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Abstract

Biomedical literature is a rich source of information on Gene-Disease Associations

(GDAs) that could help physicians in assessing clinical decisions and improve patient

care. GDAs are publicly available in databases containing relationships between

gene/miRNA expression and related diseases such as specific types of cancer.

Most of these resources, such as DisGeNET, miR2Disease and BioXpress, include

also manually curated data from publications. Human annotations are expensive

and cannot scale to the huge amount of data available in scientific literature (e.g.,

biomedical abstracts). Therefore, developing automated tools to identify GDAs is

getting traction in the community. Such systems employ Relation Extraction (RE)

techniques to extract information on gene/microRNA expression in diseases from

text. Once an automated text-mining tool has been developed, it can be tested on

human annotated data or it can be compared to state-of-the-art systems.

In this work we reproduce DEXTER, a system to automatically extract Gene-

Disease Associations (GDAs) from biomedical abstracts. The goal is to provide a

benchmark for future works regarding Relation Extraction (RE), enabling researchers

to test and compare their results.

The implemented version of DEXTER is available in the following git repository:

https://github.com/mntlra/DEXTER.
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Chapter 1

Introduction

Discovering the relationships between genes and diseases is getting traction in the

community since Gene-Disease Associations (GDAs) can help physicians in assessing

clinical decisions and improve patient care. In fact, genetics plays a role in all

diseases, for example it can determine if an individual is more likely to develop

a specific type of cancer or on the contrary it could render the same individual

less susceptible to another disease. For this reason, understanding genetics and its

variation in the human population is crucial to understand disease processes thus

provide the foundation for curative therapies, beneficial treatments and preventative

measures [1]. An example of such information is the correlation between some

variations of the BRCA1/2 gene and breast cancer. In fact, patients that present

certain variations of the BRCA1/2 gene have an increased risk of developing several

cancers, specifically breast and ovarian cancer. This type of information can lead

physicians to perform suitable prevention measures, such as more frequent screenings

or more advanced tests. To provide easy access to information, GDAs are publicly

available in databases containing relationships between gene/miRNA expression

and related diseases. These resources comprise DisGeNET [2], miR2Disease [3] and

BioXpress [4, 5]. DisGeNET is one of the largest platforms of human gene-disease

associations currently available, where data comes from different types of source

databases containing both expert curated resources and results from text mining tools.

On the other hand, miR2Disease is completely human curated and it aims to provide

microRNA-disease relationships. Most of these resources include manually curated
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1. Introduction

data from publications that are expensive to obtain and cannot scale to the exponential

increase of biomedical literature. For this reason, developing automated tools to

identify GDAs is getting traction in the community [6]. Such systems employ Relation

Extraction (RE) techniques to extract information on gene/microRNA expression in

diseases from text.

Relation Extraction (RE) is an Information Extraction (IE) task where we extract

relational triples from natural language text which can automatically populate a

database or a Knowledge Base (KB). This task has risen in popularity mainly for two

reasons. Firstly, a huge proportion of of human knowledge can be expressed in the

form of Resource Description Framework (RDF) triple, that is a tuple of entity-entity-

relation, and a vast collection of such triples allows for automatic creation of a KB

[7]. Secondly, there are abundant applications for KBs containing RDF triples, for

example Freebase which is the foundation of the Google Knowledge Graph. Therefore,

RE finds relational facts from plain text. For example, consider as input sentence

"Paris is the capital of France.", in this case an RE model would output the triple (Paris,

France, capital_of) where "capital_of" is the relation between the two entities "Paris"

and "France". RE requires two additional tasks to correctly extract relations between

entities: Named Entity Recognition (NER) and Entity Linking. NER aims to recognize

portions of text that correspond to specific semantic types that could be Person (PER),

Location (LOC), etc. Consider the sentence we introduced above, in this case an NER

model would identify both "Paris" and "France" as entities of type Location (LOC).

This task can be both a standalone tool for IE and it is crucial for many applications

in NLP such as RE, Text Understanding and Question and Answering (Q&A). Many

approaches has been employed to solve this task, including rule-based models and

unsupervised techniques, however the dominant approach applies Deep Learning.

Entity Linking is the task of linking entity mentions with their corresponding entries

in a KB [7]. This tool can facilitate many different tasks such as KB population, Q&A

and information integration. In the context of RE, if we develop a system to extend a

database, it is required to have a mapping between entities newly detected and the

existing entries in the database of reference before the new relations are inserted [8].

Typically, Entity Linking is preceded by a NER module, where named entities are

2



identified.

Once an automated text-mining tool that extracts relations from text has been

developed, it can be tested on human annotated data or it can be compared to state-

of-the-art systems. In this context, the state of the art is DEXTER, a rule-based system

that extracts gene/microRNA expressions in diseases from biomedical abstracts [9]. It

has been published in Database: The Journal of Biological Databases and Curation in 2018

and has attracted 11 citations so far. To the best of our knowledge it is the most recent

system for RE on Gene-Cancer Associations. DEXTER takes as input biomedical

abstracts from PubMed and extract relevant information such as the correlation

between genes or miRNAs and diseases. The system also classifies sentences as

TypeA or TypeB based on the number of entities found. In particular, TypeA sentences

are comparative phrases where gene expression is contrasted between two different

samples or conditions while in TypeB sentences there is no explicit comparison. One

of the main objectives of the original paper is to create a tool to automatically extend

expression databases like BioXpress [4, 5], that contains gene/miRNA expressions

associated with cancer. DEXTER is developed both in Python and Java and it mainly

employs the Stanford CoreNLP toolkit [10]. The system is based on several modules,

each dealing with a different part of the computation. In the first step, namely Text

Processing module, the title and text of a medline abstract are tokenized and the abstract

is split into sentences. Subsequently, each sentence is parsed in order to produce a

Standard Dependency Graph (SDG) [11], that provides a tree-like representation of

grammatical relations between words in a sentence. In the Relation Extraction module,

Semgrex patterns are used to extract relevant components by matching relations

in the SDG returned by the previous module. The parsed sentence is also taken

as input from the Entity Detection and Phrase Typing module that extract gene and

disease mentions from the sentence using annotations from PubTator [12]. Finally,

both the output form the Relation Extraction and the previous module are taken

as input by the Argument Filtering and Extraction module where we check that the

extracted components respect the task type, i.e. the compared aspect is a gene

or miRNA and the compared entities are diseases or samples and we extract the

relevant information that can be used to populate a database like BioXpress [4, 5].

3



1. Introduction

Unfortunately, DEXTER’s source code is not publicly available hence researchers rely

only on data provided by the authors to evaluate newly developed systems.

In this work we reproduce DEXTER, so that we can provide a benchmark for

future works regarding RE, enabling researchers to test their newly developed

systems on a reliable baseline. Our version of DEXTER is publicly available in a

GitHub repository1. We decided to develop the system as an end-to-end application

that takes as input biomedical abstracts and returns relevant information on the

expressed gene/microRNA and the associated disease. We preserved the overall

block architecture and we made some changes in each block to enable a seamless

integration of the different modules. Our system is entirely developed in Python,

therefore we could no longer use the Stanford CoreNLP toolkit, which supports Java.

Instead, we used the SpaCy library [13], which is an open-source library written in

Python that provides some utility functions to process text efficiently and effectively.

Spacy was released in 2016 by Matthew Honnibal, who wanted to provide small

companies an accurate and fast pipeline for NLP tasks that is suitable for production

use [14]. SpaCy comes with some trained pipelines that provide support for several

standard components, i.e. SpaCy tokenizer, parser, NER and tagger, but it also

allows for custom components definition. We added a custom component to the

SpaCy pipeline to expand entity mentions using hand-craft rules which will be useful

when extracting information from the components by the RE module. We used

data provided by the authors in BioXpress2 as ground truth to assess the accuracy

of our system. In particular, we evaluated our system performance based on the

percentage of parsed sentences and the correctness of the results in terms of correct

gene expression level and correct sentence type.

The rest of this work is organized as follows. Chapter 2 provides an overview

of some tasks that are employed in the development of DEXTER. In particular, we

describe the task of Relation Extraction (RE) in general and provide some definition

and methods of two related task, namely Named Entity Recognition (NER) and

Entity Linking. Finally we focus on Biomedical Relation Extraction and the main

1https://github.com/mntlra/DEXTER
2https://hive.biochemistry.gwu.edu/bioxpress
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methods that have been used to solve such task. Chapter 3 describes the original

system that was developed in [9], with particular interest in the system architecture

and its objectives. Chapters 4, 5 and 6 focus on the implemented version of DEXTER.

In particular, Chapter 4 focuses on the input handling step and the Text Processing

module, Chapter 5 describes the Relation Extraction module and the dependency

parsing task in general while Chapter 6 focuses on the last two modules, namely

Entity Detection and Phrase Typing and Argument Filtering and Extraction modules. In

Chapter 7 we evaluate our implementation of DEXTER using data provided by the

authors of the original paper in BioXpress. We focus our evaluation in terms of how

many sentences we are able to parse and the correctness of our output. Then we also

perform an error analysis where we compare the dependency parser we are using

and the one used in the original paper and we also investigate the impact of PubTator

in our system’s performance. Finally, in Chapter 8 we conclude our work with some

final remarks.
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Chapter 2

Background

This chapter presents an overview of the task of relation extraction. We describe

the task in general and provide some useful definitions of related tasks. Next

we discuss some previous works on RE in general and finally we focus on the

application of relation extraction in the biomedical domain, namely Biomedical

Relation Extraction (BioRE). Part of this chapter is based on the lecture about Relation

Extraction with distant supervision from the Stanford course of Natural Language

Understanding held in 20191, that is available on YouTube, and on some slides

from the lecture about Information Extraction from the course of Natural Language

Processing held at the University of Washington in 20132.

Relation Extraction (RE) is an Information Extraction (IE) task where we extract

relational triples from natural language text which can automatically populate a

database or a Knowledge Base (KB). This task is getting traction in the community

mainly for two reasons. Firstly, a huge proportion of human knowledge can be

expressed in the form of Resource Description Framework (RDF) triple, that is a

tuple of entity-entity-relation [7]. A vast collection of triples allows for the automatic

creation of KBs. Secondly, there are abundant applications of KBs like Freebase,

that is the foundation of the Google Knowledge Graph. Therefore, one aim of RE is

to find relational facts from a plain text, organizing unstructured information into

structured information. For example, from the sentence "SpaceX was founded by Elon

1https://web.stanford.edu/class/cs224u/2019/
2https://courses.cs.washington.edu/courses/cse517/13wi/

7

https://web.stanford.edu/class/cs224u/2019/
https://courses.cs.washington.edu/courses/cse517/13wi/


2. Background

Musk in 2002" an RE model should output the triple (Elon Musk, SpaceX, founded_by).

RE usually requires two additional tasks as a pre-processing step: Named Entity

Recognition (NER) and Entity Linking.

2.1 Named Entity Recognition and Entity Linking

As we said before, RE aims to extract relations between entities. In order to do so we

firstly need to detect the named entities mentioned in the input text. Such operation

is usually performed by a Named Entity Recognition (NER) system. Subsequently, we

may want to associated each named entity with its representation in an ontology

or knowledge base. This task is defined as Entity Linking. Therefore, NER and

Entity Linking often acts as a pre-processing step in an RE system. In this section we

describe these two tasks and provide a small survey of the main techniques used to

develop NER models and Entity Linking systems.

Named Entity Recognition

Named Entity Recognition (NER) is the task of finding spans of text that corresponds

to specific semantic types that could be person (PER), location (LOC) or organization

(ORG). NER acts both as a tool for IE and as a useful pre-processing step in lots of

Natural Language Processing (NLP) applications such as sentiment analysis, text

understanding, question answering and KB creation [7]. Each span of text is called

Named Entity (NE) and we generally divide NEs into two categories. Generic NEs

usually refers to general concepts that can be applicable to a great variety of domain,

such as person and location. On the other hand we have domain-specific NEs that, as

the name suggests, are specific for a domain. Examples of domain-specific NEs are

proteins, enzymes, genes and diseases in the biomedical domain.

We use the formal definition of the NER problem reported in [15]. Given a

sequence of tokens s = <w1,..,wN>, NER systems output a list of triples <Is,Ie,t>, where

each triple is a NE detected in the text. The first two elements of the triple are the

start (𝐼𝑠 ∈ [1, 𝑁]) and the end (𝐼𝑒 ∈ [1, 𝑁]) indexes of the span of text corresponding

to the mention. The last element t is the entity type, which usually belongs to a

8



Named Entity Recognition and Entity Linking

Figure 2.1: Example of NER task. We identified three mentions belonging to three different categories.
We highlighted each NEs in the text with a different colour.

predefined set of categories. Figure 2.1 shows an example of the NER task. Here

we extracted three NEs, namely the person Scott Kirby which spans between 𝑤1 and

𝑤2, the organization United Airlines identified in tokens 𝑤7 and 𝑤8 and the location

Chicago that starts and ends with token 𝑤16. As we just said, the set of categories

is predefined in advance hence we can distinguish between coarse-grained NER and

fine-grained NER. In the first case, we have a small set of categories and we output

one category per NE. On the other hand, in the second task the set of entity types is

much larger and we allow for multiple types assignment.

NER systems are usually evaluated by comparing the results against human

annotations, hence high quality tagged corpora are critical for assessing the systems

performance. Evaluation involves the usual metrics such as Precision, Recall and

balanced F-Score. Precision measures the ability of the system to present only correct

results while Recall assess whether the system recognizes all entities in a corpus.

The balanced F-score is the harmonic mean of precision and recall. We recall the

definition of Precision and Recall based on True Positive (TP), False Postive (FP) and

False Negative (FN).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

NER models need both to identity the entity boundaries and the entity types, therefore

we can perform two kinds of evaluation: exact-match or relaxed match. In the first case

we consider correct, i.e. as a TP, each NE where both boundaries and type match

9



2. Background

ground truth. For this reason, FP are the entities that are recognized by the NER

model but do not match the ground truth. This can either be due to wrong span

boundaries or wrong entity type or both. On the other hand, FN are missed entities,

that are NEs annotated in the ground truth that are not recognized by the model.

In the second case we relax the previous assumption and we consider correct each

entity assigned to its correct type where there is an overlap between ground truth

boundaries and the recognized span. If we consider the example in Figure 2.1, we

would consider correct output <𝑤1, 𝑤5, Person> because it overlaps with the ground

truth boundaries, that are <𝑤1, 𝑤2>.

There are four main techniques applied in NER: Rule-based approaches, Unsu-

pervised learning models, Feature-based supervised learning methods and Deep-

learning based techniques. Rule-based NER relies on hand-crafted rules based on

domain specific features and syntactic patterns. These models work effectively when

lexicon is exhaustive, however they do not generalize well due to the specificity of

the rules and often suffers from low recall.

With the advent of machine learning techniques several models have been

proposed for NER task employing both supervised and unsupervised learning

techinques. Supervised learning techniques use a labelled datasets to train a model to

solve classification or regression tasks. Such models can be trained to learn features

about the data, in this case we refer to Feature-based models, or they could employ deep

learning techniques to learn multiple levels of data representation [16], in this case we

talk about Deep-learning techniques. The main challenge for supervised systems comes

from the need of big annotated datasets for training, which remains time consuming

and expensive. To mitigate this limitation, unsupervised learning methods have been

proposed.

Unsupervised learning models are trained on unlabelled data and they solve tasks

like association, dimensionality reduction and clustering, that is a common approach

used for NER. Clustering techniques aims to group together unlabelled data based

on their similarities. Clustering-based NER systems resort to context similarity and

infer mentions of NEs from text using lexical resources and patterns and statistics

computed on a large corpus. Zhang and Elhadad [17] proposed an unsupervised

10
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biomedical NER system that employs terminologies, shallow syntactic knowledge

(e.g., noun phrase chunking), and corpus statistics (e.g., inverse document frequency

and context vectors). Experiments demonstrate that the model is effective and can be

generalized.

As far as supervised learning is concerned, NER can be solved as a multi-class

classification problem or as a sequence labelling task, where the input is a sequence

of words and the output is a sequence of labels. Given annotated data, features are

extracted to represent training data. Such features can be word-level features (e.g.,

case and POS tag), list lookup features (e.g., Wikipedia gazetteer) or document and

corpus features. Based on these features, we can apply several machine learning

algorithms such as Hidden Markov Models (HMM), Maximum Entropy Models and

Conditional Random Fields (CRF).

Another supervised approach employs Deep Learning (DL), where models auto-

matically learn hidden features from data without the need of a feature extractor as

for the previous methods. Deep learning is making major advances in many tasks,

such as speech recognition, visual object recognition and many other domains such as

drug discovery and genomics [16]. DL models are composed of multiple processing

layers that transform the representation at one level into a representation at a slightly

abstract level. Each layer is typically an artificial neural network that consists of

the forward pass and the backward pass. The former computes transformations on

the inputs from the previous layer and passes results to a non-linear module before

outputting them. The latter computes the gradient of an objective function with

respect to the weights of a multilayer stack of modules, which is used to trained the

multilayer architecture [16]. DL-based NER models become dominant and improve

the state-of-the-art, mainly because of three major benefits of applying DL techniques

to NER. Firstly, by means of the non-linear transformation DL-based models are able

to learn complex and intricate features from data. Secondly, feature-based approaches

require domain expertise and a great amount of engineering skill to design features.

Since DL-based methods automatically learn useful representations from raw data,

these models saves significant effort on NER feature design. Lastly, we can use possi-

bly complex NER systems since models can be trained in an end-to-end paradigm

11



2. Background

Figure 2.2: DL-based NER general architecture. We also provide an example of the input and the
output of the system, using the same sentence as in Figure 2.1. NEs are highlighted with different
colours.

by gradient descent. The DL-based NER model general architecture described in

[15] comprises three modules, as shown in Figure 2.2. Distributed representation

for input represents words in vectors where each dimension represents a feature.

The most widely used distributed representations are word-level representations

(typically a pre-trained language model), character-level representations (extracted

using CNN-based or RNN-based architectures) and hybrid representations, where

additional information (e.g. linguistic dependencies or lexical similarity) is incorpo-

rated. Context encoder captures the context dependencies considering the full input

sequence. Several architectures are widely used, comprising Convolutional Neural

Networks (CNN), Recurrent Neural Networks (RNN), Recursive Neural Networks

and Neural Language Models (NLM). Transformer-based architectures, such as

pre-trained language model embeddings using Transformer, are faster and achieve

more effective performances. Since the success of a NER system heavily depends

on its input representation integrating or fine-tuning pre-trained language model

embeddings is becoming a new paradigm for neural NER. Tag Decoder predicts

tags for each token in the input sentence based on the context representation of

the previous module. Each token is predicted with a tag indicating the position of

the token with respect to the considered named entities. Such tags are B-(begin),

I-(inside), E-(end), S-(singleton) or O-(outside). Four architectures are available

to carry out the task: Multi-Layer Perceptron (MLP) + Softmax, CRF, RNN and

12
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Pointer Networks. The most common choice for tag decoder is CRF, that is a random

field globally conditioned on the observed sequence, which achieves state-of-the-art

performance.

On the whole, what architecture to choose is data and domain task dependent.

As far as data is concerned, end users could consider training models with RNNs

from scratch or fine-tuning contextualized language models when a large dataset is

available. Otherwise, unsupervised methods, i.e. transfer learning, is preferable. On

the other hand, many pre-trained off-the-shelf models are available for newswires

domain whereas for specific domains, for example medical NER, fine-tuning general-

purpose contextualized language models with domain-specific data works effectively.

Entity Linking

Entity Linking is the task of associating a mention in text with its representation in an

ontology or KB [7]. This task is employed in many different tasks such as knowledge

base population, question answering and information integration. For the sake of

our work, if we develop an RE system to extend a database, it is required to have

a mapping between entities detected and the entries in a database before the new

relations are inserted [18]. The main challenges for entity linking are name variations

and entity ambiguity. Name variations refers to the different forms an entity could

appear in a text. For example, "University of Padua" could also be mentioned as

its abbreviation, i.e. "unipd", or the named entity "New York" could be referred to

as "Big Apple". It is important that an entity linking system identifies the correct

mapping for mentions of various forms. On the other hand, the same mention could

represent different named entities. For example, the named entity "Apple" could refer

to the American technology company founded by Steve Jobs or to a fruit. Therefore,

an entity linking system must be able to disambiguate the mentions in a text and

identify the correct mapping. For this reason, this task is also called Named Entity

Disambiguation (NED). Typically, the task of entity linking is preceded by a NER

module, where we identify the named entities in the text.

We use the task definition and general architecture of an entity linking system

presented in [18]. Given a KB containing a set of entries E and a natural language text

13



2. Background

Figure 2.3: Example of a typical Entity Linking system. We highlighted in yellow the considered
entity mention in the input text and we provide the example computation of the three modules for the
entity mention "Michael Jordan". In the last module we output the name of the corresponding entity in
the KB.

where we identified a set of entity mentions M, the goal of an entity linking system

is to return for each mention 𝑚 ∈ 𝑀 the corresponding entity 𝑒 ∈ 𝐸 in the KB. If

the knowledge base does not contain the entity 𝑒 for mention 𝑚 we usually label the

mention as NIL, i.e. unlinkable mentions. A typical entity linking system consist

of three modules: Candidate Entity Generation, Candidate Entity Ranking and

Unlinkable Mention Prediction. An example of an entity linking system architecture

is shown in Figure 2.3.

