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1 Introduction

The study of cosmological perturbations is a very powerful tool to get informa-
tion about the origin of the Universe. In fact, the seeds of the present observable
structures have all been produced in the very early phases of the Universe, from
quantum fluctuations during inflation. They have been stretched by the accel-
erated expansion of the space-time during this phase, exiting the cosmological
horizon and remaining constant until they could re-enter it during the successive
radiation- or matter-dominated phases of the Universe. Then, once re-entered
the horizon and having been affected by the causal physics, some of those per-
turbations (e.g. the density perturbations) undergo gravitational instability and
grow, at a pace which depends on the phase in which the Universe is, i.e. on the
component dominating its energy density at that time. So, eventually those per-
turbations generate the structures that we observe.

Studying the generation of those perturbations in the early Universe and their
evolution up to now, we may compare the predictions of our models with the
observations (from the Cosmic Microwave Background or the Large Scale Struc-
ture). This way, one could give constraints on different models of the early Uni-
verse, proving or ruling out inflation.

The study of cosmological perturbations is usually performed with a perturbative
approach -as exact solutions of the Einstein equations are very difficult to obtain-
and in regimes where those perturbations are not so relevant with respect to the
background. In fact, while on the smallest scales, non-linear processes have pre-
vailed in the structure formation, so it is not possible to describe them with a
perturbative approach, it is still possible to do that on the largest scales, where
the Universe appears to be a homogeneous and isotropic background with small
perturbations superimposed. So, the line element of the Friedmann-Robertson-
Walker metric is expanded adding to it three kinds of perturbations: scalars, vec-
tors and tensors. Also, a general relativistic approach is considered, to account
for perturbations scales bigger than the cosmological horizon at some time.

At linear order, the scalar, vector and tensor perturbations of the metric are sep-
arated: a source for each perturbation can be only of the same type. So, for ex-
ample, scalar linear metric perturbations are generated by scalar perturbations
of the stress-energy tensor (like density perturbations of a fluid), while the ten-
sor perturbations predicted from a single field inflationary model would have
no source at first-order, being just vacuum fluctuations of the gravitational field
itself. From second-order on, there is a mixing between the different kind of
modes: we can obtain density perturbations generated by combinations of first-



order tensor modes, as well as gravitational waves from first-order density per-
turbations.

The study of those second-order perturbations is becoming more and more im-
portant in Cosmology, in the perspective of reaching higher observational resolu-
tions and to make more accurate predictions about observables, like non-Gaussianity,
which could give important information to discriminate between different infla-
tionary models. In fact, they predict small (but different) levels of non-Gaussianity,
so a three-point correlation function (or its Fourier transform, the bispectrum)
of the fluctuations from inflation which is different from zero. But also the non-
linear, post-inflationary evolution of those fluctuations generates a substantial
level of non-Gaussianity, more relevant than the small amount predicted by in-
flation itself [9]. Thus, the second-order contribution to the bispectrum has to be
considered if we want to constrain the primordial one from the observations.

Another fundamental information coming from cosmological perturbations would
be the amplitude of the stochastic background of primordial gravitational waves,
that would set the energy scale of inflation. This way, it represents an important
knowledge for Theoretical and Particle Physics, too. Unfortunately, the amplitude
of those linear gravitational waves seems to be very small, such that we have not
observed them yet (for example, from the polarization of the CMB).

Also scalar perturbations could be a source of gravitational waves at second-order,
once they re-enter the horizon after inflation. In particular, scalar perturbations
re-entering the horizon during matter domination could lead to a non-negligible
contribution to the spectrum of gravitational waves: there can be an enhance-
ment mechanism to this spectrum during an early matter dominated era after
inflation (such as reheating) depending on the duration of this era, and the am-
plitude of those GW could possibly reach future observational limits (advanced
LIGO or LISA). Furthermore, second-order GW generated by first-order pertur-
bations could affect the CMB polarization and limit the possibility of estimating
the first-order tensor modes, reducing the constraints on the energy scale of in-
flation [8, 10].

All of these (and many other) reasons justify the effort of going beyond the linear
approach to cosmological perturbations, that anyway helped us so much in defin-
ing our picture of the Universe. In this work we will focus mainly on second-order
scalar and tensor perturbations, with an original contribution on the first ones.
In fact, in the literature it has been extensively studied the contribution of first-
order scalars (which are the most relevant linear perturbation) to the second-



order perturbations, neglecting linear vectors (which should not be produced dur-
ing inflation, and would anyway decay) and linear gravitational waves (for their
very small amplitude). To our knowledge, only few works (like [20, 21, 24]) have
taken into account tensors in the source terms. So, it can be asked whether the
contribution to second-order scalar perturbations coming from linear gravita-
tional waves would really be totally negligible, or not. In other words, whether or
not those perturbations could undergo gravitational instability and grow in time,
such that, even if starting from very small amplitudes, they could have some fea-
ture making them non-negligible.

This work is structured as follows: in the first part (sections 2), there is an intro-
duction about the production of perturbations during inflation and their evolu-
tion in the Newtonian theory; in sections 3-6 there is all the relativistic deriva-
tion of second-order density and metric perturbations in two gauges and in an
Einstein-de Sitter Universe, following the procedure described in [1]. Then, in
section 7, a possible enhancement mechanism for second-order gravitational waves
during an early matter-dominated era [8] is mentioned. In section 8, there is the
derivation of the time evolution of second-order perturbations in EdS (using the
results obtained in the first part), followed by the conclusions, in section 9. At the
end, the Appendices present all the (sometimes lengthy) expressions which have
been useful for the derivations of our results.



2 Generation and evolution of cosmological perturba-
tions

2.1 Perturbations from inflation

The inflation is a phase at the very beginning of our Universe that has been mod-
eled mainly to answer the questions about its homogeneity and isotropy on large
scales, its flatness and the absence of "strange" relics (like magnetic monopoles,
topological defects...) that one would expect from the possible phase transitions
in its primordial phases.

Defining the cosmological horizon as the Hubble radius:

1

g = —77»
aH

da/dt

(with a(¢) the scale factor, H = = j—l’ the Hubble parameter), all those prob-
lems are solved requiring that ry is decresing during this phase. It is easy to see
that this requirement is equivalent to having an accelerated expansion of the scale
factor:

i”H<0<—>—.L<0<—>bi>0,
(a)?

which, for the third Friedmann equation, is equivalent to having a species with
equation of statep +3p < 0 & w = g < —%. The simplest model of inflation
assumes that the species driving this phase is a scalar field ¢, withw ~ -1, so a
quasi de-Sitter Universe. We cannot have exactly w = —1 as this would be equiv-
alent to a constant H, so to an eternal inflation.

To achieve this accelerated expansion, the inflaton field ¢ should satisfy the slow-
roll condition: it should have a very flat (but not constant) potential V(¢), such
that it would reach the minimum of its potential very slowly (so, the kinetic term
should satisfy 3¢* < V). This requirement is connected to the constraint on the
equation of state: in fact, explicitating the pressure and the energy density for a
scalar field,

_pe_3 -V
Py
Itis also useful to define the slow-roll parameters € and , which quantify respec-
tively how flat the potential is and for how long it will remain sufficiently flat.
Their expressions with respect to the scalar field and the potential are, respec-

~ —1.
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tively:

H 4@ (v (v

w2y T 3Hpy T 167rG( v) > = 87rG( % )

(2.1)

The slow-roll conditions are fulfilled as long as the slow-roll parameters are € <«

1,7 < 1. As soon as they get close to 1, it means that the inflaton is approaching

the minimum of its potential, where it will start oscillating getting the inflation

to an end. During these oscillations, it will decay in relativistic particles that will

constitute the radiation fluid dominating the successive phase of the classical Hot
Big Bang Universe. This last phase at the end of inflation is called reheating.
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Figure 1: Representation of a possible inflationary potential, with the inflaton field
slowly-rolling during inflation and reaching the end of this phase once the minimum has
been approached. On its path down the potential, the scalar field has perturbations de-
pending on the position which kick it a little bit up or down, so a little further or closer
to the end of inflation. This way, at different positions we would have slightly different
durations of inflation. Figure from [13].

2.1.1 Density perturbations from inflation

The inflationary models do not just explain the homogeneity, isotropy and flat-
ness of the Universe, they also predict the formation of density perturbations
which are adiabatic, almost scale-invariant and almost Gaussian; this is found to
be in perfect agreement with the current observations. Those perturbations are
generated as quantum fluctuations of the inflaton field during inflation: p(x, 7) =
@o(7) + d¢p(x, T), where 7 is the conformal time (given by dr = dt/a(t)) and ¢y(7) is



the background contribution, which does not depend on space but just on times
(as it has to evolve, to let the inflation end). The perturbation §¢(x, 7) can be also
redefined as 6¢(x, 7) = a dp(x, T), which can be promoted to a quantum operator:

dk’ . .
0P(x,T) = - ~ ikx +ut A+ —ikx i 2.2,
o(X, 1) f o [ui(7) g e wi(7) ag e*] (2.2)
where u, (1), u;(7) satisfy the commutation relation u(T)u; (1) — ux(T)u;"(7) = —i
(the prime indicates ” = £). The creation and annihilation operators dy, &; sat-
isfy:
a0y =0, (Olay =0, [aa] =0, [aay] =20 6Pk -K),

where |0) is the vacuum state. The action of the inflaton field, minimally coupled
to gravity, would be:

1 1
S = f d*x+\-g [EM,%,R - ng“a,,go Oy — V(go)], (2.3)

with R the Ricci scalar, g = det(g,,). The equation of motion (Klein-Gordon equa-
tion) for ¢ is obtained from the variation of the action S, perturbed up to first-
order in the scalar field (we neglect the perturbations of the metric for simplicity).
For the eigenfunctions u;(7) the equation of motion reads:

al’
u; + (k2 - + miaz) u, =0, (2.4)

2 . . . . . .
where m;, = 37‘2/ is the effective mass. This equation can be recast in this form:

2

1
V —_——
2 14 4
u;, + (k -— )uk =0, (2.5)
T
2
where v, = (% — %) ~ 3 + 3¢ — 3ny. For constant m’, and real v, this is a Bessel

equation, whose solution can be expressed in terms of the Hankel functions of
first and second kind:

(1) = N=t[c1(k)H})(=k7) + c2(k)H{D (=kT)]. (2.6)

The constants c;(k), c;(k) can be fixed with the requirement that on sub-horizon
scales (i.e. k > aH, corresponding in quasi de-Sitterto -kt > 1,as t =~ —m)
the solution matches the one we would expect in a flat space-time, so plane waves:
u(7) = % Applying this limit to the Hankel functions:

HOGx > 1) _ie—i(kr+%+§v¢); HO(x > 1) ~ _ie—i(—kr+%+§v¢)’
i X ¢ X



so we need to impose ¢, (k) = 0, ci(k) = ge"(%%). This way, the exact solution
becomes:

(1) = ge"(%%) V=T H (~k).

To obtain the super-horizon limit of this solution, we can also consider the limit
k < aH < —kt < 1, that for the Hankel function of first kind corresponds to:

2 e T
HO(x < 1) = \/;e_l 1271 r((3V/¢2)) @™,

such that u,(7) becomes:

I'vy) 1 1
— (k1) .
rG/2) Tk( 7) (2.7)

So, the super-horizon limit of the inflaton perturbation ¢ = % would be:

uk(‘r) = ei (V‘P_%)%zv‘ﬂ_%

H k\? Ve
|6¢l(=kt < 1) = N (E) , (2.8)

to lowest order in the slow-roll parameters.

If we would consider also the perturbations of the metric (as we are not in an un-
perturbed FRW background), the term with the effective mass in equation (2.4)

37y-6 -
would become Ma® =~ 25 ~ 2% s0v] = 2 + 9¢ — 3y, and the wavefunction

u; would be associated not simply with §¢, but with the gauge-invariant Sasaki-
Mukhanov variable Q,:

’

%EW+%¢ (2.9)

where 3 = < is the conformal Hubble parameter and ¢ is the spatial curvature
perturbation (defined in (4.1)). So, at the end one would obtain, on super-horizon

scales:
k %_W ~ny-3€
( ) . (2.10)

1Qp(O)|(—kt < 1) =~ H

H
V213
It is useful to define other quantities to connect Q, with the observations. First
of all, the curvature perturbation, which is not gauge-invariant:

o 1
d=¢+ EVZ I (2.11)



where ¢ and y! are scalar perturbations of the space-space part of the metric (de-
fined in (4.1)). This is strictly related to the linear intrinsic spatial curvature on
hypersurfaces of constant conformal time:

4

OR = =V*d. (2.12)
a
The corresponding gauge-invariant quantity is the curvature perturbation on uni-

form density hypersurfaces:
)
=0+ —'?f}(, (2.13)
o

which reduces to the curvature perturbation in the uniform density gauge (p =
0). The advantage of using ¢ is not only its gauge invariance, but mostly the fact
thatit remains constant on super-horizon scales and in the absence of non-adiabatic
perturbations (whose pressure perturbations have a §p,,,g which does not depend
on p). This means that, once having been produced, the inflationary expansion
stretches £ out of the horizon, where it does not evolve: it encodes all the infor-
mations from the primordial Universe until its horizon re-entry.

To connect { with Q,, it can also be defined the gauge-invariant curvature per-
turbation on comoving hypersurfaces:

R=d+ 6—",0}(, (2.14)
@

which is directly connected to the Sasaki-Mukhanov variable: R = %Qw. Itisalso
related to { through:

_{:R+2—pi2w (215)
9+ p)\aH) ™’ '

where ¢ is the scalar perturbation of the time-time part of the metric (defined
in (4.1)). So, on super-horizon scales —¢ ~ R and its amplitude would become:

H2 k %_V¢:’7V_3f
IC(R)I(—kt < 1) =~ ViF (a_H) . (2.16)

Depending on the gauge choice, ¢ atlinear order is connected either with the cur-
vature perturbation (in a uniform density gauge) or with the linear density con-
trast§ = i—p (in the uniform curvature gauge). At the first horizon crossing (in-
stant £.1(k)), the density perturbations of the inflaton are frozen out, so they re-
main constant until they re-enter the horizon (instant t(é)(k)), when they generate



density perturbations in the fluid dominating the Universe. This can be shown,
using the slow-roll equation 3H¢ ~ —3—“; and the third Friedmann equation:

o 0 1 0,
d;g)(k) = e op Lo P

= — = . 2.1
v =T T e e 217

So, in principle, on the largest scales we would have access to the information
coming directly from the primordial phases of the Universe.

comoving
scales
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- — aH
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~ s
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Figure 2: This figure shows the development of the Hubble radius during and after in-
flation, which leads to the exit and re-entering of a mode with a certain k. It is also em-
phasized how the quantum fluctuations from the inflaton field on sub-horizon scales are
translated into classical fluctuations in the curvature perturbation R, which stay constant
on super-horizon scales. Once they re-enter the horizon, they affect the post-inflationary
Universe, evolving in the temperature perturbations that we can observe from the CMB.
Figure from [13].

The quantum to classical transition of the perturbations passing from sub- to
super-horizon scales can be explained evaluating the number of particles n; which
are produced on super-horizon scales. As it would be much bigger than unity, the
perturbations can be considered classical, such that their energy can be estimated
"classically": Hy = wi(ni + 1) = winy [14].

To evaluate the amplitude and the statistical properties of the fluctuations we can
compute their correlation functions, or, classically, their ensamble average.



For quantum fluctuations, like d¢p, in Fourier space it is defined as:

2 2
0] 5¢(k;) 5" (ky) [0) = k—’§63(k2 — k)P, (ky), (2.18)
1

such that:

&’k d’k
(0] 6p(x, 1) 0" (x+1, 1) [0) = 1 f o 2 pkix el () 50k, ) (ko) [0) =

(2r)? 7T)3
&’k _l(1r2ﬂ
e @ Fetk)
(2.19)
So, the variance will be:
dk
(0] Sp(x, 1) 59" (%, 1) |0) = (0] p(x, ) |0) = f P (k). (2.20)

For classical perturbations, their evaluation on the vacuum state is replaced by
their ensemble average (-), and the complex perturbations become §¢*(k) = dp(-k).
Comparing with the amplitudes which has beed found for the curvature pertur-
bation ¢, its power spectrum would be:

, 2.21
H (2.21)

H2 2 k 3-2v, =2ny—6e
Py(k) = |§(k)| = (—) ( )
21

where the spectral index is defined as - 1 =3-2v,.
At the horizon crossing: P,(k) = (ZW)

2.1.2 Gravitational waves from inflation

The generation of linear gravitational waves during inflation can be explained
with a mechanism completely analogous to the one for scalar perturbations. Per-
turbing the action (2.3) with respect to tensors at first-order, one obtains the evo-

lution equation:
Vzl’ll’j

.. a .
h,’j+3;l’l,’j—7 =0, (2.22)
which is a wave equation, solved by
hyx 0= > V@€ ®), (2.23)
A=+,X

10



where the polarization tensor e;; is symmetric, transverse and traceless (e;; =
eji,k'e;j = 0,e = 0)and A = +, X are the two polarization states.

