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SUMMARY 
 

The possibility to recognize single appliances usage and power consumption from a single measuring 
device in the house is referred as Non-Intrusive Load Monitoring. Since the middle 80s algorithms 
and methods have been proposed, but a satisfactory solution is still not available. This thesis is 
focused on appliances disaggregation using low resolution power measurement, specifically active 
and reactive power provided with 1 s granularity. Many researches are focused on this kind of data, 
because low resolution active power is the only feature available today from domestic smart-meters. 
Unfortunately from this power signal it is not possible to extract many features that require higher 
resolution to be computed (harmonics, current waveform, etc.). This reduces the capability to tell one 
appliance from another. 

Many methods have been proposed in literature, but experimental evaluation is often limited. This 
work focuses on understanding capability and limits of low resolution steady state features to 
disaggregate significant domestic appliances. Three algorithms have been used, both supervised and 
unsupervised. Two of them (EICCA-NILM and Weiss) are recent and, at the moment of writing, lack 
of significant experimental validation in literature, regarding our knowledge. The third one (Hart 
algorithm) is the first NILM algorithm proposed in history. 

A good number of experiments have been run using different datasets in order to understand which 
appliances show consistent results in disaggregation metrics. This thesis details how only for some 
appliance groups results are satisfactory, whereas for other significant devices more refinements seem 
necessary, and probably features used are not enough to disaggregate them. 

In addition to already mentioned features, time of occurrence of events can be extracted from low 
resolution power measures. This has been investigated in this thesis, showing how performances of 
supervised methods can increase with time of usage, but with limitations here exposed. 

The thesis is structured as follows. Chapter 1 gives general definitions and presents state of the art of 
NILM research. Chapter 2 is about unsupervised algorithm used (EICCA-NILM) and experimental 
results achieved. In Chapter 3 supervised work is exposed and results are discussed. Several 
appendices are present with detailed tables and charts about experiments. 
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(ITALIAN VERSION) 

La possibilità di riconoscere l’uso dei singoli elettrodomestici e il loro consumo energetico a partire da 
un solo dispositivo di misura è l’obiettivo delle tecniche di Non – Intrusive Load Monitoring. A 
partire dalla metà degli anni 80 diversi algoritmi e metodi sono stati proposti, ma una soluzione 
completa e soddisfacente non è ancora disponibile. Questa tesi si concentra sulla disaggregazione dei 
carichi componenti un’ utenza domestica utilizzando quella che in letteratura si definisce misura di 
potenza a bassa risoluzione, nello specifico potenza attiva ed eventualmente reattiva campionate con 
periodo di uno o alcuni secondi. Un gran numero di ricerche si concentra su questa premessa poiché la 
potenza attiva a bassa risoluzione è l’unica grandezza attualmente ottenibile dagli smartmeter installati 
nelle abitazioni di molti stati. Purtroppo da questo segnale di potenza non è possibile estrarre molte 
informazioni che richiederebbero risoluzione maggiore (armoniche, forma d’onda della corrente, ecc). 
Questo riduce di molto la capacità di distinguere tra loro i dispositivi. 

Molti metodi sono stati proposti negli anni, ma la loro validazione sperimentale è quasi sempre 
limitata. Questa tesi vuole investigare la capacità delle misure a bassa risoluzione di distinguere tra 
loro gli elettrodomestici più significativi. Si è scelto di utilizzare tre algoritmi, comprendendo 
soluzioni supervisionate e non supervisionate. Due di questi (EICCA-NILM e Weiss) sono recenti e, 
al momento della scrittura, non è a nostra conoscenza una loro validazione sperimentale significativa. 
L’algoritmo di Hart è storicamente il primo ad essere stato proposto, ed ha fornito la struttura base per 
i lavori successivi. 

In questo lavoro sono stati eseguiti numerosi esperimenti, utilizzando dataset differenti, con lo scopo 
di capire quali elettrodomestici mostrano risultati positivi e consistenti, avvalendosi dei parametri di 
valutazione più usati in letteratura. Questa tesi mostra come solo per certi gruppi di elettrodomestici i 
risultati si possono considerare soddisfacenti. Al contrario per altri dispositivi risulta necessario 
investigare ulteriormente. Probabilmente le informazioni utilizzate non sono sufficienti al fine di un 
loro riconoscimento efficace. 

Nella parte conclusiva del lavoro si è provato a migliorare i risultati introducendo l’informazione 
temporale. Essa è facilmente estraibile dal segnale analizzato. Il lavoro qui svolto mostra come le 
performance dei metodi supervisionati possono migliorare con quest’informazione aggiuntiva, in 
presenza però di limitazioni qui esposte. 

La tesi è strutturata come segue. Il Capitolo 1 propone le definizioni generali e presenta lo stato 
dell’arte della ricerca in campo NILM. Il Capitolo 2 riguarda l’algoritmo non supervisionato (EICCA 
- NILM) e i risultati sperimentali ottenuti. Nel Capitolo 3 il lavoro sugli algoritmi supervisionati è 
esposto e i risultati sono discussi. Molte appendici sono state inserite con tabelle e grafici dettagliati 
relativi agli esperimenti eseguiti. 
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1 INTRODUCTION 
 

This chapter reports NILM general definitions, in order to give the reader an overview of this field of 
research. General categories and structure of algorithms are presented, in addition to features proposed 
in literature to detect loads. Most common evaluation metrics are presented too. Some publicly 
available datasets for NILM research are described, and in the last part a description of some 
significant algorithms is provided. 

 

1.1 NILM DEFINITION 

The acronym NILM (Non-Intrusive Load Monitoring) refers to techniques that extract the power 
consumption of single appliances out of aggregated power data. That means that the measuring device 
has to be installed only in a single point in the household, with no metering devices installed at 
individual appliance level. 

 

1.2 ENERGY SAVING 

The residential sector represents a significant part of the total energy demand of a country. [1] states 
that in the EU 30 % of the total electricity is used for residential buildings. In the U.S. buildings 
account for 40 % of primary energy and 73 % of electricity consumption [2]. Considering that the 
global energy demand will double by the end of 2030 [3], It results crucial to investigate 
methodologies that can improve energy saving in the residential sector. Several studies suggest that an 
effective saving can be obtained by giving to the consumer real-time appliance level consume 
information (direct feedback), as opposed to Indirect feedback given by monthly bills [3]. It is 
demonstrated that Energy Consumption Awareness (which appliances are operating at a certain time 
instant and how much electrical energy they are consuming) influences users to moderate their energy 
consumption. The results are economic benefits for consumers and reduction of energy required to the 
provider [4]. Possible reduction of building electricity consumption is predicted in the range 10-15% 
[2][3]. 

 

1.3 APPLIANCES CLASSIFICATION 

For NILM’s purposes, the most complete classification of Appliances is the following [2]: 

1. Type I – ON/OFF appliances 
Appliances with only 2 states of operation: ON and OFF. These appliances consume only 
one specific amount of power when active. Usually these appliances are purely resistive 
 Examples are toaster or light bulb.  
 

2. Type II – Multi-state appliances 
These are appliances with a finite number of operating states, also referred as Finite State 
Machines (FSM). 
A FSM model represents this kind of devices. Graphically it consists of several circles, 
representing the possible operating states and edges that connect the circles, representing the 
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possible state transitions. The magnitude of these transition is given by the difference 
between the states that they connect. An example is given in Figure 1.1. 
Washing machine and stove burner are Multi-state appliances.  
 

 
Figure 1.1: An example of a FSM model, taken from [1] 

 
3. Type III – Continuously variable devices  

Appliances whose power draw characteristic is variable with no fixed number of states. They 
are also referred as Continuously Variable Devices (CVD). 
An example is a light dimmer. 
 

4. Type IV – Permanent consumer devices 
Devices that remain active for days or weeks consuming energy at a constant rate. Some 
examples are hardwired smoke detector, telephone sets and cable TV receivers. 

 

Figure 1.2: Schematic examples of type I, II and III appliance models, taken from [1] 
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1.4 NILM GENERAL FRAMEWORK 

The problem can be formulated as follows. Given the aggregate power signal at the entry point of the 
meter P(t) , the task is to decompose it into his pi(t) component, with i = 1,2,3,…………,N and N is the 
number of active appliances at the moment t. 

                                    (1.1) 

To achieve the disaggregation task, is important to discern and recognize appliance operations from 
the aggregate load measurements. For a perfect disaggregation, each load has to show a consumption 
pattern different from the others. This pattern is referred as “load signature” [3]. 
We will now describe the general framework of NILM. 

 

 

Figure 1.3: General Framework of NILM approach 

 

1.4.1 DATA ACQUISITION MODULE 
The role of this module is to acquire measurement from the aggregate load at a rate that make possible 
to identify distinctive load patterns. A generic classification of the devices is given in [3]: 

LOW FREQUENCY Energy meters 
They are available in a range of sampling frequencies. According to the Nyquist-Shannon 
sampling criteria, the sampling rate of the meter has to be the double of the frequency of the 
highest harmonic of the signal that has to be measured. So an energy meter with a sampling 
rate of 500 Hz is able to capture up to the 5th harmonic of the signal, if the fundamental is 50 
Hz. If the purpose of the meter is the evaluation of traditional metrics such as active, reactive 
power or RMS voltage or current, the sampling rate can be lower, for example 100-120 Hz. 
 
HIGH FREQUENCY Energy meters 
These devices are capable to capture transient events or electrical noise. Their sampling rate 
is in the order of 10-100 MHz.  

A problem often underlined by researchers is that commercially available low cost meters show a 
variation of 10-20% in data measurements. 

 

1.4.2 APPLIANCE FEATURE EXTRACTION 
a) Processing of raw data to compute power metrics, for example active and reactive power. 
b) Detecting of events in processed data that represent state transition of appliances. 
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The methods used in detecting events are Steady-state or Transient based. The difference 
regards the features used to identify loads. Only steady-state methods are feasible if the low 
cost of the solution is relevant. 

 

1.4.3 LOAD IDENTIFICATION (LEARNING AND INFERENCE) 
SUPERVISED LEARNING APPROACHES 

This part of the framework is manly based on supervised machine learning approaches, where labelled 
data are used to train a classifier to recognize loads from the feature extracted from the aggregate 
signal. There are two main categories of supervised learning approaches [1]. 

OPTIMISATION 
This approach seeks a combination of appliances, present in a database, that better 
approximate the observed power signal. The combination of appliances chosen for every 
time step is the one that minimize an objective function. This approach suffer of an 
increasing complexity with the increase of appliances number, with consequent 
computational costs. Moreover performances decrease rapidly with the presence of unknown 
appliances. Considering that usually the complete set of appliances is unknown, this 
approach isn’t usually regarded as promising for the disaggregation task. 
 
PATTERN RECOGNITION 
In this approach the extracted features from the power signal are matched with power states 
in the database one by one. Usually state changes on the aggregate signal are represented in a 
feature space, which is a plane if the feature is a 2-dimensional vector, e.g. active and 
reactive power. Features in the plane are grouped into clusters and all the clusters are then 
compared with the features present in the database and obtained from training or from other 
sources. 

 

UNSUPERVISED LEARNING APPROACHES 

Recently researchers have been focused on developing methods that don’t need a priori information 
about the appliances present in the household that they are going to meter. The task is ambitious but 
these methods, if reliable, are very interesting because they don’t require any set up procedure, and 
that ease of installation can be very appealing for consumers. Well suited for this task are Hidden 
Markov Models methods.  
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1.5 FEATURES 

 

Figure 1.4: General Classification of Appliance Features 

Appliance features can be classified as shown in Figure 4. Steady state analysis consider the stable 
state operation of the appliance, whereas transient state features are based on transitional states where 
appliance power consumption is unstable. Non-traditional features are additional environmental or 
behaviour information that can improve the disaggregation performances if added to the traditional 
features. 

 

1.5.1 STEADY STATE FEATURES 
 REAL AND REACTIVE POWER 

Most of NILM literature rely on real power only, because it is the only feature that can be 
provided by low cost smart meter that are present or are likely to be installed in households. 
For these meters the real power reading is provided with a frequency below 1 Hz. The use of 
both active and reactive power can improve the performance of the disaggregation algorithm, 
allowing to place the features on a P-Q plane. These features are more common used to track 
ON/OFF operation of appliances. Problems occur when different appliances features overlap, 
so there is no way to separate them. Generally this features alone can be used to detect only 
distinct big loads, well separated by the rest of the house’s appliances in terms of power 
draw. 

 
 RMS VOLTAGE AND CURRENT, POWER FACTOR 

These time-domain features have been used in some studies to overcome some limitation of 
the previous features. The power factor can make easier to discriminate loads. Resistive loads 
have PF close to 1, whereas motor driven loads have lower values. 

 
 STEADY STATE CURRENT HARMONICS 

Different loads are well characterized by current harmonics. This helps the disaggregation of 
non-linear loads, and of type III appliances that are not detectable with power-only features. 
In Figure 5, taken from [5], an example of different load waveforms is shown. The difference 
in harmonics content is clear. 
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Figure 1.5: Different Loads Current Waveforms, taken from [5] 

 

 STEADY STATE VOLTAGE NOISE 
It has been shown that appliances equipped with Switch Mode Power Supply can be 
characterized by analysing steady-state voltage noise generated during their operation. 

 
 CURRENT WAVEFORM 

The current waveform is a very complete and distinctive feature to characterize different 
loads, as visible in Figure 5. High resolution in measurement is necessary for this analysis. 

 
 INSTANTANEUS ADMITTANCE WAVEFORM 

Defined as the ratio between the instantaneous current and voltage waveforms. 
 

        
    

    
        (1.2) 

 
 INSTANTANEOUS POWER WAVEFORM (IPW) 

Defined as the product of instantaneous current and voltage waveform. 
 

                     (1.3) 

 
 V – I TRAJECTORY 

The shape of this trajectory shows useful characteristics of loads. Features extracted by V-I 
Trajectories are asymmetry, looping direction and enclosed area. 

 

1.5.2 TRANSIENT STATE FEATURES 
Transient features are extracted during switching transients. 

 SWITCHING TRANSIENT WAVEFORM 
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In [5] authors propose to compute instantaneous power for every half cycle and use the 
waveform obtained with these values. This feature can help to discriminate loads with 
different transient behaviours. For example a water boiler reaches the steady state in power 
consumption without any peak. Different is the case for an air conditioner, as shown in 
Figure 1.6. 
 

 SPECTRAL ENVELOPE BASED ON SHORT TIME FOURIER TRANSFORM 
This feature is considered useful to characterize transient events. Some researcher proposed 
the use of Wavelet transform instead of the Fourier transform. 

 
 HIGH FREQUENCY VOLTAGE NOISE DURING TRANSIENT 

Appliances, especially ones equipped with SMPS, emit voltage noise back to the main line. 
This noise can be measured from any outlet inside the home. 
 

 
Figure 1.6: Switching Transient Waveforms of Different Loads, taken from [5] 

 

1.5.3 NON TRADITIONAL FEATURES 
 TIME OF THE DAY 

Some appliances can show a pattern of usage along the day. This additional features can be 
used to discriminate devices whose feature, for example active and reactive power, overlap. 

 
 FREQUENCY OF APPLIANCE USAGE 

If there is a frequency of use of some appliances, this can help to decide if an eligible event 
belongs to that appliance or not. 

 
 CORRELATION BETWEEN APPLIANCES 

Some appliances, such as washing machine and dryer, can show correlation between their 
usages. 

 
 SENSORS IN THE HOME ENVIROMENT 

Some sensor could be installed in the house to collect information about heat dissipation, 
light or noise emission of certain appliances. 
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 WEATHER PATTERNS OF THE LOCATION 
Weather or temperature information of the location can influence usage of certain appliances. 

 

1.6 EVALUATION METRICS 

A problem often underlined by researchers is that there is not a “standard” set of metrics, shared by 
everyone who propose NILM approaches. This create problems in comparisons between different 
methods. Moreover results are often difficult to replicate, so there are not a lot of instruments to 
evaluate the performance of methods and to compare them. The following metrics are the ones 
presented by J. D. Kelly in [6], and are used in literature. 

 

1.6.1 EVENT METRICS 
These definitions are preliminary to compute event metrics. They are obtained by comparison of 
events assigned by algorithms to one appliance to ground truth events. 

TRUE POSITIVE: correct claim that the appliance was used 
 
TRUE NEGATIVE: correct claim that the appliance wasn’t used 
 
FALSE POSITIVE: incorrect claim that an appliance was used 
 
FALSE NEGATIVE: event present in ground truth data but not detected by the algorithm    
used 

  
Following symbols are used in equations to compute metrics. 

TP = number of true positives 

TN = number of true negatives 

FP = number of false positives 

FN = number of false negatives 

P = number of positives in ground truth 

N = number of negatives in ground truth 

 

RECALL 

Recall metric gives a quantification of how many correct events have been detected in comparison to 
the total number of appliance events (TP + FN). 

        
  

     
       (1.4) 
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PRECISION 

Precision gives information of how many correct events are present in assigned events. If it is high 
that means that most of assigned events are correct. 

           
  

     
       (1.5) 

 

F-SCORE 

F-score combines precision and recall in order to give an overall metric about disaggregation quality.  

          
                 

                
     (1.6) 

 

ACCURACY 

Accuracy quantify how inferred events are close to represent ground truth data. 

          
     

   
       (1.7) 

 

1.6.2 ENERGY METRICS 
Preliminary definitions for metric computation: 

                      
 
                          
 
  

   
                                    

 
   

   
                                       

 
                                     

 

RELATIVE ERROR IN TOTAL ENERGY 

This metric simply quantify how much estimated energy consumption is far from ground truth value. 

                                
    

          
     (1.8) 

 

DEVIATION IN PERCENTAGE 

Deviation in percentage is similar in meaning to relative error in total energy. 
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     (1.9) 

 

MEAN ABSOLUTE ERROR 

Mean absolute error is about how estimated power profile is different to the actual one in each sample 
for one appliance. 

                                  
 
       (1.10) 

 

TOTAL ENERGY CORRECTLY ASSIGNED 

TECA metric quantify how much energy is assigned to correct appliances out of the total 
consumption. 

                                   
      

   
   

   
   

   
 
   

     
 
   

    (1.11) 

 

1.7 DATASETS 

In order to make possible evaluation of NILM techniques, some datasets have been made available for 
researcher. Moreover this allow to make comparisons between different algorithms. We will now 
describe some of the existing datasets. 

REDD [7] 
Released by MIT researchers in 2011, it consists of whole-home and circuit/device specific 
electricity consumption for 6 houses in the U.S.A. Duration of measures is approximately 2 
weeks, different for each house. 
The whole home electric signal (current of both phase and voltage of one phase) is recorded 
at 15 kHz. Aggregate power on both phases is provided also at 1Hz. Power of each 
monitored appliance is given at 1/3 Hz. For each house the number of channels span between 
11 and 26. 
 
REFIT [8] 
A UK- based dataset with recordings from 20 households. Each household has active power 
measured for 9 appliances and the main aggregate power, all recorded at 8-second intervals. 
This dataset aim to closely mimic the active power information that is given by common 
smart meter in the UK. Measurements span approximatively a 1-2 year long period between 
2013 and 2015, with variations between each house. 
 
UK DALE [9] 
A UK- based dataset with recordings from 5 households. For houses 1, 2 and 5 the 
aggregated signal is recorded both at 16 kHz and at 1 Hz. For the 1 Hz reading the dataset 
provide voltage, real and apparent power. For house 3 and 4 the aggregate active power is 
recorded with frequency of 1/6 Hz. Number of appliances metered for each house is between 
5 and 54. The individual appliances power signal is given at 6 seconds intervals. 
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Measures cover a period between 39 (House 3) and 786 days (House 1). Data were taken 
between 2012 and 2015. 
 
GREEND [10] 
This dataset claims to be the first power consumption dataset for Austria and Italy measured 
at 1 Hz sampling frequency. It consists of active power measurements of nine houses for a 
continuous duration of 1 year collected in Carinthia (Austria), and Friuli Venezia Giulia 
(Italy). There’s an average of 9 appliances metered for each house. 
 
ECO [11] 
This dataset contains data collected over 8 months in 6 houses in Switzerland. I provides 1 
Hz measurements of voltage, current and phase shift for the 3 phases of each house. Six to 
ten smart plugs per household have been employed to provide ground truth data for 
appliances. 

 

The following table, presented in [4], shows several available datasets with some of their 
characteristics. 

 

Table 1.1: Summary of Some NILM Datasets, taken from [4] 
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1.8 ALGORITHMS 

Many algorithms have been proposed in literature. This section only describes some of them, without 
claiming to be complete. Overview of NILM algorithms can be found in [1] – [4].  

 

1.8.1 SUPERVISED ALGORITHMS 
PATTERN RECOGNITION ALGORITHMS 

HART ALGORITHM 

This algorithm was the one that started NILM research, in the middle 80’s. It is described 
deeply in section 3.1.1. 

 

WEISS ALGORITHM 

Proposed in 2012, this algorithm rooted in Hart’s work proposes a new approach to event 
detection. It is detailed in section 3.1.1. 

 

DECISION TREE - BASED ALGORITHM [26] 

This low complexity algorithm is based on low frequency active power data only. During 
training phase a Decision Tree is built using instructions presented in [27] and known 
appliances signatures. A DT is made by nodes that are connected to other two nodes. 
Terminal nodes not connected to other nodes are called leaves. Each leaf node is associated 
with an appliance or an undefined value. Classification process for each event consists of 
going across the tree starting from the root node, and ending up in a leaf node. If the final 
leaf is associated to an appliance, the event is assigned to that appliance. If the leaf is not 
associated to an appliance, a classification error is declared. In this method appliances are 
detected one at each time, moving from the bigger to the smallest one. Once one appliance is 
detected, it is removed from the aggregated signal, facilitating detection of following 
appliances. 

 

OPTIMIZATION ALGORITHMS 

INTEGER PROGRAMMING ALGORITHMS 

These algorithms are based on optimization using integer programming. First proposed 
application in [28] uses as feature current waveforms of appliances. A database with 
waveforms and high sampling rate measuring system is needed. More recently other methods 
have been proposed using active or apparent power at low sampling rate, 1 Hz or lower. In 
this case the input required is the set of power states of analysed appliances. In [29] several 
constraints have been introduced in order to increase performances, i.e. to treat appliances 
with constant base consumption and to avoid unrealistic transitions from one set of 
appliances to another caused by small variations in power. Another method in this family can 
be found in [30]. In all these cases results presented are not obtained on real aggregate signal, 
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but on an artificial one, created by addition of plug level power measurements of considered 
appliances. This makes results unimportant for real world applications, unless nearly all the 
devices connected to household mains are known. 

 

MULTI- ALGORITHMS FRAMEWORKS 

In [5] and [31] multi-scale, multi-algorithmic frameworks are presented. They extract several features 
from raw data, both transient and steady state. More algorithms are used to disaggregate loads 
producing candidates for each event. Then a decision mechanism evaluate which of the candidates is 
the most suitable. Method in [31] focuses on each load in order to determine which feature/method 
better identify it, Introducing also statistical methods for certain loads with variable behaviour. Case 
study for this method wasn’t a household, but a coast guard cutter ship. 

 

1.8.2 UNSUPERVISED ALGORITHMS 
DTW ALGORITHM [26] 

This low sampling/active power based algorithm rely on Dynamic time warping, a time series based 
approach used to compare vectors of different length and with non-identical values. In that way not 
only turn on and turn off events characterize an appliance, but all power samplings during activity. A 
library of signatures is needed, and they are compared with events detected via pattern matching to 
classify them.  

  

GSP ALGORITHMS 

In [33] Graph signal processing is employed for NILM applications. Active Power at resolution lower 
than 1s is used as feature. GSP is an emerging field successfully used in image processing and signal 
filtering. A supervised use of GSP is presented in [32]. 

 

ANN ALGORITHMS 

In [34] a method based on deep learning has been proposed. First an Edge detection algorithm extract 
potential appliance profiles from aggregate low resolution active power signal. Then an Artificial 
Neural Network is trained to classify these profiles and recognize appliance activity in testing period. 
ANN are used in [35] too but for a supervised algorithm. 

 

HMM ALGORITHMS 

In literature Hidden Markov Models – based algorithms are often referred as state of the art or 
benchmark of NILM applications. HMM are statistical models used with success in speech 
recognition, audio separation and other signal applications. The qualitative idea is that each appliance 
is a HMM, characterized by its possible power states. All the HMM develop in parallel during time 
producing as output their states. The only observable quantity is the aggregate signal, which is made 
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by the sum of model’s outputs. For that reason models are hidden. With these algorithms it is possible, 
from aggregate signal, to train models that are representative of real appliances. 

 KOLTER’S ALGORITHM [36] 
This work proposed in 2012 is completely unsupervised and infer models only from 
aggregate signal, without any general prior knowledge about appliances. 

PARSON’S ALGORITHM [37] 
This method starts from general models of appliances, and then adapt them to real appliances 
in the household during training using only aggregate power signal, collected at 1/60 Hz. 

Other HMM methods have been presented in literature, a review can be found in [4]. 