In the Candidate Entity Generation module, for each mention the entity linking

system aims to return a set 𝐸𝑚 which contains all possible entities that the mention

could refer to. To achieve this goal, approaches are mainly based on string comparison

between the text mention and the name of the entity inside the KB of reference.

The main approach employs Name dictionary based techniques, where we build an

offline name dictionary 𝐷 comprising various names and their possible mappings.

Specifically, dictionary D is a <key, value> mapping where for each 𝑘 ∈ key the value

column is a set of entities in the reference KB that could be mentioned under the name

k. The dictionary can be constructed via features from Wikipedia or exploiting query

click logs and web documents to find entity synonyms. To match entity mentions

against the dictionary keys, we can use exact matching or some common rules. For

14
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example, we can check if the entity name share several common words with the

mention or if it is contained or contains the mention. For each entity mention 𝑚 ∈ 𝑀,

if 𝑚 matches any key in the dictionary, either by exact match or by some rules, the

entities contained in the value set corresponding to the matched key are added to

the candidate entity set 𝐸𝑚 . Entity mentions could be acronyms or part of their full

name hence one category of entity linking systems use some expansion techniques to

identify expanded variations. Such techniques include heuristic-base methods or

supervised learning models. Finally, candidates can be retrieved by exploiting web

search engines, such as Google, hence leveraging the whole web information.

The Candidate Entity Ranking module ranks the entities in Em based on the most

likely link for mention m, hence the first entity after re-ranking will be the most

likely entity for mention m. Techniques employed for this task can be categorized

as supervised or unsupervised ranking. The first set of methods trains models using

annotated data and learns how to map the proper entity to each mention. We recall

annotated training sets are usually manually curated hence it can problematic to

provide a training set big enough to train an accurate model. Models based on

supervised learning usually employ Binary Classification methods, Learning To

Rank, Probabilistic models, Graph Based approaches or model combination. On the

other hand, unsupervised methods do not need annotated data therefore they can be

less labor-intensive and costly. Such methods comprise Vector Space Models (VSM)

and Information Retrieval (IR) based models. Candidate Entity Ranking methods can

also be categorized based on whether ranking is performed indipendently for each

mention (i.e., Indipendent Ranking), if it considers the whole document for ranking

each mention (i.e., Collective Ranking) or if it takes into account other documents

(i.e., Collaborative Ranking). Ranking is usually based on some features that can be

extracted from the mention itself or from the context in which the mention appears.

In the Unlinkable Mention Prediction module we validate whether the top-ranked

entity identified in the previous step is the target entity. If so, we return the entity

otherwise we return NIL. Many methods assume that the KB contains all the mappings

hence they ignore the unlinkable entity problem. In this case, if the candidate set

Em contains some elements the first element is returned as the linked entity without
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any further checks, otherwise we return NIL. On the contrary, other methods predict

the unlinkable entity mention through a NIL threshold. In this case each entity is

assigned a score and if such score is lower than the threshold 𝜏, which can be learned

from training data, then the entity is not assigned to the mention and we return

NIL. There are other supervised models that predict the unlinkable entity mention

treating it as a binary classification problem. Some other Entity Linking systems,

instead, incorporate the unlinkable mention prediction in the previous module.

As far as evaluation is concerned, we use the standard performance measures

such as Precision, Recall, Accuracy and F1-score. In particular, the Precision considers

all entity mentions that are linked by the system and determines how many of them

are correct. On the other hand, Recall takes into account all entity mentions that

should be linked and counts how many of them are correctly linked by the system.

The two measures are used together to determine the F1-score, which we already

defined when we described the NER task. To sum up, there are many methods for

each module used in the Entity Linking task however it is still unclear which one

works best. This is due to the fact that Entity Linking systems performance highly

depends on the dataset and domain we are considering.

2.2 Relation Extraction

In this section we provide a brief description of RE in general and the main approaches

used to achieve this task, with particular attention to Deep Neural Network (DNN)

methods such as Distant Supervision.

As we already mentioned, RE aims to extract relational triples from natural

language text so that we can convert unstructured data, such as text, into structured

data, e.g. tables or RDF triples. This task allows to automatically populate KBs thus

avoiding manual curation that can be time-consuming and laborious when dealing

with large amount of data. More precisely, we extract two entities from a sentence

that are linked together by a relation, that belongs to a set of predefined relations.

For example if we consider the sentence "John Smith founded HCC S.P.A.", a RE model

identifies the entities John Smith and HCC S.P.A and the relation founded_by from a
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pre-defined set. Therefore, the model will output the triple (HCC S.PA., John Smith,

founded_by). It is clear that to extract this type of information from natural language

we need to recognize the entities mentioned in the text and check if their type matches

the relation of interest requirements. In fact, considering the previous example, the

relation founded_by is expressed between an entity of type Person (PER) and one of

type Company/Organization (ORG). Such subtask can be achieved by means of some

NER methods together with Entity Linking, that were both described in section 2.1.

RE can be used in a large number of tasks, for example in Question Answering (QA)

or Text Mining, and in a variety of domains including finance, biology and medicine

[8]. We will provide a detailed description of RE in the biomedical domain, namely

BioRE, in Section 2.3. There are five main approaches for RE: hand-built patterns,

semi-supervised learning, unsupervised learning, supervised learning and distant

supervision.

The first technique that was largely used in 60s and 70s consists on writing patterns

that express the relation we are trying to identify. For example, we can search over a

large corpus for occurrences of the pattern "X was founded by Y" for relation founded_by

and extract the (𝑋,𝑌) pairs from sentences that match the pattern. If we consider

sentence "SpaceX was founded by Elon Musk.", the (𝑋,𝑌) pair we retrieve is (SpaceX,

Elon Musk). Instead of using basic patterns like the one above, one can define patterns

as Regular Expressions (regex) to integrate minor variations in the sentence text.

DEXTER, the system we are reproducing in this work, is based on Semgrex Patterns

that are patterns for matching nodes and edges of a dependency graph. For this

reason, the system we are reproducing falls into the rule-based category. The problem

with this approach is that patterns are very specific and do not generalize well, hence

this methods results in having high precision but low recall.

After the advent of Machine Learning (ML), RE task has been reformulated as

a classification task so that Supervised Learning could be employed through some

standard techniques that, unfortunately, require lots of labelled data. In order to

mitigate this issue, Semi-Supervised methods and distant supervision have been used,

since they require smaller labelled datasets. Another set of methods that do not

require any labelled data exploits Unsupervised Learning, where RE is usually treated
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Figure 2.4: Semi-Supervised Relation Extraction using bootstrapping. We start by taking some seed
tuples and iterate over the blocks depicted in the figure. At each iteration the new extracted tuples are
added to the database of reference.

as a clustering problem.

In Semi-Supervised methods the main idea is to find some seed tuples with high

confidence and use a bootstrapping algorithm to extract patterns with the above-

mentioned tuples from an unlabeled corpus. We show how semi-supervised RE

works in Figure 2.4. In particular, bootstrapping algorithms take the entities in

the seed tuple and find sentences that comprise both entities. Then, from all such

sentences we extract the context to learn general patterns that can be used to search

for additional tuples [7]. Some models employing bootstrapping techniques are

DIPRE (Dual Iterative Pattern Relation Expansion) [19], that retrieves (author, book)

pairs, Snowball [20], KnowItAll [21] and TextRunner [22]. Contrarily to supervised

ML methods, these methods do not require large datasets of labelled data that can be

expensive to obtain. However, they are sensitive to the original set of seeds, in fact

we can only identify relations that are present in the seeds and such models usually

have lots of parameters to be tuned.

As we mentioned before, unsupervised methods do not need any labelled data nor

any list of relation. This task is often referred to as Open Information Extraction (Open

IE). A model based on this approach was proposed in [23] and it was based on the

assumption that context information of different entities pair conveying the same

relation are similar. Therefore, in this model authors extracted an entity pair and its

context and then cluster entity pairs according to the context. Finally, they labelled

18



Relation Extraction

each cluster of entity pairs with the suited relation type. Another model proposed in

2011 is ReVerb [24], where relations are extracted by checking each verb in the sentence

and finding noun phrases that satisfy some lexical constraints based on a dictionary

𝐷, which is populated during the offline run of the algorithm. Then, a classifier

assigns a confidence value to each relation triples retrieved in the previous steps. This

confidence classifier is trained by hand labelling 1000 random web sentences. The

advantage of methods employing unsupervised techniques is that they can handle

large number of relations without pre-define them. However, most of these models

focus on relations conveyed by verbs, hence we lose nominal relations. In addition,

the clustering results generated by such models are generally broad [8].

Evaluating Semi-Supervised and Unsupervised methods is not easy since there

is no ground truth comprising labelled data. For these methods we generally

approximate precision by drawing a random sample of relations from the output and

manually check the accuracy of each extracted relation [8].

Supervised methods consider RE as a multi-class classification problem. These

models have much better performance, especially on recall, but they rely on manually

annotated data. Supervised approaches can be divided into two types: feature

based and kernel based. The former learns how to extract relations based on some

syntactic features, including the types of the two entities and the path in the parse tree

containing the two entities, and semantic features, that include the path between the

two entities in the dependency parse [25]. On the other hand, kernel approaches are

based on the definition of a kernel function that computes the similarity score between

the two entities. Feature-based methods performances depend on the defined feature

set hence without a proper feature selection it is difficult to improve a model. On the

hand, kernel-based approaches heavily depends on the performance of the defined

kernel function. Supervised RE can be evaluated as any other ML task exploiting

Supervised Learning, i.e. computing performance measures on the test set.

Distant Supervision is another supervised method that does not require a lot

of annotated data. The main idea is to use relational triples from existing KBs to

automatically extract relations from the corpus. In other words, when a sentence and

the KB of reference refer to the same entity pair, this approach marks the two entities
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in the sentence with the same relation found in the KB. For example, if a sentence

contains the entities Steve Jobs and Apple Inc. and in the KB we have a triple (Steve

Jobs, Apple Inc., founded_by), then the system will output the relation founded_by for

the two entities. Distant Supervision can be used to produce a larger training dataset

thus it is usually used before training a learning algorithm. This approach overcome

the problem of having a labelled dataset large enough to train an effective model,

however it suffers from two major drawbacks. Firstly, not all sentences where the

same entity pair appears will convey the same relation. As a consequence, we inject

noisy examples in the dataset we are building hence it is more difficult to train a

learning algorithm on this data. However, this disadvantage is outweighed by the

benefit of having much more data, hence the model still performs better than other

approaches. Lastly, it can only be used to extend existing KBs because it relies on

existing triples hence this strategy works only for relations for which there is at least

a triple in the KB.

Relation Extraction using Deep Neural Networks (DNNs)

Recently, DNNs have been employed in RE resulting in improving the performance

of the overall task. In fact, DNN-based models can automatically learn features

from text instead of manually design them and they can also achieve better results

with fewer features. We restrict our description to DNN-based Supervised RE and

DNN-based Distant Supervision RE.

DNN-based RE framework usually include four components: data sets, sentence

representation, feature extraction and classifier. Firstly, supervised methods uses

manually annotated data that have high accuracy and low noise but are smaller in

size. On the other hand, distant supervision employ data created by aligning entities

detected in the corpus with a KB of reference. In this case the data set we use has low

accuracy, high noise but it is bigger in size and can be applied to different domains.

Overall, in RE tasks constructing training triples takes a crucial part. In any NLP task,

sentence representation is important to obtain good results. In particular, words and

sentences are usually represented as vectors that can be sparse or dense based on the

method we use to obtain them. In DNN-based RE models, sentence representation
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comprises word representations that are the combination of word vectors, that can

be obtained using methods like word2vec or GloVe, and positional embeddings,

that express the positional relation between words. The feature extraction component

handles the extraction of high-level features from the sentence representation. In fact,

with the annotated data sets, these methods can train a feature extractor to extract

useful information that can then be used to detect relations among entities. Finally,

using the features extracted by the previous components and a set of predefined

relations, the classifier is trained to output relations between entity pairs.

Supervised methods employing DNNs can be divide into two sub-categories based

on the evolution of the model structure: structure oriented and semantic oriented.

The former improves the feature extraction component by changing the structure of

the model while the latter improves the semantic representation of text by focusing

on the internal association of text [8]. Several structures can be employed to design

a DNN-based supervised model, comprising CNNs, RNNs or Long Short-Term

Memory (LSTM) and mix-structures. CNN-based models have achieved excellent

results. About structure-oriented architectures, the first RE model based on CNN

was proposed by Liu et al. in [26], where the sentence was split into a series of

word vectors that was fed to a CNN and a softmax output layer to output the

classification probability. To improve the feature selection, later models introduced

multiple filters and max-pooling modules for CNN while PE method was employed

to extract information with fewer NLP toolkits. CNN-based models use filters yet

fixed size filter CNNs ignore global features and focus only on the local ones. For

this reason, multiple window size filter CNNs were used in later architectures. If we

consider semantic oriented models, most architectures employ attention mechanism,

in particular Multi-Level Attention CNNs considers both the semantic information

at the word level and sentence level and allows for end-to-end training on task-

specific data. However, CNN-based methods rarely consider global features and

time sequence information, especially for long-distance dependency between entity

pairs. RNN\LSTM models can alleviate these issues. In fact, to learn relations

within a long text one can use a bi-directional RNN architecture that combine the

output of each hidden layer and represent features at the sentence level. Then,
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at the end of the computation, the model does a max-pooling operation to pick

up some trigger word features for prediction. The problem with RNN is that it

suffers from gradient explosion thus LSTM models were proposed to solve this

problem by using the gate mechanism. Using bi-directional long short-term memory

networks (BLSTM) to obtain lexical features and using word embedding as input

features was enough to achieve state-of-the art results. Overall, these methods

improved the performance yet they still have some issues. In fact, they introduced a

large number of external artificial features and they have no effective feature filter

mechanism. As far as semantic oriented architectures are concerned, an effective

model employs the attention mechanism in BLSTM in order to give more weight

to the important features extracted by the model. In this case, some models use

random weights for features while others consider prior knowledge to determine

such weights. Finally, there are several works where these models were combined and

they perform better than any other single model. For structure-oriented architectures

models were simply combined, e.g. CNN+RNN or BLSTM-CNN, while for semantic-

oriented structures models were combined together using attention mechanism. To

conclude, both structures improve the RE task in different aspects. In fact, structure-

oriented architectures improve feature extraction while semantic-oriented focus on

the semantic representation of the sentence. Overall, semantic-oriented models look

more effective than structure-oriented ones.

The main obstacle of this type of methods lies on their need for annotated training

corpora, that are often insufficient. To solve this problem, distant supervision was

employed in RE tasks. As we already mentioned, distant supervision is based on

the assumption that if two entities are linked together with a certain relation in the

KB of reference then whenever we found such entities in a sentence we assume

they express the same relation. Since this assumption is too strong and results in

adding a lot of noise in the training data two more assumptions were added. The

first assumption leads to more accurate results and state that among all sentences

that mention the two entities of interest, at least one of them conveys the relation

between the two entities we found in the KB. The other assumption, instead, considers

more sentence features and affirms that we can found a relation either explicitly or
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implicitly from all sentences that mention the two considered entities. Based on

these assumptions, research on distant supervision methods follows two research

directions. The first one are Encoder-based methods where we focus on the sentence

encoder and we aim to optimize the RE model and performance. The other one

instead focus on de-noise algorithms to improve the quality of the data sets. This last

direction can be divided into three sub-categories where we focus on different aspect

of the task. The first are representation-based methods that make use of features in

the bag of sentences mentioning the same pair of entities both at word-level and

sentence-level. In this case we focus on enhancing the representation of the input

data. The second sub-category comprises knowledge-based methods where we introduce

external knowledge to get additional information about the pair of entities. Lastly,

plug-and-play-based methods were developed to directly construct a component to

reduce the noise of datasets. Overall, distant supervision achieves excellent results in

RE tasks, however the problem of noisy data still remains.

In conclusion, both supervised and distant supervision methods improved the

performance of RE tasks since they are both beneficial to RE in different aspects.

In fact, supervised methods are better suited for tasks related to specific domains

while if we want to develop a general-domain RE model distant supervision works

better. Nevertheless, there are still many open challenges of RE mainly concerning

transfer learning, relationship framework, overlapped multiple relations, relationship

reasoning and different presentation of data sets.

2.3 Biomedical Relation Extraction

RE has been widely applied to the biomedical domain since traditional methods, i.e.

human annotations, struggle to keep up with the exponential growth of biomedical

literature. In fact, RE can be applied in several tasks related to the medical domain

such as extracting drug-gene relationships, Gene-Disease Associations (GDA), drug-

effect relations etc. As we said before, RE aims to extract relations from unstructured

text so that information can then be transformed into a structured form and can be

accessed more easily. This can be very useful in many medical applications. For
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example, in the radiology oncology domain, extracting relevant information about

pre-exisiting conditions or clinical history embedded in clinical notes as free text

can help physicians provide better treatment and speed up diagnosis [27]. As we

already discussed in previous sections, NER plays an important role in RE tasks

hence significant research on Clinical NER has been carried out in the past years.

The goal here is to extract entities from clinical texts. Some terms of interest can

be diseases, location, medical procedures, genes or drugs. We now provide a brief

description of the main methods used to solve BioRE tasks. These methods are very

specific to the particular dataset and task we are trying to solve hence it is difficult to

assess which method works best since most of them do not generalize well.

Rule-Based models extract relations based on some hand-written rules or patterns.

There are several works employ this type of technique however it is not very used

nowadays since they have been outperformed by ML-based models. Segura-Bedmar

et al. (2011) [28] developed a linguistic hybrid rule-based method to extract drug-

disease interaction from clinical texts however the model did not perform particularly

well and suffers from a very low recall. Li et al. (2015) [29] instead developed a

system to identify medical discrepancies in drugs by matching drug names with

their attributes and achieved some good results. Finally, Mahendran et al. (2021) [30]

developed a system to perform adverse drug event extraction that finds the adverse

drug effects and was able to achieve good performance in terms of macro-average

F1-score. Overall, rule-base approaches performance highly depends on how the

rules are defined.

Supervised Learning has been widely used in RE as it can achieve excellent results.

These methods solve RE as a classification problem and they learn some features from

annotated training data to predict whether there is a relation between two entities

or not. As we discussed in Section 2.2, these methods need training data annotated

by domain experts and this is a big limitation. We can divide these methods into

traditional ML and DL-based models and Language Model (LM)-based methods.

Traditional models heavily depend on well-defined features hence they depend on

the feature extraction process. These methods employ algorithms such as Support

Vector Machines (SVM), Linear Regression, K-Nearest Neighbour (KNN), node2vec
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or they may employ DL architectures like CNN, RNN or autoencoders. SVM-based

approach was first used by Swampillai et al. (2011) [31] that extracted relations

between entities in different sentences and obtained good results. Sahu et al. (2016)

[32] instead developed a decent system using domain-invariant CNN on multiple

features with variuos filter length combination. Finally, Kim et al. (2018) [33] built a

system to detect relations in the type2 diabetes pathway by using node2vec to learn

the features from texts in the networks and outperformed previous works in the same

pathway [27]. Overall, ML or DL-based methods have very different performance

based on the training data hence there is no model that works best for BioRE tasks in

general.

LM-Based approaches have been used in a large number of NLP tasks and they

achieve state-of-the-art results. Language models represent features using contextual

information of the input sentence therefore RE models based on this technique

add a classifier on top of the language model to predict the probability of the

relation between a pair of entities. Bidirectional Encoder Representations from

Transformers (BERT) [34] introduced by Google in 2019 is the most popular language

model by far. Language Models are usually pre-trained and one can adapt them

to the specific task by means of fine-tuning. For biomedical clinical texts, there are

two BERT-based models trained on domain-specific data, namely BioBERT [35] and

ClinicalBERT [36]. The main difference between the two models is that BioBERT is

trained on biomedical PubMed corpus while ClinicalBERT is trained on a biomedical

corpus and on clinical notes and discharge summaries. Overall, language models

achieve better performances than any other models on clinical RE tasks [27]. Wei et

al. (2020) [37] investigated how to apply BERT to clinical RE tasks and established

that fine-tuning BERT outperformed previous state-of-the-art RE systems in two

shared tasks, namely 2018 n2c2 data set and 2010 i2b2 data set. BERT, BioBERT

and ClinicalBERT were also used by Mahendran et al. (2021) [30] for extracting

adverse drug events. The performance of such models were compared to a rule-based

approach based on co-location information and a deep learning approach utilizing

CNNs confirming that contextualized LM-based models outperform all other models

and obtain state-of-the-art performances.
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Unsupervised Learning allows for developing models without the need of annotated

data, hence this technique is less expensive and is preferred in some cases. In clinical

RE, unsupervised-based approaches usually view RE as a clustering problem however

this is the least popular approach since without proper annotations this task is more

ambiguous which results in decreased accuracy [27]. Two works using unsupervised

learning to extract relations from biomedical texts were proposed by Quan et al. in

2014 [38] and Alicante et al. in 2016 [39]. The former used a clustering algorithm

to extract protein-protein interactions and gene-suicide associations while the latter

used k-means and applied hierarchical clustering to solve BioRE tasks from Italian

clinical records.

To sum up, clinical NER tends to employ DL techniques and it has shown brilliant

results. On the other, clinical RE performance depends on the specific task and

on the data available however the main research direction is focused on ML and

DL approaches and using LMs. Very little research is using unsupervised learning

techniques due to the uncertainty in the results generated by such models. The main

issue about ML and DL models is due to the limited data available hence LMs like

BERT is vastly used and achieve the best results in extracting relations from clinical

texts.

