe later,

and Ethereum Name Service [6]. Thanks to this combination, we are able to

link what we store in Swarm to a human-readable domain. This could seem

like a little change but it is an important step forward in accessibility and user

experience.

As far as the last issue is concerned, the idea is to create a tokenomics. By adding

a utility token, we can measure how much a user is contributing to community

wellness. Accumulating this token, users will be able to obtain exclusive ser-

vices or rewards. A sort of social incentive to keep users involved in community

moderation, content filtering and selection.

As the final result of my work, I designed and implemented a dApp based on

Swarm as storage layer and Ethereum blockchain for user authentication. It is

a social portal to aggregate Small Medium Enterprise (SME)s and make them

cooperate to maintain and sustain a common platform where they can advertise

2

CHAPTER 1. INTRODUCTION

their products. Consequently, this dApp removes the entry barrier made by

economic investments and technological skills required by building and main-

taining a traditional website. On top of that, it offers better brand awareness and

better exposure on a national and international scale by creating a single and

organized point of access for end users. This is particularly helpful for micro

firms located in rural contexts [3].

My work is organized in the following way:

• Chapter 2 is to describe the actual state of the art, i.e. what has been
implemented and especially what has been inspirational to my work.

• Chapter 3 and Chapter 4 present the fundamental blocks to understand
my work: Ethereum, Swarm and their related technologies such as ENS,
ERC-20 Token, and Swarm Feeds.

• Chapter 5 describes my design process and how I managed to implement
all the desired functionalities.

• Chapter 6 finally sums up my work and it shows in which direction we
could move on to improve the project.

3

2
State of the Art

A blockchain is not efficient when dealing with large files like images or

videos because of writing time and transaction costs. Developers have been

encouraged to explore off-chain solutions to upload files. The mixture of on-

chain and off-chain storage established as a common design pattern for dApp

development in the recent years [7]. To support this claim, in this chapter, we

are going to explore some relevant examples of dApps based on a blockchain

and a distributed storage. In the first section, we will examine two decentralized

content management systems similar to my project. Then in the further sections,

we will explore several examples that could be useful to solve the problems un-

derlined in Chapter 1.

2.1 An Overview

As first example, we have HiDe. It is an offline first decentralized CMS

with a sustainable and permission-less reward distribution protocol called HiDe

Protocol. Starting from HiDe open-source codebase, it is possible to build social

media dApps where users showcase their posts or articles and get rewarded for

activities and contributions.

Hide social media app works as follows. Users’ content is stored in Ceramic,

a distributed storage built atop of IPFS. Whenever a user creates a new post,

it is uploaded to Ceramic, and the reference is saved on Polygon. Polygon is a

layer 2 blockchain built on top of Ethereum, so it provides more scalability and

5

2.1. AN OVERVIEW

fewer transaction costs. Meanwhile, it keeps Ethereum advantages in terms of

security. As a result, each user has a list of posts or articles associated with his

account which is saved on blockchain. Besides, HiDe provides integration with

the most famous blogging platform such as WordPress or Medium, so a user

can post or export articles to and from these platforms.

HiDe protocol implements a complex token economy to make this entire system

self-sustainable. It is based on five different entities:

• Treasury: it is a smart contract that generates the reward pools from
deposits staked by users who are supporting HiDe.

• Voting Power (VP): staking produces VP tokens. VPs can be spent to vote
for budget allocation or other relevant decisions about the organization.

• Community Token (CT): it is based on ERC-20 standard but it also de-
creases automatically block by block. Whenever a certain budget is al-
located to a community, it gets converted into a certain amount of CTs.
CTs can be burned to reward an NFT or can be converted into community
share.

• community share: users who own community shares get a dividend when
budget is allocated to their community

• kudos: they can be accumulated by making contributions in a community.
They can be used in community voting.

Finally, HiDe is mainly focusing on becoming a community-building tool

where social media features help users to bond and reward system motivates

content creators to produce quality content [8].

As a second example, we have Helios. It is a project founded by the European

Commission to provide a platform to develop decentralized social networks apps

for Android. Its primary focus is on privacy, ownership and protection of users’

personal data and content.

It is a modular platform composed of three layers: Helios core, extension mod-

ules and applications [9]. Helios core has different components. Each one

provides a specific basic functionality. For example, there is the communication

manager which provides the access to p2p network and it includes basic mes-

saging functionalities. There is also a security manager which handles access

policy and privacy settings.

Then we have extension modules. They can be developed also by third-parties.

Their scope is to provide additional functionalities over Helios core. For ex-

ample, implementing a media streaming player or graph mining algorithm for

6

CHAPTER 2. STATE OF THE ART

content recommendation. Among several extension modules, we can find the

reward system. It aims at incentivising users to be active on the platform. The

whole tokenomics is built around a single utility token, called Helios Token or

HLO. Users can collect HLOs by performing simple actions like creating and

sharing content, upvoting and downvoting. Then HLOs can be spent to access

premium content, unlocking premium features or purchase a third-party ser-

vice. As a last thing, it is interesting to notice how the token distribution is

organized in Helios. Every day, an algorithm determines the size of the daily

reward pool, i.e. the predetermined number of HLO to distribute among active

users. Then the relevance of each user is calculated. Every action, as a like or a

comment, has a specific weighted score s. User contribution is the sum of all his

action weighted scores. The user relevance is computed as the ratio between a

user’s contribution and the contribution of all users. The daily reward pool is

then split between users according to their relevance [10].

Finally, we have the application layer. Developers can take advantage of the

functionalities provided by Helios core and extension modules to create a social

network service working on Android. As an example, in Helios ecosystem we

can find helios.talk, an app that allows users to communicate in a secure and

decentralized way. Another one is helios.CJReporter. It is an app to share videos

anonymously. The videos are stored on IPFS and the access control is managed

by an Ethereum smart contract.

If we move to more specific use cases, we can find Opus [11] and Audius [12].

Both two are decentralized music sharing platforms with the goal of ensuring a

fair compensation for artists. Their structures follow this design pattern: they

rely on a blockchain for user authentication while they use a distributed storage

system, IPFS, for storing songs and other data relevant to platform workflow.

On top of that, both have a community token to motivate users’ participation,

as artists and also as simple end-users. For example, Opus rewards users who

create popular playlists. As we will see in a further section, content curation

is particularly relevant in a dApp since it is more difficult to build a content

recommendation system than in traditional web2 applications because of de-

centralization.

7

2.2. OPEN ISSUES

2.2 Open Issues

The previous examples confirm the effectiveness of the hash-on-chain pat-

tern. Indeed, it allows for reducing the expenses due to gas fees and the time

in writing and reading the blockchain. Recalling HiDe and Helios, we can see

their main focus is on social functionalities, like commenting or sharing a post.

As a direct consequence, content creation is the beating heart of both platforms

because it feeds a whole set of social functionalities. This claim is confirmed

in the respective reward systems. As an example, Helios awards 10 points for

creating a post while the reward for sharing is 2.

If we now consider our use case, i.e. a platform where enterprises can post and

advertise their products. It is clear how Helios and Hide reward systems are not

a good fit. As the first thing, we are in a competitive scenario where it is unlike

that users are willing to share others’ content. Indeed, they are competitors so

sharing a post is like gifting free advertising to a market rival. Secondly, content

creation in social networks is far away from the one we will see on my platform.

To be clear, an enterprise has to post according to its production rate which

depends on the availability of employees, machinery, and raw materials. Fol-

lowing this reasoning, it is important to not push for content creation. Another

difference is that HiDe and Helios do not face community moderation. This

claim is confirmed by their reward systems. The lack of a moderation mecha-

nism can be justified because in social media, especially if it is decentralized, it

is important to ensure a censorship-free system where every user is free to share

his opinions. Nevertheless, in my project, community moderation is crucial to

keep a clean and working platform. Indeed, it is oriented to serve the needs of

all the possible niche markets and it is important to remove off-topic content or

inappropriate users. Obviously, since the platform is meant to be a showcase for

each enterprise, users are motivated to keep the highest reputation possible. In-

deed, if the platform has a bad reputation, the latter will affect their enterprises

as well. Concerning user moderation, there is another big difference between

my dApp and social media apps. Generally speaking, these last provide a free

registration mechanism where everyone can sign up. HiDe and Helios too. In

my platform, every user has to meet a set of requirements to be accepted in

the community. The decision about accepting or rejecting a newcomer is in the

hands of the registered members.

For what concerns the technical side, Helios is more focused on mobile develop-

8

CHAPTER 2. STATE OF THE ART

ment. In our case, we think a progressive web app is a better solution because

it eases accessibility and hence it maximizes the number of visitors. Since we

are speaking about an advertising platform, it is a relevant aspect without any

doubt. Other technicalities, such as the choice of a certain distributed storage

system or the issue of content visibility, will be delved into later sections. To

sum up, I think I am proposing a platform that has different social dynamics

from the traditional applications, hence the moderation mechanism is way more

relevant. In comparison with Martini, I think that the most efficient way to create

an effective moderation mechanism is to build a tokenomics to reward users.

2.3 Data Persistence

In Martini’s design, the storage layer relies on IPFS [3]. It is a distributed

system for storing and accessing files and data [4]. It is also the first protocol

belonging to the so-called "next generation" of P2P data networks [13].

As stated before, IPFS doesn’t ensure data long-term persistence. After this issue

was identified, several way around tried to patch it. For example, the pinning

service. By pinning a file, a node marks it as important and it keeps that file in

its local storage. Consequently, the pinned file is surely available when the node

is online. Martini himself implemented this service to mitigate the problem.

Pinning may not be sufficient to ensure long-term persistence, especially if we

rely on a small number of nodes as in our use case [14]. This is the reason

why many pinning services on top of IPFS have been developed. These services

provide a host node on a cloud service to store and pin data. However, they are

not free and they are somehow in conflict with the concept of decentralization

since users have to trust and rely on a third-party actor.

If we want to remain in the neighborhood of IPFS, we have to consider File-

Coin. It is a protocol for storing and sharing data in peer-to-peer networks [15].

Basically, it works as a storage marketplace where nodes can rent their storage

in change of money. All the payments are performed in form of FIL, which

is FileCoin cryptocurrency. The economic incentive in form of micropayments

ensures long-term persistence.

It is important to notice that FileCoin and IPFS are fully complementary and

they can also be used together. A service of this kind is provided by Powergate,

an API-driven solution built by Textile [16]. Regarding this approach, IPFS is

9

2.4. URL MAPPING

in charge of data storage and chunk retrieval while FileCoin is for ensuring a

long-term backup. If we keep in mind our use case, Powergate is the only fea-

sible solution where we can implement FileCoin because the latter alone would

not be able to perform efficiently due to its large retrieval time. Indeed storing,

verifying and unsealing data are time-expensive operations that need a certain

computational force [15].

The other option is Ethereum Swarm, a decentralized storage system. It is sim-

ilar to IPFS since both rely on libp2p and Kademlia. It offers two features that

could be useful to our platform: storage incentives and mutable content address.

Back in 2019 when Martini developed the first version of EtherAd [3], it was a

promising but still premature protocol. After three years the Swarm team is still

developing new features and improving the existing ones but the status of the

Swarm network is mature: it counts an average of 2000 active nodes all around

the world [17]. The increasing number of dApp built on Swarm proves the last

claim. In Chapter 4 we are going to have a closer look at Swarm technology stack.

2.4 URL Mapping

Surfing the centralized web is straightforward. It has a location-based ad-

dressing system hence we just need a valid URL to get the desired web page.

When we rely on a distributed storage like IPFS or Swarm, we move to content-

based addressing because files can be accessed by their corresponding hash

identifier. In such systems, the identifier is generated on the file or folder’s hash.

Consequently, a change in a file leads to a change in the content address. As a

result, it is not possible to rely on an identifier as an access point to our website

since every update will lead to a change in the hash value.

The naming issue is well-known in decentralized web literature and it is often

referred to as "Zooko Triangle" [18]. In 2001 the American computer security

specialist Zooko Wilcox-O’Hearn claimed it was not possible to create a naming

system able to ensure at the same time the following three attributes: decentral-

ized, secure and human-readable.

Before checking if this claim still holds, we have to consider the current options

we have:

• Mutable address: data structures like InterPlanetary Name System (IPNS)
or Swarm Feeds allow creating address pointing to mutable data [19]. For

10

CHAPTER 2. STATE OF THE ART

example, in IPNS a name is the hash of a public key. Once we create a
name, we can make that name point to the Content Identifier (CID) of the
latest version of your website. However, IPNS doesn’t provide a human-
readable name. As we will see in Chapter 4, Swarm Feeds work in a similar
way.

• DNSLink: it is another solution proposed by IPFS Foundation to overcome
the readability issue of IPNS. It uses TXT records to map a DNS name [20].
A DNS record is editable at any time so we can make it pointing always
to the latest version. However, it is important to notice it is relying on
DNS servers so this solution is not fully decentralized and censorship-
free. Indeed central authorities, like ICANN, manage DNS root [21].

• ENS (Ethereum Name Service) is a distributed naming system based on
Ethereum blockchain [6]. It works by translating human-readable names
into Ethereum addresses. The latest can point to a specific CID or Swarm
hash.

• Handshake: it is a naming protocol to manage the registration, renewal
and transfer of DNS top-level domains (TLDs) [22]. It is a blockchain-based
since it relies on a utility coin system for name registration.

As it is easy to notice, "Zooko Triangle" applies to IPNS and DNSLink, which

are not human-readable and decentralized, respectively. As stated by Aaron

Swartz, a Blockchain Naming System (BNS) can solve this trilemma [23]. In-

deed, once a register is saved on the blockchain is impossible to change the

previous records because of the amount of computational power required to

perform the attack. Starting from Swartz’s idea, it has been developed Name-

coin, the first BNS able to solve the triangle.

Going back to our problem, ENS is the best option because it is built on Ethereum

and it is also well integrated with IPFS and Swarm. Nevertheless, we can achieve

an even better solution. Indeed, if we are using ENS alone, we have to pay gas

fees for every update because we have to make the domain point to the latest

website identifier. This could be seen as a minor drawback but in the long run,

it could lead to significant expenses.

The suggested solution is to adopt a mutable address, such as IPNS or Swarm

Feeds, and then the latter will link to an ENS domain. Thanks to this com-

bination, we are able to obtain a human-readable link and avoid blockchain

interaction at every content update. In Chapter 4 we are going to see Feeds in

detail.

11

2.5. CONTENT VISIBILITY AND SOCIAL INCENTIVES

2.5 Content Visibility and Social Incentives

When we are using a social network relying on a centralized architecture

such as Facebook, Reddit or Youtube, the content we are going to see in our

homepage is meticulously selected by an algorithm. It usually collects users’

data during the time spent on the platform itself and then it processes it to

propose the most relevant and interesting content. On top of that, an algorithm

of kind is most likely to favor viral and attention-grabbing content in order to

gain more and more interaction from the users [24].

One of the principles of the decentralized web is to give ownership back to the

users so things get very different. Indeed there is no central entity capable of

having control of all users’ data, using data for commercial purposes or chang-

ing unilaterally the existing terms of service.

If well designed, decentralization is able to ensure data privacy and security

but at the same time, it introduces new challenges in data availability and

content management. This issue is crucial in Decentralized Online Social Net-

work (DOSN), where it gets tough to manage and propagate the data users

create, update, and exchange [25]. This is the main reason why I analyzed sev-

eral DOSN and micro-blogging platforms to understand how they managed to

overcome the problem.

In this kind of platforms, it is widely spread the implementation of micropay-

ments to users. As a consequence, content creators are encouraged to publish

high quality content while users can profit from producing reasonable and valu-

able comments which add extra value to the article or post itself. The idea is

to shift from the advertising-centric model, typical of web 2.0 where centralized

systems are sustained by the revenue produced by ads, in favor of a user-centric

model.

Generally speaking, the reward is a utility token.It is an asset intended to pro-

vide access to a service, a benefit, or a reward [26]. For example, LikeCoin is

a protocol based on IPFS and Ethereum blockchain. Its functioning is pretty

straightforward: whenever a user likes a post, the creator gets a certain amount

of LikeCoin. In opposition to traditional social networks, it is possible to mone-

tize LikeCoin.

As another example, Peepeth is a micro blogging platform based on Ethereum

and IPFS. Its exclusive feature is that each user has only one like per day so its

meaning is way bigger than in traditional social networks, where we are used to

12

CHAPTER 2. STATE OF THE ART

liking several posts or photos daily. As a result, it generates a sense of exclusivity.

2.5.1 Steemit

Steemit is another famous example and it is the first blockchain-based blog-

ging platform implementing an economic reward via cryptocurrency [27].

Its token business is designed around the content posted by users. By creat-

ing quality post or taking part in community moderation, a user is rewarded

in STEEM, i.e. Steemit cryptocurrency. On top of that, Steemit recognizes a

special weight to users who have invested a significant value in a long-term

commitment. Basically, if a user commits his STEEM in a thirteen week vesting

schedule, he will convert them into Steem Power (SP). As it is logical to think,

users who invested more, have more interest in making Steemit grow healthily.

As a matter of fact, Steemit decides to empowers users according to their eco-

nomic investment [27]: each user’s influence over reward distribution is directly

proportional to the amount of SP he owns [27]. This business model gives

users an incentive to create traffic and contribute to the community, ensuring

the platform’s sustainability at the same time [28]. However, it opens an ethical

question. It is important to balance the influence of each user fairly to avoid

creating a sort of aristocracy where a few users can directly influence the whole

community, as Steemit itself is risking [29]. For example, since our project is

about an advertising platform, it is crucial to give both old and new users their

opportunity to shine.

2.5.2 Curation Markets

Curation Markets is a smart contract built on Ethereum to reward curating

and moderating in blogs and forums. The idea is to create a token for each topic.

Each user who is creating or contributing to quality content gets rewarded by

the token related to the topic. As it is logical to think, the better the content the

more the platform will be able to attract users [30]. In our use case, it could work

for rewarding topic filtering, moderation and, content ranking.

Innerlight is a decentralized discussion platform about mental health. It is built

on IPFS and Ethereum and it has its own implementation of Curation Markets

[31]. Its token is LightCoin. For example, it can be used to upvote a comment.

13

2.5. CONTENT VISIBILITY AND SOCIAL INCENTIVES

Once an algorithm picked the best answer, the user who wrote it and the users

who upvoted it get rewarded. In this way, the Curation Markets system rewards

the one who created the content but also the other users who took part in the

discussion. As a result, a certain quality standard should be ensured.

2.5.3 Etherna

Etherna is a decentralized video platform based on Ethereum and Swarm

[32]. In its architecture, we can find two interesting implementations of Swarm

functionalities. The first one is the Etherna Index. An index is a data structure

that contains references for each content that has been uploaded to the platform.

The aim is to create and maintain an index for each topic or category, then assign

a weight to each video accordingly to quality parameters. As a result, an index

is a weighted list of videos. Following this approach, the content is internally

organized and it is easier to select and show the best content the platform can

propose. Thinking about our use case, it would be interesting to add indexes

to collect products or enterprises belonging to a common theme or category. In

this way, the website content could be better arranged and easier to explore.

On top of that, Etherna introduces also the concept of Frames. By definition,

a frame is linked to a topic and it has a self-managed community in charge of

moderating and managing the content. Following the same concept of Indexes,

Frames aims to arrange videos and split them into smaller groups to make mod-

eration activities easier. It is important to notice that every user can create his

own frame and also that a video can be inserted in multiple frames.

The last relevant implementation is about Swarm Feeds. Each creator has his

own Feed and any new content will be uploaded to the Feed since it is all man-

aged at the network level. In this way, Etherna offers an easy way to access a

specific creator. It is a sort of Youtube channel page.

2.5.4 D.tube

As the last example, we have another video streaming platform: D.tube. It

is built atop of Avalon blockchain and it relies on IPFS as distributed storage.

The interesting thing about D.tube is its tokenomics. It has a basic value, called

D.tube Coin (DTC). Staking DTC produces VP. VPs then can be spent to vote

a video. Since the content exposure is based solely on upvotes, downvotes and

14

CHAPTER 2. STATE OF THE ART

tags, VPs have a direct influence on content exposure. On top of that, D.tube

proposes a gamification scheme for curation activities. When a user votes a

content using VPs, it is like he gets a percentage of video revenues because he

is endorsing it and hence he is contributing to its popularity. As a consequence,

if the video goes viral and earns popularity among the community, i.e. it gets

voted by other users and it earns VPs, voting users will earn a certain amount of

DTC proportional to the VPs spent on their votes. In other words, it is like users

can bet on the content they think will become popular. If the guess is right, they

will earn. Otherwise, they will lose their VPs. At the same time, creators are

rewarded in DTC according to the amount of VPs a video gets. Finally, D.tube

has a self-sustainable economy where creators are motivated to produce popular

content and users are also rewarded for taking part in community moderation

[33].

15

3
Ethereum

Ethereum is a cornerstone of my dApp since it handles all the business logic.

Also, the naming system and the distributed storage that I have chosen to imple-

ment in my project are built on top of Ethereum. Consequently, it is important to

revise some basic concepts about blockchain and Ethereum to better understand

the whole project architecture.

3.1 The World Computer

Decentralized digital currency has been a research topic from early 80s, but it

became a real thing only several decades later when Satoshi Nakamoto created

Bitcoin in 2009. Bitcoin is a peer-to-peer electronic cash system based on its

homonymous cryptocurrency, bitcoin.

Nakamoto’s mission was allowing digital payments between two parties with-

out involving any financial institutions. The innovative idea was relying on a

distributed ledger, called blockchain, to keep track of the collection of all bitcoin,

also referred as state.

Blockchain is an ever-growing sequence of blocks where each block has a list

of transactions and it is linked to the previous one. Transactions are simply

transfer of bitcoin from a user to another. In other words, we can say a transac-

tion updates the network state since it changes the coin distribution. On top of

that, Bitcoin also allows to attach a script in every transaction. A script is a list

17

3.1. THE WORLD COMPUTER

of instructions where the sender can specify how the receiver can gain access

[34]. It enforces an agreement between two parties by adding predefined and

automated clauses.

However, Bitcoin scripting language is not Turing-complete. This is a barrier

against writing complex programming functions. For example, it is not possible

to write a loop cycle. Moreover, the Bitcoin state can hold only one information:

if a coin is spent or unspent. Another internal state cannot be kept [35].

In 2013, Vitalik Buterin created Ethereum with the mission of overcoming these

two problems and hence allowing developers to create their own rules for own-

ership, transaction formats and state transition functions. As Bitcoin, Ethereum

is based on blockchain technology, but the key difference is that Ethereum is

a distributed state machine rather than a simple distributed ledger. Indeed, it

acts like a single computer where it is possible to run software programs able to

define how the network state changes from block to block. Ethereum distributed

computer is called Ethereum Virtual Machine (EVM) and it is also referred as

"The World Computer".

It is important to define what is the state in the Ethereum network and under-

stand how it is different from Bitcoin one. Ethereum state is a combination

of accounts and state transitions to transfer an economic value or information

between accounts.