 

1.9 NILM - EVAL TOOLKIT [25] 
Authors of [11] made publicly available NILM – eval, a Matlab-based framework for NILM research. 
It provides four algorithms and useful tools to evaluate results metrics. For this thesis this framework 
has been used as a starting point for all the experiments. In particular Weiss algorithm used in chapter 
3 was already included in the framework. It has been expanded and adapted in certain parts in order to 
perform experiments better, because the version provided has been tested by its authors only in house 
2 of ECO dataset. The other algorithms described in chapters 2 and 3 have been implemented by 
author of this thesis in NILM - eval environment. Evaluation tools provided by the framework have 
been adapted and used for all result metrics presented in this work. In particular section 3.2.5, where 
evaluation methodology for supervised work is presented, is rooted on NILM-eval evaluation tools, 
with adaptations necessary to treat correctly all analysed appliances.  
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2 UNSUPERVISED NILM WORK 
 

Chapter 2 is organized as follows. Section 2.1 presents theoretically some data clustering algorithms 
and the way EICCA algorithm has been employed for NILM purposes. A brief presentation of results 
achieved in literature is included. Section 2.2 is about experiments that have been done for this work. 
First experiments goals are defined, then their structure and actual implementation is described. 
Results are then presented, focusing first on clusters emerged, then on introduction of reactive power. 
Finally some appliances are disaggregated and event metrics are discussed. Appendices related to this 
chapter are the following: 

 Appendix A: Some other data clustering algorithms. 
 Appendix B: Dates of days used for experiments in relative datasets. 
 Appendix C: Parameters, result tables for experiments and relevant pictures. 

 

2.1 METHODOLOGY 

2.1.1  EICCA BASED NILM ALGORITHM 
This section of the thesis is focused on NILM algorithm proposed in [15], [16] and [17]. The basic 
characteristic of this method is the usage of a clustering algorithm on aggregate data, in order to 
isolate clusters that can likely represent states of single appliances. 

Competitive Agglomeration algorithm (abbreviated in CA, [13]) has been used in [15], whereas in 
[16] and [17] authors used the Entropy Index Constraints Competitive Agglomeration algorithm 
(abbreviated in EICCA, [14]), which has been used in this thesis. 

The main advantage of using Competitive Agglomeration algorithms is that the number of clusters has 
not to be specified a priori. This condition is essential in NILM applications, because the number of 
appliances in households is hardly ever known, both in supervised and unsupervised work. The 
algorithm only needs an over specified number of clusters that are reduced automatically along 
iterations. 

EICCA algorithm is a generalization of CA. As CA is built on Fuzzy C-means Algorithm (FCM), an 
Entropy Index Constraints Fuzzy C-means Algorithm has been used in [14] to obtain EICCA. FCM 
algorithms are also necessary for the initialization phase of CA. In this section EIC-FCM and EICCA 
are presented. The other two algorithms are shown in Appendix A. 

In following lines the definitions of main symbols are given. 

 INITIAL DEFINITIONS 

Dataset to be clustered X: 

                         

                                                                       

Number of Clusters C: 

               

Fuzzy Partition Matrix U: 
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In Figure 2.1 a representation of U matrix is given. The element Uij of the matrix represent 
for the dataset j-th element his “degree of belonging” to the i-th cluster. 

Vector of centroids V: 

                          

Elements of V are the centres assigned by the algorithm to each cluster, updated for each 
iteration. 

Euclidean Norm || • ||: This symbol is used here for the Euclidean norm or 2 - norm. 

 

Figure 2.1: Graphic representation of Fuzzy Partition Matrix 

  

2.1.2  EIC - FCM ALGORITHM  
The objective function for EIC – FCM is the following: 

                                   
 
   

 
      (2.1) 

 

With constraints: 

      
                                 

      (2.2) 

 

It is shown in [14] that from (2.1) and (2.2) it is possible to obtain the update equations for cluster 
centres and membership: 

     
         

 
 

 
   

           
 
 

 
    

    
 
 

              (2.3) 
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               (2.4) 

  

 

 ALGORITHM DESCRIPTION 

As indicated in [14], the following are the 5 steps of the algorithm. 

1) Given the Dataset X, the number of clusters C and the threshold ε, initialize V(0) (arbitrary 
centres for the iteration 0) 
 

2) Compute U(0) using eq. (2.3) 
 

3) Update V(k+1) using eq. (2.4) 
 

4) Update U(k+1) using eq. (2.3) 
 

5) If ||V(k+1) – V(k)|| < ε, then output U and V and exit, otherwise k = k+1 and go back to step 3 
 

 

Figure 2.2: Flow chart of EIC-FCM algorithm 

 

 APPLICATION ON BENCHMARK DATASETS 

Figures 2.3 and 2.4 show behaviour of the algorithm with some 2D benchmark datasets for clustering. 
Datasets are available in [18]. 
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Figure 2.3: Progression of EIC FCM applied for S1 dataset. C = 15, r = 0.5, ε = 10^-5. Pictures of 
iterations 1, 4, 13, and 75 

 

 

Figure 2.4: Progression of EIC FCM applied for S3 dataset. C = 15, r = 0.5, ε = 10^-5. Picture of 
iterations 1, 4, 13, and 137 
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2.1.3  EICCA ALGORITHM 

The objective function for EICCA is the following: 

                                
  

   
 
           

 
   

 
    (2.5) 

 

With constraints: 

      
                                 

      (2.6) 

 

It is shown in [14] that from eq. (2.5) and (2.6) it is possible to obtain the update equations for cluster 
centres and membership: 

     
         

 
   

 
   

           
 
   

 
    

    
 
 

              (2.7) 

 

    
      

 
   

    
 
   

               (2.8)  

 

The value of α in eq. (2.7), if too high, may give rise to non-positive uij. To avoid that α is updated 
dynamically using eq. (2.9), where η0 and τ are parameters determined by user. 

              
 

 
 

             
  

   
 
   

     
 
   

 
   

     (2.9) 

 

Ni is defined as the cardinality of the i-th cluster. It is computed as follows: 

         
 
             (2.10) 

 

For each iteration In EICCA algorithm, clusters with cardinality too low are discarded, in order to 
converge from Cmax (number of initial clusters) to the optimal number of clusters for the analysed 
dataset. 

 

 ALGORITHM DESCRIPTION 

As indicated in [14], these are the 8 steps of the algorithm. 

1) Given the Dataset X, the over specified number of clusters Cmax, iterative threshold ε and 
competitive threshold ε1, initialize U(0) and set the iteration number k to be 0. 
 

2) Compute V(0) using eq. (2.8); Compute the cardinality Ni of every current cluster i, using eq. 
(2.10). 
 

3) Update αk using eq. (2.9). 
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4) Update U(k+1) using eq. (2.7). 

 
5) Update Ni using eq. (2.10), if Ni < ε1, then give up the cluster and its centre vi. 

 
6) Update the number C of clusters. 

 
7) Update V(k+1) using eq. (2.8). 

 
8) If ||V(k+1) – V(k)|| < ε, then output U, V and C and exit, otherwise k = k+1 and go back to step 

3 
 

The flowchart of the algorithm is presented in Figure 2.7. 

The initialization of the Fuzzy Partition matrix (U) is performed running EIC – FCM algorithm for a 
specified number of iterations k0 with number of clusters equal to Cmax. 

 APPLICATION ON BENCHMARK DATASETS 

Figures 5 and 6 show the behaviour of the algorithm with some 2D benchmark datasets for clustering. 
As before, datasets are available in [18].  

 

 

Figure 2.5: Progression of EICCA applied for S4 dataset. Cmax = 50, r = 0.5, ε = 10^-5. Pictures of 
iterations 0, 4, 22, and 44 
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Figure 2.6: Progression of EICCA applied for S2 dataset. Cmax = 50, r = 0.5, ε = 10^-5. Pictures of 
iterations 0, 11, 21, and 44 
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Figure 2.7: Flow chart 
of EICCA algorithm 
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2.1.4 EICCA BASED NILM ALGORITHM FRAMEWORK 
As stated at the beginning of the chapter, the main element that make EICCA algorithm suitable for 
NILM problems is the fact that number of clusters has not to be specified. This is important because 
number of appliances and consequently of their power states is usually unknown. If we consider a 
practical and/or commercial application, it is clear that the non-necessity to count all the devices 
present in one household is a clear advantage for installation time and cost. Authors in [16] and [17] 
have made use of the algorithm described in 2.1.3, adapted to this use with a modification now 
explained. 

In step 5 of EICCA algorithm the cardinality Ni of each cluster is compared to the value ε1, and only 
clusters with cardinality greater than this value are kept for the next iteration. The value of ε1 is 
decided at the beginning and is constant along all the iterations. In [16] the concept of aggregation 
threshold percentage is introduced. For every Iteration, between steps 5 and 6, the value of ε1 is 
updated as shown in the following equation. 

                                             (2.11) 

It means that for every iteration the average of the cardinality of all the clusters is computed and all 
the clusters with cardinality lower than a percentage of this average are discarded. This allow the 
algorithm to adapt better the number of clusters, considering information about the actual state of 
them. 

As stated in [15], goals of the algorithm are the following: 

1. Being able to decompose individual energy usage using only active power feature 
2. Group similar features together and use these groups to build appliance models 
3. Use the appliance models to recognize real appliances 
4. Reconstruct the total load at time t by matching it with a set of appliance models 

Some assumptions are made: 

1. The total load is sampled at a low rate 
2. Only one device will change within the given time window t. 

 

 ALGORITHM OVERVIEW 

The algorithm can be synthetized in the following parts, as shown in Figure 2.8. 

 

Figure 2.8: EICCA NILM Algorithm Overview  



30 
 

FEATURE ESTRACTION 

For the first part of the algorithm aggregated data are analysed and features are extracted. In this case 
active power is the only feature used. Most of NILM algorithms proposed in the last years rely on this 
feature only, given its availability from conventional smart meters. Changes of active power between 
1s intervals are recorded if they are greater in absolute value than a significance threshold, as reported 
in Eq. (2.12) 

        
           

     
                             (2.12) 

Authors of the method in [16] propose to save only the absolute value of the transition, getting rid of 
the sign.   

  

FEATURE CLUSTERING 

Features obtained in the previous point are grouped together in sets composed by events similar in 
magnitude, using EICCA clustering algorithm (2.1.3). Clustering can be done on both positive and 
negative transitions or on the absolute values of them. The centres of clusters emerged from the 
clustering technique are called power states. 

 

APPLIANCE MODELLING 

In chapter 1 appliances have been categorized in different types. Authors of the method have mainly 
used Type 1 appliances, with some references to Type 2. For the purposes of this work only Type 1 
models are considered. Models are generated as follows.  

If Feature Clustering has been performed on absolute values only, the ON/OFF model for a power 
state is created if in the aggregate signal events that match this power state in magnitude are both 
positive and negative. 

If Power states are both positive and negative, the procedure described in [15] is this:  

1. Clusters are divided in positive (Cp) and negative (Cn) in sign. 
2. For each positive cluster search the set of negative clusters for a cluster that is similar in 

magnitude. 
3. If there’s a match, the two clusters are taken away from the 2 sets. 

The process can be summarized in following equation: 

       
          

     
   

 

            
            

 (2.13) 

 

Since only Type 1 models are considered, all the unmatched clusters are then discarded. 

 

APPLIANCE RECOGNITION 

Appliance recognition is performed in this way, according to [17]. 

Events extracted from aggregate signal (∆Pti) are compared to power states of appliance models. If an 
event match one power state within a 5% error plus a further 5W tolerance, the event is labelled as a 
member of that power state. 
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2.1.5 EXPERIMENTAL VALIDATION IN LITERATURE 
According to our knowledge, at the moment of writing experimental validation on this method has 
been limited. The bigger limit found in literature is that the method hasn’t been validated yet in 
relation to real appliances. The main goal of a NILM framework is to provide insight of single 
appliance usage. Lack of appliance - based metrics limits the significance of experimental validations. 
Evaluation in literature is now briefly presented. 

 

Figure 2.9: Example of 24 hours power consumption profile. 25/04/2011, house 1 REDD dataset 

 

ALGORITHM PERFORMANCES  

The first effort has been focused to validate the algorithm capability to detect events and to extract 
features from them. Authors in [17] used houses 1-6 of REDD dataset for periods of 1 and 3 days. 
Once events have been clustered, the clusters have been used to create appliance Type 1 models. They 
used features in absolute value form. Then common NILM metrics have been computed. Usually 
metrics are in relation with specific appliances. A detailed description of metrics can be found in 
section 1.6. In Figure 2.10 results achieved in [17] are reported. 

  

 

Figure 2.10: NILM metrics on houses 1 – 6 in REDD dataset. 
Taken from [17]  
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These results have been obtained by comparison of inferred events with models emerged from 
Appliance Modelling (2.1.4). The goal of section 2.2 will be to determine how models are 
representative of real appliances. 

 

Figure 2.11: Type 1 appliance models (W) generated for house 1 REDD dataset, 28-30/04/2019.  

 

USE OF MODELS FOR FUTURE ENERGY USAGE RECOGNITION 

For house 2 in REDD dataset models inferred from 1 day of consumption have been used to 
disaggregate the load in the following day. Results are shown on the third table in Figure 2.10. This 
concept will be expanded in section 2.2, using significantly longer time periods.  
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2.2 EXPERIMENTS AND RESULTS 

2.2.1 EXPERIMENT GOALS 
Experiments that have been run using EICCA NILM are focused to investigate these topics: 

1. Ability of EICCA algorithm to converge to clusters that are representative of real appliance 
power states, focusing on high power appliances. 
 

2. Evaluation of NILM metrics on some appliances. 
 

3. Behaviour of NILM algorithm with different time windows for training and evaluation. It 
means that feature extraction, feature clustering and appliance modelling (2.1.4) is performed 
on a set of days, and evaluation on another one, longer and consequent to the first. 
 

4. Introduction of reactive power feature in the algorithm. 
 

5. From a general point of view consider if it is realistic for NILM methods to rely only on 
active (and eventually reactive) power transitions. 
 

2.2.2 DATA DESCRIPTION 
Experiments have been performed on data from REDD and UKDALE datasets. For both sets power 
measures are provided with 1s resolution. 

REDD has been chosen because it has been widely used in literature, for a lot of active power – based 
methods. The main drawback of this dataset is the limited time length of its measures. For these 
experiments houses 1, 2, and 3 have been chosen. The choice is driven by the presence of some very 
high power appliances in these houses. 

UKDALE dataset has been chosen because for houses 1, 2 and 5 reactive power is provided in 
addition to active power. Moreover the time span of measures is wider than in REDD. This allow to 
simulate more realistic situation, with longer training and evaluation period of few months. 

Table 2.1 details data used for experiments. In Appendix B all the dates of days used are reported.   

 

DATASET HOUSE TRAINING DAYS EVALUATION DAYS FEATURES 
REDD 1 9 /// P 
REDD 2 9 /// P 
REDD 3 8 /// P 
UKDALE 1 30 170 P/Q 
UKDALE 2 20 80 P/Q 
UKDALE 5 30 50 P/Q 

Table 2.1: Days used for experiments 

 

2.2.3 FEATURE EXTRACTION AND CLUSTERING 
EVENT DETECTION/FEATURE EXTRACTION 

Feature extraction method used for experiments is different than the simplistic one described in 2.1.4. 
Here we adopt the event detection method from [19]. This method is described in 3.1.2 (points B, C 
and D). In this section only the reasons of this choice are detailed. 
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1. Power edges longer than one second 
Experience shows that several events in power profile take more than 1 second to occur. Let 
suppose that the event of interest has magnitude of 1500 W. If it take 2 seconds, the event 
could be split in two edges, for example 500 and 1000 W. This is problematic because we 
want the clustering phase to produce clusters from groups of similar events connected to real 
appliances. So a more stable method is preferable. The method in 3.1.2 overcomes this 
problem being steady state based. Figure 2.13 summarizes this point. 
 

 
Figure 2.13: Graphic comparison of steady state vs simple event detector 

 
2. Filtering 

Adopted event detection method smooths the power profile, in order to eliminate noisy 
fluctuations. 

 

FEATURE CLUSTERING 

Clustering phase is performed on extracted features as follows 

1. An over specified number of cluster is selected (i.e. 50). The set of features is normalized in 
order to fit in the interval [-1, 1]. 
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2. EIC-FCM algorithm (2.1.2) is performed on the set of features, for a specified number of 
iterations (i.e. 30). It outputs the fuzzy partition matrix U(0) necessary for the next point. 
 

3. EICCA algorithm (2.1.3) is performed on the set of features. The output will be the “optimal” 
set of clusters, representing the power states emerged from the algorithm. 

 

2.2.4 CLUSTERING EVALUATION METHOD 
In order to understand the capability of the method to converge to clusters that are representative of 
actual appliances power states, as far as possible events clustered have been assigned to the appliance 
that generated them. To do that ground truth data related to appliances have been used. Main focus is 
on high power appliances. A table have been computed for each experiment, with the following fields: 

1. Number of Cluster 
Progressive number of clusters. 

2. ΔP (W) 
Active Power signature of the cluster. 

3. ΔQ (VAR) 
Reactive Power signature of the cluster. 

4. Cardinality 
Number of events in the cluster. 

5. Appl. 1 
Appliance with the bigger number of events in the cluster. 

6. % Appl. 1 
Percentage of the events of appliance 1 over the whole number of events in the cluster. 

7. Appl. 2 
Appliance with the second bigger number of events in the cluster. 

8. % of Appl. 2 
Percentage of the events of appliance 2 over the whole number of events in the cluster. 

9. Appl. 3 
Appliance with the third bigger number of events in the cluster. 

10. % of Appl. 3 
Percentage of the events of appliance 3 over the whole number of events in the cluster. 

All the tables obtained are collected in appendix C. Usually for each house there is more than one 
experiment, so the numbers of experiments in this chapter are referred to the numeration presented in 
that appendix. 

 

2.2.5 CLUSTERING EVALUATION RESULTS 
In this section results obtained with experiments are presented. For further details see appendices B 
and C. 

Parameters in the algorithm are numerous so a big variability of results is possible. Values chosen and 
reported in appendices B and C are the ones that have shown significant results. Parameter r (entropy 
index) is kept constant to 0.5, which is the same value that have been used in literature in all reported 
experiments. 

Following evaluation is done by comparing emerged clusters to appliances detailed in Table C.1. 
They have been chosen as the most significant for this study. They are mainly appliances with an 
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electric power draw higher than 1 kW. The only exception are cooling appliances (fridges and 
refrigerators). Even if some appliances are not represented by a type 1 model, for this study they have 
been considered as they were, taking into account only the biggest of their power state (3.2.3 and 
Figure 3.12). 

 

Figure 2.14: Power states emerged from clustering in REDD 1, experiment 4 

 

DATASET/ 
HOUSE 

EXPERIMENT 
(Appendix C) 

NUMBER OF 
CLUSTERS 

CLUSTERS WITH 
ONE APPLIANCE * 

(**) 

CLUSTER WITH 2 OR MORE 
APPLIANCES* 

(**) 
REDD/1 4 27 7 (5) 8 (1) 
REDD/2 2 17 1 (0) 10 (8) 
REDD/3 1 26 14 (10) 6 (1) 
UKDALE/1 1, P only 3 /// /// 
UKDALE/1 2, P and Q 44 5 (3) 4 (0) 
UKDALE/2 1, P only 2 /// /// 
UKDALE/2 2, P only 11 6 (3) 2 
UKDALE/2 1, P and Q 45 9 (5) 2 
UKDALE/5 1, P and Q 32 6 (3) 2 
*a cluster is counted in this column only if the percentage of the appliance’s events is relevant on cluster cardinality. Where it is 
very low (few percentage points) the cluster is not considered. 

**Experience shows that fridge is present in several clusters, because it has variability in behaviour. Moreover, being working 
all the day, it contributes to total number of events in significant percentage. In brackets the number of clusters where fridge is 
the predominant appliance is reported. 

Table 2.2: Relevant clusters emerged from experiments. Compare the table with results in appendix C 
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FRIDGES CONSIDERATIONS 

Table 2.2 shows how many clusters have an important number of events generated by fridges. Let’s 
consider house 1 in REDD dataset as an example. In Table 2.3 clusters of interest for fridge are 
reported. Full set of clusters is available in Table C.7. 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

6 -175 0.00 194 'Fridge' 69.07 '///' 0.00 '///' 0.00 
12 212 0.00 103 'Fridge' 30.10 '///' 0.00 '///' 0.00 
16 297 0.00 24 'Fridge' 62.50 '///' 0.00 '///' 0.00 
18 815 0.00 52 'Fridge' 78.85 'Dishwasher' 1.92 '///' 0.00 
26 685 0.00 44 'Fridge' 84.09 '///' 0.00 '///' 0.00 

Table 2.3: Clusters generated mainly by fridge events, in REDD 1, exp. 4 (see Table C.7) 

 

Figure 2.14: some hours of active power consumption of fridge in REDD house 1, 27/04/2011 

 

The power profile of a fridge is shown in Figure 2.14. It is clear that sometimes positive transitions 
correspond with significant spikes in power. Clusters 16, 18 and 26 are likely produced by these 
events. Anyway in chapter 3 it is clearly shown that only 2 power states are necessary to characterize 
well cooling appliances activity. In this case clusters 6 and 12 are probably good candidates. In the 
situation of an unsupervised method, it is not trivial that clusters 6 and 12 are paired together in one 
model. In the simplistic case of Type 1 modelling (as described in section 2.1.4) what is going to 
happen is that cluster 12 will be paired with cluster 13, reported here. 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

13 -230 0.00 64 'Fridge' 1.56 '///' 0.00 '///' 0.00 

It is clear from percentages that cluster 13 represent the fridge worse than 6. Similar considerations 
can be done for other experiments.  

In general the big amount of clusters produced by fridge could create problems in appliance 
modelling, leading to models that are not connected with real devices. 
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HIGH POWER APPLIANCES CONSIDERATIONS 

In this section we will understand if, for bigger appliances, feature clustering converge to distinct 
clusters. 

Table 2.4 details big appliances taken into account for experiments, and if their signatures have been 
isolated by the method. Otherwise, if two appliances have been mixed together, that information is 
provided. For each house the experiment chosen is the one with better results. 

 

DATASET/HOUSE EXPERIMENT 
(Appendix C) 

H.P. 
APPLIANCES 

APPLIANCE 
ISOLATED 

OTHER INFORMATION 

REDD 1 4 

Kettle  Washing machine and oven, despite being very 
powerful, are confused in the same clusters. 
In all the 1500 W clusters microwave, kettle, 
dishwasher and bathroom GFI are confused. In 
general this house is quite difficult, because a 
lot of appliances have similar power signatures. 

Microwave  
Dishwasher  
Washing m.  
Oven  
Bathroom GFI  
Cooker  

REDD 2 2 

Microwave  Only stove has been identified. For microwave 
a positive cluster is emerged, but not the 
negative one. 

Dishwasher  
Cooker  
Stove ✔ 

REDD 3 1 

Microwave  Microwave has been mixed with bathroom GFI. 
Washing m. ✔ 
Bathroom GFI  
Electronics ✔ 

UKDALE 1 2, P and Q 

Kettle ✔ Hairdryer is partially mixed with microwave. 
Microwave ✔ 
Dishwasher  
Hairdryer  

UKDALE 2 1, P and Q 

Kettle ✔ Washing machine is the second appliance in 
dishwasher clusters. Microwave ✔ 

Dishwasher ✔ 
Washing m.  

UKDALE 5 1, P and Q 
Kettle ✔ Otherwise dishwasher is predominant in 2 

clusters, Its percentage is quite low. (Table 
C.19) 

Dishwasher  
Oven ✔ 

Table 2.4: Effectiveness of clustering on high power appliances 

 

In general results are not promising. When reactive power is involved performances are better. 
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INTRODUCTION OF REACTIVE POWER FEATURE 

 

Figure 2.15: Graphic representation of clusters, UKDALE 2, exp. 1, P only 

 

 

Figure 2.16: Graphic representation of clusters, UKDALE 2, exp. 1, P and Q. Look at Figure C.2 for 
better definition 

 

This NILM method, as described in literature, is based on active power only. In this work, for 
UKDALE dataset, we have extended clustering also to reactive power. It is clear by comparing Figure 
2.15 and 2.16 that the added feature allows to distinguish better certain groups of events. It is relevant 
that adding the feature number of clusters changes from 2 to 45. Figure 2.17 shows a detail of that, in 
the positive part of the P/Q plane. Reactive power in microwave events place its cluster high in the 
plane, allowing to distinguish it from other events with similar active power. 

 



40 
 

 

Figure 2.17: detail of Figure 16, with appliance events underlined 

 

A similar consideration can be done with house 1 in UKDALE dataset, experiment 2. Figure C.1 
shows the full set of clustered events in the P/Q plane. In Figure 2.18 a detail is provided. It can be 
clearly seen that with reactive power a distinction between microwave and hairdryer is possible. 

 

Figure 18: detail of Figure C.1, with appliance events underlined 
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2.2.6 APPLIANCE MODELLING AND APPLIANCE RECOGNITION 
RESULTS 
Type 1 appliance modelling and appliance recognition (as described in 2.1.4) have been performed 
with houses 2 and 5 of UKDALE dataset, using P and Q. Results are shown here.  