Datasets

As we just said, the main issue related to employ ML and DL techniques in BioRE

tasks is the need of large amount of annotated data to use to train the models.

Therefore, datasets play a crucial role in developing BioRE models. In this section we

present two large-scale datasets containing annotations of GDAs, namely CoMAGC

[40] and TBGA [6].

CoMAGC is an hand-labelled corpus proposed by Lee et al. (2013) [40] for the

development of automated systems to extract gene-cancer relations. The corpus

consists of 821 annotation units from 408 PubMed abstracts limited to prostate cancer,

breast cancer and ovarian cancer. In particular, there are 310 annotations related to

prostate cancer, 255 related to breast cancer and 256 to ovarian cancer. Each annotation

unit comprises four semantically orthogonal concepts, this means that the value of a
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concept can be identified not knowing the values of the other concepts. Such values

express information about a gene’s expression level change in a cell or tissue which is

followed by changes in the cancerous properties of the cell. The first concept is Change

in Gene Expression (CGE) which express whether the level of a gene is increased

or decreased. Then, Change in Cell State (CCS) is extracted to capture the way the

cell changes together with the gene level change. This concept takes values like

’normal->cancer’, ’cancer->normal’ and vice versa or ’normal->normal’, ’cancer->cancer’.

Proposition Type (PT) captures whether the causality between gene expression change

and cell property change is claimed in the sentence (namely ’causality’) or not (value

’observation’). Finally, Initial Gene Expression Level (IGE) convey the initial expression

level of a gene before the change in its expression level. This concept takes value like

’up-regulated’, etc., meaning that the considered gene initial expression is up-regulated

with respect to its level in a non-cancerous cell, hence we are assuming the expression

level of a gene in a normal cell is maintained somewhere. These four concepts allow to

understand how a gene changes, how a cancer changes and the causality between the

gene and the cancer. In addition, genes are classified into three classes by means of

10 inference rules. These classes are: oncogene, when the gene strengthens cancerous

properties of cells, tumor suppressor gene, when it weakens cancerous properties and

biomarker, when it shows an altered level in cancerous cells yet it is not identified as

either of the above classes. As we said before, CoMAGC is an hand-labelled corpus

and it only comprises gene-cancer associations related to prostate, breast and ovarian

cancers. Moreover, hand-labelling data is an expensive and time-consuming task

hence data sets constructed with this approach are limited in size.

To address these limitations, Marchesin and Silvello (2022) [6] introduced TBGA,

a large-scale, semi-automatically annotated data set for GDA extraction based on

DisGeNET [2]. The above-mentioned data set has been generated from more than

700K publications and consists of over 200K instances and 100K gene-disease pairs,

therefore it is two orders of magnitude larger than current available data sets for GDA

extraction such as CoMAGC [40]. Each instance comprises information about the

sentence from which the GDA was extracted, the corresponding GDA and information

about it. On the other hand, differently from fully distantly-supervised BioRE data
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sets, e.g., BioRel [41], TBGA contains expert-curated data hence it represents a more

accurate benchmark for BioRE. TBGA was created following four steps, namely

data acquisition, data cleaning, distant supervision and data set generation. In the

data acquisition phase, authors acquired data from DisGeNET [2], that is a database

that collects data on genotype-phenotype relationships from several resources. The

version of DisGeNET used in [6] comprises 1,134,942 GDAs involving 21,671 genes

and 30,170 diseases. Then, a data cleaning step is performed where data acquired

from DisGeNET are restricted and cleaned to better suite TBGA’s objective. In the

third step, authors used Distant Supervision to create false GDAs that are required

to effectively train RE models. Finally, the set of true and false instances obtained

in the previous steps are used to generate TBGA. The creation of the data set is

performed by transforming DisGeNET association types into TBGA relations through

a normalization process. Then true instances are divided into training, validation

and test sets based on some resource category defined in [6], e.g. validation and

test sets only comprise curated data. Then the number of true instances among the

data set relations is balanced and a large number of false instances are included into

training, validation and test sets to make the data set sparse. Finally, GDAs that occur

both in the training and validation or test sets are removed from the training set to

avoid to introduce bias. Overall, TBGA has been evaluated on state-of-the-art models

for GDA extraction and it proved to be a well-suited data set for GDAs extraction.

In this chapter we presented the task of RE together with some sub-tasks that are

required to develop an effective model. We first provided an overview of NER and

Entity Linking tasks where we concluded that there is no best model that works for

every task since the choice of the model depends on the specific domain. However,

DL techniques have shown promising results, especially in NER. About RE in general,

we provided an overview of the task in general and discussed the main methods that

have been employed to solve it. Overall, we concluded that supervised and distant

supervision methods based on DNNs are beneficial to RE yet the main issue lies in

the need for annotated data. Finally, we described the task of BioRE, providing some

related work based on different techniques. Overall, we discovered unsupervised

learning is not well suited for the task and research is now focusing on DL and LMs.
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To conclude the chapter, we highlighted the need for challenging datasets for RE

tasks and described two datasets that are specifically for GDA extraction, that is the

task the system we are reproducing, i.e. DEXTER, solves.
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Chapter 3

Original System

In this chapter we introduce Disease-Expression Relation Extraction from Text

(DEXTER), a text-mining tool that extract information on gene and miroRNA ex-

pression in diseases from biomedical literature [9]. This work has been published in

Database: The Journal of Biological Databases and Curation and has attracted 11 citations

so far. To the best of our knowledge it is the most recent system for RE on Gene-Cancer

Associations. This chapter is structured as follows: section 3.1 presents the system

architecture and its objectives, section 3.2 provides a detailed description of patterns

used for extracting the relations and section 3.3 discusses the system performance

reported in the original paper.

3.1 System Architecture

DEXTER is a system that extract GDA starting from biomedical abstracts[9]. This

work comes from the need to develop automated tools to identify GDAs since most

expression databases include human annotated data, which are expensive and cannot

scale to the huge amount of data available in scientific literature. Such resources

comprise DisGeNET [2], miR2Disease [3] and BioXpress [4, 5]. DisGeNET is one of

the largest platforms of human gene-disease associations currently available, where

data comes from different types of source databases containing both expert curated

resources and results from text mining tools. On the other hand, miR2Disease is

completely human curated and it aims to provide microRNA-disease relationships.
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The original paper mainly focuses on BioXpress, in fact one of the objective is to

extend the above-mentioned database. BioXpress contains only genes associated

with cancer and reports differential expression of genes manually extracted from

publications. For these reasons, BioXpress adds some additional constraint on data

that must be considered hence the output of the system must be filtered.

In the original paper authors focus only on a particular set of sentences that usually

fit into two broad categories called TypeA and TypeB sentences. TypeA sentences

are typically comparative, i.e. a gene’s expression is typically contrasted between

two different samples or conditions. Such sentences are common in biomedical

literature because experiments usually compare two different scenarios. In Example

3.1, in sentence #1 Nucleolin expression is compared between non-small cell lung

carcinoma (NSCLC) tissues and normal lung tissues. This sentence is of interest to

BioXpress since the comparison is between tumor and non-tumor-tissues, however

such sentences are only a subset of TypeA. In fact, sentence #2 from Example 3.1 is of

TypeA but miR-210 expression is compared between two stages of cancer.

Example 3.1:

#1 Nucleolin expression was higher in NSCLC tissues than adjacent
normal lung tissues. (TypeA sentence)

#2 Higher miR-210 expression was found in metastatic tumors compared
to primary tumors. (TypeA sentence)

On the other hand, in TypeB sentences there is no explicit comparison. As we

can see in Example 3.2, TypeB sentences still provide the expression level of a gene

(miR-630), in a particular sample (NSCLC tissues and cell lines), but such expression

is not compared to another scenario. We can assess from the expression level, i.e.

down-regulated, that there is some kind of implicit comparison between samples

however we have no information about where it is compared to normal tissues or a

different stage of cancer.

Example 3.2: Our results showed that miR-630 was significantly down-
regulated in NSCLC tissues and cell lines. (TypeB sentence)
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Figure 3.1: DEXTER modules defined in the original paper. Arrows indicates the direction of the
computation, providing an overview of the input of each block.

Among biomedical literature regarding gene expression in diseases one can also

find a third category called TypeC sentences. In such sentences gene’s expression

level and related diseases are still reported, however there is no explicit association

between the gene and the disease.

Example 3: Over-expression of C1GALT1 enhanced breast cancer cell
growth, migration and invasion in vitro as well as tumor growth in vivo.
(TypeC sentence)

In Example 3, we see that when C1GALT1 is over-expressed in breast cancer, cell-

growth is enhanced. However, there is no explicit association between the gene and

breast cancer, meaning there is no information about whether C1GALT1 is typically

over-expressed in breast cancer or not. DEXTER does not extract information from

such sentences.

DEXTER is an expert system whose rules are based on the syntactic structure of

TypeA and TypeB sentences. The system is developed mainly in Python and Java and

it is based on several modules as shown in Figure 3.1, each dealing with a different

part of the computation.

Text Processing Module

In the first step, the title and text of a medline abstract are tokenized and the abstract

is split into sentences. Such operations are performed using the Stanford CoreNLP
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toolkit [10]. CoreNLP enables users to derive linguistic annotations for text by running

a series of NLP annotators on the text, including token and sentence boundaries,

parts of speech, named entities, dependency and constituency parses. DEXTER

uses patterns based on lemmas, part-of-speech tags and dependencies among words

therefore using this library is essential for achieving the objectives of the original

paper. Subsequently, sentences that do not contain predefined trigger words are

discarded and not processed any further. Such terms are available in one of the two

supplementary files provided as appendixes of the original paper and they are used

to detect sentences that might contain expressions and comparative relations. The

extraction of relations is based on parsing, therefore authors in [9] use the Charniak-

Johnson parser [42, 43] with David McClosky’s adaptation to the biomedical domain

[44] to obtain syntactic parse trees for each sentence. Charniak-Johnson parser is a

statistical parser that returns the best parse tree for each sentence using a regularized

MaxEnt reranker on the 50-best parses. The list of best parses is computed using a

50-best parsing algorithm based on a coarse-to-fine parser, that relies on a probabilistic

generative model [42]. Parsers are usually trained and tested on a specific domain,

hence the performance of these systems degrades on sentences drawn from different

domains. David McClosky’s adaptation to the biomedical domain has been developed

to generalize parsers to a wide variety of domains and increase parsing accuracy [44].

Each tree is further converted into a Standard Dependency Graph (SDG) [11], that

provides a representation of grammatical relations between words in a sentence. This

operation can be performed using the Stanford conversion tool [10, 11] which convert

parse trees into syntactic dependency graphs. Additionally, during the conversion

we use the ’CCProcessed’ option which allows to properly treat sentences involving

conjunctions and relative clauses by collapsing and propagating dependencies.

Relation Extraction Module

In the RE module, semgrex patterns are used to extract relevant components contain-

ing the gene expressed, its level and the associated disease. In typeA sentences, the

RE module extracts the aspect being expressed, the level of expression of such aspect

and the entities being compared, that can be two samples of tissue or two disease
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states. In TypeB sentences the components extracted are basically the same, the only

difference is that there is only one entity where the gene/miRNA is expressed. A

different terminology is used in the original paper to identify TypeA and TypeB

components. In particular, in TypeA sentences the aspect being compared is reffered

to as Compared Aspect (CA), the scale of the comparison is called Scale Indicator (SI)

and the entities being compared are defined as Compared Entity (CE). On the other

hand, in TypeB sentences the expression level of an entity is called Level Indicator (LI),

the entity being expressed is defined as Expressed Aspect (EA) and the disease state

where the entity is found is reffered to as Expressed location (EL).

Patterns are written in Semgrex, which is also part of the Stanford NLP toolkit

and it allows the matching of nodes and edges in a dependency graph. In particular,

nodes in a SDG are the tokens corresponding to sentence words and patterns are

written to check a set of attributes for each token. Attributes comprise lemmas,

part-of-speech tags and dependency labels between the considered node and already-

matched nodes. A node is represented by a set of attributes contained by curly braces.

Attributes are either plain strings or regular expressions blocked off by "/". For

example, ’{word:/(higher|lower|high|low)/}’ match any node representing one of the

words between round brackets. On the other hand, relations are defined by a symbol

representing the type of relationship and a string or regular expression representing

the value of the relationship. Semgrex documentation1 provides a full list of node

relations and their symbols. The relation we will use the most is ’>’, for example ’A

>subj B’ indicates that node A is the head of a dependency labelled nsubj (i.e., nominal

subject), whose dependent is node B. We see an example of such patterns in Figure

3.2. To better understand how Semgrex patterns work, we apply the pattern in Figure

3.2 to the sentence in Example 3.3, whose dependencies are shown in Figure 3.3.

Example 3.3: TMEM48 expression level was higher in NSCLC tissues than
that in the adjacent normal tissues.

In this case we can see that node N0 is identified in token higher, node N1 is token level,

node N2 is token tissues and node N3 is token tissues. Semgrex patterns only return

1https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/
SemgrexPattern.html
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Figure 3.2: Example of a Semgrex pattern provided in a supplementary file of the original paper.

Figure 3.3: Example sentence dependencies obtained using https://corenlp.run/. We highlighted the
matched nodes with different colors.

head words hence we extract the spans corresponding to each component by following

all outgoing edges from the matched tokens. Consider our previous example, we

extract higher as Scale Indicator (SI), TMEM48 expression level as Compared Aspect

(CA), in NSCLC tissues as Compared Entity 1 (CE1) and than in the adjacent normal as

Compared Entity 2 (CE2). All comparison patterns used to extract the components

in the RE module are available in a supplementary file of the original paper. A full

description of the development of comparison patterns is available in section 3.2.

Entity Detection and Phrase Typing Module

The entity detection and phrase typing module takes sentences parsed by the text

processing module and determine if there are terms referring to entities of type

gene/miRNA, expression or disease/disease-sample. Pre-computed annotations

from PubTator [12], an automatic system providing annotations of biomedical

concepts, are employed to detect genes and diseases mentions in the abstracts. On the

other hand, microRNA mentions are detected using regular expressions based on the

naming convention described in miRBase [45]. Finally, to determine whether a phrase

is of type "Expression" its terms are checked against a list of expression triggers such

as "expression", "level", "over-expression", etc. The same strategy has been adopted

to detect disease-sample phrase type. In this case triggers can be "tissues", "cells",
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"patients", "samples", etc. A full list of such triggers is provided in the supplementary

files of the original paper.

Argument Filtering and Extraction Module

The argument filtering and extraction module consists of two main steps: verify if

the tokens matched by the RE module are of the right type, i.e. contains the required

mentions, and extract the relevant information such as the gene/miRNA expressed

and the associated disease. To perform both tasks this module takes the results

of the RE module and the mentions identified in the previous block as input. For

TypeA sentences, the compared aspect must be of type expression, while the two

compared entities need to be of type disease/disease-sample. Similarly, for typeB

sentences the expressed aspect and the expression level must be respectively of type

expression and disease/disease-sample. If the checks succeed, relevant information

are extracted from the results computed by the RE module. This includes the

expressed gene, its level and the associated disease. The gene/miRNA expressed is

extracted from the compared aspect/expressed aspect argument using the mentions

extracted by the entity detection and phrase typing module. If the system detects

a gene expression it also returns the corresponding NCBI Gene ID downloaded

from PubTator together with the gene mentions. Expression level information is

captured by the RE module in the scale indicator/level indicator argument, therefore

the level is normalized to high or low by matching the argument against a list of

triggers available in the supplementary files. Some examples of triggers for "high"

expression are "over-expressed", "increased", etc, while terms like "low", "decreased",

"down-regulated" refers to "low" expression level. Extracting the associated disease

requires some extra care. Disease mentions downloaded from PubTator are searched

in the compared entities/expression location components, however in some cases the

entities contain only generic diseases such as "tumor", "cancer" or "disease". In these

cases, the associated disease is extracted from the abstract by looking for disease

mentions in the title or in the first sentence. Alternatively the associated disease can

be inferred from sentences in the ’methods’ part of the abstract or from sentences

describing the experimental set-up. Such sentences are detected by checking if they
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contain certain "investigation triggers" such as "investigated", "examined", "analyzed",

etc or "analyzed triggers" such as "tested", "collected", "explored", etc. PubTator returns

disease mentions normalized to MEDIC IDs, however such IDs are mapped to DOIDs

to allow an easy integration in BioXpress.

Finally, we set a frame-to-reference flag to distinguish sentences containing

comparisons. This is needed to extend BioXpress database since it requires direct

comparison between a tumor tissue and a control sample. For TypeA sentences, we

set the flag to Control if the CEs contain words such as "control", "normal", "healthy",

"adjacent", etc. Otherwise we set it to Not-Control. For TypeB sentences instead, we

can still convey implicit comparison to control. In this case we check if the LI is

"over/under-expressed", "increased", "decreased", "elevated", "reduced", etc. In such

cases, we assume the comparison reference is to normal samples and we set the flag

to Control_Implicit, otherwise we set it to none.

3.2 Comparison Patterns

In order to extract GDAs, DEXTER uses Semgrex patterns based on syntactic depen-

dencies and part-of-speech tags. These patterns convey TypeA, i.e. Comparative, and

TypeB sentence structures.

TypeA Patterns

To develop patterns for TypeA sentences authors rely on a previous work [46] where

they identify structures in biomedical text. As we said before, comparison sentences

contains two Compared Entities (CE) and an aspect on which the entities are being

compared called Compared Aspect (CA). There are two more parts indicating the

comparison. One is a word that indicates the scale of the comparison, i.e. Scale

Indicator (SI) and the other separates the two compared entities and it is referred

to as Entity Separator (ES). Such word is usually a comparison word and can be

than, versus, vs. or compared. In Gupta et al. [46] authors categorized comparative

structures into four classes following Jindal and Liu [47]. They consider structures

belonging to two of these classes: Non-Equal Gradable and Equative structures. The
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first provides differential relations between two entities (i.e. higher, lower) while

the other indicates equal relation between the entities (i.e. X as high/low as Y). The

other two classes that are not considered are Superlative sentences, where one entity

is ranked over all the others (i.e. X is greater than all the others) and Non-Gradable

structures, where there is no explicit comparison between two entities. The main

idea behind the pattern construction is to identify SI and ES words and then extract

the other components using dependencies from them.

As we said above, in [46] authors build patterns for Non-Equal Gradable and

Equative sentences however, since DEXTER extracts differential relations, we only

focus on Non-Equal Gradable structures. In this class we find different syntactic

structure based on three part-of-speech (POS) tags of the SI: Comparative Adjective

(JJR), Comparative Adverb (RBR) and Verbs. Patterns provided as appendix of the

original paper are based on structures where the SI is either an adjective or a verb

hence we do not describe the comparative adverb case. The most frequent case

for SI is a comparative adjective (JJR) such as higher, lower etc. We can distinguish

two categories where the SI plays two different roles. In the first case the adjective

serves as the predicate of the comparison, therefore it involves copular structures

as shown in Figure 3.4a. Here the CA is typically the subject of the adjective hence

we follow the nsubj edge to return the head of the component. Then we use the

nmod edges to retrieve the two CEs. In particular, in Figure 3.4a the two edges are

nmod:in and nmod:than. We can also verify that the two extracted CEs are separated

by an ES, in Figure 3.4a such word is ’than’. In the second category the comparative

adjective modifies the CA, as shown in Figure 3.4b. In this case the Noun Phrase (NP)

containing the SI is connected to a verb that serves as predicate of the comparison. In

order to extract the CA we can use the amod edge from the SI or the nsubj or nsubjpass

edge from the verb. The CEs are extracted as in the previous category but here

they depend on the verb instead of the SI. In particular, in Figure 3.4b the CEs are

extracted following two edges nmod:in. Note that the same patterns can be apply

even if the SI is an adjective (JJ) instead of a comparative adjective.

On the other hand, the SI could be a verb such as "increased" or "decreased" hence

in this case the verb serves as the predicate of the comparison. We can distinguish
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Figure 3.4: Comparative Adjective example. For the sake of simplicity, we only display the mentioned
dependencies. We highlighted the components with different colors, in particular the SI is highlighted
in yellow, the CA in red and the two compared entities in green and blue.

Figure 3.5: Verb example (passive form). Dependencies and components are shown as in Figure 3.4.

two categories based on the voice of the verb (i.e. passive or active) where the CA is

extracted in two different ways. In fact, in the passive form we follow the nsubjpass

edge to the determine the CA while in the active form the CA is the direct object

of the verb. As far as CEs are concerned we extract them as we did before. We

provide an example of this structure in Figure 3.5. In this case, the SI is decreased and

we extract CA following the edge nsubjpass while the two entities are identified by

the edges nmod:in and advcl:compared_to. There are some cases in which a verb in

the past participle tense (VBN) can be used as an adjective that modifies a noun, as

shown in Example 3.4. We treat such cases as the second category of the Comparative

Adjectives case.
Example 3.4: Decreased miR-149 expression was observed in HCC tissues
compared to peritumoral tissues.

TypeB Patterns

In TypeB sentences the compared aspect is expressed in only one entity, hence there

is no comparison between two samples. As explained before, in this case we are

intrested in extracting the Expressed Aspect (EA) that is the entity being expressed,

the Expressed Location (EL) that is the sample were we found such expression and the

Level Indicator (LI) that is the level of expression. In this type of sentences the LI can
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Figure 3.6: TypeB example sentences. For the sake of simplicity, we only display the mentioned
dependencies. We highlighted the components with different colors, in particular LI is highlighted in
yellow, EA in red and the EL in green.

be either the main predicate of the sentence or it can be attached as a noun modifier.