An Ethereum account is identified by a 20-bytes address and it is made of four

values: nonce, ether balance, contract code (optional) and storage. Ether, or

ETH, is Ethereum native cryptocurrency. On top of that, we can distinguish

two different types of accounts: externally owned and contract. The first one is

controlled by a set of private keys and it usually belongs to a human being. The

second one instead is automated because it is controlled by contract code, as we

are going to delve into the next section.

If a Externally Owned Account (EOA) wants to change the network state, it has

to initiate a transaction, which is a signed data package. For example, the sim-

plest transaction is a transfer of ether from an account to another. A transaction

has always a related cost, called fee or gas fee, which quantifies the computational

effort required to execute the related operation on the Ethereum network. The

fee price increases according to the congestion level of the network, but it is al-

ways possible to predict it. Indeed, a fee is made of a base and priority. The first

value depends on previous blocks and it is burnt after the block is minted. The

second one instead is an optional parameter to speed up the minting operation.

18

CHAPTER 3. ETHEREUM

In other word, an account can pay an additional amount of ether to incentive

nodes to mint that block. As last thing, this fee mechanism serves in preventing

spam and to avoiding computational wastage. Indeed, each transaction has a

parameter, startGas, which specifies the limit of computational steps. In this

way, it prevents infinite loops due to bad programming or a bug in the code [35].

3.2 Smart Contracts

A smart contract is a self-executed digital agreement. This concept is way

older than Bitcoin and Ethereum. It was formulated in 1994 by Nick Szabo, a

legal scholar and a computer scientist.

Szabo underlined the need of a new way to formalize agreements and relation-

ships and he proposed to enforce written agreements using programs running

on a computer network [36]. In order to better explain the concept of smart

contract, we can mention the parallelism between a smart contract and a vend-

ing machine made by Szabo. Between vending company and customer there

is the following implicit agreement: once the payment is received, the desired

item will be dropped. In a similar way, a smart contract executes its predefined

clauses when the conditions are met.

In the Ethereum network, we refer to smart contract as a code script running

on the EVM. It is made of a set of functions and a state, which is stored on the

blockchain.

As Buterin himself said, smart contracts are treated as "first-class citizens". They

are a type of Ethereum account, hence they have a balance and they can submit

or receive a transaction.

Generally speaking, smart contracts serve as backend to handle the business

logic of decentralized applications and Decentralized Autonomous Organiza-

tion (DAO). DAOs are a perfect example to understand how powerful a set of

smart contracts can be. Indeed, a DAO is a collectively owned organization

without a centralized leadership. All the rules are defined by smart contracts.

Crucial decisions such as budget allocation, investments strategy or proposal

approval are taken by voting. As a result, since smart contracts are tamper-

proof, it is impossible for any member to cheat and act on behalf of the entire

governance. Complex organizations like DAOs are possible thanks to EVM

Turing-completeness, which allows developers to write rules without any lim-

itations. Moreover, Ethereum has several high level programming languages

19

3.2. SMART CONTRACTS

such as Solidity and Vyper that make writing smart contract easier.

The Ethereum community has grown prominently from its foundation and the

interest and the support in writing smart contracts have grown as well. As a con-

sequence, many Ethereum Request for Comments (ERC)s have been proposed

to solve common problems and standardize smart contract developing. Among

them, the most famous is the ERC-20. It is the technical standard for implement-

ing a fungible token. It is built atop Ethereum network to provide a secondary

feature such as representing a financial asset, voting rights or reputation points

[37]. According to the technical documentation [38], an ERC-20 token is defined

by six mandatory methods:

• totalSupply: returns the total number of token created

• balanceOf: returns the number of token in the wallet of specified address

• transfer: moves tokens from total supply to a user’s balance

• transferFrom: allows token transfers between users

• approve: checks if it is possible to perform the transaction, i.e. that the
totalSupply is not overcome

• allowance: the remaining number of tokens the spender can spend on
behalf of the caller

Then there are three optional methods to increase usability:

• name: returns the token name

• symbol: returns the token symbol

• decimals: returns the token divisibility

As the last thing, there are two events that the smart contract must trigger:

• Transfer: a log of a successful call from transfer or transferFrom

• Approval: a log of a successful call from approve method

We will see later in chapter 5 how ERC-20 has been implemented in my work

to realize a tokenomics, granting rewards to active users.

As the last step, it is useful to examine a smart contract life-cycle [39]:

• creation: it includes design, implementation, and validation. It is a bit
different from traditional software development because a smart contract
is not patchable or upgradable.

20

CHAPTER 3. ETHEREUM

• compilation: a compiler turns the contract in bytecode to make it readable
for EVM. It also produces the Application Binary Interface (ABI), a JSON
file to describe the functions in the smart contract and the contract itself.

• deployment: contract account is created and stored on blockchain so it is
accessible from any party.

• execution: the code will be automatically executed whenever a condition
is met.

• completion: after the execution, the related transactions are stored in the
blockchain and the state is updated accordingly.

3.3 Consensus Mechanism

As we have seen earlier, transactions can change the network state. A trans-

action request must be broadcast to the whole network and then, a node called

validator will execute the transaction and transmit the updated network state to

the other nodes. Since there is no central authority checking the state, there is

not a single source of truth able to arbitrarily select the right block to attach to

the blockchain. Consequently, there is a need for a consensus mechanism. It is a

stack of protocols, algorithms and incentives to ensure a distributed set of nodes

is able to meet a general agreement about the current network state. Decentral-

ized p2p networks such as Ethereum can be severely affected by a Sybil attack

where a single malicious entity tries to present multiple identities to control a

fraction of the system [40]. As a consequence, a consensus protocol must imple-

ment a sybil-resistant component to protect the network. The two most common

are Proof-of-Work (PoW) and Proof-of-Stake (PoS). The main difference is who

are the users in charge of performing state transitions. In PoW, the set of users

is made of the owners of computational power, also called miners. They have to

solve a cryptographic puzzle to attach a new block to the blockchain and hence

get a reward. As a result, the dominant strategy for a miner is to always direct

all its computational power on only one block to beat the competition.

Meanwhile, PoS empowers stakeholders. In order to join the protocol and be-

come a validator, a node must stake a specific amount of money. For what

concerns Ethereum, the stake is a deposit of at least 32 ETH.

Initially, Ethereum relied on PoW but it recently switched to PoS after the

Ethereum Mainnet joined the Beacon Chain [41]. The switch to PoS ensures

21

3.3. CONSENSUS MECHANISM

more security and more decentralization [42].

Currently, the Ethereum consensus mechanism is Gasper, a combination of two

different protocols: Casper and GHOST [43].

First thing, Casper is a block finalizing mechanism based on round robin voting.

[44]. It is based on PoS and it provides an incentive system to motivate validators

to be honest and punish those which don’t fulfill their tasks or act against the

rules. A node gets a reward whenever it proposes a new block or it votes for

a new one. At the same time, its deposit can be slashed if it breaks one of the

following Casper rules:

• a validator cannot vote for multiple block proposals

• a validator cannot produce contradictory attestations

The incentive design is vital to ensure a properly working consensus mech-

anism because voting procedure in PoS is free. In comparison with PoW, it is

not required computational power and energy consumption, so without severe

punishment, the dominant strategy for a validator would be to vote for every

block to be sure to guess the right one [45]. Casper rules counterbalance this

strategy by allowing each validator to place only one vote. In this way, a vote

is a sort of maximum odd bet and validators have every reason to play it right

because attesting to an invalid or contradicting block leads to a penalty.

Before having a look at Casper voting procedure, it is worth describing how ran-

domness is achieved because it is a key aspect to ensure fairness and security.

Indeed, a fully predictable protocol provides more opportunities for attackers.

When we talk about blockchains, randomness is not truly achievable because

each node produces a different value, or better, nodes cannot agree on the same

random value. Hence, it is not possible to reach a consensus. Instead, it is pos-

sible to achieve pseudo-randomness. In this regard, the chain stores a bytes32

value called RANDAO. After every block, the last block proposer mixes its dig-

ital signature with the existing RANDAO value. In detail, Ethereum validators

have a Boneh-Lynn-Shacham (BLS) signature to sign blocks and attestations.

Since these signatures are generated to be uniformly distributed and secrets, it

is not possible to predict in advance the next RANDAO value. As a result, the

combination of RANDAO with the proposer’s signature leads to incrementally

gather randomness [46]. During each epoch, about 6.4 minutes, a new seed is

computed by mixing the RANDAO value and the round number. Then, the list

of validators is shuffled via a swap-or-not algorithm which uses the seed to en-

sure pseudo-randomness. After the shuffle, validators are divided into subsets

22

CHAPTER 3. ETHEREUM

of at least 128 nodes, called committees. On top of that, it is selected the block

proposer. In detail, also this selection relies on the seed value to ensure pseudo-

randomness. On top of that, the probability is directly proportional to the node

balance [47]. Committees are disjoint sets so a validator can be assigned only

to one subset. Technically speaking, committee creation is not essential in the

voting procedure but it is extremely functional because creating smaller p2p

sub-nets avoids overwhelming the network or the nodes. After committees are

created, each validator has to make its attestation where it shares its view on the

blockchain. In particular, it claims that block A is the parent of the new block B,

or using Ethereum’s slang, A is linked to B.

In an ideal case, a blockchain is similar to a linked list of blocks where each parent

block has only one child. Nevertheless, a fork can happen because of latency or a

malicious attack. As a result, the blockchain can have sub-trees. In these cases,

validators need a rule to recognize the canonical head of the chain and attest

to it. In the Ethereum blockchain, the fork choice rule is provided by a greedy

algorithm called Greediest Heaviest Observed SubTree (GHOST). According to

GHOST, anytime there is a fork in the blockchain tree, a validator has to attest

as the head of the chain the sub-tree with the heaviest weight. The weight w of a

block B is the sum of the stake of the validators whose last attestation is to B or

descendants of B. Since a validator is rewarded when its attestation is right, the

best strategy could be to wait for others’ attestations and vote after being sure

to attest properly [46]. To be precise, the above strategy was actually the best

one until the Altair update in October 2021 [48]. Altair changed the penalty and

reward values to motivate timeliness over carefulness. In other words, now a

validator is more likely to be fast than prudent. Consider the example from Fig.

3.1 and imagine every validator has a stake equal to one. We can see that three

validators voted for the blue block so its weight is equal to three. As a result,

a validator running GHOST has to attest that the blue block is the next head of

the chain.

Attestations are then gathered together in a single message by a set of special

nodes called aggregators. Each committee has a certain number of aggregators,

which are defined by the seed value at the start of the epoch. The message will

be later sent to the block proposer. At the end of the voting round, if a link has

been voted by 2

3
of the validators is said to be a supermajority link. As a result,

block A goes from justified to finalized while B is justified. It is easy to see that

each proposed block can be finalized in two rounds [49].

23

4
Ethereum Swarm

Swarm is a peer-to-peer network of nodes to provide a decentralized storage

system and communication service. Its mission is creating a “distributed hard

disk for Web3” [51].

It is organized in four different layers:

1. Underlay p2p network

2. Overlay network

3. High-level access via API

4. Application

Layer (1) is based on lib p2p protocol. It provides basic networking func-

tionalities such as addressing, dialing, and listening. On top of that, it ensures

security in the communication channel, protocol multiplexing, delivering, and

serialization.

In this chapter, our focus will be on layer (2) and layer (3) because they are the

core of Swarm.

4.1 Overlay network

The overlay network is built upon Kademlia. It is a peer-to-peer protocol ex-

ploiting the Distributed Hash Table (DHT) technology to enable communication

between two nodes.

27

4.1. OVERLAY NETWORK

4.1.1 Kademlia Connectivity

Swarm is a Kademlia topology: a network where each node is connected

to the closest nodes, its neighbors, and also it is connected to at least one peer

from different clusters [51]. To better understand this definition we have to

comprehend how addressing works in a Swarm network.

In the overlay network, each node has a unique 256-bit address. It is computed

as the Keccak hash of an Ethereum address and the ID of Swarm Network, also

called BZZ Net Id. This pair of identifiers ensures the address uniqueness over all

Swarm networks. On top of that, the overlay address is crucial for computing the

Proximity Order (PO). This value quantifies how much two nodes are related.

Taken two addresses, PO is computed by counting the number of matching bits

in their related binary representations from the most significant one up to the

first one that differs. As an example we can take two addresses x and y. Since

each matching bit counts as one, if we have 𝑃𝑂(𝑥, 𝑦) = 256, then there is the

max proximity order degree possible between two nodes. As a result, we have

𝑥 = 𝑦.

Now we can create a Kademlia table for each node. It is the indexing of all

peers based on proximity order. By definition, a Kademlia table is saturated if

all nodes as near as an arbitrary proximity degree 𝑑𝑥 are peers of x and at least

one peer for each PO equivalent class is a peer of x.

Finally, since each node in the overlay network has a saturated Kademlia table,

Swarm is a Kademlia topology.

The latter claim is fundamental to understanding how routing works in Swarm.

In opposition to other peer-to-peer implementations, the Swarm team decided

to rely on forwarding as the routing flavor [51]. It works as follows: when a

node has to relay a message, it has to send it at least one step closer to the

destination. In a Kademlia topology like Swarm, a message is always routable.

It is easy to understand why: since a node is connected to at least one peer from

each equivalence class, it can always forward the message one step closer to the

destination. Obviously, it is crucial to maintain a Kademlia topology to ensure

the routability of all messages. As a consequence, a node must keep in several

connected peers for each PO class to be sure that node dropout doesn’t distress

the saturation of its Kademlia table.

Forwarding routing deletes unpredictability in message delivery because nodes

relay messages only to nodes that are surely online and connected.

28

CHAPTER 4. ETHEREUM SWARM

4.1.2 Storage Model

The second Swarm cornerstone is Distributed Immutable Store of Chunks

(DISC). It is a storage model: it provides a set of rules to make nodes collabo-

rating in storing and serving data.

A DHT is a key-value mapping distributed over a network. Generally speaking,

DHT associates an address, the key, to a set of nodes, the value. For example,

in IPFS the content retrieval works as follows: a Downloader D asks for a key,

which is the content identifier, and then it gets as value a list of nodes that can

serve the content. As last step, D requests the content to one node in the list.

With DISC, Swarm introduces a new interpretation of DHT for storage over

Kademlia routing. The main difference is what value Swarm associates to each

key. In opposition to IPFS, values are not content locations but they are chuncks

of the content itself. Swarm approach is more straightforward because DISC

deletes one step from retrieval procedure, as we can see clearly see from Figure

4.1.

Figure 4.1: Comparison between IPFS and Swarm retrieval system [51]

Type of Chunks

A chunk is the basic storage unit in the DISC model. We can distinguish two

types: Content Addressed Chunk (CAC) and Single Owner Chunk (SOC).

A CAC is a Binary Merkle Tree (BMT) chunk [51]. It is a data structure composed

of leafs, 32-byte data segments, and branches. Each leaf is labeled using the

Keccak hash of the data segment while a branch label is computed as the Keccak

29

4.1. OVERLAY NETWORK

hash of its children labels. In figure 4.2 we can see the whole structure of a

binary tree chunk: 𝐷
𝑗

𝑖
are the leafs, 𝐻

𝑗

𝑖
the branches.

Each CAC is composed of an 8-byte span plus a payload of a max of 4096 bytes.

Its address is the Keccak hash of the BMT root plus the span. As a consequence,

Swarm addressing is collision-free because each chunk has a unique address and

it is also deterministic because it allows the downloader to check the correctness

of the content. In other words, it enables local validation and integrity guarantee.

While in CAC the address ensures integrity, in SOC a user can assign arbitrary

data to an address. As a consequence, it is the user himself who has to attest to

integrity via his digital signature. A SOC is made of

• identifier: 32 bytes

• signature: 65 bytes

• span: 8 bytes

• payload: 4096 bytes

The address is then computed as the Keccak hash of the identifier plus the

owner Ethereum address.

Swarm Feeds

Feeds are the primary use case of SOC. A feed is a sequence of SOC with

a predictable address, also called feed chunks. It is the perfect solution to use a

static address for mutable content [52].

Like every chunk, a feed one is made of a 8-byte span and the payload of max

4096 bytes. On top of that, each feed chunk has a unique identifier that is

composed of Topic and Index. The first one is the hash of an arbitrary string,

usually human-readable, that is attached to specify the topic. The second one

depends on the type of feed we are considering. In the simplest case, it is an

integer value.

The whole structure is well represented by figure 4.3.

The owner of a feed can post an update following this procedure:

1. constructing the feed identifier using the topic and the correct index

2. combining identifier and owner Ethereum address to sign the chunk

30

CHAPTER 4. ETHEREUM SWARM

capable to trigger an automated event. The first one is the limit on self-balance,

when it is reached it triggers a transfer of found via a cheque to the remote peer’s

address. While the second one is the limit that triggers the disconnection from

the remote peer once reached [55]. As we can see from figure 4.6

Figure 4.6: Basic functioning of SWAP protocol [51]

Since peers engage each other often, it is reasonable to defer payments and

process them in bulk. This strategy reduces transaction costs but at the same

time, it increases the risk of settlement failure. The strategy implementation is

performed thanks to a smart contract called chequebook. It acts like a bank: once

the payment threshold is reached the issuer gives the recipient a signed cheque

with the beneficiary, amount, and date; then the recipient can cash that cheque

by submitting it to the smart contract.

On top of that, SWAP allows peers to exchange cheques to save again on trans-

action costs. Imagine the scenario in which node A issued a cheque to node B;

then B got into debt with A. Instead of issuing another cheque to A, B can simply

waive the first cheque signed by A. Chequebook will record the payout.

As the last thing, it is interesting to notice how a newcomer can interact with

the network even if it has a null balance. The newcomer can stack cheques

by providing services to peers with funds, called the insider, but since cashing

cheques has some transaction costs, it won’t be able to monetize them. To delete

the entry barrier, SWAP has a feature that allows an insider to cash newcomer’s

cheques and then trigger a payment to the newcomer’s address. In this way, it

35

4.2. INCENTIVE SYSTEM

is possible to get started in the Swarm network without any initial investment.

4.2.3 Storage Incentives

The bandwidth incentive system has an important side effect. Since a node

gets rewarded when it retrieves a chunk, the more often a chunk is requested,

the more a node earns. In this way, profit is directly proportional to content

popularity. The ratio between storage cost and retrieval profit is crucial when

a node is running out of storage. Indeed the chunks with the lowest profit per

storage ratio will be the first to be purged because a node priority is maximizing

profit. As a consequence, popular content will be spread across the network

while unpopular ones will become rarer and, in the worst scenario, they are

likely to be lost. Since data persistence must be ensured, Swarm implements a

storage incentive system based on postage stamps and postage lottery.

Postage Stamps

As the first point, a postage stamp serves as proof of payment. By purchasing

a stamp, a user earns his "right to write" on the network. It is a sort of uploading

tax.

Stamps are sold in batches. Each batch is created by a smart contract whenever

a user sends a proper request to the dedicated endpoint. As we can see from

code 4.1, each request has to specify an amount of BZZ assigned to the batch,

and batch depth which is the maximum number of chunks allowed to be in the

same bucket [52]. Just as a reminder, Swarm address space is divided into 65536

buckets; during the uploading phase the file is split into 4 kb chunks which are

assigned to different buckets according to their address.

1 #Requesting a batch

2 $ curl -s -XPOST "http://localhost:1635/stamps/amount/batch_depth

"

3 #Check on node stamps

4 $ curl "http://localhost:1635/stamps"

5 #Top up a stamp

6 $ curl -X PATCH "http://localhost:1635/stamps/topup/batchID/

new_amount"

Code 4.1: "Console interaction with stamps endpoint"

36

CHAPTER 4. ETHEREUM SWARM

Going back to request parameters, the amount determines the Time To

Live (TTL) of a file. Indeed each batch has a batchTTL, which is computed

according to the storage price during upload under the assumption that the

price will be static in a near future [52].

BatchTTL is equal to the number of seconds before the related chunk is consid-

ered for garbage collection. As a consequence, once batchTTL is expired, the

related chunk is moved to the cache. If the node is in capacity shortage, then the

cache is pruned [53]. In other words, recency is taken as a popularity predictor.

Under these considerations, it is important to notice that postage stamps act

also as spam protectors. Imagine a storage system based solely on recency: it

would be easy to perform a spam attack to replace stored content with useless

chunks. By introducing an uploading cost via postage stamps, Swarm is able to

ensure certain data persistence and at the same time an effective defense from

spamming.

From a technical point of view, we could describe a postage stamp as a data

structure made of chunk address, batchID, and witness. BatchID is needed for en-

abling validity checks via smart contract while the witness is the owner’s digital

signature. The latter is for associating the batchID and the owner address.

The network considers a stamp valid only if it is

• authentic: the batchID is valid

• authorized: The witness is signed by the address specified as the owner
of the batch.

• founded: the batch has a non-zero TTL

As the last thing, it is important to notice that each user can extend a batch

duration by topping up the desired batch using the stamps endpoint, as we can

see from code 4.1.

Postage Lottery

We have seen that postage stamps are crucial for spam protection and for

handling garbage collection but it is not enough to ensure data persistence.

Indeed once the stamp is not founded, the related chunk is very likely to be

pruned at the first capacity shortage. For this reason, Swarm has another storage

incentive: the postage lottery. Since an unpopular chunk doesn’t provide a

retrieval reward, the lottery goal is to compensate for the missing earnings by

37

4.2. INCENTIVE SYSTEM

redistributing the postage stamps revenue.

To enter the lottery, each node has to submit a transaction with a commitment

𝐶𝑖 = 𝐻(𝑠𝑖 |𝑎𝑖 |𝑑 |𝑅)

where

• H is a hash function

• 𝑠𝑖 is a random salt value

• 𝑎𝑖 is the overlay address of the applicant node

• d is the storage depth

• R is the Swarm hash of the concatenation of the first 𝑘 chunk address in
applicant node storage

Then the winning R and 𝑑 are drawn from all the commitments. Among

the nodes with 𝑅𝑖 = 𝑅, it is randomly picked the winning node 𝑤. As the last

step, the smart contract will check that the storage usage of 𝑤 is above a certain

threshold.

As a result, nodes are motivated to store chunks to be eligible for the lottery.

On top of that, they have also incentives to sync storage with their neighbors

because if they commit several different 𝑅𝑖 , the risk of losing increases.

38

5
CMS Design and Implementation

I have decided to call the application SwarmAd. It recalls on purpose EtherAd,

i.e. the application developed by Martini [3], because it has been the starting

point for my thesis.

In this chapter, we are going to see the actual implementation of SwarmAd.

First, we are going to point out all the core functionalities that the CMS must

provide. Then, I will explain how all the components described in the previous

chapters will be assembled to satisfy those functionalities and provide the de-

sired services. Finally, we will have a brief look at the local environment I have

set up for developing and testing purposes.

