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Chapter 1

Elliptic Curves

1.1 Weierstrass equation

In this first chapter, we define elliptic curves, and we state some of their properties.

Definition 1.1.1. An elliptic curve is a pair (E,O) where E is a non-singular projective

curve of genus one over a field K and a point O ∈ E.

For arithmetic purposes, it is more natural to work with explicit equations, as explained in

the following theorem.

Theorem 1.1.2. Let (E,O) be an elliptic curve defined on K.

1. There exist constants a1, a2, a3, a4, a6 and an isomorphism given by the map:

φ : E
≅−→ {[X,Y,Z] ∈ P2

K : [X,Y,Z] ∈ curve given by C ⊂ P2
K} (1.1)

where

C : Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3 (1.2)

which is the Weierstrass equation for C and φ(O) = [0, 1, 0].

2. For both of the two Weierstrass equations, that describes the same curve E, there

exists a linear change of variable that fixes O

Y = u2X′ + r, Y = u3Y ′ + su2X′ + t (1.3)

with u ∈ K∗ and r, s, t ∈ K.

3. Conversely, every smooth cubic projective curve C given by a Weierstrass equation

is an elliptic curve on K with base point O = [0, 1, 0].

This theorem is proven using the Riemann-Roch Theorem and some basic knowledge

about maps between algebraic curves; a more complete proof is given in [8, Chapter III].

Weierstrass equation can be simplified, if we consider the base point O = [0 : 1 : 0]. Then

1



we dehomogenise it to obtain the elliptic curve in nonhomogeneous coordinates x = X/Z

and y = Y/Z in the affine space UZ = {[x : y : 1] : (x, y) ∈ C2}:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, (1.4)

where we need to keep in mind that O is not in E ∩ A2
K . We now study fields K that have

char(K) = 0; this includes C and the p-adic fields, in which we will be most interested.

Definition 1.1.3. Suppose E/K is an elliptic curve given by the general formula

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (1.5)

So, we define some quantities related to elliptic curves. Then, we simplify the equation of

elliptic curves by completing the square with the following map:

y ↦→ 1

2
(y − a1x − a3) (1.6)

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6, (1.7)

which gives us the simplified equation

y2 = 4x3 + b2x2 + 2b4x + b6. (1.8)

We also develop more quantities which help us write the invariants of elliptic curves

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4, (1.9)

c4 = b2
2 − 24b4 (1.10)

c6 = −b3
2 + 36b2b4 − 216b6. (1.11)

Let us define: the discriminant of an elliptic curve E that is

∆(E) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 (1.12)

the j-invariant for E is

j(E) = c3
4/∆ (1.13)

the Hasse invariant of E to be

γ(E/K) = −c4/c6 (1.14)

and the differential

ω =
dx

2y + a1x + a3

. (1.15)

Additionally, if char(K) ≠ 2, 3, we can further simplify by completing the cube with the

map

(x, y) ↦→
(

x − 3b2

36
,

y

108

)
. (1.16)

We obtain the equation

E : y2+ = x3 + Ax + B. (1.17)

Those quantities are all well-defined, and they have some properties which we can now

analyse.
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Theorem 1.1.4. The curve E given in the Weierstrass equation over a field K is

nonsingular, if for every point P ∈ K at least one of the following is not equal to 0:

∂ f

∂x
(P),

∂ f

∂y
(P) (1.18)

where

f (x, y) = y2 + a1xy + a3y2 − (x3 + a2x2 + a4x2 + a6). (1.19)

1. An elliptic curve given in the Weierstrass equation satisfies one of the following:

(a) it is nonsingular if and only if ∆ ≠ 0;

(b) it has a node if and only if ∆ = 0 and c4 ≠ 0;

(c) it has a cusp if and only if ∆ = c4 = 0.

In cases 1b and 1c, there is only one singular point.

2. Two elliptic curves are isomorphic over K if and only if they have the same j-

invariant.

3. Let j0 ∈ K. There exists an elliptic curve defined over K( j0) whose j-invariant is

equal to j0.

Proof. We prove 1 by showing that the point at infinity, which is O = [0, 1, 0], is never

singular. This is true as ∂F
∂Z

(O) = 1 ≠ 0.

Next, suppose that E is singular, say at P0 = (x0, y0).

The substitution x = x + x0, y = y + y0 leaves ∆ and c4 invariant, so we assume that E is

singular at (0, 0). Then,

a6 = − f (0, 0) = 0, a4 = −
∂ f

dx
(0, 0) = 0, a3 =

∂ f

dy
(0, 0) = 0, (1.20)

so the equation for E takes the form

E : f (x, y) = y2 + a1xy − a2x2 − x3 = 0. (1.21)

This equation has associated quantities

c4 = (a2
1 + 4a2)2 and ∆ = 0. (1.22)

By definition, E has a node, respectively cusp, at (0, 0) if the quadratic form y2+a1xy−a2x2

has distinct, respectively equal, factors, which occurs if and only if the discriminant of this

quadratic form satisfies

a2
1 + 4a2 ≠ 0, respectively a2

1 + 4a2 = 0. (1.23)

This completes the proof of 1c,1b. In order to complete the proof of 1 it remains to show

the case with E is non singular, implies ∆ ≠ 0.
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To simplify the computation, we assume that char(K) ≠ 2 and consider a Weierstrass

equation of the form

E : y2 = 4x3 + b2x2 + 2b4x + b6. (1.24)

The curve E is singular if and only if there is a point (x0, y0) ∈ E that satisfies equations

2y0 = 0 and 12x2 + 2b2x0 + 2b4 = 0. To put it differently, the singular points correspond

exactly to the coordinates (x0, y0) where x0 is a double root of the cubic polynomial:

4x3 + b2x2 + 2b4x + b6. (1.25)

This polynomial has a double root if and only if its discriminant is zero.

We now prove 2.

If E1 and E2 are isomorphic than by the formulas they have the same j-invariant. On the

other hand, if they have the same j-invariant and, for semplicity assume char(K) ≥ 5, we

can find the following relation:

j(E1) =
4A3

1

4A3
1
+ 27B2

1

=
4A3

2

4A3
2
+ 27B2

2

= j(E2). (1.26)

This leads us to consider the relation A3
1
B2

2
= A3

2
B2

1
. We consider here only the general

case where j ≠ 0, 1728 and we are able to find a change of variable as follows:

(x, y) = (u2x′, u3y′) (1.27)

where u = (A1/A2)1/4. (1.28)

To prove 3, we give the curve

E : y2 + xy = x3 − 36

j0 − 1728
x − 1

j0 − 1728
, (1.29)

which gives us the desired result if j ≠ 0, 1728, and the other cases are trivial. □

1.2 Group law and maps

We now define the sum of points on an elliptic curve.

Definition 1.2.1. For every P,Q ∈ E/K we define the operation of composition of points

on the elliptic curve ⊕ : E × E → E and let P,Q,R ∈ E and O as usual. We define

P ⊕ Q as the point we obtain with the following algorithm: we take the line through

P,Q L = L(P,Q) so we find R = L ∩ E the third intersection. Then L′ = L(R,O) gives us

the third point −R = L′ ∩ E, which we define P ⊕ Q. So, we now understand that E with

composition ⊕ is an abelian group with identity O.

Theorem 1.2.2. Let E be an elliptic curve with Weierstrass equation:

y2 + a1xy + a3y2 = (x3 + a2x2 + a4x2 + a6). (1.30)

.
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1. Let P0 = (x0, y0), then

−P0 = (x0,−y0 − a1x0 − a3). (1.31)

Next, let

P1 + P2 = P3 with P1 = (xi, yi) ∈ E for i = 1, 2, 3. (1.32)

2. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O. (1.33)

Otherwise, we define λ, ν by the following formulas:

λ ν

x1 ≠ x2
y2−y1

x2−x1

y1 x2−y2 x1

x2−x1

x1 = x2
3x2

1
+2a2 x1+a4−a1y1

2y1+a1 x1+a3

−x3
1
+a2 x2

1
+2a6−a3y1

2y1+a1 x1+a3

Then y = λx + ν is the line through P1, P2, or the tangent to E if P1 = P2.

3. With notation as above, P1 + P2 = P3 has coordinates:

x3 = λ
2 + a1λ − a2 − x1 − x2, (1.34)

y3 = −(λ + a1) · x3 − ν − a3. (1.35)

4. If P1 ≠ ±P2.

x(P1 + P2) =

(
y2 − y1

x2 − x1

)2

+ a1

(
y2 − y1

x2 − x1

)
− a2 − x1 − x2, (1.36)

and the duplication formula for P = (x, y) ∈ E:

x([2]P) =
x4 − b4x2 − 2b6x − b8

4x3 + b2x2 + 2b4x + b6

, (1.37)

Here, the coefficients are the same as in 1.1.3.

This theorem is proven in [8, Group law algorithm III.2.3]

Lemma 1.2.3. Let E be a curve given by a Weierstrass equation with ∆ = 0, so E has a

singular point S . Then, the composition law makes Ens, the set of non-singular points of

E into an abelian group.

1. Suppose that E has a node, so c4 = 0, and let

y = α1x + β1 and y = α2x + β2 (1.38)

be the distinct tangent lines to E at S. Then, the map

Ens ↦→ K
∗
, (x, y) ↦→ y − α1x − β1

y − α2x − β2

(1.39)

is an isomorphism of abelian groups.
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2. Suppose that E has a cusp, so c4 = 0, and let y = αx + β be the tangent line to E at

S. Thus, the map

Ens ↦→ K
+
, (x, y) ↦→ x − x(S )

y − αx − β (1.40)

is an isomorphism of abelian groups.

The proof is given in [8, Theorem III.2.3] In the settings of fields of char(K) = 0,

the discriminant of the Weierstrass equation is ∆ = 27A3 + 27B2. Then we study the

morphisms between the elliptic curves.

Definition 1.2.4. Let E1, E2 be elliptic curves over K. An isogeny φ is a morphism φ :

E1 ↦→ E2 and φ(O) = O. If an isogeny exists with φ(E1) = E2 then E1 and E2 are said to

be isogenous otherwise we can show that φ(E1) = O.