 

Figure 2.19: Type 1 appliance models, UKDALE 2 exp. 1, P and Q. Only active power feature is 
shown. 

For both households appliance models have been generated using data in training phase, and appliance 
recognition has been performed in evaluation period. More details are in Table 2.1 and appendix B. In 
Table 2.5 emerged models are reported. Each model is characterized by a positive and a negative 
transition. 
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Models for UKDALE 2 exp. 1, P and Q 
Num. +ΔP(W) +ΔQ(Var) -ΔP(W) -

ΔQ(Var) 
1 156.86 24.39 -107.72 -27.79 
2 53.69 6.83 -48.67 -14.14 
3 19.40 24.18 -17.84 -21.86 
4 9.64 10.43 -11.47 -8.61 
5 2048.72 97.47 -1899.00 -54.47 
6 1320.84 568.38 -1291.28 -521.60 
7 2972.20 100.80 -2943.56 -101.62 
8 501.38 341.27 -413.22 -364.46 
9 122.07 366.02 -135.36 -398.88 

10 88.26 254.24 -87.01 -220.62 
11 498.01 274.21 -428.89 -232.13 
12 961.68 24.28 -960.17 -26.56 
13 215.11 671.83 -210.37 -658.04 
14 504.37 426.26 -413.77 -444.09 
15 187.62 574.74 -178.41 -551.17 
16 162.98 425.85 -171.05 -454.31 
 17 503.31 386.24 -413.65 -407.00 

 

 

Models for UKDALE 5 exp. 1, P and Q 
Num. +ΔP(W) +ΔQ(Var) -ΔP(W) -

ΔQ(Var) 
1 26.40 7.46 -31.95 -8.80 
2 69.89 -94.22 -52.95 72.68 
3 11.44 3.31 -15.68 -4.86 
4 46.61 12.40 -51.18 -13.17 
5 138.94 11.01 -155.16 -17.58 
6 246.53 21.53 -236.61 -23.25 
7 214.88 122.70 -212.19 -118.72 
8 385.08 290.52 -268.23 -315.78 
9 267.52 187.82 -285.34 -205.30 

10 797.29 69.43 -796.92 -68.57 
11 1089.31 82.05 -1088.19 -84.58 
12 1566.88 109.45 -1559.65 -109.06 
13 2090.72 177.18 -2041.68 -176.10 
14 2772.34 261.57 -2780.50 -262.73 

a) b) 

Table 2.5: Type 1 models generated from cluster centroids (power states) in UKDALE 1 and 5 

 

By manual comparison, taking into account information obtained in Tables C.19 and C.17, these 
models have been assigned to appliances: 

UKDALE 2 exp. 1, P and Q UKDALE 5 exp. 1, P and Q 
Fridge 8,11,14,17 Fridge 8 
Kettle 7 Kettle 14 
Microwave 6 Oven 13 
Dishwasher 5 Dishwasher 12 

Table 2.5: Models assigned to appliances 

 

Table 2.6 shows event metrics achieved disaggregating these loads from aggregate signal. In 3.2.5 
metrics computation is detailed. 

UKDALE 2 exp. 1, P and Q UKDALE 5 exp. 1, P and Q 
Appliance F - score Precision recall Appliance F - score Precision recall 
Fridge 0.621 0.999 0.451 Fridge 0.204 0.938 0.114 
Kettle 0.904 0.995 0.828 Kettle 0.570 0.694 0.484 
Microwave 0.770 1 0.626 Oven 0.647 0.574 0.742 
Dishwasher 0.902 0.956 0.853 Dishwasher 0.006 0.004 0.012 

Table 2.6: Disaggregation Results 

 

Results for UKDALE 2 are promising, we can’t say the same for UKDALE 5. If models used in 
UKDALE 5 are compared with table C.19, it is clear that percentages of selected appliances are low in 
clusters used for modelling. That means that they are not really representative of appliances, 
especially for dishwasher. For example cluster 9 in Table C.19 would have fit dishwasher better, but it 
hasn’t been used in modelling because cluster 11 was closer to cluster 30, so they have been matched. 
In general these results indicate that a high percentage of events from one appliance in a cluster (in 
training phase) are indicative of good disaggregation performances in evaluation (test phase). It is 
difficult to determine a threshold, because size of clusters and so variability inside them vary (large or 
narrow clusters). Table 2.7 gives proof of that.  
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If appliance events are mainly close to the centroid of the cluster, the 5% margin introduced in 2.1.4 
can help removing events that are not of interest. It is the case of Dishwasher in UKDALE 2. A good 
percentage of washing machine events was present in clusters used for the appliance model, but this 
hasn’t deteriorated disaggregation results.  

UKDALE 2 exp. 1, P and Q UKDALE 5 exp. 1, P and Q 
Appliance % on % off Appliance % on % off 
Fridge ~ 90 % ~ 0 % Fridge 80.71 0.29 
Kettle 97.94 98.97 Kettle 34.21 30.77 
Microwave 84.26 80.99 Oven 45.68 41.18 
Dishwasher 61.54 64.41 Dishwasher /// 4.44 

Table 2.7: Percentage of appliance events in clusters used for models 

 

2.2.7 DISCUSSION 
Work described here has focused on ability of the method to represent real devices. At the time of 
writing, as far as we know, this is the first time that something similar is done with this NILM 
method. 5 points structure in 2.2.1 is here used again to develop final discussion. 

1. Ability of EICCA algorithm to converge to clusters that are representative of real appliance 
power states, focusing on high power appliances. 
 
As described in 2.2.5 and in particular in Table 2.4, that doesn’t happen for a good number of 
cases. It means that usually clustering space hasn’t got well distinct set of points for every 
appliance. This is due to 3 facts: 

i. Overlapping of signatures of different appliances. 
ii. Variable behaviour of devices (power transitions can be quite different for the same 

appliance). 
iii. Number of events of one appliance can condition clustering phase. If they are only 

few, it is more difficult that a cluster is centred close to these events. 

In general results presented here indicate that convergence of clustering to single appliance power 
states is a hypothesis too optimistic. 

 
2. Evaluation of NILM metrics on some appliances. 

This has been done in 2.2.6, especially in Table 2.6. When a cluster is representative of an 
appliance in good percentage results are good. In the majority of cases that doesn’t happen. Many 
models are not representation of real devices. 

 
3. Behaviour of NILM algorithm with different time windows for training and evaluation. It means 

that feature extraction, feature clustering and appliance modelling (2.1.4) is performed on a set 
of days, and evaluation on another one, longer and consequent to the first. 
 
In 2.2.6 this has been done. By comparison of Tables 2.6 and 2.7 it is clear that good clustering in 
training involve good performances in evaluation. 
 

4. Introduction of reactive power feature in the algorithm. 
 
Use of reactive power is promising for this application. In fact experiments with only active 
power achieved poor results. Table 2.4 shows that in REDD dataset, where reactive power is not 
provided, significant appliances haven’t been recognized, with few exceptions. 
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5. From a general point of view consider if it is realistic for NILM methods to rely only on active 
(and eventually reactive) power transitions.  
 
This work has clearly shown that active power is not sufficient for EICCA - NILM to perform 
well. The introduction of Reactive power has been crucial to achieve results in 2.2.6. On the other 
hand it seems that more features have to be included in this method to increase performances. 
Comparison between figures C.2 and C.3 clarify this point. Where for UKDALE 2 some groups 
of events are very separated and visible, in UKDALE 5 they are more confused without distinct 
sets. 
This NILM method in itself needs distinct sets of events to produce significant clustering. 
Experiments show that in real applications that doesn’t happen. This approach doesn’t seem 
exploitable for practical use. More information is necessary in order to distinguish appliances 
from aggregate power consumption. Variability of appliances and behaviours between different 
households is a problem in order to develop a method that can show consistency in a wide, 
commercial use. More significant contribution to this point is given in 3.3.8. 
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3 SUPERVISED NILM WORK 
 

Chapter 3 is organized as follows. In section 3.1 Hart and Weiss algorithms are theoretically 
presented. In 3.2 experiment goals are defined, then data used are described. Implementation of both 
algorithms for experiments is then detailed. Finally metrics computation is presented for all the 
evaluation metrics used in this chapter. Section 3.3 is focused on results and discussion. The 2 
algorithms are compared, use of active power and addition of reactive is discussed starting from 
experiments. Loads analysed are divided in groups and results are presented. Finally time of 
occurrence is discussed as a possible feature for disaggregation. Appendices related to this chapter are 
here reported. 

 Appendix D: Dates of days used for experiments and relative datasets. 
 Appendix E: Event metrics for all experiments. 
 Appendix F: Algorithms comparison tables. 
 Appendix G: P vs P/Q features. 
 Appendix H: Cooling appliances algorithms and features comparisons. 
 Appendix I: Mid-high power appliances event results. 
 Appendix J: Time patterns bar charts. 
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3.1 METHODOLOGY 
Supervised NILM methods are those methods where information about appliances are provided to 
algorithms by prior knowledge (i.e. from a database) or by a training phase, where each appliance is 
monitored on its own in order to extract needed features. In this chapter Hart and Weiss algorithms are 
used. 

 

3.1.1 HART ALGORITHM 
In the middle 80s’ George Hart worked to the first Non-Intrusive Appliance Load Monitoring 
algorithm. His prototype has been the basis for all later studies. The algorithm, as described in 
publications [22 – 25], was developed for use with both active and reactive power features. Moreover 
it considers also the two legs of the usual American residential wiring, reported in Figure 3.1. 

 

Figure 3.1: Usual American residential wiring, taken from [22] 

 

 ALGORITHM OVERVIEW 

Figure 3.2 summarizes building blocks of the algorithm, as presented in [22]. Hart presents two 
versions of his algorithm, a supervised and an unsupervised one. Acronym NALM stands for Non-
Intrusive Appliance Monitoring. 

1. MS-NALM (Manual setup) 
Requires an intrusive period to observe appliance signatures, and classify them. 
 

2. AS-NALM (Automatic Setup) 
Automatically classify appliances from a priori information and only by analysing aggregate 
signal. 

In this work only MS-NALM has been taken into account, so blocks of the algorithm dedicated to AS-
NALM won’t be presented deeply. 
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Figure 3.2: Hart algorithm structure 

 

A. MEASURE POWER AND VOLTAGE 

Average power and RMS voltage are measured at 1 second resolution, for both legs. Use of 1 second 
granularity has first been proposed by Hart, and it has been employed widely in literature. The lower 
resolution is, the more probable it is that two different events are combined together in one. For this 
work 1 Hz power signal has been used in every case. 

 

B. CALCULATE NORMALIZED POWER  

Normalization is performed to provide more consistent set of features to event detection block. 
Voltage has his own variability and that affects power draw of certain appliances. If voltage provided 
by distributors has ±10 variability, a linear device will change its current absorption by ±10% too. 
That produces ± 20% variation in power. This is the reason why the feature used for edge detection is 
admittance in place of power. Load admittance can be calculated from power and RMS voltage as 
follows. 

      
    

     
          (3.1)  
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Use of admittance in that form is not appropriate because it is somewhat unfamiliar, especially 
compared to power. That is the reason why it is converted to normalized power.  

                    
   

    
 

 
          (3.2) 

Value of 120 V suits for the United States. It has to be replaced by the nominal voltage of the country 
of use, if different. 

Exponent 2 in eq. (3.2) makes sense for linear loads. However many loads are not linear. A more 
general formulation is the following. 

           
   

    
 

 
           (3.3) 

Exponent β, known as Optimal Normalizing Exponents, is variable for appliances and, in general, 
between active and reactive power. In [22] it is stated that for an optimal normalization the exponent 
has to be kept below 2 for active power and above 2 for reactive. The entity of these differences are 
not clear, so for this algorithm β is kept fixed to 2. 

 

C. EDGE DETECTION 

This section of the algorithm finds times and sizes of step changes in power.  

Edge detector divides normalized power signal in periods where it is steady and others where it is 
changing. A steady period is defined as a period longer than a minimum length (3 samples) in which 
power vary less than 15 W or VAR. Samples in steady periods are averaged, and the difference 
between steady power levels are saved as events. Figure 3.3 shows graphically this concept. Only 
events bigger in magnitude than a specified threshold are saved, because the algorithm is not 
expected to detect small appliances. 

 

Figure 3.3 Edge detection graphic representation 
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Edge detection algorithm is now reported, following instructions in [24]. 

1. Initialize following vectors: 
 
E:  estimate of actual power level during this steady period, based on averaging measurements. 
 
L:  power level of the previous steady period. 
  
P:  power measurement of the previous second. 
 
T: time of the output event. 
 
M:  current power reading from aggregate data. 
 
N:  counter used to compute average. 
 
Dimension of these vectors can be: 
i. 4 component if active and reactive power are available for a two phase supply (P1, Q1, 

P2, Q2). 
ii. 2 components if active and reactive power are available for a single phase supply (P, Q). 
iii. 1 component if only active power is provided for a single phase supply (P). 

Two flags are also necessary: 

A:  It is set if the power level is changing in this second 

C: It is set if a change is in progression over a number of seconds 

Select a threshold power level for defining steady state periods. The value usually used is 15 W 
(or VAR) 

Select a noise level (NL) for defining significant events. Transitions below this value will be 
ignored. Hart suggests 70W. 

Repeat steps 2 to 8 for every second in normalized measurement vector. 

2. Get the Measurement M, then compute M - P. If one of the components in M – P exceed in 
absolute value the steady state threshold, set A, otherwise clear it. 
 

3. If A is set and C is clear, a transition in power has just begun. So perform 3a, 3b and 3c. 
Otherwise skip them. 

 
a. Compute E-L. It is the size of the previous transition. If abs(E-L) > NL save E-L and the 

time stored in T. 
b. Set L to E for the next computation. 
c. Set T to the current time, for the next computation. 

 
4. If A is set, zero the counter N. 

 
5. Update E, the average of all measurements during the steady state period, using: 

 

                
 

6. Add 1 to N, representative of the number of measurement incorporated in E. 
 

7. Set C to the value of A. 
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8. Set P to the value of M. 
 

9. Go back to Step 2. 

Output of edge detector is the set of events (positive and negative transitions) and their time 
occurrence that will be used for the next phases. 

 

D. CLUSTER ANALYSIS – only for AS-NILM 

Events emerged from block C, if represented in P/Q plane, define a scatter plot. Figures C.1, C.2 and 
C.3 in Appendix C are good representation of that. A clustering algorithm has to be run on these data 
in order to group together events. Hart points out that a clustering algorithm with fixed number of 
clusters is not suitable for NILM use. Competitive Agglomeration algorithms, presented in 2.1.3 and 
A.2 could be used. A clustering method have been developed by Hart in [24]. 

 

E. BUILD APPLIANCE MODELS – only for AS-NILM 

The algorithm, in its unsupervised form, is supposed to generate automatically ON/OFF and FSM 
appliance models. For ON/OFF appliances modelling the goal is to find clusters in the plane 
symmetrical with respect to the origin. Learning of FSM models is discussed in [22]. 

 

F. TRACK BEHAVIOUR IN TERMS OF MODELS 

At this point events have been assigned to a specific appliance. They are then used to track appliance 
behaviour. For Type 1 appliances we expect a sequence of on and off events, with sporadic anomalies 
where some events are missing or wrong events have been assigned to the appliance. Tracking 
behaviour is necessary to compute energy estimation, which is done by integration of the 
reconstructed appliance signal. 
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*Red signal is the tracked behaviour, Blue one is ground truth profile. Reconstructed signal is done on the basis of events 
assigned by the algorithm to the appliance. 

Figure 3.4: reconstruction of fridge signal in house 2, ECO dataset 

 

G. TABULATE STATISTICS 

For each appliance useful statistic are provided to users. Some examples are: 

a. Energy consumed by appliances, in relation with whole consumption. 
b. Number of usages of a certain appliance for each period. 
c. Energy broke down by time of the day, consumption weekday vs weekends, differences 

in consumption in seasons, etc… 

 

H. APPLIANCE NAMING – only for AS-NILM 

AS – NALM arrives at this point without knowing names of appliances, steps E and F are done with 
auto generated models. Each model has to be named in relation to its characteristics referring to a 
database of general models for many different appliances. 

 

3.1.2 WEISS ALGORITHM 
M. Weiss and others proposed this method in 2012 [19].  

This algorithm is rooted on Hart original algorithm, but it mainly differs from it for employing 
distortion power as a feature, smoothening of the consumption curve and a different event detector. 
The algorithm extracts switching events from the household aggregate consumption and assign them 
to the best matching feature presented in the database. 

Aggregate signal considered by authors in [19] is given at 1 Hz frequency, like for Hart’s framework. 
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CLASSIFICATION OF APPLIANCES 

Physical quantities (signatures) that characterize loads are apparent, real, reactive and distortion 
power. Loads can be classified in resistive, inductive or capacitive. Reactive power is null in resistive 
loads (for example a light bulb). In inductive and capacitive loads there is a consumption of reactive 
power. Distortions in current and voltage in the network produces another component in power, called 
distortion power. Equation of power is the following: 

               
            (3.4) 

Where S is apparent power, P real power, Q reactive translative power and D distortion power. 

 

Figure 3.5: Relation between different power quantities  
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BASIC CONCEPT 

The algorithm, as designed by its authors, require as input the total load consumed by household at 
each time step, divided into power components described in eq. (3.4). 

The algorithm starts identifying time points where significant changes between two levels of power 
consumption occur in power curve. Then it computes the difference of physical quantities between 
consecutive levels and save these values. Finally values are compared to appliance signatures already 
present in a signature database. If there is a match, the edge is classified to a specific appliance. 

 

 

Figure 3.6: Basic concept of Weiss algorithm  

1 day of active power measurement, 
UKDALE house 2, 04/05/2013 
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 ALGORITHM OVERVIEW 

The algorithm is composed by 6 steps [19], now described. Figure 3.7 summarizes its building blocks. 

 

Figure 3.7: Weiss algorithm structure 
 

A. NORMALIZATION 

The concept is the same as in 3.1.1, point B. Equation presented in [19] is the following. In this 
method apparent power is normalized as input vector: 

      
   

 
 

 
           (3.5) 

 

B. EDGE DETECTION 

The algorithm computes difference between consecutive values of normalized apparent power S’
n. If 

the absolute value of one of these transitions is larger than a pre-defined threshold (f_th), the value 
potentially belongs to an edge. Value of f_th is essential in order to avoid to save small edges that are 
meaningless for disaggregation purposes. Authors in [19] suggest to use 2 VA. 
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Another problem is presence in power profile of peaks related to transient behaviour of appliances that 
result in a consistent number of spurious events detected. In order to reduce this number a filtering of 
apparent power signal is performed. The filter chosen is a combination of median and mean filter, 
both computed in a time window of 5 samples. 

A mean filter is a sliding window filter that replaces the central value of the window with the mean of 
all values in the window. 

A median filter is a sliding window filter too. It replaces the central value with the median of all 
values in the window. 

The two filters are applied in series, in the order MEAN – MEDIAN. After this it is possible to extract 
edges from the signal. Figure 3.8 summarizes Edge Detection block. 

 

Figure 3.8: Edge detection in Weiss algorithm  
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Figure 3.9: Edges extracted from smoothed signal 

 

C. POWER LEVEL COMPUTATION 

Now that edges are extracted, the goal is to determine power levels that separate one edge to one 
another in smoothened signal. For each power level the algorithm determines: 

a. START and END time 
b. Component – wise mean of REAL, REACTIVE and DISTORTION power for first five 

measurement at start and last five at the end of each power level. The two vectors are 
called sm (start mean) vector and em (end mean) vector. 

c. Component-wise standard deviation of all power values in each power level. 

  

Smoothed 
apparent power 

Edges 
extracted 
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D. DELTA LEVEL COMPUTATION 

Now that power levels have been computed, consecutive power levels are used to determine variations 
in power (delta levels) that occur in power signal. To quantify them, the algorithm computes 
differences of real, reactive and distortive power between two consecutive power levels. 

In order to take start up and shut down oscillation of appliances into account, four different difference 
vectors are computed between consecutive power levels i and i+1. 

        
                                                      (3.6) 

        
                                                

        
                                               

        
                                                

 

The four differences are between mean vectors of: 

 (Start of power state i)  –  (start of power state i+1) 

 (Start of power state i)  –   (end of power state i+1) 

 (End of power state i)   –  (start of power state i+1) 

(End of power state i)  –  (End of power state i+1) 

For each delta level these differences are added to a matrix that will be used in recognition phase. 

 

Figure 3.10: Edge, power states and delta level computation 
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E. RECOGNITION AND LABELING  

Known appliance signatures   
     are saved in the signature database as a priori information. All the   

     
(delta levels) saved from previous phase are compared with signatures, performing a nearest 
neighbour search in the 2 dimensional ΔP/ΔQ space. Recognition phase is organized as follows: 

a. For all the   
    , Euclidean distance to each   

     is computed. 

b. If the distance is lower than a predefined value (r) of the length of   
     plus an oscillation 

value (osc), a potential matching is identified. 
 

   
       

           
           

                                    
                             

  (3.7) 

 
osc term is computed as the length of a two element vector. First element is the 
maximum of standard deviation in active power between power levels i and i+1, second 
one is the same but for reactive power. 
 

      
                                           

                                           
    (3.8) 

 
c. At this stage each   

     can be associated with one or more   
     (or not associated at all). If 

candidates    
     are more than one, the closer one is chosen. 

d. Each event is labelled with the name of the appliance related to matched   
    . 

 

Figure 3.11: Search in the 2 dimensional ΔP/ΔQ space.  
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3.2 EXPERIMENTS DESCRIPTION 

3.2.1 EXPERIMENT GOALS 
Experiments with Weiss and Hart algorithms have been performed to investigate these topics: 

1. Understand which algorithm performs better, using different datasets and features. 
 

2. Understand which appliances among the analysed ones are well disaggregated by algorithms. 
 

3. Introduction of time of the day feature in load disaggregation. 
 

4. Critical discussion of power disaggregation using P and eventually Q only as features. 

 

3.2.2 DATA DESCRIPTION 
Three datasets have been employed for this study. They all share 1 second resolution of aggregate 
signal. 

REDD 

Widely used in literature, only active power is provided at 1Hz. As said before, time length 
of measures is relatively short. Houses 1, 2, 3 and 4 have been used. 

UKDALE 

Houses 1, 2 and 5 have been chosen. For these houses active, apparent power and voltage are 
provided at 1 Hz. For plug level data active power only is provided at 1/6 Hz. 

ECO 

Houses 1, 2, 4 and 5 have been chosen. For these houses active power, current, voltage and 
power factor are provided at 1 Hz. For plug level data active power only is provided at 1 Hz. 

 

Table 2.1 details time length of experiments. In Appendix D all dates of days used are reported. 

 

DATASET HOUSE TRAINING DAYS EVALUATION DAYS FEATURES 
REDD 1 6 9 P 
REDD 2 5 9 P 
REDD 3 5 8 P 
REDD 4 5 8 P 
UKDALE 1 30 170 P/Q 
UKDALE 2 20 80 P/Q 
UKDALE 5 30 50 P/Q 
ECO 1 15 75 P/Q 
ECO 2 15 75 P/Q 
ECO 4 15 75 P/Q 
ECO 5 15 75 P/Q 

Table 2.1: Time length of experiments  
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Data have been organized as indicated in NILM-EVAL toolkit documentation, available in [25]. For 
each channel of each house, whether it is a smart meter or a plug meter, data have been divided into 
one file for each day, with exactly 86400 samples. Missing values have been replaced by -1, in order 
to have the same length for each file. In all the experiments evaluation is performed only when in both 
smart meter and plug data samples of the quantity needed are not -1. 

 

3.2.3 APPLIANCE DATABASE COMPUTATION 
First step in experiments is signature database computation. For each house a set of plug-level power 
measurements of certain appliances is provided. Some of these channels have been chosen in this 
work, following 3 principles: 

1. Appliances with high power draw and significant for households. 
2. Chosen channels have to cover nearly all the time period of aggregate signal analysed. This is 

relevant in UKDALE where some channels are very limited in time. 
3. Appliances representable, at least partially, as Type 1 devices. 

 

 

Figure 3.12: Simplification of non-Type 1 Appliances, Washing machine and Dishwasher. Events 
underlined in red are the only ones used to recognize these loads. 

 

Database computation follows these steps for both algorithms. All measures considered are in training 
time span 

For each appliance: 

A. Event detection in plug level data. 
 
For each algorithm its specific event detector is applied on plug data (3.1.1 step C for Hart 
and 3.1.2 steps B, C and D for Weiss).  
 

B. Search for correspondent events in aggregate signal. 
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Events are compared to aggregate signal in order to find out correspondent ones and use 
them for next part. This is important especially to determine other features as reactive power 
which is present only in aggregate signal (Figure 3.13). In order to facilitate next step, a 
threshold is specified a priori to discard small events that occur in the appliance behaviour 
but are not relevant for his recognition. This is important for appliances like washing 
machine, which produces a big variety of events. This can be clearly seen in Figure 3.12. All 
the minor events have to be filtered before next step. 