5.1 Requirements

Firstly, it is important to remind that the target is to build a platform where

SMEs with similar aims can aggregate and cooperate to maintain a common

showcase without technical expertise and relevant maintenance expenses. As a

consequence, a crucial point is to provide an intuitive application.

In brief, the dApp must:

• have a web User Interface (UI) easy to access and use

• provide a showcase where enterprises can show their product to potential
customers

• avoid any overhead, like browser extensions or third-party applications,
that are not essential to the functioning of the platform

39

5.1. REQUIREMENTS

The latter point is important because any redundant entry barrier could

undermine the convenience of using the platform since the target customer is

not required to have any expertise. On the other hand, we will see how some

overheads will be essential to make the application working and to ease some

procedures. For example, since it is a dApp, every registered user needs a valid

Ethereum account to exploit the app functionalities like uploading a product on

the showcase.

As a second point, we have to remember that the membership is reserved for

users who are related to the community scope. In this sense, it is very different

from the examples like Helios or HiDe that we have seen in Chapter 2, or from

the traditional social apps. For example, if the platform is reserved for pottery

craftsmen located in a specific Italian village, a user who doesn’t meet these

requirements has to be rejected by the community.

Being a registered user enables a specific set of services but it also includes some

responsibilities.

A registered user must be able to:

• create, read, update, and delete his enterprise profile

• create, read, update, and delete an item

• vote to accept a newcomer

• report any misbehavior from other members

• vote to ban a member who is acting against the rules

• vote to delete an inappropriate item posted by another member

• propose changes in administration settings

• vote about proposals

Besides, we can add the following optional functionalities to improve the

usability:

• a user can create his profile page and organize his content according to his
liking

• users can discuss relevant decisions in a specific space, a sort of community
forum

Meanwhile, a non-registered user can:

• navigate the homepage showcase

40

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

• access each enterprise profile page

• report any inappropriate item or enterprise

A report from a non-registered user has to be examined by members of the

community before a voting procedure is created.

The administration is fully automated by a set of smart contracts. Indeed, there

is no central authority but there is a consensus process where each registered

user can take part and express his will. In other words, all the decisions are to

be taken from the registered users fairly and democratically. Considering our

use case, decisions will be about:

• accepting a newcomer

• banning a user or item

• changing settings in community administration

For example, users could decide to increase the voting procedure duration

or decrease the quorum to establish the winning proposal.

To sum up, the automated administration has to:

• keep track of all the registered enterprises

• keep track of all the items posted by registered enterprises

• keep a meaningful mapping between an image and its Swarm hash

• define threshold, quorum, and deadline for user voting

• open a voting procedure when a registered user flags a misbehavior

• keep track of reports from unregistered user

• broadcast a report to registered users

• keep track of active voting procedures

• close a voting procedure when the quorum or deadline is met and broad-
cast the result

• perform the required action when the voting procedure is closed, like ban
a user or remove an item

• broadcast to registered users any relevant event, such as a new poll or a
new proposal

• define a reward system to motivate users in community moderation

• define a penalty scheme to punish users who are acting against the rules

41

5.2. STACK DESIGN

• create a waiting list to handle newcomers’ requests

• keep a blacklist of banned users

In particular, rewards and penalties are crucial for the functioning of the

application because they motivate users to be active in community moderation

and be respectful of the rules of conduct. Without a properly working incentive

scheme, the platform would not be able to reach its goals. Here is the case of

digress. SwarmAd is an advertising platform, so it is a sort of "business card"

for enterprises that participate: if the reputation of the website is good, then

the enterprises benefit from it. Otherwise, they can be damaged. As a result,

there is an implicit incentive to keep a healthy community. On the other hand,

moderating is a time-demanding activity and in the long run, users could be

bothered to invest time in an "abstract" reward. Things change if rewards are

tangible and pleasing. For example, we could provide a highlight spot on the

showcase to the most active users. Since it is an advertising platform, it would

be a significant edge over the other members, who de facto are competitors. In a

later section, we will delve into the tokenomics design to better understand the

whole incentive system.

5.2 Stack Design

A Web3 application is way different in comparison with the traditional web

apps. First, the back-end code is running on a decentralized peer-to-peer net-

work instead of a centralized server. As a result, the application state has to

be saved on a blockchain. In this regard, among the different options, I have

chosen Ethereum. Indeed, it supports smart contracts and it has extensive doc-

umentation and a very active community of developers working on it. From a

developer’s point of view, it is the best choice to enter the Web3 ecosystem. On

the other hand, the main drawback of Ethereum is scalability. Nevertheless, if

we consider the application use case, the number of registered users should be

small hence it wouldn’t be a relevant issue. On top of that, I expect a very higher

request in reading the blockchain instead of writing on it. In other words, I

expect more users who passively navigate the content in comparison with users

who are registered and upload content. Since querying the blockchain is a

gas-free operation, the transaction costs should not be an issue. For example, if

we were planning to build a marketplace, opting for a layer-2 solution such as

42

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

Polygon would be taken into consideration. Indeed, customers would perform a

transaction to buy a product so the ratio between reading and writing operations

would be different.

Second, I have chosen Swarm as distributed storage. This choice is counter-

trend compared with the many examples I have illustrated in Chapter 2. As I

have underlined in Chapter 4, Swarm is an interesting solution to data persis-

tence because of its built-in storage incentives. It allows a fully decentralized

architecture: the network itself is in charge of maintaining the uploaded data.

Compared with IPFS, there is no need for an always-online node to be sure that

files are accessible.

In Figure 5.1 we can see a complete schema of the technological stack I have

chosen to realize my dApp. Further in this section, we are going to analyze each

component and understand how they interact with each other.

5.2.1 Back-end Development

In a dApp, a blockchain is designed to act as a back-end server by running a

set of smart contracts where the business logic is defined.

Before going any deeper, it is important to have a look at the main entities

involved in the application workflow. From the requirement analysis, we can

extract the following:

• enterprise: a registered user; it has its profile and it is able to create, read,
update, and delete an item

• item: it is a product posted by an enterprise to be shown

• poll: a voting procedure

• token: the base unit of the reward system

At first glance, it could be possible to create a single monolithic smart con-

tract to handle all fours. Nevertheless, I think that a modular approach is a

better solution because it can enable contract upgradability and it also allows

to reuse secure and tested contract standards. The latter procedure is strongly

encouraged by the Ethereum Foundation in the best practices for smart contract

development [56].

In regards of upgradability, it is also important to remember that smart contracts

are immutable by design. As a consequence, if we have to fix a bug or make

43

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

overhead and increases costs.

After these considerations, I have opted for a data separation pattern where a

contract is for storing and managing the data, i.e. enterprises and items, while

the other functionalities like tokenomics and community governance are han-

dled by two separate contracts.

As we can see from Figure 5.1, we have three entities:

• SwarmAd: to store data and implement the Create Read Update Delete
(CRUD) operations

• SwarmAd Community Token (SWCT): a token based on ERC-20 standard

• SwarmAdGovernor: to handle the voting procedure

Additionally, I could have broken the structure even more by separating data

and the CRUD functions. Nevertheless, I think that the three-contract solution

is still the best trade-off between modularity and expenses. Indeed, Item and

Enterprise are easy to define in an inclusive and precise manner. It is difficult to

imagine a drastic change in the data model because it would implicitly include

a drastic change in the application use case. Also, CRUD is a set of basic

operations. It is unlikely for them to be changed because they are strongly

related to the data model. Finally, gathering together Enterprise, Item and the

related functions seems the most reasonable option.

5.2.2 Enter the blockchain

Once we have defined the business logic architecture, it is important to

understand how the application will interact with it. As we have seen in Chapter

3, a contract must be deployed to the Ethereum blockchain to be accessible. Once

it is deployed, a user must connect to the blockchain in order to interact with it.

At this point, we have two different solutions:

• setting up a personal Ethereum node

• relying on a provider

A provider is a third-party service that makes its Ethereum client available

to external users. In this way, a user can connect to the blockchain without

having a personal node. This option is very convenient because it frees users

from having any expertise or spending time on tasks such as setting up a private

Ethereum account.

45

5.2. STACK DESIGN

Nevertheless, a provider is not enough to have full interaction with the Ethereum

ecosystem. Indeed, as we have seen in Chapter 3, we can distinguish two

different blockchain operations. The first one is reading. It is a gas-free operation

because it doesn’t change the network state. Consequently, a user needs only

a connection to a public Ethereum node to query the blockchain. On the other

hand, if a user wants to perform any kind of operation different from reading,

he has to submit a transaction. As we have seen in chapter 3, each transaction

must be signed with a private key to validate the identity of the origin of the

transaction. As a result, a user needs a valid Ethereum account and a wallet to

sign and send transactions. Generally speaking, most wallet applications create

an Ethereum account for newcomers in order to ease the whole procedure. Since

a wallet is fundamental in the Ethereum ecosystem, a user has several options

to choose from. For example, a wallet can be:

• physical

• a mobile app

• directly integrated into a browser

• a browser extension

• a desktop application

In this regard, one of the best solutions is Metamask. It provides a wallet via

a browser extension or a mobile app. The interesting thing is that it can serve

both as a signer and as a provider because it has a connection with a public

Ethereum node hosted by Infura. As a result, installing Metamask solves the

two problems underlined before and hence it allows full interaction with the

application [57]. Obviously, installing a third-party service adds an overhead

but in this case, it is inevitable and it is way easier than running a personal

Ethereum node or setup other third-party solutions.

5.2.3 Accessing the Swarm

As we have seen in Chapter 2, it is a common strategy to rely on distributed

storage to store large files. In this way, it is possible to reduce transaction costs

and writing time at the same moment. To be precise, I have decided to adopt the

hash on-chain pattern [58]: the files will be stored on a distributed storage and the

references will be saved on the Ethereum blockchain. I have chosen Swarm as

distributed storage because of the built-in incentives and the guarantee of data

46

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

persistence, as I have delved into Chapter 4.

It is important to notice that everything that is saved or stored on Ethereum or

Swarm is public. By default, no access control restrains the visibility to a specific

set of users. When a node has access to a p2p network such as Ethereum and

Swarm, it is able to retrieve basically any content. As a result, certain applications

must focus carefully on ensuring users’ privacy or copyright. Nevertheless, this

is not an issue in my use case. Indeed, since SwarmAd is an advertising platform,

it is implicit that every content posted on the platform is public. Even better, it

is meant to be shown.

Similarly to Ethereum, accessing the Swarm network requires establishing a

remote connection to a Swarm node, also called a Bee client. Again, it is possible

to choose between running a private node or accessing through a public gateway.

Before going into the details, it is important to distinguish three different types

of Bee clients:

• full node: the standard one. It participates in retrieval, forwarding, and
storing. It is rewarded according to its contributions.

• light node: it doesn’t participate in forwarding and storing but it is able
to upload content on the network once a valid wallet is associated and
funded.

• ultra-light node: it is a light node without a wallet. As a result, it can down-
load files but it cannot upload them since it has no economical resources
to buy the postage stamps.

Among the different options, running a full node is without a doubt the best

option because it has no limitations and it can be a profitable activity since the

user would participate in the Swarm incentive system. On the other hand, it is

for sure a complex operation because it requires certain expertise and familiarity

with computer science. A light and ultra-light node are easier to set up because

it is all handled by a desktop application, called Swarm Desktop. The user has

only to download and install the application. Meanwhile, navigating via Swarm

Desktop doesn’t provide any reward. As the last option, we can use a gateway.

For example, Swarm Foundation is developing and maintaining a public gate-

way. The main drawback is that it has a limitation on bandwidth usage: it is not

possible to download or upload a file larger than 10 MB. Table 5.1 summarizes

the different options we have to access the Swarm network.

In an ideal case, the best solution is the one where every user runs his own

node. It is a win-win situation because users can earn rewards and the platform

47

5.2. STACK DESIGN

Gateway Ultra-light Light Full

decentralized no yes yes yes
download yes but limited yes yes yes
upload yes but limited no yes yes
postage stamps no no yes yes
rewards no no no yes

Table 5.1: Different ways to access the Swarm network

fault-tolerance is very high. However, this is not a feasible solution. As we have

underlined in the requirements, we want an easy and intuitive user experience.

Running a node could be an entry barrier very difficult to overcome. On the

other hand, relying only on a public gateway is neither the best option because

it is limiting the user experience and it adds a single point of failure. Hence, it

is in the opposite direction of the design philosophy. I have decided to imple-

ment a hybrid solution: using a private gateway. Even if we want to avoid any

external interference in the community, there is the need for a public or private

organization that is in charge of deploying the whole SwarmAd platform. In my

design, one of its responsibilities is to set up a node, or a set of nodes, to provide

a trusted entry point to registered users. This gateway I have implemented is

the one provided by the Swarm Foundation [59]. It is identical to the public

one but it has no limitations on bandwidth usage. On top of that, the organiza-

tion is rewarded in BZZ tokens according to the node contribution. As the last

thing, the gateway is also able to pin content, as any Swarm full node. Pinning

the front-end asset folder could provide an extra guarantee of data persistence.

Regarding the latter, Swarm supports the "upload and forget" principle: once

the content is uploaded, it is maintained by the network itself. As a result, if the

organization node went down, the data would still be available. This is a key

difference in comparison with IPFS where a node has to be always online.

It is also important to notice that the private gateway is not a single point of

failure. Indeed, in case of denial of service, users could access the network by

another gateway, such as the public one, or another node, for example, Swarm

Desktop. In case of failure of the private gateway, the application has a fall-

back function that switches the Bee client to the public gateway in order to

maintain active the core functionalities. We will see this solution in detail in

the next section. In these regards, Swarm Foundation is actively developing

a browser extension to ease the switching between a list of Swarm clients. In

48

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

this way, a user is able to select his preferred node as the trusted endpoint to

channel all the requests [60]. At the moment, it is still in Proof-of-Concept so I

have decided to not rely on it but it could be an interesting addition in the future.

5.2.4 Front-end interface

The front-end interface is the mean through which users will be able to in-

teract with Ethereum and Swarm to access all the app functionalities. Since the

website hosting is provided by Swarm, we cannot rely on the traditional web

app design where the application logic is performed on a server. On top of

that, all the data are stored on a blockchain. Consequently, it just needs a UI

to query the blockchain and represent the fetched data in a meaningful way.

As a result, I have opted for creating a Single Page Application (SPA). A SPA

is a single HTML page where are stored all the resources required to make the

application work properly. In comparison with a traditional web app, a SPA is

loaded only one time because all the further interactions don’t require a server

request, and hence the page doesn’t need reloading. In SwarmAd, the HTML

page will be downloaded from Swarm and then, all the data will be fetched

from the blockchain and the distributed storage.

In my project, I developed the application using React. It is a Javascript frame-

work developed by Meta. It is very popular in front-end development because

it ensures very good performance and efficiency. It is also particularly interest-

ing because it provides a clean separation between logic and UI components,

as we will see in a further section. On top of that, it has a large development

community, so it is well documented and there are several libraries and tools to

ease the coding process.

The front-end interface has to handle both the interactions with the Ethereum

blockchain and the ones with the Swarm network.

About the first point, every Ethereum client implements a JSON-RPC specifi-

cation. It is a collection of methods to provide a canonical interface between

clients and the Ethereum network [61].

As a second point, the web interface is remotely connected to the private gate-

way node via a Javascript library called Bee-js [62]. It is written and maintained

by Swarm Foundation. Bee-js has a class called "Bee" to create an instance of a

Swarm node. Through this instance, we can access the network and perform

49

5.2. STACK DESIGN

basic operations such as downloading or uploading a file. In Code 5.1, we can

see a simple example of how we can interact with the Swarm network. The

code snippet shows an uploading and a downloading process. It is important to

notice that in every upload operation a postage batch must be attached. Indeed,

as we have seen in Chapter 4, postage stamps work as spamming protecting and

guaranteeing data availability for a certain amount of time.

1 #Create Swarm node instance

2 import { Bee } from "@ethersphere/bee-js"

3 #In this example, the node is running on localhost and default

port

4 const bee = new Bee(’http://localhost:1633’)

5 #Get the postage batch

6 const postageBatchId = await bee.createPostageBatch("100", 17)

7 #Upload a file

8 const result = await bee.uploadFile(postageBatchId , "Hello World!

", "helloworld.txt")

9 #Download using the hash reference

10 const retrievedFile = await bee.downloadFile(result.reference)

11 #Print

12 console.log(retrievedFile.data.text())

Code 5.1: "A simple example of Bee-js functionalities"

5.2.5 Entering the website

As we have seen earlier, Swarm also stores the front-end asset folder and it

acts as the web host. Considering the Swarm built-in incentives, the web hosting

is "free" because we have at least one node, i.e. the private gateway, which is

taking part in the network activities. It is an advantage in comparison with the

traditional Web2 solution where we would have to pay a monthly fee to a central

authority to rent a server to host the application.

Swarm web hosting enables the creation of a fully decentralized application

but it also entails a major issue in accessibility. Indeed, Swarm uses a content

address protocol. Consequently, we need a 256-bit Swarm hash reference to get

the desired content. As an example, this is a Swarm reference of a website folder

after it has been uploaded to the Swarm network:

09𝑑1𝑑4049 𝑓 7163262𝑒5𝑑52695256𝑎6𝑐68𝑏23𝑎77𝑒5𝑎 𝑓 𝑏7𝑒𝑐𝑒6𝑎𝑒3252𝑏55𝑏𝑏𝑒476

50

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

It is easy to notice that it is not human-readable. As a result, it is highly

inconvenient accessing a web interface by typing something like

𝑏𝑧𝑧 : //09𝑑1𝑑4049 𝑓 7163262𝑒5𝑑52695256𝑎6𝑐68𝑏23𝑎77𝑒5𝑎 𝑓 𝑏7𝑒𝑐𝑒6𝑎𝑒3252𝑏55𝑏𝑏𝑒476

in our browser URL search bar. On top of that, a Swarm reference changes

every time we update the folder because it is computed as the Keccak hash of

the folder itself.

The solution I have decided to implement is to use an ENS domain to translate a

Swarm Feed reference into a human-readable domain. It is important to notice

that the reference is not to the website folder but it is to a Swarm Feed. This Feed

is constantly updated to maintain the reference of the latest folder containing the

web interface assets. This step could be seen as a redundant overhead because

translating the folder reference is more straightforward. However, any update

in that folder would require changing the mapping between the reference and

ENS domain. Since ENS saves its records on the blockchain, every update is

performed by a transaction and hence it costs gas. In Code 5.2 we can see the

script I have written to upload the website folder whenever it gets updated. This

script performs two tasks: the first one is uploading the new website directory to

the Swarm network, and the second one is writing the reference to that directory

in a Swarm Feed.

1 #Swarm node instance

2 const gateway = new Bee(’swarmad.xyz’)

3

4 #Ethereum account and its private key

5 const owner = ’0x73a4a14De3E49A63d71c7c0ff2CB3e572c102960’

6 const signer = ’0

x50f88c3b47c3c10581e227fd03fc077bd68945c83c5d7d32eb6179b06cca9480’

7

8 #Uploading the website directory

9 let options: CollectionUploadOptions = {errorDocument: "index.html",

indexDocument: "index.html", pin: true}

10 const dirUploadResult = await gateway.uploadFilesFromDirectory(

postageBatchId , "swarmad", options);

11

12 #Writing chunk hash to the Feed

13 const rawTopic="website-folder";

14 const topic = gateway.makeFeedTopic(rawTopic);

15 const writer = gateway.makeFeedWriter(’sequence’, topic, signer)

51

5.2. STACK DESIGN

16 const feedWritingResult = await writer.upload(postageBatchId ,

dirUploadResult.reference)

17

18 #Verifying the Feed with re-download

19 const feedVerification = await writer.download()

20 console.log(’Verification result: ’, feedVerification.reference ===

dirUploadResult.reference);

21

22 #Creating chunk hash for manifest that can be used with the BZZ

endpoint

23 const feed = await gateway.createFeedManifest(postageBatchId , ’

sequence’, topic, owner);

24 const websiteURL = ‘/bzz/${feed.reference}/‘;

Code 5.2: "Updating the web interface via a Swarm Feed"

By design, a Feed is directly related to an Ethereum address, hence it is important

to carefully select the Ethereum address that owns the website Feed. Consider-

ing my project, I think this is under the responsibility of the organization which

is setting up the application and its other components, like the gateway.

As far as security is concerned, the script directly exposed the owner’s private

key because it is needed to write the Feed. Consequently, in a production-ready

version should be preferable to use an ephemeral key or create a web interface

able to interact with a wallet like Metamask.

As the last thing, the considerations made in Subsection 5.2.3 are valid also in

this context. Since the website URL is like bzz://swarm-reference, it is required a

Swarm node to communicate using the bzz protocol. Hence, every user, reg-

istered and not, needs an entry point to the Swarm network to access the web

interface. In this regard, the gateway described in Subsection 5.2.3 comes in

help. Indeed, it is configured to support bzz.link that allows the translation of

Swarm references and ENS domains into /bzz calls. Figure 5.2 quickly sums up

the whole process:

1. User asks for https://swarmad.bzz.link

2. The request is handled by the gateway

3. The gateway solves the ENS domain into the feed reference

4. The gateway requests for Feed

5. The Feed is retrieved and it is pointing the latest version of the web interface

52

5.3. TEST ENVIRONMENT

5.3 Test Environment

Developing a smart contract requires a different approach in comparison

with web or mobile development. Indeed, contract immutability makes it harder

to fix a bug. On top of that, the cost of failure can be really high. In this regard,

it is worth mentioning The DAO case where a vulnerability in the contract code

caused the theft of about $9.4 billion USD worth of ETH [63].

These considerations underline the relevance of smart contract testing. We

can make a similar argument for Swarm. Posting files on the main-net is not

a free operation. It also exposes the files to the whole network and hence

it makes them public. As a result, I needed to create a local environment

that replicates the entire stack on my local machine for developing and testing

purposes. As the first thing, I have used Truffle to compile, test, debug and

deploy smart contracts. It is a development environment with a rich set of

useful functionalities, like automated contract testing or network management

to deploy a contract on a public or private network. Especially the latter is quite

interesting. Indeed, deploying and interacting with a smart contract on the

Ethereum Mainnet requires the payment of the gas fees. Hence, developers need

a cheap and safe version of Ethereum to run all the essential tests. To fulfill this

purpose, there are two options: public or local testnet. A testnet replicates all the

main-net protocols and functionalities even if it has a smaller number of nodes.

The key difference is that ETH on testnet has no real value, hence deployments

and interactions are free. In my setup, I have opted for a local testnet, so I have

installed Ganache, as suggested by the Ethereum documentation. It is a personal

blockchain for Ethereum application development. It also provides a set of ten

Ethereum accounts, each of which is funded with 100 ETH. They are easy to

impersonate because it is not required any private key. For example, they can be

directly imported to Metamask in order to interact with the dApp. I have used

these ten Ethereum address to test all the app functionalities without spending

real ETH in transactions and gas-fees. Ganache also provides a block explorer.