We show an example of the first category in Figure 3.6a, where the main predicate

of the sentence is the verb down-regulated, which is the LI. In this case we extract

the EA, i.e. miR-489, by following the edge nsubjpass while the EL, which is in tumor

tissues, is retrieved using the edge nmod:in. On the other hand, Figure 3.6b illustrates

an example of the second category, where the LI increased is attached as a modifier

to the EA. In particular the LI depends on the EA and it can be extracted following

the edge amod. The main predicate is the verb observed therefore we extract the EA,

that is CDH5, by following the edge nsubjpass while the EL (i.e., in lung cancer cells) is

returned using the edge nmod:in that depends on the verb.

3.3 Results

The main objective of the development of DEXTER was to extend the BioXpress

Database. For this reason, the system was originally tested on results relevant to

BioXpress and on its ability to extract GDAs without any limitation. Both evaluations

compare DEXTER’s output with manually annotated data.

We recall that DEXTER output can extend BioXpress if the disease is cancer and

there is a comparison between cancer and normal samples. To evaluate the ability of

the system to extend the literature-based portion on BioXpress authors in [9] consider

three use cases and a large set of PubMed abstracts related to cancer.

All the results for the three use cases are reported in Table 3.1. In the first set

of abstract, authors focused on lung cancer in order to address the case in which a

41



3. Original System

Table 3.1
Results reported in the original paper for the three use cases. Note that we are filtering out results that
are not appropriate for BioXpress, hence we are only keeping entries where the disease is cancer and
there is a comparison with a control sample.

# of input abstracts # of abstracts extracted # of entries # of expressed genes

TypeA TypeB TypeA TypeB TypeA TypeB

Lung Cancer 88 431 742 1 448 985 2019 642 1383
GTs 27 516 90 180 106 236 42 73
microRNAs 28 067 1 650 3575 2 522 6 437 477 721

researcher wants to study a particular cancer. As a consequence, DEXTER was run on

88 431 abstracts retrieved from PubMed and only results where the extracted cancer

was one of the lung cancer DOIDs were kept. In total DEXTER extracted TypeA

information from 742 abstracts and TypeB information from 1 448 abstracts for a

total of 642 and 1 383 gene extracted respectively from TypeA and TypeB expressions.

The second use case focuses on a group of genes called glycosyltransferases (GT),

whose disfunction or deregulation is responsible for several diseases, including

different types of cancer. In this case DEXTER computed results for 27 516 abstracts.

After filtering out relations that are not relevant for BioXpress, the system returned

TypeA and TypeB information from 90 and 180 abstracts for a total of 45 genes in

34 cancers and 73 genes in 52 cancers respectively. Finally, the last use case regards

microRNA-related abstracts. In this case the number of total abstract was 28 067 and

DEXTER returned BioXpress-appropriate TypeA information from 1 650 abstract for

a total of 477 microRNAs in 114 cancers and TypeB information from 3 575 abstracts

comprising 721 microRNAs in 157 cancers.

Finally, in order to test the robustness and scalability of DEXTER, authors ran the

system on 1 750 928 abstracts extracted 24 416 unique gene-cancer types.

The second evaluation uses standard measures of precision and recall both on

BioXpress-appropriate data and on results obtained without the limitations imposed

by the database guidelines. For the first set of abstracts authors selected 100 abstracts

related to GTs and 100 abstracts related to microRNAs while for the second group

they randomly selecte 100 abstracts both among GTs and microRNA related abstracts.

Evaluation results are shown in Table 3.2. An entry is a true positive (TP) only when

every component of the output matched human annotations, hence when even if just
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Table 3.2
Results reported in the original paper for the second evaluation. Row BioXpress indicates results for
the output filtered according to BioXpress guidelines while row Unfiltered corresponds to DEXTER’s
output without any limitations.

True Positive False Positive False Negative Precision Recall F-score

BioXpress 77 5 15 93.90 83.69 88.51
Unfiltered 126 13 41 90.06 74.56 81.81

one component between expressed gene/microRNA, expression level and associated

disease is different from the ground-truth the entry is marked as False Negative (FN)

or False Positive (FP).

Overall the system achieved pretty good results with a precision of 94% in the

BioXpress-based data and 90% in the output without limitations. The other measures

are all above 80% except for the recall of the second set of abstract that is just 74.5%,

which is common in rule-based methods due to the variety of sentence structures.

Most errors are due to mis-parsing, errors in detecting the associated disease and

lack of patterns.
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SpaCy and Text Processing

In this chapter we describe the implementation of DEXTER, providing a description

of how we implemented the modules described in the previous chapter. We also

highlight the differences between our version and the original system and explain

the main differences. In particular, we focus on the input handling step and the Text

Processing module.

We recall that the original version of DEXTER is developed both in Java and Python

thus each block runs separately from the others. Our goal is to implement an end-to-

end system publicly available and easy to reproduce. For this reason, we decided

to develop DEXTER as an end-to-end application that takes as input biomedical

abstracts and returns relevant information on the expressed gene/microRNA and the

associated disease. We preserved the overall block architecture and we made some

changes in each block to enable a seamless integration of the different modules. Our

system is entirely developed in Python therefore it was not possible to use Stanford

CoreNLP toolkit [10] since it is written in Java. CoreNLP developers published

Stanza [48], that is a Python NLP package that includes an interface to the CoreNLP

Java package. However, we decided not to use it since, at the time of writing, it

does not offer support for dependency parsing. Instead, we use the SpaCy library

[13], which is an open-source library written in Python that provides some utility

functions to process text efficiently and effectively. Spacy was released in 2016

by Matthew Honnibal, who wanted to provide small companies an accurate and

fast pipeline for NLP tasks that is suitable for production use [14]. SpaCy comes
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Figure 4.1: SpaCy processing pipeline. SpaCy first tokenizes the text and then processes it in several
steps. Here we report the standard components included in the trained pipelines provided by the
library itself. The last block, identified with three dots, indicates custom components that can be
added by the users to the standard pipeline. This image is taken from SpaCy official website.

with some trained pipelines that provide support for several languages including

English, Italian, Chinese and many others. Since version 3.0, SpaCy pipelines are

transformer-based hence their accuracy has reached the current state-of-the-art in

parsing, tagging and NER.

We provide an overview of SpaCy processing pipeline in Figure 4.1. We used the

en_sci_sm trained pipeline provided by ScispaCy 1, that is a Python package contain-

ing SpaCy models for processing biomedical data. We can load the trained pipeline af-

ter downloading it using the function nlp_biore = spacy.load(en_sci_sm). Now,

to process some text and create the Doc object that we will later use to access all text

annotation we simply write doc = nlp_biore("Some random text!"). By simply

loading a trained pipeline we will only use the standard components provided by

Spacy, i.e. SpaCy tokenizer, parser, NER and tagger, but we can also add some custom

components to perform some tailored functions. We added a custom component

to the SpaCy pipeline to expand entity mentions using hand-craft rules which will

be useful when extracting information from the matched components. The details

of such component will be described in Section 4.2. Once we parsed the input text

with the SpaCy model, a Doc object is returned, which contains all annotated data we

computed by the SpaCy pipeline, such as dependencies, Part-Of-Speech tags (POS)

and all the tokens detected in each sentence. We will explain the Doc object in more

detail in Section 4.2, where we describe the Text Processing Module.

1https://allenai.github.io/scispacy/
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4.1 Input Handling

The original work does not share the source code, therefore to reproduce it we used the

description of the paper and the supplementary files containing comparison patterns

and trigger lists. Authors provide some data in BioXpress2 which corresponds to the

output of the original model. We downloaded from BioXpress website the three csv

files corresponding to the three use-cases the authors of the original paper used to

evaluate their system: differential expression glycosyltransferases in cancer, genes

in lung cancer and all microRNAs in cancer. We used such files as input to our

system therefore the implemented version of DEXTER takes as input a csv file whose

rows must contain the sentence text and the PMID of the paper where the sentence

was extracted. Our system processes each sentence separately and we do not split

abstracts into sentences as they did in the original work.

As we already mentioned, our implementation is based on the data available

in BioXpress. In total, we have 9636 entries and 14 columns. We use the ’PMID’

and ’Sentence’ columns as inputs to our system and we use columns ’geneMen’,

’ExpressionLevel’ and ’SentenceType’ to check the accuracy of our implementation. After

checking the input data we decided to add a pre-processing step where we clean each

sentence and remove some noise that may affect the dependency parsing performance.

In particular, the sentences may start with a number and a dash, which probably

indicates the number of the sentence in the abstract. Moreover, some sentences are

between quote marks and they may be in upper-case like ’RESULTS’, ’CONCLUSION’,

etc. If we do not clean sentences before parsing them with SpaCy we may introduce

noise resulting in poor parsing performance. For this reason, we first check if the

sentence is enclosed in quote marks and in the case we remove them. Then we use

some regular expressions (regex) to remove number and dash at the beginning of the

sentence and the words in upper-cases. We design two regexs to remove numbers

followed by a dash from the beginning of the sentence which we joined together with

the ’OR’ operator. In this way, we consider both sentences that begin with a number

and sentences where the number is followed by a dash. The former case matches

2https://hive.biochemistry.gwu.edu/bioxpress
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the regex r’ˆ\s*[0-9]+’, where the symbol ’ˆ’ indicates that we are matching the

beginning of the string and we check for one or more occurrences (i.e, symbol ’+’) of

any digit (i.e., [0-9]). Similarly, to check if there is also a dash we simply add the

symbol ’-’ at the end of the previous regex. In Example 4.2.(a) we highlighted the

substring that matched the above regex and we show the result of the sub operation

in Example 4.2.(b).

Example 4.2:

(a). 5-PAX5 expression level was significantly lower in NSCLC than that

in adjacent non-cancerous tissues (P = 0.0201).

(b). PAX5 expression level was significantly lower in NSCLC than that in

adjacent non-cancerous tissues (P = 0.0201).

After removing the number and the dash, if present, we check if the sentence starts

with some trigger words in upper-case that can be followed by a colon, as highlighted

in Example 4.3.

Example 4.3: CONCLUSIONS: We demonstrated that miR-30b/c was

down-regulated in NSCLC specimens compared with adjacent non-tumor

tissues.

Such words can be RESULTS, CONCLUSION, PURPOSE, etc. These words can also

be combined together, e.g. ’RESULTS AND CONCLUSION:’ or ’RESULTS/CONCLU-

SION’. We wrote a regex to match all cases and used the sub function as we did for

the numbers before. Finally, we discovered that some sentences contain p-values or

other statistical measures enclosed in square or round brackets. Such components

worsen the performance of our system since the dependency parser wrongly attach

dependencies to them. For this reason, we decided to remove also all substrings

enclosed in square brackets. To remove all substrings enclosed in round brackets

worsen the performance, because in this case we may lose relevant information.

Therefore, we just removed numbers in between round brackets if they are at the

beginning of the sentence, as shown in Example 4.4.

Example 4.4: (2) Plasma concentrations of miR-18a were significantly

higher in pancreatic cancer patients than in controls (P<0.0001).
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Figure 4.2: Linguistic annotations returned by the SpaCy model for sentence ’Increased expression
CDH5 is observed in lung cancer cells with EGFR mutations’. We provide the sentence and the output of
the first five tokens parsed by the system.

4.2 Text Processing Module

After the sentence preprocess, we parse the text using the SpaCy trained pipeline.

The sentence text is transformed into a Doc object which contains all annotations for

the sentence. More specifically, we can return a list of all tokens identified in the

sentence through the instruction toks = [t for t in doc]. Then, for each token

t, we can access information about its text (t.text), POS tags (t.tag_), its head

(t.head) or its dependency label (t.dep_). We provide an example of computation

in Figure 4.2. Here we can see a sentence and below the table with the output of

the first five tokens parsed by the system. Both token attributes t.tag_ and t.pos_

return POS tags but the former returns fine-grained part-of-speech tags while the

latter contains coarse-grained part-of-speech from the Universal POS tag set3. We

can also notice that the ROOT node of the sentence, i.e. observed, does not have an

artificial node as head but in SpaCy the root node’s head is the root itself.

We also noticed that in some cases miRNA mentions were split into two different

tokens. This may be due to the fact that some miRNA mentions contain dashes,

e.g. miR-150 or miR-3940-5p, hence SpaCy tokenizer could split the word into two

tokens like miR- and 150. This is problematic for the next modules, for example

it becomes challenging to detect miRNA mentions because we cannot match the

miRNA regex over each token but we need to check the whole sentence at once. In

3https://universaldependencies.org/u/pos/
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order to mitigate this issue we retokenize miRNA mentions. In fact, SpaCy allows for

the retokenization of the Doc object by means of the following code:

with doc.retokenize() as retokenizer:

retokenizer.merge(doc[start:end])

This instruction merges the document’s tokens from id start to id end-1 into a single

token. Therefore, we check for miRNA mentions in the sentence text and if there is at

least one we ensure mentions are stored in a single token. If not, we merge the tokens

containing the miRNA mention and modify the sentence’s tokens. To detect miRNA

mentions we use the regex we developed based on miRBase convention [45], which

we will describe in more detail when talking about the Entity Detection and Phrase

Typing module in Section 6.1. After parsing, we check if the sentence contains certain

words, that are called trigger words in the original paper, which convey the presence

of TypeA or TypeB relations. Sentences that do not contain any trigger words are

discarded and not processed any further. We developed a list of trigger words based

on the two supplementary files provided as appendixes of the original paper. Instead

of matching the tokens text we match lemmas so that we consider both singular

and plural forms. Some example triggers we consider are: "high", "low", "increase",

"decrease", "reduce", "elevate", "occur", "appear", "identify", "show", "prove".

An important difference between the original syntactic processing and the one

we implemented is that we directly compute the dependency graph corresponding

to each sentence by solving a dependency parsing task through SpaCy. Instead,

in the original system sentences were parsed using the Charniak-Johnson parser

[42, 43] with David McClosky’s adaptation to the biomedical domain [44] which

produces a constituency parse tree for each sentence. A constituency parse tree of a

sentence is built by dividing the sentence into sub-phrases, e.g. NP, Verb Phrase (VP),

etc, that have a specific syntactic meaning. Therefore, the syntax of the sentence is

expressed according to a Context-Free Grammars (CFG) [7]. Each parse tree is then

converted into a syntactic dependency graph by means of the Stanford conversion tool

[10, 11] with the ’CCProcessed’ option which collapses and propagates dependencies

to properly treat sentences involving conjunctions. Considering Example 4.5, token

50



Text Processing Module

patients has dependency label ’nmod’ and it is head of the dependency ’case’ of token

in. This option propagates the case dependency to token patients, whose dependency

becomes ’nmod:in’.

Example 4.5: Plasma miR-187 was significantly higher in OSCC patients

than in normal individuals.

SpaCy does not provide such tool hence we modify the Semgrex pattern provided

as supplementary files of the original paper accordingly. In addition, computing

the dependency tree directly instead of inferring it from a constituency parse tree

could affect the performance of the overall system. In fact, dependency trees do not

make use of sub-phrases and the syntax of the sentence is expressed in terms of

dependencies between words, not by means of a CFG. We decide to proceed in this

way in order to provide an end-to-end application with seamless integration among

modules.

Entity Expansion

We now describe in more detail the custom component we developed for entity

expansion. We recall we placed such component in the SpaCy pipeline after all

standard components, therefore we can make use of all annotations computed by

the pipeline. Expanding entities in fact can be useful in the following modules, for

example for extracting the matched components in the RE module. We provide an

example of the results of our custom components in Figure 4.3. Here we can see

that the standard components retrieved 6 entities while we collapsed them into 3

entities which corresponds to the Compared Aspect and the two Compared Entities.

Entities are detected in SpaCy by means of a statistical NER system4, which detects

the named entities and assign a label to them. For the model we are considering, the

only label available is ENTITY. Detected entities can be accessed by means of the Doc

object’s attribute ents which provides an iterator over the entities. We can access

the entity’s boundaries and labels by means of the attributes start, end and label.

We expand entity mentions using hand-craft rules based on token dependencies and

4https://spacy.io/usage/linguistic-features#named-entities
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Figure 4.3: Example of entity expansion, where entities detected are highlighted in grey. Standard
SpaCy pipeline retrieved 6 entities for the considered sentence, while the custom component collapsed
the 6 entities detected by the standard pipeline into 3 entities, which corresponds to the Compared
Aspect and the two Compared Entities.

some trigger words. We consider four cases: first we check for compound names

and adjectives between single tokens, then we apply the same checks to the entities

we have already detected and finally we expand sentences like expression level of.. or

patients with.. .

In the first case, we check if the sentence contains some words that can be expanded

as entities. Such words can be: "patient", "sample", "tumor", "cancer", etc. Then, for

each of these tokens we check if it is already within an entity or not in order to identify

the starting entity boundaries. If the token is already within the entity the boundaries

will correspond to the entity boundaries otherwise we set the token id as start of

the entity and the subsequent id will be the end of the entity. Afterwards, we check

among the children tokens (which can be returned by the attribute token.children)

if any of them depends on the considered token with a compound or amod dependency

and it is outside of the entity. If so, we expand the entity to contain the children token.

If we do not match any children token with such dependencies, we perform the same

checks among all sentence tokens. Once we expand single tokens, we check if we

can expand any other entity. In particular, for each entity we check if there is any

token outside of the span, whose head is inside the entity, that has a dependency of

type ’compound’ or ’amod’ and if so we expand such entity to contain the matched

token. We show an example of this second case in Figure 4.4. Here we can notice

that the standard components already detected entities like SFRP3, mRNA expression,

tissues, lung samples, etc. By adding our custom component all compound names and

adjectives referring to the entity are collapsed together in the same span.

We also expand the expression level phrases and phrases indicating patients
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Figure 4.4: Example of entity expansion for the second case. Entities detected are highlighted in grey
and we provide the dependencies of interest. The custom component collapsed all compound names
and adjective into a single entities, that actually corresponds to the components that will be extracted
by the RE module.

diagnosed with some conditions. In the first case, we check if the sentence contains

words like expression or level. If so, we check if such words are an entity or not to

understand the entity boundaries as we did for the previous cases. Then, we check if

the subsequent word is of and it is followed by an entity. If so, we expand the entity

to create one unique entity as shown in Example 4.6 (a). If not, we check if previous

token is an entity and if so we expand it to contain also the detected token, as shown

in Example 4.6 (b), where we only highlight the entity we are considering.

Example 4.6:

(a). In this paper, it was revealed that the expression of FOXJ2 was lower

in NSCLC samples compared with matched peritumoral lung tissue.

(b). ELMO3 expression level was significantly up-regulated in NSCLC

patients’ tissues and serum compared with controls (P<0.001).

Finally, we expand entities of the type patients with.., which will be useful especially

for the disease extraction task. In fact, in sentences like the one in Example 4.7., the RE

module will extract token patients as compared entity hence we may lose information

about the associated disease. In this case we search for the lemma ’patient’ in the

sentence and if found, we check if the subsequent token is the word ’with’ followed

by an entity. If so, we expand the entity as shown in Example 4.7, where, for the sake

of simplicity, we only highlighted the entity we are considering.

Example 4.7: We found that serum DKK-1 level was significantly higher

in patients with NSCLC than healthy controls.
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RE Module

In this chapter, we describe the implementation of the RE module, which is the core

of the system. In fact, in this step we extract relevant components from each sentence

that contain information about the expressed gene or miRNA, its level of expression

and the sample where we detected such information. The RE module is based on

rules defined as Semgrex patterns over the dependency tree representation of each

sentence. For this reason, dependency parsing is crucial for the outcome of this

module thus of the overall system. The rest of the chapter is structured as follows:

firstly we briefly describe the dependency parsing task in general, providing some

formal definitions. Then we describe the DependencyMatcher, which is a matcher

provided by SpaCy library to match Semgrex patterns within dependency trees1.

We will show how patterns are written and provide an example of how to apply

them to sentences. In Section 5.1 we focus on the rules we develop to extract relevant

components and in Section 5.2 we describe the module implementation. We use all

rules described in the supplementary files provided as appendixes of the original

paper and we also developed some rules ourselves to match more sentences.

The whole RE module is based on Dependency Parsing, which is an NLP task

producing a dependency tree for a given sentence. A dependency tree is a directed

graph 𝐺 = (𝑉, 𝐸) where the set of vertices comprises the tokens of the sentence

and edges are grammatical relationships among them. Dependency trees describe

syntactic structures based on the words in the sentence and the grammatical relations

1https://spacy.io/usage/rule-based-matching#dependencymatcher
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among them. This allows us to abstract away from word ordering information,

thus allowing for a smaller number of rules for dependency grammars than phrase

structure grammars in free word order languages (i.e, languages with no strict

requirements on phrase order). Formally, a dependency tree satisfies three constraints:

1. There exists a single node, the root, with no incoming arcs.

2. Each vertex has one incoming arc, with the exception of the root node.

3. There exists a unique path from the root node to each vertex of the graph.

We can translate constituent-based trees into dependency trees through some rules

and trees produced in this way are said to be projective. An arc is said to be projective

if there is a path from the head of the arc to every word that lies between the head and

the dependent in the sentence. Therefore, a dependency tree is said to be projective

if all its arcs are projective [7]. We will describe the main approaches used for

Dependency Parsing in Section 7.2, when we present the Spacy Dependency Parser

in more detail.