The following transformation can be performed:

aMp;
vij (%,1) = —= hij(x,1), (2.24)
J \/E J
where this new variable can be expanded in Fourier space this way:
d’(k
vij (%,1) = f ( ) Myl e ®), (2.25)
/l +,X

quantizing the field v as in (2.2). The evolution equation for the linear tensor
modes becomes:

17() 2 4a W _
Vi +(k a) Vi =0, (2.26)

which can be recasted in the same form as equation (2.5), with a parameter vy ~
2 + €. So, the solution for this equation is completely analogous to the one for the
scalar perturbations (2.6). The amplitude of the variable vy is:

| IZ—H2 kT (2.27)
Viel = 2k3 \aH ’ 27

this way, the power spectrum for linear gravitational waves (defined as the one of
scalar perturbations, in (2.18)), becomes:

2 3-2vr
H\( k
s - (m) (i) (29
/l+><

where the spectral index for tensors is: ny = 3 — 2vy = —2e.

The power spectra for scalars and tensors present the form: P(k) = A(ko)(%)", o)
the ratio between their amplitudes can be evaluated:

2
Ar 8 (¢
=—=_—[Z| =16e. 2
r A, Mf,l(H) € (2.29)

The amplitude of the spectrum of scalar perturbations from inflation has been
evaluated from the measurements of the temperature fluctuations of the CMB:
Ay ~2x 107° [18]. Measuring also the amplitude of the stochastic background

11



of primordial gravitational waves Ar would set the energy scale of the parameter
€, so it would allow to distinguish between different scenarios of inflation (for ex-
ample, between large-field or small-field models).

Furthermore, as the spectral index for tensors is ny = —2¢€ in single field inflation,
the consistency relation » = —8nt would allow to put constraints on the possibil-
ity of having single- or multi-field models.

Up to now, only the spectral index of scalar perturbations has been probed: n; ~
0.96 (from CMB measurements [18]), whose deviations from 1 are due to the small
contribution from the slow-roll parameters €,77. So, we have an almost scale-
invariant scalar power spectrum.

2.2 Evolution of perturbations in a matter dominated Universe

After inflation, the perturbations re-enter the horizon and are affected by the
causal physics. To study the evolution of perturbations of non-relativistic mat-
ter well inside the cosmological horizon, a very classical approach is the Newto-
nian one. Even though this work is focused on the complete, general relativistic
treatment, a parenthesis can be opened on the Newtonian procedure, which eas-
ily gives insights on the physical processes in action. Then, in the next sections,
the relativistic treatment is followed again, but some comparisons with the New-
tonian one can still be drawn (section 6.3).

On large scales, we can make the assumption that matter behaves like a perfect
fluid, with energy density p(x, 1), 3-velocity v(x, 7), pressure p < p and entropy
s(x, 7). A perfect fluid element satisfies the following equations:

Continuity equation:
dp
—+V. =0; 2.30
” (vp) (2.30)
Euler equation:
ov 1
—+W-V)v+-Vp+Vp=0; (2.31)
ot o
Poisson equation:
V¢ — 4nGp = 0; (2.32)
Entropy conservation:
0s
—+v-Vs=0, 2.
5 TV VS (2.33)

12



where ¢ is the gravitational potential.

The easiest possible solution is the static one: p = py, v = 0, s = 50, p = po
and V¢ = 0, where this last constraint requires py = 0. So, a dinamical Universe
is a natural consequence of having an average energy density, naturally arising
also in Newtonian theory. Its expansion can be described by the scale factor a(z),
relating the physical, Eulerian coordinate r to the Lagrangian one x, comoving
with the fluid element, through:

r=a()x.

If we assume as a dinamical background a homogeneous and isotropic Universe,
the background energy density will be a function of time only: py = po(?). Plug-
ging it into the continuity equation, it evolves like:

p0+3Hp0 :0,

where the dot indicates a derivative with respect to time. The velocity of the fluid
element is: )
V=1= gr+a}'(:vo+<5v.
a
It is convenient to consider derivatives with respect to the comoving coordinate
x. The derivative in space simply becomes:

Ve=—3 (2.34)

the time derivative is derived comparing the partial derivative at constant x to the
one at constant r:

0 0 0x 0 da ' (Hr
(a)r } (a‘r)x A (a)r e (a)x (5" )r A
) a\ . (@
= (E’)X_HX.VX = (E)X—GX'Vr = (E)X—VO'Vr.

We can consider small perturbations with respect to the background (stopping at
linear order):

(2.35)

p=po+op;, V=Vy+0V, P=¢g+p; =50 p:p0+6p:p0+c§6p;

where the pressure perturbation 6p = c26p + %&v = c?6p reduces just to the first
term, as we neglect entropy perturbations. Inserting the perturbed variables into
the equations (2.30) - (2.32), we obtain a set of linearized equations:

13



Continuity equation:

09,
(a—f) +p0 Ve - 0V + Vi(6p - vp) = 0; (2.36)
Euler equation:
AoV c?
— | +(vo-Vp)ov+(v-Vvg+ =V, 00+ V.0 =0; (2.37)
or ), Po
Poisson equation:

V2 —4nGop = 0. (2.38)

Then, inserting the definitions (2.34) and (2.35) to have spatial derivatives with
respect to x and time derivatives at constant x, after few passages [13, 22] one
gets:

Continuity equation:
00 1
( Y )X p v (2.39)
Euler equation:
96 : Vi
(—V) +H6v+&VX6+—go:0; (2.40)
or ). a a
Poisson equation:
Vi ® - 47rGa2p05 =0; (2.41)

where ¢ is the density contrast, defined as ¢ = i—’o).

Taking the divergence of the Euler equation and combining it with the continu-
ity and the Poisson equation, we get an evolution equation for the linear density
contrast:

2
§+2H5 - = V25— 4nGpyd = 0, (2.42)
a
that, considering a pressureless fluid p = 0 — ¢? = 0, becomes:

8+ 2H6 —4nGpyd = 0. (2.43)

Expressing equation (2.42) in the Fourier space:

2
O + 2Hoy + (C—Z K - 47er0)6k =0, (2.44)
a

14



we can define as a critical lengthscale the Jeans length:

2r ¢ bs
Ay=—=— =,

ky a \ Gpo
where the physical wavelength would be 2/ = al,. As in a flat, matter domi-
nated Universe py = (62G#*)~!, the physical Jeans length would be:

phys
A7 =,

approximately the sound horizon. If thelengthscale of the perturbation is smaller
than the Jeans scale: 1 < /l‘}’hys — k > kj, the gravitational term can be neglected
and the solutions are oscillating functions: the pressure opposes to the gravita-
tional instability process.

If the lengthscale is larger A > /l"j’h” — k < kj, the pressure term is the one to be
neglected. Considering the case of a flat, matter-dominated Universe (our model
for the following sections), where a « /> and H = £, equation (2.43) becomes:

. 4.2
0+—0—=—=0=0. .
3,97 32 (2.45)
The solution of this differential equation is a power-law § oc 1%, that, plugged

into (2.45), gives the straightforward result:

2/3

S§=c P+t (2..46)

The growing mode 6 o 2/ gives the rate of growth of density perturbations. It

is not the most efficient growth rate: in the case of a static Universe, this rate
would be exponential [13, 22, 23]. It is easy to understand that this weaker rate of
perturbation growth is due to the expansion of the Universe, which reduces the
accretion mechanism.

The fact that vector perturbations are negligible can be understood by looking at
the Euler equation (2.40): in the absence of gravitational and pressure perturba-
tions, their evolution becomes:

ov+ Hév =0,

from which 6v o« a7!

and can be neglected.

. So, linear vector perturbations are decreasing with time

15



3 Gauge choice and gauge transformations

In a complete relativistic setup, dealing with spacetime perturbations means con-
sidering small deviations with respect to an unperturbed background, which in
our case is the flat FRW Universe. Any perturbation AT of the quantity T (e.g.
a tensor field) is defined as the difference between the background quantity 7
and the value T assumed on the perturbed, physical spacetime. Since T and T
are defined in two different spacetimes, for differential geometry we cannot com-
pare them: the difference between the two quantities has to be evaluated at the
same point. So we need a one-to-one map between the background and the phys-
ical spacetime, to "transport"” the physical value T to the unperturbed spacetime
and compare it with T. The choice of a particular map is the "gauge choice". The
problem about the gauge choice is that the value of T at any spacetime point in
general changes with the change of gauge: thus, also the perturbation AT is not
(in general) a gauge invariant quantity. So, it can sometimes be useful to define
a particular gauge simplifying our problem, or otherwise to define some gauge
invariant quantities. For our purposes, it is certainly convenient to deepen the
discussion about the gauge issue and gauge transformations.

We can see the background and the physical, perturbed spacetime as distinct
manifolds M, and M, (a one-parameter family of manifolds), where A is the or-
der of the perturbation.

The choice of a one-to-one correspondence (a one-parameter function of 1) be-
tween points of M and points of M, is a gauge choice. For example, assigning the
coordinates x* to the background My, those can be transported over M, through
a map ¥,, defining the gauge. This map connects e.g. the point p on M, with
coordinates x*(p), to the point O = y,(p) on M,; however, there could be a dif-
ferent map ¢, connecting the point O to another point g on the background, with
coordinates ¥#(gq): O = y(p) = ¢a(q). The gauge transformation is this change
of correspondence, where a point on M, is associated to different points on M,
(keeping the point on M, fixed): so we can see it as a one-to-one correspondence be-
tween different points in the background. In fact, as ¢ = ¢;'(0) and O = yi(p), we
end up with ¢ = ¢! (¥2(p)) := @a(p). Thus, we have that the coordinates of ¢ are
a one-parameter function of those of p: ¥#(q) = ®{(x*(p)).

This transformation can be seen as an "active coordinate transformation’, in which
a coordinate system moves one point to another, or as a "passive coordinate trans-
formation’, a simple relabeling of coordinates to each point.

Suppose a coordinate system x* on a manifold M and a vector field & such that
&F = dx"/dA. & generates a congruence of curves x#(1), where A is the parameter
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along the congruence. It can be defined a point p lying on one of these curves,
associated to A = 0, and a point g at a distance A from p. So, the coordinate of the
point g is (eliminating the dependence on the specific points):

XA =xH + A& + ... (3.1)

This is the "active" approach. The "passive" approach consists in defining a new
coordinate system y* on M such that:

i) = xH(p) = xH(q) = A&H (x(p)) + ... = xH(g) — 1&H(x(q)) + ... (3.2)

at first-order in A.

We now consider a vector field Z on M with components Z* in the x-coordinate
system. Once the relation (3.1) between points has been established, a new vector
field with components Z* in the x-coordinates can be defined, such that, at the
point x#(p), they are equal to the components Z’# that Z has in the y-coordinates,
at the point y#(g):

oy*
ox”

Z*(x(p)) := Z”‘(y(q))=( ) Z7(x(q))- 3.3)
x(q)

Substituting the equation (3.2) into (3.3) and then expanding the RHS at first-
order in A about x(p) one obtains:

ZMA) =ZF + AL ZM + ...

T .

where ”,v” = -Z the dependence on the point p has been omitted and £, can
be defined as the Lie derivative' with respect to the vector field £#, in the limit
A — 0. So the vector Z#(2) (the pullback of Z from g to p) is defined at the same

point as the original vector Z* and they can be compared.

This can also be extended to higher order, as (3.1) is the first-order solution of the
differential equation £# = dx*/dA. Its exact solution at second-order would be
(eliminating the dependence on the points):

2
) = XM+ AEH + %g};gv + ... = exp[AL]x*, (3.5)

"The Lie derivative of a scalaris: L f = f, £/, foracontravariantvector: L, ZF = Zi £"—€RZ”,
for a covariant tensor: LeTyy = Tyyo €7 + f’z Toy + &7 Tyo-
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where d®x* /dA* = £} €”. From the "passive" approach, using the definition y#(g) =
x*(p), the equation (3.5), expanding all terms about x(g) and omitting the x(q)
dependence, one obtains:

/12
YD) = xH = AEF + ?f”;§v+.... (3.6)
Using equation (3.6) into equation (3.3), expanding all terms about x(p) and omit-
ting the dependence on the point, we get the pullback Z#(2) at second-order :

8 2
ZM() = explALelZ! = 2" + AL 2V + = L2+ ... (3.7)

Finally, one can generalize the equation (3.3) to a generic tensor of type (p, g) us-
ing the right number of transformation matrices, to obtain the pullback 7'

oyt gytr Ox7' 0x%4
OxPr" OxPr Oyt T By

T (x(p)) == T 1 (v(g)) = TS5 (x(q)).
x(q)

! (3.9)
Using equation (3.5) like before:

- A2
TO=T+ALT + 5 LT+ .. (3.9)

This represents the expression for the pullback 7(1) for a one-parameter group
of transformations. Through this, it is possible to generalize the definition of Lie
derivative:

d] . 1
LT := [ELZOT(/I) = lim ~[T() - T]. (3.10)

Gauge transformations do not form a one-parameter group, but a one-parameter
family of transformations. The action of a one-parameter family of transforma-
tions can be given by the successive action of one-parameter groups, becoming
evident at non-linear order. This means that a vector field &, has to be intro-
duced, with parameter A, associated to the kth one-parameter group of trans-
formations. At a given order n of the expansion, a number k = 1,..,n of such
vector fields has to be introduced. At second order the tranformation becomes:

- 2 y
X)) = xM + AL + > () € + €0 (3.11)
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where A(j) = 4, A2y = 4>/2. Given this transformation, equation (3.11) can be used
to define the y coordinates:

/12
Y(q) 1= X(p) = x*(q) = AEH (x(P) = 57 (€] (P €3, (X(P) + £l (x(PI] + .
(3.12)

Expanding as usual the RHS about g and neglecting the specific point p, we get:

2 y
YHA) = x = AE] + > (1), & + €0 - (3.13)

Finally, the pullback fora generic tensor T can be derived substituting equation (3.13)
into equation (3.8):

" 25
T) =T+ AL, T+ 5 (L5, + L) )T + ... (3.14)

Coming back to the gauge problem for perturbations: consider the tensor field 7,
on each M, (where T} is the unperturbed tensor field, T, is the perturbed one, at
order 1). We can choose two different gauges ¢, and ¢, to represent 7, on M:
they can be called T(1) and T(1) respectively. They are defined in such a way to
have the same components of T, in their particular gauge. On the other hand,
we have a relation between T'(1) and 7'(2) given by @, relating their components
through the transformation (3.8). Now, in each gauge we have a field represent-
ing T, on My, so those fields can be compared to the unperturbed one 7 in order
to define the perturbation. We would have AT, = T, — T in the first gauge and
AT, = T, - T, in the second one: in general, they are not equal.

Since we can expand the fields in the new gauges as:

/12
T) =Ty + 6T + o) 8T + O, (3.15)

o Y LA
T(A) =Ty + 16T + ) 8T + O, (3.16)

substituting those expansions in equation (3.14), one finally obtains the gauge
transformations for the perturbations at first and second-order:

6T = 6T + Lg,, To, (3.17)

6T = 6°T + 2L, 6T + L3, To + Le, To. (3.18)
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Equation (3.18) shows that there can be special second-order transformations only
due to the second-order generator &, in the case & = 0. On the other hand, a
non-vanishing &, always affects both first-order and second-order transforma-

tions, inducing an effect of 6T on 6°T .
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4 Perturbed flat FRW Universe

We consider perturbations with respect to a homogeneous and isotropic back-
ground, in a flat, matter dominated Universe, described by the FRW metric: ds* =
a*(t)( —dt*+dx*), where a(t) is the scale factor and 7 is the conformal time. Those
metric perturbations can be defined separating them in scalars, vectors and ten-
sors (STV-decomposition [12]):

+0o0
1
— 2 (r)
goo = a(7’)(1+2 _El r!w )

+00
1
goi = (1) ) o 4.1)
r=1 "~
+0o0 1 +0o0 1
o= 2 _ _ 40 B )
g,,—a(r){[l Z(Z; R4 )]&ﬁzl:r!xij},

where y\”' = 0, so )(E;) is the traceless part of the spatial metric perturbation. The
index (r) represents the rth-order of the perturbation.