It is a useful feature to rapidly check the blockchain state and the data stored on

it.

I also have created a Swarm local testnet. For this purpose, I have used bee-

factory. It is developed by the Swarm Foundation. It is a Command Line

Interface (CLI) to spin up a Docker cluster made of six different containers.

[64]. A Docker container is a standalone image that includes all the system

54

5.4. TOKENOMICS

• ENS_SUBDOMAINS=true

As we have seen in Chapter 4, the first two values are the ones suggested by

Swarm Foundation for purchasing postage stamps. By setting these values, the

gateway is enabled to auto-buying stamps and it automatically attaches one to

the upload request. This functionality is relevant because it saves time during

the upload process. Indeed, buying a stamp could require even a minute. In-

stead, the last two parameters are set to true in order to enable ENS and CID

resolution. In my test environment, they are not mandatory because it is still not

possible to solve an ENS domain since it works only on the Ethereum Mainnet

or public test-net like Goerli. Anyway, it is a crucial feature in the final version

of the application as we have seen in the previous section.

As the last step, I have manually changed the /src/utils/docker.ts file in bee-factory

repository to bind the Bee client port 3000 to the port x3000 of my local host,

where x stands for the Bee worker number. Consequently, since the private gate-

way is running on localhost:3000 of bee-factory-worker-1, I can access the private

gateway on port 13000 of my local machine. As a result, once SwarmAd folder

is uploaded to the local test-net, it is accessible at http://localhost:13000/bzz/feed-

reference/index.html .

To sum up, the local environment is made of:

• a local Ethereum blockchain

• a set of 10 Ethereum accounts, each of them founded with 100 ETH

• five Swarm nodes

• a local Ethereum blockchain for Swarm incentives

• one private Swarm gateway running on localhost:13000

• a Swarm Feed to save the reference of the latest website version

5.4 Tokenomics

In distributed platforms and systems, a tokenomics can be crucial to make

the whole application sustainable. As we have seen in Chapters 3 and 4 even

Ethereum and Swarm have to rely on such a system of rewards and penalties to

ensure all the desired services. SwarmAd is not different. If we recall the target

use case where each registered user has his own enterprise and a collection of

56

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

products to show, it is easy to notice how users are each others’ competitors. As a

result, they could be motivated to act selfishly because they don’t trust the other

members or, even worse, because they want to obstruct them from entering the

platform or posting products. Under these considerations, the need for a proper

incentive system is clear.

5.4.1 Token Design

The main idea is to design a reputation schema to identify and reward the

users who are cooperating and helping to sustain the platform. Since we are

talking about an advertising platform, giving a visibility boost to certain enter-

prises is a relevant edge over their competitors. Consequently, a useful reward

could be reserving a certain spot on the website homepage for the most active

users. In a further subsection, we will have a look at the content organization.

As the first thing, I have created a reputation score to identify the best users.

It can increase or decrease according to the user’s actions. The design process

has not been trivial. Indeed, the simplest solution would be to create an ERC20

token. In this way, users could gain tokens and then burn them into rewards.

Nevertheless, there is a major contradiction. Indeed, if the token is spendable

to get rewards, it is also possible to sell and buy tokens from other parties. As a

consequence, it is possible to buy and sell reputation. It is easy to see that the

more liquid a token is, the less meaningful the reputation is. In such a system,

even the less-active user could easily buy thousands of tokens and overtake the

other members, who actually earned their tokens from the platform reward sys-

tem.

I would like to make a short digression because this is the same reason why a

cross-incentive system linked with Swarm is not feasible. Indeed, as we have

seen in Chapter 4, a Bee client can gain BZZ tokens from its contribution to the

Swarm network. BZZ tokens are also used as currency, for example for buying

stamps. Consequently, it must be purchasable in Decentralized Finance (DeFi)

exchanges. In support of this, buying some BZZ tokens is one of the first steps

while setting up a Swarm node. Finally, BZZ tokens are not a reliable measure

of how much a user is contributing in terms of bandwidth or storage because

everyone can buy thousands of them.

Going back to our issue, we have to distinguish two functionalities:

• signaling: the token identifies users who are active and helpful in commu-

57

5.4. TOKENOMICS

nity duties

• compensating: the token can be spent to get rewards

If we want a token to measure reputation, it must be only a signaling token.

Creating one of this kind is straightforward: we can use the ERC-20 standard

and make it non-transferable. The latter expedient does not allow to buy and

sell the tokens hence it can be a trustworthy measure of users’ reputation. On

the other hand, a single token solution could restrict the tokenomics benefits

because users would not be able to redeem rewards according to their liking. It

could fit in competitive video games where organizations have to keep track of

users’ points and create a global scoreboard. Considering SwarmAd, I think it is

important to provide also a proper compensation schema. As a result, the best

solution is creating a two-token system to provide signaling and compensating

functionalities in a separate way. In detail, SwarmAd has:

• SwarmAd Reputation Point (SWRP): a signaling token to measure the
users’ reputation

• SWCT: a spendable token to buy rewards

In my idea, users can gain SWRP from various activities like voting a poll or

reporting an inappropriate item. SWRP generates SWCT according to an inter-

est rate. We can make a parallelism with the Ethereum validators we have seen

in Chapter 3. Each validator is staking Ethereum and its deposit can increase

if it follows the rule, or can be slashed if it goes against them. In SwarmAd,

users "stake" reputation points which "produce" spendable coins. Then, each

user can withdraw SWCT and buy rewards. Thanks to this approach, we create

a sort of feedback loop: users are interested to claim rewards using SWCTs but

SWCTs are minted only by SWRPs. Hence, users are motivated to farm SWRPs

to produce SWCTs. Even if a user is not interested in buying rewards, he can

sell SWCTs to others. Finally, he has tangible rewards for his actions.

Reputation Points

SWRP is a non-transferable ERC20 token. It acts as a signaling token so it

represents the user reputation in SwarmAd.

In my design, Reputation Points are gained by:

• voting a poll

58

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

• creating a poll

• reporting an inappropriate item

• reporting a user who is not acting properly

On the other hand, RPs are burned when

• a user doesn’t vote

• a user reports another member or a product but the community rejects the
report

Nevertheless, I have felt the need for adding a simple action that can be

performed daily. Indeed, if we recall the use case, we do not expect many

registered users so the polls for accepting a newcomer could not be very frequent.

On top of that, even the last newcomer must have a chance to earn RPs. We can

apply the same reasoning for reports: inappropriate items or fake requests could

not be frequent because these actions can be expensive due to gas fees. In other

words, it is legit to not expect excessive spamming. Under these considerations,

daily rewards are crucial to prevent the tokenomics from staling. Inspired by

a Peepeth functionality we have seen in Chapter 2, I have introduced a similar

one: the super-like. It works as follows. Every day, each registered user can

vote a product he likes. Obviously, it is not possible to vote for a product the

user himself posted. As a reward, users receive a small amount of SWRP. This

incentive could overcome the fear of favoring a competitor. It is possible to vote

only one product per day. It can be seen just as a login bonus but it also has a

meaningful impact on the platform. Indeed, it has three advantages:

• it is easy to perform

• it is useful to reward quality content

• it keeps active the interest in the platform

5.5 Implementation

After having a look at the general structure in the previous sections, we are

now able to delve into the actual code implementation.

First thing, I have created the project folder starting from a boilerplate provided

by Truffle. It is the react-truffle box. It allows to quickly start to write and

59

5.5. IMPLEMENTATION

compile smart contracts and then interact with them using a React application.

After downloading the Truffle box, the project folder is divided into two main

directories: truffle and client. The first one contains the smart contracts and the

files for deploying them in the Ethereum blockchain. The second one has all the

front-end assets to build the web interface.

5.5.1 Back-end code

If we open the truffle/contracts folder we find the following five contracts:

• Migrations.sol

• SwarmAd.sol

• SwarmAdGovernor.sol

• SwarmAdRewarder.sol

• SwarmAdReputationPoints.sol

• SwarmAdCommunityToken.sol

First, it is important to explain how they are able to interact with each others

in a safe and authenticated way. Then we will analyze each contract following

the order written above.

Access Control

In smart contracts, it is fundamental to define who is allowed to call certain

functions and perform the related actions. Indeed, since all the code is public and

visible via blockchain, potentially anyone is able to call an external contract. In

SwarmAd, we have different contracts and privileged users that have to interact

with each other to use the different functionalities. For example, if an enterprise

has to be banned from the platform, it is the responsibility of Governor. Or even,

we want to restrict the ability to post a product only to registered users. As a

result, I have decided to implement a Role-Based Access Control (RBAC) using

an API developed by OpenZeppelin [65]. It suits our needs because it provides

different levels of authorization. We can distinguish three:

• GOVERNOR_ROLE: restrict access only to the Governor

• ENTERPRISE_ROLE: specific for registered members. It is granted when
an enterprise is accepted in the platform. It is revoked if the enterprise is
removed.

60

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

• MINTER_ROLE: it identifies the entities able to mint SWRP and SWCT, i.e.
SwarmAd and Governor

Nevertheless setting up the RBAC has not been trivial. Indeed, we have

a sort of circular dependency in contract interactions. To better explain the

issue, consider the case in which Governor has to delete an enterprise. It needs

the address of the SwarmAd contract to execute its task and at the same time,

SwarmAd needs to know the Governor address to grant its role and allow it to

perform a critical operation such as deleting a user. Since the deployment is

sequential, if we first deploy Governor, we can tell its address to SwarmAd but

Governor does not know the SwarmAd one. And vice versa. Luckily, a smart

contract address is computed in a deterministic way. Indeed, its address is made

from the deployer address and a nonce, which is the number of transactions

executed by the deployer. According to Ethereum Improvement Proposal (EIP)

161 [66], the nonce starts from one. As a result, we can pre-compute these

addresses before the actual deployment. The procedure is the following:

• convert owner’s address and nonce into an array of bytes

• encode the array

• compute its keccak hash

• convert to hex

Imagine we are using a new account to deploy the contract, we can predict

all the addresses we need as it is shown in Code 5.3. Notice that the nonce starts

from one and then it increases after every deployment.

1 migrations = address(uint160(uint256(keccak256(abi.

encodePacked(bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x01)

)))));

2 swarmad = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x02))))));

3 governor = address(uint160(uint256(keccak256(abi.encodePacked

(bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x03))))));

4 swrp = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x05))))));

5 swct = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x06))))));

Code 5.3: "Pre-computing addresses"

61

5.5. IMPLEMENTATION

At first glance, I have thought of writing a configuration contract to store all the

addresses and set up the access control. Thanks to inheritance, SwarmAd.sol and

the other contracts would have known addresses and access control roles. In

Solidity, we can provide a single level of inheritance by using the keyword is.

Nevertheless, this solution has seemed like an overkill for my project because

RBAC involves only three contracts. Surely if I had had more contracts, I would

have decided for introducing such a configuration file. Indeed, it provides an

easy way to access the different addresses and to change the access control in case

of contract substitution. On the other hand, it requires deploying one contract

more and it also requires an external call every time we need an address. Under

these considerations, I have decided on an easier model where each contract

computes the addresses it will need and it grants the roles.

After solving this dilemma, the actual implementation has been straightforward.

As we can see in Code 5.4, each role is defined as a public constant. In this

example, the contract computes Governor address and grants the related role

when deployed. Then the function modifier onlyRole(A_ROLE) restricts access

to users who have the role specified in the parameter.

1 #Role definition

2 bytes32 public constant GOVERNOR_ROLE = keccak256("GOVERNOR_ROLE");

3 bytes32 public constant ENTERPRISE_ROLE = keccak256("ENTERPRISE_ROLE"

);

4 #Grant Governor its role during the contract deployment

5 constructor() {

6 governor = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x03))))));

7 _grantRole(GOVERNOR_ROLE , governor);

8 }

9

10 #Restrict a function to Governor

11 function moveEnterprise(address a) public onlyRole(GOVERNOR_ROLE){

... }

12

13 #Restrict a function to an Enterprise

14 function updateEName(string memory newName) public onlyRole(

ENTERPRISE_ROLE){ ... }

Code 5.4: "Access control in SwarmAd"

62

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

Deployment

To deploy smart contracts on an Ethereum network, we need a set of scripts

called migrations. For my project, I have written the following ones: 1_ini-

tial_migrations.js and 2_deploy_SwarmAd.js. The first one is to deploy Migra-

tions.sol. It is a smart contract written by Truffle to keep track of which migra-

tions have been done on the current network. Instead, the second migration file

is for deploying all the smart contracts needed in SwarmAd. The order is im-

portant because the nonce changes after each deployment. Since I have built the

RBAC on predicting the addresses, the order has to be consistent with the one

used for the computations. In Code 5.5 we can see the sequence. The method

artifacts.require() returns a contract abstraction we can call in the further code

lines.

1 const SwarmAd = artifacts.require("SwarmAd");

2 const SWRP = artifacts.require("SwarmAdReputationPoints");

3 const SWCT = artifacts.require("SwarmAdCommunityToken");

4 const Governor = artifacts.require("SwarmAdGovernor");

5 const Rewarder = artifacts.require("SwarmAdRewarder");

6

7 module.exports = function(deployer) {

8 deployer.then(async () => {

9 await deployer.deploy(SwarmAd);

10 await deployer.deploy(Governor);

11 await deployer.deploy(Rewarder);

12 await deployer.deploy(SWRP, Rewarder.address);

13 await deployer.deploy(SWCT, Rewarder.address);

14 });

15 };

Code 5.5: "Deploying smart contracts"

SwarmAd

SwarmAd.sol is the core contract of the platform. It contains all the data

related to enterprises and products. It is also in charge of providing the desired

functionalities like adding a new product or a new enterprise. As the first

thing, I have decided to follow Martini’s design [3] so I have modeled the two

main entities, i.e Enterprise and Product, as structures. In Solidity, a struct is a

composite data type to define a group of several related variables in a single one.

The instances of Enterprise and Product are then stored in mappings. A mapping

63

5.5. IMPLEMENTATION

is a sort of hash table: given a key, it returns the associated value. In our case,

we have eStructs and productStructs. The first one takes as input the owner’s

Ethereum address and it returns his enterprise. Meanwhile, the second takes a

product identifier and retrieves the product itself. Nevertheless, mappings are

not iterable. As an example, it is not possible to iterate over eStructs and print

all the names of the registered enterprises. Of course, this is a very restricting

point. As suggested by Solidity Docs [67], the solution is to create an array

storing the mapping keys and then iterate over it. Consequently, I have created

eList and productList to store all the owners’ addresses and product identifiers,

respectively. Finally, in Code 5.6 we can see how an Enterprise is modeled.

1 struct Enterprise{

2 #Enterprise Name

3 string eName;

4 string eMail;

5 #Owner’s Ethereum Address

6 address eAddress;

7 #CID provided by Swarm when uploaded

8 string profileImageHash;

9 #Index in list of all Enterprises

10 uint indexEList; //position in eList

11 uint indexWaitingList;

12 #PID of all posted products

13 bytes32[] enterprisePidList;

14 }

15 }

Code 5.6: "Defining Enterprise"

Beyond the informative and descriptive fields like eName or eMail, we can notice

indexEList which is the variable to store the position in the list of enterprises. On

top of that, there is also enterprisePidList which stores all the products posted by

the enterprise in question. It is not mandatory but it is very functional because

it allows a quick retrieval on the front-end side

For example, if we want to get a certain enterprise by knowing its owner’s

address, we can get the information from the eStructs mapping. It is shown by

Code 5.7.

1 function getEnterprise(address a) public view returns(string memory

eName, string memory eMail, string memory imgHash){

2 return(eStructs[a].eName, eStructs[a].eMail, eStructs[a].

profileImageHash);

64

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

3 }

Code 5.7: "Querying Enterprise struct"

In a symmetrical way, Product and its related functions are defined. As we can

see in Code 5.8, we save two distinct indexes: one is specific for the enterprise

product list while the other one is for the array containing all the products in the

platform. The latter is a small addition in comparison with Martini’s design. I

have thought that it was needed to improve the data fetching process and item

rendering on the front-end interface.

1 struct Product{

2 #Keccak hash computed during item creation

3 bytes32 pid;

4 #Owner

5 address enterprise;

6 string productName;

7 string productImageHash;

8 string productDescription;

9 uint productPriceInWei;

10 #Indexes

11 uint indexProductStructs;

12 uint indexEnterprisePidList;

13 }

Code 5.8: "Defining Product"

Moving forward, the creation of a new product is a good way to show how things

work. In Code 5.9 we can see the function I have written. First thing, we can see

that the function usage is restricted to ones who have the ENTERPRISE_ROLE.

For security reasons, the enterprise creating the product is not taken as input

but it is extracted as the caller of the Ethereum transaction using msg.sender.

Then, it is computed the product identifier, or PID, computing the keccak256

of enterprise address, product name, and timestamp. In this way, uniqueness

should be ensured. As the last thing, the PID is added to the two lists described

above.

1 function createNewProduct(

2 string memory name, string memory img, string memory description ,

uint price)

3 #Access Control

4 public onlyRole(ENTERPRISE_ROLE){

5 #Compute PID

65

5.5. IMPLEMENTATION

6 bytes32 pid = keccak256(abi.encodePacked(eStructs[msg.sender].

eAddress, name, block.timestamp));

7 Product memory p = Product(pid, msg.sender, name, img,

description , price, productList.length, eStructs[msg.sender].

enterprisePidList.length);

8 #Add to indexes

9 productStructs[pid]=p;

10 productList.push(pid);

11 eStructs[msg.sender].enterprisePidList.push(pid);

12 }

Code 5.9: "Create a new product"

As the last functionality, we can have a look at the superlike. I have written

two mappings: one, superlike, to map the user’s address into the product he

liked. The second, superlikeTimelock is to keep track of when a user triggers the

superlike function. In this way, the system is able to check if it has passed at

least one day and the user can trigger again the function. As we can see in Code

5.10, SwarmAd makes also an external call to Rewarder to reward the user. At the

moment, the function is restricted only to registered users but there is a margin

for improvement. For example, it could be developed to become a rating system

where also external users can vote for products based on their purchase history.

In this sense, since RBAC ensures an high flexibility level, the implementation

could require just a little adjustment.

1 function assignSuperlike(bytes32 pid) public onlyRole(ENTERPRISE_ROLE

){

2 #check item exists

3 require(productStructs[pid].enterprise != address(0));

4 #check owner is not caller

5 require(productStructs[pid].enterprise != msg.sender);

6 #check time lock is expired

7 uint256 differenceTimestamp = SafeMath.sub(block.timestamp ,

superlikeTimelock[msg.sender]);

8 uint256 differenceInDays = SafeMath.div(SafeMath.div(SafeMath.

div(differenceTimestamp , 60), 60), 24);

9 require(differenceInDays > 0, "time difference is not enough");

10 #update

11 superlike[msg.sender] = pid;

12 superlikeTimelock[msg.sender] = block.timestamp;

13 #call Rewarder to award the user

66

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

14 SwarmAdRewarder(rewarder).addRPsToAccount(msg.sender, 5);

Code 5.10: "Superlike function"

SwarmAdGovernor

SwarmAdGovernor, or simply Governor, is the smart contract entitled to man-

age the voting mechanism inside of the platform. Whenever a decision is to be

taken, it creates a poll and it allows each registered user to express his opinion

by voting.

In my first design, I have thought about implementing a contract provided by

OpenZeppelin. Nevertheless, I was skeptical because it was based on coin vot-

ing. By definition, coin voting means that a single token is equal to a vote so

the voting power is directly proportional to a user’s wealth. As a result, it can

quickly become a plutarchy if the voting power is condensed into a few wallets.

As underlined by Vitalik Buterin [68], coin-based governance has three major

issues:

• small-holders have no meaningful influence on decisions

• DAO vision becomes the coin-holders’ interest

• there is a clear conflict of interests because the governance is over-exposed
to the will of a specific elite group. For example, an investment fund that
also holds tokens of other DeFi platforms.

From one side, creating a governance based on Reputation Points seems an

intriguing solution because it gives more power to users who actually contribute

to the platform. On the other side, I do not think it is the right solution because

it does not ensure a democratic voting procedure. In particular, it is not right

that a newcomer’s vote is worth less than the one from an experienced user.

For the above reasons, I have decided to move to proof-of-personhood. In

this system, every registered member can express his vote and it counts as

one. I have thought about using an alternative version of the OpenZeppelin

governor that supports the ERC-721 token, namely Non Fungible Token (NFT),

instead of the ERC-20. Since a standard NFT can be sold and bought, it needs

a little adjustment to provide proof-of-personhood. In detail, it must be not

transferable. A token of this kind is called soulbound [69]. The terminology

comes from World of Warcraft, a famous video game, where some special items

cannot be transferred to other players. In a similar way, I have thought to create

a soulbound badge to signal the membership in SwarmAd. Even if the idea

67

5.5. IMPLEMENTATION

of soulbound items is fascinating, I believe it is an overkill if we consider the

platform target. Indeed, SwarmAd keeps track of every user thanks to eList and

eStructs so it is straightforward to know who is registered to the platform and

who is not. Under this consideration, I have decided to model the Governor in

a simpler way. Since the OpenZeppelin one was not a good fit, I have written

the contract from scratch.

Similar to Enterprise and Product, I have modeled Poll as a structure where

are stored all the information needed. It has a state which defines the set of

actions Governor and users can perform. The state can be ACTIVE, if the voting

procedure is still open, or EXECUTED if the time is expired and the related

operations have been performed. It also stores the number of votes for the

proposal, the ones against and the number of users who decided to abstain. In

Code 5.11, we can see that these variables have type uint64. Indeed, I expect

a small number of registered users and 64 bits should be enough to represent

it. Packing these variables together to take up a single 256-bit slot of memory

saves some gas fees [70]. Since the registered users can change during the voting

procedure, Governor takes a snapshot of the registered users when the poll is

created. In this way, when the poll is closed, the Governor is able to distinguish

the users who have not voted for choice from the ones who do not have the

voting right. We can apply this reasoning also for quorum computation: since

the number of registered users is variable, it is important to have the number of

voters and compute the quorum before the poll starts.

1 struct Poll{

2 uint64 state;

3 uint64 votesFor;

4 uint64 votesAgainst;

5 uint64 votesNull;

6 uint256 pollId;

7 uint256 maxVoters;

8 uint256 quorum;

9 uint256 votingStart;

10 uint256 votingEnd;

11 address swarmad;

12 address proposer;

13 address [] voters;

14 address [] ableToVote;

15 bytes[] calldatas;

16 string description;

68

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

17 }

Code 5.11: "Defining Poll"

Calldatas is the function to execute if the proposal is approved. In Code 5.12,

we can see how SwarmAd calls the governor to create a poll for accepting a

newcomer. In this example, the function to execute is moveAddress because if

the community votes for accepting the newcomer, its enterprise must be moved

from the waiting list to the actual list of enterprises. To do so, SwarmAd encodes

the function and its parameter in ABI format, stores the result in a raw bytes

array and passes it to Governor in the Calldatas field.