Once we computed the dependency tree of a sentence, we can apply Semgrex

patterns to match relevant tokens. In SpaCy, this operation is carried out by the

DependencyMatcher2. This tool allows to match tokens in the dependency trees by

specifying some attributes, e.g. dependencies among words, by means of Semgrex

patterns. A pattern is basically a list of dictionaries, each containing rules to match

a token based on its relation to an existing token in the pattern and some token

attributes like lemmas for example. We recall that in Semgrex patterns matched

nodes correspond to some tokens inside the dependency tree hence we will use the

term node and token interchangeably. We provide a simple example of a pattern in

Figure 5.1. Besides the first dictionary, which defines an anchor token using only

RIGHT_ID and RIGHT_ATTRS , each pattern has the following keys:

• LEFT_ID: name of the left-hand node in the relation we are matching. This

token must be already matched inside the pattern.

• REL_OP: operator that describes the relations among nodes in LEFT_ID and

RIGHT_ID.
2https://spacy.io/api/dependencymatcher
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Figure 5.1: Example of a pattern that can be used to match dependency trees using the
DependencyMatcher. Each pattern has an anchor token and all other tokens are matched based
on their attributes and relations with already-matched tokens.

• RIGHT_ID: unique name for the right-hand node in the relation we are matching.

This token must be a new node that we have not matched before in the pattern.

• RIGHT_ATTRS: token attributes that the right-hand node must match. This can

include dependency labels or other token attributes like lemmas (LEMMA), POS

tags (POS, TAG) or the exact text of the token (ORTH).

Most of the operators supported by the DependencyMatcher come directly from

Semgrex. The operators we will use the most are : A > B, that means A is the

immediate head of B, A >> B, which imply that A is the head of B following a path

from A to B, i.e. A is an ancestor of B, and finally A ; B that detect when A immediately

follows B and the two nodes are within the same dependency tree. Considering

the example in Figure 5.1, the anchor node corresponds to a token whose text is the

word "downregulated" and the second node we match is a token that have relation

downregulated > subject with the anchor token. This means the node identified with

name "subject" depends on the anchor node with label "nsubjpass", i.e. it is the passive

subject of the verb we matched. If we apply the defined pattern to the sentence "MiR-

203 is downregulated in lung cancer cells.", whose dependencies are displayed in Figure

5.2, we see that the anchor token, i.e. node named downregulated, is matched by the

token "downregulated" while the node named subject is matched by token "MiR-203".

We show how to match a pattern against a sentence in Figure 5.3. We apply patterns by
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Figure 5.2: Dependency tree corresponding to the example sentence "MiR-203 is downregulated in lung
cancer cells.". Such result was returned by means of the DisplaCy package.

Figure 5.3: Example of DependencyMatcher usage. We recall doc object is the parsed sentence we
defined in Figure 5.2 and pattern is the pattern we showed in Figure 5.1.

creating a DependencyMatcher object that uses the same vocabulary of the pipeline we

defined already, i.e. nlp_biore.vocab. Then we add the full pattern to the matcher

object by means of the instruction matcher.add(pattern_name, [pattern]). The

parameter pattern_name can be useful to identify the specific pattern since SpaCy

DependencyMatcher allows to remove patterns from the matcher object. Instruction

matches = matcher(doc) apply the pattern to the doc object passed as argument

to the function and return the matches found in the document. In particular, the

matches object is a list of all matches found by the DependencyMatcher. Each match

contains a match_id which identify the specific match and a list of the identifiers

of the matched tokens, namely token_ids. To print all matched tokens we iterate

over the list of ids and return the name of the token assigned by the pattern, i.e.

pattern[i]["RIGHT_ID"], and the text of the token, i.e. doc[token_ids[i].text].

By matching the pattern in Figure 5.1 over the sentence in Figure 5.2, the code in

Figure 5.3 will print "downregulated: downregulated" and "subject: MiR-203".

5.1 Rules Definition

DEXTER extract relevant information from sentences using Semgrex patterns. Such

patterns are provided as supplementary files by the authors of the original paper [9]
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and we have already described how these patterns were developed in Section 3.2. We

also recall DEXTER classify sentences as TypeA and TypeB, as described in Section

3.1, hence we have different rules for TypeA and TypeB sentences. In this section we

describe how we adapt Semgrex patterns to the DependencyMatcher pattern format

we analyzed in the previous section. In particular, we provide an overview of TypeA

and TypeB rules and we explain what changes we made and how we identify rules

suitable for each sentence. For the sake of simplicity, we will use terms patterns and

rules indistinctly. The first step in the RE module is to find suitable rules to apply to

the sentence passed as input to the module. In particular, we pass the sentence as

argument to a function that returns the applicable TypeA rules for the sentence. If

we do not find any suitable rules we look for TypeB rules.

5.1.1 TypeA Patterns

As we explained in Chapter 3, TypeA sentences report gene or miRNA expressions

contrasted between two different samples or conditions. Therefore, we extract the

following components from such sentences: Scale Indicator (SI) indicates the level of

expression, Compared Aspect (CA) is the gene or microRNA expressed in the sentence

while Compared Entity 1 (CE1) and Compared Entity 2 (CE2) are the two entities being

compared. By analyzing the TypeA patterns provided in the supplementary files of

the original paper we assess each pattern could be split into two parts. The first part,

which we will call starter, identifies SI, CA and Compared Entity 1 (CE1) while the

second part of the rule, which we call cmp_rule, retrieve the Compared Entity 2 (CE2).

This will allow us to write fewer rules and avoid repetitions. The computation of the

rules selection phase for TypeA sentences is shown in Figure 5.4. As we can see, at

first we check if the sentence contains any comparison word. In fact, if there is no

comparison word we can directly check for TypeB rules since we assume comparative

structures must contain at least one comparison word. Such words are than, versus,

vs., compared (i.e, compared with/to) and comparison (i.e, in comparison with/to).

We first detect a starter rule by checking some trigger words and we attach to it the

suitable cmp_rule, if we found any. Then we add the completed rules in a rule_list,
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Figure 5.4: TypeA rules selection flow. We start by checking if the sentence contains any comparison
word and then we check the rules applicability based on some trigger words and another function
that returns the second part of the rule. We check applicability for each group of rules separately and
in the end we check the rule_list content. If it is empty, we check for TypeB rules, otherwise we return
the retrieved rules.
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Table 5.1
Starter rules overview. The first column describe how we extract the Scale Indicator. In cmp1 and
cmp2 rules the SI is the trigger itself, while for cmp3 rules the SI is a dependent of the trigger. The
second column comprises the name of each rule and in the last column we provide a small description
of the main differences among rules.

Scale Indicator Rule Name Rule Description

cmp1_trigger cmp1_n0 CE1 depends on SI
cmp1_n1 CE1 depends on CA

cmp2_trigger cmp2_n0 CE1 depends on SI
cmp2_n1 CE1 depends on CA

Dependency "amod" cmp3_n0_amod CE1 depends on n0
cmp3_n1 CE1 depends on CA

Dependency "xcomp"
or "acl"

cmp3_n0_xcomp_n0 All other components depends
on cmp3_trigger

cmp3_n0_xcomp_SI CA depends on cmp3_trigger,
others depends on SI

which is a list of dictionaries, each containing a rule we can apply. Each dictionary

comprises the following keys: name, where we store the complete name of the rule,

starter where we store the starter pattern to apply and cmp, which contains the pattern

corresponding to the retrieved cmp_rule. At the end of the checks, if the rule list is

empty we check if any TypeB rule is suitable for the sentence, otherwise we return

the list of rules to be applied. As we have just seen, starter and cmp_rule applicability

is based on different aspects thus we develop two different functions to detect the

two parts.

TypeA Starter Rules

Starter rules can be divided into three main groups, based on the trigger words

present in the sentence and on the role of the SI. The names of these groups recall

the names of the patterns in the supplementary files of the original paper, which are

cmp1, cmp2 and cmp3 rules. We provide a full overview of all the starter rules in Table

5.1. cmp1 rules apply to sentences where the SI is an adjective such as higher/lower

and most components depend on it. cmp2 rules work similarly but in this case the

SI is a past participle verb like "increased" or "reduced". On the other hand, cmp3
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rules have a different structure. In fact, we check for triggers like "find" , "detect",

"observe" or "discover" while the SI depends on such trigger words as an adjective or

as a complement.

cmp1 rules comprises patterns where both CA and CE2 depends on the SI while the

CE1 may depend on the SI (i.e, cmp1_n0) or on the CA (i.e, cmp1_n1). Semgrex patterns

in Stanford CoreNLP has the OR operator among nodes, hence they can collapse rules

cmp1_n0 and cmp1_n1 into one. At the time of writing SpaCy DependencyMatcher

does not have the OR operations among tokens thus we need to write two separate

rules. When developing the pattern, we use as anchor token the SI by checking for a

list of triggers, namely cmp1_triggers, which actually comprises only words "high" and

"low". As a result, the attributes for the anchor node, which we name n0, for cmp1 rules

are: "RIGHT_ATTRS":{"LEMMA":{"IN":cmp1_triggers}}. We use the word lemma

so that we can have a shorter list of triggers which comprises all word forms. The CA

is the subject whose head is identified in the SI. Hence the attributes used to match

the token corresponding to the CA is: "RIGHT_ATTRS":{"DEP":"nsubj"}, while we

use the operator "n0 >> compared_aspect" which indicates the scale indicator is

the head in a chain to the compared aspect, following head → dep paths. About the

CE1, it is attached as a noun modifier or as an adverbial clause modifier either to

the SI (in rule cmp1_n0) or to the CA (in rule cmp1_n1). Therefore, to match CE1 we

check among n0’s dependants following head → dep paths (i.e, operator ">>") the to-

kens with the following attributes: {"DEP":{"IN":["nmod","advcl",’conj’]}} and

{"ORTH":{"NOT_IN":["compared","comparison","Compared","Comparison"]}}.

The former represents that CE1 is a noun modifier (label "nmod") or an adverbial

clause modifier (label "advcl"), while the latter checks we are not matching the

CE2. In cmp1_n1 rule, the only difference is that we check among CA’s depen-

dants. Finally, we check there is a word "in" that depends on the CE1, hence we

check for a token among CE1’s dependants whose attributes are: {"DEP":"case",

"ORTH":{"IN":["in","In"]}}. We provide an example of a sentence where we

can apply cmp1 rules in Figure 5.5. In particular, we display dependencies for the

sentence "HLJ1 expression was lower in tumors than in adjacent normal tissue.". Here

we can clearly see how we apply our rules. The SI (i.e, node "n0") is identified in
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Figure 5.5: Example of a sentence that matches cmp1 rules. We visualize the dependency tree of the
Doc object by means of displaCy.

token "lower" and both CA and CE1 depends on it, thus we will match starter rule

cmp1_n0. In particular, CA is identified in the token "expression", that is the subject of

the sentence and the CE1 is a noun modifier detected in tumors. In the end, the token

"in" which depends on the CE1 is retrieved. To conclude, we check the applicability

of cmp1 rules by checking if the sentence contains any words inside the cmp1_triggers

list. If so, we check if there is a cmp_rule applicable to the sentence and if we found

one we add two rules to the rule_list. One with cmp1_n0 as starter and one with

cmp1_n1.

The only difference between cmp1 and cmp2 rules is on the the trigger words used

to detect the SI, thus the same reasoning applies to cmp2 rules. We change the trigger

list in the anchor token definition with the list cmp2_triggers and the CA can be a

subject (dependency "nsubj"), a passive subject (dependency "nsubjpass") or a direct

object (dependency "dobj"). The rest of the rule structure is the same as for cmp1 rules.

We provide an example of a sentence that matches these rules in Figure 5.6, where we

displayed the dependencies of sentence "MiR-205 was upregulated in OC tissues and

cells in comparison to the controls.". In this case the SI is token upregulated and both CA

and CE1 depends on it. In particular, the CA is the passive subject (with dependency

"nusbjpass"), "MiR-205" while the CE1 is the noun modifier (with dependency

"nmod") "tissues". In this sentence we can see an example of the additional "ORTH"

rule we apply to CE1. In fact, without such rule the DependencyMatcher would have

returned two matches for the sentence, one where the CE1 is the correct one and one

where the CE1 is identified in token "comparison" which will be discarded in later

modules. The applicability check for cmp2 rules work is identical to the cmp1 rules

but in this case we check for words in cmp2_triggers list.

In cmp3 rules, components do not depends on the SI itself but on a verb belonging

to the cmp3_triggers list. Such verbs are "appear", "demonstrate", "show", etc. These
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Figure 5.6: Example of a sentence that matches cmp2 rules, since the SI is a cmp2_trigger, namely
"upregulated". We visualize the dependency tree of the Doc object by means of displaCy package.

sentences have a complex structure, hence we have defined four different starters, as

shown in Table 5.1. In this set of rules node n0 and the SI do not always coincide as

in the cmp1 and cmp2 rules. The only case in which SI and node "n0" identify the

same token is in starter cmp3_n0 _xcomp_SI, while in all other rules the node "n0" is

identified in the cmp3 trigger word. We decide to use this notation so that we can write

fewer cmp_rules. As in previous starters, the anchor node is identified by checking

which token has the word lemma that belongs to the cmp3_triggers list. The SI can

be an adjective depending on the CA, i.e. dependency "amod", or a complement

depending on node "n0", i.e. dependency "xcomp". Therefore, we can make a

first distinction between rules cmp3_n0 _amod, cmp3_n1 and cmp3_n0_xcomp_n0,

cmp3_n0_xcomp_SI. As the names suggest, the first two rules apply to sentences where

the SI is an adjective depending on the CA while in the other two it is a complement

depending on the verb belonging to cmp3_triggers list.

In cmp3_n0_amod rules we identify as anchor node, i.e. node "n0", the token

whose lemma belongs to the cmp3_triggers list. The CA is the subject (dependency

"nsubj"), passive subject (dependency "nsubjpass") or direct object (dependency

"dobj") depending on node "n0". The CE1 is returned as for the rules of the previous

groups but in starter cmp3_n0_amod CE1 depends on node "n0"while on rule cmp3_n1

it depends on the CA. Finally, the SI depends on the CA thus we use the operator >>

from CA to SI, which is defined with token name "scale_indicator". The attributes we

check for the SI are: {"DEP":"amod", "TAG":{"IN":["JJ","JJR","VBN","VBD"]}}.

In fact, we further verify the SI is an adjective by checking its fine-grained POS tag

(i.e, tag_ attribute) is either "JJ" (adjective), "JJR" (comparative adjective), "VBN" (past

participle verb) or "VBD" (past verb). Sentence "We found significantly higher TGF-𝛽1

levels in lung cancer patients than in healthy individuals." matches starter rule cmp3_n1.

We provide its dependency tree in in Figure 5.7, where we only display the part we
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Figure 5.7: Sentence that matches cmp3-amod rules, we provide just the part of interest of the sentence
due to space issues. The full sentence is "We found significantly higher TGF-𝛽1 levels in lung cancer
patients than in healthy individuals.". We visualize a part of the dependency tree together with the POS
tags of each token by means of displaCy package.

are interested in so that we have a more readable image. The cmp3 trigger in the

sentence, i.e. anchor node n0, is the token found. We use the dependency "dobj" to

extract the CA, which is token levels. CE1 is a noun modifier, i.e. dependency "nmod",

whose head is the CA and it is identified in token "patients". Finally, we identify the

SI in token "higher", which is an adjective (i.e, dependency "amod") depending on the

CA. We can also verify that the fine-grained POS tag of the SI is "JJR" (comparative

adjective) , as requested by the rule.

The only difference between the previous rules and starter rule cmp3_n0_xcomp_n0

is in the SI definition. In fact, in this rule the SI depends on the anchor node

instead of CA, thus we use the operator >> from n0 to SI, which is still defined

with token name "scale_indicator". We check the same POS tags as before but

now the SI depends on the verb as a open clausal complement (i.e, dependency

"xcomp"), clausal complement (i.e, dependency "ccomp") or as a clausal modifier of

noun (i.e, dependency "acl"). Therefore, the attributes for token scale_indicator are:

"DEP":{"IN":["ccomp","xcomp","acl"]} and "TAG":{"IN":["JJ","JJR","VBN",

"VBD"]}. Starter rule cmp3_n0_xcomp_SI differs from all other rules in group cmp3. In

fact, only CA and SI depends on the cmp3 trigger word while all other components

depends on the SI itself. For this reason, we change the names of the matched tokens.

In this case, the anchor token is defined as node "n1" while the SI is defined as token

"n0" as we did for groups cmp1 and cmp2. The rules for extracting CA, CE1 and SI

are similar to rule cmp3_n0_xcomp_n0. What changes is that the head of CA and SI is

identified in node "n1" (i.e, the cmp3 trigger word), while CE1’s head is node "n0"

(i.e, the SI). We can apply starter rule cmp3_n0_xcomp_SI to the sentence "SCUBE3

was found to be up-regulated in NSCLC tissue samples compared to adjacent normal tissue." .
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Figure 5.8: Sentence that matches cmp3-xcomp rules, we provide just the part of interest of the sentence
due to space issues. The full sentence is "SCUBE3 was found to be up-regulated in NSCLC tissue samples
compared to adjacent normal tissue.". We visualize a part of the dependency tree together with the POS
tags of each token by means of displaCy package.

We provide a part of the dependency tree of such sentence together with the tags

for each token in Figure 5.8. We can clearly see that the CA and SI depends on the

anchor node "n1", that is token "found", while the CE1 depends on the SI, that is

"up-regulated". It is important to notice that cmp_rules depends on the node "n0" we

extract from starter rules, thus when deciding which cmp_rule to apply we pass as

argument to the function the trigger list whose node "n0" belongs to. While for cmp1

and cmp2 rules node "n0" could only belong to the corresponding trigger lists, in this

case only the first three rules we describe identify node "n0" with a cmp3 trigger word.

In rule cmp3_n0_xcomp_SI, node "n0" can be identified either with a cmp1 or cmp2

trigger word. Therefore, we perform two different checks for cmp3 rules applicability.

Firstly, we check if the sentence contains at least one cmp3 trigger. If so, we check if

there is one cmp_rule applicable when node "n0" is a cmp3 trigger word. If so, we add

the first three starters to the rule_list. If there is no suitable cmp_rule, we check if there

is one cmp_rule applicable when node "n0" is a cmp1 or cmp2 trigger word. If so, we

only add the rule with starter cmp3_n0_xcomp_SI to the rule_list.

TypeA Cmp Rules

Once the potential starter rules is identified, we check for the second part of the rule,

namely cmp_rule, which will extract the last component, i.e. CE2, together with the

token corresponding to the comparison word. We developed a second function to

identify the suitable cmp_rule for the sentence. This function takes as arguments the

sentence itself as a Doc object, a list of comparison words detected in the sentence

and the list of trigger words which comprises node "n0" lemma. We recall that this

function is called after we have already detected the potential starter of the rule
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Table 5.2
Cmp rules overview. The first column indicates the considered comparison word, which can be "than
in", "than", "versus/vs. in", "versus/vs." or "compared/comparison". The second column comprises the
name of each cmp_rule and in the last column we provide a small description of the main differences
among patterns.

Comparison Word Rule Name Rule Description

"than in" than_1_SI CE2 depends on SI
than_1 _CE1 CE2 depends on CE1

"than/versus/vs." than_2_SI CE2 depends on SI
than_2_CE1 CE2 depends on CE1

"versus/vs. in"
(dep. "case")

vs_1_SI CE2 depends on SI
vs_1_CE1 CE2 depends on CE1

"versus/vs. in"
(dep. "cc") vs_2 CE2 depends on CE1

"compared/
comparison"

compare_1_SI CE2 depends on SI
compare_1_CE1 CE2 depends on CE1

compare_2 CE2 depends on comparison word,
which depends on SI

compare_3 CE2 depends on comparison word,
which depends on CE1

hence we know which list contains the anchor node. In this function, which is called

find_cmp_rule, we loop over the comparison words in the list passed as argument and

as soon as we find a suitable cmp_rule we return it. The first thing we check is the

comparison word, hence we can divide the rules based on its text form. A full list of

cmp_rule is provided in Table 5.2.

If the comparison word is "than" we have four different rules which depends

on whether token "than" is followed by the preposition "in" and based on CE2’s

head. Therefore, we can make a first distinction between than_1 and than_2 rules.

than_1 rules match sentences where the comparison word "than" is followed by

the preposition "in". With these rules we will extract three components: CE2, the

comparison word (identified as token "case_than_2") and the preposition "in" that

follows the comparison word, which we call "case_in_2". We recall we detected a

preposition also before the CE1, thus we firstly need to check that we have not detected
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the CE2 in the starter rule. To do so, we check if the token "in" we matched before does

not immediately follows the comparison word. This translates in the operator ";"

between node case_in_1 and node case_than_1 and the attributes for node case_than_1

are: "{"DEP":"case", "ORTH":"than", "OP":"!"}". The attribute "OP" defines

how many times we want to match the token in the rule and in our case "!" negates

the pattern, hence we do not want any token to match such rule. CE2 is a dependant

whose label can be "nmod" (nominal modifier), "advcl" (adverbial clause modifier) or

"dep" (generic dependency). What differs between rule than_1_SI and than_1_CE1 is

the head of the CE2. In fact, in the first rule the CE2 depends on node "n0", which

can be the SI or a cmp3 trigger, while in the other one the CE2 depends on CE1, as

the name suggests. Therefore, we can extract the CE2, which will be identified as

compared_entity_2, by checking which token depends on either node n0 or CE1 with

dependency labels among the one mentioned before and with operator >>. Once we

have detected the CE2 we can extract tokens "case_than_2" and "case_in_2" by checking

CE2’s children (i.e, operator >) with dependency label "case" for both tokens. Then for

node "case_than_2" we check the token text (i.e, attribute "ORTH") is "than", while for

"case_in_2" the word must be "in". We have an example of rule than_1_SI in Figure 5.5.