The scalar (or longitudinal) parts are related to a scalar potential, the vector parts
to transverse (divergence-free or solenoidal) vector fields and the tensor parts to
transverse, trace-free tensors. The shift wﬁ’) can be decomposed, as any vector, in

the sum of an irrotational and a divergence-free vector:

(r L
i

a)l(.r) = 0,0+ w

where &' wgr“ = 0. Similarly, the traceless part of the spatial metric can be de-

composed in the following way:

r) _ (r)L (r)L nT
Xij —Dij)((r)||+ai/\/j +aj)(,' +Xij s

where y!l is a scalar, y\”* is a solenoidal vector field, 8")(5;” = 0,and D;; =
Also the energy density p and the four velocity u* can be expanded:
+00 1
P =po+ Z; I 6'p

1 — 1
u_ 2| on E u
ut = p (60 + " v(r)),
r=1
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where u* is subjected to the normalization u*u”g,, = —1. From this normaliza-
tion condition, at any order the time component v, is related to the lapse pertur-
bation y”. Also the velocity perturbation can be splitinto a scalar and a solenoidal
vector part:
i _ Al

Yy = OV + Vi 1
The generators of the gauge transformations are the vectors &, which can be
split into a time and a space part:

f(?) =a"
f(l) — (9’,3(r) + d(r)i

r s

with 9;d”" = 0.

As this generator is determined by two scalars and one vector, a gauge is defined
by the constraints on e.g. two scalars and one vector metric perturbations, or on
the density, on the velocity...

We know that General Relativity is invariant under coordinate transformations,
but not under gauge transformations. To solve the Einstein equation one can
choose a particular gauge: two very useful gauges in Cosmology are the comoving
synchronous gauge and the Poisson gauge.
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5 Evolution in the synchronous gauge

The synchronous gauge is defined by the conditions gy = —a*(1), go; = 0 (cor-
responding to the two scalars and one vector constraints: ¢,y = 0, ”! = 0 and
wgrﬂ = 0). Itis called this way as the proper time of an observer at fixed spatial

coordinates is equal to the cosmic time in FRW: —ds* = a?(r) dr* = dt*. We con-
sider an Einstein-de Sitter Universe dominated by a perfect fluid of irrotational
dust, in synchronous and comoving coordinates. The line element can be written
as:

ds* = a*()[-d7* + Yij(X,7) dx'dx’],

where x are the Lagrangian coordinates of the fluid elements. We indicate space-
time indices with greek letters, spatial indices with latin letters, and * = 2. The
scale factor in this case evolves like a(t) o 72.

It is useful to introduce the concept of extrinsic curvature. While the Riemann
tensor measures the intrinsic curvature of space, the extrinsic curvature depends
on how the space is embedded in a larger one. In our case, we consider a spatial
hypersurface %, its normal vector n* and define the projection tensor P, = g, +
n,n,, projecting any vector of the space cotangent to X onto its tangent space. It
also acts like the "spatial metric" for vectors tangent to the hypersurface [2].

If we think to extend the normal vector field n#, the extrinsic curvature is defined
as the Lie derivative of the projection tensor (the spatial metric if X is spacelike)
along the normal vector field, expressing the rate of change of the hypersurface
metric as we move orthogonally away from X: 6, = 35,, P,y

In our case, the normal vector field would be timelike n* = &;, and the spatial
metric is y;;, so the extrinsic curvature is

1

1 1 .
Hij = ELH ’)/l/ = E(yi'i’a I’lo— + 2]’13—")/0_]) = E(%j"r nO') = E’ylj,

and
i _ 1 ik 7
0 = 57’ Yijo

as the spatial metric y;; would raise and lower the indices in the spatial hypersur-
face.

An advantage of this gauge is that the Einstien equations can be expressed in
terms of geometric quantities only. Expressing the Christoffel symbols and the
conformal Ricci tensor of the spatial hypersurface fR; with respect to the spatial
metric y;; (appendix B in [1]), one can express the Einstein equations with respect
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to the extrinsic curvature, after having subtracted the background contribution.
The energy constraint is:

i 8 24
0> -06! +-0+R==6 G.1)
T T

P—P©)
PO

with p(x, 7) the mass density of the fluid and p () = m its background
mean value.
The momentum constraints is:

where R = Rl is the conformal Ricci scalar and 6 = is the density contrast,

0l =0, (5.2)
where ”; i”” represents the covariant derivative with respect to i.
Replacing the density from the energy constraints and subtracting the background
contribution, the evolution equation becomes:
1

7R, =0 (5.3)

ir 4 i i 1 y i
0 j+;0j+910+Z(elkeli_QZ)(sj-'_:Rf_

Considering the vector n* normal to the spatial hypersurfaces as the tangent to a
timelike geodesic, the extrinsic curvature 6, would be also equal to the covariant
derivative with respect to n*: 6,, = D,n,, describing the extent to which neigh-
bouring geodesics deviate from remaning parallel [2]. So, the scalar 6 expresses
the peculiar volume expansion, whose evolution is described through Raychaud-
huri equation:
bipigip2gy O
0" +6;0! +-6+—5=0. (5.4)
T T
Also the density contrast can be expressed in terms of the extrinsic curvature by
solving the continuity equation p = —6 p, which is equivalent to §’ + (1 + 6) 0 =
0 [19]. The result is:

6(x,7) = (1 + 6@y, 1) /yo@)] ™ ~ 1, (5.5)

where y = dety;; and the subscript O represents the quantity at the initial condi-
tion.

5.1 First-order perturbations

From the previous equations we can get the evolution of the first-order pertur-
bations. Expanding the conformal spatial metric tensor we get at linear order

Yij = 0ij + 7(511.}, where, according to the general definition

I _ (1) M (HL 1L HT
Vsij = =205 0ij + Dijxs " +0ixs; +0ixs, X s
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with é?’)((sll)l = x\"T" = 9" x!V" = 0 and the subscrit S indicates the gauge (not

present for the first-order tensor mode, which is gauge invariant).

Linearizing the traceless part of the evolution equation (5.3), we get the equation
of motion for the first-order tensor mode:
4
T DT 2. (DT
ng) amn ;ng) r_y ng) =0, (5.6)
that is the equation for the propagation of gravitational waves in the Einstein-de

Sitter Universe (where 23 = 4/7, H being the Hubble parameter in conformal
time). The general solution, expanded in Fourier space, is

XEJI)T( ,T) = fd3kexp(lk X))((l)(k,‘r) ei(;(f(), (5.7)

1
(2m)?

where ef’(k) is the polarization tensor (o~ = +,x) and Y V(k, 1) is the amplitude of
the polarlzatlon states, which is an oscillating function:

3]1(k7'))
)

Xk, 1) = Ak)a, (k )( (5.8)

with j; spherical Bessel function of order 1 and a, (k) a random variable with au-
tocorrelation function {a,(k)a, (k")) = (27)* k363 (k + k)64, . The spectrum of
gravitational waves background A(k) depends on the model for its production: in
most inflationary models, it is a nearly scale invariant spectrum, depending on H
during inflation. It would also give an important information about the energy
scale of inflation, allowing to discriminate among different models.

As we are dealing with an irrotational fluid, at linear order the gauge modes for
vector perturbations can be set to zero: )((1“ =0.

The remaining two scalar modes are related by the momentum constraint (5.2),
giving:

o évz o1 _ g 1 VZX(SIO)“' (5.9)

From the energy constraint (5.1):

12

2 6
212 Dl M _ (1)|| ) 2 (1)||
Vi -x + = )+ 20, + < V =3

s 2 Xs 00, (5.10)
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and from the trace part of the evolution equation:

4 1
X(Sl)” "y X(SI)II/ VZ (1)” 2¢(1), (5.11)

3

Combining the equations (5.10) and (5.11), we obtain an equation only for the scalar

mode)((l)”.

2 6 2
V2 )((sl)”" TX(I)H/_ (1>|| (1>||)

To obtain an equation for the density contrast, one linearizes the solution of the
continuity equation:

1
6(51) — 60 _ 5 Vz()((sl)” (1)”) (513)
deriving this expression and inserting it in equation (5.12) we obtain:
2 6
65"+ =6y - =6y = 0. (5.14)
T

The solution to this equation is a simple power-law. The residual gauge ambiguity
of the synchronous gauge can be used to simplify the previous equations: fixing
V? X(Sl())” = —20), the equation (5.12) for )(( ) 3ssumes the same form of (5.14), and

its solution would be:

x§1%, 1) = ¥ (0 T+ x )77,

where y. are the growmg/decaymg modes. From V> )((1) V= —26, and the Poisson
equation V2p(x) = 4nGa*pydy = T— 8o (where ¢(x) is the peculiar gravitational
0
potential), considering only the growing mode: V> X(Sl())” = (V2y) 15 = =260 =
—122V2%p - y. = —1¢. Therefore,
2 1
Dt]/\/(sl)” %(‘P,ij - §5ijV290), (5.15)

and using equation (5.11) we obtain the remaining scalar mode:
() S o
¢g (X, 7T) = 3 o(x) + EV P(x). (5.16)

Collecting those results, the linear metric perturbation becomes:

10 72
7’@3 3 ¢0ij — 3 P +Xf,1>T, (5.17)
with growing mode only, the linear density contrast is
2
.
65 ==V (5.18)
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5.2 Second-order perturbations

The results obtained at first-order are used to solve the second-order case. The
conformal spatial metric tensor up to second-order is:

1
— (1) (2
Yij = 61] + ySlj +3 2 ySU’

with
() () @)
ySl] 2¢ 6’J +XSU
and )((2)’ = 0, traceless part. This expansion of the metric tensor is inserted in

(2)

equations (5.1) - (5.4), to obtain expressions for ¢)(2) and yg; in terms of the ini-

tial peculiar gravitational potential ¢ and the linear tensor modes y!)". These
equations are reported in the Appendix A. They can be solved using for the initial
conditions the simplifying assumption 7y = 0, implying 6, = 0. The trace part
of the second-order metric tensor can be obtained from the Raychaudhuri equa-
tion, using also the energy constraint to obtain the subleading mode. The result
is:

@ _ T ( 10

i 572 4
T R A AR 2 )+ E(‘O et 30V )+¢§23y (5.19)

where qbs(t) is the part of ¢{” generated by combinations of linear tensor modes.
It satisfies equation (B.1) and it can be solved through the method of variation
of arbitrary constants: given the two solutions of the homogeneous part of the
equation (B.1), y; = 7> and y, = 72, and the Wronskian, defined as W(z) =
Y1, — y2y} = 5772, the general solution of the inhomogeneous equation is given

by y(1) = c1y1(1) + c22(7) + yp(7), Where yp(7) is:

yi($)Q(s)ds y2(5)Q(s) ds
ye(7) = yz(r)f Wes) ()f W)

Q(x, 7) is the source term of the inhomogeneous differential equation (explicitly
written in Appendix B). The solution of the differential equation, in our case, be-

comes:
o = = f I o >—— f 't A7), (5.20)
0

(where the constants c¢; and ¢, have been set to zero).

The result for )( IS obtained replacing the expression for (/) inthe equations (A.2)
-(A.4)and solvmg them in the order: energy constraint - momentum constraint
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— traceless part of the evolution equation. We get:

4
T 19
Xsi; = 36(19 Plen =120 V0 +4 (V0 6, - — o' 61,-)
572 4 (5.21)
+ T( =~ 600 = 40pii+ 26 0iby+ 3 oV 6,-,-) + 751 + X oo
where )((S%l.j is the part of X(szli generated by combinations of linear tensor modes

(it can be obtained solving the equations in Appendix B); 7s;; is the second-order
transverse and traceless part, generated by scalar perturbations. Itis determined
by the wave equation:

7" 4 / 2 _ T4 2
Tgij T ;ﬂ-sij - Ving; = _ﬁv Sijs (5.22)
whose source term is:
8ij = V2 ¥, 0ij + Wo,; + 2(§0,zjV2 ®- SDZfSD,kj), (5.23)
with .
V2 W = =3 1(V9)” - M ul. (5.24)
The solution for 7i;; can be found through the Green method:
T4 472
ﬂSij(X, T) = ESU(X) + TTU + ﬁ'ij(X, T), (525)

where V2T;; = 8;;and #;; satisfies the evolution equation (6.8). Its solution can be
found with the method of variation of arbitrary constants described before, and
its expression is:

mii(x, 1) =

(5.26)

fd3k exp(ik - X)gsij(k) (1 _ jl(kT)),

(2n)? 3kt
with §;;(k) = fd3x exp(—ik - X) 8;;(x).

It represents the real gravitational wave contribution generated by linear scalar
modes, with a term constant in time and another one oscillating with decreasing
amplitude (like in the first order tensor mode (5.8)).

The synchronous gauge tensor mode (5.25) contains four terms: the first one,
o 74, represents a Newtonian contribution, describing the dynamical tidal in-
duction acting from the environment on the fluid element; the term o 72 is a
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post-Newtonian term; then there is a constant post-post-Newtonian term, re-
quired by the vanishing initial conditions and having no obvious observational
effects, and, finally, a wave-like piece, which has the usual form as free cosmo-
logical gravitational waves [3].

The second-order density contrast in synchronous and comoving gauge is found
from equation (5.5), expanding up to second-order the determinant of the metric
(Appendix B in [1]). The result is *

6y = 252[490% U+10(V290)]+ (15¢> “o 1+ 40 V20 — 6 i)

DTi (UT (OTij, (DT (2)

(5.27)

From equations (5.26) and (5.27) the consequence of the mixing between scalars
and tensors (here we are neglecting vectors) at non-linear order is evident: we
have a second-order wave-like tensor generated by combinations of scalars built
up from the peculiar gravitational potential and a second-order density contrast
which would be generated by combinations of linear tensor modes even in the
absence of initial density fluctuations.

2This density contrast is twice the one found in equation (4.39) in [1], where a factor 1 has been
q 2
forgotten in the derivation (from § = 6@ + 15@ the whole 16® has been extracted, without
g 2 2
removing the factor).
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6 Evolution in the Poisson gauge

The Poisson gauge is defined by the two scalar conditions w”! = 0 and I = 0
and the vector condition y\”* = 0 (equivalent to the conditions w{""' = )(E;) = 0).

This generalizes the longitudinal gauge (wﬁ’) = )(5;) = 0), where only scalar modes

are present. As vector and tensor fields are put to zero by hand, the longitudinal
gauge is not useful to describe second-order evolution.

The Poisson gauge has an important physical interpretation, as the scalar pertur-
bations of the metric are equivalent, in this gauge, to the gauge-invariant Bardeen
potentials [4]. So, it is useful to transfer all the first- and second-order perturba-
tions that have been solved in the synchronous and comoving gauge to this one,
using the general gauge transformations (3.17) and (3.18). All the equations for the
gauge transformation are presented in Appendix C.

6.1 First-order perturbations

First of all, one can obtain the parameters of the transformation at first-order,
replacing the definition of )((Sl)” (equation (5.15)) in (C.6), to obtain 5V; then us-
ing (C.3) to get a'V:

a/(l) = g(p’

) (61)
B = r o:

6 9

we also have dV/ = 0 in the absence of initial vector modes.

The metric perturbations are obtained from equations (C.2), (C.4), (C.5) and (C.8):

D _ (1) _

P _¢p _SO’
@ _ T
XPij_Xij °

(6.2)

This result shows the well-known equivalence of the scalar perturbations in the
longitudinal gauge with the peculiar gravitational potential and the gauge invari-
ance of the first-order tensor mode.

For the linear density contrast, from equation (C.10):
(1) L
0p = —2¢+ EV ®. (6.3)

The linear four-velocity is given by equations (C.12), (C.13):

WO = g, (6.4
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i T
Wi = T ©5)

6.2 Second-order perturbations

From the results just obtained atlinear order and replacing the second-order met-
ric perturbations in synchronous gauge (equations (5.19), (5.21)) in the expres-
sions for the second-order gauge parameters (equations (C.25) - (C.27)), we can
solve those equations to get these parameters:

2
o? = - = Y, + T(

10
40|+ ay)
X QD + 0)+a

9 Lk

¥, °(7, 60 (2) (6.6)
o]+ 5 (5% +66 +By

2
Vd? = —— (Vo +9 @, —2%,) + V2 dy.,

where V2 @y = ¥, — 1 ¢” ¢, and the subscript (t) represents the piece generated
by combinations of linear tensor modes (Appendix D).

