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A B S T R A C T

In this thesis the Standard Model theoretical prediction for the elastic
scattering of muons on electrons is analyzed. In particular, we focus
on the calculation of the radiative corrections at next-to-leading order
in QED, which turn out to be in agreement with the most recent result
in literature. Moreover, we discuss the application of this theoretical
prediction in the framework of a new proposal, which aims to com-
pute the leading-order hadronic contribution to the muon anomalous
magnetic moment within an improved accuracy.
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1
I N T R O D U C T I O N

Aim of this thesis is the calculation of the Standard Model theoretical
prediction for the scattering amplitude of the elastic process µ e→ µ e
at next-to-leading order (NLO) in QED.

It is a fact widely acknowledged, that a long-standing discrepancy
between the experimental value of the muon anomalous magnetic
moment aµ and the Standard Model (SM) prediction exists (1), (2),
(3), (4), (5). From the most recent data we get (3)

aexp
µ − aSM

µ = 249 (87) · 10−11 ,

a discrepancy which may indicate new physics beyond the SM (6).
The main limit on the SM theoretical prediction for aµ, treated in

chapter 2, is the accuracy resulting from the computation of the lead-
ing order hadronic (HLO) contribution, namely the difficulty in con-
sidering strong interactions effects, which cannot be treated pertur-
batively at low energies. In fact, the hadronic uncertainty dominates
that of the SM prediction and it is comparable with the experimental
one. Currently, apart from lattice Quantum Chromodynamics (QCD)
results (7), (8) − which are not yet competitive, there is one general
approach to this issue, based on analiticity and unitarity of Feynman
amplitudes.

A new approach has been proposed recently (9). It is possible to cal-
culate the HLO contribution to aµ via measurements of the effective
electromagnetic coupling α(q2), with q2 the squared 4-momentum
transfer, in a space-like region where q2 is negative. In fact, one ex-
tracts the hadronic contribution to ∆α(t), where t is a Mandelstam
space-like variable, by subtracting the leptonic contribution, calcula-
ble order-by-order in perturbation theory.

According to that second approach, a particular process − µ-e elas-
tic scattering in a fixed-target experiment − has been chosen to de-
termine aHLO

µ (10). Since the process occurs as a t−channel, the run-
ning of α is measured in a space-like region and the hadronic part
∆αhad(t) is extracted from the comparison of the experimental data
with the SM prediction at Next-to-Next-to-Leading Order (NNLO).
Aim of this proposal, whose name is MUonE, is to obtain a result
with an accuracy comparable to the goal of future aµ measurements
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6 introduction

at Fermilab (11) and J-PARC (12), i.e. 0.14 parts per million or better.

This explains why the calculation of the SM theoretical prediction
for the differential cross section of the elastic process µ e→ µ e at NLO
is the subject of this thesis. Particularly, the calculation is treated in
chapter 3 and this result happens to be the first crucial step, from a
theoretical viewpoint, within the framework of the MUonE proposal.
Also, we checked the result for the same differential cross section ob-
tained earlier in the literature. As we will see, our results agree with
the latest one, while some of the pioneering publications contain ty-
pos or errors.

Our calculation has been carried out either by hand or by use of
FeynCalc, a Mathematica package for symbolic evaluation of Feyn-
man diagrams and algebraic calculations in quantum field theory and
elementary particle physics (13)-(14).

Conclusions are drawn in chapter 4.



2
M U O N g − 2

It is a fact widely acknowledged, that the Standard Model (SM) of
elementary particles, as a relativistic quantum field theory, provides
surprisingly accurate predictions in the High Energy Physics frame-
work. Also, several tests have been performed, searching for possible
SM violations, and one of the most stringent of them is the compari-
son between the theoretical prediction for lepton magnetic moments
and their experimentally measured values.

2.1 a (very) brief historical note

Among the different properties a lepton has − like charge, spin, mass
and lifetime − there are the so called magnetic and electric dipole
moments, which are interesting both from a classical and a quan-
tum viewpoint. As it is known, for what concerns the magnetic case,
dipole moments may arise classically from electrical currents. For ex-
ample, an orbiting particle of charge q, mass m and orbital angular
momentum ~L = m~r×~v shows a magnetic dipole moment

~µL =
q

2m
~L , (2.1)

where~r and ~v are the position and the velocity of the particle.
Also, if we define a spin operator S = σ/2, which replaces the

angular momentum operator L in a generalised form of (2.1), one
may write

µS = g
( Q

2m

)σ

2
, (2.2)

where σi are the Pauli matrices (i = 1, 2, 3), Q = −e for charged
leptons, Q = +e for charged antileptons and g is defined as the gyro-
magnetic ratio.

Historically, the first approach to predict or measure g was that
of Goudschmidt and Uhlenbeck (15) in 1925. They postulated an in-
trinsic angular momentum of h̄/2 for the electron, associated to a
magnetic dipole moment equal to eh̄/2mc, while the classical predic-
tion was g = 1. From an experimental viewpoint, in the same period,
Back and Landé (16) carried out several studies based on the Zeeman
effect to verify this statement. Nevertheless, they did not manage to
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8 muon g − 2

really determine g.
In 1928, one year after Pauli (17) left g as a free parameter in his

quantum mechanical treatment of the electron spin, Dirac (18) pre-
sented his relativistic quantum field theory, which predicted g = 2.
This was soon confirmed by some experimental results (e.g. Kinsler
and Houston (19) in 1934), although relatively large experimental er-
rors were also included.

It was not until 1947, at the famous Shelter Island conference, that
experiments finally suggested or showed that the electron magnetic
moment actually exceeded 2 by about 0.12%, as Kusch and Foley (20)
found out in 1948 with ge = 2.00238(10). This was the first indication
of the existence of an “anomalous” magnetic moment

a` ≡
g` − 2

2
(` = e, µ, τ). (2.3)

The next year, Schwinger (21) obtained his celebrated result1 for the
leading order (LO) radiative correction to ae:

aQED (LO)
` =

α

2π
, (2.4)

also putting an end to the problems which Quantum Electrodynamics
(QED) was suffering from in the Thirties.2 In fact, it was incapable of
making quantitative predictions at orders higher than the tree level
and Dirac used to write that, “because of its extreme complexity, most
physicists will be glad to see the end of it” (22).

As a result, these experiments and calculations provided one of the
first tests of the virtual, or radiative, quantum corrections predicted
by a relativistic quantum field theory.

2.2 the anomalous magnetic moment of the muon

Since then, either the evaluation of the SM prediction for the lepton
anomalous magnetic moments or their experimental measurements
have occupied numerous researches for over sixty years.

If, on one hand, the agreement of the QED prediction for ae with
the experimental results provided one of the early confirmation of
this theory − and nowadays represents one of the most precisely
measured quantities in particle physics, it is also true that ae itself is
quite insensitive to strong and weak interactions and to yet unknown
Beyond SM (BSM) physics, especially at higher energy scales.

On the other hand, the long-standing discrepancy of 3-4 standard
deviations between the theoretical prediction for aµ and its measure-
ments may be a more useful tool to uncover BSM physics effects.

1 The same result will be obtained in subsection 2.3.1 with a different technique.
2 Of course, Schwinger found the result for the electron case, but, as it can be noticed,

the contribution is universal for all charged leptons and (2.4) has been generalized
by bearing that in mind.



2.3 qed contribution to aµ 9

In fact, for a lepton `, the contribution to a` is generally propor-
tional to m2

`/Λ2, where m` is the mass of the charged lepton and Λ
the energy scale at which BSM effects show up. It is clear now that
a factor of (mµ/me)2 ∼ 4 · 104 enhances the sensitivity in the muon
case.3

In this chapter we will briefly review the SM calculation for the
muon anomalous magnetic moment, aSM

µ . A more interested reader
can find a more detailed analysis in (1), (2), (3), (4), (5).

Particularly, we are considering the three contributions into which
aSM

µ is usually split: QED, electroweak (EW) and hadronic. They are
respectively discussed in sections 2.3, 2.4 and 2.5.

2.3 qed contribution to aµ

The pure QED contribution to the anomalous magnetic moment, com-
ing from the interaction of the charged leptons e, µ and τ with the
photon, is by far the largest. Then, as a dimensionless quantity, aµ

may be represented as an expansion in powers of α, where the coeffi-
cients depend on the mass ratios of the three leptons.

Generally speaking, we can cast aµ in the following form:

aQED
µ = A1 + A2

(mµ

me

)
+ A2

(mµ

mτ

)
+ A3

(mµ

me
,

mµ

mτ

)
, (2.5)

where me, mµ and mτ are the electron, muon and tau masses, respec-
tively. Since QED is a renormalizable theory, we can expand the Ai
functions (i = 1, 2, 3) as a power series in α/π and compute them
order-by-order:

Ai = A(2)
i

( α

π

)
+ A(4)

i

( α

π

)2
+ A(6)

i

( α

π

)3
+ . . . . (2.6)

The term A1, which takes into account the QED Feynman diagrams
containing no electrons or taus as external legs, is mass independent
(then, universal for all lepton magnetic moments).

The term A2 is characterized by one mass scale (mµ/me,τ) and
therefore it becomes different from zero if an additional lepton loop,
of a lepton which is not a muon, is present. This leads to two loops
at least (A(2)

2 = 0) and there are two possibilities: an electron loop
which contributes to A2(mµ/me) and shows up as a large effect term

∝ log
(

m2
µ/m2

e

)
or a tau loop which contributes to A2(mµ/mτ) and

shows up as a small effect term ∝ log
(

m2
µ/m2

τ

)
.

Finally, a similar discussion leads to A(2)
3 = A(4)

3 = 0.

3 The lepton τ, although way heavier than the µ, is not considered since the very
short lifetime of the former makes it difficult to reach enough sensitivity in such
measurements (23).
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2.3.1 One-loop contribution

Only one diagram shows up in the evaluation of the order α contri-

γ

µ

µ
bution to aµ. It is drawn aside and yields the above mentioned result

by Schwinger: A(2)
1 = 1/2.

Hereafter, it will be obtained by the projection technique, but first
we have to recall some features about the Lorentz structure of the
QED minimal vertex, that is the 3-point function −ieΓµ ≡ 〈ψAµψ〉,
where ψ (ψ = ψ+γ0) is the (barred) spinorial representation of the
muon, A is the vectorial representation of the photon and e is the
electric charge.

If we assign a 4-momentum p to the incoming muon, a 4-momentum
p′ to the outgoing one and we define the transferred 4-momentum
q ≡ p− p′, a spinorial representation in the momentum space, u(p)
and u(p′) respectively, will be associated to them.

Now, from the Lorentz structure of the 3-point function, one may
write:

− ie u(p′)Γµu(p) = −ie u(p′)(a1γµ + a2 pµ + a3 p′µ)u(p) .

By recalling the Ward Identity, which holds in QED as

u(p′)qµΓµu(p) = u(p′)(a16 q + a2 q · p + a3 q · p′)u(p) = 0

and by using p2 = p′2 = m2
µ and the Dirac equation, it follows that

a2 = a3. Therefore:

− ie u(p′)Γµu(p) = −ie u(p′)(a1γµ + a2(p + p′)µ)u(p) .

Now we may rewrite the 3-point correlator by using the Gordon iden-
tity,4 eventually finding:

− ie u(p′)Γµu(p) = −ie u(p′)
(

F1(q2)γµ + F2(q2)
iσµν

2mµ
qν

)
u(p) , (2.7)

where σµν ≡ i
2 [γ

µ, γν] represents the spin 1/2 angular momentum
tensor, while F1 and F2 are the form factors, functions of the squared
transferred momentum.

In the static limit, defined by q→ 0, one has:

F1(0) = 1, F2(0) = aµ , (2.8)

where the first relation is usually called the charge renormalization
condition (in units of the physical charge e, which was taken out in
(2.7) by definition), while the second is the finite prediction for aµ.