1 function createEnterprise(string memory name, string memory mail,

string memory imgHash) public{

2 require(!isRegistered(msg.sender));

3

4 if(eList.length <1){/* ...the first enterprise is directly added

...*/}

5 else{

6 #Add to waiting list

7 waitingList.push(msg.sender);

8 Enterprise storage e = waitingListStructs[msg.sender];

9 e.eName = name; e.eMail = mail; e.profileImageHash = imgHash; e

.indexEList = 0; e.indexWaitingList = waitingList.length -1;

10 #Encode function to execute

11 bytes[] memory transferCalldata = new bytes[](1);

12 transferCalldata[0] = abi.encodePacked(bytes4(keccak256(’

moveEnterprise(address)’)), abi.encode(msg.sender));

13 #Create poll

14 SwarmAdGovernor(governor).createPoll(address(this),

transferCalldata , "Accept new user");

15 }

16 }

Code 5.12: "Calling Governor to create a poll"

Taking a step back, the waiting list is a mapping similar to eStructs. If the reg-

istered users decide to accept the newcomer, the Governor will automatically

perform the function moveEnterprise to insert the new enterprise in eList and

eStructs. In other words, the user is registered and can use all the platform

functionalities. As we can see in Code 5.13, the user is granted the ENTER-

PRISE_ROLE. It is also relevant to notice that the function can be performed

only by the Governor because of the access control modifier.

69

5.5. IMPLEMENTATION

1 function moveEnterprise(address a) public onlyRole(GOVERNOR_ROLE){

2 eList.push(a);

3 _grantRole(ENTERPRISE_ROLE , a);

4 Enterprise storage e = eStructs[a];

5 e.eName = waitingListStructs[a].eName;

6 e.eMail = waitingListStructs[a].eMail;

7 e.profileImageHash = waitingListStructs[a].profileImageHash;

8 e.indexEList = eList.length -1;

9 e.indexWaitingList = 0;

10 removeEnterpriseFromWaitingList(a);

11 emit moveFromWaitingList(a);

12 }

Code 5.13: "Moving an Enterprise from waiting list"

Governor saves all the polls in a mapping called pollMap. It maps a pollId, which

is a unique identifier, into the corresponding poll object. Similar to SwarmAd.sol,

the keys are stored in an array to solve the mapping iterability issue. A poll is

valid in a certain period which is established by votingStart and votingEnd. If a

user tries to cast a vote after the timestamp declared in votingEnd, the operation

is not permitted. However, the poll closure is not performed automatically.

Scheduling a function call is not trivial and generally speaking, it involves third-

party services. Martini proposed a solution using AION smart contract [71]

but it is no longer feasible since it is not maintained anymore. Another similar

project, namely Ethereum Alarm Clock [72], is deprecated as well. SwarmAd

tokenomics here comes in help. In my solution, closing a poll is a duty of users

who have voted. By default, each voter gets a certain amount of Reputation

Points when the poll is closed. On top of that, the one who actually closes the

poll by calling the specific function is rewarded with an additional amount of

Reputation Points which is inversely proportional to the amount of time passed

between the poll deadline and the moment in which the poll is closed. In this

way, voters are motivated to close the poll but they are also motivated to do it

quickly. To sum up, a voter calls the closePoll function which makes the Governor

compute the winner and execute the related action if the deadline is met and

the quorum is reached. At the moment, I set the voting period to one week

and the quorum to 51% of voters. As the last thing, the Governor distributes

Reputation Points to the user who has closed the poll and to the ones who have

voted. On the other hand, users who didn’t vote will lose a certain amount of

70

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

Reputation Points because of their carelessness. On top of that, if the voting

is about reporting a user or a product and the community decides against the

ban, the user who has proposed the poll gets his Reputation Points slashed. The

penalty is needed to avoid spamming of ban requests to mine the visibility of

other users. Code 5.14 shows the different functions involved in the process.

1 function closePoll(uint pollId) public{

2 require(!isVotingActive(pollId));

3 require(!isPollExecuted(pollId));

4 require(hasVotingRight(pollId, msg.sender));

5 if(isQuorumReached(pollId) && isMajorityVotingFor(pollId))

executePoll(pollId);

6 giveRewards(pollId);

7 pollMap[pollId].state = EXECUTED;

8 emit pollExecuted(pollId);

9 }

10

11 function giveRewards(uint pollId) internal {

12 require(hasVotingRight(pollId, msg.sender), "Governor: no

right to vote");

13 SwarmAdRewarder Rewarder = SwarmAdRewarder(rewarder);

14 uint256 amount = 10;

15 address[] memory voters = pollMap[pollId].voters;

16 for(uint i=0; i<voters.length; i++){

17 #Punish who did not vote

18 if(hasNotVoted(pollId, voters[i])) Rewarder.

burnRPsToAccount(voters[i], amount);

19 #Reward voters

20 else Rewarder.addRPsToAccount(voters[i], amount);

21 }

22 #Compute delay from poll closure and poll deadline

23 uint256 delay = SafeMath.sub(block.timestamp , pollMap[pollId

].votingEnd);

24 uint256 delayInHours = SafeMath.div(SafeMath.div(delay, 60),

60);

25 uint256 delayFactor = Math.max(1, delayInHours);

26 #Compute reward for closing the poll according to delay

27 uint256 closeReward = SafeMath.div(amount, delayFactor);

28 emit assignCloseReward(closeReward , delayInHours , delayFactor

);

29 #Reward who closed the poll

30 Rewarder.addRPsToAccount(msg.sender, closeReward);

71

5.5. IMPLEMENTATION

31 }

Code 5.14: "Procedure to close the poll"

Token Implementation

Both SwarmAdReputationPoints.sol and SwarmAdCommunityToken.sol are writ-

ten following the standard implementation of ERC-20 provided by OpenZep-

pelin [65]. Concerning Reputation Points, I have written only one addition to

make the token non-transferable, as we can see in Code 5.15. The function be-

foreTokenTransfer is a hook that is called before any transfer of tokens. As a result,

if the condition in require clause is not satisfied, the transfer is blocked. Since

I want the contract to be able to mint new SWRPs or burn SWRPs when it is

needed, the require clause allows the address 0 to call the function and hence

perform or receive a transfer. Any transfer that is not performed from or to the

contract address, is blocked.

1 function _beforeTokenTransfer(

2 address from, address to, uint256 amount)

3 internal override(ERC20){

4 require(from == address(0) || to == address(0),

5 "Error: Reputation Points are not transferable");

6 super._beforeTokenTransfer(from, to, amount);

7 }

Code 5.15: "Making ERC20 token non-transferable"

The main problem is how we can compute the interest on the reputation points.

As we have already discussed when describing Governor, scheduling a smart

contract call is not trivial and requires a third-party service. On top of that,

the computations could be performed every hour or every day, hence relying

on such a service could be expensive and not sustainable because of transaction

costs. For these reasons, I have opted for a lazy evaluation solution.

As the first thing, I have thought about computing the interests when a user asks

to redeem them. A sort of simple interest computed according to the number of

Reputation Points at stake. The equation is the following:

𝐼 = (1 + 𝑟) ∗ 𝑡

where 𝑟 is the interest rate and 𝑡 the time. In our case, the interest rate is an

72

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

arbitrary value. The period is the interval between the last time a user has

redeemed its coins and a new request. At a certain frequency, each user can

press a "Redeem" button and cash out his SWCT. Nevertheless, this schema

is simplistic because interests depend only on the capital at stake during the

redeeming phase. Imagine Alice, a user who has 1 SWRP in stake for 29 days.

Then, she earns 29 SWRP. If she presses "Redeem", interests are computed for

30 days on 30 SWRP. In fact, she has staked 30 SWRP only for one day. A better

evaluation can be performed when a user gains new Reputation Points. Because

of smart contract calls, the system is perfectly aware of token transfers. The only

drawback is that a user could not able to cash out the SWCT if he doesn’t earn

RPs for a long time. It is a very remote scenario since each user can earn at least

one RP every day thanks to the super-like.

To make the functioning clearer, we can recall the previous example: Alice

earned 1 RP on Monday. After one month, she earns other 29 RPs so she

actually staking 30 RPs. When she receives the new points, the smart contract

computes the interests she maturated on the RPs she has staked for one month.

The next time she will earn RPs, the interest will be computed on 30 RPs.

As the last thing, I have thought it was better to separate the logic from the

tokens to have a higher degree of upgradability. Indeed, if logic and token are

together in a contract, a bug could make the users lose all the tokens in the

wallet. By separating the two phases, we can fix the logic without touching

the users’ wallets. Under these considerations, I have decided to write a third

contract, called SwarmAdRewarder.sol

It has to:

• mint reputation points

• burn reputation points

• compute interests whenever a user gains reputation points

• keep track of interests

• mint community token when a user redeems its coins

It has two mappings:

• SWCTVault: to keep track of the interests gained by each user

• addressToLastInterestComputation: it saves the last time a user gained SWRP

73

5.5. IMPLEMENTATION

Since it has the task of assigning SWRP to users, it knows every time a user

gains SWRPs. When this happens, it computes the interests using the function

in Code 5.16.

1 function computeCompoundInterest(uint256 balance, address a) internal

view returns(uint256){

2 uint256 duration = SafeMath.sub(block.timestamp ,

addressToLastInterestComputation[a]);

3 uint256 durationInDays = SafeMath.div(SafeMath.div (SafeMath

.div(duration , 60), 60), 24);

4 uint256 compoundInterest = SafeMath.mul(SafeMath.mul(

durationInDays , balance), dailyInterestRate);

5 return compoundInterest;

6 }

Code 5.16: "Rewarder computes interests"

In Code 5.17, we can see how it can mint or burn SWRP belonging to a certain

user.

1 function addRPsToAccount(address reward, address a, uint256

amount) public onlyRole(MINTER_ROLE){

2 SwarmAdReputationPoints SWRP = SwarmAdReputationPoints(reward

);

3 uint256 balance = SWRP.balanceOf(a);

4 uint256 interest = computeCompoundInterest(balance, a);

5 if(interest >0){

6 uint256 newVaultValue = SafeMath.add(SWCTVault[a],

interest);

7 SWCTVault[a] = newVaultValue;

8 }

9 SWRP.mint(a, amount);

10 addressToLastInterestComputation[a] = block.timestamp;

11 }

12

13 function burnRPsToAccount(address reward, address a, uint256

amount) public onlyRole(GOVERNOR_ROLE){

14 SwarmAdReputationPoints SWRP = SwarmAdReputationPoints(reward

);

15 uint256 balance = SWRP.balanceOf(a);

16 uint256 interest = computeCompoundInterest(balance, a);

17 if(interest >0){

18 uint256 newVaultValue = SafeMath.add(SWCTVault[a],

interest);

74

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

19 SWCTVault[a] = newVaultValue;

20 }

21 SWRP.burn(a, amount);

22 addressToLastInterestComputation[a] = block.timestamp;

23 }

Code 5.17: "Minting and burning RPs"

It is relevant to recall SwarmAd and Governor have MINTER_ROLE so they are

the only two able to add new RPs to a user wallet.

As the last thing, there is also a redeem function to convert the value stored in

the user’s vault into an actual amount of SWCT. Code 5.18 shows the process.

1 function redeem(address coins) public{

2 uint256 amount = SWCTVault[msg.sender];

3 require(amount >0);

4 SWCTVault[msg.sender] = 0;

5 SwarmAdCommunityToken SWCT = SwarmAdCommunityToken(coins);

6 SWCT.mint(msg.sender, amount);

7 }

Code 5.18: "Redeeming Community Token"

5.5.2 Front-end code

The web interface is written in React. Since it is a SPA, the content is dy-

namically loaded. The interface has a general schema made of a header, a body

and a footer. The body is changed according to the user’s actions. In other

words, while there is a general static structure, the user is also able to navigate

through different pages that are loaded on the body. The routing is handled

by an HashRouter provided by react-router-dom. According to the final design, I

imagine having five different pages:

• Home: it shows enterprises and products

• Register: a registration form to enable the creation of a new profile

• Create: a page to create and post a new product

• Forum: a page to check the poll results and vote for new polls

• About: a simple landing page that describes the platform

75

5.5. IMPLEMENTATION

Home

As it is natural to think, the most important page is Home. When the page

is loaded for the first time, the function isWalletConnected checks if the visitor

is using Metamask. Later, when a valid Ethereum account is recognized, the

application asks SwarmAd if the address is registered. Obviously, the web inter-

face will be loaded according to the response. Indeed, if the user is registered,

he will have a navigation bar to check the latest polls, upload a new product or

have a look at his reputation score. Otherwise, a button redirecting to the regis-

tration form will be loaded. In Code 5.19, we can see how these functionalities

are implemented. In particular, useEffect is a hook that is executed at the first

loading and whenever the Ethereum address in Metamask changes. In this way,

if a user switches to another account, the page rendering will change as well.

1 useEffect(() => {

2 isWalletConnected();

3 isRegistered();

4 }, [ethAccount]);

5

6 async function isWalletConnected(){

7 #Check if browser is running Metamask

8 const {ethereum} = window;

9 if (!ethereum) return;

10 const accounts = await ethereum.request({method: ’

eth_requestAccounts’});

11 #Set Ethereum Address as state variable

12 setEthAccount(accounts[0]);

13 }

14

15 async function isRegistered(){

16 if(!ethAccount) return;

17 const result = await isEthAccountRegistered(ethAccount);

18 console.log(result);

19 setEthAccountRegistered(result);

20 }

Code 5.19: "Setting up the Home"

The function isEthAccountRegistered is written in a separate file called Swar-

mAd.js. It interacts directly with smart contracts. It uses the Contract interface

provided by ethers.js to create an abstraction of the smart contract. Every time

the front-end needs to interact with SwarmAd, it has to pass through this piece

76

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

of Javascript. For example, in Code 5.20 we can see that it calls the isRegistered

function in SwarmAd.sol and it returns the boolean value.

1 export const isEthAccountRegistered = async(ethAccount)=>{

2 const result = await swarmAdContract.isRegistered(ethAccount);

3 return result;

4 }

Code 5.20: "Querying SwarmAd"

Showcase

The rest of the Home is fulfilled with a React component I have called Show-

case. It is a set of cards where each card can show a product or an enterprise. In

my idea, the Home is divided into five different showcases:

• Best Users: it shows the three users with the highest amount of Reputation
Points

• Highlight Spots: a set of purchasable spots using Community Token

• Voted by the community: shows the products with the most super-likes.

• Latest: it shows the latest added products. It is a way to give a boost on
newcomers’ visibility.

In comparison with Martini’s design, I think that this way to organize content

motivates users to be active on the platform and to post quality content. Indeed,

a random shuffle of content could lead to the tragedy of commons because being

a helpful user is not rewarding. On top of that, since it is an advertising platform,

it becomes more attractive if it shows the best it can offer.

Register

The registration process is interesting because it involves interactions with

the Swarm network and the blockchain at the same time.

It is a form where the user has to insert his enterprise details such as name,

email and the company logo. The logo is uploaded on Swarm by SwarmClient.js.

It creates an instance of a Bee client using the private gateway URL. Then, it

uploads the image on Swarm and it returns the related hash reference. We can

see the procedure in Code 5.21.

77

5.5. IMPLEMENTATION

1 const beeURL = ’http://localhost:13000’;

2 const bee = new Bee(beeURL);

3 export const uploadImage = async (image) =>{

4 #Batch is handled directly by the gateway

5 const postageBatch = ’

00’;

6 const result = await bee.uploadFile(postageBatch , image);

7 return result.reference

8 }

Code 5.21: "Upload an image via web interface"

It is important to notice that it is given a fake postage batch. Indeed, it is the

private gateway that has to buy a batch and attach it to the post request. In this

way, the upload is much faster and the experience is not annoying to the user.

Once the user has inserted all the mandatory values and the upload on Swarm

has been successfully executed, the user can confirm the creation procedure. In

a similar way to isEthAccountRegistered, the call is passed to SwarmAdClient.js

which executes the related smart contract function as we can see in Code 5.22.

1 async function callCreateEnterprise(){

2 # Call SwarmAdClient from registration form

3 let txn = await createEnterprise(eName, eMail, imageHash);

4 # Check call is correctly executed

5 if(!txn.hash) return;

6 #Redirect after the procedure is completed

7 <Navigate to="/home"/>

8 }

9 #SwarmAdCLient.js

10 export const createEnterprise = async (eName, eMail, imageHash) =>{

11 # Call the smart contract function

12 const txn = await swarmAdContract.createEnterprise(eName, eMail,

imageHash);

13 return txn;

14 }

Code 5.22: "Create an enterprise via web interface"

5.5.3 A Meaningful Example

After discussing the different implementations, I think it is useful to have a

look at a real-case scenario to better understand how all the components work

together. In this regard, the best example is the creation of a new enterprise

78

CHAPTER 5. CMS DESIGN AND IMPLEMENTATION

because it involves all five smart contracts.

The sequence is the following:

1. Alice creates a new enterprise. Since it is the first one, it is directly added
to the platform.

2. Bob creates his enterprise profile but it is inserted on the waiting list.

3. Governor creates a poll

4. Alice votes for admitting Bob

5. After the deadline, Alice closes the poll and she gains reputation points
from the Rewarder

6. Carl asks for entering the platform. A new poll is created and registered
users vote for admitting Carl.

7. Again, we move forward to the poll deadline and this time is Bob who
closes the poll. Carl’s enterprise is moved to eStructs and Bob and Alice
are rewarded.

8. Alice redeems her Community Tokens.

Consider a reward schema where each action gives 10 SWRPs and a daily

interest rate equal to 1. Alice is expected to have 30 SWRPs because she voted

twice and closed one poll. As a consequence, when redeeming the SWCTs she

earned a total of 140 SWCTs because she gained 20 SWRPs when the first poll

have been closed and then she staked that amount for seven days, i.e. when she

gained 10 SWRPs more after voting for Carl’s acceptance poll. Obviously, the

last SWRPs she received have not produced any interest because she decided to

redeem her coins on the same day the new SWRPs have been given.

This scenario has been tested using the framework provided by Truffle. The file

GovernorTest.js precisely simulates every action described above, as if a real user

were performing it. On top of that, after every smart contract call, the test script

checks if the desired result has been obtained. A Javascript library written by

OpenZeppelin comes in help by providing a useful tool to move forward to the

poll deadline when it is needed. In the folder truffle/test there is another test

script called SwarmAdTest.js. It is for testing the basic functionalities such as

creating a product and changing its name or its image.

79

6
Conclusions and Future Works

This work describes a fully decentralized platform to create an authenticated,

moderated and shared showcase where SMEs can advertise their products. The

blockchain provides a safe way to manage user authentication and data, while

a distributed storage system helps in optimizing downloading and uploading

costs. Starting from a previous implementation, I have tackled three main is-

sues: data persistence, naming the point of access, and content organization.

First, I have changed the storage layer from IPFS to Swarm in order to exploit

its built-in incentive system. In particular, its storage incentives are helpful to

ensure data persistence over a long period. Second, the naming issue has been

solved thanks to the combination of ENS and Swarm Feed. In particular, the

latter provides an immutable hash to reference mutable content while ENS trans-

lates the immutable reference into a human-readable domain. As the last issue

is concerned, I have implemented a tokenomics built on a reputation score to

identify the users who are contributing the most and reward them accordingly.

In detail, it is a two-token system where the first one is for signaling the users’

reputation while the second one can be traded to buy rewards. In this way, I

have solved the problem we encounter when the reputation score is tradable.

About the platform itself, I have created a moderation mechanism to empower

users in community decisions such as accepting a newcomer, reporting a user,

or an inappropriate item. This feature is handled by a smart contract in charge

of creating a poll whenever it is needed and performing the required actions

after the poll is closed and the result is examined. It is special the choice to move

away from coin-based governance, as in most of DAOs, in favor of a proof-of-

81

membership mechanism where each registered user can cast a single vote for

each poll.

Nevertheless, creating a production-ready application could require a better

membership control mechanism. Indeed, the registration process could be im-

proved by implementing a decentralized identifier to verify digital identities. In

this way, each user could provide tangible proofs of his enterprise. The imple-

mentation of such a system could extend the platform reach on a global scale

because users who do not know each other can trust the newcomer’s digital

identity when they have to vote about acceptance. About this topic, it is also

intriguing to implement a soulbound badge to identify the users of a certain

community. Such a non-transferable badge could signal the user’s membership

across other platforms and hence it would embrace the idea of a fully decen-

tralized web. Going even further, the step from an advertising platform to a

decentralized marketplace seems a natural extension of my work. Nevertheless,

it increases the platform complexity and introduces new issues. In this regard,

transaction costs could have to be taken into serious consideration because they

could easily drain enterprises’ gains and mine the platform sustainability. As a

result, it could be crucial to explore several layer-2 solutions which could down-

size transaction costs.

Another useful addition could be a distributed rating system to allow users to

review and rate an enterprise after a purchase. Of course, this feature should be

strongly related to a proof-of-personhood mechanism to avoid review bombing

or rating-boosting via fake accounts. In this regard, the idea proposed in [73]

could be integrated with the reputation score mechanism. As the last thing, the

reward system could be better defined. For example, it would be interesting

to mint NFTs related to specific spots on the homepage to allow users to buy

visibility. On top of that, it would be precious to explore new rewards to have a

more solid and catching incentive schema.

82

References

[1] Stanislav Vojí and Jan Kuera. “Towards Re-Decentralized Future of the

Web: Privacy, Security and Technology Development”. In: Acta Informatica

Pragensia 10 (Jan. 2022), pp. 349–369. doi: 10.18267/j.aip.169.

[2] Qin Wang et al. “Exploring Web3 From the View of Blockchain”. In: (June

2022).

[3] Davide Martini. “A distributed CMS for small enterprises aggregation”.

MA thesis. University of Padova, 2019.

[4] [Online]. IPFS Docs. https://docs.ipfs.tech/.

[5] [Online]. Swarm. https://www.ethswarm.org/.

[6] [Online]. ENS Documentation. https://docs.ens.domains/.

[7] Nicolas Six, Nicolas Herbaut, and Camille Salinesi. “Blockchain soft-

ware patterns for the design of decentralized applications: A system-

atic literature review”. In: Blockchain: Research and Applications 3.2 (2022),

p. 100061. issn: 2096-7209. doi: https://doi.org/10.1016/j.bcra.2022.

100061. url: https://www.sciencedirect.com/science/article/pii/

S209672092200001X.

[8] Introducing HiÐ - an Offline-first Decentralized CMS. [Online] https://

hide.ac/articles/m7l_Ft2li.

[9] Jarkko Kuusĳärvi et al. HELIOS: Final system architecture and API specifica-

tion. Deliverable.

[10] Vanessa Clemente et al. HELIOS: Define Rewarding Strategies. Deliverable.

[11] Bokang Jia, Chenhao Xu, and Mateusz Mach. OPUS: Decentralized mu-

sic distribution using InterPlanetary File Systems (IPFS) on the blockchain.