An example of an isogeny is multiplication-by-m isogeny. For m ∈ Z

[m] : E ↦→ E. (1.41)

If m > 0 we define the map as [m](P) = P + P + P . . . P m times. This map is also defined

for negative numbers

[m](P) = [−m](−P). (1.42)

Theorem 1.2.5. Let E/K and m ∈ Z∗, then

[m] : E ↦→ E (1.43)

is non constant.

Theorem 1.2.6. Let E be an elliptic curve and let ⋖ ∈ Z be a prime. The (l-adic) Tate

module of E is the group Tl(E) = lim←−−n
E[ln], where the inverse limit is taken with respect

to the maps [l]:

E[ln+1]
[l]−→ E[ln]. (1.44)

Where formally, the inverse limit lim←−−n
E[ln] consists of all sequences (an)n∈N with the char-

acteristic an ∈ E[ln]. These sequences are compatible with the maps [l], which means that

[l](an+1) = an for all n ∈ N. In other words, each element in the inverse limit is an infinite

sequence of elements from each E[ln] that respects the given structure of the maps.

1.3 Formal group

It is necessary to define the Formal Group since it is essential for the analysis of elliptic

curves over Local Fields, as it will come up with a reduction of elliptic curves. We study

this because we want to investigate the structure of E near O, which we decide as a new

origin and therefore make a change of variable as follows:

z = − x

y
, w = −1

y
. (1.45)

Let us give a formal definition of formal groups.
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Definition 1.3.1. Let R be a ring; we define a formal group F over R as a power series

F(X,Y) ∈ R[[X,Y]] where the following are true:

1. F(X,Y) = X + Y + ( terms of degree ≥ 2 );

2. F(X, F(Y,Z)) = F(F(X,Y),Z);

3. F(X,Y) = F(Y, X);

4. There is a unique power series i(T ) ∈ R[[T ]] such that F(T, i(T )) = 0;

5. F(X, 0) = X.

We call F(X,Y) the formal group law on F.

Let E be an elliptic curve over a field K. The formal group associated with E is a formal

group law F over K. We denote it by Ê, and it is given by a power series. Specifically,

there exists a formal group law F(T1,T2) over K such that the addition of points on the

elliptic curve can be expressed in terms of this formal group law. It is given by the formula:

F(z1, z2) = z1 + z + 2 − a1z1z2 − a2(z2
1z2 + z1z2

2) + · · · ∈ Z[a1, . . . , a6][[z1, z2]]. (1.46)

For a more in detail analysis with also reference to Hensel’s lemma are given in [8, p. IV]

or [3].
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Chapter 2

Elliptic curves over the complex

numbers and complex uniformisation

2.1 Elliptic curves over the complex numbers

We now consider elliptic curves over C as the complex numbers provide an example of a

complete field where we uniformise elliptic curves over the field. The theorem of complex

uniformisation of elliptic curves states that we can parameterise elliptic curves by quotients

of lattices. We start this chapter with definitions of lattices and elliptic functions; the

meaning of this might not be clear immediately. For a brief historical account of the

elliptic integral, see [9].

Definition 2.1.1. A lattice Λ ⊂ C is a discrete subgroup. We can define lattices with the

equation

Λ = {a1v1 + a2v2, ai ∈ Z} , (2.1)

where {v1, v2} is a base for R2.

Definition 2.1.2. LetΛ ⊂ C be a lattice. An elliptic function related toΛ is a meromorphic

function f (z) on C such that

f (z + ω) = f (z)∀ z ∈ C and ω ∈ Λ. (2.2)

A function f is meromorphic on an open subset U if it is holomorphic on U except at a

finite number of isolated points zk ⊂ U, which are termed the poles of f . The set of all

elliptic functions, related to a specific lattice Λ, is C(Λ).

Remark 2.1.3. Let Λ be a lattice. The fundamental parallelogram of the lattice is a set

D = {a + tω1 + kω2 : (t, k) ∈ [0; 1[2} where ω1, ω2is a basis of Λ. (2.3)

Λ is homotetic to the normalised lattice {1, τ}; the exact relation between those two lattices

is explain and proven in detail in [7, Chapter I.1].

We say that the order of an elliptic function f is the number of poles, counted with

multiplicity in a fundamental lattice D.
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Remark 2.1.4. In our investigation of elliptic functions, the simplest nonconstant elliptic

function we can define is the Weierstrass ℘ function, as each non-constant elliptic function

must have at least order 2. In this way, let us also analyse the complete structure of C(Λ).

Definition 2.1.5. Given Λ ⊂ C, the Weierstrass ℘-function is defined by the following

series:

℘(z;Λ) :=
1

z2
+

∑

ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
(2.4)

We additionally describe the Eisenstein series of weight 2k (for Λ) as the series:

G2k(Λ) =
∑

ω∈Λ
ω≠0

ω−2k. (2.5)

The function ℘ is well defined on C/Λ. It is established that ℘′ is another elliptic function.

Consequently, we will examine the characteristics of these functions in the ensuing result,

attributed to Weierstrass.

Theorem 2.1.6. Let Λ ⊂ C be a lattice.

1. The Eisenstein series G2k(Λ) converge absolutely ∀k > 1.

2. The series defining the Weierstrass ℘-function converges absolutely and uniformly

on every compact subset of C \ Λ. The series defines a meromorphic function on C

having a double pole with residue 0 at each lattice point and no other poles.

3. The Weierstrass ℘-function is an even elliptic function.

Proof. 1. Since Λ is discrete in C, we can find a constant c such that the cardinality of

the following set is bounded:

#{ω ∈ Λ : N ≤ |ω| < N + 1} < cN. ∀N ≥ 1. (2.6)

We substitute it into the Eisenstein series to obtain

∑

ω∈Λ
|ω|≥1

1

|ω|2k
≤

∞∑

N=1

#{ω ∈ Λ : N ≤ |ω| < N + 1}
N2k

<

∞∑

N=1

c

N2k−1
< ∞. (2.7)

Therefore, G2k(Λ) converge absolutely.

2. If |ω| > 2|z|, then

∣∣∣∣∣
1

(z − ω)2
− 1

ω2

∣∣∣∣∣ =
∣∣∣∣∣

z(2ω − z)

ω2(z − ω)2

∣∣∣∣∣ ≤
|z(2|ω| + |z|)
|ω|2(|ω| − |z|)2

≤ 10|z|
|ω|2 . (2.8)

Then, ℘(z) is absolutely convergent for all z ∈ C \ Λ as in 1. Therefore, ℘ is a

holomorphic function on C\Λ, which has a double pole with residue 0 at each point

in Λ.
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3. As ℘ is uniformly convergent, we can compute its derivative

℘′(z) = −2
∑

ω∈Λ

1

(z − ω)3
. (2.9)

It follows that, ℘′ is an elliptic function as ℘′(z + ω) = ℘′(z) for all ω ∈ Λ. We

integrate it to find:

℘(z + ω) = ℘(z) + c ∀z ∈ C, (2.10)

where c as in 1, it is independent of z; therefore, if z = − 1
2
ω, c = 0 so ℘ is even.

This concludes the proof of the theorem. □

Theorem 2.1.7. Let Λ ⊂ C be a lattice. Then

C(Λ) = C(℘(z), ℘′(z)), (2.11)

which means that every elliptic function is a rational combination of ℘ and its derivative

℘′.

It is proven directly by showing that they share the same poles and zeros. For a complete

proof have a look at [4, Theorem I.3] or [8, Chapter 6.2-3]. At this point, to establish

the fundamental algebraic connection between elliptic functions and elliptic curves, we

examine the Laurent series expansion of ℘ near zero.

Theorem 2.1.8. The expansion of ℘ lets us find the followings:

1. The Laurent series for ℘(z) around z = 0 is given by

℘(z) =
1

z2
+

∞∑

k=1

(2k + 1)G2k+2z2k. (2.12)

2. For all z ∈ C \ Λ, ℘ and ℘′ satisfies

℘′(z)2 = 4℘(z)3 − 60G4(Λ)℘(z) − 140G6(Λ) (2.13)

Proof. We start by proving 1. We study ℘ near 0, therefore we consider only |z| < |ω| in
order to obtain

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1 − z/ω)2
− 1

)
=

∞∑

n=1

(n + 1)
zn

ωn+2
(2.14)

By setting 2k = n and by substituting ℘ we obtain

℘(z) =
1

z2
+

∑

ω∈Λ
|ω|≠0

∞∑

n=1

(n + 1)
zn

ωn+2
=

1

z2
+

∞∑

k=1

(2k + 1)z2k
∑

ω∈Λ
|ω|≠0

ω−2(k+1) (2.15)
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To prove 2. For the algebraic equation, given the coefficients of the Laurent series of

℘′2(z), ℘(z)3, ℘(z), we see that

f (z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 (2.16)

is holomorphic at z = 0 and it satisfies f (0) = 0. So f (z) is constant and identically

zero. □

In order to simplify the notation of the relation 2.13, we write

g2 = g2(Λ) = 60G4(Λ) and g3 = g3(Λ) = 140G6(Λ). (2.17)

So, the equation of ℘′(z) and ℘(z) becomes

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3. (2.18)

We give an isomorphism of complex Lie groups, which are complex analytic manifolds

that are also groups.

Theorem 2.1.9. Let g2 and g3 of Λ ⊂ C be as before.

1. The polynomial

f (x) = 4x3 − g2x − g3 (2.19)

has distinct roots, so its discriminant ∆( f ) = g3
2
− 27g2

3
is nonzero.

2. Let E/C be the curve

E : y2 = 4x3 − g2x − g3, (2.20)

which from 1 is an elliptic curve. Then, the map

ψ : C/Λ ↦→ E(C) ⊂ P2(C) (2.21)

z ↦→ [
℘(z), ℘′(z), 1

]
(2.22)

is a complex analytic isomorphism of complex Lie groups.

The proof is given in [8, Chapter IV.3]
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2.2 Complex uniformisation of elliptic curves

We want to state the uniformisation theorem for elliptic curves which says that every el-

liptic curve over C is parametrised by elliptic functions. The proof is lengthy and requires

more notions about modular functions.

Theorem 2.2.1. Let A, B ∈ C be complex numbers that satisfy A3 − 27B2 = 0. Then there

exists a unique lattice Λ ⊂ C satisfying g2(Λ) = A and g3(Λ) = B.

The proof of this theorem is given in different forms in other books. An analytic

approach is given in [5, Theorem I.3.13] or a proof with modular functions in [7, Theorem

I.4.3].