4 u(p′)γµu(p) = u(p′)
(
(p+p′)µ

2mµ
+ iσµν (p−p′)ν

2mµ

)
u(p).
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In fact, we may infer from (2.7) that the interaction of a spin 1/2

particle, like the muon, with an initial spin state s and a final one s′,
with a (static) external magnetic field, represented by Aµ

ext = (0, ~A),
is regulated via the interaction hamiltonian

Hmag(q2) =
e

2mµ
u(p′, s′)(F1(q2) + F2(q2))iσiνqν Aext,i u(p, s) . (2.9)

Then, by use of (2.8), the quantum prescription qj → −i∇j and the
following which hold in the static limit:

u(0, s′)σi0u(0, s) = 0, u(0, s′)σku(0, s) = 2δss’Sk ,

where σij = εijkσk and S is the spin operator defined in section 2.1,
one eventually obtains:

Hmag(0) = −
e

2mµ
[2(1 + F2(0))εkjiSk∇j Aext,i] . (2.10)

This last equation, by using the definition given in (2.2) and since a
magnetic field operator B is equal to ∇×A, we may write

Hmag(0) = −µS · B , (2.11)

where now

gµ = 2(1 + F2(0)) ←→ F2(0) =
gµ − 2

2
≡ aµ ,

which is what we claimed in (2.8).

Now, aiming to compute the leading order QED contribution to aµ,
we are going to extract F2(0) from the LO radiative corrections to the
QED vertex by a projection technique.

Referring ourselves to the diagram aside, we may write the one-

k
p p′

γ

µ

αβ

µ µloop contribution to that correlator in d dimensions in order to regu-
larize its UV divergence:

iu′Γµu = −(eµ
ε
2 )3

∫ ddk
2πd

γα(6 p′ −6 k + M)γµ(6 p−6 k + M)γα

[(p′ − k)2 −M2][(p− k)2 −M2][k2 − λ2]
,

(2.12)
where µ is the ’t Hooft dimensional parameter, ε = 4 − d, k is the
loop momentum, λ is a fictitious mass for the photon, introduced to
regularize IR divergences, u′ ≡ u(p′), u ≡ u(p) and M ≡ mµ; the iε
prescription has been suppressed for brevity.

Before proceeding, it is useful to notice that, either in the UV do-
main or in the IR one, we may find that the integral diverges propor-
tionally to γµ. This, along with QED strict renormalizability, explains
why we should expect a finite contribution to F2(0), which is the form
factor of the σµν term.
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On the other hand, we come back to the calculation with the intro-
duction of two Feynman parameters,5 y and z, leading to a denomi-
nator D of this shape:

D = [k2 − 2k · (p′y− pz)− λ2(1− y− z) + (y + z)(p′2 −M2)]3 ,

which reduces to

D = [k2 − 2k · b− λ2(1− y− z)]3

if the incoming and outgoing muons are on-shell and if we define
the 4-momentum bµ ≡ yp′µ + zpµ. We also make a standard shift for
the loop momentum, kµ → kµ − bµ ≡ kµ, which leaves invariant the
measure and lets the integral become

iu′Γµu = −(eµ
ε
2 )3Γ(3)

∫ 1

0
dy
∫ 1−y

0
dz
∫ ddk

2πd
Nµ(p′, p, k)
[k2 − C]3

, (2.13)

where C ≡ λ2(1− y− z) + (yp′ + zp)2 is a function which does not
depend on the loop momentum and Nµ(p′, p, k) is the numerator
modified by the shift. This latter may be split into three contributions:

• Nµ
0 , constant in the loop momentum k, whose k-integral yields

a finite contributions to Γµ;

• Nµ
1 , linear in k, whose k-integral is null by parity considerations:

we integrate an odd function over an even domain;

• Nµ
2 , quadratic in k, whose k-integral diverges both in the UV

and in the IR domain: then, it contributes only to F1(0) and so
we have to consider only the constant contribution in order to
compute F2(0).

Also, via a Wick rotation and a shift to polar coordinates, we find
that ∫ d4k

(2π)4
1

(k2 − C + iε)3 =
−i

32π2C
. (2.14)

At this point we substitute (2.14) in the integral expression (2.13), re-
taining ourselves to the term constant in k. In fact, we will extract
F2(0) from that. Also, we may let λ → 0 since the integral with only
Nµ

0 is no more IR divergent and, with the muons on-shell and q2 = 0,
we obtain C = M2(y + z)2.

Now it is possible to use the projection technique to extract the
form factor, but we only quote the results and we refer a more inter-
ested reader to (1, pp. 173-179).

If one has a matrix element like

Λµ = γµF1(q2) +
i

2M
σµνqνF2(q2) , (2.15)

5
1

ABC = Γ(3)
∫ 1

0 dy
∫ 1−y

0 dz 1
[A+(B−A)y+(C−A)z]3 , where Γ is the Euler’s function.
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the form factors Fi (i = 1, 2) can be extracted as in the following:

Fi = Tr [Pµ
Fi

Λµ]|p2
i =M2 ,

where
PFi ≡ (6 p′ + M)

[
c1i γµ +

c2i

2M
(p + p′)µ

]
(6 p + M)

with (for sake of completeness we mention all the coefficients, al-
though only two of them are necessary for our calculation)

c11 =
1

2(d− 2)(q2 − 4M2)
, c12 =

−2M2

q2(d− 2)(q2 − 4M2)
,

c21 = c11
4M2(d− 1)

q2 − 4M2 , c22 = c12
q2(d− 2) + 4M2

q2 − 4M2 .

Then, by claiming that u′Nµ
0 u has the same Lorentz structure of u′Λµu

in (2.15), we obtain:

F2(0) = −µ
3ε
2

4πα

32π2 2
∫ 1

0
dy
∫ 1−y

0
dz

Tr [Pµ
Fi

N0,µ]

M2(y + z)2

which, after evaluating the trace and taking the limits d → 4 and
q2 → 0, eventually provides

F2(0) = −
1
4

α

π

∫ 1

0
dy
∫ 1−y

0
dz

4M2(−1 + y + z)(y + z)
M2(y + z)2 =

1
2

( α

π

)
and this is the already mentioned result for the one-loop QED contri-
bution to aµ.

2.3.2 Higher-order QED contribution

In this section we will briefly discuss higher order contributions from
QED diagrams, organizing the following paragraphs according to the
number of loops which appear in the relevant diagrams.

At fourth order in QED there are nine diagrams contributing to aµ. Two-Loop

Among them, six are obtained by attaching two virtual photons to
the muon lines and contribute to the universal coefficient. The other
three are obtained by inserting in the virtual photon line a vacuum
polarization due to lepton loops: respectively, one contributes to A(4)

1

(universal), one to A(4)
2 (mµ/me) and one to A(4)

2 (mµ/mτ).
An analytic result for all the coefficients has been known since the

early Sixties (24)-(25)-(26), and it was later simplified by the use of
dilogarithm properties6 (5). In fact, knowing that the uncertainty

6 The dilogarithm is defined as Li2(z) ≡ −
∫ z

0 dt log(1− t)/t.
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comes from the error on the experimental measure for the lepton
masses ratio, one gets (5):

A(4)
1 = −0.328 478 965 579 . . .

A(4)
2 (mµ/me) = 1.094 258 3111 (84) . . .

A(4)
2 (mµ/mτ) = 0.000 078 064 (25) . . .

Adding up the three equations and adding in quadrature the un-
certainties of the second and the third (since we assume that the two
different mass ratios were measured independently), one obtains the
two-loop QED coefficient C2 as the sum of the three contributions (5):

C2 = 0.765 857 410 (26)

If we compute the two-loop contribution to aµ, C2(α/π)2, we get a
tiny uncertainty: 0.01 · 10−11.

At sixth order in QED there are more than one hundred diagramsThree-Loop

contributing to aµ. However, there exists an analytic expression of all
the coefficients, whose computation ended in the late Nineties.

In particular, the universal coefficient originates from 72 diagrams
(27)-(28) and the result reads (5):

A(6)
1 = 1.181 241 4566 . . .

On the other hand, the coefficient A(6)
2 (m/M), being m = mµ and

M = me or mτ, comes from 36 diagrams containing electron or tau
vacuum polarizations (29) and 12 due to so-called light-by-light scat-
tering diagrams with electron or tau loops (30). As a result (5):

A(6)
2 (mµ/me) = 22.868 380 02 (20)

A(6)
2 (mµ/mτ) = 0.000 360 51 (21)

Eventually, at this order there are also diagrams involving both
electron and tau loops (31), whose contribution is given by the coeffi-
cient (5):

A(6)
3 (mµ/me, mµ/mτ) = 0.000 527 66 (17) ,

where the uncertainty is due to the experimental error on mµ/mτ.
Combining the above mentioned three-loop results one obtains the

sixth-order QED coefficient C3 (5):

C3 = 24.050 509 64 (43) . (2.16)

If we compute the three-loop contribution to aµ, C3(α/π)3, we get
a O(10−14) negligible uncertainty. Besides, numerical methods were
also developed for the evaluation of the three-loop set of diagrams.
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At eighth order in QED there are more than one thousand diagrams Four-Loop

contributing to aµ. Both a semi-analytical (based on an asymptotic
expansion) and a numerical evaluation were accomplished by Stein-
hauser and collaborators (32) and Kinoshita and collaborators (3), re-
spectively. Also, it has been recently obtained a remarkable result
from Laporta (33) for the universal contribution with the astonishing
precision of 1100 digits.

The following are the more recent results for each coefficient. From
(32) we read:

A(8)
1 = −1.87 (12)

A(8)
2 (mµ/me) = 132.86 (48)

A(8)
2 (mµ/mτ) = 0.042 4941 (53)

A(8)
3 (mµ/me, mµ/mτ) = 0.062 722 (10) ,

from (3):

A(8)
1 = −1.912 98 (84)

A(8)
2 (mµ/me) = 132.6852 (60)

A(8)
2 (mµ/mτ) = 0.04234 (12)

A(8)
3 (mµ/me, mµ/mτ) = 0.06272 (4)

and eventually from (33):

A(8)
1 = −1.912 245 764 9264 . . . ,

where the errors are due to the numerical procedure, both in (32) and
in (3).

Combining the above mentioned four-loop results, one obtains the
four-loop QED contribution to aµ, a(8)µ , from (32):

a(8)µ = (−5.44 (35)+ 386.77 (1.40)+ 0.12371 (15)+ 0.18259 (29)) · 10−11

and from (3):

a(8)µ = (−5.568 (2)+ 386.264 (17)+ 0.12326 (35)+ 0.18259 (12)) · 10−11

If one computes the final uncertainty in both cases, the result is about
two orders of magnitude smaller than the experimental one.

At tenth order in QED there are more than ten thousand diagrams Five-Loop

contributing to aµ and at present there exists only a numerical evalu-
ation of them. The results by Kinoshita and collaborators read (3):

C5 = 753.29 (1.04) ,

where the uncertainty is attributed entirely to the statistical fluctua-
tion in the Monte-Carlo integration of Feynman amplitudes.
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Summing up the QED results we have quoted, also reported in
Table 2.1, we finally obtain

aQED
µ = 116 584 718.951 (9) (19) (7) (77) · 10−11 ,

where the first error is due to the lepton mass ratios, the second and
the third to the O(α4) and O(α5) terms (the other contributions yield
smaller uncertainties), and the fourth to the uncertainty of α, whose
best non-QED experimental value is the one obtained from the mea-
surement of h/mRb, combined with the very precisely known Ryd-
berg constant and mRb/me (34):

α−1 = 137.035 999 049 (90) .

All the errors combined yield δaQED
µ = 0.08 · 10−11.

Table 2.1: QED contributions to aµ.