  

 
 

Figure 3.13: Events extraction for database computation 
 

C. Determination of appliance signatures from selected events in aggregate signal. 
 
Events are divided between positive and negative in active power. A k-means clustering is 
performed in both groups to produce the centroids that will be saved as signatures of 
appliances. 

 

3.2.4 ALGORITHM RUN 
Algorithms are run in evaluation period, using their specific characteristics. In general output of this 
section is the list of events detected in aggregate signal and their eventual match in the signature 
database.  

PARAMETER r 

Parameter r has been used in both algorithms to represent how far an event can be from a signature in 
the database to be assigned to that signature. In addition to r, also parameter osc is used for Weiss. 
Figure 3.11 summarizes the concept. 
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3.2.5 EVALUATION AND METRICS 
Three kinds of evaluation are performed in this work. Main metrics used here have been described in 
section 1.6. 

 

EVENT EVALUATION 

This is in general the main evaluation done in NILM work. Events detected and assigned by 
algorithms to appliances in the database are compared to plug-level data. Following steps are 
computed for each appliance that has to be evaluated: 

A. The difference vector is computed on plug level data between each Pi+1 and Pi samples in 
evaluation period 

                                                            (3.9) 

 

B. Edges vector is computed as follows: 

                                   (3.10) 

It is important to set the threshold high enough in order to consider only significant events. This is 
especially important for Appliances with multiple states that have been simplified as single state. 
edges is a logic vector, with 1 and 0 values. 

C. Start and end time vectors have to be computed. A start occurs when in edges vector there is 
a transition from 0 to 1. An end when the transition is from 1 to 0. Indexes of starts and ends 
of events in edges are saved in the vectors. 

 

Figure 3.14: Edges in event evaluation, steps A, B and C 
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At this point time of events in plug data (ground truth events) is known. It is time to compare 
them with events in aggregate signal assigned by the disaggregation algorithm to the appliance in 
question (assigned events). 

 
D. True positive, False positive and False negative computation 

 
TRUE POSITIVE 
For each assigned event, it is considered a true positive if its time of occurrence is between 
the start time minus 20 seconds and the end time plus 20 seconds of one ground truth event: 
 
                                                                           
 
Figure 3.15 represents that. 
  

         FALSE POSITIVE 
Each time the condition for true positive is not satisfied, the event is classified as false 
positive: 
 
                                                                           

        FALSE NEGATIVE 
Each time one ground truth event has no matching in inferred events, this count as a false 
negative: 
 
                                                                            

 

 
Figure 3.15: Concept of true positive computation 

 
 

E. Metrics are computed using equations (1.4), (1.5) and (1.6). F-score, precision and recall are 
used in this work. 

 

ENERGY EVALUATION 

Main purpose of NILM work is to provide users energy consumption of appliances, in order to 
increase people awareness of how each device specifically contributes to their total energy demand. 
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Task of energy evaluation is somewhat more appliance-specific than event evaluation. What is 
described here is related to Type 1 appliances with regular behaviour. If necessary, extension to other 
devices will be specified later. 

Two quantities are necessary at the beginning: average runtime and average power of the appliance. 

AVERAGE RUNTIME 

Using plug data in training days, ON and OFF transitions times are detected. The difference between 
each OFF and ON time is computed. The average of all these differences becomes average runtime. 

AVERAGE POWER 

Same ON and OFF transition times are used. The integral of plug level consumption in training is 
computed and divided by the whole time when the appliance is running, which is the sum of all the 
differences used for average runtime. 

 

Now it is possible to compute energy consumption vector as follows. It is a vector with length equal to 
the whole evaluation period’s number of samples. For each assigned event e(i)  and its time t(i): 

A. If event e(i) is positive, potential off events are searched between t(i) and {t(i) + val • average 
runtime}. val is a parameter that can change between each appliance. If the appliance has a 
consistent behaviour, val can be set slightly higher than 1. That means that each usage has more 
or less the same length. If length of a single usage is variable, val has to be increased. 
 

a. If there is a match, energy consumption is set equal to average power for all the samples 
between the two events. If there are more matches, the closer one is kept. 

b. Otherwise energy consumption is set equal to average power for all samples between t(i) 
and {t(i) + average runtime}. 

 

B. If else e(i) is negative, energy consumption is set equal to average power for all samples between 
{t(i) - average runtime} and t(i). 

 

Vector energy consumption represents now estimated power profile, computed by the algorithm on 
the basis of assigned events. This vector is used to evaluate metrics related to energy. 

 

Figure 3.16: energy consumption vector for fridge in REDD 1. In blue the ground truth profile  
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ENERGY METRICS 

Metrics used are F-score, Precision, Recall and Deviation in Percentage. First it is necessary to 
compute True positives, False positives and False negatives numbers. This is done comparing energy 
consumption vector to ground truth active power measures. A threshold is set in order to define 
whether the appliance is ON or OFF in ground truth and estimated power profile. For each sampling i: 

 
                                                                  

                                                                
   (3.11) 

 

 
                                                                    

                                                                  
  (3.12) 

  

 TRUE POSITIVES 

 A true positive occurs at the i –th sample if both profiles are ON in it. 

  

 FALSE POSITIVES 

 For each i where estimated profile is ON and ground truth is OFF. 

  

 FALSE NEGATIVE 

 For each i where ground truth profile is ON and estimated one is OFF. 

 

With TP, FP and FN is possible to compute F-score, Precision and Recall. To compute Deviation in 
Percentage integrals of estimated and ground truth power profiles are used to compute estimated and 
ground truth energies. 

                          
                                         

                   
  (3.13)  

 

USAGE EVALUATION 

Usage detection’s goal is to determine how many times a specific appliance runs each day. 
Computation is performed as follows. 

 

USAGE DETECTION 

For each day assigned events of appliance in question are considered. It is necessary to determine a 
parameter called usage duration, specific for each appliance and indicative of the runtime of it. The 
algorithm runs through events eday(i) in that way, until there are still events in considered day: 

A. If there is an event eday(i), the number of usages is increased by 1. 
 

B. Algorithm then skips all the events after eday(i) and until {t(i) + usage duration}. 
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C. If another event is found after that time window, number of usages is increased by 1. Then 
repeat from step B. 

That is iterated for each day, until there are events in it. 

 

Figure 3.17: Example of usages in one day of a kettle 

 

Same routine is then applied to ground truth data in evaluation period. This gives information about 
actual number of usages of the appliances. At this point for both ground truth data and assigned events 
number of usages for each day is available. TP, FP and FN can be computed. 

 TRUE POSITIVES 

For each day the number of true positives is the minimum between ground truth usages and 
inferred usages 

 FALSE POSITIVES 

For each day, if inferred usages are more than ground truth ones, their difference is the 
number of false positives.  

 FALSE NEGATIVES 

When instead ground truth usages are more than inferred ones, their difference is the number 
of false negatives for that day 

All TP, FP and FN of each day are then summed up. It is now possible to compute F-score, Precision 
and Recall. 
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3.3 RESULTS AND DISCUSSION 

The two algorithms have been used for several experiments on datasets described in 3.2.2. A good 
number of these experiments is reported in Appendix E. 

 

3.3.1 ALGORITHMS COMPARISON 
Nearly all the experiments in Appendix E have been performed for both algorithms. It is therefore 
possible to compare them. 

 

ACTIVE POWER – BASED EXPERIMENTS 

Using Tables F1 – F10 in Appendix F, Tables 3.2 and 3.3 are composed. For each household Table 
3.2 details for how many appliances one algorithm outperform the other in that specific metric. Only 
differences higher than 3 % in absolute value are taken into account. 

 F-SCORE PRECISION RECALL 
HOUSE WEISS HART WEISS HART WEISS HART 
REDD1 4 2 4 2 3 2 
REDD2 3 0 2 0 2 1 
REDD3 2 0 3 1 2 1 
REDD4 2 1 3 0 2 1 
UKDALE 1 2 3 1 1 2 3 
UKDALE 2 1 3 1 2 1 3 
ECO1 1 2 1 3 2 2 
ECO2 3 0 3 0 4 0 
ECO4 2 0 2 1 2 0 
ECO5 2 0 2 0 1 0 
       
TOTAL 22 11 22 10 21 13 

Table 3.2: Weiss vs Hart performances, P only 

In Table 3.3 cooling appliances only are taken into account. Symbol ‘•’ is placed on the column of the 
algorithm that performs better. 

 F-SCORE PRECISION RECALL 
HOUSE WEISS HART WEISS HART WEISS HART 
REDD1 •   •  •  
REDD2 •  •  •  
REDD3 •  •  •  
REDD4 •  •  •  
UKDALE 1 •  •  •  
UKDALE 2 •  •  •  
ECO1/Freezer  • •  •  
ECO1/Fridge •   • •  
ECO2/Freezer •  •  •  
ECO2/Fridge •  •  •  
ECO4/Freezer •  •  •  
ECO4/Fridge •  •  •  
ECO5/Fridge •  •  •  
       
TOTAL 12 1 12 1 13  

Table 3.3: Weiss vs Hart performances on cooling appliances  
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P – Q BASED EXPERIMENTS 

Using Tables F11 – F17 in Appendix F, Tables 3.4 and 3.5 are composed. For each household Table 
3.4 details for how many appliances one algorithm outperform the other in that specific metric. Only 
differences higher than 3 % in absolute value are taken into account. 

 F-SCORE PRECISION RECALL 
HOUSE WEISS HART WEISS HART WEISS HART 
UKDALE 1 3 3 1 1 2 2 
UKDALE 2 2 1 2 0 2 2 
UKDALE 5 1 3 0 3 1 3 
ECO1 2 2 2 2 2 2 
ECO2 3 1 1 0 3 1 
ECO4 2 1 0 1 2 1 
ECO5 2 0 1 0 1 1 
       
TOTAL 15 11 7 7 13 12 

Table 3.4: Weiss vs Hart performances, P and Q 

 

In Table 3.5 cooling appliances only are taken into account. Symbol ‘•’ is placed on the column of the 
algorithm that performs better. ‘//’ stands for equality, when the difference is less than 3%. 

 

 F-SCORE PRECISION RECALL 
HOUSE WEISS HART WEISS HART WEISS HART 
UKDALE 1 •  •  // // 
UKDALE 2 // // // // •  
UKDALE 5 •  // // •  
ECO1/Freezer  • •   • 
ECO1/Fridge •  •  •  
ECO2/Freezer •  •  •  
ECO2/Fridge •  // // •  
ECO4/Freezer •  // // •  
ECO4/Fridge •  // // •  
ECO5/Fridge •  // // •  
       
TOTAL 8 1 4 0 8 1 

Table 3.5: Weiss vs Hart performances on cooling appliances 

 

A general sight shows that Weiss algorithm is never outperformed by Hart in all the metrics, as shown 
by rows TOTAL in all four tables above. For cooling appliances this trend is even more accentuated. 
Table 3.4 shows more uniform behaviour between the 2 algorithms. This could be due to absence of 
REDD dataset in this table. Table 3.2 shows that in this dataset Weiss algorithm outperforms Hart’s 
nearly everywhere. More appliance-specific information will be given later if necessary.   



69 
 

3.3.2 ACTIVE AND REACTIVE POWER  
For UKDALE houses 1 and 2 and for all households in ECO dataset experiments have been 
performed both with active power only and with addiction of reactive power. In Appendix G 
comparison of metrics between the two cases is provided specifically at appliance level. In this section 
a summary of that is provided. Table 3.6 summarizes information from Tables G.1 – G.6. Numbers in 
cells represent the number of appliances for which the metric obtained with specified features (P/Q or 
P) outperform the metric with the other feature. Only Differences higher than 3% in absolute value are 
taken into account. 

  

 F-SCORE PRECISION RECALL 
 Weiss Hart Weiss Hart Weiss Hart 
HOUSE P/Q P P/Q P P/Q P P/Q P P/Q P P/Q P 
UKDALE 1 3 2 2 2 3 2 3 1 1 3 1 3 
UKDALE 2 2 1 3 2 5 0 4 1 1 4 1 3 
ECO1 1 1 1 2 3 0 3 0 0 2 0 4 
ECO2 1 2 2 0 4 0 4 0 0 3 2 1 
ECO4 2 1 2 1 3 0 3 0 1 1 2 1 
ECO5 0 2 0 1 1 0 1 0 0 2 0 2 
             
TOTAL 9 9 10 8 19 2 18 2 3 15 6 14 

Table 3.6: P/Q vs P, performances 

 

From F-score it is not possible to discriminate one set of features as better in term of disaggregation 
performances. As it can be seen in TOTAL row, 9 appliances are better disaggregated with P/Q 
features, and 9 with P only using Weiss algorithm. They are 10 and 8 for Hart algorithm. 

Precision metric scores in Table 3.6 show clearly that adding Q as feature precision increases in the 
majority of cases. 

Recall generally decreases using P/Q features. It is expected because the addition of a feature 
increases selectivity of algorithms on events. 

According to these results, it is not possible to determine that reactive power increases significantly 
results of employed algorithms. What can be said is that it boosts precision at the expense of recall. 
For energy evaluation purposes good precision is very important, while recall can be not too high. As 
it has been explained in 3.2.5, use of average runtime parameter allow to predict consumption profile 
quite well even if some events are missing. If otherwise false positive events are present, they are used 
to add sequences of samples where the appliance is estimated ON. That can change value of predicted 
energy significantly, especially in presence of many false positives (low precision). 

  



70 
 

3.3.3 HIGH POWER APPLIANCES 
In this section results obtained with major appliances are presented. High power appliances are 
defined here as appliances characterized by events with magnitude in active power generally higher 
than 2400 W. Table 3.7 details results in event detection of these appliances. 

 

Dataset/ 
household 

Appliance F-score 
Weiss 

F-score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Features 

REDD 1 Washing 
machine 0.9361 0.9495 0.9909 0.9912 0.8871 0.9113 0.1 P 

REDD 1 Oven 0.7805 0.6842 0.9412 0.9286 0.6667 0.5417 0.1 P 

REDD 3 Washing 
machine 0.9465 0.9194 1.0000 1.0000 0.8985 0.8507 0.1 P 

          
UKDALE 

1 Kettle 0.8888 0.9093 0.8706 0.8969 0.9079 0.9221 0.1 P/Q 

  0.9433 0.9557 0.9769 0.9810 0.9119 0.9316 0.1 P 
UKDALE 

2 Kettle 0.9174 0.9183 0.9952 0.9937 0.8509 0.8536 0.1 P/Q 

  0.9141 0.9303 0.9874 0.9969 0.8509 0.8720 0.1 P 
UKDALE 

5 Kettle 0.8199 0.8862 0.8924 0.9440 0.7582 0.8352 0.05 P/Q 

Table 3.7, Results in event detection for High Power appliances 

 

 

Figure 3.18: Overall event metrics for high power appliances  
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As can be seen from Figure 3.18, metrics are usually higher than 0.8 for all appliances. Only in 
REDD1/oven there is a drop in performances, with still high precision and F-score not far from 0.8, 
using Weiss algorithm. In general it seems that for all these appliances both algorithms and set of 
features can be used for energy disaggregation. Following disaggregation is performed using Weiss 
algorithm and P/Q when available. 

Table 3.8 details energy metrics (described in 3.2.5) obtained for appliances in question, and using 
events obtained from experiments in Table 3.7. 

 

Dataset/ 
household Appliance F score Precision Recall Deviation % 

UKDALE 1 Kettle 0.7446 0.6893 0.8095 0.1888 
UKDALE 2 Kettle 0.9173 0.9370 0.8984 0.0493 
UKDALE 5 Kettle 0.7758 0.7818 0.7699 0.0273 

REDD 1 Washing 
machine 0.7437 0.9468 0.6123 0.0704 

REDD 3 Washing 
machine 0.4851 0.9992 0.3203 0.1106 

REDD 1 Oven 0.5613 0.7407 0.4519 0.3326 
Table 3.8: Energy metrics for High power appliances 

 

Deviation in percentage has been underlined in the table. That metric describes how energy predicted 
is far from ground truth value. As far as we know, there are no guidelines that state an acceptable error 
threshold for Deviation % for this kind of applications. In this work 20% of error is considered 
acceptable. For REDD1/Oven, the only appliance with problems in event metrics, Deviation in 
percentage is still very high. In particular analysing other metrics Recall is quite low. On the contrary 
for kettle in UKDALE 1 Precision is lower than in all other cases. To increase recall for Oven the 
experiment is run again increasing parameter r up to 0.2, in order to catch more events. For kettle in 
UKDALE 2 r is decreased to 0.05 in order to discard false positive events from assigned ones. That is 
likely going to increase precision. Table 3.9 shows updated results in energy metrics. 

 

Dataset/ 
household Appliance F score Precision Recall Deviation % 

REDD 1 Oven 0.7329 0.7899 0.6836 0.0532 
UK DALE 1 Kettle 0.7467 0.7313 0.7627 0.0559 

Table 3.9: Energy metrics for High power appliances, updates 

 

As expected, Recall is increased for Oven and precision for Kettle too. Deviation in % is better now 
for both cases. 

Figure 3.19 summarizes results achieved in Deviation for all the appliances used in this section.  
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Figure 3.19: Deviation in % for high power appliances 

 

 

Figure 3.20: Example of actual consumption and predicted one for Washing machine, REDD 1. Time 
covered in this picture is about one hour and a half 
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3.3.4 COOLING APPLIANCES 
The most represented appliances in experiments (reported in Appendix E) are Fridges and Freezers. 
Despite being appliances with low power draw, they show relatively good performances, especially in 
term of Precision. Table 3.10 summarizes event metrics for cooling appliances. 

 

Appliance HOUSE/ 
DATASET 

F-score 
Weiss 

F-score 
Hart 

Precision 
Weiss 

Precision 
Hart 

Recall 
Weiss 

Recall 
Hart 

Param. 
r Features 

Fridge REDD 1 0.5971 0.5198 0.8297 0.7517 0.4663 0.3973 0.1 P 
Fridge REDD 2 0.5411 0.4757 0.9204 0.7254 0.3832 0.3539 0.1 P 
Fridge REDD 3 0.6087 0.5250 0.8463 0.6214 0.4753 0.4544 0.1 P 
Fridge REDD 4 0.6068 0.4223 0.8988 0.6796 0.4580 0.3063 0.1 P 
Fridge UKDALE 1 0.7639 0.7250 0.9433 0.8605 0.6418 0.6265 0.2 P/Q 

  0.4448 0.3353 0.6354 0.3273 0.3421 0.3437 0.2 P 
Fridge UKDALE 2 0.7865 0.7641 0.9787 0.9779 0.6573 0.6269 0.2 P/Q 

  0.7744 0.6959 0.8522 0.6972 0.7096 0.6946 0.2 P 
Fridge UKDALE 5 0.8965 0.7571 0.9939 0.9812 0.8166 0.6163 0.1 P/Q 
Freezer ECO 1 0.4922 0.6884 0.8904 0.8012 0.3401 0.6034 0.1 P/Q 

  0.5259 0.5914 0.7170 0.5310 0.4152 0.6673 0.1 P 
Fridge ECO 1 0.4526 0.2447 0.9696 0.7578 0.2952 0.1459 0.1 P/Q 

  0.4384 0.3432 0.4330 0.5457 0.4439 0.2503 0.1 P 
Freezer ECO 2 0.8379 0.5747 0.9961 0.7973 0.7230 0.4492 0.1 P/Q 

  0.8634 0.4485 0.8246 0.7386 0.9060 0.3220 0.1 P 
Fridge ECO 2 0.9302 0.5033 0.9901 0.9793 0.8772 0.3387 0.1 P/Q 

  0.9297 0.4910 0.9324 0.8599 0.9271 0.3436 0.1 P 
Fridge ECO 4 0.6505 0.6141 0.5322 0.5244 0.8363 0.7408 0.1 P/Q 

  0.5883 0.4131 0.4497 0.3431 0.8502 0.5191 0.1 P 
Freezer ECO 4 0.6134 0.5580 0.9984 0.9991 0.4427 0.3871 0.1 P/Q 

  0.5529 0.3159 0.8789 0.3709 0.4033 0.2751 0.1 P 
Fridge ECO 5 0.4826 0.2235 0.9961 0.9796 0.3184 0.1261 0.1 P/Q 

  0.5969 0.3940 0.9492 0.6320 0.4354 0.2862 0.1 P 
Table 3.10: Results in event detection for High Power appliances 

 

In Appendix H comparison between different algorithms and features for cooling appliances is 
detailed. Conclusion achieved is that Weiss algorithm with P/Q features is the best solution, so it will 
be employed for remainder of this section.  

Results obtained for energy disaggregation, using events of experiments in Table 3.10, are reported in 
Table 3.11. 

Appliance Dataset/ 
House F score Precision Recall 

Deviation 
in 

percentage 
Fridge UK DALE 1 0.8844 0.9436 0.8323 0.1342 
Fridge UK DALE 2 0.9043 0.9116 0.8971 0.0252 
Fridge UK DALE 5 0.9323 0.9626 0.9039 0.0587 

      
Fridge REDD 1 0.8387 0.9344 0.7607 0.1905 
Fridge REDD 2 0.8797 0.9712 0.8039 0.1775 
Fridge REDD 3 0.8292 0.8878 0.7779 0.1244 
Fridge REDD 4 0.8799 0.9239 0.8398 0.0223 

      
Fridge ECO 1 0.7809 0.9787 0.6496 0.3589 
Freezer ECO 1 0.7963 0.9513 0.6848 0.2731 
Fridge ECO 2 0.9060 0.9698 0.8501 0.0740 
Freezer ECO 2 0.8993 0.9352 0.8660 0.0939 
Fridge ECO 4 0.7180 0.6026 0.8881 0.5177 
Freezer ECO 4 0.8968 1.0000 0.8128 0.0597 
Fridge ECO 5 0.8388 0.9927 0.7261 0.2821 

Table 3.11: Energy metrics for cooling appliances  
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Results in energy disaggregation are promising in many cases. Problems are in ECO 4/fridge, ECO 
5/fridge and ECO 1/fridge and freezer. Fridge in ECO 4 is the only Cooling appliance with low 
precision in energy metrics (see Table 3.10). It means that a good percentage of assigned events are 
false positives. That produces low precision in energy metrics too. 

The other problematic appliances are characterized by low recall in event metrics, as shown in Figure 
3.21.  

 

 

Figure 3.21: Recall in event metrics, cooling appliances 

 

For these three appliances new experiments are run with parameter r changed from 0.1 to 0.2. This is 
supposed to increase recall in event metrics. New results both in events and energy metrics are 
reported in Table 3.12 and 3.13. It is clear that improvement is significant compared to previous 
results. Figure 3.22 compare results with the two values of r. 

 

Appliance House F score Precision Recall Parameter r 
Freezer ECO 1 0.5760 0.7774 0.4574 0.2 
Fridge ECO 1 0.4509 0.6541 0.3440 0.2 
Fridge ECO 5 0.6059 0.9824 0.4381 0.2 

Table 3.12: Events metrics for new experiments, cooling appliances 

 

Appliance Dataset/ 
House F score Precision Recall 

Deviation 
in 

percentage 
Freezer ECO 1 0.9100 0.9377 0.8838 0.0481 
Fridge ECO 1 0.7929 0.8259 0.7624 0.1083 
Fridge ECO 5 0.9630 0.9880 0.9392 0.0670 

Table 3.13: Energy metrics for new experiments, cooling appliances 
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Figure 3.22: Performances increase moving from r = 0.1 to r = 0.2 

 

After this adjustment, nearly all deviations are within 20%, so energy disaggregation can be 
considered good. As said before, fridge in ECO 4 is the only problematic appliance. A reason for that 
could be the similarity between features of fridge and freezer in that household, as can be seen in 
Table 3.14. Moreover that table shows that Weiss algorithm has achieved good results in 
disaggregation of cooling appliances that are, in certain cases, very small, like fridge and freezer in 
ECO 1. A reason for good performances with cooling appliances could be the fact that they are 
running all the day, with a good number of events for each day. If there is an error with some events 
unassigned or with false positives, it is less relevant if the number of correctly assigned events is quite 
high, which is the case here. 

 

Appliance Dataset/ 
House 

Active Power 
signature 1 (W) 

Active Power 
signature 2 (W) 

Fridge UK DALE 1 96 -80 
Fridge UK DALE 2 85 -74 
Fridge UK DALE 5 124 -95 
Fridge REDD 1 221 -171 
Fridge REDD 2 253 -229 
Fridge REDD 3 129 -113 
Fridge REDD 4 138 -116 
Fridge ECO 1 60 -45 
Freezer ECO 1 29 -30 
Fridge ECO 2 80 -69 
Freezer ECO 2 62 -50 
Fridge ECO 4 112 -87 
Freezer ECO 4 106 -94 
Fridge ECO 5 142 -103 

Table 3.14: Active power signatures of cooling appliances 

 

Another highlight has to be done on Recall. While in event metrics it is quite low, it increases in 
energy metrics in all cases. The explanation is simple. One refrigerator cycle is detected with two 
events, turn on and turn off. If hypothetically only one event is detected for each cycle, the overall 
recall will be 50%. When energy consumption is computed, each ON event is paired with an OFF 
event, if it is found within a time window following this event, as described in 3.2.5. In that way 
consumption profile is easily traced. If instead one ON or one OFF event is unmatched with other near 
events opposite in sign, consumption profile is predicted placing a hypothetic event at a time distance 
equal to parameter average runtime, described in 3.2.5 too. That works quite well in the case of 
cooling appliances, due to their regular behaviour. Figure 3.22 claims to give a graphical explanation 
of that. The first graph details assigned and unassigned events, the second one the reconstructed power 
profile for the appliance.  
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*continuous lines are positive events, dashed lines are negative ones. Green events are true positives, red false positives and 
grey false negatives. 