Here we notice the comparison word is "than" followed by preposition "in" and the

first check we made allow us to correctly discard token "tissue" as CE1. We can also see

that CE2, which is identified in token "tissue", depends on the SI as an adverbial clause

modifier (dep "advcl") and both "than" and "in" depends on the CE2 with dependency

label "case". From this example we notice we can check if the CE2 depends on the

SI by checking if the lemma of cmp_word.head.head is a cmp1 or a cmp2 trigger

word. In fact, attribute head returns the head of the token it is applied to and we

can follow the dependency tree path by concatenating such attribute. Therefore,

cmp_word.head returns the CE2, since comparison word "than" always depends on

the CE2, thus token cmp_word.head.head returns the head of CE2. If CE2 depends

on CE1 instruction cmp_word.head.head will return the CE1, which may directly

depend on the SI or follow a path CE1->CA->SI. For this reason, to check if CE2

depends on CE1 we check if the lemma of either cmp_word.head.head.head (if CE1

directly depends on SI this will return the SI) or cmp_word.head.head.head.head
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(if CE1 follows the path CE1->CA->SI the previous token would be the CA hence

we need to do one more hop) is a cmp1 or cmp2 trigger word. To sum up, to check

which than_1 rule to apply we firstly check if the comparison word is "than". Then

we check if "than" is followed by preposition "in" and if so, we check if CE2 directly

depends on the SI (in this case we return rule than_1_SI) or on the CE1 (resulting

in rule than_1_CE1) by applying the reasoning we explained above. If "than" is not

followed by preposition "in" we check for than_2 rules.

than_2 rules match sentences where the comparison word is "than" but it is not

followed by preposition "in". This is the case of sentence "The serum level of Mac-2BP

was significantly higher in lung cancer patients than healthy controls.". This set of rules

comprises two patterns which differs based on CE2’s head. Rule than_2_SI is applied

when CE2 directly depends on the SI while we use than_2_CE1 when the head of CE2

is the CE1. Therefore we check which rule we can apply as we did above for than_1

rules. In this case we only extract two tokens, namely compared_entity_2, which is the

CE2, and case_cmp_2, which identifies the comparison word. CE2 is extracted with

the same rule we used for than_1 rules and we use a different head based on which

rule we are applying. About case_cmp_2, we extract such token as we did for token

case_than_2 in the previous group of rules but we modify attribute "ORTH" as follows:

"{"ORTH":{"IN":["than", "versus", "vs."]}}". In fact, we will use the same set

of rules for comparison word "versus"/"vs." when it is not followed by preposition

"in".

If the comparison word is "versus" or "vs.", we can apply five different rules that

are based on the dependency label of the comparison word. Therefore, the first thing

we check is the dependency label of tokens "versus"/"vs.". If it is "case", we can apply

"vs_1" rules, that works as "than _1" rules but we substitute "{"ORTH":"than"}"with

"{"ORTH":{"IN":["versus","vs."]}}", or we can apply than_2 rules, if the com-

parison word is not followed by preposition "in". Comparison words "versus"/"vs."

can also have dependency "cc" when "versus" is the coordinating conjunction word

between CE1 and CE2. In this case we apply rule vs_2, which extracts the CE2 and the

comparison word identified in token case_cmp_2. CE2 is a conjunctive clause whose

head is the CE1 hence we match the token with operator ">>" between CE1 and the
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Figure 5.9: Sentence that matches vs_2 cmp rule, in particular this sentence matches rule cmp1_n0_vs_2.
We visualize the dependency tree together with the POS tags of each token by means of displaCy
package.

new token compared_entity_2, using attributes: {"RIGHT_ATTRS":{"DEP":"conj"}}.

Finally, the comparison word is extracted by checking which CE1’s children (i.e,

operator ">") has dependency label "cc". Figure 5.9 provides an example of such

structure. We can see that CE2 is a conjunctive clause depending on CE1 hence we

follow dependency "conj" to extract the CE2. The comparison word also depends on

CE1 with dependency label "cc".

If the comparison word is "compared" or "comparison" we can apply four different

rules that can be divided into two categories based on the head of CE2. In fact, if

CE2 depends directly on the comparison word we will use either rule compare_2

or compare_3, otherwise we choose between compare_1_SI or compare_1_CE1. To

distinguish between the two groups we check the comparison word’s children, if

none of them has a dependency label "nmod" we check which compare_1 rule to apply,

otherwise we check for the other rules. compare_1 rules work like than_1 and vs_1 rules.

The only difference is that in token case_compared we match the token with attribute

"{"ORTH":{"IN":["compared", "comparison", "Compared","Comparison"]}}".

The distinction between compare_1_SI and compare_1_CE1 is the same of than_1 case

and the selection function works identically.

compare_2 and compare_3 match sentences where the CE2 directly depends on

the comparison word. The only difference between the two rules is that in rule

compare_2 the comparison word directly depends on node "n0", while in com-

pare_3 it directly depends on the CE1. Here, we extract token case_compared

by checking tokens that depends on n0 or CE1 (i.e, we use operator ">>") and

matching attributes: "DEP":{"IN": ["xcomp","advcl","nmod","dep","prep"]},

"ORTH":{"IN": ["compared", "comparison","Compared","Comparison"]}.

Then we extract the CE2 by checking the comparison word’s dependants (i.e, we use
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operator ">>") and matching the token with dependency label "nmod". Sentence

in Figure 5.6 matches rule compare_2. In fact, the comparison word "comparison"

is a nominal modifier (dep "nmod") whose head is node "n0", which in this case

corresponds to the SI. Instead, the CE2 is a nominal modifier depending on the

comparison word. Overall, once we detected both the starter rule and the suitable

cmp rule we can add the complete rule to the rule_list. By following the flow in

Figure 5.4 for example in Figure 5.6, we saw that such sentence comply with cmp2

rules requirements and we found a suitable cmp rule in compare_2. Therefore, we will

append two dictionaries to the rule_list, which are {"name": "cmp2_n0_compare_2",

"starter": cmp2_n0, "cmp": compare_2} and {"name": "cmp2_n1_compare_2", "starter":

cmp2_n1, "cmp": compare_2}.

5.1.2 TypeB Patterns

If there is no comparison word inside the sentence or if we find no suitable TypeA

rule, we check if any TypeB rule applies to the sentence. We recall TypeB sentences

contain only one entity where the expression of the gene or miRNA has been detected.

In the original paper the components extracted for TypeB sentences have a different

name (level indicator (LI), expressed aspect (EA) and expressed location (EL)), however we

decided to keep the same names used for TypeA sentences so that we can access both

TypeA and TypeB components with the same lines of code. In particular, EL will

be called SI, EA is the CA and the EL is the CE1. We divide rules in starter and cmp

as before but in this case we also divide rules into two classes, namely exp and fnd

rules since the two set of rules uses different starter and cmp patterns. In exp rules

the starter part of the pattern extract the SI and CA and this set of rules comprises

patterns where the CE1 can depend either on the SI and the CA. On the other hand,

in fnd rules we only extract the CA and an anchor node "n0" in the starter rule while

the CE1 and SI are extracted in the cmp part. In this case, both CE1 and SI can depend

either on the CA or on node n0, which is a cmp3 word trigger. This is why we have

developed different starter and cmp rules for the two classes.
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Table 5.3
Starters for exp rules. In the first column we provide the name of the starter rule. In the second and
third column we describe how we extract the SI and the CA in the different rules. In all cases we check
if the lemma of the potential SI belongs to cmp12B_triggers list, however additional checks are required
to correctly extract the SI in the second and third rules.

Starter Name SI CA

subj_exp cmp12B_triggers subject depending on SI
conj_exp dep "conj", head: conj_clause subject depending on conj_clause
appos_exp dep "conj", head: CA head of "appos" dependency

TypeB "exp" Rules

exp rules comprises patterns where the SI is usually a cmp1 or cmp2 trigger word that

is central in the extraction of the other components. In fact, all components directly

depend on it or follow a path dep->head to the SI. We split rules into starter and cmp

as before, however for this type of rules we just check which starter to apply and then

add to the rule_list all applicable starters with the two cmp rules available for this

class of patterns without any further check. One important note is that we are still

using the same lists of triggers we defined for TypeA rules, however we do not need

to distinguish between cmp1 and cmp2 triggers thus we merged the two into one list

called cmp12B_triggers.

We provide a full overview of starter rules for exp patterns in Table 5.3. In all rules

we check if the lemma of the potential SI belongs to cmp12B_triggers list, however

both SI and CA differs in all three rules. In subj_exp rule, the SI is the anchor token

and we just check if its lemma belongs to the above-mentioned list. Then the CA is

extracted by checking the dependants of node SI, using operator ">>", that have a

dependency "nsubj", "nsubjpass", "dep", "dobj" or "acl". In conj_exp rule, the anchor

token is the head of the SI and we extract it following dependency "conj". The CA is

still the subject of the sentence thus we check the same dependencies as before but

now the head of the relation is the new anchor node. In appos_exp rule, the anchor

token is a dependant of the CA, which is the head of the dependency "appos". That

means the anchor node is an appositional modifier of the CA. The SI is extracted

by checking the dependant of the CA with dependency label "conj". We check the
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Figure 5.10: Sentence that matches subj_exp starter rule, in particular this sentence matches rule
subj_expressionIn_1. We visualize the dependency tree by means of displaCy package.

Figure 5.11: Sentence that matches appos_exp starter rule, in particular this sentence matches rule
appos_expressionIn_1. We visualize the dependency tree by means of displaCy package.

applicability of each starter rules by detecting any cmp12B trigger word in sentence

as potential SI. If any potential SI is head of a subject we can add subj_exp rule to the

starter rules. If any of them has a dependency label "conj", "acl" or "dep" we also add

conj_exp rule. Finally, if any potential SI has a dependency label "conj", "acl" or "dep"

and its head is also the head of an "appos" dependency we add rule appos_exp to the

starters.

We have two cmp patterns that we can apply to this group of rules: expressionIn_1

and expressionIn_2. The only difference between these two rules is that in the former

the CE1 depends on the SI while on the latter it depends on the CA. Therefore, we

extract the CE1 as a dependant of either SI or CA (we use operator >>) with label

"nmod" or "dobj". We assume the CE1 is preceeded by a preposition "in" hence we

extract it by checking the CE1’s dependant and matching the one with dependency

label "case" and word form "in". Once we have determined the suitable starters, for

each of them we add two rules, one for each cmp, to the rule_list without any further

checks. We provide an example of subj_exp rule in Figure 5.10. This sentence matches

rule subj_expressionIn_1 since both the CA, that is "levels", and the CE1, identified in

"cells", depend on the SI, namely "elevated". In particular, the CA is the subject of the

sentence and the CE1 is a noun modifier whose head is the SI. Sentence in Figure 5.11

matches appos_expressionIn_1. As we can see, the structure of this sentences allows us

to extract information from sub-sentences enclosed between comas that refers to the

subject of another sentence, in this case "miR-7b", which is also the CA. In this case
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Table 5.4
Starters for fnd rules. In the first column we provide the name for each starter while the following
columns provide a description of each pattern. The first column describes how we extract node "n0",
which is a cmp3 word trigger. The last column focus on CA extraction, which differs only on the head
of the dependency.

Starter Name n0 CA

subj_fnd cmp3_triggers subject depending on n0
conj_fnd dep "conj", head: conj_clause subject depending on conj_clause

the anchor token is "microRNA", which is a dependant of the CA with label "appos"

and it is also the head of the SI, namely "up-regulated", which is also the head of the

CE1, identified in token "hypothalamus".

TypeB "fnd" Rules

fnd rules comprise patterns where most components do not depend on the SI but on

a cmp3 word trigger, which we will define as "n0". This group of rules resembles

cmp3 rules that we saw for typeA sentences and matches sentences like "We found

that X is higher in Y". Therefore, we firstly check if the sentence contains any cmp3

trigger word to see if we can apply any of these rules. If so, we proceed with further

checks otherwise we skip all fnd rules. In this case, the starter rule extracts the CA

and node "n0" while the cmp rule extracts both the SI and the CE1.

fnd rules comprise two different starter rules that are shown in Table 5.4, that

differ both in the CA and n0 extraction. In subj_fnd rule the anchor token is the cmp3

trigger itself hence we detect node "n0" as the token whose lemma belong to the

cmp3_triggers list. Then, the CA is the subject who depends on node n0. This means

we check for n0’s dependants with the operator ">>" whose dependency label is

either "nsubj", ""nsubjpass", "dep", "acl" or "dobj"". For this reason, in order to see if

subj_fnd can be applied we simply check if any cmp3 trigger word has a children with

any of the above-mentioned dependencies. We provide an example of a sentence

that matches subj_fnd starter rule in Figure 5.12. Here the anchor node is identified in

token "found" and the CA is the passive subject (dep. "nsubjpass") of node n0, namely

token "levels". In conj_fnd starter the anchor node is no longer n0 but a conjuction
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Figure 5.12: Sentence that matches subj_fnd starter rule. We visualize the dependency tree together
with the POS tags of each token by means of displaCy package.

Figure 5.13: Sentence that matches conj_fnd starter rule. We visualize only part of the dependency tree
together with the POS tags of each token by means of displaCy package.

clause, which we actually define as conj_clause, that is the head of both CA and n0.

In this case we extract node "n0" by following the dependency "conj" from node

conj_clause while the CA is extracted by searching among the same node’s dependant

the dependency labels we used in the previous rule. We provide an example of a

sentence that matches such rule in Figure 5.13. The full sentence is "miR-143 is located

at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be

down-regulated in several cancers including colon cancer.", however we report only the

dependency tree of the part of interest so that we provide a more readable image.

Here we can see that the anchor node is token "located" which is the head of both

the CA, that is token "miR-143", and node n0, which is identified in token "reported".

In this case we extract the CA by following dependency "nsubj" and node n0 by

following dependency "conj". With this rule we are able to extract information about

the subject even if we have a longer sentence composed of different sub-phrases that

refers to the same subject. We assume starter conj_fnd is applicable to a sentence if

any cmp3 trigger words has dependency label "conj" and the head of such token is

the head of a dependency "nsubj", ""nsubjpass", "dep", "acl" or "dobj"".

If we find any applicable fnd rule, we check for the cmp rules. Differently from

exp rules, in this case we do not add all cmp rules to the starters we found but we

also check which are the suitable ones to extract both the CE1 and the SI. In total, we

can apply five different cmp rules to fnd rules, which differs both on the SI and CE1

extraction. We provide an overview of all cmp rules in Table 5.5. We can divide the
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Table 5.5
Cmps for fnd rules. In the first column we provide the name for each starter while the following
columns provide a description of each pattern. The first column describes how we extract the SI, which
may be an adjective or an adverb and it may depend on CA or node n0 with different dependency
labels. The last column focus on CE1 extraction, which may depend on the CA, SI, node n0 or on
another node that we defined as "adverb".

Rule Name SI CE1

foundIn_1 adjective, dep "amod", head: CA depends on n0
foundIn_2 adjective, dep "amod", head: CA depends on CA
EXPfoundIn _xcomp_1 adjective, dep "xcomp", head: n0 depends on SI
EXPfoundIn _xcomp_2 adjective, dep "xcomp", head: n0 depends on n0
RBfoundIn _xcomp adverb, dep "xcomp", head: n0 depends on adverb

cmp rules into three groups, based on the SI form and dependency label. In fact, in

the first four rules the SI is an adjective, therefore we will check if its tag is "JJ", "JJR",

"VBN" or "VBD", while in the last rule the SI is an adverb, i.e, it has tag "RB". We can

further divide the first four rules based on SI dependency, which can be either an

adjectival modifier (i.e, dep. "amod") or a complement (i.e, dep. "xcomp", "ccomp" or

"advcl"). Finally, we further distinguish rules based on the head of the CE1 and in all

rules we extract the preposition "in" which preceeds the CE1 as we saw in the cmp

rules for the exp group.

foundIn rules comprise patterns where the SI is an adjectival modifier that depends on

CA. Therefore, after checking the SI is an adjective, we can extract the SI by looking

among CA’s dependants and look for one with dependency label "amod". The CE1 is

extracted as in the cmp rules for exp rules, the only difference is in the head of the

relation. In fact, in rule foundIn_1 the head is node n0, while in rule foundIn_2, it is the

CA. We add these two cmp rules to the determined starters if there is any adjective

in the sentence with dependency label "amod".

RBfoundIn_xcomp rule matches sentences where the SI is an adverb, i.e. with tag

"RB". In this case we extract the SI by searching among the dependants of node n0

one token that is an adverb with dependency label "xcomp" or "ccomp". The CE1

does not directly depend on the SI but we extract an intermediate node defined as

"adverb" which depend on the SI as a clausal modifier of noun (dep. "acl"). This
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Figure 5.14: Sentence that matches RBfoundIn_xcomp cmp rule. In particular, we can apply the rule
subj_fnd_RBfoundIn_xcomp. We visualize only part of the dependency tree together with the POS tags
of each token by means of displaCy package.

Figure 5.15: Sentence that matches EXPfoundIn_xcomp cmp rule. In particular, we can apply the rule
subj_fnd_EXPfoundIn_xcomp_1. We visualize the dependency tree together with the POS tags of each
token by means of displaCy package.

node is the head of the CE1, which depends on it with dependency label "nmod" or

"dobj". We use RBfoundIn_xcomp as cmp rule if there is an adverb in the sentence with

dependency label "xcomp" or "ccomp" whose head is a cmp3 trigger. We provide an

example of such rule in sentence "Our data show that VGLL4 is frequently observed to be

lowly expressed in both mouse and human lung cancer specimens.". We show only the part

of interest of the dependency tree in Figure 5.14 so that the image is more readable.

In particular, we can notice the sentence matches rule subj_fnd_RBfoundIn_xcomp, as

the CA, identified in "VGLL4" directly depend on node n0, that is "observed". The SI,

identified in adverb "lowly", depends on node n0 with label "xcomp" and we extract

the CE1, identified in token "specimens", using the intermediate node "expressed" as

"adverb" token.

EXPfoundIn_xcomp rules comprise patterns where the SI is an adjective which depends

on node n0 with dependency label "xcomp", "ccomp" or "advcl". CE1 is extracted

as a noun modifier (dep. "nmod") or direct object (dep. "dobj") depending either

on the SI (in EXPfoundIn_xcomp_1 rule) or on node n0 (in EXPfoundIn_xcomp_2

rule). We use these two rules as cmp to a fnd starter if there is an adjective in

the sentence with dependency label "xcomp", "ccomp" or "advcl" whose head is a

cmp3 trigger word. We provide an example of sentence where we can apply EXP-

foundIn_xcomp rules in Figure 5.15. In particular, we can notice the sentence matches
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rule subj_fnd_EXPfoundIn_xcomp_1 since the CA, identified in "SH2B1", is the passive

subject of node n0, that is "found". The cmp rule we apply is EXPfoundIn_xcomp_1,

since the SI ("overexpressed") is an adjective, actually it is a past participle verb (i.e, tag

"VBN"), which depends on node n0 with label "xcomp". Finally, the CE1, identified

in token "tissues", depends on the SI with relation "nmod".

5.2 Module Overview

In this section we describe the RE module, in particular defined above and we

provide an overview of the components extraction. In fact, the DependencyMatcher

matches single tokens but components like CA, CE1 and CE2 are Noun Phrases

(NPs), therefore we developed a function to expand the matched components. We

defined the RE module by means of a function that we called relation_extraction,

which takes as argument the input sentence parsed as a Doc object by the Text

Processing module and the SpaCy model we defined in the previous module (see

Chapter 4 for more details). The trained pipeline will be useful when defining the

DependencyMatcher object since it uses the same vocab as the SpaCy model as we

saw earlier. We start the computation by checking if any TypeA rule is applicable

to the sentence and we return a list of such rules following the reasoning shown in

Section 5.1. If the rule_list is empty we return another function called re_module_b,

which performs the RE module for TypeB sentences and takes the same arguments

as input. Otherwise, we define a DependencyMatcher object, using the instructions

shown at the beginning of the chapter, and we loop over rules in the rule_list and

apply each of them to the sentence. After applying each rule, if we found any match

we extract the relevant components and add them to the final result set if it is not a

duplicate. The result set is a list of dictionaries. Each dictionary is a match, hence the

keys are the names of the components and the values are the components extracted

for the specific match. We will describe the components extraction in detail later in

this section. Then we remove the rule we have just used and add the next rule. Once

we applied all rules, we check the result set. If it is empty, we return the function

re_module_b and check if we found any TypeB matches. Otherwise we return the
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result set, the sentence type (that is "TypeA" in this case) and the list of rules we

applied, which is useful for debugging purposes and to check the computation in

detail.

Function re_module_b works identically to the previous function, but in this case

we check for TypeB rules. The only difference with the previous module is in the

outputs. In fact, if we found no suitable TypeB rules or at the end of the computation

there are no matches, in this case we return a custom Exception called MatchNotFound

Exception. On the other hand, if we found any TypeB matches we return the result

set, the sentence type ("TypeB" in this case) and the list of rules we applied.

Extracting the Components

As we briefly mentioned, the DependencyMatcher matches tokens but we are

interested in extracted relevant NPs from the input sentence. For this reason we

developed a series of rules that expands the matched tokens. The matches object

returned by the matcher is usually a list and each match is composed of the match_id

and the token_ids, which is a list of the identifiers of matched tokens. We provided an

example of how to extract matched components in Figure 5.3. As we can see, we access

the name of the matched token using instruction pattern[i]["RIGHT_ID"], where

"i" is the index of the list token_ids corresponding to a specific component. Then we

can access the specific token object by means of the instruction doc[token_ids[i]].