O(αn) ×10−11

n = 1 116 140 973.318(77)

n = 2 413 217.6291(90)

n = 3 30 141.902 48(41)

n = 4 381.008(19)

n = 5 5.0938(70)

2.4 electroweak contribution to aµ

Differently from the QED contribution, the EW one is in general
much more suppressed, and particularly by a factor (mµ/mW)2, where
mW is the mass of the charged boson W.

The one-loop EW contribution is known analytically since 1972 (35),One-Loop

(36),(37), (38), (39):

aEW
µ (1-loop) =

5GFm2
µ

24
√

2π2

[
1 +

1
5
(1− 4 sin2 θW)2 + O

( m2
µ

m2
Z,W,H

)]
,

where GF is the Fermi coupling constant, θW is the Weinberg angle
and MZ,W,H are the W-, Z- and Higgs boson masses, respectively. We
may also assert that the Higgs contribution is safely negligible, being
of the order of 10−14. This analytic result yields:

aEW
µ (1-loop) = (194.82± 0.02) · 10−11 .

On the other hand, while the experimental accuracy was growingTwo-loop

year after year, leading to a result with a precision one-third as large
as the one-loop contribution, it turned out to be necessary to consider
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the two-loop EW contribution too. There came a little surprise, since
the latter led to a significant reduction of the one-loop result.

While one could have expected the appearance of terms propor-
tional to (α/π) aEW

µ (1-loop), which would have been negligible, and
terms enhanced by large logarithms like log

(
mZ,W/m f

)
(m f is a fermion

mass scale, much smaller than mZ,W), the final result was even larger,
enough to reduce the one-loop contribution.

The two-loop contributions are usually split in a fermionic part,
including all diagrams which involve closed fermion loops, and a
bosonic part, containing all the other diagrams, e.g. hadronic photon-Z
mixing and quark triangle loops attached to the muon line via a vir-
tual photon and a Z. The former, computed in the free quark approx-
imation or via a dispersion relation,7 has a much smaller contribu-
tion (40) than the latter, also computed in the free quark approxima-
tion (41).

Nowadays, the result is (42):

aEW
µ (2-loop) ' −41.23 (1) · 10−11 ,

where the error is due to the current quark mass uncertainty, un-
known three-loop effects (studied in (43) via renormalization group
analysis) and hadronic loop uncertainties.

Summing up the two quoted results one obtains (42):

aEW
µ = (153.6± 1.0) · 10−11 .

2.5 hadronic contribution to aµ

In this section we are dealing with the hadronic contribution to the
muon anomalous magnetic moment, which originates from QED di-
agrams involving hadrons.8

Particularly, the most sizable hadronic effect is the O(α2) hadronic
vacuum polarization (HVP) insertion in the internal photon line of
the leading one-loop muon vertex diagram. This will be treated in
some details in section 2.5.1, representing both the main uncertainty
in the SM theoretical prediction of aµ and the motivation for calculat-
ing the muon-electron elastic scattering cross section at NLO.

Moreover, at order O(α3) we have other diagrams contributing with
a smaller result, but still of relevance if one takes into account the ac-
curacy which future aµ measurement will reach. These contributions
are much more concisely treated in section 2.5.2.

7 See 2.5.1.
8 One should note that the two-loop EW diagrams involving hadrons have been al-

ready mentioned in the previous section.
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2.5.1 Leading-order hadronic contribution

Since it involves low-energy QCD, which cannot be treated perturba-
tively, the evaluation of the diagram where a hadronic blob shows
up, has to be fulfilled by using different methods. In particular, it
has been demonstrated in the Sixties, by Bouchiat and Michel (44),
that the result may be obtained with the help of an analyticity- and
unitarity-based approach.

Let us first consider a complex function of the Mandelstam variableAnaliticity

s, f (s), which has a branch cut along the real positive axis in the s-
plane, starting at s = s0 and extending to infinity, and which is real
below s0. Then, we may write f (s) in terms of a Cauchy integral
representation

f (s) =
1

2πi

∮
C

ds′ f (s′)
s′ − s

, (2.17)

where C is the contour shown in Figure 2.1.

Re s

Im s

Cε

CR

Figure 2.1: In red, the contour C. The centre of the circles is at s = s0 + i0.

Now, assuming that f (s) may be defined for complex s in the upper
half s-plane, the Schwartz reflection principle allows us to extend the
domain of f (s) to the lower half s-plane by f (s∗) = f ∗(s), where ∗

represents the complex conjugation.
Then, as a contribution from the branch cut (real s > s0) we have:

lim
ε→0+

f (s + iε)− f (s− iε) = 2i Im f (s)

by which we may rewrite (2.17), for any s inside C, as

f (s) =
1

2πi

∫ ∞

s0

ds′ 2i Im f (s′)
s′ − s

+
1

2πi

∫
CR+Cε

ds′ f (s′)
s′ − s

.
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If the contributions from CR and Cε vanish in the limits ε → 0 and
R → ∞, namely f (s) falls off sufficiently rapidly in those limits, the
latter equation yields a dispersion relation (DR) for f (s):

f (s) =
1
π

∫ ∞

s0

ds′ Im f (s′)
s′ − s

. (2.18)

If the contribution from the circle CR does not vanish, we may sub-
tract f (b) from f (s), for any b in the domain of f (s), and let the
integrand vanish faster at infinity via a factor ∝ 1/s′:

f (s)− f (b) =
s− b
2πi

∫ ∞

s0

ds′ 2i Im f (s′)
(s′ − s)(s′ − b)

+
s− b
2πi

∫
CR+Cε

ds′ f (s′)
(s′ − s)(s′ − b)

which reduces to

f (s)− f (b) =
s− b

π

∫ ∞

s0

ds′ Im f (s′)
(s′ − s)(s′ − b)

(2.19)

if now the circle contribution vanishes. This latter equation is defined
as a subtracted dispersion relation (SDR) for f (s).

Since we have to consider the LO HVP insertion in the internal
photon line of the leading one-loop muon vertex diagram, we try to
apply the just recalled properties of analytic functions to the HVP
function, whose analyticity is granted by causality.

Let us define the HVP function as Π′had(q
2), where q is the 4-

momentum associated to the internal photon line. Moreover, we
know that Π′had(q

2) exhibits a UV singularity, so that we shall con-
sider a SDR with b = 0 and we may write from (2.19):

Π′had(q
2)−Π′had(0) =

q2

π

∫ ∞

4m2
π

ds Im Π′had(s)
s(s− q2)

(2.20)

In fact, we know that Π′had(q
2 = 0) corresponds to the counter-term

which renormalizes Π′had(q
2); henceforth we define for brevity

Π′had(q
2) ≡ Π′had(q

2)−Π′had(0)

i.e. the renormalized HVP function. Also, we remark that mπ is the
pion mass and 4m2

π corresponds to the hadron production threshold,
namely the q2 value at which the branch cut for Π′had(q

2) starts.

If (2.20) establishes what we may infer from the analyticity of the Unitarity

HVP function, unitarity considerations may offer a useful tool to ex-
press Im Π′had(s) in terms of experimentally measured cross sections.

In particular, unitarity implies the optical theorem, which states, in a
scattering process framework, that the imaginary part of the forward
scattering amplitude of an elastic process

a + b→ a + b
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is proportional to the sum over all possible final states

a + b→ ’anything’ .

In the HVP case, which is crucial for our discussion, one may find
that this yields:

Im Π′had(s) =
s

4πα
σtot(e+e− → hadrons) .

This latter equation may be also reformulated as

Im Π′had(s) =
α

3
Rhad(s) , (2.21)

where

Rhad(s) = σtot/
4πα2

3s
is the ratio between the hadronic inclusive cross section σtot, which
is known from the experiments as it cannot be perturbatively calcu-
lated, and the e+e− → µ+µ− tree level cross section, computed in the
relativistic limit s� 4m2

µ, which is used as a normalization factor.

Now, by combining (2.20) and (2.21), we eventually obtain:

Π′had(q
2) =

αq2

3π

∫ ∞

4m2
π

ds Rhad(s)
s(s− q2)

. (2.22)

This is a crucial result in order to compute the LO hadronic contri-
bution to aµ, since it bypasses the issue of calculating the low energy
QCD contribution to it. Then, we apply it right away to the calcula-
tion of our interest.

Since we aim to compute the contribution to aµ from the diagram

γ

H

µ

µ
aside, where a hadronic blob H was inserted in the virtual photon
line, we shall recall some features about the photon propagator, fol-
lowing Jegerlehner’s book (1).

Working in the Feynman gauge ξ = 1, like we did and will do
throughout the whole thesis, the free photon propagator has the form

iDµν(q2) =
−igµν

q2 + iε
,

where the virtual photon carries a 4-momentum q. If we consider
the so called Dyson series of self energy insertions, then it becomes,
omitting the metric tensor gµν, which acts equally on every term, and
the iε prescription,

iD′(q2) =
−i
q2 +

−i
q2 (−iΠ)

−i
q2 +

−i
q2 (−iΠ)

−i
q2 (−iΠ)

−i
q2 + . . .

=
−i
q2

[
1 +

(−Π
q2

)
+
(−Π

q2

)2
+ . . .

]
=
−i
q2

[ 1
1−Π/q2

]
=

−i
q2 −Π(q2)

.
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Further, by gauge invariance, we know that the photon must remain
massless after including radiative corrections, which affects Π(q2).
This requires that Π(q2) = Π(0) + q2Π′(q2), with Π(0) = 0 following
from the transversality condition. Then, as a final result, we obtain
the dressed photon propagator

iD′ µν(q2) =
−igµν

q2[1−Π′(q2)]
+ gauge terms (2.23)

which is what we really need to study the hadronic bubble.
In fact, the physically relevant gµν term of the full photon propaga-

tor may also be written as

−igµν

q2[1−Π′(q2)]
' −igµν

q2

(
1 + Π′(q2)− (Π′(q2))2 + . . .

)
.

Therefore, one may note that the hadronic bubble H insertion in the
photon propagator leads to the following straightforward substitu-
tion for a photon virtual line:

−igµν

q2 → −igµν[Π′H(q
2)−Π′H(0)]

q2 , (2.24)

where we have already subtracted the counter-term Π′H(0) from Π′H(q
2)

in order to cancel the UV divergence of the latter. For brevity we also
define the renormalized photon self energy Π′H ≡ Π′H(q

2)−Π′H(0).

At this stage, by using (2.22), we easily find that the NLO contribu-
tion from (2.24) becomes

−Π′H(q2)

q2 =
α

3π

∫ ∞

4m2
π

ds RH(s)
s(s− q2)

. (2.25)

We also note that the only q dependence under the last integral shows
up in the denominator as −(q2 − s). Then, it is possible to write the
LO hadronic contribution to aµ by substituting

−igµν

q2 → −igµν

q2 − s

in the lower order expression, namely (2.12), with λ = 0.
Following a similar path but introducing three Feynman parame-

ters which let the expression assume a slightly clearer shape,9 one
obtains

FH
2 (q2) =

α2

3π2

∫ 1

0
dxdydz

∫ ∞

4m2
π

ds
s

δ(x + y + z− 1) RH(s)(1− z)zM2

(1− z)2M2 − xyq2 + sz

which yields

aHLO
µ = FH

2 (q2 = 0) =
α

π

∫ ∞

4m2
π

ds
s

Im Π′H(s)K(s) (2.26)

9
1

ABC = Γ[3]
∫ 1

0 dx
∫ 1

0 dy
∫ 1

0 dz δ(x+y+z−1)
(Ax+By+Cz)3
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or

aHLO
µ = FH

2 (q2 = 0) =
α2

3π2

∫ ∞

4m2
π

ds
s

RH(s)K(s) , (2.27)

where

K(s) =
∫ 1

0

x2(1− x)
x2 + (s/M2)(1− x)

. (2.28)

Hence (2.27) offers an approach to overcome long-distance QCDTime-like approach

issues appearing in the LO hadronic contribution to aµ calculation.
Since it makes use of hadronic e+e− annihilation data, thus involv-
ing a positive squared momentum transfer, we will call it time-like
approach.