Whitepaper.

83

https://doi.org/10.18267/j.aip.169
https://docs.ipfs.tech/
https://www.ethswarm.org/
https://docs.ens.domains/
https://doi.org/https://doi.org/10.1016/j.bcra.2022.100061
https://doi.org/https://doi.org/10.1016/j.bcra.2022.100061
https://www.sciencedirect.com/science/article/pii/S209672092200001X
https://www.sciencedirect.com/science/article/pii/S209672092200001X
https://hide.ac/articles/m7l_Ft2li
https://hide.ac/articles/m7l_Ft2li

REFERENCES

[12] Roneil Rumburg, Sid Sethi, and Hareesh Nagaraj. Audius: A Decentralized

Protocol for Audio Content. Whitepaper.

[13] Erik Daniel and Florian Tschorsch. “IPFS and Friends: A Qualitative Com-

parison of Next Generation Peer-to-Peer Data Networks”. In: (2021). doi:

10.48550/ARXIV.2102.12737. url: https://arxiv.org/abs/2102.

12737.

[14] Barbara Guidi, Andrea Michienzi, and Laura Ricci. “Data Persistence in

Decentralized Social Applications: The IPFS approach”. In: 2021 IEEE

18th Annual Consumer Communications Networking Conference (CCNC). 2021,

pp. 1–4. doi: 10.1109/CCNC49032.2021.9369473.

[15] [Online]. Filecoin. https://https://docs.filecoin.io/.

[16] [Online]. Powergate Docs. https://github.com/textileio/powergate/.

[17] [Online]. Swarm Scan. https://swarmscan.resenje.org/.

[18] Zooko Wilcox-O’Hearn. Names: Distributed, Secure, Human-Readable: Choose

Two. http://zooko.com/distnames.html.

[19] [Online]. IPNS | IPFS Docs. https://docs.ipfs.tech/concepts/ipns/

#interplanetary-name-system-ipns.

[20] [Online]. DNSLink | IPFS Docs. https://docs.ipfs.tech/concepts/

dnslink/#dnslink.

[21] [Online]. DNSLink Standard. https://dnslink.dev/.

[22] [Online]. Handshake Developer Documentation. https://hsd-dev.org/.

[23] Squaring the Triangle: Secure, Decentralized, Human-Readable Names. [Online]

http://www.aaronsw.com/weblog/squarezooko.

[24] Grant Potter. “Defending Internet Freedom through Decentralization: Back

to the Future?” In: 2018.

[25] Andrea Passarella Barbara Guidi Marco Conti and Laura Ricci. “Managing

social contents in Decentralized Online Social Networks: A survey”. In:

Online Social Networks and Media 7 (2018). doi: https://doi.org/10.

1016/j.osnem.2018.07.001.

[26] Monika di Angelo and Gernot Salzer. “Tokens, Types, and Standards:

Identification and Utilization in Ethereum”. In: 2020 IEEE International

Conference on Decentralized Applications and Infrastructures (DAPPS). 2020,

pp. 1–10. doi: 10.1109/DAPPS49028.2020.00001.

84

https://doi.org/10.48550/ARXIV.2102.12737
https://arxiv.org/abs/2102.12737
https://arxiv.org/abs/2102.12737
https://doi.org/10.1109/CCNC49032.2021.9369473
https://https://docs.filecoin.io/
https://github.com/textileio/powergate/
https://swarmscan.resenje.org/
http://zooko.com/distnames.html
https://docs.ipfs.tech/concepts/ipns/#interplanetary-name-system-ipns
https://docs.ipfs.tech/concepts/ipns/#interplanetary-name-system-ipns
https://docs.ipfs.tech/concepts/dnslink/#dnslink
https://docs.ipfs.tech/concepts/dnslink/#dnslink
https://dnslink.dev/
https://hsd-dev.org/
http://www.aaronsw.com/weblog/squarezooko
https://doi.org/https://doi.org/10.1016/j.osnem.2018.07.001
https://doi.org/https://doi.org/10.1016/j.osnem.2018.07.001
https://doi.org/10.1109/DAPPS49028.2020.00001

REFERENCES

[27] Steemit. Steem: An incentivized, blockchain-based, public content platform.

White Paper.

[28] Moon Soo Kim and Jee Yong Chung. “Sustainable Growth and Token

Economy Design: The Case of Steemit”. In: Sustainability (2019).

[29] Usman W. Chohan. “The Concept and Criticisms of Steemit”. In: Economics

of Networks eJournal (2018).

[30] Simon de la Rouviere. Curation Markets Whitepaper. White Paper.

[31] Zhengdong Li Haimei Xu Yan Cheng and Chunyan You. “Content Sharing

Network based on IPFS and Blockchain”. In: IOP Conference Series: Materi-

als Science and Engineering 1043.052014 (2021). doi: https://doi.org/10.

1088/1757-899X/1043/5/052014.

[32] [Online]. Etherna. https://etherna.io/.

[33] D.tube: Turning the tables in social media industry. White Paper.

[34] [Online]. Bitcoin Wiki. https://en.bitcoin.it/wiki/Script.

[35] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentral-

ized Application Platform. White Paper.

[36] Nick Szabo. Smart Contracts: Building Blocks for Digital Markets. https:

//www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/

Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_

2.html.

[37] William Metcalfe. “Ethereum, Smart Contracts, DApps”. In: Springer,

2020. Chap. Chapter 5, pp. 77–93. url: https://EconPapers.repec.

org/RePEc:spr:eclchp:978-981-15-3376-1_5.

[38] Fabian Vogelsteller and Vitalik Buterin. EIP-20: Token Standard. Ethereum

Improvement Proposals.

[39] Zibin Zheng et al. “An overview on smart contracts: Challenges, advances

and platforms”. In: Future Generation Computer Systems 105 (2020), pp. 475–

491. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2019.

12.019. url: https://www.sciencedirect.com/science/article/pii/

S0167739X19316280.

[40] John R. Douceur. “The Sybil Attack”. In: Peer-to-Peer Systems. Ed. by Pe-

ter Druschel, Frans Kaashoek, and Antony Rowstron. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2002, pp. 251–260.

85

https://doi.org/https://doi.org/10.1088/1757-899X/1043/5/052014
https://doi.org/https://doi.org/10.1088/1757-899X/1043/5/052014
https://etherna.io/
https://en.bitcoin.it/wiki/Script
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://EconPapers.repec.org/RePEc:spr:eclchp:978-981-15-3376-1_5
https://EconPapers.repec.org/RePEc:spr:eclchp:978-981-15-3376-1_5
https://doi.org/https://doi.org/10.1016/j.future.2019.12.019
https://doi.org/https://doi.org/10.1016/j.future.2019.12.019
https://www.sciencedirect.com/science/article/pii/S0167739X19316280
https://www.sciencedirect.com/science/article/pii/S0167739X19316280

REFERENCES

[41] [Online]. The Merge. https://ethereum.org/it/upgrades/merge/.

[42] Vitalik Buterin. Why Proof of Stake. [Online] https : / / vitalik . ca /

general/2020/11/06/pos2020.html.

[43] Vitalik Buterin et al. “Combining GHOST and Casper”. In: (2020). doi: 10.

48550/ARXIV.2003.03052. url: https://arxiv.org/abs/2003.03052.

[44] Vitalik Buterin and Virgil Griffith. “Casper the Friendly Finality Gadget”.

In: (2017). doi: 10.48550/ARXIV.1710.09437. url: https://arxiv.org/

abs/1710.09437.

[45] Vitalik Buterin. Proof of Stake: How I Learned to Love Weak Subjectivity.https:

//blog.ethereum.org/2014/11/25/proof- stake- learned- love-

weak-subjectivity.

[46] Ben Edgington. Upgrading Ethereum : A technical handbook on Ethereum’s

move to proof of stake and beyond. https://eth2book.info/bellatrix/.

[47] Vitalik Buterin. Annotated Ethereum 2.0 Spec. https : / / github . com /

ethereum/annotated-spec/blob/master/phase0/beacon-chain.md.

[48] [Online]. Altair – The Beacon Chain. https://github.com/ethereum/

consensus-specs/blob/dev/specs/altair/beacon-chain.md.

[49] Vitalik Buterin. On Settlement Finality. [Online] https://blog.ethereum.

org/2016/05/09/on-settlement-finalityl.

[50] Nick Johnson. EIP-137: Ethereum Domain Name Service. Ethereum Improve-

ment Proposals.

[51] Swarm Foundation. The Book of Swarm. White Paper.

[52] [Online]. Swarm Bee Documentation. https://docs.ethswarm.org/docs/.

[53] Swarm Foundation. Swarm: storage and communication infrastructure for a

self-sovereign digital society. White Paper.

[54] Robert Axelrod. “Effective Choice in the Prisoner’s Dilemma”. In: Journal

of Conflict Resolution 24 (1980), pp. 25–3.

[55] Trón Viktor et al. Swap, Swear and Swindle: incentive system for swarm. Or-

ange Paper.

[56] Yos Riady. Best Practices for Smart Contract Development. [Online] https://

yos.io/2019/11/10/smart-contract-development-best-practices/.

[57] [Online]. Metamask Docs. https://docs.metamask.io/guide/.

86

https://ethereum.org/it/upgrades/merge/
https://vitalik.ca/general/2020/11/06/pos2020.html
https://vitalik.ca/general/2020/11/06/pos2020.html
https://doi.org/10.48550/ARXIV.2003.03052
https://doi.org/10.48550/ARXIV.2003.03052
https://arxiv.org/abs/2003.03052
https://doi.org/10.48550/ARXIV.1710.09437
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://eth2book.info/bellatrix/
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md
https://blog.ethereum.org/2016/05/09/on-settlement-finalityl
https://blog.ethereum.org/2016/05/09/on-settlement-finalityl
https://docs.ethswarm.org/docs/
https://yos.io/2019/11/10/smart-contract-development-best-practices/
https://yos.io/2019/11/10/smart-contract-development-best-practices/
https://docs.metamask.io/guide/

REFERENCES

[58] Xiwei Xu et al. “A Decision Model for Choosing Patterns in Blockchain-

Based Applications”. In: 2021 IEEE 18th International Conference on Software

Architecture (ICSA). 2021, pp. 47–57. doi: 10.1109/ICSA51549.2021.00013.

[59] [Online]. Ethersphere: gateway-proxy. https://github.com/ethersphere/

gateway-proxy.

[60] [Online]. Swarm Extension. https://github.com/ethersphere/swarm-

extension.

[61] [Online]. Execution API Specification | JSON-RPC. https://github.com/

ethereum/execution-apis.

[62] [Online]. Bee-js. https://github.com/ethersphere/bee-js.

[63] Robbie Morrison, Natasha C. Mazey, and Stephen C. Wingreen. “The dao

controversy: The case for a new species of corporate governance?” In:

Frontiers in Blockchain 3 (2020). doi: 10.3389/fbloc.2020.00025.

[64] [Online]. Ethersphere: Bee Factory. https://github.com/ethersphere/

bee-factory.

[65] [Online]. OpenZeppelin Docs.https://docs.openzeppelin.com/contracts/

4.x/erc20.

[66] Gavin Wood. EIP-161: State trie clearing. Ethereum Improvement Proposals.

[67] [Online]. Solidity Docs. https://docs.soliditylang.org/en/latest/

index.html.

[68] Vitalik Buterin. Moving beyond coin voting governance. https://vitalik.

ca/general/2021/08/16/voting3.html.

[69] Vitalik Buterin. Soulbound. https://vitalik.ca/general/2022/01/26/

soulbound.html.

[70] Lodovica Marchesi et al. “Design Patterns for Gas Optimization in Ethereum”.

In: 2020 IEEE International Workshop on Blockchain Oriented Software Engi-

neering (IWBOSE). 2020, pp. 9–15. doi: 10.1109/IWBOSE50093.2020.

9050163.

[71] [Online]. AION: A system for Scheduling transactions with arbitrary bytecode

on the Ethereum Network. https://github.com/ETH-Pantheon/Aion.

[72] [Online]. Ethereum Alarm Clock: Schedule transactions for the future. https:

//github.com/ethereum-alarm-clock/ethereum-alarm-clock.

87

https://doi.org/10.1109/ICSA51549.2021.00013
https://github.com/ethersphere/gateway-proxy
https://github.com/ethersphere/gateway-proxy
https://github.com/ethersphere/swarm-extension
https://github.com/ethersphere/swarm-extension
https://github.com/ethereum/execution-apis
https://github.com/ethereum/execution-apis
https://github.com/ethersphere/bee-js
https://doi.org/10.3389/fbloc.2020.00025
https://github.com/ethersphere/bee-factory
https://github.com/ethersphere/bee-factory
https://docs.openzeppelin.com/contracts/4.x/erc20
https://docs.openzeppelin.com/contracts/4.x/erc20
https://docs.soliditylang.org/en/latest/index.html
https://docs.soliditylang.org/en/latest/index.html
https://vitalik.ca/general/2021/08/16/voting3.html
https://vitalik.ca/general/2021/08/16/voting3.html
https://vitalik.ca/general/2022/01/26/soulbound.html
https://vitalik.ca/general/2022/01/26/soulbound.html
https://doi.org/10.1109/IWBOSE50093.2020.9050163
https://doi.org/10.1109/IWBOSE50093.2020.9050163
https://github.com/ETH-Pantheon/Aion
https://github.com/ethereum-alarm-clock/ethereum-alarm-clock
https://github.com/ethereum-alarm-clock/ethereum-alarm-clock

REFERENCES

[73] Andrea Lisi et al. “Rewarding reviews with tokens: An Ethereum-based

approach”. In: Future Generation Computer Systems 120 (2021), pp. 36–54.

issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2021.02.

003. url: https://www.sciencedirect.com/science/article/pii/

S0167739X21000480.

88

https://doi.org/https://doi.org/10.1016/j.future.2021.02.003
https://doi.org/https://doi.org/10.1016/j.future.2021.02.003
https://www.sciencedirect.com/science/article/pii/S0167739X21000480
https://www.sciencedirect.com/science/article/pii/S0167739X21000480

Acknowledgments

It has been a difficult path to get to this final page. I have put many hours

into studying, researching and writing to produce this. And every second was

worth it. I am extremely glad about what I have achieved and I am ready to face

what the future holds.

Of course, no one achieves anything alone. I am very thankful for having many

people around me, ready to help with every problem or difficulty I have faced.

In particular, I have to thank:

• Elda, moje zlato : for loving and caring during each day of this journey

• Mamma Giovanna e Papà Sergio, for being a wise guide in the toughest
days

• My siblings: Francesco, Anna e Mattia

• My childhood friends, i.e. TTesse: Ale, Caretto, CuccyMatty, David,
Guerry, SebaMag

• My friends from UniTS: Billo, Davide, Enrico, Leonardo, Luca, Matteo,
Pippi, Simone, Riccardo, Xhacu

• My friends from UniPD, Andrea ed Elia

• Prof. Migliardi for guiding me in a wise and precise way

• DEI and UniPD

• Everybody who has spent some time reading this work

89

A
Smart Contracts

A.1 Migrations.sol

1 // SPDX-License-Identifier: MIT

2 pragma solidity >=0.4.22 <0.9.0;

3

4 contract Migrations {

5 address public owner;

6 uint public last_completed_migration;

7

8 modifier restricted() {

9 if (msg.sender == owner) _;

10 }

11

12 constructor(){

13 owner = msg.sender;

14 }

15

16 function setCompleted(uint completed) public restricted {

17 last_completed_migration = completed;

18 }

19

20 function upgrade(address new_address) public restricted {

21 Migrations upgraded = Migrations(new_address);

22 upgraded.setCompleted(last_completed_migration);

23 }

91

A.2. SWARMAD.SOL

24 }

Code A.1: Migrations.sol

A.2 SwarmAd.sol

1 // SPDX-License-Identifier: MIT

2 pragma solidity >=0.4.22 <0.9.0;

3

4 import "./SwarmAdGovernor.sol";

5 import "../node_modules/@openzeppelin/contracts/utils/Address.sol";

6 import "../node_modules/@openzeppelin/contracts/access/AccessControl.

sol";

7

8 contract SwarmAd is AccessControl {

9

10 /// @notice List of Ethereum account of registered users

11 address[] public eList;

12

13 /// @notice It contains a list of Ehthereum Account who asked for

membership and its votation is pending

14 address[] public waitingList;

15

16 /// @notice It contains PID from all products

17 bytes32[] public productList;

18

19 /// @notice Mapping between Ethereum address and Enterprise object

20 mapping(address=>Enterprise) public eStructs;

21

22 /// @notice Mapping between Product PID and Product object

23 mapping(bytes32 => Product) public productStructs; //mapping

between product and pid

24

25 /// @notice Mapping between Ethereum address and Enterprise object

while its votation is pending

26 mapping(address=>Enterprise) public waitingListStructs;

27

28 /// @notice Mapping an Ethereum address to its liked product, save

the last time he call the function

29 mapping(address=>bytes32) private superlike;

30 mapping(address=>uint256) private superlikeTimelock;

31

32 /// @notice Access Control

92

APPENDIX A. SMART CONTRACTS

33 address private governor;

34 address private rewarder;

35 bytes32 public constant GOVERNOR_ROLE = keccak256("GOVERNOR_ROLE");

36 bytes32 public constant ENTERPRISE_ROLE = keccak256("

ENTERPRISE_ROLE");

37

38 constructor() {

39 governor = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x03))))));

40 rewarder = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x04))))));

41 _setupRole(DEFAULT_ADMIN_ROLE , msg.sender);

42 _setupRole(GOVERNOR_ROLE , governor);

43 }

44

45 struct Enterprise{

46 string eName;

47 string eMail;

48 address eAddress;

49 string profileImageHash; /*CID provided by Swarm when uploaded */

50 uint indexEList; //position in eList

51 uint indexWaitingList;

52 bytes32[] enterprisePidList; //contains all product identifiers

53 }

54

55 struct Product{

56 bytes32 pid;

57 address enterprise;

58 string productName;

59 string productImageHash; //CID provided by Swarm when uploaded

60 string productDescription;

61 uint productPriceInWei;

62 uint indexProductStructs;

63 uint indexEnterprisePidList;

64 }

65

66 event newEnterpriseInWaitingList(address owner);

67 event moveFromWaitingList(address owner);

68

69 /// @notice Check if an address is registered in the platform ,

must have for performing access control

70 /// @param a Enterprise Ethereum Address to check

71 /// @return boolean

93

A.2. SWARMAD.SOL

72 function isRegistered(address a) public view returns(bool){

73 if(eList.length==0) return false;

74 return (eList[eStructs[a].indexEList]==a);

75 }

76

77 /// @notice Check if an address is registered in the platform ,

must have for performing access control

78 /// @param a Enterprise Ethereum Address to check

79 /// @return boolean

80 function isInWaitingList(address a) public view returns(bool){

81 if(waitingList.length==0) return false;

82 return (waitingList[waitingListStructs[a].indexWaitingList]==a);

83 }

84

85 /// @notice Create a new enterprise

86 /// @param name Enterprise name

87 /// @param mail Enterprise email

88 /// @param imgHash Image reference to retrieve the file from Swarm

89 function createEnterprise(string memory name, string memory mail,

string memory imgHash) public{

90 require(!isRegistered(msg.sender));

91

92 if(eList.length <1){

93 eList.push(msg.sender);

94 Enterprise storage e = eStructs[msg.sender];

95 e.eName = name; e.eMail = mail; e.profileImageHash = imgHash; e

.indexEList = eList.length -1; e.indexWaitingList = 0;

96 _grantRole(ENTERPRISE_ROLE , msg.sender);

97 }

98 else{

99 waitingList.push(msg.sender);

100 Enterprise storage e = waitingListStructs[msg.sender];

101 e.eName = name; e.eMail = mail; e.profileImageHash = imgHash; e

.indexEList = 0; e.indexWaitingList = waitingList.length -1;

102 emit newEnterpriseInWaitingList(msg.sender);

103 bytes[] memory transferCalldata = new bytes[](1);

104 transferCalldata[0] = abi.encodePacked(bytes4(keccak256(’

moveEnterprise(address)’)), // function signature

105 abi.encode(msg.sender) //function

arguments

106);

107 SwarmAdGovernor(governor).createPoll(address(this),

transferCalldata , "Accept new user");

94

APPENDIX A. SMART CONTRACTS

108 }

109 }

110

111 /// @notice Remove a registered enterprise

112 function removeEnterpriseFromSwarmAd() public onlyRole(

ENTERPRISE_ROLE){

113 bytes32 [] memory pidToDelete = eStructs[msg.sender].

enterprisePidList;

114 for(uint i=0; i<pidToDelete.length; i++){

115 removeProductByPid(pidToDelete[i]);

116 }

117

118 //pop from eList

119 for(uint i = eStructs[msg.sender].indexEList; i < eList.length -1;

i++){

120 eStructs[msg.sender].indexEList --; //update pointer

121 eList[i]=eList[i+1];

122 }

123 eList.pop();

124 renounceRole(ENTERPRISE_ROLE , msg.sender);

125 delete eStructs[msg.sender];

126 }

127

128 /// @notice Remove a registered enterprise

129 function governorRemoveEnterprise(address a) public onlyRole(

GOVERNOR_ROLE){

130 bytes32 [] memory pidToDelete = eStructs[a].enterprisePidList;

131 for(uint i=0; i<pidToDelete.length; i++){

132 governorRemoveProductByPid(pidToDelete[i]);

133 }

134

135 //pop from eList

136 for(uint i = eStructs[a].indexEList; i < eList.length -1; i++){

137 eStructs[a].indexEList --; //update pointer

138 eList[i]=eList[i+1];

139 }

140 eList.pop();

141 revokeRole(ENTERPRISE_ROLE , a);

142 delete eStructs[a];

143 }

144

145 /// @notice Remove enterprise from waiting list

146 function removeEnterpriseFromWaitingList(address a) public onlyRole

95

A.2. SWARMAD.SOL

(GOVERNOR_ROLE) {

147 for(uint i = waitingListStructs[a].indexWaitingList; i <

waitingList.length -1; i++){

148 waitingListStructs[a].indexWaitingList --; //update pointer

149 waitingList[i]=waitingList[i+1];

150 }

151 waitingList.pop();

152 delete waitingListStructs[msg.sender];

153 }

154

155 /// @notice Move from waiting list to SwarmAd list

156 function moveEnterprise(address a) public onlyRole(GOVERNOR_ROLE){

157 eList.push(a);

158 _grantRole(ENTERPRISE_ROLE , a);

159 Enterprise storage e = eStructs[a];

160 e.eName = waitingListStructs[a].eName;

161 e.eMail = waitingListStructs[a].eMail;

162 e.profileImageHash = waitingListStructs[a].profileImageHash;

163 e.indexEList = eList.length -1;

164 e.indexWaitingList = 0;

165 removeEnterpriseFromWaitingList(a);

166 emit moveFromWaitingList(a);