Theorem 2.2.2. Theorem(Complex uniformisation) Let E/C be an elliptic curve. There

exists a lattice Λ ⊂ C, unique up to homothety, and a complex analytic isomorphism of

complex Lie groups:

ψ : C/Λ ↦→ E(C), (2.23)

ψ(z) = [℘(z,Λ), ℘′(z,Λ), 1]. (2.24)

[8, Theorem V.1.1] We can also describe kind of the inverse map of the previous theo-

rem.

Theorem 2.2.3. Let E/C be an elliptic curve with Weierstrass coordinate functions x, y.

Let Λ be a lattice generated by ω1, ω2.

The map

F : E(C) ↦−→ C/Λ, F(P) =

∫ P

O

dx

y
(mod Λ) (2.25)

is a complex analytic isomorphism of Lie groups and it is the inverse of 2.24.

We can now see that there is a profound similarity between lattices and elliptic curves.

We want to study maps between lattices. If Λ1 and Λ2 are lattices in C, and we assume

that ∃α ∈ C has property αΛ1 ⊂ Λ2. Then, the scalar multiplication by α induces a

well-defined holomorphic homomorphism

ψα : C/Λ1 ↦→ C/Λ2, (2.26)

ψα(z) = α ∗ z mod Λ2. (2.27)

We now show that these are essentially the only holomorphic maps from C/Λ1 to C/Λ2.

Theorem 2.2.4. 1. With the notation as above, the map

{α ∈ C : αΛ1 ⊂ Λ2} ↦→ { maps ψ : C/Λ1 ↦→ C/Λ2 and ψ(0) = 0} (2.28)

is a bijection.
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2. Let E1 and E2 be elliptic curves corresponding to the lattices Λ1 and Λ2. Then, the

natural inclusion

{isogenies ψ : E1 ↦→ E2} ↦→ { maps ψ : C/Λ1 ↦→ C/Λ2, ψ(0) = 0} (2.29)

is a bijection.

Let E1/C and E2/C be elliptic curves associated with the lattices Λ1 and Λ2, as described

in 2.2.4. Then we consider that E1 and E2 are isomorphic over C, if and only if Λ1 and Λ2

are homothetic. This means that there exists some α ∈ C such that Λ1 = αΛ2. Since the

maps ψα are homomorphisms, it implies that every complex analytic map, from E1(C) to

E2(C) which maps O to O, is necessarily a homomorphism. This is the analytic counterpart

of which states that every isogeny of elliptic curves is a homomorphism. Therefore, we

can now state what is shown below.

Theorem 2.2.5. The following categories are equivalent:

1. Objects: elliptic curves,

Maps: isogenies.

2. Objects: elliptic curves over C,

Maps: complex analytic maps taking O to O.

3. Objects: lattices Λ ⊂ C up to homotety,

Maps: φ(Λ1,Λ2) = {α ∈ C : αΛ1 ⊂ Λ2}.

cite

2.3 Alternative complex analytic uniformisation

We can not find a direct way to translate the uniformisation that we have done for elliptic

curves over C above on the p-adic numbers, as they do not have any discrete lattices.

Therefore, we look for another way to express the uniformisation of elliptic curves on

C. We want to obtain a set of functions that could translate the conditions of 2.1.4 in a

different environment. So, we consider the exponentiate map ψ : z ↦→ e2πiz.

As said before in 2.1.3, we can normalise a lattice Λ with an homotety; this let us study

the lattice Λτ = Zτ + Z where τ ∈ C,Im(τ) ≥ 0. The Weierstrass ℘-function related to Λτ
satisfies:

℘(z, τ + 1) = ℘(z; τ). (2.30)

We can define of u = e2πiz. We also consider q = e2πiτ and find a Fourier expansion of ℘ in

terms of u and q. Note that |q| < 1. This consideration induces an isomorphism:

C/Λ ↦→ C∗/qZ, (2.31)

z ↦→ e2πiz. (2.32)

Our primary objective now is to derive an explicit formula for ℘ in this new way.
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Remark 2.3.1. In order to find them, we need to derive new conditions that make it useful.

In the previous chapter, the conditions on F, elliptic function related to a lattice Λ, were:

1. F is a meromorphic function on C;

2. F(z + ω) = F(z), ∀z ∈ C, ω ∈ Λ;

3. F is non constant and has a double poles at each point ω ∈ Λ.

Therefore, we look for a meromorphic function F(u; q) that meets the following criteria:

1. F(qku; q) = F(u; q) ;

2. F has a double pole at each u ∈ qZ, and it is holomorphic outside of this.

The primary concept in developing such a function is to identify an appropriate function

that meets condition 2 at z = 1, and then we make adjustments as needed to guarantee

convergence. Now we consider the simplest function with a double pole at X = 1, that is,

F(X) = (1 − X)−2, which makes us examine the following series:

∑

n∈Z

1

(1 − qnu)2
(2.33)

in the limit n ↦→ ∞ this sum doesn’t converge as |q| < 1 as for

lim
n ↦→∞

qn = 0 =⇒ lim
n ↦→∞

∣∣∣∣∣
1

(1 − qnu)2

∣∣∣∣∣ = 1. (2.34)

Instead, we should consider x

(1−X)2 to ensure convergence; as it is shown below.

Lemma 2.3.2.

1. We define the function F as follows:

F(u, q) =
∑

n∈Z

qnu

(1 − qnu)2
(2.35)

converges absolutely and uniformly on compact subsets of C∗/qZ.

2. F is an elliptic function for a lattice Λτ and satisfies 1 and 2.

3. The Laurent series for F around z = 0 is of the form:

F(u, q) =
1

(2πi)2z2
−

{
1

12
− 2

∑

n≥1

qn

(1 − qn)2

}
+ (powers of z). (2.36)
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The proof of the lemma is given in [7, Theorem I.6.1] .

We now relate this function back to ℘. By considering the start of the Laurent series of ℘

and subtracting the Laurent series of F. We consider the function:

µ :=
1

(2πi)2
℘(u; q) − F(u; q) +

1

12
− 2

∑

n∈Z

qn

(1 − qn)2
. (2.37)

We know that µ is holomorphic and elliptic, which implies that it is constant; moreover, it

is thus identically zero, since it vanishes at 0. We also require a q-expansion for ℘′. We

use
d

dz
= 2πiu

d

du
(2.38)

and obtain
1

(2πi)3
℘′(u; q) =

∑

n∈Z

qnu(1 + qnu)

(1 − qnu)3
. (2.39)

Next, we perform a variable substitution to eliminate the powers of (2πi)3 and the constant

term 1/12:

1

(2πi)2
x = x′ +

1

12
, (2.40)

1

(2πi)3
y = 2y′ + x. (2.41)

Under this substitution, the equation

y2 = 4x3 − g2x − g3 (2.42)

becomes

y2 + xy = x3 + B(q)x +C(q), (2.43)

this for B, and C functions of q with

B(q) = −1

4
· 1

(2πi)6
g3(τ) − 1

48
, (2.44)

C(q) = −1

4
· 1

(2πi)4
g2(τ) +

1

48
· 1

(2πi)4
g2(τ) +

1

1728
. (2.45)

Theorem 2.3.3. We define the series:

X(u; q) =
∑

n∈Z

qnu

(1 − qnu)
2 − 2

∑

n≥1

qn

1 − qn
, (2.46)

Y(u; q) =
∑

n∈Z

(qnu)2

(1 − qnu)3
+

∑

n≥1

qn

1 − qn
. (2.47)

Then, the map is an isomorphism.

C∗/qZ ↦→ Eq : y2 + xy = x3 + B(q)x + C(q), (2.48)

u ↦→


(X(u; q),Y(u; q)) : u ∉ qZ

O : u ∈ qZ
(2.49)

cite
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Chapter 3

Elliptic curves over p-adic fields

3.1 Local fields

Now we want to study elliptic curves over a different field which has more properties.

Therefore, we shift our focus to non-archimedean local fields.

A local field is a field that is complete with respect to a nontrivial absolute value. The most

common examples of local fields are real numbers R and complex numbers C, equipped

with their usual absolute values. For a more in-depth analysis, see [10, Chapter 1]. In

order to study local fields, we should start by giving the definition of the absolute value.

Definition 3.1.1. An absolute value is a function | · | : K ↦→ R+ such that:

1. |x| > 0 if x ≠ 0;

2. |x · y| = |x| · |y|;

3. |x + y| ≤ |x| + |y|;

4. if |x| < |y|, then |x ± y| = |y|.

The difference between archimedean and non-archimedean absolute values is:

1. A non archimedean absolute value satisfies

|x1 + x2 + . . . xn| ≤ max|xi| (ultra metric inequality); (3.1)

2. An archimedean absolute value does not satisfy the previous inequality.

We know that the only local fields that are not archimedean are equivalent to either a finite

extension of Qp or to Fq((T )), for Fq a finite field.

Definition 3.1.2. A valuation v is a function:

v : K∗ ↦→ R (3.2)

such that ∀x, y ∈ K∗. It satisfies the properties:
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1. v(xy) = v(x) + v(y);

2. v(x + y) ≥ minv(x), v(y).

Given a valuation and a value 0 < α < 1, we can define the absolute value related to the

valuation as follows:

| · | = αv(·). (3.3)

This defines a non archimedean absolute value.

Definition 3.1.3. Let K be a local field, then we can define some sets related to a valuation

v or an alternative to an absolute value | · |:

1. O := {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x| ≤ 1}. The set O is called the ring of integers

of K with respect to the valuation v.

2. M := {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1}. The setM is called the maximal ideal

of the valuation v.

3. The set R∗ = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1} is the set of invertible (units)

elements of the ring O.

4. The field k = O/M is called the residue field of the valuation v.

5. π an element in R such thatM = πO. π is called an uniformiser for R.

In the following pages, we set a normalised valuation as one in which v(π) = 1. These sets

let us define a discrete valuation ring (DVR). This is an integral domain R with discrete

valuation v. Specifically, it is a principal ideal domain that has precisely one nonzero

maximal ideal M. In other words, a DVR R is a ring such that every element can be

written uniquely (up to a unit) as a product of a power of a fixed prime element π. Now

that we have described the general settings, we give a more precise description of the p-

adic numbers as an extension of Q that arises from completing Q given the p-adic absolute

value | · |p.