Detailed evaluations of the dispersive integral in (2.27) have been
carried out by several authors, being this contribution of the order
7000 · 10−11, very large compared with the current experimental un-
certainty δaexp

µ = 60 · 10−11. Here we only present the most recent
results from (45), (46) and (47), respectively:

aHLO
µ = 6949 (37.2) (21) · 10−11

aHLO
µ = 6909.6 (4.65) · 10−11

aHLO
µ = 6923 (4.2) · 10−11 ,

where the first (or unique) error is due to the experimental measure-
ment of hadronic e+e− annihilation, while the second to final state
radiation effects.

As one may note, this approach bypasses QCD long-distance prob-Space-like approach

lems, but suffers from the experimental uncertainty by which we
measure the hadronic e+e− annihilation. In September 2016 a new
experiment, MUonE, has been proposed (10). It aims to measure the
running of α in the space-like region by scattering 150 GeV muons on
atomic electrons of low-Z target through the elastic process µ e→ µ e.
As we will show, the differential cross section of that process, mea-
sured as a function of the squared 4-momentum transfer t < 0, pro-
vides direct sensitivity to the LO hadronic contribution to aµ.

In (9) it was noticed that, exchanging the integrations and evaluat-
ing the subtracted dispersion relation in (2.26), one gets:

aHLO
µ = α

∫ 1

0
dx(1− x)

∫ ∞

4m2
π

ds
πs

Im Π′H(s)
x2

x2 + (s/M2)(1− x)

=
α

π

∫ 1

0
dx(1− x)

−1
1 + Π′H(t)

=
α

π

∫ 1

0
dx(1− x)∆αH [t(x)] ,

(2.29)

where ∆αH(t) is the hadronic contribution to the running of α, evalu-
ated at

t(x) =
x2M2

x− 1
< 0 (2.30)
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the space-like squared 4-momentum transfer. The second equality is
obtained by observing that, with t defined as in (2.30),

x2

x2 + (s/M2)(1− x)
= −t

1
s− t

.

On the other hand, the last equality is obtained by recalling that the
shape of the dressed photon propagator, see (2.23), implies that the
charge has to be replaced by a running charge:

e2 → e2(t) =
e2(0)Z3

1 + Π′(t)
,

where Z3 is the renormalization factor fixed by the condition that
at t → 0 one obtains the charge in the Thomson limit. Thus, the
renormalized charge is

e2 → e2(t) =
e2(0)

1 + [Π′(t)−Π′(0)]
,

which yields, in terms of the fine structure constant,

α(t) =
α(0)

1− ∆α(t)
,

where ∆α(t) = −[Π′(t) −Π′(0)]. At this stage, it is easy to obtain
(2.29) via the substitution Π′ → Π′H, since we are interested in the
hadronic case. We would also like the reader to notice that, in con-
trast with the integrand function of (2.27), the integrand in (2.29) is
smooth and free of resonances.

The above discussion explains why it has been decided to com-
pute the muon−electron elastic scattering cross section. In fact, the
hadronic contribution ∆αH(t) can be extracted by subtracting from
∆α(t) the purely leptonic part, which may be calculated order by or-
der in perturbation theory. Finally, we point out that the aimed exper-
iment accuracy is 10 ppm; then, we will take account of this number
while computing the NLO muon−electron cross section, in order to
neglect smaller contributions.

2.5.2 Higher-order hadronic contribution

We close the section dedicated to the muon g − 2, by briefly giv-
ing an account of the hadronic higher order (HHO) contributions.
Usually, they are split in diagrams with vacuum polarization inser-
tions (vap), whose result may be expressed in terms of experimental
observables, or light-by-light scattering (lbl), whose result relies at
present on purely theoretical considerations.

The latest results read from (45) and (48) respectively:

aHHO
µ (vap) = −98.4 (0.6) (0.4) · 10−11

aHHO
µ (lbl) = 116 (40) · 10−11 ,
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where the (vap) contribution first error is due to the experimental
measure of hadronic e+e− annihilation, while the second to final state
radiation effects; the (lbl) error covers almost all values obtained in
other different publications.

2.6 theoretical prediction vs measurement

In the following we sum up all the results of this chapter, adding the
latest measurement of aµ by the experiment E821 at Brookhaven (49),
(50). As we have already mentioned, more precise measurements will
be obtained in the next few years by Fermilab and J-PARC, hopefully
with an accuracy of 0.14 ppm.

aSM
µ = aQED

µ + aEW
µ + aHLO

µ + aHHO
µ (vap) + aHHO

µ (lbl)

= 116 591 840 (59) · 10−11 ,

aexp
µ = 116 592 089 (63) · 10−11.

Hence the long-standing 3-4 standard deviation discrepancy between
the theoretical prediction and the experimental value:

aexp
µ − aSM

µ = 249 (87) · 10−11 .
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M U O N−E L E C T R O N E L A S T I C S C AT T E R I N G

In this chapter the SM calculation for the muon−electron elastic scat-
tering cross section at NLO is presented.

The kinematics in the laboratory frame of reference is recalled in
section 3.1, the LO contribution is computed in section 3.2, the one-
loop virtual contribution is considered in section 3.3, soft photon
emission is taken into account via Bremsstrahlung diagrams at LO
in section 3.4. Finally, the result is presented in section 3.5, also refer-
ring the reader to the appendix B for the explicit formulae.

The NLO QED corrections to this cross section were computed long
time ago in (51), (52), (53), (54), (55) and (56), and revisited more re-
cently in (57). As a first check, we recalculated these corrections and
found perfect agreement with (57), although unsolved integrals still
show up in the final expressions of that reference. We also note that
some of the pioneering publications, like (52) and (54), contain typos
or errors, so that they cannot be directly employed. Then, aim of this
work is to obtain a correct and usable result, which may be directly
tested by experiments like MUonE.

3.1 kinematics in the lab frame

The process is represented as a standard 2 → 2 elastic scattering of
muons (µ−) on electrons (e−), whose masses are defined M and m,
respectively. We will not make any massless approximation, keeping
both M and m along the calculation, and in the various diagrams the
electron lines will be thin and black, while the muon lines red and
thick.

Further, the following conventions and notations are used: q1 and
q2 are the incoming and outgoing muon 4-momenta; p1 and p2 are the
incoming and outgoing electron 4-momenta; metric and Dirac matri-
ces identities are recalled in app. A; s, t and u are the Mandelstam
invariants defined by

s = (p1 + q1)
2 = (p2 + q2)

2

t = (p1 − p2)
2 = (q1 − q2)

2 (3.1)

u = (p1 − q2)
2 = (p2 − q1)

2

s + t + u = 2M2 + 2m2

25
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In the lab frame, in a fixed-target experiment, we shall have:

p1 =

(
m

0

)
q1 =

(
E1µ

q1

)
p2 =

(
E2e

p2

)
q2 =

(
E2µ

q2

)

Once we defined all these quantities, we may compute the Lorentz-
invariant phase space factor for a two-body final state, dΠ2. In fact,
the differential cross section dσ of our interest will have the following
shape:

dσ = (2π)4δ(4)(q2 + p2 − q1 − p1)
X

2Λ1/2(s, m2, M2)
dΠ2 , (3.2)

where X is the renormalized and unpolarized T -matrix element, Λ
is the Källén function, defined by Λ(x, y, z) = x2 + y2 + z2 − 2xy −
2yz− 2zx, and

dΠ2 =
d3p2

(2π)32E2e

d3q2

(2π)32E2µ
.

We integrate the 4-momentum conservation delta over the outgoing
muon 3-momentum (q2), then we shift to spherical polar coordinates
by writing

d3p2 = |p2|2d|p2|d cos θdϕ ,

where θ ∈ (0, π) is the angle between the incoming muon and the
outgoing electron, ϕ ∈ (0, 2π), and eventually we find, from (3.2),

dσ =
X δ(E1µ + m− E2µ − E2e)

32π2Λ1/2(s, m2, M2)

|p2|
E2µE2e

E2e dE2e d cos θ dϕ , (3.3)

where we used E2e dE2e = |p2|d|p2|, which follows by differentiation
from m2 = E2

2e − |p2|2.
In order to perform the last delta integration we recall how to write

in general δ( f (x)),1 that is in our case:

δ(E1µ +m−E2µ−E2e) = δ(c− c0)

∣∣∣∣∣∂(E1µ + m− E2µ(E2e, c)− E2e)

∂c

∣∣∣∣∣
−1

c=c0

,

where c ≡ cos θ, c0 is such that E2µ(c0) = E1µ + m− E2e and E2µ =

E2µ(E2e, c) by squaring the 3-momentum conservation relation, i.e.

q2 = q1 − p2 ↔ E2µ = (E2
1µ + E2

2e −m2 − 2c|q1||p2|)1/2

As a result, by recalling that in the lab frame

|q1| =
1

2m
Λ1/2(s, m2, M2)

1 δ( f (x)) = ∑i δ(x− x̄i)
∣∣∣ ∂ f (x)

∂x

∣∣∣−1

x=x̄i
, where the equality holds in a distributional sense

and x̄i are the roots of f (x) belonging to the integration domain.
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and, from the definition of t in (3.1),

dt = −dE2e

2m

we finally obtain from (3.3), also integrating over ϕ,

dσ =
δ(c− c0)E2µ

|q1||p2|
X

16πΛ1/2(s, m2, M2)

|p2|
E2µ

dE2e dc

= − X
16πΛ(s, m2, M2)

dt .
(3.4)

Once the kinematics is set, we may turn to the computation of X ,
starting from the LO contribution.

3.2 lo contribution

At leading order in the ξ = 1 gauge there are four Feynman diagrams
contributing to the cross section of the process, which is characterized
by neutral currents. They are shown aside and differ in the propaga-
tor, being the first a photon, the second a Z-boson, the third a Higgs
boson and the fourth a neutral Goldstone boson.

γ

e e

µµ

Z

e e

µµ

H

e e

µµ

φ0

e e

µµ

As a consequence, by calling MA, MZ, MH and Mφ the Feyn-
man matrix elements originating from the diagrams with a photon,
Z-boson, Higgs boson and Goldstone boson propagator, the LO un-
polarized amplitude X LO may be written as

X LO =
1
4 ∑

spins
|MA +MZ +MH +Mφ|2

= XA +XZ +XH +Xφ + ∑
I,J={A,Z,H,φ}

I 6=J

ReXI−J ,
(3.5)

where the 1/4 factor shows up since we are averaging over the initial
spins of two leptons. It is also clear that the first four terms in the last
equality correspond to the squared matrix elements, while the last six
(XI−J = XJ−I) originate from the interference between them.

As we described in chapter 1, we are interested in this very process
since it might help to obtain a more accurate theoretical prediction
to the LO hadronic contribution to aµ. Besides, one might also fore-
see that, even though we aim to a very precise result which requires
a µ − e scattering cross section at O(α4), the contributions from the
diagrams involving Higgs-fermion, Z-fermion or Goldstone-fermion
couplings are too small to be taken into account.

In particular, the former is the most suppressed contribution, since
it is proportional to (mM/v2), where v = 246 GeV is the electroweak
vacuum expectation value. The second is also suppressed but, as we
will see, the interference term XA−Z of the Z-boson with the photon
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yields a border-line contribution in terms of needed accuracy. The
latter is equally suppressed and, in particular, the interference term
XA−φ is identically zero.

In the following subsections, 3.2.1, 3.2.2 and 3.2.3 respectively, we
shall then concentrate on XA, XA−Z and XA−φ. In fact

X LO = XA + 2 ReXA−Z + O(α2)

and we would also like to show that XA−φ = 0.