From equations (C.15) - (C.18) we obtain the second-order metric perturbations
in the Poisson gauge:

1 . 10 16
l//;z):Tz(g ‘pl_ﬁ\}’o)+?90 +12®0+W§>2(3)’
1. 10 4
® 5 ; 2)
_ 1, — Y|+ =-0p"—80) +
¢p =T (6 e 0) 39 800+ Iy, (6.7)

Vo = - (0 Vg 1 28] + V)

P P(®)?

2 _ (2)
XPI] Tr’] +XPt)l]

In the Poisson gauge, the second-order tensor mode contains only the scalar-
generated, gravitational Wave -like tensor mode 7;; and the piece generated by
first-order tensor modes )( »ij» Withoutany other Newtonian and post-Newtonian
scalar-generated term (present in the synchronous gauge, eq. (5.21)). This makes
its interpretation much easier than in the synchronous and comoving gauge. The
tensor mode has an evolution equation (from (5.22)):

4 40
~"+ 7r V27T,] —— T

3 Vi (6.8)

and its solution is given in (5.26), containing a constant and a wave-like piece.
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Then, we can obtain the second-order density contrast in the Poisson gauge, from
the gauge transformation (C.21) and the synchronous gauge analogous (5.27):

2

4
0 = 355 110(V3¢) + 4,07 + 14, V6] + 1—8(990190 + 329V - 690”)«“”)

2
¥ 4TT‘P0 + ;(ij”x““” XE)ZT)(E)”T”) §9" 240+ 362, - 2 —ay);

(6.9)
also in this gauge there are terms generated by a combination of linear tensor
modes. Note that this result is different from the one found in [1] (equation (6.10))
because of the previous error in the synchronous gauge expression;itis instead in
agreement (in the scalar sector) with two independent and more general results
found for a ACDM Universe -with no tensor and vector modes- (equation (5.54)
in [5], equation (29) in [6]), in the limit of vanishing cosmological constant and
vanishing primordial non-Gaussianity (what is defined as ay; in these references
is set to zero).

The second-order terms generated by linear tensor modes (those with the sub-
script (1)) are presented in Appendices B and D.

The second-order velocity perturbation is obtained from the equations (C.23) -
(C.24):

2
20 _ T 1 10 7 Q@) .
i —3( g 2"+ 7 ¥o| =3¢ 1200~y (610
;T 6 16 ; "
v = 9( 90]90”*7\11) 2T(39090”+2®’) d¥" g e

6.3 Relation between Newtonian and relativistic treatment

To compare the Newtonian treatment of the problem of cosmological perturba-
tions to the relativistic one developed so far, one can re-express the fluid equa-
tions (2.39) - (2.41) using comoving time [19] and considering always a pressure-
less, perfectirrotational fluid. Redefining the Newtonian density perturbation as
Sy and the velocity perturbation as v, the continuity equation becomes:

% +V-[(1+on)V]=0; (6.12)
or
the Euler equation is:
ov
6—+9{v+(v‘V)v+Vgo:O; (6.13)
-
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and the Poisson equation is always:

Vv? ®— 4ﬂGa2p(0)6N =0. (6.14)

Combining the divergence of the Euler equation with the Poisson equation, one
gets:

oV -v)
or
We can define an analogous of the relativistic deformation tensor in the Newto-
nian case 6,/ = 91/ and, using the fact that for an irrotational fluid v/ = d'v, we
can rewrite:

+HV v+ V- (v V)V+47Ga’pdy = 0. (6.15)

V- -V)v=208,0/9,)V =8;(68'vd))dv =
= Oy 0%, +0/v 00y .
Defining a Lagrangian time derivative:

d 0
E—E+V'V,

we can rewrite the continuity equation and equation (6.15):

do
N (1 +6y)6y=0: (6.16)
dr
dOy i nlJ 2 —
d_ + }CQN + eNjeNi +4nGa p(o)éN =0, (6.17)
T

obtaining, respectively, an analogous of the relativistic continuity equation and
the Raychaudhuri equation (5.4) in Lagrangian coordinates (i.e. the comoving
sinchronous gauge). The equivalence is evident, if one considers derivatives with
respect to 7 in the synchronous comoving gauge for the relativistic case and the
convective Lagrangian time derivative in the Newtonian case.

The difference remains between the energy and momentum constraint (equa-
tions (5.1), (5.2)) versus the Poisson equation (6.14): the relativistic equations com-
bine in a Poisson equation analogous to the Newtonian one at first-order only.

This equivalence can be summarized this way:

Newtonian Lagrangian « relativistic comoving
d 0
— H —
dr ot
i i
dvj o 0

On © Os,
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where the equivalence between the density constrast and the deformation tensors
in the two gauges is exact, while the gravitational potential ¢ would correspond
to the gravitational potentials ¢}, ', in the Poisson gauge at first order. It has
to be noted that the definition of the deformation tensor is gauge dependent, so
in gauges other that the comoving synchronous one there would also be terms

depending on v (so, it would be different from the extrinsic curvature).
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7 Second-order gravitational waves generated during
an early matter era

In the context of the study of second-order perturbations, it is interesting to men-
tion in this section the results of reference [8], which studies the production of
gravitational waves generated by linear scalars during an early matter-dominated
era after inflation. In most inflationary models, the end of inflation is provided
by a period in which the energy density of the Universe is dominated by an oscil-
lating scalar field, behaving like a massive field. During the oscillations, the field
decays into radiation, that will dominate the successive epoch of the Universe.
Using the previous notation, the second-order tensor perturbation in the Poisson
gauge generated by scalars at linear order is given by the evolution equation:

4

~7/ ~7 2~ TT

Tt ;ﬂij_v ;=S (7.1)

where ST is the tranverse and traceless source term. Passing to the Fourier space,
L

we have:

i+ gfr;{ + K 7t = Sk (7.2)
with 40 &’k
_ v K N Dt (DL
Se= 3 [ Soee Ul (=K v ) 7.3

where e(k, k') = €t/ (k)k;k} (for a definition of the polarization modes, (8.5)). As
in the Poisson gauge at first order ¢ = ¢\ = ¢, we can also substitute those
perturbations with the peculiar gravitational potential.

In a matter dominated epoch, the solution for the tensor mode in (7.2) is:

Sk sin(kt) — kt cos(kT) cos(kt) + kt sin(kt) Sk J1(kT)
= A — Bx =—+A
" k( k373 ) : ( k373 ) k? e kt

(7.4)

where the last two terms are the solutions for the first-order gravitational waves
(considering also the second mode, singular for 7 — 0), while the first term is
the one generated by first-order scalars. This solution is analogous to the one
already found in (5.26). As ¢ is constant in an EAS Universe, the source term Sy
is constant, supporting a part of the tensor perturbation at late times, while %];T)

oscillates with an amplitude decaying like a~! and “i@ rapidly decays. Choosing
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the initial conditions # = #’ = 0 for = 0, so Bx = 0 (to remove the singularity at

. s
early times) and A, = —373, we got:

Sk L+ 3k‘r cos(kt) — sin(kt) ’

ﬁ PP (7.5)

e =

which, for large scales, in the super-Hubble limit k < J, gives a growing tensor
perturbation

k= —717, (7.6)

Sk
T = k—; (7.7)
So a growth function can be defined:

k) = 1+ SkT cos(kt) — sm(kr)’ (7.8)

6503

such to rewrite the solution for the tensor mode:

40 g(kt) (eom PK , L

=313 I} 2 e(k, K)ok — k') oK), (7.9)

where k4o is the comoving Hubble scale at the beginning of this matter-dominated
era.

The two-point correlation function of this second-order tensor modes can be con-
sidered :

e(k, k) e(k, k) (p(k—K') oK )p(k—k ) p(K)),
(7.10)

40 g(kr))2 fkdom &FK PR
0

(Te(D) (7)) = ( 32 2ny Gn)

where

(pk - k) K)ok — k) oK) = (p(k - k) p(k — & ))p(K) ok )+
+ {p(k - K) oK )Mok — k') p(K)).

The two point function for tensor and scalar modes are defined here as:

1272 ~
(D)D) = 5k—’§63<k + 0Pk, 7)

27 -
(er(Mei(7)) = Fé (k + k)P(k)
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where P;(k, 1), P(k) are the respective power spectra. On very large scales, for
primordial scalar perturbations® P(k) = % Ai(k—'i)"x_l , where the numerical factor
is given by the relation between scalar curvature perturbation in the Poisson and
comoving gauges on large scales in a matter dominated era. From observations
of the CMB, for density perturbations on scales » 100 Mpc today, the amplitude
is A%Q ~ 2.4x 107°, while the spectral index is n,; ~ 0.96 (those values, anyway, can
be different for perturbations on much smaller scales, relevant for the detection
of gravitational waves).

Substituting the definition of the two-point function into (7.10):

(T(D)(r) =
2 3 I kdom
- (403%557)) = S;; . 0 K ek, K)[e(k, k) + e(k, k - K)|P(k - K)P(K).

(7.11)

Assuming for simplicity that the power spectrum of primordial scalar perturba-
tions is scale invariant (n, = 1), one obtains:

24 o(k1)\ 4 (kiom
#) A (d—)ll (k/kgom), 7.12)

Pk, T) = 2( p

where the integral

_ 1 317 [e(k’ k,)]2 ’ ’
Il (k/kdom) - 27deom fd k k'3|k _ k,|3 ®(kdom k )®(kdom |k k |) (7-13)

can be approximated as

The step functions in (7.13) have been introduced to cut off the smallest scales k >
kqom, which could enter a non-linear regime if the matter era lasts long enough
(kgom > kn1, Wwhere kyy, is the scale where non-linear effects become relevant). That
is why a cut-off on the power spectrum of density perturbations is imposed, such
that P(k) = O for k > key, where ke, = min[kni(7), kqom]. This provides a lower
bound on the amplitude of second-order gravitational waves.

3The relation between the scalar metric perturbation in Poisson gauge ¢p = ¢ = ¢ (where ¢
is the curvature perturbation) and the primordial, inflationary scalar perturbation é,, is given by

. . . . . A 5
the gauge invariant curvature perturbation on uniform density hypersurfaces = —¢— H 7 plus

: .5, 4
the relation 6, = ¢ (where' = 4),
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The end of the early matter-dominated era corresponds to k = kgec = T;:C ; the
power spectrum for this scale is given by substituting g(k/kq4..) in equation (7.12).
The behavior of the power spectrum on all scales corresponding to the dimension
of the Hubble size before, during and after the early matter dominated epoch is

shown in Figure (3):

- - -1 »
10 10 10 10

I.O-
kKo

Figure 3: This is the power spectrum of second-order gravitational waves generated dur-
ing the early matter-dominated era Pz(k, 1), with respect to the wavenumber k. The co-
moving Hubble scale at the beginnig of this epoch is kqom, at its end is kge. (signing the
start of the classic radiation-dominated era). The thick line shows the power spectrum for
kgom = 103 kgec; the dotted line shows the result for the matter power spectrum truncated
at keye = 200 kge.. Figure from [8].

In the super-Hubble limit, the growth function becomes g(k7) = ’1‘—(2)72, such that
on scales larger than the Hubble size at the end of the matter-dominated era k <
kdee = 73! , we obtain:

7 (7.14)

j)fr(k, Tdec) ~0.5 Aé{ (
dec

k3 kdom )

using I (k/kgom) =~ an 4ec) = ——. This way, as we can also see in
ing I (k/kaom) ~ 16/15 and g(k/kuee) = . This way Iso see i
dec

Figure (3), on large scales we have a steep blue spectrum P; o« k*, whose ampli-
tude decreases for increasing scales (and decreasing k).

For scales entering the horizon between the start and the end of the matter era
kdee < k < kgom, the growth function has reached the constant value g(k7ge.) =~ 1
(corresponding to smaller scales, see equation (7.7)) by the end of the matter era,

so we have:

k om
dk )Il(k/kdom)- (7.15)

Pk, Taee) = 46 Ay (
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Assuming I, (k/kgom) to be constant, we have P; « k™!, a power spectrum de-
creasing on the smallest scales (actually, 7,(x) decreases for x — 1, so it would
suppress even more the spectrum for increasing k). This way, the highest ampli-
tude it can be reached corresponds to scales entering the Hubble size at the end
of the matter-dominated era (as it can be seen in Figure (3)):

k om
fP;;naX = CP;"r(kdec’ Tdec) ~ 50 A;}z( kd )’ (7.16)
dec

where I (kgec/kdom) = 16/15 for kgom > kqec. This results shows that for sub-
Hubble scales, for which the gravitational wave amplitude is supported by the
constant scalar source term Sy (equation (7.7)), the power spectrum has an ad-
ditional factor % with respect to the predictable square of the amplitude of the

first-order scalar power spectrum, A}. This factor increases the amplitude of
second-order tensor perturbations, depending on the duration of the matter-
dominated era (how much kgom > kgec).

Actually, this estimation has to take into account the (already mentioned) non-
linear cutoff. For a very long matter-dominated era, the Hubble scale becomes
much larger than the scale corresponding to kg,m,. On sub-Hubble scales the con-
stant gravitational potential, for gravitational instability, leads to the increase of
the density contrast §p/p, giving a breakdown of the results valid in linear theory.
Below the non-linear scale k > ky1(7), a perturbative analysis shows that the grav-
itational potential ¢ decreases and thus the source term Sy. For simplicity, one
can assume a cutoff such that the power spectrum for the scalar perturbations
vanishes on scales smaller than the non-linear one k > ky.(7) > kgom, providing
a lower bound for the gravitational waves power spectrum. As the extreme of in-
tegration becomes the time dependent ky.(7) in the place of k4om, also the source
term becomes time dependent. Anyway, as its rate of change is slow with respect
to the decay time of the most relevant part of the solution (7.4) in sub-Hubble
limit, one can take the quasi-static generalization of equation (7.7):

. Sklknu()
e ——=.

2 (7.17)

This way, the generalization of the power spectrum for tensor perturbations on
sub-Hubble scales at the end of the matter-dominated era (kew(7) > k > kgec,
with keye = min[kni(7), kgom] and kni(7) = 200 kgec) is:

kcut
k

:Pﬁ(ka Tdec) ~ 46 Agg ( ) Il (k/kcut)- (7-18)
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For very small scales k > kyi, as already said, the potential decays and the source
term S tends to zero. The solution to the second-order tensor mode (equation (7.4))
thus propagates as a free gravitational wave, oscillating and with an amplitude
decaying as # o a~! on sub-Hubble scales. The power spectrum in this case be-
comes:

kni(T) )4 (7.19)

k

which, being oc k™, is suppressed on the scales smaller than the non-linear ones
k > ky. The fact that scalar perturbations, on the smallest scales, decay be-
cause of non-linear effects is due to the velocity of matter, which becomes non-
negligible.

j)ir(k’ Tdec) ~ 46 A;L{ (

7.1 Present density of gravitational waves

The energy density of gravitational waves on sub-Hubble scales is given by [11]:

2

321Ga?

1 L
oW = %Ulz‘j 'y = f d(Ink) Pz(k, 7). (7.20)

This gives the density parameter:

dpgw/dink 1 (kY
Qew(k, 1) = =V = (2| Patk, 1), .
GW( T) Peritical 12(%) ( T) (7 ZI)

scaling like non-interacting relativistic particles during and after the radiation-
dominated era. So, the present density of gravitational waves is:

k

2
_) :Pir(k’ Tdec) (7-22)
kdec

Q0
Qawo(k) ~ ===
cw,0(k) 12(

where Q, ¢ ~ 1.2 X 107 is the present energy density of radiation.
Considering the amplitude of the power spectrum of tensor perturbations at the
beginning of the radiation-dominated era k < kq.. (equation (7.15)), their density

is:
23 kdomk
Qaw(k, 7) = = A} —5— | 11(k/kaom), (7.23)
12 kdec
remaining constant in time during the radiation era, if there is no further pro-
duction of gravitational waves. Substituting in (7.22), the present density is:

23 kdomk
%wwzﬁwﬂﬁ%—ﬁW%@ (7.24)
dec
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which is shown in Figure (4) as a function of k.