167 }

168

169 /// @notice Retrieve an enterprise

170 /// @param a Enterprise address

171 /// @return eName enterprise name

172 /// @return eMail enterprise mail

173 /// @return imgHash enterprise reference in Swarm

174 //get an Enterprise by address

175 function getEnterprise(address a) public view returns(string memory

eName, string memory eMail, string memory imgHash){

176 return(eStructs[a].eName, eStructs[a].eMail, eStructs[a].

profileImageHash);

177 }

178

179 /// @notice Retrieve an enterprise product list

180 /// @param a Enterprise address

181 /// @return enterprisePidList

182 function getProductListFromEnterprise(address a)public view returns

(bytes32 [] memory enterprisePidList) {

183 return (eStructs[a].enterprisePidList);

184 }

96

APPENDIX A. SMART CONTRACTS

185

186 /// @notice Update an enterprise image

187 /// @param newImageHash new reference to a file saved in Swarm

188 function updateEProfilePicture(string memory newImageHash) public

onlyRole(ENTERPRISE_ROLE){

189 eStructs[msg.sender].profileImageHash = newImageHash;

190 }

191

192 /// @notice Update an enterprise mail

193 /// @param newMail new mail to change

194 function updateEMail(string memory newMail) public onlyRole(

ENTERPRISE_ROLE){

195 eStructs[msg.sender].eMail = newMail;

196 }

197

198 /// @notice Update an enterprise name

199 /// @param newName name to change

200 function updateEName(string memory newName) public onlyRole(

ENTERPRISE_ROLE){

201 eStructs[msg.sender].eName = newName;

202 }

203

204 /// @notice Create a new product

205 /// @param name product name

206 /// @param img Swarm reference to an image

207 /// @param description literal description of an item

208 /// @param price item price expressed in wei

209 function createNewProduct(

210 string memory name,

211 string memory img,

212 string memory description ,

213 uint price) public onlyRole(ENTERPRISE_ROLE){

214 bytes32 pid = keccak256(abi.encodePacked(eStructs[msg.sender].

eAddress , name, block.timestamp));

215 Product memory p = Product(

216 pid, msg.sender, name, img, description

, price,

217 productList.length,

218 eStructs[msg.sender].enterprisePidList.

length

219);

220 productStructs[pid]=p;

221 productList.push(pid);

97

A.2. SWARMAD.SOL

222 eStructs[msg.sender].enterprisePidList.push(pid);

223 }

224

225 /// @notice Get a product py pid

226 function getProductByPid(bytes32 pid) public view returns(

227 string memory productName ,

228 string memory productImageHash ,

229 string memory productDescription ,

230 uint productPriceInWei ,

231 address enterprise

232){

233 Product memory p = productStructs[pid];

234 return(p.productName , p.productImageHash , p.productDescription , p

.productPriceInWei , p.enterprise);

235 }

236

237 /// @notice Get a product enterpirse py pid

238 function getProductNameByPid(bytes32 pid) public view returns(

string memory productName){

239 Product memory p = productStructs[pid];

240 return p.productName;

241 }

242

243 /// @notice Get a product enterpirse py pid

244 function getProductEnterpriseByPid(bytes32 pid) public view returns

(address enterprise){

245 Product memory p = productStructs[pid];

246 return p.enterprise;

247 }

248

249 /// @notice Remove product from global list of product and from

enterprise list

250 function removeProductByPid(bytes32 pid) public onlyRole(

ENTERPRISE_ROLE){

251 require(msg.sender == productStructs[pid].enterprise , "Caller is

not owner");

252

253 //delete from enterprise

254 for(uint i = productStructs[pid].indexEnterprisePidList; i <

eStructs[msg.sender].enterprisePidList.length -1; i++){

255 eStructs[msg.sender].enterprisePidList[i] = eStructs[msg.sender

].enterprisePidList[i+1];

256 }

98

APPENDIX A. SMART CONTRACTS

257 eStructs[msg.sender].enterprisePidList.pop();

258

259 //delete from global

260 for(uint i = productStructs[pid].indexProductStructs; i <

productList.length -1; i++){

261 productList[i] = productList[i+1];

262 }

263 productList.pop();

264

265 //delete from global mapping

266 delete productStructs[pid];

267 }

268

269 /// @notice Remove product from global list of product and from

enterprise list

270 function governorRemoveProductByPid(bytes32 pid) public onlyRole(

GOVERNOR_ROLE){

271 address e = productStructs[pid].enterprise;

272 //delete from enterprise

273 for(uint i = productStructs[pid].indexEnterprisePidList; i <

eStructs[e].enterprisePidList.length -1; i++){

274 eStructs[e].enterprisePidList[i] = eStructs[e].

enterprisePidList[i+1];

275 }

276 eStructs[e].enterprisePidList.pop();

277

278 //delete from global

279 for(uint i = productStructs[pid].indexProductStructs; i <

productList.length -1; i++){

280 productList[i] = productList[i+1];

281 }

282 productList.pop();

283

284 //delete from global mapping

285 delete productStructs[pid];

286 }

287

288 /// @notice Update product name

289 /// @param pid to select the product

290 /// @param newName name to change the old one

291 function updateProductNameByPid(bytes32 pid, string memory newName)

public onlyRole(ENTERPRISE_ROLE){

292 require(msg.sender == productStructs[pid].enterprise , "Caller is

99

A.2. SWARMAD.SOL

not owner");

293 productStructs[pid].productName = newName;

294 }

295

296 /// @notice Update product price

297 /// @param pid to select the product

298 /// @param newPrice price to change the old one

299 function updateProductPriceByPid(bytes32 pid, uint newPrice) public

onlyRole(ENTERPRISE_ROLE){

300 require(msg.sender == productStructs[pid].enterprise , "Caller is

not owner");

301 productStructs[pid].productPriceInWei = newPrice;

302 }

303

304 /// @notice Update product descriptiom

305 /// @param pid to select the product

306 /// @param newDescription description to change the old one

307 function updateProductDescpritionByPid(bytes32 pid, string memory

newDescription) public onlyRole(ENTERPRISE_ROLE){

308 require(msg.sender == productStructs[pid].enterprise , "Caller is

not owner");

309 productStructs[pid].productDescription = newDescription;

310 }

311

312 /// @notice Update product image hash

313 /// @param pid to select the product

314 /// @param newImageHash Swarm reference to change the old one

315 function updateProductImageHashByPid(bytes32 pid, string memory

newImageHash) public onlyRole(ENTERPRISE_ROLE){

316 require(msg.sender == productStructs[pid].enterprise , "Caller is

not owner");

317 productStructs[pid].productImageHash = newImageHash;

318 }

319

320 /// @notice Retrieve Ethereum addresses of all registered

enterprises

321 function getEList() public view returns(address [] memory){

322 return eList;

323 }

324

325 /// @notice Retrieve Ethereum addresses of enterprises in waiting

list

326 function getWaitingList() public view returns(address [] memory){

100

APPENDIX A. SMART CONTRACTS

327 return waitingList;

328 }

329

330 /// @notice Retrieve all products

331 function getProductList() public view returns(bytes32 [] memory){

332 return productList;

333 }

334

335 /// @notice Superlike a product

336 /// @param pid to select the product

337 function assignSuperlike(bytes32 pid) public onlyRole(

ENTERPRISE_ROLE){

338 require(productStructs[pid].enterprise != address(0)); //check

item exists

339 require(productStructs[pid].enterprise != msg.sender); //check

owner is not caller

340 uint256 differenceTimestamp = SafeMath.sub(block.timestamp ,

superlikeTimelock[msg.sender]);

341 uint256 differenceInDays = SafeMath.div(SafeMath.div(SafeMath.

div(differenceTimestamp , 60), 60), 24);

342 require(differenceInDays > 0, "time difference is not enough");

343 superlike[msg.sender] = pid;

344 superlikeTimelock[msg.sender] = block.timestamp;

345 SwarmAdRewarder(rewarder).addRPsToAccount(msg.sender, 5);

346 }

347 }

Code A.2: SwarmAd.sol

A.3 SwarmAdGovernor

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.4;

3

4 import "./SwarmAd.sol";

5 import "./SwarmAdRewarder.sol";

6 import "../node_modules/@openzeppelin/contracts/access/Ownable.sol";

7 import "../node_modules/@openzeppelin/contracts/utils/Address.sol";

8 import "../node_modules/@openzeppelin/contracts/utils/math/SafeMath.

sol";

9 import "../node_modules/@openzeppelin/contracts/utils/math/Math.sol";

10

11 contract SwarmAdGovernor is AccessControl{

101

A.3. SWARMADGOVERNOR

12

13 /// @notice Other contracts’ addresses

14 address swarmad;

15 address rewarder;

16

17 /// @notice Translates pollId into Poll object

18 mapping (uint=>Poll) pollMap;

19

20 /// @notice List with all pollId since mapping is not iterable

21 uint[] polls;

22

23 /// @notice voting time (currently 1 day)

24 uint256 votingDelay = 86400;

25

26 /// @notice quorum in percentage to reach to make a poll valid

27 uint256 quorum = 51;

28

29 /// @notice slashing reputation score of who doesn’t vote

30 uint256 punishment = 10;

31

32 /// @notice poll state

33 uint64 constant ACTIVE = 1;

34 uint64 constant CLOSED = 2;

35 uint64 constant EXECUTED = 3;

36

37 struct Poll{

38 uint64 state;

39 uint64 votesFor;

40 uint64 votesAgainst;

41 uint64 votesNull;

42 uint256 pollId;

43 uint256 maxVoters;

44 uint256 quorum;

45 uint256 votingStart;

46 uint256 votingEnd;

47 address swarmad;

48 address proposer;

49 address [] voters;

50 address [] ableToVote;

51 bytes[] calldatas;

52 string description;

53 }

54

102

APPENDIX A. SMART CONTRACTS

55 event pollCreated(uint256 pollId, string description);

56 event pollExecuted(uint256 pollId);

57 event assignCloseReward(uint256 amount, uint256 delayInHours ,

uint256 delayFactor);

58

59 constructor() {

60 swarmad = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x02))))));

61 rewarder = address(uint160(uint256(keccak256(abi.encodePacked

(bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x04))))));

62 _setupRole(DEFAULT_ADMIN_ROLE , msg.sender);

63 }

64

65 /// @notice Compute the number of voters is needed to reach the

quorum

66 /// @param maxVoters users with voting right for the current poll

67 /// @return res i.e. quorum expressed in users

68 function computeQuorum(uint256 maxVoters) internal view returns(

uint256){

69 uint256 prod = SafeMath.mul(maxVoters , quorum);

70 uint256 res = SafeMath.div(prod, 100);

71 return res;

72 }

73

74 /// @notice Create a poll

75 /// @param proposer user or contract who is creating the poll

76 /// @param calldatas function to execute if the majority voted

for

77 /// @param description string with the poll reason

78 function createPoll(address proposer , bytes[] memory calldatas ,

string memory description) public {

79 uint256 pollId = uint(keccak256(abi.encodePacked(block.

timestamp , proposer)));

80 //External call to SwarmAd to get current list of users

81 address[] memory maxVoters = SwarmAd(swarmad).getEList();

82 require(maxVoters.length > 0);

83

84 Poll storage p = pollMap[pollId];

85 p.pollId = pollId;

86 p.proposer = proposer;

87 p.ableToVote = maxVoters;

88 p.maxVoters = maxVoters.length;

89 p.quorum = computeQuorum(maxVoters.length);

103

A.3. SWARMADGOVERNOR

90 p.votingStart = block.timestamp;

91 p.votingEnd = block.timestamp + votingDelay;

92 p.state = ACTIVE;

93 p.calldatas = calldatas;

94 p.description = description;

95 polls.push(pollId);

96

97 emit pollCreated(pollId, description);

98 }

99

100 /// @notice Retrieve a poll from global list

101 /// @param pollId uint unique identifier

102 function getPoll(uint pollId) public view returns(

103 address proposer , uint64 votesFor , uint64 votesAgainst ,

uint64 votesNull ,

104 uint256 numberVoters , uint256 votingEnd

105){

106 Poll memory p = pollMap[pollId];

107 return (p.proposer , p.votesFor , p.votesAgainst , p.votesNull ,

p.voters.length, p.votingEnd);

108 }

109

110 /// @notice Execute the function embeeded in the poll

111 /// @param pollId uint unique identifier

112 function executePoll(uint pollId) internal{

113 require(hasVotingRight(pollId, msg.sender));

114 (bool success, bytes memory returndata) = swarmad.call(

pollMap[pollId].calldatas[0]);

115 Address.verifyCallResult(success, returndata , "Governor:

reverted without message");

116 }

117

118 /// @notice Close the poll if the deadline is met

119 /// @param pollId uint unique identifier

120 function closePoll(uint pollId) public{

121 require(!isVotingActive(pollId), "Governor: Poll is still

active");

122 require(!isPollExecuted(pollId), "Governor: Poll has already

been executed");

123 require(hasVotingRight(pollId, msg.sender), "Governor: User

has no voting right to close the poll");

124 if(!isQuorumReached(pollId)){

125 pollMap[pollId].state=CLOSED;

104

APPENDIX A. SMART CONTRACTS

126 }

127 if(isMajorityVotingFor(pollId)){

128 executePoll(pollId);

129 }

130 else if(pollMap[pollId].swarmad != pollMap[pollId].proposer){

131 SwarmAdRewarder(rewarder).burnRPsToAccount(pollMap[pollId

].proposer , punishment);

132 }

133 giveRewards(pollId);

134 pollMap[pollId].state = EXECUTED;

135 emit pollExecuted(pollId);

136 }

137

138 /// @notice Check if user a voted in poll

139 /// @param poll uint unique identifier

140 /// @param a user

141 function hasNotVoted(uint poll, address a) internal view returns(

bool){

142 address[] memory voters = pollMap[poll].voters;

143 for(uint i=0; i<voters.length; i++){

144 if(voters[i]==a) return false;

145 }

146 return true;

147 }

148

149 /// @notice Check if a poll has been already executed

150 /// @param pollId uint unique identifier

151 /// @return bool

152 function isPollExecuted(uint pollId) public view returns(bool){

153 if(pollMap[pollId].state == EXECUTED) return true;

154 return false;

155 }

156

157 /// @notice Check if a poll deadline is already met

158 /// @param poll uint unique identifier

159 /// @return bool

160 function isVotingActive(uint poll) public view returns(bool) {

161 if(block.timestamp > pollMap[poll].votingEnd) return false;

162 if(block.timestamp < pollMap[poll].votingStart) return false;

163 return true;

164 }

165

166 /// @notice Check if quorum is reached

105

A.3. SWARMADGOVERNOR

167 /// @param pollId uint unique identifier

168 /// @return bool

169 function isQuorumReached(uint pollId) internal view returns(bool)

{

170 if(pollMap[pollId].voters.length > pollMap[pollId].quorum)

return true;

171 return false;

172 }

173

174 /// @notice Check if majority voted for, hence if poll has to be

executed

175 /// @param pollId uint unique identifier

176 /// @return bool

177 function isMajorityVotingFor(uint pollId) internal view returns(

bool){

178 Poll memory p = pollMap[pollId];

179 if(p.votesFor > p.votesAgainst) return true;

180 return false;

181 }

182

183 /// @notice Check users who voted and who did not, calls the

rewarder to mint or burn reputation points

184 /// @param pollId uint unique identifier

185 function giveRewards(uint pollId) internal {

186 require(hasVotingRight(pollId, msg.sender), "Governor: no

right to vote");

187 SwarmAdRewarder Rewarder = SwarmAdRewarder(rewarder);

188 uint256 amount = 10; //TODO

189 address[] memory voters = pollMap[pollId].voters;

190 for(uint i=0; i<voters.length; i++){

191 if(hasNotVoted(pollId, voters[i])) Rewarder.

burnRPsToAccount(voters[i], amount);

192 else Rewarder.addRPsToAccount(voters[i], amount);

193 }

194 uint256 delay = SafeMath.sub(block.timestamp , pollMap[pollId

].votingEnd);

195 uint256 delayInHours = SafeMath.div(SafeMath.div(delay, 60),

60);

196 uint256 delayFactor = Math.max(1, delayInHours);

197 uint256 closeReward = SafeMath.div(amount, delayFactor);

198 emit assignCloseReward(closeReward , delayInHours , delayFactor

);

199 Rewarder.addRPsToAccount(msg.sender, closeReward);

106

APPENDIX A. SMART CONTRACTS

200 }

201

202 /// @notice Check if a user can vote for that poll

203 /// @param poll uint unique identifier

204 /// @param a user

205 /// @return bool

206 function hasVotingRight(uint poll, address a) internal view

returns(bool){

207 address[] memory ableToVote = pollMap[poll].ableToVote;

208 for(uint i = 0; i<ableToVote.length; i++){

209 if(ableToVote[i]==a) return true;

210 }

211 return false;

212 }

213

214 /// @notice Cast vote from a user

215 /// @param poll uint unique identifier

216 /// @param vote 1 = for, 2 = against, 3 = abstained

217 function castVote(uint poll, uint64 vote) public{

218 require(hasVotingRight(poll, msg.sender));

219 require(isVotingActive(poll));

220 require(hasNotVoted(poll, msg.sender));

221

222 if(vote==1) pollMap[poll].votesFor++;

223 if(vote==2) pollMap[poll].votesAgainst++;

224 if(vote==3) pollMap[poll].votesNull++;

225

226 pollMap[poll].voters.push(msg.sender);

227 }

228

229 /// @notice Get all polls created

230 function getAllPoll() public view returns(uint[] memory pollList)

{

231 return polls;

232 }

233

234

235

236 }

Code A.3: SwarmAdGovernor.sol

107

A.4. SWARMADREWARDER

A.4 SwarmAdRewarder

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.4;

3

4 import "./SwarmAd.sol";

5 import "./SwarmAdReputationPoints.sol";

6 import "./SwarmAdCommunityToken.sol";

7 import "../node_modules/@openzeppelin/contracts/access/AccessControl.

sol";

8 import "../node_modules/@openzeppelin/contracts/utils/Address.sol";

9 import "../node_modules/@openzeppelin/contracts/utils/math/SafeMath.

sol";

10

11 contract SwarmAdRewarder is AccessControl{

12

13 uint256 dailyInterestRate = 1;

14

15 /// @notice stores how much interest in form of Community Token

users are accumulating

16 mapping(address=>uint256) public SWCTVault;

17 /// @notice keeps track of last time the interests have been

computed for each wallet

18 mapping(address=>uint256) private

addressToLastInterestComputation;

19

20 /// @notice access control mechanism

21 address governor;

22 address swarmad;

23 address coins;

24 address reputation;

25

26 bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");

27 bytes32 public constant GOVERNOR_ROLE = keccak256("GOVERNOR_ROLE"

);

28

29 event newValueInVault(uint256 amount);

30 event ValueInVault(address owner, uint256 amount);

31

32 constructor() {

33 swarmad = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x02))))));

108

APPENDIX A. SMART CONTRACTS

34 governor = address(uint160(uint256(keccak256(abi.encodePacked

(bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x03))))));

35 reputation = address(uint160(uint256(keccak256(abi.

encodePacked(bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x05)

)))));

36 coins = address(uint160(uint256(keccak256(abi.encodePacked(

bytes1(0xd6), bytes1(0x94), msg.sender, bytes1(0x06))))));

37 _setupRole(DEFAULT_ADMIN_ROLE , msg.sender);

38 _setupRole(MINTER_ROLE , swarmad);

39 _setupRole(MINTER_ROLE , governor);

40 _setupRole(GOVERNOR_ROLE , governor);

41 }

42

43 /// @notice Computes interests

44 /// @param balance reputation points a user has in his wallet

45 /// @param a user

46 /// @return uint256 how much interests a user has accumulateed

from ladt computation

47 function computeCompoundInterest(uint256 balance, address a)

internal view returns(uint256){

48 uint256 duration = SafeMath.sub(block.timestamp ,

addressToLastInterestComputation[a]);

49 uint256 durationInDays = SafeMath.div(SafeMath.div (SafeMath

.div(duration , 60), 60), 24);

50 uint256 compoundInterest = SafeMath.mul(SafeMath.mul(

durationInDays , balance), dailyInterestRate);

51 return compoundInterest;

52 }

53

54 /// @notice Add reputation points to a user’s wallet

55 /// @param a user ethereum address

56 /// @param amount how many RP

57 function addRPsToAccount(address a, uint256 amount) public

onlyRole(MINTER_ROLE) {

58 SwarmAdReputationPoints SWRP = SwarmAdReputationPoints(

reputation);

59 uint256 balance = SWRP.balanceOf(a);

60 uint256 interest = computeCompoundInterest(balance, a);

61 if(interest >0){

62 uint256 newVaultValue = SafeMath.add(SWCTVault[a],

interest);

63 SWCTVault[a] = newVaultValue;

64 }

109

A.5. SWARMADREPUTATIONPOINTS

65 SWRP.mint(a, amount);

66 addressToLastInterestComputation[a] = block.timestamp;

67 }

68

69 /// @notice Burn reputation points from a user’s wallet

70 /// @param a user ethereum address

71 /// @param amount how many RP

72 function burnRPsToAccount(address a, uint256 amount) public

onlyRole(GOVERNOR_ROLE){

73 SwarmAdReputationPoints SWRP = SwarmAdReputationPoints(

reputation);

74 uint256 balance = SWRP.balanceOf(a);

75 uint256 interest = computeCompoundInterest(balance, a);

76 if(interest >0){

77 uint256 newVaultValue = SafeMath.add(SWCTVault[a],

interest);

78 SWCTVault[a] = newVaultValue;

79 }

80 SWRP.burn(a, amount);

81 addressToLastInterestComputation[a] = block.timestamp;

82 }

83

84 /// @notice converts interests into Community Token

85 function redeem() public{

86 uint256 amount = SWCTVault[msg.sender];

87 require(amount >0);

88 SWCTVault[msg.sender] = 0;

89 SwarmAdCommunityToken SWCT = SwarmAdCommunityToken(coins);

90 SWCT.mint(msg.sender, amount);

91 }

92 }

Code A.4: SwarmAdRewarder.sol

A.5 SwarmAdReputationPoints

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.4;

3

4 import "../node_modules/@openzeppelin/contracts/token/ERC20/ERC20.sol

";

5 import "../node_modules/@openzeppelin/contracts/token/ERC20/

extensions/ERC20Burnable.sol";

110

APPENDIX A. SMART CONTRACTS

6 import "../node_modules/@openzeppelin/contracts/access/AccessControl.

sol";

7

8 contract SwarmAdReputationPoints is ERC20, ERC20Burnable ,

AccessControl {

9 bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");

10

11 constructor(address rewarder) ERC20("SwarmAdReputationPoints", "

SWRP") {

12 _grantRole(DEFAULT_ADMIN_ROLE , msg.sender);

13 _grantRole(MINTER_ROLE , rewarder);

14 }

15

16 function _beforeTokenTransfer(address from, address to, uint256

amount) internal override(ERC20){

17 require(from == address(0) || to == address(0), "Error:

Reputation Points are not transferable");

18 super._beforeTokenTransfer(from, to, amount);

19 }

20

21 function mint(address to, uint256 amount) public onlyRole(

MINTER_ROLE) {

22 _mint(to, amount);

23 }

24

25 function burn(address to, uint256 amount) public onlyRole(

MINTER_ROLE){

26 _burn(to, amount);

27 }

28

29

30 }

Code A.5: SwarmAdReputationPoints.sol

111

B
Testing scripts

B.1 SwarmAdTest.js

1 const SwarmAd = artifacts.require("SwarmAd");

2 const Governor = artifacts.require("SwarmAdGovernor");

3 const Rewarder = artifacts.require("SwarmAdRewarder");

4 const SWCT = artifacts.require("SwarmAdCommunityToken");

5 const SWRP = artifacts.require("SwarmAdReputationPoints");

6 const { time } = require(’../node_modules/@openzeppelin/test-helpers’

);

7

8 //accounts = available addresses in the network

9 contract("SwarmAd", (accounts) => {

10

11 let SwarmAdContract , GovernorContract , SWCTContract ,

RewarderContract , SWRPContract;

12 let user=accounts[0]

13 let bob=accounts[1];

14 let pid;

15

16 before(async ()=>{

17 SwarmAdContract = await SwarmAd.deployed();

18 GovernorContract = await Governor.deployed();

19 RewarderContract = await Rewarder.deployed();

20

21 SWRPContract = await SWRP.new(RewarderContract.address);

22 SWCTContract = await SWCT.new(RewarderContract.address);

113

B.1. SWARMADTEST.JS

23 });

24

25 it("create enterprise", async()=>{

26 await SwarmAdContract.createEnterprise("juve", "juve@gmail.

com", "0x1234", {from: user});

27 let result = await SwarmAdContract.isRegistered(user);

28 assert.equal(result, true, "Enterprises not registered");

29 });

30

31 it("remove enterprise", async()=>{

32 await SwarmAdContract.removeEnterpriseFromSwarmAd({from: user

});

33 let result = await SwarmAdContract.isRegistered(user);

34 assert.equal(result, false, "Enterprises is still registered"

);

35 });

36

37 it("check if remove enterprise removes also products", async()=>{

38 await SwarmAdContract.createEnterprise("samp", "samp@gmail.

com", "0x9001", {from: user});

39 await SwarmAdContract.removeEnterpriseFromSwarmAd({from: user

});

40 let globalPidList= await SwarmAdContract.getProductList();

41 assert.equal(globalPidList.length, 0, "Products not removed")

;

42 });

43

44 it("retrieve enterprise", async()=>{

45 await SwarmAdContract.createEnterprise("samp", "samp@gmail.

com", "0x9001", {from: user});

46 let result = await SwarmAdContract.getEnterprise(user);

47 assert.equal(result[0], "samp", "Enterprise is not retrieved"

);

48 });

49

50 it("change enterprise name", async()=>{

51 await SwarmAdContract.updateEName("juventus", {from: user});

52 let result = await SwarmAdContract.getEnterprise(user, {from:

user});

53 assert.equal(result[0], "juventus", "Name is not changed");

54 });

55

56 it("create new product", async()=>{

114

APPENDIX B. TESTING SCRIPTS

57 await SwarmAdContract.createNewProduct("pogba", "pogba.jpg",

"football player", "10", {from: user});

58 });

59

60 it("retrieve product by pid", async()=>{

61 let pidList = await SwarmAdContract.

getProductListFromEnterprise(user);

62 pid = pidList[0];

63 let result = await SwarmAdContract.getProductByPid(pid);

64 assert.equal(result[0], "pogba", "Product name is not correct

");

65 });

66

67 it("update name by pid", async()=>{

68 await SwarmAdContract.updateProductNameByPid(pid, "dimaria",{

from: user});

69 let result = await SwarmAdContract.getProductByPid(pid);

70 assert.equal(result[0], "dimaria", "item is not deleted");

71

72 });

73

74 it("use superlike", async()=>{

75 await SwarmAdContract.createEnterprise("bob", "bob@gmail.com"

, "0x5678", {from: bob});

76 let polls = await GovernorContract.getAllPoll();

77 await GovernorContract.castVote(polls[0], 1, {from:user});

78 let day = 60 * 60 * 24;

79 await time.increase(day*1);

80 await GovernorContract.closePoll(polls[0], {from: user});

81 let pidList = await SwarmAdContract.

getProductListFromEnterprise(user);

82 await SwarmAdContract.assignSuperlike(pidList[0], {from: bob

});

83 });

84 });

Code B.1: SwarmAdTest.js

B.2 GovernorTest.js

1 const SwarmAd = artifacts.require("SwarmAd");

2 const Governor = artifacts.require("SwarmAdGovernor");

3 const SWRP = artifacts.require("SwarmAdReputationPoints");

115

B.2. GOVERNORTEST.JS

4 const SWCT = artifacts.require("SwarmAdCommunityToken");

5 const Rewarder = artifacts.require("SwarmAdRewarder");

6

7 const {

8 BN, // Big Number support

9 constants , // Common constants , like the zero address and

largest integers

10 expectEvent , // Assertions for emitted events

11 expectRevert ,

12 time, // Assertions for transactions that should fail

13 } = require(’../node_modules/@openzeppelin/test-helpers’);

14

15 contract("Testing Governance", (accounts) => {

16

17 let SwarmAdContract , GovernorContract , SWCTContract ,

RewarderContract , SWRPContract;

18 let alice = accounts[1];

19 let bob = accounts[2];

20 let carl = accounts[3];

21

22 before(async ()=>{

23 SwarmAdContract = await SwarmAd.deployed();

24 GovernorContract = await Governor.deployed();

25 RewarderContract = await Rewarder.deployed();

26

27 SWRPContract = await SWRP.new(RewarderContract.address);

28 SWCTContract = await SWCT.new(RewarderContract.address);

29 });

30

31 it("1) Create a new enterprise", async()=>{

32 await SwarmAdContract.createEnterprise("alice", "alice@gmail.

com", "0x1234", {from: alice});

33 await SwarmAdContract.createEnterprise("bob", "bob@gmail.com"

, "0x5678", {from: bob});

34 });

35

36 it("2) Check enterprise in waiting list", async()=>{

37 let result = await SwarmAdContract.isInWaitingList(bob);

38 assert.equal(result, true, "Enterprise is not in waiting list

");

39 });

40

41 it("3) Vote a proposal", async()=>{

116

APPENDIX B. TESTING SCRIPTS

42 let polls = await GovernorContract.getAllPoll();

43 await GovernorContract.castVote(polls[0], 1, {from:alice});

44 });

45

46 it("4) Execute a proposal", async()=>{

47 let result = await SwarmAdContract.isRegistered(bob);

48 assert.equal(result, false, "already registered");

49 let day = 60 * 60 * 24;

50 await time.increase(day*1);

51 let polls = await GovernorContract.getAllPoll();

52 await GovernorContract.closePoll(polls[0], {from: alice});

53 result = await SwarmAdContract.isRegistered(bob);

54 assert.equal(result, true, "user not added successfully");

55 });

56

57 it("5) Check rewards", async()=>{

58 let result = await SWRPContract.balanceOf(alice);

59 assert.equal(result, 20, "Rewards not received");

60 });

61

62 it("6) New voting", async()=>{

63 //newcomer

64 await SwarmAdContract.createEnterprise("carl", "carl@gmail.

com", "0x9101", {from: carl});

65 //voting

66 let polls = await GovernorContract.getAllPoll();

67 await GovernorContract.castVote(polls[1], 1, {from:alice});

68 await GovernorContract.castVote(polls[1], 1, {from:bob});

69 //fast forward to vote end

70 let day = 60 * 60 * 24;

71 await time.increase(day+1);

72 await GovernorContract.closePoll(polls[1], {from: bob});

73 //alice has new RPs, she should be able to redeem her first

bunch of SWCT

74 await RewarderContract.redeem({from: alice});

75 ct = await SWCTContract.balanceOf(alice);

76 assert.equal(ct, 20, "SWCT not properly converted");

77 let rp = await SWRPContract.balanceOf(alice);

78 assert.equal(rp, 30, "RP are wrong");

79 let vault = await RewarderContract.getVaultValue(alice);

80 assert.equal(vault, 0, "vault not empty after redeem");

81 });

117

B.2. GOVERNORTEST.JS

82 });

Code B.2: GovernorTest.js

118

C
Front-end

C.1 Home

1 import { ethers } from "ethers";

2 import React, {useState , useEffect} from "react";

3 import { isEthAccountRegistered } from "../apis/SwarmAd";

4 import Footer from "../components/Footer";

5 import Header from ’../components/Header’;

6 import Showcase from "../components/Showcase";

7

8 //context

9 export const UserContext = React.createContext(null);

10

11 function Home(){

12

13 const [ethAccount , setEthAccount] = useState();

14 const [ethAccountRegistered , setEthAccountRegistered]=useState(

false);

15

16 useEffect(() => {

17 isWalletConnected();

18 isRegistered();

19 }, [ethAccount]);

20

21 async function isWalletConnected(){

22 // Check if browser is running Metamask

23 const {ethereum} = window;

119

C.2. REGISTER

24 //If not, fallback to Ganache

25 if (!ethereum) ethereum = ethers.getDefaultProvider(’http

://127.0.0.1:7545’);

26 const accounts = await ethereum.request({method: ’

eth_requestAccounts’});

27 setEthAccount(accounts[0]);

28 }

29

30 async function isRegistered(){

31 if(!ethAccount) return;

32 const result = await isEthAccountRegistered(ethAccount);

33 console.log(result);

34 setEthAccountRegistered(result);

35 }

36

37 return(

38 <UserContext.Provider value={[ethAccount ,

ethAccountRegistered]}>

39 <Header />

40 <Showcase/>

41 <Footer />

42 </UserContext.Provider >

43);

44 }

45

46 export default Home;

Code C.1: Home.jsx

C.2 Register

1 import { keccak256 } from "ethers/lib/utils";

2 import React, {useState , useEffect} from "react";

3 import { Link, Navigate } from "react-router-dom";

4 import { createEnterprise } from "../apis/SwarmAd";

5 import { uploadImage } from "../apis/SwarmClient";

6

7

8 function Register(){

9

10 //state vars

11 const [ethAccount , setEthAccount] = useState();

12 const[eName, setEName]=useState(’’);

120

APPENDIX C. FRONT-END

13 const[eMail, setEMail]=useState(’’);

14 const[imageHash , setImageHash]=useState(’’);

15 const [image, setImage] = useState();

16

17 //error checking

18 const[submit, setSubmit] = useState(false);

19 const[error, setError] = useState(false);

20

21 //get wallet from metamask

22 useEffect(() => {

23 isWalletConnected();

24 }, [ethAccount]);

25

26 async function isWalletConnected(){

27 // Check if browser is running Metamask

28 const {ethereum} = window;

29 if (!ethereum) return;

30 const accounts = await ethereum.request({method: ’

eth_requestAccounts’});

31 setEthAccount(accounts[0]);

32 }

33

34 //handle name

35 const handleEName = (e) => {

36 setEName(e.target.value);

37 setSubmit(false);

38 }

39

40 //handle email

41 const handleEMail = (e) =>{

42 setEMail(e.target.value);

43 setSubmit(false)

44 }

45

46 //Contract call

47 async function callCreateEnterprise(){

48

49 let txn = await createEnterprise(eName, eMail, imageHash);

50 if(!txn.hash) return;

51 setSubmit(true);

52 setError(false);

53

54 //redirect

121

C.2. REGISTER

55 <Navigate to="/home"/>

56 }

57

58 async function handleSubmit(e){

59 e.preventDefault();

60 //validation

61 if(eName===’’ || eMail===’’ || imageHash===’’) {setError(true

); return;}

62 callCreateEnterprise();

63 }

64

65 //image handler

66 const onImageChange = (e) =>{

67 const f = e.target && e.target.files && e.target.files[0];

68 setImage(f);

69 }

70

71 async function uploadImageOnSwarm(e){

72 e.preventDefault();

73 const result = await uploadImage(image);

74 setImageHash(result);

75

76 }

77

78 const successMsg = () =>{

79 return(

80 <div className="success">{eName} has been successfully

registered to SwarmAd </div>

81);

82 }

83

84 const errorMsg = () =>{

85 <div className="error">Error: check all fields before

submitting </div>

86 }

87

88 return(

89 <div className="registerForm">

90 <div><h2>Register Form</h2></div>

91

92 <div className="messages">

93 {errorMsg()}

94 {successMsg()}

122

APPENDIX C. FRONT-END

95 </div>

96

97 <form>

98 <label className="label">Enterprise Name</label>

99 <input onChange={handleEName} className="input" value

={eName} type="text"/>

100

101 <label className="label">E-mail Address </label>

102 <input onChange={handleEMail} className="input" value

={eMail} type="text"/>

103

104 <button onClick={handleSubmit} className="btn">

Register </button>

105

106 </form>

107

108 <form>

109 <label className="label">Logo</label>

110 <input type="file" name="file" onChange={

onImageChange}/>

111

112 <button onClick={uploadImageOnSwarm} className="btn">

Upload </button>

113 </form>

114

115 <Link to="/">Back to home</Link>

116 </div>

117);

118 }

119

120 export default Register;

Code C.2: Register.jsx

C.3 CreateItem

1 import { keccak256 } from "ethers/lib/utils";

2 import React, {useState , useEffect} from "react";

3 import { Link, Navigate } from "react-router-dom";

4 import { createEnterprise } from "../apis/SwarmAd";

5 import { uploadImage } from "../apis/SwarmClient";

6 import {createNewItem} from ’../apis/SwarmAd’

7

123

C.3. CREATEITEM

8

9 function CreateItem(){

10

11 //state vars

12 const [ethAccount , setEthAccount] = useState();

13 const[itemName , setItemName]=useState(’’);

14 const[itemDescription , setItemDescription]=useState(’’);

15 const[itemPrice , setItemPrice]=useState(’’);

16 const [image, setImage] = useState();

17 const[imageHash , setImageHash]=useState(’’);

18

19 //error checking

20 const[submit, setSubmit] = useState(false);

21 const[error, setError] = useState(false);

22

23 //get wallet from metamask

24 useEffect(() => {

25 isWalletConnected();

26 }, [ethAccount]);

27

28 async function isWalletConnected(){

29 // Check if browser is running Metamask

30 const {ethereum} = window;

31 if (!ethereum) return;

32 const accounts = await ethereum.request({method: ’

eth_requestAccounts’});

33 setEthAccount(accounts[0]);

34 }

35

36 //handle name

37 const handleItemName = (e) => {

38 setItemName(e.target.value);

39 setSubmit(false);

40 }

41

42 //handle email

43 const handleItemDescription = (e) =>{

44 setItemDescription(e.target.value);

45 setSubmit(false)

46 }

47

48 //handle price

49 const handleItemPrice = (e) =>{

124

APPENDIX C. FRONT-END

50 setItemPrice(e.target.value);

51 setSubmit(false)

52 }

53

54 //Contract call

55 async function callCreateNewItem(){

56 let txn = await createNewItem(itemName , imageHash ,

itemDescription , itemPrice)

57 if(!txn.hash) return;

58 setSubmit(true);

59 setError(false);

60 }

61

62 async function handleSubmit(e){

63 e.preventDefault();

64 //validation

65 if(itemName===’’ || itemDescription===’’ || imageHash===’’ ||

itemPrice===’’) {setError(true); return;}

66 callCreateNewItem();

67 }

68

69 //image handler

70 const onImageChange = (e) =>{

71 const f = e.target && e.target.files && e.target.files[0];

72 setImage(f);

73 }

74

75 async function uploadImageOnSwarm(e){

76 e.preventDefault();

77 const result = await uploadImage(image);

78 setImageHash(result);

79

80 }

81

82 const successMsg = () =>{

83 return(

84 <div className="success">{itemName} has been successfully

added to SwarmAd </div>

85);

86 }

87

88 const errorMsg = () =>{

89 <div className="error">Error: check all fields before

125

C.3. CREATEITEM

submitting </div>

90 }

91

92 return(

93 <div className="registerForm">

94 <div><h2>Create new product </h2></div>

95

96 <div className="messages">

97 {errorMsg()}

98 {successMsg()}

99 </div>

100

101 <form>

102 <label className="label">Product name</label>

103 <input onChange={handleItemName} className="input"

value={itemName} type="text"/>

104

105 <label className="label">Description </label>

106 <input onChange={handleItemDescription} className="

input" value={itemDescription} type="text"/>

107

108 <label className="label">Price </label>

109 <input onChange={handleItemPrice} className="input"

value={itemPrice} type="number"/>

110

111 <button onClick={handleSubmit} className="btn">Add

new product </button>

112

113 </form>

114

115 <form>

116 <label className="label">Logo</label>

117 <input type="file" name="file" onChange={

onImageChange}/>

118

119 <button onClick={uploadImageOnSwarm} className="btn">

Upload </button>

120 </form>

121

122 <Link to="/">Back to home</Link>

123 </div>

124);

125 }

126

APPENDIX C. FRONT-END

126

127 export default CreateItem;

Code C.3: CreateItem.jsx

C.4 Showcase

1 import {useEffect , useState} from ’react’;

2 import ItemShowcase from ’./ItemShowcase’;

3 import EnterpriseCard from ’./EnterpriseCard’

4

5 import { getEnterpriseAddressList , getEnterpriseList ,

getItemListFromEnterprise } from ’../apis/SwarmAd’;

6 import EnterpriseShowcase from ’./EnterpriseShowcase’;

7

8 function Showcase(){

9

10 const [enterprises , setEnterprises] = useState();

11 const [items, setItems] = useState();

12 const maxItemInShowcase = 5;

13

14 useEffect(()=>{

15 fetchEnterprise();

16 },[]);

17

18 async function fetchEnterprise(){

19 let list = await getEnterpriseList();

20 setEnterprises(list);

21 }

22

23 async function fetchItemsFromEnteprise(enterprise){

24 let list = await getItemListFromEnterprise(enterprise);

25 setItems(list);

26 }

27

28 return(

29 <div>

30 <EnterpriseShowcase enterprises={enterprises} maxNumber=’4’/>

31 </div>

32);

33

34 }

35

127

C.5. ENTERPRISESHOWCASE

36

37 export default Showcase;

Code C.4: Showcase.jsx

C.5 EnterpriseShowcase

1 import { useEffect , useState } from "react";

2 import { Box, Button, Container , Grid, Typography } from ’@mui/

material’;

3 import EnterpriseCard from "./EnterpriseCard";

4

5 function EnterpriseShowcase({enterprises , maxNumber}){

6

7 const [index, setIndex] = useState(0);

8 const [enterprisesToShow , setEnterprisesToShow] = useState();

9

10 useEffect(()=>{

11 fillWithEnterprises();

12 },[index]);

13

14 function fillWithEnterprises(maxNumber){

15 let list = [];

16 for(let i=0; i<maxNumber; i++){

17 if((index + i + 1) > enterprises.length) index=0;

18 list.push(enterprises[index+i]);

19 }

20 setEnterprisesToShow(list);

21 }

22

23 return(

24 <div>

25 <h2>Enterprises </h2>

26 <Container >

27 <Grid container spacing={1}>

28 {enterprises?

29 enterprises.map((e)=>{

30 return (

31 <Grid item xs={3} key={e.eName} >

32 <EnterpriseCard eName={e.eName} eMail

={e.eMail} image={e.image}/>

33 </Grid>

34);}) : null

128

APPENDIX C. FRONT-END

35 }

36

37 </Grid>

38 </Container >

39 </div>

40);

41

42 }

43 export default EnterpriseShowcase;

Code C.5: EnterpriseShowcase.jsx

C.6 SwarmAd.js

1 import swarmAdJson from ’../contracts/SwarmAd.json’

2 import {ethers} from ’ethers’

3

4 //web3

5 const {ethereum} = window;

6 const provider= new ethers.providers.Web3Provider(ethereum);

7 const signer = provider.getSigner();

8 //contract

9 const ABI = swarmAdJson.abi;

10 const ADDRESS = "0xBDff6A11043dc03838dA14D7AD77854B2E4B85D1";

11 export const swarmAdContract = new ethers.Contract(ADDRESS,ABI,signer

);

12

13 export const getEnterprise = async(ethAddress)=>{

14 const txn = await swarmAdContract.getEnterprise(ethAddress);

15 return {eName: txn[0], eMail: txn[1], image: txn[2]}

16 }

17

18 export const getEnterpriseAddressList = async()=>{

19 const txn = await swarmAdContract.getEList();

20 return txn;

21 }

22

23 export const getEnterpriseList = async()=>{

24 const list = await swarmAdContract.getEList();

25 const enterprises = []

26 for(let i=0; i<list.length;i++){

27 const enterprise = await getEnterprise(list[i]);

28 enterprises.push(enterprise);

129

C.6. SWARMAD.JS

29 }

30 console.log(enterprises);

31 return enterprises;

32 }

33

34 export const getItem = async(pid)=>{

35 const item = await swarmAdContract.getProduct(pid);

36 console.log(item);

37 }

38

39 export const getItemListFromEnterprise = async(enterpriseEthAddress)

=>{

40 const list = await swarmAdContract.getProductList(

enterpriseEthAddress);

41 let items = [];

42 for(let i=0; i<list.length;i++){

43 const item = await getItem(list[i]);

44 items.push(item);

45 }

46 return items;

47 }

48

49 export const isEthAccountRegistered = async(ethAccount)=>{

50 const result = await swarmAdContract.isRegistered(ethAccount);

51 return result;

52 }

53

54 export const createEnterprise = async (eName, eMail, imageHash) =>{

55 const txn = await swarmAdContract.createEnterprise(eName, eMail,

imageHash);

56 return txn;

57 }

58

59 export const createNewItem = async(itemName , imageHash ,

itemDescription , itemPrice)=>{

60 const txn = await swarmAdContract.createNewProduct(itemName ,

imageHash , itemDescription , itemPrice);

61 return txn;

62 }

Code C.6: SwarmAd.js

130

APPENDIX C. FRONT-END

C.7 SwarmClient.js

1 import { Bee, BeeDebug } from "@ethersphere/bee-js"

2 /* BEE FACTORY SETTINGS */

3 //const beeURL = ’http://localhost:11633’ //main net value ’http://

localhost:1633’ or ’https://api.gateway.ethswarm.org/’ for gateway

4 const beeURL = ’http://localhost:13000’;

5 const bee = new Bee(beeURL);

6

7 export const downloadImage = (imageHash)=>{

8 return ‘${beeURL}/bzz/${imageHash}‘

9 }

10

11 export const uploadImage = async (image) =>{

12

13 console.log(’uploading’);

14 //batch is handled directly by the gateway

15 const postageBatch = ’

00’;

16 const result = await bee.uploadFile(postageBatch , image);

17 console.log(result.reference);

18 return result.reference

19 }

Code C.7: SwarmClient.js

131