Since vp(x) is the p-adic valuation of x which is the largest integer n such that pn divides

x.

The p-adic valuation vp has the following properties:

1. vp(xy) = vp(x) + vp(y);

2. vp(x + y) ≥ min{vp(x), vp(y)}.

That is why we define the p-adic absolute value for any x ∈ Q/{0} as |x|p = p−vp(x).

For example, v2(8) = 3 since 23 divides 8 evenly, while v2(15) = 0 since 2 does not divide

15. Therefore, |8|2 = 2−3 = 1
8

and |15|2 = 20 = 1.

In Qp we can write numbers differently as there exists a unique p-adic expansion in the

form:
n=+∞∑

n=−∞
an pn, wherean ∈ Fpfinite field with p elements. (3.4)
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For instance for p = 5 we can write 1
2
= · · · 2223. To find this expansion, we note that we

can write rational numbers in the following way:

m/n = a + b
1

1 − pr
where a ∈ Z, r ∈ N and b ∈ {0, . . . pr−1 − 1}; (3.5)

then we just need to note that |p|p < 1. We use Cauchy sequences in Q with the | · |p norm

to complete Q by adding all points that are limits of Cauchy sequences with the p-adic

norm.

We have some example that shows that Qp are distinct from R as extensions of Q. For

example, x2 − p = 0 has 2 solutions in R, while it has no solution in Qp; conversely,

x2 − 1 + p3 = 0 has a solution in Qp while none in R. Hence, there is no inclusion from

one to the other.

We can also construct an example concretely.

Example 3.1.4. Let p = 5 and we construct a | · |5-Cauchy sequence (an) ∈ Q such that

1. a2
n + 1 ≡ (mod 5n);

2. an+1 ≡ an (mod 5n).

We will construct it with induction. Base case: let a1 = 2. Induction step: let an satisfy the

previous conditions. Then, ∃c ∈ Z such that a2
n + 1 = 5nc.

Therefore, for an+1, we must find a b ∈ Z that satisfies

a2
n+1 + 1 = (a2

n + 5nb)2 + 1 ≡ 5n(c + 2anb) (mod 5n+1). (3.6)

It is always possible to find such a b; since an is a | · |p Cauchy sequence, the limit X2 + 1

is in the completion of Q, as it is not rational. We must be careful not to label it i, as we

cannot differentiate between i and −i in Qp.

We can now give the same sets that we defined before in the general settings but in Qp.

Definition 3.1.5. Let K be a field, we can then define some sets related to a valuation vp(·)
or alternative to an absolute value | · |p:

1. Zp := {x ∈ K : |x| ≤ 1}. The set Zp is called the set of p-adic integers.

2. pZp := {x ∈ K : |x| < 1}. The set pZp is called the maximal ideal.

3. The set Z∗p = {x ∈ K : |x| = 1} is the set of invertible (units) elements of the ring Zp.

4. The field k = Zp/M ≅ Fp is called the residue field.

5. π an element in Zp such that pZp = πZp. π is called an uniformiser for Zp.
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3.2 Elliptic curves on local fields

In this section and in the following one, we study elliptic curves over non archimedean

fields. As described before, let R be the ring of integers of K non-archimedean local field

and let π be a uniformiser. Elliptic curves on the local field K have the same properties

described in the first chapter. In addition, we can define the Weierstrass equation that

minimises the value of v(∆) as follows.

Definition 3.2.1. Let E/K be an elliptic curve. The minimal Weierstrass equation for the

elliptic curve is the Weierstrass equation in the form

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, (3.7)

where all a1, a2, a3, a4, a6 ∈ R. We can find by substituting (x, y) ↦→ (u−2x, u−3y) Therefore,

v(∆) ≥ 0 we take the Weierstrass equation which minimises the value of v(∆).

Theorem 3.2.2. 1. Every elliptic curve E/K has a minimal Weierstrass equation;

2. a minimal Weierstrass equation is unique up to a change of coordinates:

x = u2x′ + r y = u3y′ + u2sx′ + t (3.8)

with u ∈ R∗, r, s, t ∈ R.

3. if we start with a Weierstrass equation with coefficients in R, then any change of

coordinates that create a minimal equation:

x = u2x′ + r y = u3y′ + u2sx′ + t (3.9)

satisfies with u ∈ R∗, r, s, t ∈ R.

The proof is given in [8, theorem VII.3.2].

The equation is minimal if all the ai ∈ R. Then we can change the coordinates with a new

equation with ∆′ = u−12∆ ∈ R. Therefore,

ai ∈ R and v(∆) < 12⇒ the equation is minimal. (3.10)

In the same way,

c′4 = u−4c4, c
′
6 = u−6c6 (3.11)

ai ∈ R and v(c4) < 4⇒ the equation is minimal. (3.12)

ai ∈ R and v(c6) < 6⇒ the equation is minimal. (3.13)

For example, we can consider the elliptic curve E/Qp:

E : y2 + xy + y = x3 + x2 + 22x − 9 (3.14)

We can use the formulas in 1.1.3, to find ∆ = −21552 and c4 = −5 ·211, c6 = 2 ·11 ·13 ·479.

As all the ai are in Zp for all p, and for all p ≥ 3, 0 ≤ v(∆) < 12 imply that the Weierstrass

equation is minimal. While, for p = 2 both vp(c4) < 4 and vp(c6) < 6 imply that the

Weierstrass equation is minimal.
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3.3 Reduction of elliptic curves

We define a function called reduction modulo π as the operation where k is the finite field

which is the residue field R/π, which is the following:

φ̃ : R ↦→ k = R/πR (3.15)

t ↦→ t̃. (3.16)

So, given a minimal Weierstrass equation for E , we reduce the coefficients ai ∈ R to aĩ ∈ k

to find

Ẽ = y2 + a1̃xy + a3̃y = x3 − a2̃x2 + a4̃x + a6̃. (3.17)

Ẽ is the reduction of E modulo π . We can do the same for each P ∈ E(K).

We can define the following map:

E(K) ↦→ E(k) (3.18)

P = [x0, y0, z0] ↦→ P̃ = [x0̃, y0̃, z0̃] (3.19)

The curve we obtain Ẽ can be singular, but the non-singular points of the curve form a

group Ẽns(k). Therefore, we are interested in studying the following subsets of E(K) the

elliptic curve over K.

E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)} (3.20)

E1(K) = {P ∈ E(K) : P̃ = Õ} (3.21)

Remark 3.3.1. The set E0(K) is the set of points where the reduction map gives non singu-

lar points, while E1(K) is the kernel of the reduction map. Those two sets do not change

on the basis of the minimal Weierstrass equation.

Definition 3.3.2. Let E be an elliptic curve over a local field K, and we study Ẽ obtained

with the reduction modulo π as we have seen the different cases in 1.1.4-1 :

1. E has good (or stable) reduction if Ẽ is non singular;

2. E has multiplicative (or semistable) reduction if Ẽ has a node;

3. E has additive (or unstable) reduction if Ẽ has a cusp.

Remark 3.3.3. In cases 2,3 it is said to have a bad reduction.

In case 2, E has multiplicative reduction, therefore, ∃!P ∈ E so that it is singular. At

this point, if the tangents have coefficients in k then we say that E has split multiplicative

reduction; otherwise, we call it non-split.

Theorem 3.3.4. Let E/K be an elliptic curve given by a minimal Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. (3.22)

Let ∆ be the discriminant of this equation and let c4 be the usual expression involving

a1, ..., a6 as described in 1.1.1.
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1. E has good reduction if and only if v(∆) = 0; which is equivalent to condition

∆ ∈ R∗. In this case Ẽ/k is an elliptic curve.

2. E has multiplicative reduction if and only if v(∆) > 0 and v(c4) = 0; with equivalent

condition as ∆ ∈ M and c4 ∈ R. In this case Ẽns is the multiplicative group,Ẽns(k) ≅

k
∗
.

3. E has additive reduction if and only if v(∆) > 0 and v(c4) > 0; if for example

∆, c4 ∈ M. In this case Ẽns is the additive group, Ẽns(k) ≅ k
+
.

Proof. To prove this theorem we have the reduction types applying the previous definition

to 1.1.4 and then we apply theorem 1.2.3. □

We now study the cases of the reduced Weierstrass equation over k.

Example 3.3.5. Let p ≥ 5 be a prime. Then the elliptic curve

E1 : y2 = x3 + px2 + 1 (3.23)

has good reduction over Qp as

E1
˜ : y2 = x3 + 1 (3.24)

is an elliptic curve; while

E2 : y2 = x3 + x2 + p (3.25)

has (split) multiplicative reduction over Qp as

E2
˜ : y2 = x3 + x2 (3.26)

has a singular point in (0, 0) and it is a node and

E3 : y2 = x3 + p (3.27)

E3 has additive reduction over Qp by a similar analysis.

Remark 3.3.6. Moving to the extension field Q(
√

6)p, E3 achieves good reduction, as a

substitution

x→ 3
√

px, y→ √py (3.28)

results in a minimal Weierstrass equation with good reduction as follows:

py2 = px3 + p =⇒ y2 = x3 + 1. (3.29)

In contrast, curve E2 exhibits multiplicative reduction over any extension of Qp. Typically,

by extending the base field, additive reduction is converted into either multiplicative or

good reduction. This explain the meaning of the terms stable, semistable, and unstable.

When an elliptic curve E/K has bad reduction, it is advantageous to find if it can obtain

good reduction over an extension of K, which can be done as shown in 3.3.8.
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We now want to study when is it possible to find an extension that can simplify our analy-

sis.

Definition 3.3.7. Let E/K be an elliptic curve. We say that E/K has potential good reduc-

tion if there exists a finite extension K′/K such that E has good reduction over K′.

Theorem 3.3.8. (Semistable reduction theorem) Let E/K be an elliptic curve.

1. Let K′/K be a finite extension. If E has both good and multiplicative reduction over

K, it retains the same reduction type over K′.

2. There exists a finite extension K′/K such that E has either good or (split) multiplica-

tive reduction over K′.

The proof is given in [8, Theorem VII.5.4] with the condition that char(K) > 5 while for

a complete proof see [7, Chapter IV.9] which is a complete proof but it utilise the Neron

Model of an elliptic curve.

Lemma 3.3.9. Let E/K be an elliptic curve. Then E has potential good reduction if and

only if its j-invariant is integral, for example, if and only if j(E) ∈ R.