The power spectrum has a maximum at the end of the early matter era, as shown
in equation (7.16); in the case of the density of gravitational waves, the maximum
is provided for the scale corresponding to the beginning of the matter era kqor:

23 kdom

2
Qaw,o(k) = D Qy,oAQ‘Q(K) 11 (k/kgom). (7.25)

Just as the case of the power spectrum, there is an enhancement factor with re-
spect to the simple expectation for the present density Qgwo(k) = Q, (A} =
3 x 1072, which is

2
kdom
F? = ) .26
( Koo ) (7.26)

This represents the duration of the early matter-dominated era, as k oc H oc aH oc

2/3
717 o H'P. o, F? = (Hiem)™,

IU- 10 ll.l-z llJ- 10“

k/k,,,
Figure 4: This is the present energy density of gravitational waves generated during the
early matter-dominated era Qgw o(k), with respect to the wavenumber k. In this case,
F? = (kgom/kdec)* = 10° has been taken. The solid line refers to the linear matter power
spectrum in the case k < k4o, the dotted line is for the spectrum truncated at k > kcye =
200 kgec. Figure from [8].

If we assume that the early matter-dominated era is due to the oscillation of a
scalar field around the minimum of its potential, leading to its decay in radiation,
it has to be required that Hyoy,, < m, so that the expansion rate at the beginning to
be smaller than the mass of the field (the oscillation rate). The end will be provided
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by Hyec =~ T, so by an expansion rate comparable with the decay rate of the species.
This way:

An extended matter era occurs for F > 1, so in the case of scalar fields weakly
coupled with radiation (I' <« m).

Also in this case we have to consider the effects of non-linearity, due to the fact
that for k > ky;, the gravitational potential decays, and so does the amplitude of
the power spectrum for these smallest scales. This way, there is an upper bound
also for the enhancement factor F2, whose estimation using linear scalar pertur-
bations is valid up to kqom = knr(Tdec):

F2 — (kNL(Tdec)

2
) ~ P12 ~ 3 x 10%, (7.27)
kdec

Considering the scales under the Hubble size during matter-domination k4., <
k < kyy (with kgom, > k1), using equations (7.18) and (7.22) (plus the fact that

knu(Tded) ) . p-1/4 -12 .
( Kdec )‘? oc Ay, '7), we obtain:

kenLk k
Qaw.o(k) = Qy,oA;(I;—L) ~ A3 Qy,o(g). (7.28)
dec ec

So, the maximum value for the present density of gravitational waves is reached
for k ~ kNL:
o\
Qaw,olkn) = Qy,OA;&(ﬂ) =~ A3 Q0. (7.29)
kdec
If we consider that the amplitude of the power spectrum of primordial density
perturbations is the same as the one seen on CMB scales today, A% ~ 2 x 107,
we obtain Qgw o(kyy) = 10717, which would be detectable only by future experi-
ment (like the Big Bang Observer). This is a lower bound for the density of gravi-
tational waves from an early matter era, as we neglected all effects coming from
non-linear scales.

During radiation-dominated era, the Hubble scale is k = aH, where the Hubble

parameter is
, 8G( n*_,
H = —— T,

3 8+ 30 (7.30)
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with g. number of degrees of freedom of the relativistic species at the tempera-
ture 7. The wavelenght that, today, corresponds to the wavenumber « is:

2 GeV
Q="20 20 1016g;”6(%) m, (7.31)
and the corresponding frequency is:
c T
= — =~ 12x10"g,/°| — | Hz. 32
Y= 8\ Gav | H2 (7.32)

From that, we have that the enhancement factor can be expressed also with re-

spect to the frequencies:

V4
F === (7.33)
Vdec

so, along matter-dominated era corresponds to gravitational waves produced on
alarge range of frequencies.

From the primordial nucleosynthesis, we have a constraint on the temperature at
the end of the early matter-dominated era (T4.. > 1 MeV), which is reflected on a
constraint on the frequency at the end of matter-dominated era:

Vdee > 1071 Hz.

Comparing with the sensitivity of present and future detectors, gravitational waves
generated during an early matter era could be detected on LIGO frequencies viigo =~
100 Hz, if T4.. < 10'° GeV and on LISA frequencies vygy =~ 107 Hz, if Tye. < 10°
GeV. From the current limits from LIGO, the density of these gravitational waves
has the bound Qgw < 6 X 107 in LIGO frequencies range, but in the future Ad-
vanced LIGO will be sensitive down to Qgw,o =~ 107°. Instead, LISA could detect
a background with densities Qgw,o ~ 107! at vy5a frequencies, while future ex-
periments like Big Bang Observer could detect a background with Qgw,o =~ 107"
at the frequencies vgpo =~ 1 Hz.
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8 Evolution of second order scalar perturbations gen-
erated by tensor modes

We know that the most relevant perturbations at linear order are the scalar ones,
and that is why the studies of second-order perturbations has mostly considered
the contribution from the linear scalars, neglecting the linear tensors and vectors.
It can be asked whether the second-order perturbations coming from first-order
gravitational waves are really negligible, so, whether they are subjected to a rele-
vant time evolution, or not. This way, it can be studied whether the second-order
density perturbation generated only by linear tensor modes can grow in time, i.e.
undergo gravitational collapse. We would also like to see the growth rate for this

5%), as well as for the other two gravitational potentials.

In the previous sections, by solving the Einstein equations in EdS Universe up
to second-order, the expressions for the second-order scalar perturbations and
gravitational potentials have been derived. Now, we are interested in getting the
evolution in time of those quantities generated by tensor modes. To do that, we
can arbitrarily set to zero the scalar modes in the source to consider just the con-
tributions from tensor-tensor terms, and we can substitute the definition of these
linear tensors in the source terms. Recalling the properties of the first-order ten-
sor (equations (5.6)- (5.8)), its general solution is

Z fd3kexp(lk x))((l)(k,T)Ef;(lA(),

o=+,X

(2 )’

where the amplitude of the polarization states y.\’ has, in full generality, this

form: .
kD) = a-(k)(”‘k(f”) (,(k)(y](’f)) (5.1

with jj, y; that are the spherical Bessel functions of the first and second kind.
From now on we set B, (k) = 0 to neglect the decreasing mode in y;, as it is diver-
gent for our initial condition 7 = 0. So the tensor mode in Fourier space is:

3/1kn))
kt

) = 4,00y ©.2)

To make y, real, y:(k,7) = y,(-k, 7), and elf;(k, T) = elf;(—!c,.r). The polarization
tensor obeys also symmetry, transverse and traceless conditions:

ch=el) Ked=0 id=0
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and there are the orthonormal and completeness relations [7]:
ek €7 (k) = 267 (8.3)

Z EZ(IA() Ef,rn(f() = PyPn + PinPj— P;jPy, (8.4)
o=+,X

. . kik, .
with the projection tensor P;; = 6;;— 3. The polarization tensor can be expressed
with respect to the two unit vectors normal to k, in each polarization:

€+k :I’/?\l[l’/l\’lj—i’\l,'l/’\lj (8 5)
= ﬁ’ll’ j+i’\llﬁ’lj,

while the projection tensor is P;; = riyi; + it ;.

This study is performed both in the comoving synchronous and in the Poisson
gauge: in the Poisson gauge the two linear scalar perturbations of the metric can
be connected to the gauge invariant Bardeen potentials ¢ = ®4 = W4, while
the linear density perturbation in the comoving synchronous gauge satisfies the
generalized Poisson equation at first-order:*

V2, = 4nGa*pody’.

8.1 Derivation of the second-order scalar perturbations starting
from the comoving synchronous gauge

In the previous sections we have already derived the second-order density con-
trast in the comoving synchronous gauge (5.27), but just as a solution of the con-
tinuity equation, not as a solution of an evolution equation, which would give a
better physical insight.

In the comoving synchronous gauge a very simple and immediate evolution equa-
tion for the second-order density perturbation 65 can be derived. To do that, the
second-order continuity equation [19]:

5é(2) + 09 = _25(81)9(1) (8.6)

46(81) is the same as the gauge invariant density perturbation in the comoving orthogonal gauge
(actually entering the Poisson equation) [15]:

7(0)
P O P(O) D 4 Iy,
P

as in the comoving synchronous gauge vV + oIV = 0.
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can be combined to the Raychaudhuri equation at second-order:

g@ 240, TRLAL = 6 S50 =0, 8.7)
T

where 6 J’ is the deformation tensor. The evolution equation obtained is:

4 25/@ 6 2 60 = 25 Vg — 250g D f5(1>9(1> + 2931»951)]‘ =
-

17 (2)
5 P-5

S

2 o U am

=57 e+ g 22V - R AL UERE T G TR
(8.9)

and it can be verified that this expression for 65 :

r ’ v
s =555 l4¢ . 10(V2p)*] + g 0o+ 409V — 60 Uy

(l)Tz] T (MTij (DT 2
(X lj —Xo XOLJ )+3¢S(t
already obtamed 51mply from the second-order continuity equation, satisfies our
evolution equation. ¢Sm is the second-order scalar perturbation of the metric
generated by linear tensors, whose evolution equation and solution are recalled
in the following (equations (8.11), (8.12)).

We are interested in evaluating the second-order density perturbation generated
only by first-order gravitational waves, so we can neglect the first-order scalars to
isolate this contribution. This way, the evolution equation (8.8) becomes:

2 6 1 ,
72 2@ 2 @ /(DTij. (DT
Osy + 6S(t) 2 Os = B Xij - (8.9)

The structure of the homogeneous equation is the same as the evolution equation
for the linear density contrast; of course in the second-order case we have also
a source term different from zero. It can also be checked that this homogeneous
equation expressed with respect to the conformal time matches the one expressed
with respect to the physical time 7 (2.43):

5 + 2H5 - 47TG,0(0)5 =0.

Solving the inhomogeneous differential equation, the second-order density per-
turbation in the comoving synchronous gauge generated only by tensors is:

2 - r()Tij, /(DT
T X Xij 1 ,
(t)(X T) = 10f dt 2 J —107_3f dr '(m”)(lj(])T+cf(X)T2+cg(x)T_3,
(8.10)
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where the last two terms are the solution of the homogeneous part of equation (8.9)
and they can be set by choosing the initial conditions for 6(52(3). This result agrees
with the analogous expression found in [20].

The expression of 6% ) previously derived in the comoving synchronous gauge:

S(t

2 _ (l)Tz] HT MTij, (HT (@)
65 (X l] —Xo XOI] )+3¢St)’

can be recasted in the form of the solution (8.10). To do that, it is necessary to
substitute the expression for ¢S(t), which satisfies the evolution equation:

" ’ 1 ’ : 2
(2) 2" _ 2 _ (l)T (DOTij’ (MT_ (DTij’
S ¢St) ¢S(t) el X 3 X X
1 1
WTijg2 (T . L (T (Tij _ (T (DTij
-3 Vix, 72(X,¢,~ X =xoixe ) = Q% 1),

(8.11)
whose solution is:

X + X)) + — f — 9(x,7) — ! f dr 74 Q(x, 7) =

2
(s g)(x 7)

1 , 1 T g4
) -3 T’ (DTij’ 3= DT’ (DTij’ 3=
X))+ eX)T +— ar - — ar +
1(%) 2(%) 5 f 6~X” X 50 J, 6)(,] X

T’ (D)Tij |t

2
+ T (X(l)T (DTij _ (1)T (1)le) X’/ X ]
3 Ol] 3t
0
.
(T (1)sz T (DTij (DT’ (1)Tij
5T3|: (X XO!]XO ) 3)(1] X ’
0
(8.12)
where, as before, we leave also the terms of the homogeneous solution.
So, the expression for 6;& becomes:
1
2) _ A 42 MT (Tij _ (DT (DTij
Oy = 3bgy + (XU X ~ Xoij Xo )
2 T T
T 1 ’ it 1 / jj’
_ DT (DTij’ g~ MT" (DTij’ =
) 1of P 1073j<: T (8.13)
T’ ()Tij 13
37’ (X(I)T (1)Tij X(I)TX )Tij)_sc1 ij X
5|22 oo 3T e
DT (1 DT, (1)Ti DT’ (D)Tij
[ (VT Wy iy T T sl
=0
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where the terms in parenthesis are evaluated at the initial condition 7 = 0, for
which they are constant® and not divergent. If we choose to set the constants
in (8.10) to zero c‘ls(x) =0, cg(x) = 0 (as, for 7 = 0, the decreasing mode would
become divergent and the growing mode would anyway be sent to zero), the con-
stants in (8.13) can be set to give the same result:

X(I)T X(I)Tij
(DT (1)sz (DT (1)Tij ij _
+3c1+ —— =0—
“ [10T2(X Xy Xo ) st ),
(DT (1)Tij
e = — (X(I)T (OTij _ (0 (1)Tl,) Xij X _
1 1OT2 01] 157 O,
T=

=0+4+3c;,=0->c¢,=0.

_ (T (OTij _ (DT (DT (DT (1)Tij
- [ (X ( ) l] Xolj XO Ij) 5)(1.] X( ) l] + 3C2

=0
The final expressions for 5(52(3) and ¢(52(z) become:
2 T r(OTij, /(DT
62 (x,T dT ! dT AR AL (8.14)
so® 7 =15 7 1073 Aij

’ 1 ’ Py
(2) (DT’ ()T (OT’ . (HT ~
¢S(t)(X’T) = _f 6~X,J ( ) l] - 53 f Xl] ( T dt

(X(l)T Tij _ (l)T (I)Tz])
01]

(8.15)

which are both null® for 7 = 0: 62 ,(0) =0, 2 (0) = 0

S(t) S(t)

SFor this estimation, we have simply considered a limit for 7 — 0 of the Fourier transform of
the terms in parenthesis, leaving the other variables constant (the wavemode k and the variable &’
coming from the convolution appearing in Fourier space, see (8.30)). A complete treatment should
take into account also the integration over k’.

SAlso the term — i A T4 )(fjl)T ¥ T’ g% is null for T — 0: in fact, as we would have an inde-

0
0)

terminate form 5, we can use the de 'Hépital theorem, for which

=4 (T’ (T ~ (DT’ ()Tij’
B N0 i e S AP Y YL
lim 3 ~ lim —2 — 0.
-0 T 7—0 T

This estimation relies only on limits in 7, keeping the other variables fixed. Also here, a com-
plete procedure should take into account the integration over the variable &’ of the convolution in
Fourier space.
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The second-order density contrast in the Poisson gauge has been derived by a
gauge transformation from the result obtained in the synchronous gauge (6.9):

6 1 6
5@ — 5(2> _ _a(2) - (X(l)T (Wtij _ (DT (l)TlJ) +3¢2 — 2q® =

S © = 7\Xij X ~ Xoij Xo S(1) @y =
2 e WOTHOT (8.16)
_ T d7 ij d%%4X,(1)Ti,X{g1)T 6 a?
10 Jo 7 107 Jy i T 7%
where the term coming from the gauge transformation is:
6 9
2@ _ “2v-2, /(2)i,j
T T ZTV V Xsw i -
1 (2)ij

An expression for yg ' can be obtained deriving in space the momentum con-
straint found in the synchronous gauge (considering only tensors in the source
term):

1 3 . .
2 (2) r(2)i DT ik T _ DT ik, DT DT kw2, /(DT DT kw2, (DT _
2V2¢ =X = ST - X T = S TG =

s T X swjii ~ X Xiji 2 ik,j
= W(x, 1),
(8.17)
from which we obtain:
L AR A ST
_ —I—EV‘Z(?L éxl(}ﬁ T gz % ’ ~6 AT T g ;XI(JUTX/(I)TU)

9 s 3 . 1 .
29— (l)Tzk] ()T (DT ik,j, (1T (DT kw2, 7 (DT 7 (DT kg2, (DT
VOV Xijiw ~5X 0 Xy XV — XTIV

(8.18)

For completeness, we recall also the second order gravitational potentials in the
Poisson gauge derived by gauge transformation from the comoving synchronous
gauge (where we have already neglected all the scalar terms):

18 , 1 3
2v2,,(2) _ 2 4(2) 2, (DT’ (DTi (DHTg2, (DT 2. (DT (DTijk
V?V ‘ﬁp(t) — ?V ¢S(t) V (X () ij’ ) Xz] VX() ij 2VX’<J’ X( )T ij,
1 oy 1 7y 3 ’ .. 1 .o
A WTije2, (T L (DTijk’ (DT MT" (Tkji _ — w2, DTg2, (DTij
toX me 7 X Xijk + 2 Xijk X 4VX~VX
1_, 3 o1
(T  (DTijk _ (DT’ (DTkji (DTw2w2, (DT
4V ik (DTij, > Xiii (D Jl+2)( VVX()U
3 ., .
2 MTij, (HT (OTij (DT
+ 2 v (X Xi.i ~Xo XOI])

(8.19)
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18 1 , 1 NV | y
V2V2¢§J2(z) _ _V2¢(52(z + - : VZ(X(I)T X(l)Tz] ) TXE;)TVZX(I)TIJ + E VZXE(IJ)ITX(I)le,k

1 ey 1 ’ .. 3 ’ ..
(DTij g2, (DT _ (l)T (DTijk (l)T (OTijk _ 2 (l)T 2 (1)T1J
3Vz T (Tijk 3 (T (l)Tij,kl_l_lX(l)T (T kil
4 ljk 4 ijkl 2 ijkl
3 2
= MTij, (DT (DTij ()T
+ 5 V" - )

(8.20)
()

in which one simply needs to substitute the expression (8.15) for ¢g.