When matching the input sentence with rules defined in Section 5.1, we extract some

intermediate tokens that are useful to match the relevant components but have no

usage in the broader computation. Therefore, we return a dictionary for each match

containing only the SI, CA, CE1 and CE2 and when extracting relevant components

we only focus on these tokens. We developed a function called extract_components

which expand the matched tokens and return a list of dictionaries containing the

relevant components for each match. During computation we loop over the matches

of the matches object returned by the DependencyMatches and we focus on each

match separately. As we said earlier, we are only interested in returning the SI (key:

"scale_indicator"), CA (key: "compared_aspect"), CE1 (key: "compared_entity_1") and,

if we are considering TypeA matches, the CE2 (key: "compared_entity_2") thus we
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Figure 5.16: Sentence where the CA corresponds to token "which". We visualize part of the dependency
tree together with the POS tags of each token by means of displaCy package.

develop different expansion rules for each component.

The SI is a single token which indicates the level of expression of the CA detected

in the sentence. For this reason, we do not need to expand the token but we recall in

some TypeA rules, namely cmp1, cmp2 and cmp3_n0_xcomp_SI, we named the SI as

"n0". Therefore, we simply change the name of the components matched for these

rules to "scale_indicator".

We now focus on two special cases that we may encounter especially in longer

sentences. Firstly, when we write long sentences we may include sub-phrases that

refers to the same subjects by means of word "which" or "that", as in sentence "’Finally,

histone deacetylation (HDAC) inhibitors restored miR-375 expression, which was much

lower in patients with MPN compared with healthy volunteers.". We provide a part of

the dependency tree for such phrase in Figure 5.16 and we can clearly notice that

the subject of the sub-phrase containing relevant information is "which" thus the

DependencyMatcher will identify this token as the CA following our rules. Such

token contains no useful information for us since we would like the CA to be a gene

or miRNA, hence we need to solve the reference of the determiner "which". We notice

that "which" refers to "expression", which is the head of the determiner’s head, i.e.

"lower". For this reason, we can substitute token "which" by checking if its head has

dependency label "acl:relcl" (that indeed identify a relative clause), then the head

of such dependency becomes the new CA. Back to the example in Figure 5.16, this

translates into identifying the CA in the token "expression". The same reasoning

apply if we have determiner "that" instead of "which". Another special case is the

one shown in Figure 5.17. Here, the CE2 is identified in determiner (i.e, pos "DET")

"those" thus we need to solve again the reference problem. In this case we check the

determiner dependant and we identify as the new CE2 the token with dependency
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Figure 5.17: Sentence where CE2 is identified in token "those". We visualize the dependency tree
together with the POS tags (in this case we used coarse-grained tags, i.e, Token.pos_) of each token
by means of displaCy package.

label "nmod" or "acl". In Figure 5.17, this translated into identifying as CE2 token

"tissues". The same reasoning apply if we have "that" instead of "those".

Once we solved all reference problems we can expand the CA, CE1 and CE2 so

that they become NPs containing all relevant information. We will use sentence in

Figure 5.17 as reference example throughout this part. The expansion works in two

phases: firstly we expand all three components so that they contain all their children

tokens and the children of their children and then we bound the start and end of the

retrieved span for CE1 and CE2. About the CA, we perform some further expansions.

We assume the CE1 starts with proposition "in" and, if we have a TypeA sentence,

it ends with the comparison word. On the other hand, if we are considering TypeB

sentence, we bound the end of CE1 when we find a conjunction. This will potentially

include unwanted tokens inside the span however we can still extract relevant and

correct information even with noise. In example in Figure 5.17, this translates into

identifying as CE1 the span "in bladder cancer tissues". If we have a TypeA sentence,

we expand CE2 and we bound the start of the component by assuming the CE2

will start with a comparison word. If we consider Figure 5.17, this translates into

identifying as CE2 the span "than those in adjacent normal tissues". Additionally, we

check if the next token outside the spans is a closing bracket, i.e. ")", and if so we

add it to the span. Then, we also check if there is at least one entity inside the span

and if not, we check if there is an entity right after the span and add it. To sum up,

considering example in Figure 5.17, the output of the extracted component is a list of

dictionaries, each containing a match with the relevant components. An example of

a match for the sentence in Figure 5.17 is:

• "scale_indicator": lower

• "compared_aspect": MiR-31 expression
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• "compared_entity_1": in bladder cancer tissues

• "compared_entity_2": than those in adjacent normal tissues
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Chapter 6

Information Extraction

In this chapter we complete the description of our implementation of DEXTER. In

particular, we present the last two modules and we explain how we handle the output

of the system. Up to now, we have extracted the components from the sentence

following the patterns we developed. Now we need to extract from them the relevant

information for the task, which are the gene or miRNA mentioned in the sentence, the

level of expression and the associated disease. The first step involves the detection

of gene, miRNA and disease mentions in the input sentence, which is achieved in

the Entity Detection and Phrase Typing module described in Section 6.1. Then, in the

Argument Filtering and Extraction module we filter out irrelevant components we may

have detected in the RE module and extract the GDAs.

6.1 Entity Detection and Phrase Typing

In the Entity Detection and Phrase Typing module we detect gene and disease names,

microRNA mentions in the text and phrases that mention expression information

or details about diseases. To achieve this goal, we developed several functions that

perform the different tasks. This module takes as input the parsed sentence and its

output will be useful in the last module to filter and extract relevant information

from matches returned by the RE module.
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Annotations

As we briefly discussed in Chapter 3, we download gene and diseases annotations

from PubTator [12]. Therefore, during pre-processing, before looping over sentences,

we collect all PMIDs that are present in the input file and retrieve annotations from

the PubTator API1. We issue a POST request to the server for 1000 PMIDs at a time

and the server returns a JSON response file with all annotations. Then, we build a

dictionary with all annotations using PMIDs as keys. In particular, for each PMID we

create a dictionary with keys: ’abstract’, where we store the text of the abstract, ’title’,

where we store the text of the title of the article, ’genes’, where we store a dictionary

of all gene mentions for the abstract (for each key representing a gene mention we

provide the corresponding gene id returned by PubTator), ’diseases’, where we store a

dictionary of all disease mentions in the abstract (for each key representing a disease

mention we provide the corresponding DOID) and ’diseases_title’, where we store

all diseases mentioned in the title only. In addition, we also create a dictionary

called ’general_annotations’ where we store two dictionaries, one for ’genes’ and one

for ’diseases’, containing genes and diseases mentioned in the abstracts. This allow us

to retain the information about genes or diseases that PubTator may have failed to

detect in one abstract, but detected in another one. Consider Example 4.1, if PubTator

fails to return the disease mention ’SCLC’, but we detected it in another abstract we

will still be able to retrieve such information from this sentence.

Example 4.1: Immunohistochemistry results showed that EHD1 protein

was significantly increased in SCLC tissues compared with normal tissues.

PubTator disease annotations contain the mention in the text and the MeSH id

corresponding to the detected disease. However, the authors of the original paper

return the DOID of the disease in order to provide a better integration with BioXpress

thus we need to perfom a mapping between MeSH identifiers and DOID. The Disease

Ontology (DO) [49] provides a standardized ontology for human diseases, integrating

disease and medical vocabularies through cross mapping of DO terms to MeSH,

ICD, NCI’s thesaurus, SNOMED and OMIM. We download the DO ontology file

1https://www.ncbi.nlm.nih.gov/research/pubtator/api.html
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in json format from the DO GitHub repository2 and for each DOID we extract

the corresponding MesH ID (using property "xref") and the name associated to

the DOID (using property "lbl"). We then create two different dictionaries, one

containing the mapping from MeSH id to DOID and one containing the names

associated to each DOID. For example, the disease "lung non-small cell carcinoma"

has DO identifier "DOID:3908" and MeSH id "MESH:D002289" thus we produce

the following entries for the two dictionaries: {"MESH:D002289":"DOID:3908"} and

{"DOID:3908":"lung non-small cell carcinoma"}. We made the two dictionaries

available in our GitHub repository as json file, namely "mesh_to_doid.json" and

"doid_to_names.json". We use the mapping between MeSH ids and DOID when

retrieving PubTator annotations while the second file is used when extracting the

associated disease in the last module.

miRNA Detection

To detect miRNA mentions, the authors of the original paper developed a regex to

retrieve such instances based on the miRBase convention [45]. However, they did

not release the regex, therefore we implemented our own version. Following the

miRBase convention [45], miRNAs are assigned sequential numerical identifier and

they use 3 or 4 letter prefixes to designate the species, such as "mir" or "miR". After

checking our input data, we developed a regex that matches two cases for the miRNA

mentions. In fact, some mentions contain the infix "mir" or "miRNA", e.g. "miR-325"

or "miRNA-101", while others contain the infix "microRNA" or "micro-RNA", e.g.

"microRNA 155". Therefore, the only difference between the two cases is that in one

we matches infix "(mi|Mi|MI)(RNA|R|r)" (so that we match all lower and upper-case

combinations) and in the other we match infix "[M,m]icro[-]?RNA". The rest of the

regex works in the same way for both cases. At the start of the mention we could

find a sequence of 3 or 4 letters that indicate we are considering a human miRNA,

e.g. "hsa-miR-107". For this reason, the first part of the regex optionally matches

the expression "([a-z]{3,4}-)?". The second part of the expression matches the

infix indicating it is a miRNA and, as we explained above, we have two different

2https://github.com/DiseaseOntology/HumanDiseaseOntology

85

https://github.com/DiseaseOntology/HumanDiseaseOntology


6. Information Extraction

forms we can match. Finally, we have the numerical identifier that can follow the

previous infix with a dash or a space and the identifier could be followed by another

letter or number, e.g. "miR-101-3p", therefore the last part of the regex is matched by

the expression "s?(([0-9]|[a-z])+)|(-[ˆ ,.]*))". In particular, expression "-[ˆ

,.]*"matches a sequence of characters that follows the infix matched in the second

part of the expression with a dash and sequence of characters that do not comprise

spaces, commas or periods.

Lastly, we developed two boolean functions that identify if a phrase is of type

"Expression" or "disease-sample", that will be useful when filtering out irrelevant

matches in the next module. To determine if a phrase, which is a span of text, is of one

of the above-mentioned type we check if the tokens inside the span comprise some

trigger words. About Type "Expression", we directly check the token word and some

triggers can be "expression", "level", etc. On the other hand, for Type "disease-sample"

we check the lemma of each token so that we can consider different word forms.

Some triggers for this type of phrases can be "tissue", "sample", "cell", "patient", etc.

6.2 Argument Filtering and Extraction

In this section, we describe the last module of the system, namely the Argument

Filtering and Extraction phase. We can divide this step into two subtasks: first we

filter matches returned by the RE module so that we keep only the one with relevant

information and then we extract the GDAs from them. In particular, we extract the

gene or miRNA mentioned, we normalize its expression level to "UP" or "DOWN"

and finally we return the associated disease. This module takes as input the matches

returned by the RE module and the output of the Entity Detection and Phrase Typing

module. We recall that for each sentence we can have multiple matches and each

match is returned by the RE module as a dictionary whose keys are the name of

the components. In this module we process each match separately, however we

check we do not insert duplicate information in the output results for the sentence.

In particular, for each GDA detected we only store one copy referring to the same

gene-expression level-disease triple.

86



Argument Filtering and Extraction

Argument Filtering

For each match we check if the components we have found are of the correct

type. In particular, we check the CA contains a gene or miRNA or is a phrase

of type "Expression" while the CE1 must contain a disease or be a phrase of type

"disease-sample". If the checks succeed, we keep the components and start extracting

relevant information otherwise we discard the match and check the others. If we

are considering a TypeA sentence, we also need to check the CE2 contains a disease

mention or is a phrase of type "disease-sample". For each component, we perform a

series of checks. If one succeeds we simply return True otherwise we continue with the

next checks. If none of the checks succeed for one component, if we are considering

the CA or the CE1, we raise a custom Exception called "InvalidArgument" and

discard the whole match we were considering. In the case of the CE2 instead, if the

check fails and we do not have any other matches we simply discard the CE2 and

change the sentence type to TypeB.

About the CA, we firstly check if it contains a gene mention by checking the gene

annotations for the abstract the sentence belongs to returned by the previous module

or if it contains a miRNA mention by searching a match for the regex we developed

also in the previous module. If we found none, we check if the CA is a phrase of

type "Expression" by using the boolean function described in Section 6.1. We can

further check for gene mentions using the general_annotation dictionary we described

in Section 6.1. Finally, we perform a lower-case normalization and perform the same

checks again, to avoid missing mentions due to different cases of the letters in the

words. As we said before, if none of the checks succeed, we stop.

Example 6.1: Here, we show that miR-136 is significantly upregulated in

human NSCLC primary tumors and cell lines compared to their nontumor

counterparts.

Consider the sentence in Example 6.1, the RE module returns two matches for this

sentence which differ only in the CA. In fact, one match identify token "we" as CA

while the other correctly identify the word "miR-136" as CA. Following the reasoning

we described above, the check fails for the match with "we" thus we discard such
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match and we only proceed with the one containing the correct CA.

We perform the same checks both for CE1 and CE2. In particular, we firstly

check if the component contains a disease mention by searching among the one

returned for the specific abstract the sentence belongs to. Then, we check if the

phrase corresponding to either CE1 or CE2 is of type "disease-sample" and finally

we can check for disease mentions inside the components by searching among the

general_annotations dictionary.

Extraction

Once we checked the components are of the correct type, we extract relevant

information from each match. In particular, we extract the gene/miRNA mentioned

in the sentence, its expression level normalized to "UP" or "DOWN" and the associated

disease. We also set a flag comparison which is useful when we search for results that

can extend BioXpress database. We described the meaning of this flag in Section 3.1.

We extract the gene or miRNA mentioned in the sentence from the CA by means of

a function that returns a list of the genes or miRNAs mentioned in the CA. Each entry

of the list is a list as well containing the gene or miRNA mention and its identifier. In

particular, for genes we return as identifier the one we retrieved from PubTator while

for miRNAs we simply return a string "micro-RNA" to distinguish them from genes.

We allow for multiple genes or miRNAs because we may encounter sentences where

we have data about multiple genes or miRNAs expressions, as we can see in Example

6.2. In this case, the function will return "VEGF", "BMP-2" and "BMP-4" thus when

we output the result of the full pipeline we write one row per gene mention.

Example 6.2: Our study has shown that the expressions of the VEGF,

BMP-2 and BMP-4 mRNAs were significantly higher (7.1-fold, 25.6-fold

and 2.3-fold, respectively) in lung cancer samples than in adjacent normal

lung tissues (real-time RT-PCR).

As we did for filtering, we perform a series of operation to extract the gene or miRNA

mentions. When one of this operation returns some results, we stop and return the

mentions otherwise we proceed with the next search. If we found no gene or miRNA

88



Argument Filtering and Extraction

mention, we raise a custom Exception called "GeneNotFound". Firstly, we check if

the CA comprises any of the gene mentions returned by PubTator for the abstract

the sentence belongs to or any miRNA mentions. If we found none, we check for

the token that precedes the CA since in some cases the gene expressed is placed just

before the CA we detected but has no dependency connection to it. Then, we can

also check for gene mentions in the general_annotations dictionary or perform some

lower-case normalization or term expansion to mitigate some issues we encounter

with mentions. For example, we may refer to the same gene with different names

that could be abbreviations or different terms for special characters, such as 𝛽 (which

could be referred to as "beta") or 𝛼 (which could be referred to as "alpha").

Example 6.3: In the present study, we confirmed that T𝛽4 expression was

increased in NSCLC tissues and cell lines.

Consider Example 6.3, here the expressed gene is "T𝛽4" but in the mentions returned

by PubTator such gene is stored as "Tbeta4" thus we find no information about the

expressed gene at first. To solve this issue, we expand term "𝛽" to "beta" and check

again the mentions so that we can return the expressed gene correctly.

Information about the expression level of genes and miRNAs is stored in the SI

component thus we normalize such token to either "UP" or "DOWN". This operation

is performed by checking a mapping between possible SIs and their normalized level.

For example, terms "upregulated", "increased" or "positive" refer to level "UP" while

terms like "reduced", "silenced" or "low" refer to "DOWN". There are some cases in

which the SI is not in dictionary because it may have a neutral connotation and not

refer to a specific level.

Example 6.4: HOTAIR was highly expressed both in NSCLC samples and

cell lines compared with corresponding normal counterparts.

Consider Example 6.4, the SI is identified in "expressed", which is neutral. In this case

we try to expand the term by checking any adverb depending on it. In fact, in the

example we find adverb "highly" thus we can return expression level "UP". If we find

no adverb depending on the SI and the SI is "expressed", we assume it refers to level

89



6. Information Extraction

"UP". Additionally, we can also check if any token corresponding to an expression

level is connected to the other components and return its normalized level. If even this

expansion fails, we raise a custom Exception called "MistypedExpressionLevel".

DEXTER was primarly developed to extend BioXpress database, which contains

GDAs referring to cancer where the comparison is between cancer tissues and some

control samples. For this reason, in the original system authors set a comparison flag

which identifies if we have an implicit comparison for TypeB sentences and we check

if there is a comparison with a control sample in TypeA sentences. Since this is a

reproducibility study, we developed a function to assess this flag as well, however in

the files containing the results of the original system there is no information about

this flag therefore we do not output it. We perform two different operations based on

the sentence type. If we are dealing with a TypeA sentence, we check if either the

CE1 or CE2 contains any "Control Triggers", which could be "healthy", "control", etc.

If we find any control trigger words in the components, as in Example 6.5.(a), we set

the flag to "Control", otherwise we set it to "Not-Control" as in Example 6.5.(b).

Example 6.5:

(a). JAK1 expression was higher in NSCLC tissues than in normal lung

tissues. (flag: "Control")

(b). The expression of STIM1 was significantly higher in carcinoma tissue

than in the adjacent non-neoplastic lung tissue. (flag: "Not-Control")

About TypeB sentences, we check if the SI refers to any "Control Implicit Triggers",

which are terms that imply a comparison with another sample. Such words could be

"increased", "reduced", etc. This is the case of sentence in Example 6.6. and here we

set the flag to "Control_Implicit". On the contrary, if the SI is not a control implicit

trigger we set the flag to "none".

Example 6.6: MiR-145 is downregulated in several human malignancies,

including lung cancer, but the responsible molecular mechanisms remain

unclear. (flag: "Control_Implicit")
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Inferring the disease

The only thing left to extract is the associated disease, which requires some extra

care. We developed a function to extract the associated disease that returns the

DOID of the disease, the corresponding DO name (which is stored in the dictionary

doid_to_names available in the homonymous json file), the disease mention in the text

and the location where we found it. In fact, we can either extract the disease directly

from the CEs (location: "Sentence_ARG") or we may need to infer it from the title

(location: "Title") or from context (location: "First Sentence/Sentence").

Firstly, we check if the CE1 or CE2 contains any disease mention by searching

among the ones returned by PubTator for the abstract the sentence belongs to. If we

found any, we check if it is not a generic disease such as "tumor", "cancer", etc. In fact,

consider sentence in Example 6.7, here we found the associated disease to be "tumor"

(from CE1) yet it is a generic disease and we do not return it. If we find a non-generic

disease, we return it and the location is set to "Sentence_ARG" otherwise we further

check if the CEs contain any disease mentions from the ones in the general_annotations

dictionary.

Example 6.7: MiR-204 expression was decreased in tumor samples com-

pared with non-cancerous tissue-derived controls. (PMID: 25157435)

If we found no disease mentions in the CEs or we only found generic disease,

we can infer it from the abstract. We recall that in the Entity Detection and Phrase

Typing module (Section 6.1), for each PMID we also stored the disease mentioned

in the title, the title text and the whole abstract text. Firstly, we check the diseases

mentioned in the title and if any of them does not refer to a generic disease we return

it and set the location to "Title". In fact, any disease mentioned in the title is likely to

be the disease associated to the sentence. Back to Example 6.7, the title of the article

is "miR-204 functions as a tumor suppressor by regulating SIX1 in NSCLC." thus we find

the disease mention "NSCLC" in the title and we return it as the associated disease

for the sentence.

If we find no disease in the title, we infer it from the abstract by parsing the

full text with the SpaCy pipeline and by checking each sentence separately using
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the iterator "doc.sents". We firstly check if there is any disease mentioned in the

first sentence with the same techniques employed for the CEs and if so we return

it and set the location to "First Sentence". If we find no disease in the first sentence,

we look for sentences that may discuss the investigational aims of the paper or

describe the experimental set-up. In the first case, we check the sentence contains

any "investigation triggers" that can be "investigate", "demonstrate", etc and then we

check the subject of the sentence is either "we", "authors", "results" or similar terms.

Then we extract the disease mention from such sentences.

Example 6.8: MiR-21 expression was higher in cancer tissues than in

normal tissues. (PMID: 22323912)

Consider the sentence in Example 6.8, we found no disease either in the CEs or in

the title but in the abstract we found the following sentence "The aim of this study was

to investigate the significance of miR-21 expression level in relation with clinicopathological

factors and prognosis in breast cancer.". As we can see, we have trigger "investigate" and

the subject is "aim" thus we extract the associated disease to be "breast cancer" (DOID:

1612) and set the location to "Sentence". Similarly, in the second case we check if there

is a sentence that contains any "analyzed triggers" like "tested", "analyzed", etc. If

so, we check for disease mentions in such sentence and return it as the associated

disease together with the location set to "Sentence". If we cannot find any disease

after inference, we return the generic disease we detected earlier if we found any.