The proof is found in [8, Theorem VII.5.5] and [8, A.1.4b]. Recall that the subgroup

E0(K) consists of the elements of E(K) that do not map to a singular point of E(k). We

can now consider the quotient E(K)/E0(K). The most crucial aspect of this quotient is its

finiteness.

Theorem 3.3.10. (Kodaira, Néron) Let E/K be an elliptic curve. If E has split multiplica-

tive reduction over K, then E(K)/E0(K) is a cyclic group of order v(∆) = −v( j). In all

other cases, the group E(K)/E0(K) is finite and has order at most 4.

The proof is complex and uses the Neron model, it is proven in [7, Chapter IV.8]

Lemma 3.3.11. The subgroup E0(K) has finite index in E(K).

[8, Lemma VII.6.2]
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Chapter 4

Tate curves and p-adic uniformisation

4.1 Tate curves

As seen before, the elliptic curves on C have a parametrisation over C/Λ 2.2.2. We want

to replace C with Qp. However, we cannot immediately translate this approach. In fact,

Qp only has the trivial lattice. Suppose that Λ ⊂ Qp is a subgroup and t ∈ Λ, then

pnt ∈ Λ and limn→∞pnt = 0. (4.1)

So, 0 is an accumulation point for all Λ, therefore there isn’t any non-trivial lattice.

As we have seen in the alternative case of complex uniformisation 2.3.3, we can try a

different approach by using the exponentiation map to obtain an isomorphism between C∗

and elliptic curves over C.

We can consider Q∗p, which has discrete subgroups that we can construct as follows: given

q ∈ Q∗p and |q| < 1. So, we construct qZ = {qn : n ∈ Z}, which is a discrete subgroup.

Starting from discrete subgroups of Qp, we can try to mimic the complex case in order to

find an isomorphism between Q∗/qZ and elliptic curves over Qp. In the following section,

we consider finite extensions K of Qp.

Lemma 4.1.1. Let (K, | · |p) be a field with p-adic absolute value and q ∈ K with |q|p < 1.

We define the series :

sk(q) =
∑

n≥1

nkqn

1 − qn
=

∑

n≥1

σk(n)qn, (4.2)

which converges on Zp, where σk(n) =
∑

d|n dk. Thus, let us define the following series on

Zq:

a4(q) = −5s3(q), (4.3)

a6(q) = −5s3(q) + 7s5(q)

12
. (4.4)

The series a4(q) and a6(q) converge in K for all q ∈ K if |q|p < 1.
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Proof. The proof of the convergence of the series sk(q) follows immediately from the

following facts. Let K be a p-adic field with norm | · |p and we denote vp(·) as the valuation

related to the absolute value | · |p.

A series
∑

n≥1 an with an ∈ K is convergent if and only if |an| ↦→ 0 whenever n ↦→ ∞. sk(q)

converges as the elements of the sum of sk(q) converge as follows:

vp(
nkqn

1 − qn
) ≤ kvp(n) + nvp(q) + min[vp(1), nvp(q)]. (4.5)

Then, as v(q)p > 1, we have the convergence of sk(q).

We substitute the formula of s3(q) into a4(q) to find:

a4(q) = −5s3(q) = −5
∑

n≥1

n3qn

1 − qn
. (4.6)

Then,

vp(n3 qn

1 − qn
) = vp(n3) + vp(

qn

1 − qn
) = 3vp(n) + nvp(q) − vp(1 − qn). (4.7)

We now know that

vp(1 − qn) ≤ in f {vp(1), vp(−qn)}, (4.8)

where vp(1) = 0 and, as |q| < 1, vp(q) > 1. Hence,

vp(1 − qn) = in f {vp(1), vp(−qn)} = 0. (4.9)

Therefore, we get:

vp(n3 qn

1 − qn
) = 3vp(n) + nvp(q) − vp(1 − qn) = 3vp(n) + nvp(q). (4.10)

If we let n tend to infinity, we can see that vp

(
n3 qn

1−qn

)
also tends to infinity, which proves

that the series a4(q) is convergent.

In order to demonstrate that the series a6(q) is convergent, first we will show that the

coefficients of a6(q) are in Z. Consider a6(q) as a power series in q

a6(q) = −5s3(q) + 7s5(q)

12
= −

5
∑

n≥1

σ3(q)qn + 7
∑

n≥1

σ5(q)qn

12
(4.11)

= −

∑

n≥1

[
5σ3(q) + 7σ5(q)

]

12
. (4.12)

We now want to prove that:

5σ3(q) + 7σ5(q) ≡ 0 (mod 12). (4.13)
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We see that

5σ3(q) + 7σ5(q) = 5
∑

d|q
d3 + 7

∑

d|q
d5 =

∑

d|q

[
5d3 + 7d5

]
. (4.14)

Therefore, to prove 4.13, it is enough to demonstrate that

5d3 + 7d5 ≡ 0 (mod 12), (4.15)

where d ∈ Z. After studying some cases, it can be easily seen that it is true. □

Definition 4.1.2. The Tate curve Eq is defined by the equation

Eq := y2 + xy = x3 + a4(q)x + a6(q). (4.16)

We can study the Tate curve to find its properties.

Theorem 4.1.3. The Tate curve Eq is an elliptic curve with the discriminant

Λ(Eq) = q
∏

n≥1

(1 − qn)24, (4.17)

and j-invariant

j(Eq) =
1

q
+ 1 + 744 + 196884q + . . . =

1

q
+

∑

n≥0

c(n)qn (4.18)

where c(n) ∈ Z.

Proof. The discriminant of Eq is given by a formula that we have in 1.1.3 which refers to

elliptic curve. The discriminant is then written with the q-expansions of a4(q) and a6(q) as

follows:

∆(q) = q − 24q2 + 252q3 + · · · ≡ q (mod q2). (4.19)

Hence, |∆(q)| = |q| and |q| ≠ 0 on K∗, so Eq has no singular point and Eq is an elliptic curve.

The Jacobi product formula for the determinant ∆(Eq) = q
∏

n≥1(1−qn)24 is applicable for

all q ∈ C, is valid as a formal power series in Z[q], when we take q with |q|p < 1.

Finally, we derive the formula:

j(q) =
(1 + 48a4(q))3

∆(q)
, (4.20)

which we can write also as

j(q) =
1

q
(1 + 744q + 196884q2 + . . . ). (4.21)

We calculated it directly by taking the quotient of the appropriate power series formally

and we find that the discriminant and the j-invariant are well defined for Eq. □

Remark 4.1.4. The coefficients of the Fourier of j and ∆ are related to the Ramanujan

τ-function. They have been studied for more than a century; for an analysis of progress in

their calculation, see [1].
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4.2 p-adic uniformization of Tate curves

Theorem 4.2.1. Let Eq ⊂ Qp and q ∈ Q∗p with |q| < 1. The series

X(u, q) =
∑

n∈Z

qnu

(1 − qnu)2
− 2s1(q) (4.22)

Y(u, q) =
∑

n∈Z

(qnu)2

(1 − qnu)3
+ s1(q) (4.23)

converge for all u ∈ K, u ∉ qZ.

Proof. We now prove 4.2.1. We need to show that s1(q) is equal to
∑

n≥1
qn

(1−qn)2 . Therefore,

to understand this equality, we first observe that

T

(1 − T )2
= T

d

dT

(
1

1 − T

)
= T

d

dT

∑

m≥0

T m =
∑

m≥1

mT m. (4.24)

This is possible as |qn| < 1. Next, we replace T = qn and sum over n ≥ 1, and we get

∑

n≥1

qn

(1 − qn)2
=

∑

n≥1

∑

m≥1

mqnm =
∑

m≥1

m
∑

n≥1

qnm =
∑

m≥1

mqm

1 − qm
. (4.25)

This, let us use the alternative way of writing s1(q) =
∑

n≥1
qn

(1−qn)2 . Therefore, we can

rewrite 4.22 as

X(u, q) =
∑

n∈Z

qnu

(1 − qnu)2
− 2

∑

n≥1

qn

(1 − qn)2
. (4.26)

Let us consider the first sum in the series above:

∑

n∈Z

qnu

(1 − qnu)2
=

∑

n≤−1

qnu

(1 − qnu)2
+

u

(1 − u)2
+

∑

n≥1

qnu

(1 − qnu)2
(4.27)

where u

(1−u)2 is the value of the series for n = 0. Then, we can rewrite X(u, q) as

X(u, q) =
u

(1 − u)2
+

∑

n≤−1

qnu

(1 − qnu)2
+

∑

n≥1

[
qnu

(1 − qnu)2
− 2

qn

(1 − qn)2

]
. (4.28)

We want to subdivide again to find more insight. We consider

∑

n≤−1

qnu

(1 − qnu)2
; (4.29)

then we change the sign of the index and we write it as

∑

n≥1

q−nu

(1 − q−nu)2
, (4.30)
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and X(u, q) becomes

X(u, q) =
u

(1 − u)2
+

∑

n≥1

[
qnu

(1 − qnu)2
+

q−nu

(1 − q−nu)2
− 2

qn

(1 − qn)2

]
. (4.31)

Therefore, we multiply the numerator and the denominator of the third term of the series

by
q2n

u2 as follows:

q−nu

(1 − q−nu)2
·

q2n

u2

q2n

u2

=
qnu−1

(1 − qnu−1)2
. (4.32)

Consider the first term in the sum: u

(1−u)2 ; dividing the numerator and denominator of this

term by u, we get: 1
u+u−1−2

. Therefore, the series X(u, q) becomes

1

u + u−1 − 2
+

∑

n≥1

[
qnu

(1 − qnu)2
+

qnu−1

(1 − qnu−1)2
− 2

qn

(1 − qn)2

]
. (4.33)

Now, the objective is to see that this series is convergent we will use the fact that a series∑∞
n=0 anxn is convergent if and only if vp(an) ↦→ ∞ as n ↦→ ∞. Now, by the properties of

valuations

vp

(
qnu

(1 − qn)2
+

qnu−1

(1 − qnu−1)2
− 2

qn

(1 − qn)2

)
(4.34)

≥ min

{
vp

(
qnu

(1 − qnu)2

)
, vp

(
qnu−1

(1 − qnu−1)2

)
, vp

(
−2

qn

(1 − qn)2

) }
. (4.35)

Let us consider the valuations separately. The first is the following:

vp

(
qnu

(1 − qnu)2

)
= vp(qn) + vp(u) − 2vp(1 − qnu). (4.36)

Here, since vp(1) ≠ vp(qnu), we have vp(1−qnu) = min{vp(1), vp(qnu)} = vp(1) = 0. Hence,

the first term becomes

vp

(
qnu

(1 − qnu)2

)
= vp(qn) + vp(u) = nvp(q) + vp(u). (4.37)

The second valuation is

vp

(
qnu−1

(1 − qnu−1)2

)
= nvp(q) − vp(u) − 2vp(1 − qnu−1). (4.38)

By a similar argument as above, we obtain vp(1 − qnu−1) = 0. Therefore it becomes

vp

(
qnu−1

(1 − qnu−1)2

)
= nvp(q) − vp(u) (4.39)
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Similarly, the third is

vp

(
qn

(1 − qn)2

)
= vp(qn) − 2vp(1 − qn)2. (4.40)

Here, vp(1 − qn) is equal to 0 by the same argument. So,

vp

(
qn

(1 − qn)2

)
= vp(qn) = nvp(q) (4.41)

therefore,

vp

(
qnu

(1 − qn)2
+

qnu−1

(1 − qnu−1)2
− 2

qn

(1 − qn)2

)
(4.42)

≥ min{nvp(q) + vp(u), nvp(q) − vp(u), nvp(q)}. (4.43)

which tends to infinity as n ↦→ ∞. Therefore, the series X(u, q) is convergent.