Figure 3.22: Reconstruction of Fridge’s consumption profile, REDD 3  
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3.3.5 KETTLES AND STOVES 
All kettles have been disaggregated with good results (Table 3.15). In this section energy metrics are 
reported. Weiss algorithm with P/Q features has been used for this computation. 

Dataset/Household F-score Precision Recall Parameter r 
UKDALE 1 0.8888 0.8706 0.9079 0.1 
UKDALE 2 0.9174 0.9952 0.8509 0.1 
UKDALE 5 0.8199 0.8924 0.7582 0.05 
ECO 1 0.9095 0.9179 0.9013 0.1 
ECO 2 0.8184 0.9754 0.7049 0.1 

Table 3.15: Events metrics for Kettles 

Results in event metrics are consistent, so energy metrics are expected to be positive to. Table 3.16 
confirms that. Deviation is below 20% for all the cases. 

Dataset/Household F score Precision Recall Deviation in % 
UKDALE 1 0.7446 0.6893 0.8095 0.1888 
UKDALE 2 0.9173 0.9370 0.8984 0.0493 
UKDALE 5 0.7758 0.7818 0.7699 0.0273 
ECO 1 0.8920 0.8490 0.9396 0.1230 
ECO 2 0.9635 0.9546 0.9726 0.0223 

Table 3.16: Energy metrics for Kettles 

 

All stoves considered in experiments have been disaggregated with good results (Table 3.17). They 
are only three so they can’t show a significant trend. Event metrics are characterized by excellent 
precision in all cases. Only recall in REDD 4 is relatively low. Energy metrics reported in Table 3.18 
proof that a good energy prevision can be done with these appliances. 

Dataset/Household F score Precision Recall Parameter r 
REDD 2 0.9803 0.9836 0.9770 0.1 
REDD 4 0.7804 0.9677 0.6538 0.1 
ECO 2 0.9981 1.0000 0.9962 0.1 

Table 3.17: Events metrics for Stoves 

Dataset/Household F score Precision Recall Deviation 
REDD 2 0.7854 0.7596 0.8129 0.0898 
REDD 4 0.7985 0.8120 0.7855 0.0222 
ECO 2 0.7367 0.7999 0.6828 0.1389 

Table 3.18: Energy metrics for Stoves 

 

To achieve results in Table 3.18 a modification in energy evaluation routine presented in 3.2.5 has 
been done. It can be seen from Figure 3.23 that the power behaviour is characterized by a first long 
period of constant consumption and by several ON – OFF cycles, in order to to keep the temperature 
constant. If the system miss the first period, a significant error is produced. In that case the 
reconstruction using average runtime parameter will set the power for a period too short, comparable 
to the minor ones that follow the first.  
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a) Ground truth active power of one usage 

 

b) Reconstructed active power of one usage 

 

c) overlap of the two profiles 

Figure 3.23: Ground truth and reconstructed active power profiles for stove, REDD 2  
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To solve this problem the system check the beginning of each usage and, if power is not constant for a 
long enough time window, all samples between the first 2 ON periods in consumption profile are set 
to average power. This solution worked well in the examined cases. 

 

3.3.6 MID/HIGH POWER APPLIANCES 
If we consider the other appliances with active power draw between 1000 and 2400 W, three 
categories are well represented: microwaves, dishwashers and washing machines. For these appliances 
results obtained are variable. They are gathered together in Table I.1. Focus of this section is on these 
3 appliances. 

 

MICROWAVES 

Event results in microwave are presented in Table 3.19. Experiments reported here are the ones with 
P/Q features, with exception of REDD dataset, where only P is available. 

 

DATASET/HOUSE/ 
APPLIANCE 

F-score 
Weiss 

F-score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Param. r 

REDD 1/Microwave 0.6557 0.6084 0.9610 0.8200 0.4977 0.4836 0.1 
 0.6641 0.6214 0.9620 0.8269 0.5070 0.4977 0.8 
REDD 2/Microwave 0.9036 0.7556 0.9785 1.0000 0.8393 0.6071 0.1 
REDD 3/Microwave 0.7715 0.7314 0.7667 0.6543 0.7763 0.8289 0.1 
 0.7548 0.6935 0.7231 0.5895 0.7895 0.8421 0.5 
UKDALE 1/Microwave 0.8812 0.8159 0.9865 0.9857 0.7962 0.6960 0.1 
UKDALE 2/Microwave 0.6673 0.9086 0.9518 0.9809 0.5138 0.8462 0.1 
 0.7857 0.8760 0.8263 0.8754 0.7489 0.8766 0.3 
 0.8121 0.8237 0.7390 0.7176 0.9013 0.9666 1 
ECO 4/Microwave 0.5529 0.7001 0.9327 0.9911 0.3929 0.5412 0.1 
ECO 5/Microwave 0.7182 0.6744 0.6735 0.5530 0.7692 0.8643 0.1 

Table 3.19: Event metrics in microwaves 

 

Performances are good but some problem are present in few cases. A good energy evaluation doesn’t 
seem possible for all the cases so the focus of the following parts will be on usage detection. 
Comparison between algorithms and features is not reported here, but can be done starting from Table 
3.19. In majority of cases results of different algorithms are similar, with some experiments in favour 
of both algorithms. In continuity with 3.3.3 – 3.3.5, Usage detection has been performed with results 
from Weiss algorithm and P/Q features when available. Table 3.20 report results. 

 

Dataset/house F score Precision Recall Parameter r 
REDD 1 0.757576 1.000000 0.609756 0.8 
REDD 2 1.000000 1.000000 1.000000 0.1 
REDD 3 0.800000 0.666667 1.000000 0.05 

UK DALE 1 0.966486 0.984581 0.949045 0.1 
UK DALE 2 0.950108 0.948052 0.952174 0.1 

ECO 4 0.928571 0.951220 0.906977 0.1 
ECO 5 0.733333 0.666667 0.814815 0.055 

Table 3.20: Usage metrics in microwaves 
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Figure 3.24: Usage metrics in microwaves 

 

In 4 out of 7 examples results are excellent in all metrics. In REDD 1 recall is low, while for REDD 2 
and ECO 5 there are precision problems. 

Household 1 in REDD is problematic because three appliances in it have features that are very close, 
as can be seen from Table 3.21. 

Appliance ON event signature OFF event signature 
Microwave 1524.60 -1520.03 
Water kettle 1530.13 -1527.96 
Bathroom gfi 1505.96 -1536.66 

Table 3.21: Features of mid/high power appliances in REDD 1 

If one event is detected, it is assigned to the correct appliance only if it is extremely close to the 
signature. Considering that power variability of events of a single appliance is certainly higher than 
the small differences between these signatures, the result is a random assignment to one of the three 
appliances. Figure 3.25 shows how some events are wrongly assigned between microwave and kettle 
in REDD 1. Reactive power is not available so it is not possible to see if it differentiate signatures of 
these appliances better. In 3.3.7 considerations about introduction of time usage patterns will be done. 

In REDD 3 and ECO 5 low precision in event detection is reflected in low precision in usage metrics. 

 

DISHWASHERS AND WASHING MACHINES 

In Table I.2 event results for dishwasher and washing machines are reported. With some exception 
they are quite low. Next section will consider introduction of time patterns to increase disaggregation 
metrics. Washing machines considered in 3.3.3 are not reported here. Actually in REDD they are 
labelled as washer dryers, and their power draw is significantly higher than other washing machines. 
They have been considered washing machines in event detection only for simplicity. 

 

  

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

REDD 1 REDD 2 REDD 3 UK DALE 1 UK DALE 2 ECO 4 ECO 5 

Performances in usage detection, microwaves 

 F score Precision Recall 



81 
 

 

 

*Events are represented by vertical bars. Red bars are false positives, green true positives and grey 
false negatives. 

Figure 3.25: Confusion in assignment of events between kettle and microwave, REDD 1. 
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3.3.7 MID/HIGH POWER APPLIANCES AND TIME OF THE DAY 
PATTERNS 
For all the appliances considered in 3.3.6 time patterns have been studied. All the graphs are reported 
in Appendix J. Goal of this section is to evaluate if time information can improve disaggregation of 
loads. 

 

TRAINING LENGTH 

Whereas a relatively short training phase is sufficient to infer power signatures, deduction of time 
patterns needs more time. Many events are necessary to build a time pattern graph during training 
phase that is similar to what is going to happen during evaluation. Figure 3.25 compares Dishwashers 
in REDD 1 and UKDALE 2. A day has been divided in 48 time windows, and for each window 
graphs show the number of events detected. In REDD 1 during training phase activity is detected 
mainly between 16.30 and 22. In evaluation period events are before and after this time window, but 
no activity is recorded in it. If training information is used to select only events that occur in the same 
time windows as in training, most of the good events will be discarded, producing significant error. In 
UKDALE 1, on the other hand, profiles are very similar. In this case training phase can be used to 
improve performances. Unfortunately for this appliance event metrics are already excellent. The main 
difference between the two appliances is the number of events detected in training phase: they are a 
few dozens for REDD 1 and some hundreds for UKDALE 2. Time covered in training phase is 6 days 
for REDD and 20 for UKDALE. Probably the order of magnitude of a significant training is one or 
few months. 

 

 

Figure 3.26: Events time patterns of Dishwashers in REDD 1 and UKDALE 2  
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SIMILARITIES FOR THE SAME APPLIANCE 

Even if cases studied are few, no recurrent trends are evident for the same appliance in different 
households. In general dishwashers and microwaves should be connected to meals times. For 
dishwasher there are great differences. Figure 3.26 show the case of an activity that is mainly focused 
in the evening. In UKDALE 1 (Fig J.11) activity is mainly during morning and evening time. In 
REDD 1 and in REDD 4 activity is mainly during night time (Fig J.8 and J.10). 

Microwave activity is differently distributed between morning, lunch and dinner. In ECO 4 and ECO 
5 major peaks are during lunch time (Figures J.6 and J.7). In UKDALE 1 on the other hand lunch 
time is the moment of lower activity (Fig. J.4). In REDD 2 there’s plenty of night time activity (J.2). 

In general the indication provided by Figures J.1 – J.17 is that habits of different households affect 
patterns of usages of these appliances significantly, so general trends can’t be determined, at least with 
data in our possession. 

 

METRICS IMPROVEMENTS 

Using information provided by time analysis during training phase, number of events for each of the 
48 divisions of the day is produced. A threshold is determined. All the divisions that have number of 
events higher than this threshold are considered allowed divisions. 1 or 2 divisions adjacent to allowed 
ones are considered allowed too. The algorithm is run as usually, but in the end results are refined by 
discarding events that don’t occur during allowed divisions. Results and comparisons with metrics 
obtained without time information are reported in Table 3.21. Weiss algorithm with P/Q features has 
been used when available. 

 

DATASET/HOUSE/ 
APPLIANCE 

F-score  F-score  
TIME 

Precision 
 

Precision  
TIME 

Recall Recall 
TIME 

Parameter 
r 

REDD 3/Microwave 0.6803 0.7513 0.7200 0.9000 0.6447 0.6447 0.05 
 0.7715 0.7780 0.7667 0.7797 0.7763 0.7763 0.1 
 0.7548 0.7864 0.7231 0.7833 0.7895 0.7895 0.5 
ECO 5/Microwaves 0.8111 0.8132 0.9772 0.9834 0.6932 0.6932 0.055 
 0.8301 0.8038 0.9560 0.9756 0.7335 0.6834 0.065 
 0.7472 0.7687 0.6730 0.7551 0.8397 0.7827 0.1 
 0.7586 0.8062 0.6194 0.7246 0.9784 0.9086 0.2 
REDD 2/Dishwasher 0.5581 0.7742 0.3871 0.6316 1.0000 1.0000 0.1 
REDD 4/Dishwasher 0.4167 0.5556 0.4167 0.8333 0.4167 0.4167 0.1 
 0.1818 0.4444 0.1111 0.4000 0.5000 0.5000 0.3 
UKDALE1/Dishwasher* 0.2554 0.4264 0.1622 0.3525 0.6000 0.5393 0.1 
 0.1851 0.3435 0.1066 0.2379 0.7036 0.6179 0.3 
UKDALE5/Dishwasher 0.5871 0.40000 0.6774 0.2778 0.5181 0.7143 0.028 
UKDALE1/Washing m. 0.1857 0.1894 0.1107 0.1134 0.5741 0.5741 0.1 
UKDALE2/Washing m. 0.4793 0.4637 0.7105 0.7083 0.3616 0.3446 0.1 
 0.1868 0.4587 0.1173 0.4718 0.4576 0.4463 0.25 
ECO1/Washing m. 0.4238 0.6163 0.3169 0.6346 0.6396 0.5991 0.1 
*These results are different compared to the ones presented in Appendix E. In this case kettle hasn’t been 
considered, in order to get higher recall with dishwasher. Features were similar, so a lot of washing machine 
events were assigned to kettle. 

Table 3.21: Event results, with and without time 

Microwave and dishwasher in REDD 1 are not present because of the difference between training and 
evaluation in time patterns. Appliances with results good already without time information are not 
included. With the only exception of Dishwasher in UKDALE 5, time information has increased or 
kept steady F-score metrics. The main effect of time is increase in precision metric. Figure 3.27 shows 
that there aren’t significant drops in recall. For dishwashers in REDD 4 and in UKDALE 1 and 
washing machines in UKDALE 2 and ECO 1 increase in performance is significant.  
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Figure 3.27: Metrics variation with time. 

 

Washing machine in ECO 1 is a good example of how and when time pattern can increase 
performances significantly, because its time of usage is focused in few hours of the day (Figure 3.28). 
That allow to discard events in a broad portion of daytime. Figure 3.29 shows how some false 
positives events are not present anymore after use of time information.  
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Figure 3.28 
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a) without time information 

 

b) with time information 

Figure 3.29: Effect of time pattern on disaggregation, washing machine ECO 1  
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3.3.8 DISCUSSION 
In 3.2.1 four goals for these experiments have been listed. The discussion will follow the same 
structure. 

1. Understand which algorithm performs better, using different datasets and features. 
 
In section 3.3.1 it is showed that from a generic point of view Weiss algorithm seems to perform 
better, especially for cooling appliances, where it outperforms Hart nearly in all the cases. For 
other appliances the difference is more subtle, and in certain cases Hart performs better. 
 

2. Understand which appliances among the analysed ones are well disaggregated by algorithms. 
 
Energy computation has been possible with good results for cooling appliances (3.3.4), with the 
exception of one device only. Given the significant number of appliances analysed with very 
different power ratings that study gives a good indication that Weiss algorithm seems consistent 
in disaggregation of fridges and freezers. Appliances with high power draw are well 
disaggregated too with both algorithms, because their features are well separated from the others 
in features space. Section 3.3.3 details that. In general kettles and stoves showed good 
performances too (3.3.5). Other three great categories analysed are microwaves, dishwashers and 
washing machines. 
Better results have been achieved with microwaves, but in some cases metrics aren’t good enough 
to hope to get good energy evaluation. Dishwasher and washing machines share inconstant 
results, with some peaks of excellent disaggregation and appliances with poor metrics. From a 
generic point of view the features of these 3 categories of appliances are in a region of the 
features space that seems to be crowded by many events for many houses. These events belong to 
different appliances, so that produces confusion in assignment. Another problem should be the 
simplification explained in Figure 3.12. For Dishwasher and washing machines only a certain 
category of their events have been involved in disaggregation process, as it has been done in other 
studies in literature ([11]). Further work has to be done on these devices, in order to create a more 
complex appliance model and to verify if it is usable in real world applications. 
 

3. Introduction of time of the day feature in load disaggregation. 

Section 3.3.7 gives considerations about employing time patterns for mid/high power appliances. 
As far as we know, this is the first time that this has been done for supervised NILM work. 
Effectiveness of including time patterns in evaluation is specific for each appliance and dependent 
to behaviours of users, which can be more or less regular. The main drawback is the long training 
phase that is necessary to pick up enough information to produce a significant time profile. 
Results presented in Table 3.21 and Figure 3.27 show that increases of performance are possible, 
and only in one case metrics decrease using time. That shows that time feature can be used to 
boost quality of disaggregation, but its applicability has to be investigated more. In none of the 
cases studied the increase of event performances is good enough to applicate energy computation 
of good quality. 
 

4. Critical discussion of power disaggregation using P and eventually Q only as features. 
 
Section 3.3.2 compares use of active power only and the introduction of reactive. Only for 
cooling appliances it can be safely said that P/Q features produce better results in general. For the 
other cases using P/Q precision is almost ever equal or better than using P only. P based 
experiments are characterized in general by better recall. Use of P only can’t be excluded for 
further studies, especially for appliances with medium/high power rating. 
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4 CONCLUSIONS 
 

4.1 SUMMARY 

This work has focused on three algorithms, one unsupervised (EICCA-NILM) and two supervised 
(HART and WEISS). EICCA-NILM has been proposed in literature but without significant 
experimental validation ([15] – [17]), that have been done here (chapter 2). Extension to both real and 
reactive power has been done, which is a novelty for this method. 

Poor results with unsupervised algorithm led us to focus on two supervised work, a well-known 
algorithm (3.1.1) and a relatively new one (3.1.2). They have been compared step by step, with a good 
number of experiments (Appendix E), and with different features availability. Evaluation 
methodology has been deeply explained (3.2.5), so it is clear how results have been obtained. 
Considerations on groups of appliances have been done, to test strengths and weaknesses of these 
methods. Use of time of the day information have been tested to investigate its utility in supervised 
NILM.  

 

4.2 IMPLICATIONS OF RESULTS 

Low resolution - steady state based features are the only features currently available from domestic 
smart meters. Many works in NILM field investigate the possibility to provide complete 
disaggregation of domestic loads using these features only. Many methods have been proposed, but 
experimental validation is quite limited. Sometimes it is done with few loads in a controlled 
environment, like in [19]. In these cases results are almost ever excellent, but not significant for a real 
world implementation, where problems are way more. Other times evaluation is done on public 
datasets, with complete arbitrary choice of what data, what households and what days to use. This 
makes comparisons between methods nearly impossible. Moreover algorithms described in papers are 
not easy to be replicated by other researchers, so to perform parallel comparisons. In last years the 
introduction of publicly available toolkits ([25] and [38]), with more methods already implemented, is 
an advantage for new researches. 

 

4.2.1 UNSUPERVISED RESULTS 
Experiments and results presented in chapter 2 point out the difficulty of EICCA - NILM to produce 
good results. In most cases it is not possible to detect appliances. Complete resolution of problems 
seems impossible. In other works unsupervised methods are criticized, like in [11], where Kolter 
algorithm [36] is not able to produce any correct results. This work reinforces the thesis that 
unsupervised algorithms, despite very appealing for no need of initial intrusive period, are very 
susceptible to the environment where they are supposed to work, and difficult to apply with consistent 
results on different houses. In specific case of EICCA-NILM, many parameters have to be determine 
so the setup is not easy. 

This algorithm in particular rely on the assumption that events of appliances produce, in 1 
dimensional P space or, as in cases studied, in 2D P/Q space, a scatter plot with distinct sets of events. 
These sets are supposed to represent specific appliance power states, allowing clustering and correct 
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modelling. In experiments performed here it is clear that this happens only in certain cases. This is a 
general indication also for other algorithms: load events are not completely distinguishable using these 
features only. 

 

4.2.2 SUPERVISED RESULTS 
In chapter 3 many experiments with supervised algorithms have been presented. They have been 
performed on real world data, with evaluation periods up to 170 days. As far as we know Weiss 
algorithm has been tested before only in house 2 of ECO dataset [11]. A close comparison between 
the 2 algorithms is well detailed too. The result is that for cooling appliances Weiss outperforms Hart, 
whereas for more powerful devices results are more comparable. 

Comparison between use of active power only and addition of reactive power gave us the indication 
that cooling appliances are usually better disaggregated with the full set of features, but for higher 
power appliances active power could be enough in many cases. These supervised algorithms seem to 
be less susceptible to the change of features compared to EICCA-NILM. 

Results have been consistently good with appliances with power draw higher than 2400 W, cooling 
appliances, Kettles and stoves. Appliances with heating elements seem to be easier to detect. 
Microwaves are not always well disaggregated, and for dishwashers and washing machines results are 
inconsistent. These are multi-state appliances that will probably need more sophisticated treatment. 

Use of time of the day of events to increase performances looks promising. Drawbacks are long 
training and applicability not always possible.  

In general these methods are robust only on certain appliances. The core problem is the same as 
before: load events are not completely distinguishable using these features only. 

Moreover a big limit of supervised algorithms is the great level of intrusiveness necessary for the first 
part, united to the presence of parameters (like r) that have to be determined, with great difference in 
results changing them. 

 

4.3 LIMITATIONS AND FUTURE WORK 

To understand better fields of applicability of methods more experiments are necessary, in order to 
increase the number of devices analysed for each appliance category and to introduce more high 
power appliances. Some examples are: electric boilers, electric showers, electric heaters, ovens, 
toasters, air conditioning systems, hairdryers and vacuum cleaners. Some of them are present in 
experiments (Appendix E), but a bigger number of devices is necessary in order to have a more 
general sight. 

EICCA-NILM and Hart algorithms have been implemented using only indications found in relative 
papers. In that way their structure could be different in some parts compared to methods used by their 
creators. 

Only Type 1 appliance models have been used for this work. To test effectiveness of methods, 
especially for some complex loads, Type 2 models have to be created and tested.   
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Data used for experiments are from datasets that have been developed in three different countries, 
with different wiring layouts. That makes the study general but maybe focusing on specific countries 
would allow to be more specific and exploit some characteristics, like multi-phase supply, to separate 
some load groups. Moreover appliances that are common in one country can be unused in another 
one. 

After years of studies a reliable NILM solution hasn’t been found. Research has to continue but the 
task seems ambitious, especially if every electric load present in one household has to be recognized. 
More efforts have to be made to develop cost-effective intrusive solutions that, combined with NILM 
algorithms, can give consistent results for wide-commercial applications.  
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APPENDIX A 
 

Two more clustering methods are here presented. They have been implemented to develop EIC-FCM 
and EICCA method. Symbols and notation are the same used in 2.1. 

 

 A.1 FCM ALGORITHM 

Objective function for FCM (Fuzzy C Means) is the following: 

                       
         

  
   

 
      (A.1) 

 

With the constraints: 

                                
         (A.2) 

 

It is shown in [20] that from (2.1) and (2.2) it is possible to obtain the update equations for cluster 
centers and membership: 

     
 

  
        

        
  

   

 
   

               (A.3) 

 

    
    

   
 
   

    
  

   

               (A.4) 

  

The parameter m is called fuzziness index, taken from [1:+∞]. 

 ALGORITHM DESCRIPTION 

The following are the 5 steps of the algorithm. 

1. Given the Dataset X, the number of clusters C and the threshold ε, initialize V(0) (arbitrary centres 
for the iteration 0) 

 
2. Compute U(0) using eq. (A.3) 

 
3. Update V(k+1) using eq. (A.4) 

 
4. Update U(k+1) using eq. (A.3) 

 
5. If ||V(k+1) – V(k)|| < ε, then output U and V and exit, otherwise k = k+1 and go back to step 3 
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A.2 CA ALGORITHM 

Objective function for CA (Competitive Agglomeration) is the following: 

                     
         

  
   

 
            

 
    

  
    (A.5) 

 

With constraints: 

                                    
        (A.6) 

 

It is shown in [13] that from (A.5) and (A.6) it is possible to obtain the update equations for cluster 
centres and membership: 

        
       

                   
                    (A.7) 

 

   
      

 

        
               (A.7.1) 

 

     
     

           
 
   

     
           

 
 

          (A.7.2) 

 

    
      

   
 
   

      
  

   

               (A.8)  

 

The value of α in eq. (2.7), if too high, may give rise to non-positive uij. To avoid that α is updated 
dynamically using eq. (2.9), where η0 and τ are parameters determined by user. 

              
 

 
 

     
         

  
   

 
   

      
 
    

 
 
   

     (A.9) 

 

Ni is defined as cardinality of the i-th cluster. It is defined as follows: 

         
 
             (A.10) 

 

In CA algorithm, for each iteration clusters with cardinality too low are discarded, in order to 
converge from Cmax (number of initial clusters) to the optimal number of clusters for the analysed 
dataset. 
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 ALGORITHM DESCRIPTION 

As indicated in [13], the following are the 8 steps of the algorithm. 