3.2.1 Photon contribution

The unpolarized Feynman amplitude originating from the first dia-
gram only is easily computable via the Feynman rules quoted in app.
A, yielding

p2p1
γ

q1 q2

XA =
1
4 ∑

spins

e4

t2 u(q1)γ
µu(q2)u(p1)γµu(p2)u(p2)γνu(p1)u(q2)γ

νu(q1)

=
e4

4t2 Tr[γµ(6 q1 + M)γν(6 q2 + M)] Tr
[
γµ(6 p1 + m)γν(6 p2 + m)

]
,

where the trace may be computed using the Dirac matrices identities
quoted in app. A. Further, by evaluating in the lab frame the scalar
products originating from the trace we obtain

XA =
2(4πα)2

t2 f (s, t) , (3.6)

where

f (s, t) = 2(M2 + m2 − s)2 + 2st + t2

= 2(M2 + m2)2 − 2su + t2 (3.7)

and the last equality directly follows from 3.1.

3.2.2 Photon−Z interference contribution

The unpolarized Feynman amplitude originating from the first and
second diagram interference is also easily computable via the Feyn-
man rules quoted in app. A. As we sketched in section 2.5.1, for

p2p1

Z
q1 q2

the experimental measurement of our interest s ' 0.16 GeV2 and
t ∈ (−0.14, 0) GeV2. In this low energy regime, namely |t| � M2

Z
where MZ is Z-boson mass, we find

2 ReXA−Z '
1
4 ∑

spins
2 Re

[−ie2

t
u(q1)γ

µu(q2)u(p1)γµu(p2)
ig2

cos2 θW
×

× u(p2)γν(gV − gAγ5)u(p1)
(
− 1

M2
Z

)
u(q2)γ

ν(gV − gAγ5)u(q1)
]

= −4GFe2
√

2t
Tr[γµ(6 q1 + M)Vν(6 q2 + M)] Tr

[
γµ(6 p1 + m)Vν(6 p2 + m)

]
,
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where the Z-boson propagator reduces to −1/M2
Z in the low energy

limit, GF is the Fermi constant, related to the charged vector boson
mass MW or MZ and cos θW by

8GF√
2

=
g2

M2
W

=
g2

M2
Z cos2 θW

, (3.8)

Vµ is a short notation for γµ(gV − gAγ5), where gV and gA are the
vectorial and axial couplings, defined via the weak isospin third-
component eigenvalue T3 and the lepton charge Q:

gV =
1
4
(2T3 − 4Q sin2 θW) , gA =

1
4

2T3 .

After computing the trace by the customary Dirac matrices identi-
ties and evaluating the scalar products originating from the trace, we
eventually obtain for a µ−e− scattering

2XA−Z = − 64√
2

GFe2

t

[
g2

V

(
(M2 + m2 − s)2 + st +

t2

2

)
− g2

A(s− u)
t
2

]
= −4

√
2π

αGF

t

[
f (s, t)(4 sin2 θW − 1)2 − t(s− u)

]
,

(3.9)

where we used T3 = −1/2 and Q = −1 for charged leptons.

By adding together the results in (3.4), (3.6) and (3.9), we may write(dσ

dt

)LO
=
(dσ

dt

)LO

0

[
1 + δZ(s, t)

]
+ O(α2) , (3.10)

where (dσ

dt

)LO

0
= − 2πα2

Λ(s, m2, M2)t2 f (s, t) , (3.11)

f (s, t) is defined in (3.7) and

δZ(s, t) = − GFt
4
√

2πα

(
(4 sin2 θW − 1)2 − t(s− u)

f (s, t)

)
(3.12)

is the correction to the QED contribution to the scattering differential
cross section computed at LO.

At this stage one may also wonder how much δZ(s, t) affects the
theoretical prediction accuracy, which will be then compared with the
experimental one. For the data-taking, a muon beam of 150 GeV will
be used on a fixed electron target (10). Then it turns out that s ' 0.16
GeV2 and t ∈ (−0.14, 0) GeV2, i.e. t ∈ (−Λ(s, m2, M2)/s, 0) GeV2. The
maximum t-value, i.e. t = 0 GeV2, is reached when E2e = m, while
the minimum is reached when E2e ' 139.8 GeV2. In fact, by energy
conservation, E2e is a function of cos θ:

E2e = E1µ + m− (E2
1µ + E2

2e −m2 − 2|q1|(E2
2e −m2)1/2 cos θ)1/2
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and the value for E2e which minimizes the last equation, evaluated at
θ = 0, is E2e ' 139.8 GeV2.

Once these facts are known, it is easy to conclude that the maxi-
mum value of δZ(s, t) is

δZ(s ' 0.16, t ' −0.14) ' 1.5 · 10−5 ,

as it is shown in Figure 3.1. This also explains why we did not con-
sider other LO terms contributing to the cross section, in particular
the bigger of them, that is XZ. It is a matter of fact, that this latter
contributes proportionally to G2

F, which offers a contribution much
smaller than the maximum value of δZ(s, t).

Figure 3.1: On the y-axis, δZ(s, t) as a function of t.

3.2.3 Photon−Goldstone interference contribution

The unpolarized Feynman amplitude originating from the first and
fourth diagram interference is also easily computable via the Feyn-
man rules quoted in Appendix A. Even in this case we recall that

p2p1

φ0
q1 q2

for the experimental measurement of our interest s ' 0.16 GeV2 and
t ∈ (−0.14, 0) GeV2. Then, in this low energy regime where |t| � M2

Z,
we find

2 ReXA−φ '
1
4 ∑

spins
2 Re

[−ie2

t
u(p2)γµu(p1)u(q2)γ

µu(q1)×

× ig2 mM
M2

W
u(q1)γ

5u(q2)
(
− 1

M2
Z

)
u(p1)γ

5u(p2)
]

= −8GFe2

2
√

2
mM
tM2

Z
×

× Tr
[
γµ(6 q1 + M)γ5(6 q2 + M)

]
Tr
[
γµ(6 p1 + m)γ5(6 p2 + m)

]
= 0 ,

where MW is the charged vector boson mass and (3.8) was used.
At this stage, one might also note that in unitary gauge this dia-

gram does not exist, but the same null contribution originates from
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the longitudinal part of the Z-boson propagator, which is absent in
Feynman gauge (ξ = 1).

3.3 one-loop virtual contribution

At NLO, in renormalized perturbation theory (RPT), there are three
types of diagrams contributing to the cross section of the process.2 We
have one-loop truncated diagrams (see aside) with two, three or four
internal lines, which will be analyzed via the Passarino-Veltman (PV)
scalar integral decomposition.3 In fact, we will compute the NLO
virtual contribution XNLO by considering the interference between
these diagrams and the LO one with the photon as propagator:

XNLO =
1
4 ∑

spins
2 Re[M∗

AMNLO] ,

whereMNLO is the sum of the amplitudes originating from the two-,
three- and four-point one-loop diagrams.

We recall how QED is renormalized and its UV divergences are
regularized in 3.3.1, self-energy contributions are computed in 3.3.2,
vertex correction contributions in 3.3.3 and box contributions in 3.3.4.

We also remark that in RPT the external legs are considered already
renormalized. Nevertheless, by the time we will be dealing with the
vertex correction, we will also check the Ward Identity (WI) which re-
lates the three-point QED correlator 〈ψAµψ〉 with the fermionic two-
point correlator 〈ψψ〉 in bare perturbation theory (BPT).4

3.3.1 QED renormalization

Let us first consider the QED quantum action, ΓQ, originating from
the QED classical action:

IQ =
∫

d4xLQ , LQ = −1
4

FµνFµν + ψ(i6 ∂−m− e6 A)ψ , (3.13)

where Fµν = ∂µ Aν − ∂ν Aµ is the photon field strength and m is the
mass of the fermion whose representation is ψ. Herein, we will not
consider the fermion mass term and its renormalization procedure,
since the process we are interested in does not involve that part of
the lagrangian density.

Since ΓQ is UV divergent, we have to regularize it. We obtain ΓQ
ε via

the dimensional regularization prescription in D = 4− ε dimensions,

2 We will not consider diagrams involving SM massive vector or scalar bosons since
they yield a negligible contribution, e.g. much smaller than XA−Z.

3 See appendix B.
4 Field symbols ψ and Aµ were already defined in 2.3.1.
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which preserves the gauge invariance of the action. If δ parametrizes
the infinitesimal transformation induced by the U(1)Q gauge group:

ϕ′ = ϕ + δϕ ,

where ϕ = {A, ψ}, we may find out how to renormalize the theory by
requiring the gauge invariance of the renormalized quantum action,
ΓQ

R :
δΓQ

R = 0 .

The lagrangian density in (3.13) already contains all the terms which
satisfy the invariance properties required by QED. Then, we rescale
the fields and the coupling constant like in the following, aiming to
eliminate the UV divergencies:

Aµ → A0
µ = Z1/2

3 Aµ ,

ψ→ ψ0 = Z1/2
2 ψ ,

e→ e0 = Z1Z−1
2 Z−1/2

3 eµε/2 .

As a consequence, we obtain a rescaled lagrangian density:

LQ
0 = −1

4
Fµν

0 F0
µν + iψ0

(6 ∂ + ie06 A0)ψ0 ≡ LQ + ∆L ,

which may be rewritten as

LQ
0 = LQ +

1
4
(1− Z3)FµνFµν − (1− Z2)ψi6 ∂ψ + e(1− Z1)ψ6 Aψ .

On the other hand, the regularized quantum action may be written
in terms of the regularized classical action as in the expansion:5

ΓQ
ε = Iε + h̄

[1
ε

I1 + Ifin

]
+ O(h̄2) ,

where (1/ε)I1 is the one-loop divergent part, while Ifin is finite. From

δΓQ
ε = 0

it follows that
δI1 = δIfin = 0 .

Then, I1 has to be local in the fields and gauge invariant:

I1 =
∫

d4xL1 , L1 =
a
4

FµνFµν + c iψ(6 ∂ + ie6 A)ψ

with a and c finite numerical coefficients defined by:

h̄
ε
L1 = −∆L ,

5 We introduced h̄, elsewhere defined to be equal to one, in order to describe properly
the quantum action as an h̄-expansion.
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which yields the expressions for the counter-terms:

Z3 = 1 + a
h̄
ε

, Z1 = 1− c
h̄
ε
= Z2 .

At this stage, as we may safely take the limit ε→ 0, it holds:

ΓQ
R = IQ + h̄Ifin + O(h̄2) , δΓQ

R = 0 ,

while a and c may be found referring to the QED two- and three-point
correlation functions. In particular, assuming to know the results for
the vacuum polarization and the vertex correction diagrams, which
will be obtained in the following sections, we may give a and c in the
on-shell scheme. In fact, by stating the conditions:

Π(q2 = 0) = 0 ,

Γµ(q2 = 0) = γµ ,

where Π is the scalar part of the vacuum polarization diagram and q
is the 4-momentum entering the loop, one gets:

a = − e2

6π2 − ε
e2

12π2 log
4πe−γE µ2

m2 ,

c =
e2

8π2

[
−1− ε

(
1
2

log
4πe−γE µ2

m2 − 5
2
− log

λ2

m2

)]
,

where γE is the Euler constant. It is also useful to recall that, in RPT,
the counter-terms appear as interactions in the lagrangian density
and may be introduced as Feynman diagrams, just like any other
interactions. The relevant Feynman rules are quoted in app. A.

3.3.2 Self Energy

The unpolarized O(α3) contribution from self energy diagrams may
be represented as in the following:

XNLO
2 =

1
2

Re






∗

× ∑
`=e,µ,τ


` +




,

where the sum is meant over an electron, muon and tau bubble, while
the cross inserted in the third diagram represents a mass dependent
counter-term which makes finite the whole contribution. In fact, the
vacuum polarization diagram is logarithmically UV divergent and in
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RPT it is necessary to introduce a counter-term to absorb that diver-
gence.