8.2 Derivation of the second-order scalar perturbations starting
from the Poisson gauge

In this section we are going to obtain an evolution equation for 6( y directly in
the Poisson gauge and to compare the results obtained with the ones previously

found.

To do that, one has to solve the Einstein equations in the chosen gauge. We recall
the line element in the Poisson gauge:

1
ds® = az(T){—( 1+¢<2>)drz+(5 @ ))d‘rdx +

(1=¢@) &;+x )+ ; (Z)T] dx' dxf}

where we used the gauge conditions w®! = 0,y = 0 and y\"* = 0, plus the
conditions coming from the fact we are dealing with a perfect, irrotational fluid:
Wt = wf)) = ¥+ = 0. To simplify this derivation and making it as concise
as possible, we have already put ourselves in the situation in which no first order

scalar exists: YV = ¢V = o = 0,01 = ~1p=0,

Using the results for the Einstein tensors listed in the Appendix E, the equations
needed to solve our variables are:

Energy constraint (oo Einstein equation):
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12
@ D w2,Q) _
¥t ¢P(t — Vi, =

6 1 , 1 2 3

6 wr i L arge oy -2 on i (VT (T ik
6P(t ij X T S Xij v X,] X T XX
8 2 8
1
(0T Tk,

“Xiix X

" 3K

(8.21)

Spatial derivative of momentum constraint (oi Einstein equation):

2 2
) 2.47(2) _
- ;V 'v[’P(t) \ P©® —

6 1 1 , .3 , 1
@, _ (DT (Tikj | 2 (1)T V2X(1)TU+_ (T" (Tijk X,(-})Tvz)((l)T”;

T2 VP(t)z 2)( kX 4 ij 4Xz]k X 2
(8.22)
Trace of the ij Einstein equation:
9 '(2)+V2 @ +3 "(2)+_ 7 (2) . v 2 _
- Yo Yro + 3%p Py Doy =
1 3 1 5 (8.23)
— = WTyg2, MTij . 2 DT (WTijk _ — (DT (DTik,j _ (DT’ (D)Tij’.
2 ij 8Xij,k 4/\/ij,k 8XU ?
Traceless part of the ij Einstein equation:
292 4(2) 292, (2) _
ViV o — V VY =
1 ’ 'y .ot 3 1 e
_vw2| L T (T (T2, (DTij , 2 (T (DTijk _ L (DT (DT jki
==V S Xij X X VX g XX 4 Xijk
+ = 3 (l)Tvz (DTijk Evz (l)Tvz (1)Tij+§ (DT’ (DT jk,i’ + = 3 (l)Tvz (DT kji
4 z]k 4 Xij X 2Xij,k X 2 1]k :
(8.24)

with this last equation deriving from the traceless construction of the ij Einstein
) .
equation: 6G(2)’ - TG

Two other useful relations come from the conservation of the stress-energy ten-
sor D, T = 0 [15], which, adapted to our case, become:

D#Tg =0:

5@ — 34 (T (D)Ti )i .
Opg) 3¢Pt) + (Xl vy — Voo (8.25)
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D, T

M

I
@

; 2

12 _ (2),i 2,2

Ve = - Vi~V Wp - (8.26)
Combining the definition of the second-order velocity perturbation in the Pois-
son gauge (equation (6.10), considering only terms generated by tensors) and the
expressions of the gauge parameters (D.1), we can find that:

@i _ g2,
Veoi =~V @ s (8.27)

holding when we consider linear tensor modes only, neglecting all linear scalars.
This way, we can find again the expression for the gauge transformation of ‘ﬁf%) (D.2):

2
24® Z w2y @ 4 22,
Vi = Vg V A >

from which (8.19) is obtained.

To simplify our derivation and the comparison with what already found from the
comoving synchronous gauge, we can verify that the expressions for wﬁ)), qbf,(zt))
ready obtained (equations (8.19), (8.20)) satisfy the trace and traceless part of the ij
Einstein equations in the Poisson gauge (equations (8.23), (8. 24)) They are clearly
the solutions we need to obtain the expressions of V;(i ' and 6 p (@nd to check they
agree with what already found by gauge transformation).

So, it can be verified that the relation (8.27) holds by deriving the expression for

6 V‘zvg&)’ through the momentum constraint in the Poisson gauge (8.22) and equa-

tions (8.19), (8.20): we would obtain exactly V2 (25 (8.18) = -2 a(z) which is

the term coming from gauge transformation in the expression of

The mostinteresting expression to obtain is the evolution equation for the second-
order density contrast in this gauge. It can be obtained deriving in time the con-
tinuity equation (8.25) and replacing in it the equation (8.26) and the difference
between the 0o and the traced ij Einstein equations ( (8.21) - (8.23)):

2 ,(2)_ 6

l ’ Iy 2
ne 2 O o _ L wr i) Q) @)
Opgy + 5P(r) ) Opy = X X ‘” Po T2 Ypg - (8.28)

It is straightforward to see that the first term in the source of the inhomoge-
neous equation (8.28) is the same as the source of the evolution equation found
in the synchronous gauge (8.9), while the other two terms depend on the choice
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of gauge In fact it can be verified that they come from the gauge transformation

(2) -2..(2).i
term— @y = V Vb

144
_6,m) 26 (2) _6(_6.,0\__6 W(z) 21/,(2)
Yy | + 2| 2% | ~ 2| T 1% o 2 Ve

where we have used also (8.26) to check that. Because of these additional gauge
terms, the evolution equation in the Poisson gauge appears to be less transparent
than the one found in the comoving synchronous gauge.

So, the expression (8.16) for 6P(t found by gauge transformation is the solution for
the evolution equation (8.28), as it could also be checked by actually solving it and
setting the right initial conditions (as already done before for the solution in the
comoving synchronous gauge):

@) SN2 o O S (DT’ ()Tij’ v ) '
- ~ _ i~
Opy = C1(B)T"+ X)) T + gf X X I dT + ?( - = Wp(t
v =4
1 T OTif gz (TzV 2,007
50, 20 X P0ilo
2 T T
T 1 , 1 , 6
_ T’ (DTij’ MT’ (DTij’ gz , -2,
= 1of0 S 1073f T x0T AT 2V s
3P 5 5 2 1
~ (2) ~0 3,2 -2.(2).i
-—| -z - = —( =58 +6t1 + 30V~
3 ( 367 20 Y 573( 2 Ype PO |7
2 T T
T 1 ’ Y3 1 ’ s 6
(DT ()Tij’ g T (Tij’ g= . Zg=2,2)i
=10 i X dt _1073 Xu X dt + TV Voeyi -
(8.29)

8.3 Time evolution of the second-order density contrast gener-
ated by tensors

Our final goal is to study the behaviour in time time of the second-order density
contrast, considering only the contribution from linear gravitational waves. We
want to see in particular whether it can grow in time and its possible growth rate.

Itis more useful to pass to the Fourier space (8.1) in this case, where we can isolate
the amplitudes y., Dk, 7) (8.2) from the polarization tensors and inside y, Dk, 7)
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we can work with the functions governing the time evolution of the linear gravi-
tational waves in the Einstein-de Sitter Universe:

J1(kT)
kt

Xo(k,T) = As(K) (3

)’ X,k 1) = A, k)3 (Sin(k” _3d 1(’”)),

kt? kt?

When passing to the Fourier space, we have to deal with the Fourier transform of
products of functions. The procedure can be shown for a single term, like )(E})TX(”T i

DT DTij
Xy o T T T) =

Ik . ~ &’k ; T
= 2 [ G et [ G e e e -

0,07 =+,X

&’k &k, . o o
- Z f (27-[)13 (271_)23 €lk1'x)(§rl)(k1, T) 61'0; (k]) elkz‘xXﬁrl,)(kz, T) e lj(kz) —

0,07 =+,X

&Pk, &k, . o
= Z f (27()13 —(271-)23 é' (k1+k2)'XXg})(kl’ T) 6;'0; (kl))(((;/)(kz, T) & U(kz)

0,07 =+,X
and redefining the variables k = k; + ky, k' = ky, k; = k — k', we can rewrite it:

(DT (DTij _

Xy X
&Ik d’K ) e
= f 2y oikx Z f (271-)_3 XETI)(]( -K, T)XS’)(]{ ,T) € k-K)e k) =
3 A A o
- (6217:)(3' olkx Z f éj:; e (k—Kk')e” V(k)x
w | ALk —K) A, (K) 3j:lk —’k AYENICEIAN
k -k'|r k't

(8.30)

The Fourier transform of products of functions like )(l(.j].)T,\/(“T i/ gives the convolu-

tion of their Fourier transforms. A complete estimation of those products should
pass from the integral in the mute variable of the convolution k’, that in full gen-
erality should span from o to an arbitrarily big wavemode. In general, diver-
gencies corresponding to particular values of k¥’ (depending also on the choice
of the physical scale k) could appear, such that this integration should be per-
formed with infrared or ultraviolet cutoffs. Also, the expressions for the contrac-
tions of the polarization tensors should be found: they are functions of the angles

between the vectors k — k' and k', which would be integrated through f &K =

54



I d [ do [; dk ke Psine.

To evaluate the evolution in time of the second-order density contrast we can re-
strict ourselves to the easiest expression (the one in the comoving synchronous
gauge, where we have no additional gauge term) and we can perform the com-

plete procedure described before. Passing to the Fourier space, 5(3(2) becomes:

3 R Ay
SHCOERSY f X e 2K € IR A, (k= ) A ()

Gl J Q) i
72 Jillk =K1\ /[, 1K) 1 T, ik=K7] k)Y
% Tof 7 (3 k-K|[r )(3 KT ) 1or3j;d” (3 k-K[r )(3 iz )]
(8.31)

Afirstthing to notice is that avalid perturbation, also at second-order, should sat-

isfy <6§2(3) (k, 7)) = 0, so we should consider 6;2(2)(k, T)— <(5§(g (k, 7)) instead of (8.31).

In the Fourier space, the mean value corresponds to (6(522 k, 7)) = 6;2(3)0( =0,7):
the problem can be simplified considering only the modes with k # 0, such that

the previous expression can already represent a perturbation.

We can assume that the amplitudes of linear gravitational waves have a power-
law dependence on k, as predicted by inflation: A, (k) = Ag(k*)(,f—*)"T, where k,
would be a particular scale. As a further, simplifying assumption, we can take
this amplitude to be exactly scale-invariant (as ny would be very small) and equal
for the two polarizations, such that A,(k — k') = A, (k") = A(k.). Of course,
we have not measured this amplitude yet, so, we are going to factor that out and

(2)
S()

A2(k) "

consider eventually

Before performing the integration in k', one has to obtain the expression for

~ s N
D k=K e K.
0,07 =+,X
To do that, we recall the definitions of those polarization tensors (8.5), that de-
pend on combinations of unit vectors orthogonal to the wavevector in their argu-

. . ~n . . .
ment. So, we assume k oriented along the z-axis and k with generic angles with
respect to it:

~/

k =cospsinfx +singsinfy + cosHz,
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such thatk — k” has components:

—k'cos g sinfk — k’sing sin 0§y + (k — k'cos 0) Z
VK2 + (k)2 = 2kk’cos '

k-K =

The unit vectors orthogonal to k — k’ are:

it = (sing, —cos ¢,0);

k'cos 0sin @) (8.32)
k—k'cos6 )’

V= (cos ¢ cos B, sin ¢ cos 6,

. ~n/
while the ones orthogonal tok are:

m = (sing, —cos ¢,0);

(s
. . . (8.33)
= (cos ¢ cosb,sinpcosH,—sinb).

. . ~ ~/
From that, one can compute the polarization tensors for bothk — k’ and k :

A

X N A NN
€ k=Kk)=a;+ a9 =

; in2o — cos? Kcosfsinbsing
2 cos 6 cosy sm;o cos 6 (sin“¢ — cos”p) T,
B . . cosfsinfcosp | .
=|cosd (Sln ()0 - CcosS ()0) —2cos 8 CQS psme = k—k’cos 6 ’
k’cos §sin §sin ¢ __kcosBsinfcosgp 0
k—k'cos 6 k—k'cos 6

A

+ IN A A AA
€; k-K) =i, -99; =
_ 2 2 .2 _ . 2 _k’coszesinecosga
cos“6 cos“p + sin“p cospsing (1 + cos”6) —k Fcos0
— ; 2 2 20 ot 'cos*6sin sin ¢
= |—cospsing(l +cos®0)  cos“p —cos*Osin‘y - ——
_ K cos?6 sin 6 cos @ _ K cos?6sin fsin ¢ _ (K')?cos®0 sin%0
k—k’cos 0 k—k’cos 0 (k—k’ cos 6)2
X i/ AA AA
€; (k) = Auh; + im;n; =

2cosfcospsing  cosO(sin’p — cos’p) —sin@sing
cos 6 (sing — cos?p) —2cosfcospsing sinfcosy | ;
—sinfsin ¢ sin 6 cos ¢ 0
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e (&) = i, — iy =
—cos20cos®p + sine  —cos@sing (1 + cos?0) cosfsinbcos ¢
= [—cos psing (1 +cos?d)  cos’p — cos?0sin’p  cosfsinfsing|,
cos fsin 6 cos ¢ cosfsinfsing —sin’0

[2K’ cos 6—1 k(3+cos (26))]?

(k—k'cos 6) can be

from which the sum ), .-, » € (k - K e ’f(k ) =
evaluated .

Plugging everything into (8.31):

o m k! 2k’ cos O — 1 k(3 + cos (20))]>
55k, 7) = A%(k,) f dy f do f K sing . 1B+ cos COF

(2m)3 (k — k’cos 0)?
at [, jillk —K'|r] Jl(k'T)) 1 fT (L ik =K (kDY
3 3 - a7 (3 3 :
10 f 7 ( k-Kr )( Iz 107 Jo TV T k—K Z;
(8.34)

which is now complicated by the cos § dependence in the modulus [k—k’|, present
in our functions of time.

To avoid this dependence and have a first estimate of this effect, we can make a
further, simplifying assumption: we can assume a toy model in which gravita-
tional waves propagate in just one direction. This way, k and k" would propagate
along the same line, such that [k — k’| = |k — k’|, the 3-dim integral in k" would
collapse in a 1-dim one:

oK Yo dk
(2n)? v Qm)°
and the contraction of the polarization tensors, according to (8.3), would become:
[2k’ cos 6 — 1 k(3 + cos (20))]?
—
(k — k’cos 6)> 6—0

D & k-K)e k) =

o,0"=+,X

The new, simplified version of 5( o(k, 7) reads:

s (k. T) = 4 A%(k.) T zﬂ)x
© (T (Aalk= KT\ (kDY L (T ik = KT (k)Y
<[5 [T (5100 - s [ e (sAIEE D) (510 |

(8.35)
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This can be integrated numerically in Python (Appendix F), choosing an integra-
tion window for k’ (which, in principle, should be from -co to o), a particular scale
k and evaluating the whole expression up to a certain 7. We set k’ not too big, not
to make the program computationally heavy. The same also for 7: we consider
only the interval T = [0 — 2], which should anyway be enough to present the evo-

: (2)
lution ofés(t

The results of this integration procedure are shown in the following Figures: Fig. (5)
and Fig. (6) show the trend for the integrals in the first and second term, respec-
tively, and the whole terms themselves; Fig. (7) shows 5(5(2): compared in particular
with a generic function o 72

Time evolution of the first integral

intl
t% intl

T T T T T T T T T T T T T T T T T T
0.00 0.25 0.50 0.75 100 1.25 L.50 1.75 200 0.00 0.25 0.50 0.75 100 1.25 150 L75 2.00
conformal time conformal time

Figure 5: This Figure shows on the left the plot of the integral in the first term of

6(32&) int1 = f o (%’7‘7)4”” (34 ‘([ng k]f)iﬂ) (3"“‘ DY on the right, the complete first term

¥ /
[ (‘é’; 4 (3L ‘([,Ek k{{)iﬂ) (345 L4 DY In the integration procedure, we have chosen

k' = 10 and k = 10; also the time window is quite small, but enough to appreciate the
behaviour of our expressions. If we consider a dimensional scale factor, we can assume
dimensionless comoving coordinates and conformal time.
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Time evolution of the second integral

0.008 4
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(2)
s®*

int2= f_ k/-;, iy} fOT dr# (3. 1[Gk )] Y (3L (k,T))', on the right, the (module of the) complete

Figure 6: This Figure shows on the left the plot of the integral in the second term of ¢

(2m) (k—k")T Kt

e ’ o . _ P .
second term % [, %4 fOT i (3 “g,i’ik{‘)iﬂ )(3 “,gcf))'. We have the same choice of pa-

rameters as before: X’ = 10, k = 10 and 7 from o to 2.