1. Given the Dataset X, the over specified number of clusters Cmax, iterative threshold ε and 
competitive threshold ε1, initialize U(0) and set the iteration number k to be 0. 

 
2. Compute V(0) using eq. (A.8); Compute the cardinality Ni of every current cluster i, using eq. 

(A.10). 
 
3. Update αk using eq. (A.9). 
 
4. Update U(k+1) using eq. (A.7). 
 
5. Update Ni using eq. (A.10), if Ni < ε1, then give up the cluster and its centre vi. 
 
6. Update the number C of clusters. 
 
7. Update V(k+1) using eq. (A.8). 
 
8. If ||V(k+1) – V(k)|| < ε, then output U, V and C and exit, otherwise k = k+1 and go back to step 3 

 

Initialization of Fuzzy Partition matrix (U) is performed running FCM algorithm for a specified 
number of iterations k0 with number of clusters equal to Cmax. 
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APPENDIX B 
 

Here the dates of days used for experiments in chapter 2 are reported, in order to allow people to 
reproduce them. 

Data have been organized for experiments following the guidelines presented in NILM-EVAL 
framework documentation (link available at [11]). The important thing to know is that for each meter 
and for each day a file was created containing only the 86400 readings for that day, if data are 
provided at one sample per second. Each missing sample is replaced by a -1. The framework 
recognizes missing readings so it avoids to do evaluation on them. 

 

REDD 1 REDD 2 REDD 3 
 

'2011-04-25' 
'2011-04-26' 
'2011-04-27' 
'2011-04-30' 
'2011-05-01' 
'2011-05-02' 
'2011-05-03' 
'2011-05-12' 
'2011-05-23' 

 

 
'2011-04-23' 
'2011-04-24' 
'2011-04-25' 
'2011-04-26' 
'2011-04-27' 
'2011-04-28' 
'2011-04-29' 
'2011-04-30' 
'2011-05-01' 

    
'2011-04-24' 
'2011-04-25' 
'2011-04-26' 
'2011-04-27' 
'2011-04-28' 
'2011-05-18' 
'2011-05-23' 
'2011-05-24' 

 

Table B.1: Training days in REDD experiments 

 
 

UKDALE 1 UKDALE 2 UKDALE 5 
 

'2013-03-17' - '2013-03-30' 
'2013-04-02' - '2013-04-14' 
'2013-04-16' - '2013-04-18' 

     

 
'2013-05-21' - '2013-06-09' 

 
'2014-06-30' - '2014-07-29' 

        

 

Table B.2: Training days in UKDALE experiments 

 

UKDALE 1 UKDALE 2 UKDALE 5 
 

'2013-04-19' - '2013-10-05' 
 

 
'2013-06-10' - '2013-08-04' 
'2013-09-12' - '2013-10-05' 

 

 
'2014-07-30' - '2014-09-06'    

 

Table B.3: Evaluation days in UKDALE experiments 
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APPENDIX C 
Clustering tables, as described in 2.2.4, for experiments conducted with EICCA method. 

 

APPLIANCES TAKEN INTO ACCOUNT FOR EACH HOUSE 

 REDD 1 REDD 2 REDD3 UKDALE 1 UKDALE 2 UKDALE 5 
Fridge • • • • • • 
Kettle •   • • • 
Microwave • • • • •  
Dishwasher • •  • • • 
Washing m. •  •  •  
Oven •     • 
Bathroom GFI •  •    
Cooker • •     
Stove  •     
Electronics*   •    
Hairdryer    •   

Table C.1: Appliances taken into account for each house, for the experiments in chapter 2 

 

PARAMETERS SYMBOLS 

r Entropy index 

η0 Parameter used to compute α (equation 2.9) 

τ Parameter used to compute α (equation 2.9) 

ε Iterative threshold 

ε1 Competition threshold 

agtr Aggregation threshold percentage 

Cmax Over-specified number of clusters 

k0 Number of iterations of EIC – FCM algorithm 

Table C.2: Parameter symbols, for the experiments in chapter 2 

 

PARAMETERS COMMON FOR ALL EXPERIMENTS 

r : 0.5 ε : 1x10-5 

η0 : 1x10-6 Cmax : 50 

τ : 10 k0 : 30 

Table C.3: Parameter fixed for the experiments in chapter 2  
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REDD house 1 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 10 

agtr = 0.32 

Cluster 
ΔP (W) 

ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -34 0.00 386 '///' 0.00 '///' 0.00 '///' 0.00 
2 -79 0.00 111 '///' 0.00 '///' 0.00 '///' 0.00 
3 27 0.00 515 '///' 0.00 '///' 0.00 '///' 0.00 
4 -1048 0.00 54 'Dishwasher' 46.30 'Cooker' 31.48 '///' 0.00 
5 -617 0.00 72 '///' 0.00 '///' 0.00 '///' 0.00 
6 -439 0.00 86 'Fridge' 1.16 'Dishwasher' 1.16 'Washing m.' 1.16 
7 -13 0.00 292 'Washing m.' 0.34 '///' 0.00 '///' 0.00 
8 103 0.00 56 'Microwave' 1.79 '///' 0.00 '///' 0.00 
9 228 0.00 135 'Fridge' 39.26 'Microwave' 0.74 '///' 0.00 

10 -184 0.00 255 'Fridge' 52.94 '///' 0.00 '///' 0.00 
11 5539 0.00 69 'Washing m.' 79.71 'Oven' 13.04 '///' 0.00 
12 -5064 0.00 69 'Washing m.' 78.26 'Oven' 13.04 '///' 0.00 
13 -1512 0.00 126 'Microwave' 71.43 'Bathroom g.' 11.90 'Water kettle' 2.38 
14 1589 0.00 46 'Bathroom g.' 34.78 'Microwave' 19.57 'Dishwasher' 2.17 
15 1089 0.00 72 'Dishwasher' 26.39 'Cooker' 23.61 'Fridge' 12.50 
16 737 0.00 114 'Fridge' 73.68 'Microwave' 0.88 'Dishwasher' 0.88 
17 1457 0.00 58 'Microwave' 48.28 'Water kettle' 3.45 'Dishwasher' 1.72 

Table C.4: Clustering Table for REDD house 1, exp. 1 

 EXPERIMENT 2 

PARAMETERS: 

ε1 = 10 

agtr = 0.29 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -36 0.00 332 '///' 0.00 '///' 0.00 '///' 0.00 
2 -81 0.00 109 '///' 0.00 '///' 0.00 '///' 0.00 
3 15 0.00 289 '///' 0.00 '///' 0.00 '///' 0.00 
4 106 0.00 45 'Microwave' 2.22 '///' 0.00 '///' 0.00 
5 -1048 0.00 54 'Dishwasher' 46.30 'Cooker' 31.48 '///' 0.00 
6 -617 0.00 72 '///' 0.00 '///' 0.00 '///' 0.00 
7 -440 0.00 85 'Fridge' 1.18 'Dishwasher' 1.18 'Washing m.' 1.18 
8 -17 0.00 333 'Washing m.' 0.30 '///' 0.00 '///' 0.00 
9 36 0.00 252 '///' 0.00 '///' 0.00 '///' 0.00 

10 223 0.00 128 'Fridge' 36.72 '///' 0.00 '///' 0.00 
11 -184 0.00 255 'Fridge' 52.94 '///' 0.00 '///' 0.00 
12 804 0.00 60 'Fridge' 76.67 'Dishwasher' 1.67 '///' 0.00 
13 5540 0.00 69 'Washing m.' 79.71 'Oven' 13.04 '///' 0.00 
14 -5066 0.00 69 'Washing m.' 78.26 'Oven' 13.04 '///' 0.00 
15 -1512 0.00 126 'Microwave' 71.43 'Bathroom g.' 11.90 'Water kettle' 2.38 
16 1587 0.00 46 'Bathroom g.' 34.78 'Microwave' 19.57 'Dishwasher' 2.17 
17 1100 0.00 73 'Dishwasher' 26.03 'Cooker' 23.29 'Fridge' 12.33 
18 1458 0.00 57 'Microwave' 49.12 'Water kettle' 3.51 'Dishwasher' 1.75 

Table C.5: Clustering Table for REDD house 1, exp. 2  
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 EXPERIMENT 3 

PARAMETERS: 

ε1 = 10 

agtr = 0.25 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -440 0.00 85 'Fridge' 1.18 'Dishwasher' 1.18 'Washing m.' 1.18 
2 -37 0.00 332 '///' 0.00 '///' 0.00 '///' 0.00 
3 -82 0.00 109 '///' 0.00 '///' 0.00 '///' 0.00 
4 16 0.00 290 '///' 0.00 '///' 0.00 '///' 0.00 
5 106 0.00 45 'Microwave' 2.22 '///' 0.00 '///' 0.00 
6 -1049 0.00 54 'Dishwasher' 46.30 'Cooker' 31.48 '///' 0.00 
7 -617 0.00 72 '///' 0.00 '///' 0.00 '///' 0.00 
8 -17 0.00 333 'Washing m.' 0.30 '///' 0.00 '///' 0.00 
9 37 0.00 251 '///' 0.00 '///' 0.00 '///' 0.00 

10 223 0.00 128 'Fridge' 36.72 '///' 0.00 '///' 0.00 
11 -185 0.00 255 'Fridge' 52.94 '///' 0.00 '///' 0.00 
12 804 0.00 60 'Fridge' 76.67 'Dishwasher' 1.67 '///' 0.00 
13 5541 0.00 69 'Washing m.' 79.71 'Oven' 13.04 '///' 0.00 
14 -5067 0.00 69 'Washing m.' 78.26 'Oven' 13.04 '///' 0.00 
15 -1512 0.00 126 'Microwave' 71.43 'Bathroom g.' 11.90 'Water kettle' 2.38 
16 1101 0.00 73 'Dishwasher' 26.03 'Cooker' 23.29 'Fridge' 12.33 
17 1459 0.00 57 'Microwave' 49.12 'Water kettle' 3.51 'Dishwasher' 1.75 
18 643 0.00 62 'Fridge' 70.97 'Microwave' 3.23 '///' 0.00 
19 1588 0.00 46 'Bathroom g.' 34.78 'Microwave' 19.57 'Dishwasher' 2.17 

Table C.6: Clustering Table for REDD house 1, exp. 3 

 

 EXPERIMENT 4 

PARAMETERS: 

ε1 = 10 

agtr = 0.2 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -36 0.00 328 '///' 0.00 '///' 0.00 '///' 0.00 
2 -78 0.00 109 '///' 0.00 '///' 0.00 '///' 0.00 
3 11 0.00 175 '///' 0.00 '///' 0.00 '///' 0.00 
4 37 0.00 160 '///' 0.00 '///' 0.00 '///' 0.00 
5 -1087 0.00 33 'Cooker' 51.52 'Dishwasher' 36.36 '///' 0.00 
6 -175 0.00 194 'Fridge' 69.07 '///' 0.00 '///' 0.00 
7 -612 0.00 63 '///' 0.00 '///' 0.00 '///' 0.00 
8 -484 0.00 50 'Dishwasher' 2.00 'Washing m.' 2.00 '///' 0.00 
9 -385 0.00 43 'Fridge' 2.33 '///' 0.00 '///' 0.00 

10 -17 0.00 333 'Washing m.' 0.30 '///' 0.00 '///' 0.00 
11 24 0.00 176 '///' 0.00 '///' 0.00 '///' 0.00 
12 212 0.00 103 'Fridge' 30.10 '///' 0.00 '///' 0.00 
13 -230 0.00 64 'Fridge' 1.56 '///' 0.00 '///' 0.00 
14 111 0.00 31 'Microwave' 3.23 '///' 0.00 '///' 0.00 
15 -888 0.00 23 'Dishwasher' 56.52 '///' 0.00 '///' 0.00 
16 297 0.00 24 'Fridge' 62.50 '///' 0.00 '///' 0.00 
17 512 0.00 28 'Fridge' 50.00 'Microwave' 7.14 '///' 0.00 
18 815 0.00 52 'Fridge' 78.85 'Dishwasher' 1.92 '///' 0.00 
19 67 0.00 44 '///' 0.00 '///' 0.00 '///' 0.00 
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20 5749 0.00 20 'Washing m.' 80.00 'Oven' 5.00 '///' 0.00 
21 5435 0.00 49 'Washing m.' 79.59 'Oven' 16.33 '///' 0.00 
22 -5074 0.00 69 'Washing m.' 78.26 'Oven' 13.04 '///' 0.00 
23 -1512 0.00 126 'Microwave' 71.43 'Bathroom g.' 11.90 'Water kettle' 2.38 
24 1582 0.00 47 'Bathroom g.' 34.04 'Microwave' 19.15 'Dishwasher' 2.13 
25 1101 0.00 72 'Dishwasher' 26.39 'Cooker' 23.61 'Fridge' 11.11 
26 685 0.00 44 'Fridge' 84.09 '///' 0.00 '///' 0.00 
27 1456 0.00 56 'Microwave' 50.00 'Water kettle' 3.57 'Dishwasher' 1.79 

Table C.7: Clustering Table for REDD house 1, exp. 4 

 

REDD house 2 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 10 

agtr = 0.25 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -1102 0.00 388 'Stove' 68.56 'Microwave' 10.57 'Dishwasher' 1.55 
2 22 0.00 517 '///' 0.00 '///' 0.00 '///' 0.00 
3 268 0.00 184 'Fridge' 29.35 'Stove' 0.54 '///' 0.00 
4 1105 0.00 389 'Stove' 70.44 'Microwave' 6.17 'Fridge' 1.80 
5 512 0.00 253 'Fridge' 52.57 'Stove' 0.40 '///' 0.00 
6 154 0.00 281 'Fridge' 12.10 '///' 0.00 '///' 0.00 
7 -246 0.00 684 'Fridge' 10.96 '///' 0.00 '///' 0.00 
8 -54 0.00 774 'Fridge' 1.94 'Stove' 0.13 '///' 0.00 

Table C.8: Clustering Table for REDD house 2, exp. 1 

 

 EXPERIMENT 2 

PARAMETERS: 

ε1 = 10 

agtr = 0.15 

Cluster 
ΔP (W) 

ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -
1088.33 

0.00 383 'Stove' 69.19 'Microwave' 10.70 'Dishwasher' 1.57 

2 -489.17 0.00 91 'Fridge' 2.20 'Stove' 1.10 '///' 0.00 
3 -35.87 0.00 671 'Stove' 0.15 '///' 0.00 '///' 0.00 
4 64.91 0.00 76 'Fridge' 1.32 '///' 0.00 '///' 0.00 
5 249.87 0.00 155 'Fridge' 29.68 '///' 0.00 '///' 0.00 
6 400.97 0.00 90 'Fridge' 20.00 'Stove' 1.11 '///' 0.00 
7 1837.74 0.00 49 'Microwave' 44.90 '///' 0.00 '///' 0.00 
8 1083.22 0.00 325 'Stove' 84.31 'Dishwasher' 1.23 'Microwave' 0.62 
9 802.90 0.00 37 'Fridge' 37.84 '///' 0.00 '///' 0.00 

10 485.46 0.00 119 'Fridge' 77.31 '///' 0.00 '///' 0.00 
11 584.47 0.00 46 'Fridge' 52.17 'Stove' 2.17 '///' 0.00 
12 179.05 0.00 139 'Fridge' 19.42 '///' 0.00 '///' 0.00 
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13 129.69 0.00 129 'Fridge' 4.65 '///' 0.00 '///' 0.00 
14 24.57 0.00 403 '///' 0.00 '///' 0.00 '///' 0.00 
15 -209.70 0.00 163 'Fridge' 9.82 '///' 0.00 '///' 0.00 
16 -141.96 0.00 235 'Fridge' 14.04 '///' 0.00 '///' 0.00 
17 -249.35 0.00 359 'Fridge' 10.86 '///' 0.00 '///' 0.00 

Table C.9: Clustering Table for REDD house 2, exp. 2 

 

REDD house 3 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 10 

agtr = 0.2 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 18 0.00 305 '///' 0.00 '///' 0.00 '///' 0.00 
2 85 0.00 292 'Fridge' 19.18 '///' 0.00 '///' 0.00 
3 48 0.00 254 'Fridge' 0.39 '///' 0.00 '///' 0.00 
4 -21 0.00 435 'Fridge' 0.23 '///' 0.00 '///' 0.00 
5 -87 0.00 336 'Fridge' 30.95 '///' 0.00 '///' 0.00 
6 -360 0.00 126 'Fridge' 0.79 '///' 0.00 '///' 0.00 
7 -229 0.00 200 'Fridge' 3.00 'Washing m.' 0.50 '///' 0.00 
8 -125 0.00 446 'Fridge' 45.52 'Bathroom g.' 0.22 '///' 0.00 
9 -520 0.00 58 'Fridge' 8.62 'Microwave' 1.72 'Washing m.' 1.72 

10 -52 0.00 304 'Fridge' 0.33 '///' 0.00 '///' 0.00 
11 129 0.00 257 'Fridge' 15.18 'Bathroom g.' 0.39 '///' 0.00 
12 187 0.00 91 'Fridge' 13.19 '///' 0.00 '///' 0.00 
13 294 0.00 72 'Fridge' 56.94 '///' 0.00 '///' 0.00 
14 356 0.00 84 'Fridge' 86.90 '///' 0.00 '///' 0.00 
15 463 0.00 38 'Fridge' 68.42 'Bathroom g.' 2.63 '///' 0.00 
16 645 0.00 39 'Fridge' 64.10 'Bathroom g.' 2.56 '///' 0.00 
17 936 0.00 38 'Bathroom g.' 10.53 'Electronics' 7.89 'Fridge' 2.63 
18 1135 0.00 69 'Electronics' 60.87 'Fridge' 2.90 'Microwave' 1.45 
19 4817 0.00 101 'Washing m.' 97.03 'Bathroom g.' 0.99 '///' 0.00 
20 5047 0.00 55 'Washing m.' 96.36 '///' 0.00 '///' 0.00 
21 -915 0.00 36 'Bathroom g.' 8.33 'Electronics' 5.56 '///' 0.00 
22 1773 0.00 41 'Microwave' 39.02 'Bathroom g.' 26.83 'Washing m.' 2.44 
23 -1130 0.00 68 'Electronics' 63.24 'Bathroom g.' 5.88 'Microwave' 1.47 
24 403 0.00 58 'Fridge' 56.90 '///' 0.00 '///' 0.00 
25 -4427 0.00 156 'Washing m.' 95.51 '///' 0.00 '///' 0.00 
26 -1740 0.00 50 'Microwave' 56.00 'Bathroom g.' 28.00 'Fridge' 2.00 

Table C.10: Clustering Table for REDD house 3, exp. 1 
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 EXPERIMENT 2 

PARAMETERS: 

ε1 = 10 

agtr = 0.22 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -84 0.00 1615 'Fridge' 19.32 'Washing m.' 0.06 'Bathroom g.' 0.06 
2 394 0.00 300 'Fridge' 67.00 'Bathroom g.' 0.67 '///' 0.00 
3 73 0.00 1203 'Fridge' 8.73 'Bathroom g.' 0.08 '///' 0.00 
4 -373 0.00 290 'Fridge' 3.10 'Microwave' 0.34 'Washing m.' 0.34 
5 -1352 0.00 144 'Electronics' 31.25 'Microwave' 20.14 'Bathroom g.' 13.89 
6 1241 0.00 145 'Electronics' 31.03 'Microwave' 12.41 'Bathroom g.' 10.34 
7 4903 0.00 156 'Washing m.' 96.79 'Bathroom g.' 0.64 '///' 0.00 
8 -4423 0.00 156 'Washing m.' 95.51 '///' 0.00 '///' 0.00 

Table C.11: Clustering Table for REDD house 3, exp. 2 

 

UKDALE house 1 – active power only 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 40 

agtr = 0.35 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -383 0.00 8928 'Microwave' 2.35 'Water kettle' 1.65 'Fridge' 0.55 
2 407 0.00 8908 'Fridge' 6.56 'Microwave' 2.84 'Water kettle' 1.67 
3 -7 0.00 11924 'Microwave' 0.41 'Fridge' 0.18 'Hairdryer' 0.10 

Table C.12: Clustering Table for UKDALE house 1, active power only, exp. 1 

 

UKDALE house 1 – active and reactive power 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 40 

agtr = 0.35 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -17 -7 2663 'Hairdryer' 0.11 'Fridge' 0.08 'Water kettle' 0.08 
2 22 8 4505 'Fridge' 0.18 'Microwave' 0.09 'Water kettle' 0.02 
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3 158 271 819 'Fridge' 0.49 'Microwave' 0.12 '///' 0.00 
4 275 468 775 'Fridge' 4.26 'Microwave' 0.26 'Water kettle' 0.13 
5 379 935 748 'Fridge' 0.40 'Microwave' 0.13 '///' 0.00 
6 552 1231 470 'Fridge' 0.64 '///' 0.00 '///' 0.00 
7 333 799 784 'Fridge' 0.26 '///' 0.00 '///' 0.00 
8 377 689 1031 'Fridge' 0.97 'Washing m.' 0.39 'Microwave' 0.10 
9 1701 380 889 'Microwave' 27.11 'Water kettle' 16.09 'Hairdryer' 3.60 

10 340 575 1135 'Fridge' 13.30 'Microwave' 0.09 'Water kettle' 0.09 
11 409 347 998 'Fridge' 35.67 'Washing m.' 0.40 'Microwave' 0.20 
12 365 231 713 'Fridge' 2.52 'Washing m.' 0.56 'Water kettle' 0.14 
13 328 99 1006 'Microwave' 0.40 'Fridge' 0.20 'Water kettle' 0.20 
14 76 30 1173 'Fridge' 0.60 'Hairdryer' 0.26 'Microwave' 0.17 
15 -86 -6 1322 'Microwave' 0.45 'Water kettle' 0.08 'Hairdryer' 0.08 
16 -139 -254 905 'Microwave' 3.20 'Hairdryer' 0.33 '///' 0.00 
17 -280 -471 1009 'Microwave' 0.50 'Washing m.' 0.20 'Hairdryer' 0.10 
18 -317 -565 1110 'Fridge' 0.36 'Hairdryer' 0.27 'Microwave' 0.18 
19 -368 -673 921 'Microwave' 0.54 'Water kettle' 0.11 '///' 0.00 
20 -391 -921 671 'Water kettle' 0.30 '///' 0.00 '///' 0.00 
21 -322 -781 800 'Water kettle' 0.25 'Microwave' 0.13 'Washing m.' 0.13 
22 -553 -1230 443 '///' 0.00 '///' 0.00 '///' 0.00 
23 -322 -345 917 'Fridge' 0.65 'Microwave' 0.11 'Water kettle' 0.11 
24 -378 -236 810 'Microwave' 0.37 'Water kettle' 0.25 'Washing m.' 0.25 
25 -43 -11 1746 'Microwave' 0.52 'Hairdryer' 0.11 '///' 0.00 
26 -326 -92 1037 'Fridge' 3.76 'Microwave' 0.39 'Water kettle' 0.10 
27 -1692 -342 864 'Microwave' 21.64 'Water kettle' 15.86 'Hairdryer' 2.78 

Table C.13: Clustering Table for UKDALE house 1, active and reactive power, exp. 1 

 

 EXPERIMENT 2 

PARAMETERS: 

ε1 = 40 

agtr = 0.3 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -15 -6 2416 'Hairdryer' 0.12 'Fridge' 0.08 'Water kettle' 0.08 
2 22 8 4409 'Fridge' 0.16 'Microwave' 0.09 'Water kettle' 0.02 
3 147 261 707 'Fridge' 0.57 'Microwave' 0.14 'Hairdryer' 0.14 
4 248 431 664 'Fridge' 2.26 'Microwave' 0.30 'Washing m.' 0.15 
5 302 752 667 'Fridge' 0.15 '///' 0.00 '///' 0.00 
6 343 931 549 'Fridge' 0.18 '///' 0.00 '///' 0.00 
7 582 1081 288 'Fridge' 1.74 'Microwave' 0.35 '///' 0.00 
8 424 855 444 'Fridge' 1.35 '///' 0.00 '///' 0.00 
9 381 681 878 'Fridge' 0.57 'Washing m.' 0.46 'Microwave' 0.11 