Now, referring ourselves to the diagram aside, we truncate the ex-

p1 p2

k + p1 − p2k

ternal legs and make use of the Feynman rules quoted in app. A to
write the following amplitude in d dimensions:

Πµν(τ) = −(eµ
ε
2 )2

∫ ddk
(2π)d

Tr[γµ(6 k + m)γν(6 p1 −6 p2 + m)]

[k2 −m2][(k + τ)2 −m2]
, (3.14)

where τ ≡ p1− p2, µ is the ’t Hooft dimensional parameter, ε = 4− d
and k is the loop momentum; the iε prescription has been suppressed
for brevity. Also, the contributions with a muon or a tau bubble were
obtained via the substitutions m→ M and m→ mτ, respectively.

On the other hand, aiming to subtract the UV divergencies, we used
the three counter-terms δ3(mj), mj = {m, M, mτ}, which are valid in
an on-shell scheme:

δ3(mj) = −
e2

6π2ε
− e2

12π2 log
4πe−γE µ2

m2
j

,

with γE the Euler constant.
We remark that only at this stage, after subtracting the UV diver-

gencies, it was possible to take the limit d→ 4.

These standard QED calculations were carried out either by hand
or by the FeynCalc code working on Mathematica, being both meth-
ods based on the PV decomposition. Particularly, the latter firstly
decomposes the loop integral in a sum of tensor integrals via the
function TID, by using a PV basis; then, it reduces the result to PV
scalar integrals via PaVeReduce, which is what was also done by hand.

Eventually, by substituting (3.14) for the photon propagator in the
LO amplitude (3.6), we obtain

XNLO
2 = Re

[8πα3

3 ∑
mj

(
b1B0(t, m2

j , m2
j )+

+ b2B0(0, m2
j , m2

j ) + b3 log mj + b0

)] (3.15)

where mj = {m, M, mτ}, the coefficients bi (i = 0, . . . , 3) are functions
of the kinematic invariants, namely m, M, s and t, and their explicit
form is quoted in 3.5 together with the two-point PV integrals; B0 is
the finite part of the two-point PV function:

B0(. . . ) =
2
ε
− log

(
4πe−γE µ2)+ B0(. . . ) .
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3.3.3 Vertex Correction

The unpolarized O(α3) contribution from vertex correction diagrams
may be represented as in the following:

XNLO
3 =

1
2

Re






∗

× ∑
`=e,µ


+




,

where the sum is meant over an electron and a muon vertex correc-
tion, while the crossed dot inserted in the third diagram represents a
mass dependent counter-term which makes UV finite the whole con-
tribution. In fact, the vertex correction diagram is logarithmically UV
divergent and in RPT it is necessary to introduce a counter-term to
absorb that divergence.

Now, referring ourselves to the diagram aside, we truncate all the

k + p1

p1p2

k + p2

kexternal legs but those which are stuck to the loop, in order to sim-
plify the expression via the Dirac equation. Then, by making use of
the Feynman rules quoted in app. A we write the following ampli-
tude in d dimensions:

u2Γµu1 = −(eµ
ε
2 )3

∫ ddk
(2π)d

u2 γρ(6 p2 + 6 k + m)γµ(6 p1 −6 k + m)γρ u1

[k2 − λ2][(k + p1)2 −m2][(k + p2)2 −m2]
,

(3.16)
where λ is a fictitious mass for the photon, introduced to regularize IR
divergences, u2 ≡ u(p2), u1 ≡ u(p1) and k is the loop momentum; the
iε prescription has been suppressed for brevity. Also, the contribution
with a muon triangle was obtained via the substitutions m → M,
p1 → q1, p2 → q2.

On the other hand, aiming to subtract the UV divergencies, we
used the two counter-terms δ1(mk), mk = {m, M}, which are valid in
an on-shell scheme:

δ1(mk) =
e2

8π2

[
−1

ε
− 1

2
log

4πe−γE µ2

m2
k

− 5
2
− log

λ2

m2
k

]
.

We remark that only at this stage, after subtracting the UV diver-
gencies, it was possible to take the limit d→ 4, while we have first to
sum the LO Bremsstrahlung contribution, before taking λ→ 0.

As in the vacuum polarization case, these standard QED calcula-
tions were carried out either by hand or by FeynCalc. Eventually, by
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substituting (3.16) for the QED vertex in the LO scattering amplitude
(3.6), we obtain

XNLO
3 = Re

[8πα3

3

(
t1B0(t, m2, m2) + t2B0(t, M2, M2)+

+ t3B0(0, m2, m2) + t4B0(0, M2, M2) + t5 log λ

+ t6C0(m2, m2, t; m2, λ2, m2) + t7C0(M2, M2, t; M2, λ2, M2)+

+ t8{log m + log M}+ t0

)]
,

(3.17)

where the coefficients ti (i = 0, . . . , 8) are functions of the kinematic
invariants and their explicit form is quoted in 3.5 together with the
two- and three-point PV integrals.

Moreover, as we mentioned earlier, we dedicate the following para-Ward Identity

graph to the WI existing between the 3-point and the fermionic 2-
point QED correlators. In particular, we switch to BPT and consider
the one-loop contributions to those Green functions, also recalled as
vertex correction and wave function renormalization, respectively.

A direct consequence from WI is

UV [Z1] + 2UV [Z2]
1/2 = 0 order by order ,

where UV [x] means UV divergent part of x. Therefore, by using the
standard result for Z2 and the above mentioned result for Z1, where
Z2 ≡ 1 + δ2 renormalizes the wave function and Z1 ≡ 1 + δ1 the
vertex, we found that the identity is satisfied at one-loop.

3.3.4 Box

The unpolarized O(α3) contribution from box diagrams may be rep-
resented as in the following:

XNLO
4 =

1
2

Re

∑
‖,×


∗

×



 ,

where the sum is meant over a box diagram (‖) with the internal
photon lines like in the figure and a (crossed) box diagram (×) with
crossed internal photon lines and identical fermionic lines.

One may note that, inverting for example the arrows on the muon
line, the crossed diagram turns out to be identical to the direct one,
if an overall minus sign is added before the crossed diagram and the
following substitution is done, on the crossed diagram alike:

u = 2M2 + 2m2 − s− t→ s .
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Then, a valid check for our calculations was a comparison between
the direct diagram (‖) and the crossed one (×), as in the following
diagrammatic representation:

= − [u→ s] .

Referring ourselves to the diagram aside, we keep all the external
legs in order to simplify the expression via the Dirac equation. Then,
by making use of the Feynman rules quoted in app. A we write the
following amplitude in 4 dimensions since the diagram is not UV
divergent, as one may easily note by a dimensional analysis:

k + p1

p2

k
q2

k− q1

B‖ = e4
∫ d4k

(2π)4

u2e γσ(6 k + 6 p1 + m)γρ u1e u2µ γσ(6 k−6 q1 + M)γρ u1µ

[k2 − λ2][(k + p1)2 −m2][(k + τ)2 − λ2][(k− q1)2 −M2]
,

(3.18)
where u2i ≡ u(p2i), u1i ≡ u(p1i) (i = e, µ) and k is the loop momen-
tum; the iε prescription has been suppressed for brevity.

Then, the contribution B× from the crossed box was obtained via
the substitutions p1 → −p2, p2 → −p1 applied to the whole expres-
sion of B‖ but the spinors. We also remark that we have first to sum
the LO Bremsstrahlung contribution, before taking λ → 0 in both
cases, like with the vertex correction.

In this case the computation was done only by FeynCalc and aim-
ing to simplify its work, we exploited the ultraviolet finiteness of the
box diagrams. In fact, in order to use the Dirac equation and contract
the Lorentz indices, we first contracted the amplitude (3.18) with the
LO one (3.6) and then we solved the loop integral in terms of PV
scalar integrals. The correctness of this procedure is guaranteed by
the UV finiteness of the diagrams.

Eventually we obtain

XNLO
4 = Re

[8πα3

3

(
s1B0(0, m2, m2) + s2B0(0, M2, M2) + s3B0(t, 0, 0)+

+ s4B0(0, m2, M2) + s5B0(s, m2, M2) + s6B0(u, m2, M2)+

+ s7C0(m2, M2, s; m2, λ2, m2) + s8C0(m2, M2, u; M2, λ2, M2)+

+ s9C0(m2, m2, t; λ2, m2, λ2) + s10C0(M2, M2, t; λ2, M2, λ2)+

+ s11D0(m2, m2, M2, M2, t, s; λ2, m2, λ2, M2)+

+ s12D0(m2, m2, M2, M2, t, u; λ2, m2, λ2, M2) + s0

)]
,

(3.19)



38 muon−electron elastic scattering

where the coefficients si (i = 0, . . . , 12) are functions of the kinematic
invariants and their explicit form is quoted in 3.5 together with the
two-, three- and four-point PV integrals.

3.4 bremsstrahlung contribution

In the previous section we obtained a one-loop virtual contribution
to the muon-electron cross section which is UV finite. However, the
results still contain IR divergences, at this stage regularized by the
fictitious photon mass λ: as λ→ 0 we immediately get a singularity.

The recipe one follows to solve this issue is the Bloch-Nordsieck
prescription, which asserts that the cross section will be IR finite if
soft Bremsstrahlung diagrams at LO are summed to the virtual con-
tribution. In particular, we consider soft photon emission both in the
initial and in the final state, namely emission of photons with an en-
ergy in the lab frame less than ω, where ω is the sensibility threshold
of the experimental setup. Then, IR divergencies which are opposite

p1 − k

p1

k

p2

p1

p2

p2 + k

k

q1

q1 − k

k

q2

q1

q2 + k
q2

k

to the virtual one will show up and cancel the latter.

The calculation of the LO Bremsstrahlung amplitudes was carried
out by hand, closely following the approach proposed by ’t Hooft and
Veltman in (58).

Now, referring ourselves to the four soft emission diagrams aside,
being k = (k0, k) the soft photon 4-momentum and λ its fictional
mass, we may write the relevant amplitude by factorizing the LO
amplitude (3.6):

X LO
ω = −XA e2

∫ k0<ω d3k
(2π)32k0

∣∣∣E(p1, p2, q1, q2, k)
∣∣∣2 , (3.20)

where

E(p1, p2, q1, q2, k) = − p1

p1 · k
+

p2

p2 · k
− q1

q1 · k
+

q2

q2 · k
.

This result was obtained by using the customary Feynman rules. In
particular, for example from the first diagram, we get the following
amplitude:

M1 =
ie3

t
u(p2)γ

µ 6 p1 + 6 k + m
(p1 − k)2 −m2 6 εu(p1)u(q2)γµu(q1) .

Since we may neglect 6 k and λ2 with respect to 6 p1 and m2, being the
photon soft, and by using the Clifford algebra {γµ, γν} = 2gµν and
the Dirac equation, we find

M1 =
[ ie2

t
u(p2)γ

µu(p1)u(q2)γµu(q1)
]

e
p1 · ε
−p1 · k

.
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At this stage it is easy to see how (3.20) was obtained by taking the
absolute square of M1, also recalling that: (i) the sum over polar-
izations, in the approximation of a photon without a fictional mass,
yields

∑
pol’s

εαεβ = −gαβ

(ii) the recoil of the fermion by the emitted photon is neglected (then,
there is no k in the 4-momentum conservation δ) and (iii) the inte-
gral over k shows up as a phase space factor, like we saw in (3.3).
Clearly, the other three diagrams yield similar contributions, calcula-
ble via the substitutions (p1 → p2, k → −k), (p1 → q1) and (p1 → q2,
k→ −k), respectively.

Now we turn to the calculation of the integrals in (3.20). In partic-
ular they show up in the following form:

I(pi, pj) =
∫ k0<ω d3k

k0
1

(pi · k)(pj · k)
,

where pi, pj ≡ {p1, p2, q1, q2}. Then, in the lab frame,6

X LO
ω = −XA

4πα

2(2π)3

[
2m2 I(p1, p1) + 2M2 I(q1, q1)−

− 2
(

m2 − t
2

)
I(p1, p2)− 2

(
M2 − t

2

)
I(q1, q2)+

+ 4
1
2
(s−m2 −M2) I(q1, p1)− 4

1
2
(m2 + M2 − u) I(q1, p2)

]
.