Time evolution of (Tff.:':

30

=)
en
1

20

II."'/12 ik,)

2
[13]

&

10

T T T T
0.00 0.25 0.50 0.75 Lo L.25 L.50 L.75 2.00
conformal time

Figure 7: This Figure shows the behaviour of 6(32(3

tion o 72 (in red). For this particular choice of k and of integration window for k’, our re-

sult appears to have a growth higher than 72, provided by the contribution of the integral

1 (Fig. (6)). In particular, as we have not measured the amplitude of linear gravitational
@

S
A2(k,) "

parameters as before: k¥’ = 10, k = 10 and 7 from o to 2.

) (in green), compared with a simple func-

waves yet, we have estimated the fractional quantity We have the same choice of
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It is not straightforward to always have a density contrast growing with a rate
higher than 7%: this will depend on the integration in k’ (so, on the extremes of
integration chosen) and on the choice of k, as well. For some scales k, the integral
in the first term appears to be negative, representing an underdensity. This can be
explained by the presence of k in oscillating functions, resulting in an oscillating
dependence not only on time, but also on the scale itself. This eventually results
in perturbations highly suppressed for those particular scales.

Of course, the simplifying assumption of gravitational waves propagating in just
one direction could have oversimplified our estimation and made the growth rate
too strong. In any case, there should anyway be a growth in time.

We can also quickly discuss the evolution of the second-order gravitational po-

tentials in the Poisson gauge L//g(z), qﬁz}. Their most relevant term is:

6 1 6
2 42 -2 2) (DT, (1)Tij (DHT, (DTij -2 (2)
Yoy Prey _V (3‘/’3(0 (/\/ ij X — Xoij Xo )) =5V 0y

which means that, even though they are affected by a factor 72, they could still
grow in time if the integral in the first term ofé(s(z) is increasing in time. The other
terms in the expressions of l,//gé), ¢§(E are all decreasing functions of 7 and they are
not integrated, so they would give no relevant contribution at late times.

The presence of the inverse laplacian V-2 provides a factor k=2, making the con-

tribution of the smallest scales (highest k) the most negligible.
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9 Conclusions

In this work the second-order cosmological perturbations have been studied in
the context of a matter dominated Universe, with perfect irrotational fluid and
in two gauges. In general, one or more of these approximations can be dropped,
considering the effect of a cosmological constant (like in [5,6,19]), of non-irrotational
fluids or more than one fluid (e.g. [15]). Of course, the same procedure can be re-
peated also for different phases, like a radiation-dominated phase: this would be
necessary to extrapolate results about observable quantities, that would have to
experience this phase before entering the matter-dominated one.

Also, we have arbitrarily neglected the first-order scalars in the source terms of
our second-order expressions, to simplify our derivation and to highlight the pure
tensor contribution. Of course, this way we have neglected also the mixed scalar-
tensor terms in the source of the second-order quantities, which could provide
other modes.

Considering only tensor modes is interesting also in the perspective of a differ-
ent model of the early Universe, where there is no substantial production of scalar
perturbations. Those could be subdominant with respect to the tensor ones and
more relevant scalars would be produced at second-order. Those second-order
scalar perturbations sourced by tensors could in principle undergo gravitational
instability, for what we have seen; of course, they would not be the main seeds
of the structures that we observe. In fact, second-order perturbations provide
a source of non-Gaussianity that would not agree with the observed statistics of
density perturbations, which is almost Gaussian.

Models where the inflaton field does not provide the scalar perturbations that we
observe already exist: for example, in the curvaton scenario [9, 14] the curvature
perturbations are not produced by the inflaton field, but by another light scalar
field, whose energy density is subdominant during inflation. The perturbations
from the curvaton become then adiabatic when it decays into radiation much af-
ter the end of inflation.

Sticking to the classic scenario described in section 2, the approximations we
have assumed could allow a description of an early matter-dominated era after
inflation, like reheating, where the effects of a cosmological constant would not
be that important. The perturbations produced from inflation would then enter
the horizon after its end, which would be indicated by our initial condition 7 = 0
(while the inflation would conventionally start from 7 = —o0). Also the approxi-
mation of negligible linear vector perturbations is fine, as they are not produced
during an inflation driven by scalar fields (and anyway, they would decay in time
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once produced).

If one would consider the production during the "classical" matter-dominated
phase, one has to account for the passage through the preceding radiation-dominated
one, so the initial conditions should be adjusted to have a smooth passage from
one phase to another.

Our choice of the initial conditions for the expressions of the second-order den-
sity contrast has been dictated more by the necessity of having a "clean”, simple
expression, which would highlight more the dependence on the first two terms
than on other constants coming from the initial time. Of course, it is straightfor-
ward to set these constants different from zero (in (8.10)), to set the initial condi-
tions e.g. also for the derivatives of our expressions.

Of course, studying the propagation of second-order perturbations produced by
tensor modes could be important only in the case in which they can effectively
grow in time and become non-negligible in the passage from one era to another.
As we have seen in the last section, it can be possible to have a growth rate for the
second-order density contrast which is even higher than a trend « 72. This is due
to the fact that the growing mode o 7 is multiplied by an integral which is an
increasing function of 7. So, the growth rate would be higher that the one of the
classical, linear scalar perturbations, which is o 72 o £2/* in a matter-dominated
Universe. Actually, from Figure (7), it seems to be even higher than the time de-
pendence of the part of 6@ generated by linear scalars, which grows like o« 74,
This is true at least for the very small time window that we have considered, for
our particular choice of parameters and of integration in £’ (the mute variable of
the convolution in Fourier space). We expect this to change, even only for the de-
pendence on k of the oscillating functions that are integrated: for some different
choice of k (we have verified that for k = 100) the integral in that growing mode
is negative, so 5(52(2) stays negative and becomes smaller and smaller. This would
indicate that, for this particular scale, the density perturbations would represent
underdensities.

Some changes are expected also by the choice of a different UV cutoff for the in-

tegration in k’.

2
What we have actually plotted in the previous section is Ai(s(il) , to reabsorb the still
unknown amplitudes of the first-order gravitational waves. To factor them out,
we have made the simplifying assumption of a perfectly scale-invariant power
spectrum of gravitational waves (which would anyway be not so far from what
predicted by inflation) and of equal amplitudes for the two polarization modes.

The amplitude squared would provide a very small factor to the expression of

6(32(;: not only because we are considering small perturbations at second-order,
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but mostly because even at linear order the amplitude of tensor modes would be
much smaller than the one of scalars. In fact, assuming that the consistency re-
lation holds, the tensor-to-scalar ratio is estimated to be r < 0.06 [18], providing
an amplitude for the tensor power spectrum Ay ~ A%(k,) < 1.2 x 1071,

Only future observations could have the sensitivity to probe the cosmological back-
ground of gravitational waves, maybe also through the second-order effects they
can induce.
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Appendix A

Evolution equations for second-order perturbations

The second-order Raychaudhuri equation:

@ ¢<2>/ -2 ¢<2)
__ L wu o4 w1 [2 Mij 9, Ok _ g2, _ k) Dk Mif _ g2, (Diyy
=g 7s Ysij T 3 7Vsij Vs Vsijk Ysij = Yski) = Ysk Vsif =V Vs

2 i 1)iN2 Dij_ (1 Dij_ (1 i 1)i
T[ 208 = s - (7”’723, Vs Vsoi) *+ 60s; " = vso)) |

(A1)
Energy constraint:
2 o 1 1
(@) 252 o @ _ (2) ij _
%5 T3V s ¢ 128 =

2 o ’ , 1
— Mij, (1 Mij’ M i’ Mj’
- —§)/S ySij (7 75” ~ Vs 73 )+ 6

3 1 e 1 .. )
(Dki, ()i (i (l)l/ (1) .k Mij_ Ok Wik (1)j
+Yor Vsji— 7su)+4 sk Ysij T3 Vsk Vsij T g 7Vsi Sj,k]

(1)i.i Ok 2. (D) Dk
Vs (_zySi,jk +V Ysij T 7’31”])

2 i 1)i Dij_(1 Dij_ (1 i i
+5 (7“) ~vs0i) (7( sy = Yo Ysoi) + 000kl = veoD |

(A.2)

Momentum constraint:

1 )i’ (1) ik

’ l ’ l
2’ 1’ 0’ (Dik,, (1) Dk, (1) i (DK’
2¢S J +3 XS]! =7s

siji~ Vs )t Vs Yskj T3 Vsj Yski T Vsik)s) ; (A.3)
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Evolution equation:

" 4 ’ . 1 .1y 4 .y . 1 . 1 . 1 ;
2) 2) i (2)i (2)i (2).i (2) ki i (2) ki (2) k,i
_(¢s + 2 ¥s )51""5()(3; X )+¢s,j ~ g Xsu 5j+§)(s,kj 5 Xs i

1l o i

2
7 ’ 1 ’ ) 1 ’ ’ ’ . 1 .
(k1) (k' (1)i Wk'\2 (DK’ ()1’ i Wi, Dkl w2 (Dk
=7s  Vskj — §7s1c Ysj T g[(VSk ) =Ysi Ysi 105 5 —Ys; s = V7si)
(ki (1)1

(KL, (1)i Wi (i ). Wk, ()i (i (1

+2¥5" Vs i ¥ Ysidj ~ Ysije — Ysii) T 2Vsk Vsjo—Vsij— Vs )+ 2Vsy Ysi;
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(kL (ym Wk (1)1
5 Vs Vsku o + 1 7sk YsimOj|-

(A.4)
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Appendix B

Equations for second-order perturbations arising from linear ten-
sor modes

Those equations present the part of the equations in Appendix A involving com-
binations of first-order tensor modes. They can be used to derive the parts of
second-order metric perturbations generated by linear tensor modes. The calcu-
lations are still performed in synchronous and comoving gauge, in an Einstein-de
Sitter Universe.

Raychaudhuri equation:

2
(2)” 2’ @ _T Jij |mT _ 1 MT" (DT ij’ 2 MT_ (DT ij’
S(t) ¢St) - ¢S(t) o V Xl] Xl] X Xl] X
9 6 3
L oarijg2 e o L oor amiz _or o
_ §)(( Tij g Xij (X ( )Tij XOUXO l]) = Q(x, 7).
(B.1)
Energy constraint:
@ 1 Vz o, 0.0 1 e
¢s © so T ) ¢S(t) Xsw.ij =
5T 5 7 y i) 1w ariy
— (DHTij’ 4 = (DTij _VZ (DTij o 2 L (DTijk B (l)T (DTij
2 1 1 . 1 iy
_ (l)T (DT ij’ (DT ij w2 (l)T (DTijk , DT = (DTijk (DT
1
_ LT (OTij r, (DTij
Wi X XoXe " -
(B.2)
Momentum constraint:
2 2’ 1 (2)1 _ T2 (I)Tik’ (I)Tkt 1 (DT ik’ 1 (I)Tk'VZ
¢S(t)] S(t)Jl_? (/\/,j )(pl +2/\/ ‘,Ojk_EXj
+I (DT ik .+5 (Ti" oo (l)Tzk(X(l)T' (l)T’) 1 (DTik’ (DT
3X,j Lk 3)(] CiTX kji k,} 2)( ik,j *
(B.3)
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Evolution equation:

" 1 o 4 1 1 -
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Appendix C

From the synchronous to the Poisson gauge

We express the most general equations (3.17) and (3.18) for gauge transformation
referring to the particular case of the metric, the density perturbation and the ve-
locity perturbation, in both first- and second-order case.

C.1 First-order transformations

The first-order transformation for the metric is:

6gl“’ = 6gIle + Lf(l)g}(g/)’ (C.1)

from which we obtain, in each perturbation and from synchronous to Poisson
gauge:

Lapse perturbation:

. oa
py) =V + -~ oV, (C.2)
Shift perturbation, scalar:
oV =Y, (C.3)
Shift perturbation, vector:
o) = 4, c.0
Spatial metric, trace:
1 a’
o0 = g - 3 V20 _ - o, (C.5)
Spatial metric, traceless:
Dij (x5! +25) =0, (C.6)
ML 1 _
Xsip * iy =0 (€.7)
X gi)jfr =X (Sli)jT' (CS)

For a scalar like the energy density, we would have:

0p =0p+ Ly poy —> 6P =0p + p @) (C.9)
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. . . - sDp+Ls@p+...
The density perturbation is deﬁned as§ = 2L = TR0 Pl o 5 4 LDy

P(0) L)
so the first-order term is 6 = and its gauge transformation becomes:
pl
1 n , "o
60 = 60 + — o). (C.10)
Pw©)

For the four-velocity we have:

ot = dut + Lg(l)uf(‘o), (C.11)
and dividing between time and space components:
,oda
0=~V — — o, (C.12)
a
P = i’
' ,6’(1) - (C.13)
As we are in the irrotational case, y)* = v\"* = 0,504 = o{) = }{)* = 0.
C.2 Second-order transformartions
The second-order transformation for the metric is:
25 _ 2 © 0
6 8y = 07y + 2L, 08 + £7, 840 + Ly - (C.14)

Using the results of the first-order case, like equation (C.3) and di(l) = 0, we ob-
tain for each perturbation:

Lapse perturbation:

’” ’

(2)
= ,3(1)

’ ’
m” a4y N RN,
+ﬁ(l)(,8 ;ﬁ’i )+2ﬁ(1)+a +;a ,
(C.15)

a a
244
ﬁ(1>+5;/3<1>+( )ﬁ(n

Shift perturbation, vector:

2 _ (1) 2 (1)’ (1) p().j DT o, (2) (2)’ (2)’
wpi - ( ¢ +18(1) _V ﬁ(l))ﬁ,i _2:8,]' :8,,' +2X,‘j ﬁ(])_a,i +ﬁ’i +d,' s
(C.16)
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Spatial metric, trace:

’” ’2
' ) a a ,
( s T 2 ¢ ) (; + ?)ﬁ(l) ﬁ(l)]

1
- = ( 85+ Bdo + B0 + 4= ﬁ(l) t3 V ﬁm) VB (€.17)

2 _ (2)
oy = +,3(1)

3
/ , 1 al
M _ (D ij (1) (1)T 2n(2) @)
+ﬁ(1)(2¢ B ) B(I)Jﬁlj B A Al
Spatial metric, traceless:
4
(@) (2 1) / Sk 1) .k (1)
XP!] _Xslj (_4¢S _ﬁ(l)ao_ﬁ(l)ak+ gvzﬁ(l)) Dijﬁ(l)_él'(ﬂ,ikﬁ(l),j U'B( ﬁ )

4
1 1 1
+2 (X(I)T +2— X( )T)ﬁu) + 2X(1)Tﬁ<1> +2] )Tﬁ(n it 2X(1)Tﬁ<’f>,i ( )T'B(

+2(d)) + Dy ,8(2)).