10 305 582 818 'Fridge' 0.24 'Water kettle' 0.24 'Washing m.' 0.12 
11 527 1299 257 '///' 0.00 '///' 0.00 '///' 0.00 
12 1600 504 348 'Microwave' 62.07 'Hairdryer' 0.57 'Water kettle' 0.29 
13 2394 278 296 'Water kettle' 47.64 'Dishwasher' 4.05 'Washing m.' 4.05 
14 1648 155 250 'Hairdryer' 11.60 'Microwave' 9.60 'Dishwasher' 0.80 
15 378 513 613 'Fridge' 32.30 'Microwave' 0.33 '///' 0.00 
16 410 340 882 'Fridge' 36.96 'Washing m.' 0.57 'Hairdryer' 0.11 
17 380 95 463 'Fridge' 0.22 'Microwave' 0.22 '///' 0.00 
18 358 236 706 'Fridge' 2.41 'Washing m.' 0.42 'Water kettle' 0.14 
19 280 95 614 'Microwave' 0.49 'Water kettle' 0.33 'Hairdryer' 0.33 
20 70 25 1182 'Fridge' 0.68 'Microwave' 0.17 'Hairdryer' 0.08 
21 -83 -2 1116 'Microwave' 0.18 'Water kettle' 0.09 '///' 0.00 
22 -63 -117 593 'Microwave' 3.37 'Hairdryer' 0.34 '///' 0.00 
23 -129 -255 580 'Microwave' 3.10 'Hairdryer' 0.52 '///' 0.00 
24 -215 -377 466 'Microwave' 0.86 'Hairdryer' 0.21 '///' 0.00 
25 -284 -467 663 'Washing m.' 0.30 'Microwave' 0.15 '///' 0.00 
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26 -350 -606 636 'Microwave' 0.47 'Dishwasher' 0.16 'Hairdryer' 0.16 
27 -385 -699 583 'Microwave' 0.51 'Water kettle' 0.17 '///' 0.00 
28 -302 -535 797 'Fridge' 0.50 'Hairdryer' 0.38 'Microwave' 0.25 
29 -275 -699 547 'Washing m.' 0.18 '///' 0.00 '///' 0.00 
30 -319 -819 455 'Water kettle' 0.66 '///' 0.00 '///' 0.00 
31 -345 -955 304 '///' 0.00 '///' 0.00 '///' 0.00 
32 -440 -873 323 'Water kettle' 0.31 '///' 0.00 '///' 0.00 
33 -320 -344 613 'Fridge' 0.98 'Microwave' 0.16 'Water kettle' 0.16 
34 -411 -303 397 'Microwave' 0.76 'Washing m.' 0.50 '///' 0.00 
35 -357 -223 559 'Water kettle' 0.36 'Fridge' 0.18 '///' 0.00 
36 -315 -113 431 'Microwave' 0.46 'Water kettle' 0.23 '///' 0.00 
37 -39 -7 1679 'Microwave' 0.18 'Hairdryer' 0.06 '///' 0.00 
38 -249 -55 379 'Fridge' 10.03 'Microwave' 0.53 '///' 0.00 
39 -398 -63 341 'Fridge' 0.29 '///' 0.00 '///' 0.00 
40 -1628 -167 288 'Hairdryer' 8.33 'Microwave' 6.25 'Dishwasher' 0.69 
41 -2346 -274 276 'Water kettle' 48.91 'Dishwasher' 7.61 'Washing m.' 1.09 
42 -1591 -493 302 'Microwave' 55.96 'Water kettle' 0.66 '///' 0.00 
43 -528 -1303 237 '///' 0.00 '///' 0.00 '///' 0.00 
44 -593 -1086 248 '///' 0.00 '///' 0.00 '///' 0.00 

Table C.14: Clustering Table for UKDALE house 1, active and reactive power, exp. 2 
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UKDALE house 2 – active power only 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 20 

agtr = 0.15 (same results for 0.18 and 0.22) 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -90 0 7665 'Fridge' 9.38 'Microwave' 1.46 'Water kettle' 1.34 
2 575 0 1073 'Fridge' 64.31 'Water kettle' 9.13 'Microwave' 7.83 

Table C.15: Clustering Table for UKDALE house 2, active power only, exp. 1 

 

 EXPERIMENT 2 

PARAMETERS: 

ε1 = 20 

agtr = 0.1 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -442 0 902 'Microwave' 10.64 'Fridge' 0.11 'Water kettle' 0.11 
2 -2844 0 161 'Water kettle' 60.25 'Dishwasher' 15.53 'Washing m.' 3.73 
3 155 0 1330 'Fridge' 0.90 'Washing m.' 0.38 'Microwave' 0.15 
4 13 0 2377 'Microwave' 0.42 'Fridge' 0.25 'Water kettle' 0.13 
5 -192 0 583 'Fridge' 1.37 'Washing m.' 0.51 'Microwave' 0.34 
6 487 0 269 'Fridge' 89.96 'Microwave' 0.37 'Water kettle' 0.37 
7 2970 0 97 'Water kettle' 97.94 '///' 0.00 '///' 0.00 
8 2047 0 70 'Dishwasher' 57.14 'Washing m.' 18.57 'Water kettle' 2.86 
9 1278 0 133 'Microwave' 61.65 'Fridge' 0.75 '///' 0.00 

10 518 0 482 'Fridge' 92.53 '///' 0.00 '///' 0.00 
11 -77 0 2334 'Fridge' 29.69 'Washing m.' 0.39 'Microwave' 0.09 

Table C.16: Clustering Table for UKDALE house 2, active power only, exp. 2 
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UKDALE house 2 – active and reactive power 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 20 

agtr = 0.22 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -108 -28 233 'Washing 
machine' 

0.43 '///' 0.00 '///' 0.00 

2 -49 -14 441 'Water kettle' 0.23 '///' 0.00 '///' 0.00 
3 19 24 595 '///' 0.00 '///' 0.00 '///' 0.00 
4 -104 -5 287 'Microwave' 0.35 '///' 0.00 '///' 0.00 
5 -74 19 742 'Microwave' 0.13 '///' 0.00 '///' 0.00 
6 163 426 154 'Fridge' 1.30 '///' 0.00 '///' 0.00 
7 157 511 145 'Fridge' 1.38 'Washing m.' 1.38 'Microwave' 0.69 
8 503 386 193 'Fridge' 98.96 '///' 0.00 '///' 0.00 
9 504 426 187 'Fridge' 88.24 'Water kettle' 0.53 '///' 0.00 

10 188 575 137 'Washing m.' 0.73 '///' 0.00 '///' 0.00 
11 215 672 78 'Fridge' 1.28 '///' 0.00 '///' 0.00 
12 122 366 150 'Fridge' 1.33 'Washing m.' 1.33 '///' 0.00 
13 -48 9 297 'Microwave' 0.34 'Dishwasher' 0.34 'Water kettle' 0.34 
14 54 7 277 'Microwave' 0.36 'Water kettle' 0.36 '///' 0.00 
15 -18 -22 662 'Microwave' 0.15 'Water kettle' 0.15 '///' 0.00 
16 10 10 669 'Fridge' 0.45 'Microwave' 0.15 '///' 0.00 
17 501 341 132 'Fridge' 99.24 '///' 0.00 '///' 0.00 
18 498 274 110 'Fridge' 99.09 '///' 0.00 '///' 0.00 
19 88 254 151 'Fridge' 3.31 'Washing m.' 2.65 'Microwave' 0.66 
20 156 63 103 'Fridge' 0.97 '///' 0.00 '///' 0.00 
21 157 24 123 '///' 0.00 '///' 0.00 '///' 0.00 
22 -11 -9 965 'Microwave' 0.31 'Dishwasher' 0.10 '///' 0.00 
23 -1899 -54 59 'Dishwasher' 64.41 'Washing m.' 6.78 'Water kettle' 1.69 
24 -1291 -522 121 'Microwave' 80.99 'Water kettle' 0.83 '///' 0.00 
25 -2944 -102 97 'Water kettle' 98.97 '///' 0.00 '///' 0.00 
26 -413 -364 129 '///' 0.00 '///' 0.00 '///' 0.00 
27 -135 -399 171 'Washing m.' 1.17 'Microwave' 0.58 '///' 0.00 
28 -87 -221 174 'Washing m.' 1.72 '///' 0.00 '///' 0.00 
29 -429 -232 118 'Microwave' 1.69 '///' 0.00 '///' 0.00 
30 153 -17 113 'Fridge' 0.88 'Microwave' 0.88 '///' 0.00 
31 155 9 141 '///' 0.00 '///' 0.00 '///' 0.00 
32 518 205 104 'Fridge' 86.54 '///' 0.00 '///' 0.00 
33 2049 97 65 'Dishwasher' 61.54 'Washing m.' 16.92 'Water kettle' 3.08 
34 2972 101 97 'Water kettle' 97.94 '///' 0.00 '///' 0.00 
35 1321 568 108 'Microwave' 84.26 'Fridge' 0.93 '///' 0.00 
36 962 24 47 'Fridge' 2.13 '///' 0.00 '///' 0.00 
37 28 3 608 'Fridge' 0.33 'Microwave' 0.16 'Water kettle' 0.16 
38 -125 -299 110 'Washing m.' 2.73 '///' 0.00 '///' 0.00 
39 -960 -27 47 '///' 0.00 '///' 0.00 '///' 0.00 
40 -210 -658 57 '///' 0.00 '///' 0.00 '///' 0.00 
41 -415 -297 114 'Microwave' 0.88 '///' 0.00 '///' 0.00 
42 -414 -444 186 '///' 0.00 '///' 0.00 '///' 0.00 
43 -178 -551 161 'Microwave' 0.62 'Washing m.' 0.62 '///' 0.00 
44 -171 -454 145 'Dishwasher' 0.69 'Washing m.' 0.69 '///' 0.00 
45 -414 -407 182 '///' 0.00 '///' 0.00 '///' 0.00 

Table C.17: Clustering Table for UKDALE house 2, active and reactive power, exp. 1 
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 EXPERIMENT 2 

PARAMETERS: 

ε1 = 20 

agtr = 0.28 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -108 -28 219 '///' 0.00 '///' 0.00 '///' 0.00 
2 -49 -36 248 'Washing m.' 0.81 'Microwave' 0.40 '///' 0.00 
3 19 24 598 '///' 0.00 '///' 0.00 '///' 0.00 
4 -104 -5 297 'Microwave' 0.34 '///' 0.00 '///' 0.00 
5 -74 19 817 'Microwave' 0.12 '///' 0.00 '///' 0.00 
6 131 385 183 'Fridge' 1.09 'Washing m.' 0.55 '///' 0.00 
7 167 458 160 'Fridge' 2.50 'Washing m.' 1.25 'Microwave' 0.63 
8 504 383 206 'Fridge' 99.03 '///' 0.00 '///' 0.00 
9 505 425 194 'Fridge' 88.66 'Water kettle' 0.52 '///' 0.00 

10 172 550 194 'Washing m.' 0.52 '///' 0.00 '///' 0.00 
11 209 649 103 'Fridge' 0.97 '///' 0.00 '///' 0.00 
12 94 266 173 'Fridge' 3.47 'Washing m.' 2.89 'Microwave' 0.58 
13 -47 -5 539 'Water kettle' 0.37 'Microwave' 0.19 'Dishwasher' 0.19 
14 53 7 278 'Microwave' 0.36 'Water kettle' 0.36 '///' 0.00 
15 -17 -20 664 'Water kettle' 0.15 '///' 0.00 '///' 0.00 
16 10 10 666 'Fridge' 0.45 'Microwave' 0.15 '///' 0.00 
17 502 335 130 'Fridge' 100.0 '///' 0.00 '///' 0.00 
18 505 266 101 'Fridge' 98.02 '///' 0.00 '///' 0.00 
19 156 64 100 'Fridge' 1.00 '///' 0.00 '///' 0.00 
20 157 25 125 '///' 0.00 '///' 0.00 '///' 0.00 
21 -12 -8 876 'Microwave' 0.34 'Dishwasher' 0.11 '///' 0.00 
22 -1899 -54 59 'Dishwasher' 64.41 'Washing m.' 6.78 'Water kettle' 1.69 
23 -1289 -518 129 'Microwave' 75.97 'Water kettle' 0.78 '///' 0.00 
24 -2943 -102 97 'Water kettle' 98.97 '///' 0.00 '///' 0.00 
25 -411 -338 115 '///' 0.00 '///' 0.00 '///' 0.00 
26 -167 -520 172 'Microwave' 0.58 'Dishwasher' 0.58 'Washing m.' 0.58 
27 -104 -256 229 'Washing m.' 0.87 '///' 0.00 '///' 0.00 
28 -431 -221 126 '///' 0.00 '///' 0.00 '///' 0.00 
29 153 -17 113 'Fridge' 0.88 'Microwave' 0.88 '///' 0.00 
30 155 9 142 '///' 0.00 '///' 0.00 '///' 0.00 
31 521 201 136 'Fridge' 59.56 '///' 0.00 '///' 0.00 
32 2049 100 65 'Dishwasher' 61.54 'Washing m.' 16.92 'Water kettle' 3.08 
33 2972 101 97 'Water kettle' 97.94 '///' 0.00 '///' 0.00 
34 1319 565 113 'Microwave' 80.53 'Fridge' 0.88 '///' 0.00 
35 28 3 609 'Fridge' 0.33 'Microwave' 0.16 'Water kettle' 0.16 
36 -147 -404 272 'Washing m.' 2.21 'Microwave' 0.37 '///' 0.00 
37 -429 -272 98 'Microwave' 3.06 '///' 0.00 '///' 0.00 
38 -414 -440 220 '///' 0.00 '///' 0.00 '///' 0.00 
39 -202 -612 110 '///' 0.00 '///' 0.00 '///' 0.00 
40 -414 -396 212 '///' 0.00 '///' 0.00 '///' 0.00 

Table C.18: Clustering Table for UKDALE house 2, active and reactive power, exp. 2 
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UKDALE house 5 – active and reactive power 

 EXPERIMENT 1 

PARAMETERS: 

ε1 = 25 

agtr = 0.15 

Cluster ΔP (W) ΔQ 
(VAR) 

Cardinality Appl. 1 % of 
Appl. 
1 

Appl. 2 % of 
Appl. 
2 

Appl. 3 % of 
Appl.
3 

1 -32 -9 6092 'Fridge' 0.11 'Water kettle' 0.05 'Dishwasher' 0.02 
2 26 7 4631 'Dishwasher' 0.02 'Oven' 0.02 '///' 0.00 
3 -53 73 1401 'Fridge' 0.29 'Water kettle' 0.07 '///' 0.00 
4 183 65 524 'Fridge' 0.19 '///' 0.00 '///' 0.00 
5 247 22 693 'Oven' 0.29 '///' 0.00 '///' 0.00 
6 215 123 484 'Fridge' 0.41 '///' 0.00 '///' 0.00 
7 385 291 337 'Fridge' 80.71 '///' 0.00 '///' 0.00 
8 2091 177 243 'Oven' 45.68 'Water kettle' 0.82 'Fridge' 0.41 
9 1683 129 197 'Dishwasher' 10.15 'Water kettle' 1.02 'Oven' 1.02 

10 2772 262 190 'Water kettle' 34.21 'Oven' 3.68 'Fridge' 0.53 
11 1567 109 296 'Oven' 0.34 '///' 0.00 '///' 0.00 
12 1089 82 437 'Oven' 1.83 'Dishwasher' 0.69 'Fridge' 0.23 
13 797 69 451 'Fridge' 1.11 'Dishwasher' 1.11 'Oven' 0.44 
14 415 175 577 'Fridge' 68.11 'Water kettle' 0.17 'Oven' 0.17 
15 268 188 297 'Fridge' 1.35 '///' 0.00 '///' 0.00 
16 139 11 839 'Fridge' 0.48 'Dishwasher' 0.12 '///' 0.00 
17 70 -94 841 'Water kettle' 0.24 'Fridge' 0.12 '///' 0.00 
18 47 12 2595 'Fridge' 0.04 '///' 0.00 '///' 0.00 
19 11 3 5756 'Fridge' 0.02 '///' 0.00 '///' 0.00 
20 -16 -5 6438 'Fridge' 0.05 'Oven' 0.03 'Water kettle' 0.02 
21 -51 -13 2410 'Fridge' 0.50 'Water kettle' 0.04 '///' 0.00 
22 -99 30 1117 'Fridge' 56.58 'Water kettle' 0.18 '///' 0.00 
23 -155 -18 948 'Fridge' 0.42 'Water kettle' 0.11 '///' 0.00 
24 -237 -23 921 'Fridge' 0.65 'Dishwasher' 0.22 'Oven' 0.11 
25 -212 -119 778 'Fridge' 0.26 '///' 0.00 '///' 0.00 
26 -268 -316 350 'Fridge' 0.29 '///' 0.00 '///' 0.00 
27 -285 -205 771 'Fridge' 0.39 '///' 0.00 '///' 0.00 
28 -797 -69 521 'Dishwasher' 0.58 'Water kettle' 0.19 'Oven' 0.19 
29 -1088 -85 439 'Oven' 0.91 'Water kettle' 0.46 'Fridge' 0.23 
30 -1560 -109 450 'Dishwasher' 4.44 'Fridge' 0.44 'Oven' 0.44 
31 -2042 -176 238 'Oven' 41.18 'Dishwasher' 2.52 'Fridge' 0.42 
32 -2780 -263 195 'Water kettle' 30.77 'Oven' 4.62 '///' 0.00 

Table C.19: Clustering Table for UKDALE house 5, active and reactive power, exp. 1 
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UKDALE house 1 – active and reactive power, experiment 2 

Graphic representation of clusters in P/Q plane, x axis in Watt, y axis in VAR. 

Figure C.1: Graphic representation of clusters for UKDALE house 1, experiment 2  
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UKDALE house 2 – active and reactive power, experiment 1 

Graphic representation of clusters in P/Q plane, x axis in Watt, y axis in VAR. 

 
Figure C.2: Graphic representation of clusters for UKDALE house 2, experiment 1  
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UKDALE house 5 – active and reactive power, experiment 1 

Graphic representation of clusters in P/Q plane, x axis in Watt, y axis in VAR. 

 
Figure C.3: Graphic representation of clusters for UKDALE house 5, experiment 1 
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APPENDIX D 
 

Here dates of the days used for the experiments in chapter 3 are reported, in order to allow eventual 
reproduction. 

Data have been organized for experiments following the guidelines presented in NILM-EVAL 
framework documentation (link available at [11]). The important thing to know is that for each meter 
and for each day a file was created containing only the 86400 readings for that day, if data are 
provided at one sample per second. Each missing sample is replaced by a -1. The framework 
recognizes missing readings so it avoids to do evaluation on them. 

 

REDD 1 REDD 2 REDD 3 REDD 4 
'2011-04-18' 
'2011-04-19' 
'2011-04-20' 
'2011-04-22' 
'2011-04-23' 
'2011-04-24' 

'2011-04-18' 
'2011-04-19' 
'2011-04-20' 
'2011-04-21' 
'2011-04-22' 

 

'2011-04-18' 
'2011-04-20' 
'2011-04-21' 
'2011-04-22' 
'2011-04-23' 

'2011-04-21' 
'2011-04-22' 
'2011-04-23' 
'2011-04-24' 
'2011-04-26' 

Table B.1: Training days in REDD experiments 

 
 

REDD 1 REDD 2 REDD 3  
 

'2011-04-25' 
'2011-04-26' 
'2011-04-27' 
'2011-04-30' 
'2011-05-01' 
'2011-05-02' 
'2011-05-03' 
'2011-05-12' 
'2011-05-23' 

 

 
'2011-04-23' 
'2011-04-24' 
'2011-04-25' 
'2011-04-26' 
'2011-04-27' 
'2011-04-28' 
'2011-04-29' 
'2011-04-30' 
'2011-05-01' 

 
'2011-04-24' 
'2011-04-25' 
'2011-04-26' 
'2011-04-27' 
'2011-04-28' 
'2011-05-18' 
'2011-05-23' 
'2011-05-24' 

 
'2011-04-27' 
'2011-04-28' 
'2011-04-29' 
'2011-04-30' 
'2011-05-01' 
'2011-05-02' 
'2011-05-23' 
'2011-05-24' 

Table B.2: Evaluation days in REDD experiments 

 
 

UKDALE 1 UKDALE 2 UKDALE 5 
 

'2013-03-17' - '2013-03-30' 
'2013-04-02' - '2013-04-14' 
'2013-04-16' - '2013-04-18' 

     

 
'2013-05-21' - '2013-06-09' 

 
'2014-06-30' - '2014-07-29' 

        

Table B.3: Training days in UKDALE experiments 
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UKDALE 1 UKDALE 2 UKDALE 5 
 

'2013-04-19' - '2013-10-05' 
 

 
'2013-06-10' - '2013-08-04' 
'2013-09-12' - '2013-10-05' 

 

 
'2014-07-30' - '2014-09-06'    

Table B.4: Evaluation days in UKDALE experiments 

 
 

ECO 1 ECO 2 ECO 4 ECO 5 
 

'2012-07-01' - '2012-07-06' 
'2012-07-08' - '2012-07-13' 
'2012-07-16' - '2012-07-18' 

 

 
'2012-06-01' 
'2012-06-03' 
'2012-06-06' 

'2012-06-11' - '2012-06-13' 
'2012-06-16' 

'2012-06-18' - '2012-06-20' 
'2012-06-24' - '2012-06-28' 

 

 
'2012-06-27' - '2012-07-11' 

 

 
'2012-06-27' - '2012-

07-11' 
 

Table B.5: Training days in ECO experiments 

 
 

ECO 1 ECO 2 ECO 4 ECO 5 
 

'2012-07-19' - '2012-07-22' 
'2012-07-25' 
'2012-07-28' 
'2012-07-29' 
'2012-08-01' 

'2012-08-03' - '2012-08-06' 
'2012-08-10' 
'2012-08-13' 
'2012-08-14' 
'2012-08-16' 

'2012-08-19' - '2012-09-13' 
'2012-09-16' - '2012-09-28' 

'2012-10-01' 
'2012-10-02' 

'2012-10-04' - '2012-10-05' 
'2012-10-11' - '2012-10 -13' 
'2012-10-17' - '2012-10-22' 
'2012-10-24' - '2012-10-29' 

'2012-10-31' 

 
'2012-06-30' 

'2012-07-04' - '2012-07-17' 
'2012-07-20' - '2012-08-05' 
'2012-08-08' - '2012-08-10' 
'2012-08-12' - '2012-08-18' 
'2012-08-20' - '2012-09-05' 

'2012-09-07' 
'2012-09-16' - '2012-09-24' 

'2012-09-28' 
'2012-09-29' 

'2012-10-01' - '2012-10-04' 
 

 
'2012-07-12' 
'2012-07-13' 

'2012-07-15' - '2012-09-04' 
'2012-09-06' - '2012-09-10' 

'2012-09-12' 
'2012-09-13' 

'2012-09-16' - '2012-09-29' 

 
'2012-07-12' - '2012-09-03' 

'2012-09-05' 
'2012-09-12' 
'2012-09-13' 

'2012-09-16' - '2012-10-03' 

Table B.6: Evaluation days in ECO experiments 
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APPENDIX E 
 

A summary of experiments run with Weiss and Hart algorithms is here reported. These and other 
experiments are referred to in section 3.3. More experiments have been performed, but they are not 
reported here if they are not relevant, i.e. if they have similar or identical results with other 
experiments. For some appliances more experiments have been performed with different values of 
parameter r, the relevant results are here reported. 

Days selected for training and evaluation are reported in Appendix D. 