(3.21)

The integrals with pi = pj yield a direct calculation, while in the
other cases the procedure is more articulate and we follow ’t Hooft
and Veltman (58). Anyway, the calculations are briefly quoted in
app. B while for the results in section 3.5 we will keep the implicit
form in terms of the I(pi, pj) integrals.

Here we only sketch the IR divergencies cancellation between one-
loop virtual diagrams and real LO Bremsstrahlung diagrams, which
has been successfully verified by noting that the following sums are
IR finite:

• Electron vertex correction:

Re
[8πα3

3

( t5

2
log λ + t6C0(m2, m2, t; m2, λ2, m2)

)]
−

−XA
e2

2(2π)3

[
2m2 I(p1, p1)− 2

(
m2 − t

2

)
I(p1, p2)

]
6 Symmetries between a priori different integrals will be more clear in appendix B.
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• Muon vertex correction:

Re
[8πα3

3

( t5

2
log λ + t7C0(M2, M2, t; M2, λ2, M2)

)]
−

−XA
e2

2(2π)3

[
2M2 I(q1, q1)− 2

(
M2 − t

2

)
I(q1, q2)

]
• Direct box:

Re
[8πα3

3

(
s11D0(m2, m2, M2, M2, t, s; λ2, m2, λ2, M2)+

+ s7C0(m2, M2, s; m2, λ2, M2)
)]
−

−XA
e2

2(2π)3

[
4

1
2
(s−m2 −M2) I(q1, p1)

]
• Crossed box:

Re
[8πα3

3

(
s12D0(m2, m2, M2, M2, t, u; λ2, m2, λ2, M2)+

+ s8C0(m2, M2, u; m2, λ2, M2)
)]
−

−XA
e2

2(2π)3

[
−4

1
2
(m2 + M2 − u) I(q1, p2)

]
At this stage, we may safely take the limit λ→ 0 and give the final

results in the following section. We remark that C0(m2, m2, t; λ2, m2, λ2)

and C0(M2, M2, t; λ2, M2, λ2), showing up in the box contributions,
are already IR finite, differently from all the other three- and four-
point PV functions (59).

3.5 results

Once UV and IR divergencies have been canceled, we may give the
final result for the µ−e− elastic scattering differential cross section at
order α3 (i.e. at NLO).

Though, before writing it, we would like to quote the modifications
by which the result is affected, if we change a particle with an antipar-
ticle in the initial or in the final state. In fact, the prescription follows
straightforward: every time µ− is replaced by µ+ or e− by e+, the box
contributions, I(p1, q1) and I(p1, q2) take a on overall minus sign,
while LO contributions, self energies and vertex corrections remain
the same.

Now, it is clear from the previous sections that, at order α3,(dσ

dt

)NLO

µ−e−→µ−e−
= − X

16πΛ(s, m2, M2)
, (3.22)

where
X = XA +XNLO

2 +XNLO
3 +XNLO

4 +X LO
ω .
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This is the final expression we get. We recall that it is a function of
the kinematic invariants (m, M, s and t) and the sensitivity threshold
in energy of the experimental setup, ω.
XA, XNLO

2 , XNLO
3 , XNLO

4 , X LO
ω are respectively quoted in (3.6), (3.15),

(3.17), (3.19) and (3.21), while in the following we quote the explicit
form of the coefficients bi, ti and si. Also, in appendix B we quote the
relevant PV functions and the Bremsstrahlung integrals.

For every scalar integral appearing in the differential cross section,
the relevant coefficients are listed:

• B0(t, m2, m2):

b1 + t1 =

=
1

t3 (t− 4m2)

[
128m2t

(
−s
(
m2 + 2M2)+ (m2 + M2)2

+ s2
)
+

+ 4t3 (22m2 − 13s
)
+ 4t2(3m4 + m2 (58s− 14M2)− 13(M2−

− s)2)+ 128m4 (m2 + M2 − s
)2 − 26t4

]
• B0(t, M2, M2):

b1 + t2 =

= 2
[ 1

t2 (t− 4M2)

(
48M2 (m2 + M2 − s

)2 − 6t
(
3m4 + 2m2(M2−

− 3s
)
+ 3M4 − 14M2s + 3s2)+ 18t2 (2M2 − s

)
− 9t3

)
−

−
(

4
(
2M2 + t

) (
2
(
m2 + M2 − s

)2
+ 2st + t2

))]
• B0(t, m2

τ , m2
τ):

b1 =
8
t3

(
2m2

τ + t
) (

2
(
m2 + M2 − s

)2
+ 2st + t2

)
• B0(0, m2, m2):

b2 + t3 + s1 =

1
t2

(
−8s

(
5m2 + 9M2)+ 36

(
m2 + M2)2

+ 36s2
)
+

+
32m2 (m2 + M2 − s

)2

t3

3
(
m2 −M2 + s

) (
9m2 −M2 + s

)
m2 (t− 4m2)

+

+
24
(

2m4 − 3m2 (M2 + s
)
+
(

M2 − s
)2
)

m4 − 2m2 (M2 + s) + (M2 − s)2 +

+
34m8 − 4m6 (11M2 + 14s

)
+ m4 (−23M4 − 170M2s + s2)

m2t ((m−M)2 − s) ((m + M)2 − s)
+

+
12m2 (M2 − s

)2 (3M2 + 2s
)
− 3

(
M2 − s

)4

m2t ((m−M)2 − s) ((m + M)2 − s)
+

+
12m(m + M)

(m−M)2 − s− t
+

12m(m−M)

(m + M)2 − s− t
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• B0(0, M2, M2):

b2 + t4 + s2 =

−8s
(
9m2 + 5M2)+ 36

(
m2 + M2)2

+ 36s2

t2 +

+
32M2 (m2 + M2 − s

)2

t3 +
3
(
−m2 + M2 + s

) (
−m2 + 9M2 + s

)
M2 (t− 4M2)

+

+
−3m8 + 12m6 (3M2 + s

)
−m4 (23M4 + 48M2s + 18s2)

M2t ((m−M)2 − s) ((m + M)2 − s)
−

−
4m2 (11M6 + 41M4s + 3M2s2 − 3s3)
M2t ((m−M)2 − s) ((m + M)2 − s)

+

+

(
M2 − s

)2 (34M4 + 18M2s− 3s2)
M2t ((m−M)2 − s) ((m + M)2 − s)

+

+
12M(m + M)

(m−M)2 − s− t
+

12M(M−m)

(m + M)2 − s− t
+

+ 12
(

M(M−m)

(m−M)2 − s
+

M(m + M)

(m + M)2 − s
+ 2
)

• B0(0, m2
τ , m2

τ):

b2 =
16m2

τ

t3

(
2
(
m2 + M2 − s

)2
+ 2st + t2

)
• B0(t, 0, 0):

s3 =
12(4mM− t)(4mM + t)

(
2
(
m2 + M2 − s

)
− t
)

t (4m2 − t) (t− 4M2)

• B0(0, m2, M2):

s4 =
12(4mM− t)(4mM + t)

(
2
(
m2 + M2 − s

)
− t
)

t (4m2 − t) (t− 4M2)

• B0(s, m2, M2):

s5 =− 12
(m6 + m4 (−M2 − 3s + t

)
−m2 (M4 + 2M2(s + t)− 3s2)

t ((m−M)2 − s) ((m + M)2 − s)
+

+
t
(

M4 − s2)+ (M2 − s
)3

t ((m−M)2 − s) ((m + M)2 − s)

)
• B0(u, m2, M2):

s6 = 12
(
−m2 + M2 − s

t
− (m−M)2

(m + M)2 − s− t
+

(m + M)2

−(m−M)2 + s + t

)
• C0(m2, m2, t; m2, λ2, m2):

t6 =
12
t2

(
2m2 − t

) (
2
(
m2 + M2 − s

)2
+ 2st + t2

)
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• C0(M2, M2, t; M2, λ2, M2):

t7 =
12
t2

(
2M2 − t

) (
2
(
m2 + M2 − s

)2
+ 2st + t2

)
• C0(m2, M2, s; m2, λ2, M2):

s7 = −12
t
(2s + t)

(
m2 + M2 − s

)
t

• C0(m2, M2, u; m2, λ2, M2):

s8 = −12
t
(
4m2 + 4M2 − 2s− t

) (
m2 + M2 − s− t

)
• C0(m2, m2, t; λ2, m2, λ2):

s9 =
12

t (4m2 − t)

(
8m4 − 8m2t + t2

) (
2
(
m2 + M2 − s

)
− t
)

• C0(M2, M2, t; λ2, M2, λ2):

s10 =
12

t (4M2 − t)

(
8M4 − 8M2t + t2

) (
2
(
m2 + M2 − s

)
− t
)

• D0(m2, m2, M2, M2, t, s; λ2, m2, λ2, M2):

s11 = −6
t
(
m2 + M2 − s

) (
4
(
m2 + M2 − s

)2
+ 2st + t2

)
• D0(m2, m2, M2, M2, t, u; λ2, m2, λ2, M2):

s12 = −6
t
(
m2 + M2 − s− t

) (
−2t

(
2
(
m2 + M2)− 3s

)
+

+ 4
(
m2 + M2 − s

)2
+ 3t2

)
• log m, log M:

b3 + t8 =
20
(

2
(
m2 + M2 − s

)2
+ 2st + t2

)
t2

• log mτ:

b3 = −
16
(

2
(
m2 + M2 − s

)2
+ 2st + t2

)
t2

• log λ:

t5 = −
48
(

2
(
m2 + M2 − s

)2
+ 2st + t2

)
t2
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• b0 + t0 + s0 =

− 48s2 (m2 + M2)− 816
(
m2 −M2)2 (

m2 + M2)−
−

384M4 (−m2 + M2 + s
) (
−m2 + 9M2 + s

)
t− 4M2 −

−
16t3

(
−7s

(
m2 + M2)+ 5

(
m2 −M2)2

+ 2s2
)

m4 − 2m2 (M2 + s) + (M2 − s)2 −

−
384m4 (m2 −M2 + s

) (
9m2 −M2 + s

)
t− 4m2 −

− 16t
(

13m4 + 13s
(
m2 + M2)− 22m2M2 + 13M4 + 4s2

)
−

− 96s
(

11m4 − 6m2M2 + 11M4
)
−

−
24(m + M)2 ((m−M)2 − s

)3

(m−M)2 − s− t
−

−
24(m−M)2 ((m + M)2 − s

)3

(m + M)2 − s− t
+

+
[−45m6 + m4 (45M2 + 32s

)
+ m2 (M2 + 7s

) (
45M2 + 11s

)
m4 − 2m2 (M2 + s) + (M2 − s)2 −

−
(

M2 − s
)2 (45M2 + 64s

)
m4 − 2m2 (M2 + s) + (M2 − s)2

]
t2



4

C O N C L U S I O N S

After reviewing the state of the art about the SM theoretical predic-
tion for the anomalous magnetic moment of the muon, we computed
the µ− e elastic scattering differential cross section at NLO in QED.

This very process was chosen in the framework of a recent proposal,
MUonE, for calculating the LO hadronic contribution to aµ. In fact, it
aims to measure the running of α in a space-like region by scattering
muons on atomic electrons through the elastic process µ e→ µ e. The
differential cross section of the latter, measured as a function of the
squared 4-momentum transfer t < 0, provides direct sensitivity to
the LO hadronic contribution to aµ.

The radiative corrections to the µ− e elastic scattering differential
cross section were computed long time ago and revisited more re-
cently. As a first check, we recalculated these corrections and found
perfect agreement with the latest result in literature, both for the vir-
tual corrections and for the soft photon emission, although unsolved
integrals still show up in the final expressions of that reference. We
found out that some of the pioneering publications contain typos or
errors, so that they cannot be directly employed. Then, aim of this
work is to obtain a correct and usable result, which may be directly
tested or used by experiments.