Now, let us consider the series:

Y(u, q) =
∑

n∈Z

(qnu)2

(1 − qnu)3
. (4.44)

Similarly to above, we can write it as

Y(u, q) =
u2

(1 − u)3
+

∑

n≥1

[
(qnu)2

(1 − qnu)3
+

qn

(1 − qn)2

]
+

∑

n≤−1

(qnu)2

(1 − qnu)3
. (4.45)

Now, we can write the third term in the sum as

∑

n≥1

(q−nu)2

(1 − q−nu)3
(4.46)

by changing the index. As we did for the series X(u, q), we multiply the numerator and

denominator for this series by q3nu3. Hence we get:

∑

n≥1

(q−nu)2

(1 − q−nu)3
(4.47)

∑

n≥1

−qnu−1

(1 − qnu−1)3
. (4.48)

Then, we can write the series Y(u, q) as follows:

Y(u, q) =
u2

(1 − u)3
+

∑

n≥1

[
(qnu)2

(1 − qnu)3
− qnu−1

(1 − qnu−1)3
+

qn

(1 − qn)2

]
. (4.49)

By a similar calculations as for the series X(u, q), we get

vp

(
qnu)2

(1 − qnu)3
− qnu−1

(1 − qnu−1)3
+

qn

(1 − qn)2

)
↦→ ∞ (4.50)
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as n ↦→ ∞. Hence, Y(u, q) is convergent. We can rewrite X(u, q),Y(u, q) as follows:

X(u, q) =
1

u + u−1 − 2
+

∑

n≥1

(
qnu

(1 − qnu)2
+

qnu−1

(1 − qnu−1)2
− 2

qn

(1 − qn)2

)
(4.51)

Y(u, q) =
u2

(1 − u)3
+

∑

n≥1

(
(qnu)2

(1 − qnu)3
− qnu−1

(1 − qnu−1)3
+

qn

(1 − qn)2

)
. (4.52)

These expressions show that X(u, q) and Y(u, q) converge for all u ∈ K
∗ \ qZ. □

As we have proven before these properties of the series X(u, q),Y(u, q) we can now

prove the following theorem.

Theorem 4.2.2. The series X,Y define a surjective homomorphism

φ : K
∗ ↦−→ Eq(K

∗
) (4.53)

φ =


(X(u, q),Y(u, q)) if u ∉ qZ

O if u ∈ qZ.
(4.54)

The kernel of the homomorphism φ is qZ.

Proof. Now we prove 4.2.2. We want to show that the image of the map φ is a subset of

the Tate curve Eq given by the Weierstrass equation as follows:

Eq : = y2 + xy = x3 + a4(q)x + a6(q). (4.55)

We find the following functional equations that help us to find a new formula for both X,Y

with coefficients in Q(u):

X(qu, q) = X(u, q) = X(u−1, q) (4.56)

Y(qu, q) = Y(u, q) and (4.57)

Y(u−1, q) = −Y(u, q) − X(u, q). (4.58)

If we consider u just in the range |q| < |u| < |q|−1, we obtain |qnu| < 1 and |qnu−1| < 1

for n ∈ N. Now, we are able to find a formula to rewrite X,Y with power series with

coefficients in Q(u).

This help us to show that when we substitute the series X(u, q) and Y(u, q) for x and y in

this equation, we get an identity valid for all u ∈ K
∗ \ qZ. It is enough to consider values

of u such that |q| < |u| ≤ 1 and u ≠ 1 based on the periodicity of X and Y . In this range,

we can use the above formulas that express X and Y as power series in q with coefficients

that are rational functions of u. Thus, we will be done if we can show that the equation

Y(u, q)2 + X(u, q)Y(u, q) = X(u, q)3 + a4(q)X(u, q) + a6(q) (4.59)

is valid as an identity in the ring of formal power series in q with coefficients that are

rational functions of the indeterminate u. In other words, we want to verify that this
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identity holds in the ring Q(u)[q]. Then, since u assumes different values, we deduce that

the coefficients are formally equal as rational functions of u. Hence, we have an equality

of formal power series in Q(u)[q].

We now want to prove that φ is a homomorphism.

We have to demonstrate that the map φ satisfies φ(u3) = φ(u1)+φ(u2) where u1, u2, u3 ∈ K
∗

and u3 = u1u2. In order to simplify the writing, we define Pi := φ(ui). Then, since

φ(qu) = φ(u), φ is periodic. Without loss of generality, we can study only the case in

which u1 and u2 are in the range |q| < |u1| ≤ |1| and |1| ≤ |u2| < |q|−1. This lets us have

the following condition for u3: |q| < |u3| < |q|−1. Therefore, they are all in the range of

convergence of the power series expressions for X,Y ∈ Q(u)[q] as described above. Let

us begin by examining the case where u1 = 1 or u2 = 1. For example, if we assume

u2 = 1⇒ u3 = u1 ∗ 1, then according to the definition of φ, we have φ(u3) = O + φ(u1).

Then, we study the cases u1u2 = 1 and φ(u3) = O. Therefore, by u2 = u−1
1

and the

functional equations X(u, q) = X(u−1, q) and Y(u−1, q) = −Y(u, q) − X(u, q). We obtain the

following functional equations:

X(u2, q) = X(u1, q), (4.60)

Y(u2, q) = −Y(u1, q) − X(u1, q). (4.61)

So φ(u1) + φ(u2) = O, therefore we have φ(u3) = φ(u1) + φ(u2) formally. We also prove

that P1 + P2 = O ⇐⇒ x1 = x2 and y2 = −y1 − x1 using the 1.2.2 for elliptic curves, as

the Tate curve is an elliptic curve.

We now consider the remaining cases in which all Pi ≠ O.

To simplify the formulas, we write xi := X(ui, q) and yi := Y(ui, q). The simpler case is

where x1 ≠ x2, because we find the following by 1.2.2 as before. We define λ and υ as

λ =
y2−y1

x2−x1
and υ =

y1 x2−y2 x1

x2−x1
,, which let us find the following equations for x3, y3:

x3 = λ
2 + a1λ − a2 − x1 − x2, (4.62)

y3 = − (λ + a1) x3 − υ − a3. (4.63)

Here, a1, a2, a3 are defined in the Weierstrass equation of the Tate curve 1.1.3. We then

find the following 2 equations:

x3(x2 − x1)2 = (y2 − y1)2 + (y2 − y1)(x2 − x1) − (x1 + x2)(x2 − x1)2, (4.64)

y3(x2 − x1) = x3(y1 − y2 + x1 − x2) − (y1x2 − y2x1). (4.65)

All these identities hold for all u1, u2, q as defined in the ranges. Therefore, these are true

identities in the formal powersQ(u1, u2)[[q]], the ring of the formal power with coefficients

in Q(u1, u2). So, this is true in the field K in which we work.

To prove the final case x1 = x2, we consider the useful fact explained below.

Lemma 4.2.3. If ψ : K∗ ↦−→ Eq(K) takes infinitely many distinct values and satisfies

ψ(u1u2) = ψ(u1) + ψ(u2) if ψ(u1) ≠ ±ψ(u2). (4.66)

Then ψ is a homomorphism.
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In order to prove that

φ : K∗ ↦−→ Eq(K) (4.67)

is a homomorphism, we only need to show that φ takes infinite values. For example, the

series for X(u, q) has that for any t ∈ K with |t| < 1, we have |X(1 + t, q)| = |t|−2. Thus,

there are infinitely many values that are applicable. Therefore, we conclude that ψ is a

homomorphism from K∗ into Eq(K). The fact that the kernel of φ is qZ is clear from its

definition. □

Theorem 4.2.4. The map φ is surjective.

Proof. We just need to show that the map φ is surjective. A more general proof given with

p-adic analytics methods is given in [6, Chapter 3] We need to show that, for all P ∈ Eq(K),

it exists u ∈ K
∗

such that φ(u) = P. We want to prove that for all L, finite extensions of K,

the map φ : L∗ ↦→ Eq(L) is surjective; this would imply the result we need.

We define the subsets of Eq(K) where Ẽq is the reduction of Eq modulo Zp , which is the

maximal ideal of Qp. Ẽq has the equation y2 + xy = x3.

Eq,0(K) = {p ∈ Eq(K) : P̃ ∈ Ẽq,ns(k)} (4.68)

Eq,1(K) = {P ∈ Eq(K) : P̃ = Õ}, (4.69)

where Ẽq,ns are the non singular points on Ẽq. These let us define the filtration:

Eq(K) ⊃ Eq,0(K) ⊃ Eq,1(K), (4.70)

and also the isomorphisims

Eq,0(K)/Eq,1 ≅ Ẽq,ns and Eq,1 ≅ Êq(M) (4.71)

P ↦→ P̃P = (x, y) ↦→ − x

y
. (4.72)

From [8, theorem VII.2.1] ], [8, theorem VII.2.2] we have isomorphisms where Ê is the

formal group of E. In the same way K∗/qZ admits the following filtration. This let us

define

R∗1 = {u ∈ R : u ≡ 1 (mod M)} (4.73)

as the group of units in R.