(C.18)

Then, the general second-order gauge transformation for the energy density is:
6P = 6%p + 2L, 60 + (L7, + L, 0. (C.19)
from which we derive:

D~ _ <2 2 i d
6¥p =6%p + Poy@@ + Py + Poy@m@y + 200 aq) + By i + 281,00,
(C.20)
and substituting the expression for §®p with respect to the second-order density
contrast 6@p = p(g, - 0¥, we obtain:

’ 7’

P o P Plo) P
2 2), 7O © 2 ©) 0) 1
5( ) = 5( ) —Qp)t— a(1)+ a(l)a(l)+25 04(1 +2p_(0 (S (0 76)) ﬁ(l)p( )a(l) ,+2ﬁ(1)5( )

L) L) L)
(C.21)

The general transformation for the four-velocity at second-order is:

& = 67 + 2L St + (LF + L (C.22)

0

and dividing between time and space components, from comoving synchronous
to Poisson gauge:

”

0 __a_l _/+/ za__a_” /+a_,//_///_,i a_,/ +/I +”2+/ -/

Vpo) = aa’(Z) @B 4 a By a:B(l) By ,3(1) aIB(l),i Bay.i |[TBa) ﬁ(]),iﬁ(])’
(C.23)
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. 1’1' , . a ’,i 7" i /,i
Vo) = By~ dy + By 2= By~ B + BB (C.24)

Equations (C.15) - (C.18) couple the second-order metric perturbations in the Pois-
son gauge and the second-order parameters of the gauge transformation a®, g
and d,@- We can obtain expressions for those parameters using the following con-
ditions:

the conditions &' X;Zi)j =0,00 )(;21) = 0and & d§‘> = 0 with equation (C.18), to
get:

VZVZﬁ(Z) — 3 (2) Al 6¢(1) t/ﬁ(_l_) ) v2 ¢(1) Vzﬁ(l) + 8¢(1),i Vle(_l) + 4¢(Sl) VZVZﬁ(l)

4 Sz]
3 b
2 (1) 2 p(Dy2 sijk (1) 2 p(DHw2v2 n(l (1) i
+4V ﬁ :8( V IB \Y% ﬁ(1)+ ﬁ(i])ﬁljk V :8( )V \% ﬁ() Eﬁ’ij ﬁ(]J)
1 Y ’ i ’ ’ i
—5V2,3(1)V25(1)+2ﬁ’(l)vzﬁ“l? +p0 V2V2ﬁ<1> +BVV2 B,
3 T’ (T (l)T ijk (l)T 2 i 2 (DT
- E(X"i Xu By = 5 By = 2x " V2B + VX B
(C.25)

(2

the condition &' y ) = 0 and the expression found for ), to get:

VZ dl(2) — _% VZ,B’(,Z) _X(Z) J + 8¢(1) 2] Dl]ﬁ(l) + 13_6¢(Sl) Vzﬁ’(il) + %ﬁ(’:]) V2ﬁ(l)’j + &ﬁ(]l)/kﬂ(,{;c

Sij
8 2 ()2 .J’ (1)’ 4 (1) 2 (1)’ 4 (1).jv2 p() (DT f.jk
§V IB’iV ﬂ(l) +2ﬁ(1) Dijﬁ + 518 \Y ﬁ,i + §ﬁ \Y :8 4 z]k ﬁ(l)

(HT’ HT ()T (I)T 2 ()T
_2(Xij +2% X )ﬁ(l)__/\/zk ﬁ(l), Xij V'B(l)+ X;kzﬁu)’

(C.26)

(2)

the condition ' wy = 0 and the expression for §»), to get:

’ i 2. i ’ ! ij
V2 CY(Z) — V2ﬁ(2) ) ( 2¢(Sl)s +ﬁ(1’) + § Vzﬁ’(l))ﬁ(’:‘) _ 2[3(:]) ﬁ(l)v J
5 (C.27)

( ¢(1) +:8(1) _ g VZ,B(I)) VZ,B(I) +2 (I)Tﬁ(l
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Appendix D

Second-order parameters and perturbations generated by tensor
modes

First, we consider the second-order gauge parameters generated by first-order
tensor modes. They can be obtained from equations (C.25) - (C.27), replacing the
first-order gauge parameters:

vy - 3 @i T o 4 ot i 57 wr kT T g2 i
Bo = ~gXswij ~ 5\ Xyt X ¢ T Xk ¢ 3)(1-]- ¢
2
+ w2yt i,

6

4' 2 i 27- ’ 4 . 2T2
@ @i 2t o 4 o1 DT jk
Vﬁmz Xswij ~ 3 (X,-J- X )90 TR Xk ¥

T wrer i Tomr k2T T ik
3)(,, Ve QXK Pi T g Xk 7

/ 2 iy
2 (2 _ (2) (l)T A
Vi) =V ,B(t) Xii ¢

(D.1)

From equations (C.15) - (C.18) we obtain the expressions for the second-order
metric perturbations:

;2
@ _ @ o)

Ypy = X + = a/(t) ) (D.2)

2T . ,

@ _ 2T T g0 @ g
@ri = 3 Xij ¢ +ﬁ(t),i X,i d(t)l’ (D.3)
®_ .o T (T i los . 2

¢P(t ¢S(t) z] - §V ﬁ(t) -~ Q’(t) ’ (D4)

2T , 4 72
2) 2) M|mT (T (HT (T T .k
Xewij = Xswij T ?QO(XU +;Xij )""_(Xij,k ¥’ +Xik ®; +X]k ¢;)

272
DT Ik 2) 2
) - Xy ¢+ d(t)(i,j) +Dij By

(D.5)

We express the second-order metric perturbations in the Poisson gauge with re-
spect to the synchronous gauge ones and to combinations of first-order scalar-
tensor terms and tensor-tensor terms, substituting the second-order gauge pa-
rameters in equation (D.1).
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Lapse perturbation:
This is found from the gauge transformation (D.2), using the momentum con-
straint (B.3) and the Raychaudhuri equation (B.1)”:

1 6 : ’ ]
22,2 _ 2 4(2) (l)T @’ 2 (DT 2, (DT (DTi (l)T 2 (DT
A\ t//P(t) V ¢S(t) Xij ij _ 13y X @ ij 4 = V (X ( )Tij’ ) — Xy vy ()T ij

1 Iy 1 st 3 ’ . 1 ..
(DTij 2, (DT _ (HTijk’ (DT DT (DTkji _ ~ 2, (DTg2, (DTij
X V)(,-, X Xijk + ZXijk X 1 VX VX

1_, . 3 ,
(1 (Tijk _ MT" ()T kji
+4V ik X 5 Xijk X

+%V2( (HTij, (DT (DTij (I)T)
T

1 3

2 (OTg2w2, (DTij _ 2 MT  (DTijk
+2Xij VVX 2V kji
le X() XOI]
(D.6)

Shift perturbation:
From equation (D.3), using the momentum constraint (B.3) and the Raychaudhuri
equation (B.1):

292, .(2) T’ _j (OT” (DT jk (l)T’ DT jk (DT jk_ (DT’
VAW = (—Ax T o) = 2 x T T 4 2y ST DTy DT

(l)T (DTkjl’ . ()T

j nT’ 2 T 3
+ (4){ ‘,0’ ki Xﬁq) Vz)((DTkj Xk(]) VZ)((DTIU X ij,l
2 4 nT
X(I)Tkjl XE])]C ) i ;
(D'J)

Spatial metric, trace:
It is found from the gauge transformation (D.4), momentum constraint (B.3) and
the Raychaudhuri equation (B.1):

. 1 , 1 .,
V2V2¢§,2(z) _ V2¢(sz(t) VZ (XEJI)TSO ,lj) + g VZ(X(I)T (D)Tij’ ) TXE'I')TVZX(I)TU

1 L vy L e . 3 o ayrije VZ(X(I)TVZ iy

o7 ~ o ik X - Xiji X
3V2 T (DTijk _ 3 T (I)szkl 1 T (I)Tkj,il_'_lv (DT . (DTijk
4 l]k X 4/\/1]le ZXthIX 2 Xk]z X
6 3
nr’ 2( (DTij (DT MTij (DT
X @ A t3 5V ( ”)(,] —Xo Xou)
(D.8)

"Note that the following expressions for the Lapse perturbation, the trace and the traceless
part of the spatial metric are slightly different from the ones found in [1]: for the Lapse perturba-
tion, only the factors of two terms (the first and the tenth ones in the RHS) are different; for the
trace part, there are less terms with respect to [1] (for a possible error of sign during the compu-
tation); for the traceless part, there are two more terms.
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Spatial metric, traceless part:
It comes from the gauge transformation (D.5) and from equations (D.1):

1 1 4 ,
VLR = VYD oy Ok 0K s g, 0 —Vz{ T[‘p,k( (T

Xpwij Xswij Xsw ki, ) 2/\/8(0 Kij T S ki 3 k(i
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(D.9)
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Appendix E

Einstein equations perturbed at second-order in the Poisson gauge

In this Appendix we show the Ricci tensors, the Einstein tensors and the stress-
energy tensors obtained in the Poisson gauge and in an Einstein-de Sitter Uni-
verse. Contrary to what can be found in the literature [1-3, 8], here we have elimi-
nated the first-order scalars (that can be obtained in those references) and we have
preserved the first-order tensors, while it is usually done the other way around.
Their terms are ordered from the background contribution to the second-order
one. The inverse metric tensor and the Christoffel symbols are also presented in
this gauge, already neglecting first-order scalars and vectors in the source.

Inverse metric tensor up to second order:

g% = —a (1~ )

, 5,1
0i _ 2.
g =a Ewp(t) ;
gl_] — a—l((stj _X(I)le _ _X(Z)Tl./ _ (I)Tsz](cl)Tj + ¢;2(g) 511)_

2 P(t)

Christoffel symbols up to second order:

l
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i _ %6’ 1 '(1)T1+l I(Z)Tl__¢l(2)6l L i /(1)T+ ( @ _ @iy
0j = 79+ 53X 4 0 2X Ak “py.; T “rw )
2 1 1 2 1
0 _ @ L ar 1 0 ) T _ 2 405 r
L= (T wP(t)) 2)(1/ + 2 XP0ij ~ ¢P 0ij TX” ¢ TXP(t)ij
1
2) 2) .
- Z(wp ©ij ~ Wpw i)
. 1 : 1 : 1
i (DTi (DT (DT,i )Ti )Ti 2)T,i 2)i
Iy = 2 (Xk] Xk T X ) 4 (XPt)k] T Xp jk ~ )(p(t)jk) — 0 jkWp

1 (T (l)T)

) i 2 2 s (yril(, (T
(¢ . Ok +¢P(t)k i~ Pro J) X (Xklj T Xk ~ Xk
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Ricci tensors up to second order:

6 , 1 : 1 N
(2) S v2,,,2) 17 (2) ’(2) (1)T (D)Tij’ T2, (DTij
ROO— > T2 ‘/’P(t V’/’P(t ¢P(t +t ¢Pt) Xij X X Vix
1
(DT (DT
_ Xu X() ij’
-
(E.1)

1 *1. 7 1 . ’
- T jk’ T = (DT jk (DT,
Wpy i 2 ik,j +4X jk’i+2 Xjk,i >

(E.2)

3 1 . ’
o /(2) @ _2vg2, @ .2 2 _ - (DTjk T
Roi = ¢P(t ‘ﬁp(t) i V t)t+

@ 1o 1,0 3 o

6 6
(l)T (2)
__l?[/P(t lj ¢P(t) l]+_)( (t)l]+ XPt)l] XP(t)l]

- 51
72 T2

. 1 ’
i 1o 6 o 1,0 5,0 6 @ _2(m Tk (T
+9; ( T Yo 2 Ype 3 Ppey T Ppy ) Ppe + V Py — T X )

1 1 1 1 1 , ,
L wrk ot L ke T Wk, (T L (KL ()T (T’ (DTk
X ij,ki"'z)( Xijk T X Xiij T aXi Xuj ~ 35X X

2
1 1 1 1 2 1 -
(DT, (DT ,k (DTkl (DT _ 2.2 7(2) 2) (DTI, ()T
+ SXik Xij T3 itkj ~ 7 ¥ Xr0ij T 5 Prop T ;wP(t) @p ~ Xk Xji
(E.3)

Second-order Einstein tensors:

1 1/(12 1 p 1 .
20 _ (2) 7(2) 2 ,.(2) (DT’ (DTi (DTw2. ()T
§5GO - _w ¢PE) V¢P(t) le X() J _EXU VX() J
2 3 1
(DT (DTij’ (DT (DTij. k (DT (DT ik,
X X XX e ’)
(E.4)

1
~6G?° =
2 1

1 2 1 1 ‘ | , 1 ‘ ,
(2) (2) 2. (2 DT jk, (DT DT jk’, (DT _ DT jk. (DT’ ).
¢’ + V + = (DT (DT j b% X( ) ]X

-2l ;lf//P(t)l P(®).i @ri T 5 Xij — g X ki T ki |’

(E.5)
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1 @i _
E(SGj =

St ) Vzlﬂ(z) V2¢ (2) 3 3
_J 2) P(v) (2) 2) P(t) (DT’ ()TkI’ (DT (DT kL,
( ’ 7 ’ _)( ( ) _ _X mX( ) m

- ; ; P(t) D) P(t) ¢P(r) - 2 g ki X g "Lkl
//(2)1 1 r(2Q)i 1V2 (2)i

1 1 1
T, (DT mk,l I A AR (2., _ -
+ g XiamX )+ P ( Urey + ¢ po.j T 3 Xp0; T T Xe0; T gV Xew)

1 o 2 g 1 1 1 .
@)@ ) (OHTkL, (DT ()Tkl, (DT, ()TkL, (DT
—3X Xlkj - 5)( Xij + 5/\/ Xj,kz

7“0 T Y00 T 5
1 (OTkl, (DT, 1 ()TkLi, (DT 1 (DT ik’ (DT’ 1 (OTilk, (DT 1 (WTilk, (DT
iy T - = =X TG + STG).

+ EX X, j ZX X, j 5 kj 5 TS Lk
(E.6)
Second-order stress-energy tensors:
L @0 6 @,
EéTO = —ﬁ 6P(t)’ (E.7)
1 6
0T = —— gy + Wl (E.8)
1 i

77



Appendix F

2)
S()

Python program to plot §
import scipy.integrate as integrate
import scipy.special as special
import numpy as np

import matplotlib.pyplot as plt
plt.rcParams[’text.usetex’] = True

k=10.
ttopvalues = np.linspace(®., 2, 201)

inttvaluesl = []
intvaluesl = []
inttvalues2 = []
intvalues2 = []
deltavalues = []

for i in range(®, 201):
ttopvalue = ttopvalues[i]

Areal = integrate.dblquad(lambda t, kl:

“@./Q.* np.pi))*9./)*((np.sin((k-k1)*t)

- 3.*special.jn(1, (k-k1)*t))/((k-k1)*t**2.))*((np.sinCk1*t)
-3.*special.jn(l,k1*t))/(k1*t**2.)), 0, ttopvalue, -10, 10)
Area2 = integrate.dblquad(lambda t, kl:
“4./Q.*np.pi))*(9.*t**4 . )*((np.sin((k-k1)*t)

- 3.%*special.jn(1, (k-k1)*t))/ ((k-k1)*t**2.))*((np.sin(kl*t)
-3.*special.jn(l,k1*t))/(k1*t**2.)), 0, ttopvalue, -10, 10)

delta =((ttopvalue**2)/10.)*Areal[0]-(1/(10.*ttopvalue**3))*Area2[0]

intvaluesl.append(Areal[0])
intvalues2.append(Area2[0])
inttvaluesl.append((ttopvalue**2)*Areal[0])
inttvalues2.append((1/(ttopvalue**3))*Area2[0])
deltavalues.append(delta)
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print "ciclo ", i, "intl ", Areal[0], "int2 ", Area2[0], "delta",
delta
i+=1

G = plt.figure(l)

st = G.suptitle("Time evolution of the first integral", fontsize=
"x-large")

axesl = G.add_subplot(121)

axesl.plot(ttopvalues, intvaluesl)

axesl.set_ylabel('intl’)

axesl.set_xlabel(’conformal time’)

axes2 = G.add_subplot(122)
axes2.plot(ttopvalues, inttvaluesl)
axes2.set_ylabel(r’r° intl’)
axes2.set_xlabel (’conformal time’)

plt.show()

G = plt.figure(l)

st = G.suptitle("Time evolution of the second integral", fontsize=
"x-large'")

axes2 = G.add_subplot(121)

axes2.plot(ttopvalues, intvalues2)

axes2.set_ylabel(’int2’)

axes2.set_xlabel (’conformal time’)

axes4 = G.add_subplot(122)
axes4.plot(ttopvalues, inttvalues2)
axes4.set_y1abe1(r’% int2’)
axes4.set_xlabel (’conformal time’)

plt.show()

b = ttopvalues**2.
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plt.
plt.
plt.
plt.

plt.

plot(ttopvalues, deltavalues,’g’, ttopvalues, b,’r’)
ylabel(r’ s /A*(k.)")
xlabel(’conformal time’)

title(r’Time evolution of 5%“)

show()
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