The differential cross section was calculated via the PV scalar inte-
gral decomposition, which is also encoded in the FeynCalc routine.
The final result is given in its most explicit form, as a function of the
kinematic invariants and the sensitivity threshold in energy of the
experimental setup, as small as the regime of soft photon emission
requires. A crucial test which the result passed was the request to be
IR finite, via the cancellation of the IR divergencies appearing both in
three- and four-point PV functions and in Bremsstrahlung integrals.
In fact, the divergencies, at first regularized by a cut-off, canceled out
exactly.

Then, the result shall be directly used by experiments like MUonE.
The aim of that experiment will be the ambitious goal of measuring
the differential cross section of the process with an accuracy of 10

ppm. This requires, on the theoretical side, the knowledge of the
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QED radiative corrections at NNLO, and this thesis has been a first
step toward this direction. In parallel to this work, in (60), the master
integrals for the two-loop, planar box-diagrams, are evaluated, adopt-
ing the method of differential equations and the Magnus exponential
series. The evaluation of the missing contributions, due to non-planar
box graphs, will be the subject of a future work.

Eventually, we recall that these calculations turn out to be also rel-
evant for crossing-related processes, such as di-muon production at
e+e− colliders, as well as for the QCD corrections to top-pair produc-
tion at hadron colliders.



A
C O N V E N T I O N S − U S E F U L I D E N T I T I E S

c = h̄ = 1

metric

g = diag(1,−1,−1,−1)

dirac matrices identities in 4-dim

{γµ, γν} = 2gµν (Clifford 4-algebra)

{γµ, γ5} = 0

γµγµ = 414

γµγνγµ = −2γν

γµγνγργµ = 4gνρ

Tr[odd number of γ’s] = 0

Tr[γµγν] = 4gµν

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ)

Tr
[
(0 to 3γ’s)γ5] = 0

Tr
[
γµγνγργσγ5] = −4iεµνρσ

dirac matrices identities in d-dim

γµγνγµ = (2− d)γν

γµγνγργµ = 4gνρ + (d− 4)γνγρ

γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ

feynman rules in ξ = 1 gauge

• External lines:

us(p) =

p

us(p) =

p

ε
µ
r (k) =

k
ε

µ∗
r (k) =

k

where p and k are the fermion and photon 4-momenta, respec-
tively, while s is the fermion spin and r the photon polarization.
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• Internal lines:

=
i(6 p + m)

p2 −m2 + iε
γ

=
−igµν

k2 + iε
V =

−igµν

k2 −M2
V + iε

H =
i

k2 −M2
H + iε

φ0
=

i
k2 −M2

Z + iε

where p and k are the fermion and boson 4-momenta, m is the
mass of a fermion, MV is the mass of a vector boson (W or Z),
MH and MZ are the Z- and Higgs boson masses, respectively.

• QED vertex:

= −ieγµ

In this thesis we take e > 0.

• Fermion-Higgs interaction:

f f

H

= − ig
2

m f

MW
γ5

where MW is the charged vector boson mass.

• Fermion-Goldstone interaction:

f f

φ0

= g
m f

MW
γ5

• QED counter-terms (on-shell scheme, dim. reg.):

k

= −i δ3(mi)k2gµν

= −ie δ1(mi)γ
µ
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where

δ3(mi) = −
e2

6π2ε
− e2

12π2 log
4πe−γE µ2

m2
i

δ1(mi) =
e2

8π2

[
−1

ε
− 1

2
log

4πe−γE µ2

m2
i

− 5
2
− log

λ2

m2
i

]
with ε = 4− d, γE is the Euler constant, µ the ’t Hooft dimen-
sional parameter, mi the mass of the relevant particle, λ a fic-
tional photon mass introduced to regularize IR divergencies.





B
S C A L A R I N T E G R A L S

In this appendix we will briefly describe how one usually copes with
one-loop integrals, whose relevance in this thesis is clear. In fact,
except for the self energy type of diagrams, the standard integration
over the Feynman parameters is normally quite difficult.

The first approach to overcome this issue was that of Passarino and
Veltman (61). They considered a general one-loop tensor integral like

(2πµ)4−d

iπ2

∫
ddk

kµ1 . . . kµp

D0D1D2 . . . Dn−1
,

where
Di = (k + ri)

2 −m2
i + iε

and the internal momenta ri are related to the external momenta (all
taken to be incoming) via:

rj =
j

∑
i=1

pi , (j = 1, . . . , n− 1)

r0 =
n

∑
i=1

pi = 0 .

Further, they noticed that the tensor integral may be decomposed in
a basis of four scalar integrals:

A0(m2) =
(2πµ)ε

iπ2

∫
ddk

1
k2 −m2

0

B0(r2
10; m2

0, m2
1) =

(2πµ)ε

iπ2

∫
ddk

1

∏
i=0

1
(k + ri)2 −m2

i

C0(r2
10, r2

12, r2
20; . . . ) =

(2πµ)ε

iπ2

∫
ddk

2

∏
i=0

1
(k + ri)2 −m2

i

D0(r2
10, r2

12, r2
20, r2

30, r2
13, r2

23; . . . ) =
(2πµ)ε

iπ2

∫
ddk

3

∏
i=0

1
(k + ri)2 −m2

i
,

(B.1)

where r2
ij = (ri − rj)

2, the dots in the integral arguments are meant as
the squared masses and the iε prescription was suppressed for brevity.
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Also, it can be shown that these are the only four independent inte-
grals into which one may decomposes the general one-loop integral.

A reader interested in the decomposition is demanded to (61), while
here we will quote some of the calculation techniques useful to solve
the integrals in (B.1), strictly following ’t Hooft and Veltman (58).

one-point function We did not use the one-point function A0

in our decomposition since one may get:

A0(m2) = m2[1 + B0(0; m2, m2)] . (B.2)

As a result, our decomposition includes two-, three- and four- point
functions only. Every time a one-point function was found by the
FeynCalc code, it was rewritten in terms of a two-point function via
(B.2).

two-point function The two-point function B0 does not present
any particular computation difficulty if it is solved by introducing a
Feynman parameter. This lets the product of the two denominators
become a single squared polynomial in the loop momentum. Thus,
the integration over the latter becomes straightforward as a logarithm
and the integration of the Feynman parameter is carried out in terms
of the roots of the logarithm polynomial argument.

Standard results in a dimensional regularization framework, com-
patible with our conventions, may be found in (59), section 4.2. Here
we only recall that the two-point functions are UV divergent and, in
our case, where the internal lines are fermionic, IR finite.

three-point function The three-point function C0 is solved as
well by introducing two Feynman parameters, x and y, which let the
integral become proportional to∫ 1

0
dx
∫ x

0
dy [ax2 + by2 + cxy + dx + ey + f ]−1 ,

where the coefficients a, b, c, d, e and f depend on the arguments
of the relevant C0. At this stage, by particular shifts of y (see (58),
section 5), one may get rid of x via a straightforward integration and
obtains an integral expression like:∫ 1

0
dy

1
P(y)

log
Q(y)
Q(y0)

,

where P(y) and Q(y) are a linear and a quadratic polynomial in y,
respectively, and y0 is a root of P(y). This way of writing is convenient
for the evaluation of the C0 in terms of dilogarithms:

Li2(z) ≡ −
∫ z

0
dt

log(1− t)
t

.
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In particular, it turns out that the most general three-point function
may be written in terms of twelve dilogarithms.

Standard results in a cut-off regularization framework, compatible
with our conventions, may be found in (62), appendix C. Here we
only recall that the three-point functions are UV finite and, in our
case, where at least one internal line is a photon propagator, IR diver-
gent. The cases of our interest in which they are not IR divergent are
highlighted in (59), section 3.3.

four-point function The four-point function D0 is solved as
well by introducing three Feynman parameters, but the computation
is much more complicated and we only recall that, if the masses are
real, one can in most cases construct equations giving the four-point
function in terms of twenty-four dilogarithms. We refer the reader
interested in the calculation to (58), section 6, while here we only
quote eq. (2.13) from (62), since it solves our unique D0 with two
internal fermions and two internal photons, which showed up within
the box contribution and whose IR divergence is regularized by a cut-
off. Other standard results for the four-point functions may be found
in (59), section 4.4, and (63).

bremsstrahlung For sake of completeness we add to this ap-
pendix the evaluation of soft Bremsstrahlung integrals, namely phase-
space integrals for photons with an energy less than some specified
value. In particular the basic integral is:

I(pi, pj) =
∫ k0<ω d3k

k0
1

(pi · k)(pj · k)
,

where k = (k0, k) is the Bremsstrahlung photon 4-momentum, (k0)2 =

k2 + λ2, ω is the maximum value of the photon energy and pi,j =

(p0
i,j, pi,j) are two fermion 4-momenta.

The integrals with pi = pj ≡ p yield a direct calculation:

I(p, p) =
∫ k0<ω d3k

k0
1

(p · k)2

= 2π
∫ ω

0
dk

k2
√

k2 + λ2

∫ 1

−1
dc

1
m2γ2(

√
k2 + λ2 − βkc)2

=
4π

m2γ2

∫ ω

0
dk

k2
√

k2 + λ2[(1− β2)k2 + λ2]

' 2π

m2

[
2 log

2ω

λ
− 1

β
log

1 + β

1− β

]
where m is the mass of the fermion, β = |p|/p0, γ = 1/(1− β2)1/2,
k ≡ |k| and c ≡ cos θ, which shows up in the scalar product p · k.
The last equality holds in the limit λ→ 0, where O(λ2) terms may be
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neglected.

In the other cases, when pi is not a multiple of pj, the procedure is
more articulate and we follow (58), section 7. The trick is to introduce
a parameter ρ such that:

(p− q)2 = 0 , p ≡ ρpi , q ≡ pj ,

where the sign of p0 − q0 is the same of q0. Thus, one introduces
a Feynman parameter x by which the integration over k becomes
straightforward. At this stage, we followed with our conventions the
methods used in (58). As a result, also using dilogarithms and the
limit λ→ 0, we eventually obtained:

I(pi, pj) =−
2πρ

v`

[1
2

log
p2

q2 log
(2ω

λ

)2
+
{1

4
log2 u0 − |u|

u0 + |u|
+

+ Li2

(v + u0 + |u|
v

)
+ Li2

(v + u0 − |u|
v

)}u=p

u=q

]
,

where

` = p0 − q0 , v =
q2 − p2

2`
.

In particular, in the center-of-mass frame, we shall have:

p0
1 = p0

2 =

√
m2 +

Λ(s, m2, M2)

4s
, |p1| = |p2| =

√
Λ(s, m2, M2)

2
√

s
,

q0
1 = q0

2 =

√
M2 +

Λ(s, m2, M2)

4s
, |q1| = |q2| =

√
Λ(s, m2, M2)

2
√

s
.

Hence, for our Bremsstrahlung integrals, the following hold:

• I(q1, q2):1

ρt =
2M2 − t +

√
t2 − 4tM2

2M2 ,

`t = ρt q0
1 − q0

2 , vt = M2 1− ρ2
t

2`t
.

• I(q1, p1):

ρs =
s−M2 −m2 +

√
Λ(s, m2, M2)

2M2 ,

`s = ρs q0
1 − p0

1 , vs =
m2 − ρ2

s M2

2`s
.

• I(q1, p2):

ρu =

√
(s + t)2 + (m−M)2 − 2(s + t)(m2 + M2)

2M2 +

+
m2 + M2 − s− t

2M2 , `u = ρu q0
1 − p0

2 , vu =
m2 − ρ2

u M2

2`u
.

1 The same holds for I(p1, p2), with {M, q1, q2} → {m, p1, p2}.
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