K∗/qZ ⊃ R∗ ⊃ R∗1, (4.74)

which gives us another isomorphism

R∗/R∗1 ≅ k∗ and R∗1 = Ĝm(M) (4.75)

a ↦−→ ã and u ↦−→ 1 − u, (4.76)

where Ĝm is the formal multiplicative group 1.3.1

Now, we aim to prove that φ is an isomorphism and respects the filtrations described above.

So, we start the proof with showing that φ(R∗
1
) = Eq,1(K); we show both inclusions of sets,
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we begin with φ(R∗
1
) ⊂ Eq,1(K).

As X(u, q) has formula

X(u, q) =
u

u2 + 1 − 2u
+

∑

n≥1

(
qnu

(1 − qnu)2
+

qnu−1

(1 − qnu−1)2
− 2

qn

(1 − qn)2

)
, (4.77)

it is true that

if u ≅ 1 (mod M) =⇒ ordv(X(u, q)) < 0. (4.78)

We can say so, since u/(u − 1)2 is non-integral, this implies that φ(R∗
1
) ⊂ Eq,1(K).

Now, let us prove the other inclusion φ(R∗
1
) ⊃ Eq,1(K). We have the following map:

Gm(M)
≅−→ R∗1

φ
−→ Eq,1(K)

≅−→ Êq(M) (4.79)

t ↦−→ X(1 + t, q)

Y(1 + t, q)
. (4.80)

We substitute u = 1 + t into the series for X(u, q) and Y(u, q) and expand as Laurent series

in t. We find that

X(1 + t, q) = t−2

1 +
∑

m≥1

αmtm

 and Y(1 + t, q) = t−3

1 +
∑

m≥1

βmtm

 , (4.81)

where αm, βm ∈ R. Then, since both Gm(M), Êq(M) are the same set M with different

operations attached, therefore, we want to show that the map

ψ : M ↦−→ M (4.82)

t ↦−→ t

1 +
∑

m≥1

γmtm

 (4.83)

is surjective. We prove this by stating a simple result concerning power series.

Lemma 4.2.5. Let a ∈ R∗ and f (T ) ∈ R[[T ]] be a power series of the form

f (T ) = at + (higher order terms), (4.84)

then there is a unique power series g(T ) ∈ R[[T ]] that satisfy f (g(T )) = T and g(T ) satisfy

also g( f (T )) = T.

The proof is given by induction, and then it shows that if another power series exists, it is

the same as the one previously found. The complete proof is given in [8, Chapter IV.2] .

This is helpful as we can now apply this lemma to ψ, so let us find a power series λ(w) ∈ M
such that ψ(λ(w)) = w. This proves the inclusion φ(R∗

1
) ⊃ Eq,1(K), which then implies

φ(R∗
1
) = Eq,1(K).

We can now study φ on R∗ to prove that φ(R∗) = Eq,0(K).

As before, we prove the inclusion φ(R∗) ⊂ Eq,0(K) by taking the series X(u, q) moduloM

X(u, q) ≡ u

(1 − u)2
≢ 0 (mod M) for all u ∈ R∗. (4.85)
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In order to prove the equivalence, we have a well-defined injective homomorphism on the

quotient groups from the fact that φ(R∗
1
) = Eq,1(K):

µ : k∗ ≅ R∗/R∗1
φ
−→ Eq,0(K)/Eq,1(K) ≅ Eq,ns(k) (4.86)

u ↦→
(

u

(1 − u)2
,

u2

(1 − u)3

)
. (4.87)

This map µ is surjective, the inverse map is

(x, y) ↦→ y2

x3
. (4.88)

So, the map µ is an isomorphism.

We can then write the following commutative diagram:

1 −→ R∗
1

−→ R∗ −→ k∗ −→ 1

↓∼ ↓ φ ↓∼
0 −→ Eq,1(K) −→ Eq,0 −→ Ẽq,ns(k) −→ 0 .

The diagram implies that the map φ : R∗ ↦→ Eq,0(K) is an isomorphism.

It remains to prove that the injective homomorphism φ : K∗/R∗qZ ↦→ Eq(K)/Eq,0(K) is

surjective.

The group on the left is easy to describe, since the map

K∗/R∗qZ ↦−→ Z/ordv(q)Z (4.89)

u ↦−→ ordv(u) (4.90)

is clearly an isomorphism.

Therefore, if we prove the following lemma, we can prove the surjectivity.

Lemma 4.2.6.

#Eq(K)/Eq,0(K) ≤ ordv(q) (4.91)

[7, lemma V.4.1] We divide Eq into subsets and show that those are cosets whose number

is not greater than ordv(q).

Lemma 4.2.7. Let P = (x, y) ∈ Eq(K). The following conditions on points are equivalent:

1. P ∈ Eq,0(K), |x| ≥ 1, |y| ≥ 1;

2. |x| ≥ 1;

3. |y| ≥ 1.

The proof is given in [7, Lemma V.4.1]. Then, we partition the points of Eq(K) not in

Eq,0(K).
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Lemma 4.2.8. Let P = (x, y) ∈ Eq(K)/Eq,0(K). Then exactly one of the following three

conditions is true:

1. 1 > |y| > |x + y| in which case |y| > |q| 12 ;

2. 1 > |x + y| > |Y |, in which case |x + y| > |q| 12 ;

3. |y| = |x + y| = |q| 12 .

The proof is given in [7, Lemma V.4.1.2]. the previous 2 lemmas allow us to divide Eq(K)

into the following subsets:

Eq,0(K) = {(x, y) ∈ Eq(K) : |x| ≥ 1 or |y| ≥ 1}; (4.92)

Un = {(x, y) ∈ Eq(K) : |π|n = |y| > |x + y|}; (4.93)

Vn = {(x, y) ∈ Eq(K) : |π|n = |x + y| > |y|}; (4.94)

W = {(x, y) ∈ Eq(K) : |y| = |x + y| = |q| 12 }. (4.95)

(4.96)

Then, we study the different subsets: Un and Vn are empty if n ≥ ordv(q) W = 0 if ordv(q)

is odd, so Eq(K) is the union

Eq(K) = Eq,0(K) ∪W
⋃

1≤n< 1
2

ordv(q)

(Un ∪ Vn) . (4.97)

Then Eq(K) is divided into (at most) ordv(q) pieces.

To finish this, we prove that these subsets are the cosets of Eq,0(K) in Eq(K). This will

not be shown; it is done by proving that 2 points are in the same subset if and only if they

are in the same coset. This is simply a computationally long proof as found in [7, Lemma

V.4.1.4] □

4.3 Uniformisation theorem

In summary, we have shown that for any K/Qp and any q ∈ K∗ with |q| < 1, there is an

isomorphism between the quotient group K∗/qZ and an elliptic curve Eq(K).

In an analogous situation over complex numbers, we know (LId) that every elliptic curve

E/C is isomorphic to Eq for some q ∈ C∗.
On K however we have the j invariant for Eq(K) as

| j(Eq)| = 1

q
+ 744 + 196884q + · · · = 1

|q| > 1. (4.98)

Therefore, not all elliptic curves over K can be isomorphic to an Eq.

We already know that | j(E)| > 1 is a necessary condition, and we prove that it is also

sufficient.
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Lemma 4.3.1. Let a ∈ Qp be an element with |α| > 1. Then, there is a unique q ∈ Qp(α)∗;

with |q| < 1 such that j(Eq) = α.

Proof. The j-invariant of Eq is given by the series 4.98, which we write as

j(q) =
1 + 744q + 196884q2 + . . .

q
. (4.99)

The reciprocal of this series, which we will call f (q), is given by the formula

f (q) =
1

j(q)
=

q

1 + 744q + 196884q2 + . . .
(4.100)

= q − 744q2 + 356652q3 − . . . ∈ Z[q]. (4.101)

Applying lemma 4.2.5 to the series f , we get a series g(q) = q + ... ∈ Z[q] such that

g( f (q) = q as formal power series in Z[q]. Since g(q) has integer coefficients and leading

term q, it will converge if we evaluate it at any element β ∈ Qp of absolute value less than

1. g(q) satisfy also |g(β)| = |β|. In particular, since |α| > 1 we find that

q = g

(
1

α

)
∈ Qp(α) (4.102)

satisfies 0 < |q| = | 1
α
| < 1 and 1

j(q)
= f (q) = f

(
g
(

1
α

))
= 1

α
. Hence j(q) = α as desired. This

proves the existence part of theorem 4.3.1. In order to prove uniqueness, we suppose that

j(q) = j(q′) with |q| < 1 and |q′| < 1. Then f (q) = f (q′).So,

0 = | f (q)− f (q′)| = |q−q′| · |1−744(q+q′)+356652(q2+qq′+q′2)+ . . . | = |q−q′|. (4.103)

Therefore q = q′. □

Prior to demonstrating the p-adic uniformisation theorem, we introduce an invariant that

is beneficial for examining the twists of a curve.

Lemma 4.3.2. Let E/K be an elliptic curve defined over a field of characteristic not equal

to 2 or 3, and choose a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (4.104)

for E/K. Let c4 and c6 be the usual quantities associated to this equation. Assuming that

j(E) ≠ 0, 1728, we define

γ(E) = −c4

c6

∈ K∗/K2∗. (4.105)

Where c4, c6 are defined in 1.1.3.

So, now we prove the following facts:

1. γ(E/K) is well-defined as an element of K∗/K∗2, independent of the choice of the

Weierstrass equation for E/K.
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2. Let E′/K be another elliptic curve with j(E′) ≠ 0, 1728. Then E and E′ are isomor-

phic over K if and only if j(E) = j(E′) and γ(E/K) = γ(E′/K).