 

E.1 REDD 1-4, APPLIANCES OF INTEREST, USING P ONLY 

HOUSE 1 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter r Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.5971 0.5198 0.8297 0.7517 0.4663 0.3973 0.1 80 80 
Dishwasher 0.5210 0.4038 0.5345 0.3069 0.5082 0.5902 0.1 900 900 
 0.5246 0.3648 0.5246 0.2552 0.5246 0.6393 0.3   
Kettle 0.0377 0.0455 0.0204 0.0455 0.2500 0.0455 0.1 1000 1000 
Oven 0.7805 0.6842 0.9412 0.9286 0.6667 0.5417 0.1 2500 2500 
Washing 
machine 

0.9361 0.9495 0.9909 0.9912 0.8871 0.9113 0.1 1500 1500 

Microwave 0.6557 0.6084 0.9610 0.8200 0.4977 0.4836 0.1 1000 1000 
 0.6641 0.6214 0.9620 0.8269 0.5070 0.4977 0.8   
Bathroom 
GFI 

0.2406 0.5435 0.1616 0.4310 0.4706 0.7353 0.1 500 500 

Cooker 0.4144 0.6189 0.3239 0.5714 0.5750 0.6750 0.1 15 15 
Table E.1 

HOUSE 2 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.5411 0.4757 0.9204 0.7254 0.3832 0.3539 0.1 80 80 
Dishwasher 0.5581 0.1667 0.3871 0.1000 1.0000 0.5000 0.1 900 900 
Microwave 0.9036 0.7556 0.9785 1.0000 0.8393 0.6071 0.1 1000 1000 
Stove 0.9803 0.9711 0.9836 0.9668 0.9770 0.9754 0.1 500 500 
Cooker 0.5263 0.5532 0.4268 0.4471 0.6863 0.7255 0.1 500 500 

Table E.2 

HOUSE 3 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.6087 0.5250 0.8463 0.6214 0.4753 0.4544 0.1 80 80 
Bathroom 
gfi 

0.2097 0.1967 0.1518 0.1818 0.3393 0.2143 0.1 1000 1000 

Washing 
machine 

0.9465 0.9194 1.0000 1.0000 0.8985 0.8507 0.1 2500 2500 

Microwave 0.7715 0.7314 0.7667 0.6543 0.7763 0.8289 0.1 1000 1000 
 0.7548 0.6935 0.7231 0.5895 0.7895 0.8421 0.5   
Electronics 0.8762 0.8711 0.8852 0.8496 0.8673 0.8938 0.1 500 500 

Table E.3 
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HOUSE 4 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.6068 0.4223 0.8988 0.6796 0.4580 0.3063 0.1 80 80 
Stove 0.5818 0.7600 1.0000 0.9333 0.4103 0.6410 0.1 500 500 
Dishwasher 0.4167 0.2000 0.4167 0.1667 0.4167 0.2500 0.1 900 900 

Table E.4 

 

E.2 UK DALE 1, 2, 5, APPLIANCES OF INTEREST, USING P AND Q 

HOUSE 1 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.7639 0.7250 0.9433 0.8605 0.6418 0.6265 0.2 60 40 
 0.7290 0.7216 0.8261 0.7730 0.6524 0.6767 0.3   
Kettle 0.8888 0.9093 0.8706 0.8969 0.9079 0.9221 0.1 2000 2000 
Hairdryer 0.6714 0.8972 1.0000 0.9882 0.5054 0.8215 0.1 1500 1500 
 0.8861 0.9692 0.9864 0.9863 0.8043 0.9527 1   
Microwave 0.8812 0.8159 0.9865 0.9857 0.7962 0.6960 0.1 1000 1000 
Washing 
machine 

0.1991 0.1576 0.1264 0.0984 0.4691 0.3951 0.1 1700 1700 

Dishwasher 0.1660 0.6050 0.1303 0.7273 0.2286 0.5179 0.1 2000 2000 
 0.0061 0.6050 0.0208 0.7273 0.0036 0.5179 0.05   

Table E.5 

HOUSE 2 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.6416 0.5315 0.9988 0.9960 0.4726 0.3624 0.1 40 40 
 0.7865 0.7641 0.9787 0.9779 0.6573 0.6269 0.2   
Dishwasher 0.9115 0.8150 0.9349 0.7570 0.8893 0.8827 0.1 1000 1000 
Kettle 0.9174 0.9183 0.9952 0.9937 0.8509 0.8536 0.1 2000 2000 
Washing 
machine 

0.4793 0.2985 0.7105 0.2051 0.3616 0.5480 0.1 1500 1500 

 0.4881 0.4097 0.6374 0.2719 0.3955 0.8305 0.25   
Microwave 0.6673 0.9086 0.9518 0.9809 0.5138 0.8462 0.1 1000 1000 
 0.7857 0.8760 0.8263 0.8754 0.7489 0.8766 0.3   
 0.8121 0.8237 0.7390 0.7176 0.9013 0.9666 1   

Table E.6 

HOUSE 5 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.8965 0.7571 0.9939 0.9812 0.8166 0.6163 0.1 40 40 
Kettle 0.7245 0.6723 0.6798 0.5561 0.7756 0.8498 0.1 2500 2000 
 0.8199 0.8862 0.8924 0.9440 0.7582 0.8352 0.05   
Dishwasher 0.2970 0.2850 0.1869 0.1715 0.7229 0.8434 0.05 1600 1600 
 0.5871 0.7951 0.6774 0.7619 0.5181 0.8313 0.028   
Oven 0.6046 0.6807 0.5052 0.5504 0.7526 0.8919 0.1 1500 1500 
 0.5869 0.6554 0.5116 0.5490 0.6881 0.8129 0.05   
 0.4977 0.7268 0.5459 0.7140 0.4574 0.7401 0.025   

Table E.7 
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E.3 UK DALE 1, 2, APPLIANCES OF INTEREST, USING P 

HOUSE 1 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.4448 0.3353 0.6354 0.3273 0.3421 0.3437 0.2 60 40 
 0.5653 0.2597 0.5709 0.1994 0.5597 0.3723 0.3   
Kettle 0.9433 0.9557 0.9769 0.9810 0.9119 0.9316 0.1 2000 2000 
Hairdryer 0.8918 0.9554 0.9972 0.9907 0.8065 0.9226 0.1 1500 1500 
 0.8931 0.9578 0.9973 0.9908 0.8086 0.9269 1   
Microwave 0.7535 0.6932 0.6867 0.6568 0.8347 0.7340 0.1 1000 1000 
Washing 
machine 

0.1465 0.2001 0.0870 0.1179 0.4630 0.6605 0.1 1700 1700 

Dishwasher 0.4538 0.5936 0.3400 0.4437 0.6821 0.8964 0.1 2000 2000 
 0.4538 0.5936 0.3400 0.4437 0.6821 0.8964 0.05   

Table E.8 

HOUSE 2 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.7920 0.6866 0.9312 0.8041 0.6890 0.5991 0.1 40 40 
 0.7744 0.6959 0.8522 0.6972 0.7096 0.6946 0.2   
Dishwasher 0.5444 0.7762 0.4746 0.6867 0.6384 0.8925 0.1 1000 1000 
Kettle 0.9141 0.9303 0.9874 0.9969 0.8509 0.8720 0.1 2000 2000 
Washing 
machine 

0.3679 0.5818 0.2755 0.4289 0.5537 0.9040 0.1 1500 1500 

 0.3033 0.4688 0.2000 0.3165 0.6271 0.9040 0.25   
Microwave 0.6968 0.8528 0.9098 0.9232 0.5646 0.7925 0.1 1000 1000 
 0.6244 0.8700 0.6876 0.7929 0.5718 0.9637 0.3   
 0.5907 0.8248 0.6108 0.7169 0.5718 0.9710 1   

Table E.9 

 

E.4 ECO 1, 2, 4, 5, APPLIANCES OF INTEREST, USING P AND Q 

HOUSE 1 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Freezer 0.4922 0.6884 0.8904 0.8012 0.3401 0.6034 0.1 15 15 
Fridge 0.4526 0.2447 0.9696 0.7578 0.2952 0.1459 0.1 30 30 
Kettle 0.9095 0.6662 0.9179 0.9722 0.9013 0.5067 0.1 1500 1500 
Washing 
machine 

0.4194 0.6228 0.3119 0.4838 0.6396 0.8739 0.1 1800 1800 

 0.3826 0.5850 0.2705 0.4234 0.6532 0.9459 0.35   
 0.1603 0.2903 0.0910 0.1699 0.6712 0.9955 0.7   

Table E.10 

HOUSE 2 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Freezer 0.8379 0.5747 0.9961 0.7973 0.7230 0.4492 0.1 15 15 
Fridge 0.9302 0.5033 0.9901 0.9793 0.8772 0.3387 0.1 15 15 
Dishwasher 0.5012 0.8899 0.9891 1.0000 0.3356 0.8017 0.05 1000 1000 
Stove 0.9981  1.0000  0.9962  1 500 500 
Kettle 0.8184 0.6564 0.9754 0.9651 0.7049 0.4973 0.1 1500 1500 

Table E.11 
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HOUSE 4 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.6505 0.6141 0.5322 0.5244 0.8363 0.7408 0.1 15 40 
Freezer 0.6134 0.5580 0.9984 0.9991 0.4427 0.3871 0.1 15 40 
Microwave 0.5529 0.7001 0.9327 0.9911 0.3929 0.5412 0.1 1300 1300 

Table E.12 

HOUSE 5 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.4826 0.2235 0.9961 0.9796 0.3184 0.1261 0.1 40 40 
Microwave 0.7182 0.6744 0.6735 0.5530 0.7692 0.8643 0.1 1000 1000 

Table E.13 

 

E.5 ECO 1, 2, 4, 5, APPLIANCES OF INTEREST, USING P 

HOUSE 1 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Freezer 0.5259 0.5914 0.7170 0.5310 0.4152 0.6673 0.1 15 15 
Fridge 0.4384 0.3432 0.4330 0.5457 0.4439 0.2503 0.1 30 30 
Kettle 0.7937 0.7875 0.7090 0.7814 0.9013 0.7937 0.1 1500 1500 
Washing 
machine 

0.4285 0.6313 0.3167 0.4749 0.6622 0.9414 0.1 1800 1800 

 0.3595 0.5118 0.2455 0.3473 0.6712 0.9730 0.35   
 0.1648 0.2697 0.0936 0.1560 0.6892 0.9955 0.7   

Table E.14 

HOUSE 2 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Freezer 0.8634 0.4485 0.8246 0.7386 0.9060 0.3220 0.1 15 15 
Fridge 0.9297 0.4910 0.9324 0.8599 0.9271 0.3436 0.1 15 15 
Dishwasher 0.8136 0.8018 0.8348 0.8585 0.7934 0.7521 0.05 1000 1000 
Stove 0.9941  0.9919  0.9962  1 500 500 
Kettle 0.7757 0.6792 0.8623 0.8000 0.7049 0.5902 0.1 1500 1500 

Table E.15 

HOUSE 4 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.5883 0.4131 0.4497 0.3431 0.8502 0.5191 0.1 15 40 
Freezer 0.5529 0.3159 0.8789 0.3709 0.4033 0.2751 0.1 15 40 
Microwave 0.7561 0.7680 0.8658 0.9290 0.6711 0.6545 0.1 1300 1300 

Table E.16 

HOUSE 5 

Appliance F score 
Weiss 

F score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

Threshold 
diff on off 

Threshold 
diff on off 

Fridge 0.5969 0.3940 0.9492 0.6320 0.4354 0.2862 0.1 40 40 
Microwave 0.7867 0.7029 0.6628 0.5506 0.9676 0.9715 0.1 1000 1000 

Table E.17  
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APPENDIX F 
 

In this appendix the general comparison between metrics of the 2 algorithms is shown. When there are 
multiple experiments for one appliance (see Appendix D), those with better F-score have been 
selected. 

The difference between metrics in Weiss and in Hart is computed and multiplied by 100. If the 
number is positive Weiss outperform Hart, if it is negative Hart is better. 

 

F.1 P ONLY 

REDD 1 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 7.73 7.8 6.9 
Dishwasher 11.72 22.76 -8.2 
Kettle -0.78 -2.51 20.45 
Oven 9.63 1.26 12.5 
Washing machine -1.34 -0.03 -2.42 
Microwave 4.27 13.51 0.93 
Bathroom GFI -30.29 -26.94 -26.47 
Cooker -20.45 -24.75 -10 

Table F.1 

REDD 2 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 6.54 19.5 2.93 
Dishwasher 39.14 28.71 50 
Microwave 14.8 -2.15 23.22 
Stove 0.92 1.68 0.16 
Cooker -2.69 -2.03 -3.92 

Table F.2 

REDD 3 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 8.37 22.49 2.09 
Bathroom gfi 1.3 -3 12.5 
Washing machine 2.71 0 4.78 
Microwave 4.01 11.24 -5.26 
Electronics 0.51 3.56 -2.65 

Table F.3 

REDD 4 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 18.45 21.92 15.17 

Stove -17.82 6.67 -23.07 

Dishwasher 21.67 25 16.67 

Table F.4 
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UKDALE 1 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 30.56 37.15 18.74 
Kettle -1.24 -0.41 -1.97 
Hairdryer -6.47 0.65 -11.83 
Microwave 6.03 2.99 10.07 
Washing machine -5.36 -3.09 -19.75 
Dishwasher -13.98 -10.37 -21.43 

Table F.5 

UKDALE 2 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 10.54 12.71 8.99 

Dishwasher -23.18 -21.21 -25.41 

Kettle -1.62 -0.95 -2.11 

Washing machine -21.39 -15.34 -35.03 

Microwave -15.6 -1.34 -22.79 

Table F.6 

ECO 1 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Freezer -6.55 18.6 -25.21 

Fridge 9.52 -11.27 19.36 

Kettle 0.62 -7.24 10.76 

Washing machine -20.28 -15.82 -27.92 

Table F.7 

ECO 2 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Freezer 41.49 8.6 58.4 
Fridge 43.87 7.25 58.35 
Dishwasher 1.18 -2.37 4.13 
Stove /// /// /// 
Kettle 9.65 6.23 11.47 

Table F.8 

ECO 4 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 17.52 10.66 33.11 
Freezer 23.7 50.8 12.82 
Microwave -1.19 -6.32 1.66 

Table F.9 

ECO 5 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 20.29 31.72 14.92 
Microwave 8.38 11.22 -0.39 

Table F.10 
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F.2 P AND Q 

UKDALE 1 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 3.89 8.28 1.53 
Kettle -2.05 -2.63 -1.42 
Hairdryer -8.31 0.01 -14.84 
Microwave 6.53 0.08 10.02 
Washing machine 4.15 2.8 7.4 
Dishwasher -43.9 -59.7 -28.93 

Table F.11 

UKDALE 2 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 2.24 0.08 3.04 
Dishwasher 9.65 17.79 0.66 
Kettle -0.09 0.15 -0.27 
Washing machine 7.84 36.55 -43.5 
Microwave -24.13 -2.91 -33.24 

Table F.12 

UKDALE 5 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 13.94 1.27 20.03 
Kettle -6.63 -5.16 -7.7 
Dishwasher -20.8 -8.45 -31.32 
Oven -7.61 -4.52 -13.93 

Table F.13 

ECO 1 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Freezer -19.62 8.92 -26.33 
Fridge 20.79 21.18 14.93 
Kettle 24.33 -5.43 39.46 
Washing machine -20.34 -17.19 -23.43 

Table F.14 

ECO 2 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Freezer 26.32 19.88 27.38 

Fridge 42.69 1.08 53.85 

Dishwasher -38.87 -1.09 -46.61 
Kettle 16.2 1.03 20.76 

Table F.15 
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ECO 4 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 3.64 0.78 9.55 

Freezer 5.54 -0.07 5.56 

Microwave -14.72 -5.84 -14.83 

Table F.16 

ECO 5 

Appliance % diff. in F-score  % diff. in Precision % diff. in Recall 
Fridge 25.91 1.65 19.23 
Microwave 4.38 12.05 -9.51 

Table F.17 
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APPENDIX G 
 

In this appendix the general comparison between use of P only and P/Q is shown, for both algorithms. 
The difference between metrics in the two cases is computed and multiplied by 100. For each 
appliance the experiment with better results has been kept, when there were multiple experiments 

UKDALE 1 

appliance ΔF-sc. W ΔF-sc. H  ΔPr. W ΔPr. H ΔRec. W ΔRec. H param. R 
Fridge 31.91 38.97 30.79 53.32 29.97 28.28 0.2 
Kettle -5.45 -4.64 -10.63 -8.41 -0.4 -0.95 0.1 
Hairdryer -0.7 1.14 -1.09 -0.45 -0.43 2.58 1 
Microwave 12.77 12.27 29.98 32.89 -3.85 -3.8 0.1 
Washing 
machine 5.26 -4.25 3.94 -1.95 0.61 -26.54 0.1 

Dishwasher -28.78 1.14 -20.97 28.36 -45.35 -37.85 0.1 
Table G.1 

UKDALE 2 

appliance ΔF-sc. W ΔF-sc. H  ΔPr. W ΔPr. H ΔRec. W ΔRec. H param. R 
Fridge -15.04 -15.51 6.76 19.19 -21.64 -23.67 0.1 
  1.21 6.82 12.65 28.07 -5.23 -6.77 0.2 
Dishwasher 36.71 3.88 46.03 7.03 25.09 -0.98 0.1 
Kettle 0.33 -1.2 0.78 -0.32 0 -1.84 0.1 
 Washing 
machine 18.48 -5.91 43.74 -4.46 -23.16 -7.35 0.25 

Microwave -2.95 5.58 4.2 5.77 -5.08 5.37 0.1 
Table G.2 

ECO 1 

appliance ΔF-sc. W ΔF-sc. H  ΔPr. W ΔPr. H ΔRec. W ΔRec. H param. R 
Freezer -3.37 9.7 17.34 27.02 -7.51 -6.39 0.1 
Fridge 1.42 -9.85 53.66 21.21 -14.87 -10.44 0.1 
Kettle 11.58 -12.13 20.89 19.08 0 -28.7 0.1 
Washing 
machine -0.91 -0.85 -0.48 0.89 -2.26 -6.75 0.1 

Table G.3 

ECO 2 

appliance ΔF-sc. W ΔF-sc. H  ΔPr. W ΔPr. H ΔRec. W ΔRec. H param. R 
Freezer -2.55 12.62 17.15 5.87 -18.3 12.72 0.1 
Fridge 0.05 1.23 5.77 11.94 -4.99 -0.49 0.1 
Dishwasher -31.24 8.81 15.43 14.15 -45.78 4.96 0.05 
Stove 0.4 0 0.81 0 0 0 1 
Kettle 4.27 -2.28 11.31 16.51 0 -9.29 0.1 

Table G.4 
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ECO 4 

appliance ΔF-sc. W ΔF-sc. H  ΔPr. W ΔPr. H ΔRec. W ΔRec. H param. R 
Fridge 6.22 20.1 8.25 18.13 -1.39 22.17 0.1 
Freezer 6.05 24.21 11.95 62.82 3.94 11.2 0.1 
Microwave -20.32 -6.79 6.69 6.21 -27.82 -11.33 0.1 

Table G.5 

ECO 5 

appliance ΔF-sc. W ΔF-sc. H  ΔPr. W ΔPr. H ΔRec. W ΔRec. H param. R 
Fridge -11.43 -17.05 4.69 34.76 -11.7 -16.01 0.1 
Microwave -6.85 -2.85 1.07 0.24 -19.84 -10.72 0.1 

Table G.6  
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APPENDIX H 
 

In this section the comparison between algorithms and features for cooling appliances is shown. 
Metrics used here are these from Table 3.10 that summarizes all the Cooling appliances from 
experiments in Appendix E. 

 

H.1 P VS P/Q 

 

 
Figure H.1 

In general F-score is better for experiments with P/Q features. There are some exceptions: 
ECO1/Fridge (Hart), ECO1/Freezer (Weiss) and ECO5/Fridge. 
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Figure H.2 

In term of precision in all the cases the use of P/Q is preferable. 
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H.2 WEISS VS HART 

From information of section H.2, use of P/Q is preferable. Now a comparison between the 2 
algorithms is done, using P/Q features when available. 

Apart from ECO 1/freezer, in all the other cases use of Weiss is preferable in term of F-score. 
Precision is higher using Weiss in all the cases. Charts are in Figures H.3 and H.4. 

 

 

Figure H.3 
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Figure H.4 
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APPENDIX I 
 

Tables used for section 3.3.6 are gathered here. 

 

I.1 MID/HIGH POWER APPLIANCES EVENT RESULTS 

DATASET/HOUSE/APPLIANCE F-score 
Weiss 

F-score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

REDD 1/Dishwasher 0.5210 0.4038 0.5345 0.3069 0.5082 0.5902 0.1 
 0.5246 0.3648 0.5246 0.2552 0.5246 0.6393 0.3 
REDD 1/Microwave 0.6557 0.6084 0.9610 0.8200 0.4977 0.4836 0.1 
 0.6641 0.6214 0.9620 0.8269 0.5070 0.4977 0.8 
REDD 1/Bathroom GFI 0.2406 0.5435 0.1616 0.4310 0.4706 0.7353 0.1 
REDD 2/Dishwasher 0.5581 0.1667 0.3871 0.1000 1.0000 0.5000 0.1 
REDD 2/Microwave 0.9036 0.7556 0.9785 1.0000 0.8393 0.6071 0.1 
REDD 2/Stove 0.9803 0.9711 0.9836 0.9668 0.9770 0.9754 0.1 
REDD 3/Bathroom GFI 0.2097 0.1967 0.1518 0.1818 0.3393 0.2143 0.1 
REDD 3/Microwave 0.7715 0.7314 0.7667 0.6543 0.7763 0.8289 0.1 
 0.7548 0.6935 0.7231 0.5895 0.7895 0.8421 0.5 
REDD 3/Electronics 0.8762 0.8711 0.8852 0.8496 0.8673 0.8938 0.1 
REDD 4/Stove 0.5818 0.7600 1.0000 0.9333 0.4103 0.6410 0.1 
REDD 4/Dishwasher 0.4167 0.2000 0.4167 0.1667 0.4167 0.2500 0.1 
UKDALE 1/Hairdryer 0.6714 0.8972 1.0000 0.9882 0.5054 0.8215 0.1 
 0.8861 0.9692 0.9864 0.9863 0.8043 0.9527 1 
UKDALE 1/Microwave 0.8812 0.8159 0.9865 0.9857 0.7962 0.6960 0.1 
UKDALE 1/Washing machine 0.1991 0.1576 0.1264 0.0984 0.4691 0.3951 0.1 
UKDALE 1/Dishwasher 0.1660 0.6050 0.1303 0.7273 0.2286 0.5179 0.1 
 0.0061 0.6050 0.0208 0.7273 0.0036 0.5179 0.05 
UKDALE 2/Dishwasher 0.9115 0.8150 0.9349 0.7570 0.8893 0.8827 0.1 
UKDALE 2/Washing machine 0.4793 0.2985 0.7105 0.2051 0.3616 0.5480 0.1 
UKDALE 2/Microwave 0.6673 0.9086 0.9518 0.9809 0.5138 0.8462 0.1 
 0.7857 0.8760 0.8263 0.8754 0.7489 0.8766 0.3 
 0.8121 0.8237 0.7390 0.7176 0.9013 0.9666 1 
UKDALE 5/Dishwasher 0.2970 0.2850 0.1869 0.1715 0.7229 0.8434 0.05 

 0.5871 0.7951 0.6774 0.7619 0.5181 0.8313 0.028 
UKDALE 5/Oven 0.6046 0.6807 0.5052 0.5504 0.7526 0.8919 0.1 
 0.5869 0.6554 0.5116 0.5490 0.6881 0.8129 0.05 
 0.4977 0.7268 0.5459 0.7140 0.4574 0.7401 0.025 
ECO 1/Kettle 0.9095 0.6662 0.9179 0.9722 0.9013 0.5067 0.1 
ECO 1/Washing machine 0.4194 0.6228 0.3119 0.4838 0.6396 0.8739 0.1 
 0.3826 0.5850 0.2705 0.4234 0.6532 0.9459 0.35 
 0.1603 0.2903 0.0910 0.1699 0.6712 0.9955 0.7 
ECO 2/Dishwasher 0.5012 0.8899 0.9891 1.0000 0.3356 0.8017 0.05 
ECO 2/Kettle 0.8184 0.6564 0.9754 0.9651 0.7049 0.4973 0.1 
ECO 4/Microwave 0.5529 0.7001 0.9327 0.9911 0.3929 0.5412 0.1 
ECO 5/Microwave 0.7182 0.6744 0.6735 0.5530 0.7692 0.8643 0.1 

Table I.1: Mid/high power appliances event results, using P/Q when available 
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I.2 DISHWASHERS AND WASHING MACHINES EVENT RESULTS 

DATASET/HOUSE/APPLIANCE F-score 
Weiss 

F-score 
Hart 

Precision 
Weiss 

Precision  
Hart 

Recall 
Weiss 

Recall 
Hart 

Parameter 
r 

REDD 1/Dishwasher 0.5210 0.4038 0.5345 0.3069 0.5082 0.5902 0.1 
 0.5246 0.3648 0.5246 0.2552 0.5246 0.6393 0.3 
REDD 2/Dishwasher 0.5581 0.1667 0.3871 0.1000 1.0000 0.5000 0.1 
REDD 4/Dishwasher 0.4167 0.2000 0.4167 0.1667 0.4167 0.2500 0.1 
UKDALE 1/Dishwasher 0.1660 0.6050 0.1303 0.7273 0.2286 0.5179 0.1 
 0.0061 0.6050 0.0208 0.7273 0.0036 0.5179 0.05 
UKDALE 2/Dishwasher 0.9115 0.8150 0.9349 0.7570 0.8893 0.8827 0.1 
UKDALE 5/Dishwasher 0.2970 0.2850 0.1869 0.1715 0.7229 0.8434 0.05 
 0.5871 0.7951 0.6774 0.7619 0.5181 0.8313 0.028 
ECO 2/Dishwasher 0.5012 0.8899 0.9891 1.0000 0.3356 0.8017 0.05 
UKDALE 1/Washing machine 0.1991 0.1576 0.1264 0.0984 0.4691 0.3951 0.1 
UKDALE 2/Washing machine 0.4793 0.2985 0.7105 0.2051 0.3616 0.5480 0.1 
ECO 1/Washing machine 0.4194 0.6228 0.3119 0.4838 0.6396 0.8739 0.1 
 0.3826 0.5850 0.2705 0.4234 0.6532 0.9459 0.35 
 0.1603 0.2903 0.0910 0.1699 0.6712 0.9955 0.7 

Table I.2: Dishwashers and Washing Machines event results, using P/Q when available 

  



131 
 

APPENDIX J 
Time patterns of appliances considered in 3.3.6 are reported here. The day have been divided in 48 
time windows, each 30 minutes long. For both training and evaluation periods all the events have been 
assigned to their time window. Figures in this appendix detail that. 

J.1 MICROWAVES 

  

Figure J.1 

 

Figure J.2  
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Figure J.3 

 

Figure J.4  
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Figure J.5 

 

Figure J.6  
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Figure J.7 

 

J.2 DISHWASHERS 

 

Figure J.8  
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Figure J.9 

 

Figure J.10  
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Figure J.11 

 

Figure J.12  
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Figure J.13 

 

Figure J.14  
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J.3 WASHING MACHINES 

 

Figure J.15 

 

Figure J.16  
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Figure J.17 