Otherwise, we raise a custom Exception called "DiseaseNotFound".

At the end of the pipeline we output results as a csv file where each row is a

GDA. We recall we can have multiple matches for each sentence and we process

each match separately hence before writing each row we check we do not already

have information about the same gene, expression level and associated disease for

the considered sentence. We may still have multiple rows for the same sentence in

the case we extract more than one expressed gene. Each output row comprises the

following information:

• "PMID": PMID of the abstract the input sentence belongs to.

• "geneMen": expressed gene
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• "geneID": identifier of the gene, which is the gene ID for genes and ’NA’ for

microRNAs.

• "DOID": DO identifier of the associated disease

• "DOID_Name": DO name of the associated disease

• "DiseaseMention": mention in the text of the associated disease

• "DiseaseDetectedFrom": location of the disease mention, which can be either

"Sentence_ARG", "Title" or "First Sentence/Sentence".

• "ExpressionLevel": gene/miRNA expression level normalized to "UP" or

"DOWN".

• "SentenceType": sentence type, which can be either "TypeA" or "TypeB".

• "Sample1": text of the CE1.

• "Sample2": text of the CE2.

• "Sentence": text of the input sentence.
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Chapter 7

Results and Discussion

In this chapter we evaluate our implementation of DEXTER by using data provided

by the authors in BioXpress1 as ground truth to assess the accuracy of our system. In

particular, we are interested in how many sentences we can parse with our system and

the correctness of the results. The chapter is structured as follows: in Section 7.1 we

provide a brief overview of the input data and give some statistics of the number of

entries and unique sentences. Then we also describe the evaluation notebook we used

to assess our system’s performance. Finally, in Section 7.2 we provide some statistics

of the output of our system and discuss the results in terms of percentage of parsed

sentences and correctness of the results. We also perform an error analysis where

we compare the dependency parser we are using and the one used in the original

system and we also investigate the impact of PubTator in our system’s performance.

7.1 Materials and Methods

As we explained in Section 3.3, the original system was evaluated in two different

ways. One evaluation focused on results relevant to BioXpress while the other tested

the general ability of DEXTER of extracting GDAs. The motivation behind our work

is to reproduce DEXTER thus our evaluation focuses on obtaining the same results

as the original system described in [9]. For this reason, we focus on testing our

implementation on data provided by the authors of the original paper available in

1https://hive.biochemistry.gwu.edu/bioxpress
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Table 7.1
Input data statistics. In the second and third columns we provide the number of entries in the file
based on the sentence type. In the forth and fifth columns we provide the number of unique sentences
in the file based on the sentence type. In fact, we may have multiple entries for the same sentence.

Use Case # of input entries # of unique sentences
TypeA TypeB TypeA TypeB

lung cancer 985 2019 788 1574
GT genes 106 236 97 201
microRNAs 1842 4448 1468 3251

BioXpress. Since the input data comprises results obtained from runs of DEXTER

original system, ideally we would like to parse all sentences and extract the same

GDAs.

Test Data

The sets of sentences we use as test data comprises the results of the original system

for three use cases, filtered according to BioXpress guidelines. In particular, we recall

that DEXTER output is appropriate for BioXpress if the associated disease is cancer

and there is a comparison between some cancer tissues and an healthy sample [9].

These three use cases comprise abstracts related to lung cancer, a group of genes

called glycosyltransferases (GTs) and microRNA’s role in cancer. We provide some

data statistics for all three use cases in Table 7.1. For the first file, data focuses on the

relation between some genes and different types of lung cancer. As we can see from

Table 7.1, we were provided with 3088 entries, in particular 1059 entries comprise

TypeA information while the other 2029 extract GDAs from TypeB sentences. We

also provide some statistics on the number of unique sentences in the file, since

we may extract multiple entries from the same sentence. For lung cancer we have

808 sentences identified as TypeA and 1480 detected as TypeB. The second use case

focus on GTs, which is a family of genes which influence protein functions thus their

dysfunction or deregulation may lead to disease, including some types of cancer

[9]. This set is smaller than the previous one and comprises 277 unique sentences,

respectively 99 TypeA and 178 TypeB, for a total of 408 entries, divided as 130 TypeA

and 278 TypeB. For the last dataset, the authors of the original paper focused on the
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role of microRNAs in cancer. In fact, in cancer cells miRNAs have been found to

be heavily dysregulated thus it is crucial to investigate how miRNAs regulate the

development of human tumors by acting as tumor suppressors or oncogenes [50].

We have 4719 sentences regarding microRNAs, respectively 1468 TypeA and 3251

TypeB, for a total of 6290 entries divided as 1842 TypeA entries and 4448 of typeB.

Data for the use cases is provided as three csv files in BioXpress website2 thus we

downloaded the files and run our system on them both separately, producing three

different output files, and then we merged all three input files and provide a single

output run to assess the quality of our implementation in terms of accuracy, precision

and recall.

Evaluation Notebook

We assess our implementation performance by means of a Jupyter Notebook [51],

where we compare our output with the test data we previously described. We briefly

explain how the comparison was performed for all three use cases in a single run.

We also computed the same metrics for each use case separately to see if the system

performed much better in some cases. Firstly, we store in memory both the test

data (i.e, our ground truth) and the output run by loading the csv files as a pandas

DataFrame object3. We check the number of entries for both the ground truth and

our output based on the sentence type and then we compare the number of unique

sentences between the two files. In particular, we count how many unique sentences

were correctly parsed by our system, i.e. those that did not raise any exception, and

how many unique sentences there were in the test data. The ratio between these

two values gives us the percentage of parsed sentences, which ideally would be

100%. Then, we assess the correctness of our output data by comparing our entries

with the one in the test data. To do so, we create a dictionary based on the ground

truth file where for each PMID we store a dictionary for each sentence belonging

to the same abstract. In each sentence dictionary, we store information about the

genes mentioned in the sentence (i.e, column "geneMen"), their expression level (i.e,

2https://hive.biochemistry.gwu.edu/bioxpress
3https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
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Table 7.2
Data statistics referring to the output of our implementation of DEXTER pipeline, when we run each
use case separately. In the second and third columns we provide the number of entries in our system
output based on the sentence type. In the forth and fifth columns we provide the number of processed
sentences in the file based on the sentence type. In fact, we may have multiple entries for the same
sentence.

Use Case # of resulting entries # of processed sentences
TypeA TypeB TypeA TypeB

lung cancer 1059 2029 808 1480
GT genes 130 278 99 178
microRNAs 1974 4151 1479 3111

column "ExpressionLevel") and the sentence type (i.e, column "SentenceType"). We

assess the correctness of our output both with respect to the expression level and

sentence type. In both cases, all sentences that are present in the ground truth but

not in our output are considered wrong matches. About the expression level, we

consider correct all output entries were we have the same expression level and gene

mention of the ground truth. Therefore, we not only check if we extract the same

expression level but we also verify we are considering the same gene. On the other

hand, when assessing the correctness with respect to the sentence type we only check

we identify the sentences with the same type as in the ground truth. We assess

the system performance by computing the accuracy, precision, recall and F1 score

with respect to the expression level and sentence type. In order to compute such

metrics, we use the sklearn.metricsmodule4 and use the weighted average when

computing precision, recall and F1 score.

7.2 Results

In this section we describe our implementation performance. As we briefly mentioned

before, we run our system on the three use cases separately and provide one output

file per use case but we also perform one single run for all three use cases merged

together in a single file. In Table 7.2 we provide some statistics on the output data for

each use case. Overall, if we compare the numbers with the one in Table 7.1 we notice

4https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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that in general we are identifying more TypeA sentences than the one in the input

files and fewer TypeB. This result can have two explanations: there may be some

mistyped sentences in the input files that we are correctly classifying or we wrongly

detect some CE2s that make our system classify such entries as TypeA while they

are indeed TypeB. We manually checked such sentences and we found out there are

some entries that are wrongly identified as TypeB in the input data. In fact, TypeA

sentences can be viewed as TypeB if we do not consider the sample of comparison.

Consider sentence in Example 7.1, we can clearly identify it as TypeA however the

original system classifies it as TypeB and extract the GDA without considering the

comparison sample.

Example 7.1: The expression of SALL4 was significantly increased in

SCLC than in para-carcinoma tissues (P < 0.01).

In this case, the original system wrongly considers both "SCLC" and "para-carcinoma

tissues" as CE1 and outputs two rows with the same GDA where the only difference

lies in the CE1. On the contrary, our system correctly identifies "para-carcinoma

tissues" as CE2 and correctly classify the sentence as TypeA thus it outputs one single

row. Overall, we have 88 TypeA entries that are wrongly classified as TypeB by our

system and 335 TypeB sentences wrongly detected as TypeA. We manually checked

entries wrongly classified as TypeA and discovered that most of them are actually

typeA sentences that were misclassified in the input, thus we are extracting more

information than the original system. However, since this is a reproducibility study

we will consider such sentences as wrong matches because we are assuming our

ground truth is correct. Another thing we can notice from Table 7.2 is that we have a

greater number of entries than the input data. This may be due to some differences

in the RE module between our system and the original one. In fact, we have no clue

on how the authors of the original system apply the rules to the sentences hence we

may be applying more rules than them and extract more matches that may contain

the same information but are marked as different. Overall, what concerns us is to

find correct matches therefore we are not bothered by the higher number of entries

as long as we achieve high accuracy.
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We recall we evaluate our system performance in terms of the percentage of parsed

sentences and the accuracy of the results. Overall, our implementation correctly

parse 97% of the sentences, these are sentences for which we are able to extract GDAs

and that do not raise any exceptions during computation. Ideally, our system should

parse 100% of the sentences since our input data is actually the output of the original

system. For this reason, we perform an error analysis to understand why we are

missing some sentences.

Dependency Parsing

After a deeper analysis, we discovered that most missed sentences were due to

parsing error that translated into unmatched sentences in the RE module. We recall

the original system employs the Stanford CoreNLP toolkit [10] while we are using

the SpaCy package thus we perform a comparison between the dependency parsers

available in the two libraries. In fact, we noticed several parse trees computed by

SpaCy were different from the one returned by the CoreNLP library and in some cases

the resulting dependency tree from SpaCy library failed to detect some dependencies

that are correctly displayed by the CoreNLP parsing. We provide a brief introduction

to the Dependency Parsing task in general and perform a comparison between the

dependency parsing in SpaCy and CoreNLP.

We recall we defined the Dependency Parsing task at the beginning of Chapter 5

since DEXTER is based on matching patterns in the dependency tree of each sentence.

We saw that Dependency Parsing produces a dependency tree, that is a directed

graph where the vertices are the tokens of the sentence and arcs display grammatical

relationships among them. There are many approaches used to solve the Dependency

Parsing task which comprise transition-based methods, graph-based models and

neural architectures. Transition-based dependency parsing is based on two main

data structures: a stack, where the parse is built, and a buffer, which comprises

tokens to be parsed. The parser is non deterministic because there is no unique

action to take thus an oracle is used to make decisions on which transition to apply.

Oracles are usually produced using supervised learning methods. The basic model

for transition-based dependency parsing is arc-standard, which allows for three
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transition operations. SHIFT removes the first buffer element and pushes it into the

stack. This transition is applied when no other action is applicable. LEFTARC pops

the second top-most stack element and attaches it as a dependent to the top-most

element. This operation is applicable it there are at least two elements in the stack

and the second element is not the root node. RIGHTARC pops the top-most element

in the stack and attaches it as a dependant to the second top-most element. This

transition is applicable when there are at least two elements in the stack and all of the

dependants of the top-most element have already been assigned. There are other

transition-based models like attardi parser, beam search and arc eager. We focus on

arc eager since SpaCy Dependency Parser is based on it. Arc Eager allows for words

to be attached to their heads as soon as possible by making some small changing in

the previous operations and adding a new transition called REDUCE. SHIFT operation

is the same as in arc standard. LEFTARC pops the top-most stack element and attaches

it as a dependent to the first buffer element. RIGHTARC attaches the first buffer element

as a dependant of the top-most stack element and shifts the first buffer element into

the stack. Finally, REDUCE pops the stack. Given the dependency tree produced as

output by the system and a corresponding reference parse, the performance of a

dependency parser is evaluated following two scores, namely Unlabelled Attachment

Score (UAS) and Labelled Attachment Score (LAS). UAS is the percentage of words

in the input that are attached to the correct head, ignoring the dependency label. On

the other hand, LAS is the percentage of words in the input that are attached to the

correct head with the correct dependency label [7].

While SpaCy Dependency Parsing is based on arc eager and uses a dynamic

oracle trained using an online learning strategy [13], Stanford Dependency Parsing is

based on arc standard and uses a different neural architecture to train the oracle [52].

More precisely, the SpaCy dependency parser described in [13] rely on a previous

work, where the authors developed a dependency parser modifying the Arc Eager

transition system to allow for non-monotonic transitions [53]. We report the UAS

and LAS scores of the two systems in Table 7.3. Results are taken from [13] and

were computed using the OntoNotes corpus converted into dependencies using the

ClearNLP 3.1 converter with the train/dev/test split of CoNLL 2012 shared task [13].
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Table 7.3
SpaCy Dependency parser and Stanford CoreNLP Dependency Parser scores. We report the scores
from [13], which were computed using the OntoNotes corpus converted into dependencies using the
ClearNLP 3.1 converter with the train/dev/test split of CoNLL 2012 shared task.

Tansition System UAS LAS
SpaCy [13] 91.85 89.91
Stanford CoreNLP [52] 89.59 87.63

Figure 7.1: We display the dependency tree of the same sentence both using the Spacy dependency
parser (figure above) and the Stanford CoreNLP one (figure below). The SpaCy tree is displayed using
the DisplaCy package while we computed the dependency tree using the tool https://corenlp.run/.
We only display the part of interest of the dependency tree computed by the Stanford library due to
space issues.

From this table, it looks like SpaCy dependency parser outperforms the Stanford one

by 0.97% both on UAS and LAS, however we discovered that in our datasets there are

some cases in which the Stanford dependency parser produces the correct tree while

the SpaCy parser fails to detect some dependencies. For example, we discovered

that if we place a part of the sentence that is not the subject at the beginning of the

sentence, SpaCy dependency parser struggles to detect the correct subject. Consider

sentence "In human lung cancer, prostacyclin synthase (PGIS) and PGI2 are down-regulated,

whereas PGE2 synthase (PGES) and PGE2 are up-regulated.", the dependencies for both

libraires are displayed in Figure 7.1. Here we can see that the SpaCy dependency

parser fails to detect the subject for verb "down-regulated" thus our system will raise

an Exception and fails to extract the GDA for such sentence. On the contrary, Stanford

CoreNLP is correctly identifying the subject of the sentence in token "synthase". For

this reason, we can assess that the performance drop due to unparsed sentences is

negligible (since we are still able to parse 97% of them) and mostly due to the use of

SpaCy library.
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Table 7.4
Performance metrics. Results refer to all three use-cases and we consider the data provided in
BioXpress as ground truth. The first two columns show the performance metrics when we run our
implementation using the full DEXTER pipeline, i.e. using the PubTator annotations. The other two
columns report the system performance when using the annotations provided by the input data
instead of the PubTator annotations. Metrics are computed in terms of correct gene expression level
and correct sentence type, using metrics from sklearnwith weighted average.

Full Pipeline Without PubTator Annotations
Expression Level Sentence Type Expression Level Sentence Type

Accuracy 0.8444 0.9356 0.9293 0.9326
Precision 0.8445 0.9379 0.9296 0.9350
Recall 0.8444 0.9356 0.9293 0.9326
F1 score 0.8445 0.9361 0.9294 0.9332

Accuracy Evaluation

Our system performance is shown in Table 7.4. Results refer to all three use-cases and

we consider the data provided in BioXpress as ground truth. The first two columns

show the performance metrics when we run our implementation using the full

DEXTER pipeline, i.e. using the PubTator annotations. The other two columns report

the system performance when using the annotations provided by the input data

instead of the PubTator annotations. As already mentioned, metrics are computed

in terms of correct gene expression level and correct sentence type. "Full Pipeline"

refers to the run of all three use cases where we apply the DEXTER pipeline as

described in [9] thus for detecting gene and disease mentions we are using PubTator

API5. As shown in Table 7.4, our system achieves an accuracy of 84% on correct

expression level and of 93% on correct sentence type. Results for Precision, Recall

and F1 Score are almost identical because we are using the weighted average option

for computing the metrics. We notice that the accuracy with respect to the expression

level is 10% lower than the one considering the sentence type. We recall we consider

an entry correct with respect to the expression level if both the expression level and

the extracted gene are the same as in the ground truth. For this reason, to check if

the performance drop depends on our system implementation or it has to do with

the mentions detection we run our system without using PubTator for extracting

5https://www.ncbi.nlm.nih.gov/research/pubtator/api.html
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Table 7.5
Performance metrics. Results refer to each use case run separately. The first column reports the
percentage of parsed sentences with respect to the ground truth, which ideally would be 1. Accuracy
is computed in terms of correct gene expression level and correct sentence type, using metrics from
sklearn.

Use Case Parsed Sentences Accuracy
Expression Level Sentence Type

lung cancer 0.9687 0.8955 0.9373
GT genes 0.9295 0.8713 0.8758
microRNAs 0.9727 0.8176 0.9390

the mentions but we directly use the mentions detected in the ground truth. The

results of such run are reported in the "Without PubTator Annotations" columns in

Table 7.4. As expected the system performance in terms of correct sentence type

is unchanged, however we can notice the performance in terms of expression level

improves by almost 10% and achieves an accuracy of almost 93%. This means that

most of the wrongly detected levels are due to the different version of PubTator and

do not depend on the system implementation itself. In fact, PubTator is an automated

tool based on a neural model that is periodically retrained therefore the version of

PubTator we use to retrieve mentions is different from the one used by the authors of

the original paper [9].

Finally, we computed the same performance metrics for each use case separately,

so that we can assess if our system works well for all use cases or performance differs

based on the dataset. We report the percentage of parsed sentences and the accuracy

based on correct sentence type and expression level for each use case in Table 7.5. We

notice that the percentage of parsed sentences is above 92% for all three use cases. In

particular, for the first and last use case, such value is almost 97% while it drops to

93% for the second dataset. This could be due to the fact that the second use case has

fewer entries that the other two hence a missed sentence plays a more important role

in the computation of the metric. The same holds for results about the accuracy with

respect to the sentence type. About the correctness based on the expression level,

all use cases reaches almost the same results. In particular, the first two use cases

have an accuracy of 87/89% while the last one reaches only 81% accuracy. These
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results refers to full runs where we used the PubTator API to detect mentions and

after a deeper analysis we discovered that most mention errors were related to the

microRNA use case. Overall, the difference in performance between the use cases is

negligible and Table 7.5 confirms our system works well in all three datasets.
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Chapter 8

Conclusion

This work reproduces DEXTER, a system to automatically extract GDAs from biomed-

ical abstracts [9]. The goal is to provide a reliable baseline for future works regarding

RE. We implemented DEXTER as an end-to-end application that takes as input

biomedical abstracts and returns relevant information about the expressed gene/mi-

croRNA and the associated disease. We preserved the original block architecture and

we made some changes in each block to enable a seamless integration of the different

modules. The system is entirely developed in Python thus we used the SpaCy library

[13], which provides annotated text using some pre-trained models available on their

website1. We also added a custom component to the SpaCy standard pipeline to

expand entity mentions using hand-craft rules which will be useful when extracting

information from the matched components. We evaluated the effectiveness of the

reproduced version of DEXTER by running our implementation on the sentences of

the three use-cases available in BioXpress and compared the results in terms of correct

sentence type and gene expression level. Overall, our system was able to parse 97%

of the input sentences while discarded sentences are mostly due to missing PubTator

annotations or problems related to the Dependency Parsing. In fact, after a deeper

analysis we noticed several parse trees computed by SpaCy were different from the

one returned by the CoreNLP library therefore most unparsed sentences can be

attributed to it. Nevertheless, the benefits of having an end-to-end system completely

written in Python outweigh the liabilities therefore we decide to maintain the SpaCy

1https://spacy.io/usage/models
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library. The system achieved an accuracy of 84% on the gene expression level. Such

value raises up to 93% if input mentions are used instead of PubTator annotations.

In fact, PubTator is an automated tool based on a neural model that is periodically

retrained therefore the version of PubTator we use to retrieve mentions is different

from the one used in the original paper. As a consequence, missing mentions affect

negatively the accuracy performance of the system. Nevertheless, results in Table 7.4

demonstrate that the system is reproducible and it can be used as a benchmark for

future works. However, implementing this system highlighted its limits. DEXTER

is a rule-based model hence information are extracted based on patterns written to

match sentences with a very specific syntactic structure, namely TypeA and TypeB

sentences. The main drawback of using patterns to extract relations lies in the fact

that language is incredibly varied hence there are a lot of ways of conveying the

same message. This translates into requiring a huge number of patterns for each

relation, that is laborious, since it requires the cooperation between domain experts

and linguists, and time-consuming. The implemented version of DEXTER is publicly

available in GitHub. In this way researchers can compare newly developed systems

with a state-of-the-art instead of merely rely on annotated data. An extended abstract

of this work has been presented in the 10th edition of the PhD Symposium on Future

Directions in Information Access (FDIA) held in Lisbon, Portugal in July 2022. The

proceedings of such event will be published at CEUR-WS.org.
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