3. Let E/K and E′/K be elliptic curves with j(E′) = j(E) ≠ 0, 1728 and suppose that

γ(E/K) ≠ γ(E′/K), so

L = K



√
γ(E/K)

γ(E′/K)

 (4.106)

is a quadratic extension of K. Let

χ : GK/K ↦−→ GL/K ↦−→ ±1 (4.107)

be the quadratic character associated to L/K. Now, we consider that there is an

isomorphism

ψ : E ↦→ E′ (4.108)

with the property

ψ((Pσ) = χ(σ)ψ(P) for all σ ∈ GK/K and all P ∈ E(K). (4.109)

Proof. We prove 1. The condition j(E) ≠ 0, 1728 is equivalent to c4 ≠ 0 and c6 ≠ 0, so

γ(E/K) exists. Then the coefficients of E and E′ are related to the following u4c′
4
= c4 and

u6c6 = c6 for some u ∈ K∗. Therefore,

c′
4

c′
6

= u2 c4

c6

(mod K∗2) (4.110)

which proves that γ(E/K) is independent of the chosen Weierstrass equation. We now

prove 2. If E and E′ are isomorphic over K, then 1.1.4 asserts that j(E) = j(E′). Moreover,

because the Weierstrass equations for E and E′ describe the same elliptic curve over K,

it follows from 1 that γ(E/K) = γ(E′/K). Conversely, suppose that j(E) = j(E′) and

γ(E/K) = γ(E′/K). We consider the case in which char(K) ≠ 2, 3, so, we can find

Weierstrass equations for E, E′ over K of the form

E : y2 = x3 + Ax + B, E′ : y2 = x3 + A′x + B′, (4.111)

with A, B, A′, B′ ∈ K. Given our assumption

γ(E/K) = γ(E′/K) (4.112)

Since j(E) = 1728 4A3

4A3+27B2 , c4 = −48A and c6 = −864B; the fact that j(E) = j(E′) ≠

0, 1728 means that
2A

B
≡ 2A′

B′
(mod K∗2) (4.113)
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and so we find t ∈ K∗ such that AB′ = t2A′B. Now, we can create the map

E ↦−→ E′ (4.114)

(x, y) ↦−→ (t2x, t3y) (4.115)

that is an isomorphism. We now prove 3. With the same condition on j as before, we

obtain A3B′2 = A′2B3. Then,

t =

√
c4c′

6

c′
4
c6

=

√
AB′

A′B
so t2 ≡ γ(E/K)

γ(E′/K)
(mod K∗2). (4.116)

Since γ(E/K) ≠ γ((E′/K), we know that L = K(t) is a quadratic extension of K then the

map is an isomorphism

ψ : E ↦−→ E′ (4.117)

(x, y) ↦−→ (t2x, t3y). (4.118)

Then, ∀σ ∈ GK/K , we know that tσ = χ(σ)t. So, for P = (x, y) ∈ E(K) we have:

ψ(P)σ = ψ(x, y)σ = (t2x, t3y)σ = (χ(σ)2t2xσ, χ(σ)3t3yσ)

= (t2xσ, χ(σ)t3yσ) = χ(σ)(t2xσ, t3yσ) = χ(σ)ψ(Pσ).

(4.119)

The above equation proves the lemma. □

We are now prepared to prove Tate’s p-adic uniformisation theorem, which is applicable

to all elliptic curves with an absolute value of the j-invariant exceeding 1.

Remark 4.3.3. The following theorem is also proven in [5, chapter II.5] with an analytic

approach. The easiest way to generalise 4.3.4 is to consider the topic of rigid analysis

through the uniformisation of Mumford curves. The proof on this line is proved in [2,

Chapther 9.7].

Theorem 4.3.4. (Tate) Let K be a p-adic field, let E/K be an elliptic curve with | j(E)| > 1,

and let γ(E/K) ∈ K∗/K2∗.

1. There is a unique q ∈ K∗ with |q| < 1 such that E is isomorphic over K to the Tate

curve Eq .

2. Let q be chosen as in 1. Then the following three conditions are equivalent:

(a) E is isomorphic to Eq over K.

(b) γ(E/K) = 1.

(c) E has split multiplicative reduction.
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Proof. We now prove 1. From lemma 4.3.1, ∃!q ∈ K∗ with |q| < 1 such that j(Eq) = j(E)

and as they are both elliptic curves Eq ≅ E over K. This comes from theorem 1.1.4-3 that

Eq is isomorphic to E(K), which are then isomorphic over K.

We now prove 2. According to 4.3.2 we know that E is isomorphic to Eq over K if and

only if j(E) = j(Eq) and ,

γ(E/K) = γ(Eq/K). (4.120)

So, in order to prove that 2a and 2b are equivalent, we must show that γ(Eq/K) = 1. With

4.2.2 we find that the c4 and c6 values associated with the Tate curve are:

c4(q) = 1 − 48a4(q) = 1 + 240s3(q), (4.121)

c6(q) = −1 + 72a4(q) − 864a6(q) = −1 + 504s5(q). (4.122)

Consequently, the γ-invariant of Eq/K is equal.

In order to prove that γ(Eq/K) is a square, we use the following lemma, which implies that

c4(q) and c6(q) are themselves squares in K.

Lemma 4.3.5. Let α ∈ K∗ be with |α| < 1. Then 1 + 4α is a square in K.

Proof. We consider the binomial coefficients:

(
−1/2

n

)
=

(
− 1

2

)
·
(
−3

2

)
·
(
−5

2

)
· · ·

(
− 2n−1

2

)

n!
=

(−1)n

4n

(
2n

n

)
(4.123)

is an integer divided by 4n. Then,

(1 + 4α)−
1
2 =

∞∑

n=0

(
−1/2

n

)
(4α)n =

∞∑

n=0

(−1)n

(
2n

n

)
αn. (4.124)

Thus, the coefficients of the previous series are integers and the series converges in K.

Hence (1 + 4α)−1 is a square in K and also 1 + 4α is a square. □

Let us observe that since |a4(q)| = |a6(q)| = |q| < 1, the equation of the simplified curve

Eq is evidently split multiplicative reduction. This shows that 2a leads to 2c. Conversely,

assume that E has split multiplicative reduction. Now, we demonstrate that γ(E/K) = 1,

thus proving that 2c results in 2b. We consider a minimal Weierstrass equation for E over

k the residue field. As seen in the previous chapter, we assume that the singular point is on

(0, 0) that lies on the curve and is singular moduloM. Then

a3 ≡ a4 ≡ a6 ≡ 0 (mod M) (4.125)

and hence we have that

b4 = a1a3 + 2a4 ≡ 0 (mod M) and c4 = b2
2 − 24b4 ≡ b2

2 (mod M). (4.126)
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From 3.3.4, E has multiplicative reduction implies that c4 ≢ 0 (mod M), so we see that

b2 ≢ 0 (mod M). Therefore, b2 is a unit and |b2| = 1. Hence,

γ(E/K) = −c4

c6

=
1

b2

·



1 − 24
b4

b2
2

1 − 36
b4

b2
2

+ 216
b6

b3
2


(mod K∗2). (4.127)

Using the previous lemma, to the numerator and denominator of the fraction in the brackets

on the right-hand side of this equation, we find that both the numerator and the denomina-

tor are squares and are therefore in K∗2. Thus,

γ(E/K) ≡ 1

b2

≡ b2 (mod K∗2) (4.128)

It remains to show that if the multiplicative reduction of E is split, which is equivalent to

b2 is a square in K∗. The reduction of E is

Ẽ : y2 + ã1xy = x3 + ã2x2 (4.129)

We factor the polynomial

y2 + ã1xy − ã2x2 = (y − α̃x)(y − β̃x). (4.130)

The fact that E has multiplicative reduction means that E has a node, so α̃ ≠ β̃ and the fact

that the reduction is split means that α̃, β̃ are actually in the residue field k, rather than in a

quadratic extension. For more notions, look back at 3.3.4. It follows from Hensel’s lemma

that α̃, β̃ lift uniquely to elements α, β ∈ K such that

y2 + ã1xy − ã2x2 = (y − αx)(y − βx). (4.131)

Hence,

b2 = a1 + 4a2 = (−α − β)2 + 4(−α(β) = (α − β)2 ∈ K∗2, (4.132)

so γ(E/K) ≡ b2 ≡ 1 (mod K∗2). We have now proven 2b =⇒ 2a =⇒ 2c =⇒ 2b,

which completes the proof of the Theorem. □

Suppose that we have an elliptic curve E/K as in the precedent Theorem with invariant

γ((E/K) ≠ 1. If we let L = K(
√
γ((E/K)), which is well-defined, since γ((E/K) is defined

up to squares in K, it becomes clear that γ((E/L) = 1. Applying 4.3.4 to E/L, we find that

E is isomorphic to Eq over L, so

E(L) ≅ Eq(L) ≅ L∗/qZ (4.133)

We will now describe E(K) in terms of this identification.
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Lemma 4.3.6. With notation as in the preceding paragraph,

E(K) ≅ u ∈ L∗/qZ : NL
K(u) ∈ qZ/q2Z (4.134)

where N is norm map | · | which is a homomorphism

NL
K : L∗/qZ ↦→ K∗/q2Z. (4.135)

and N(u) is well-defined modulo q2Z.

Proof. First, we observe that applying the 4.3.2 to E and Eq, there is an isomorphism

ψ : Eq(K) ↦→ E(K) satisfying ψ(Pσ) = χ(α)ψ(P)σ for all α ∈ GK/K , where

χ : GK/K− > GL/K− > ±1 (4.136)

is the quadratic character associated to L/K. On the other hand, the isomorphism

φ : K ∗ /qZ ↦−→ Eq(K) (4.137)

is defined over K, which means that φ(Pσ) = φ(P)σ. We look at the composition

L∗/qZ
φ
←− Eq(L)

ψ
←− E(L). (4.138)

We know from above is an isomorphism of groups. Let τ ∈ GK/K be an element with

χ(τ) = −1, so τ represents the non-trivial element in GL/K Then for any u ∈ L∗ ,

(ψ ◦ φ)(u) ∈ E(K) ⇐⇒ ψ(φ(u)τ = ψ(φ(u) (4.139)

⇐⇒ −ψ(φ(uτ)) = ψ(φ(u) since χ(τ) = −1 (4.140)

⇐⇒ ψ(φ(u−τ)) = ψ(φ(u) (4.141)

since − ψ(P) = ψ(−P) and − ψ(u) = ψ(u−1) (4.142)

⇐⇒ u−τ ≡ u (mod qZ). (4.143)

(4.144)

Since ψ and φ are isomorphisms u1+τ ∈ qZ Since u1+τ = NL
k
(u), this completes the proof of

the corollary. □
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