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Abstract

The handover of objects consists of a joint action of a giver transferring an object to a receiver.

Providing such capability to collaborative robots is crucial for human-robot collaboration in

manufacturing scenarios, especially when people are involved. The objective of this work is to

provide a general framework for a real-time, object-agnostic human-to-robot handover. After

the generation of a point cloud of the scene by means of a single RGB-D sensor mounted on the

robot’s gripper, the proposedmethod comprises three phases. The first one involves the segmen-

tation of the scene, which allows to distinguish between the human hand and the object being

held. The second phase consists of generating a set of possible grasps from the elaborated scene.

Finally, the third phase regards the selection of the feasible grasp poses according to three de-

fined criteria. The proposed approach consists of constructing a possible implementation for the

Human-To-Robot handover task, leveraging and modifying models found in the literature. In

particular, a faster version of the EgoHOS [1] model, Fast-EgoHOS, for the segmentation task

has been proposed and compared to its original implementation, named Complete-EgoHOS.

Moreover, a comparison has been conducted between three state-of-the-art models for grasp

generation, which are GraspNet [2], 6-DoF GraspNet [3], and Contact-GraspNet [4]. Based on

the best segmentation-grasp detection model configuration, identified through an offline evalu-

ation in terms of accuracy, execution time, and grasp quality, an online evaluation is performed.

This is conducted by measuring the success rate and the time needed to perform an handover

attempt. The presented approach allows us to achieve a value of IoU of Fast-EgoHOS of 78.8%

compared to the 82.84% of Complete-EgoHOS, with a significant advantage in terms of infer-

ence time. In the online evaluation, a grasp success rate of 82.9% is achieved with the Fast-

EgoHOS-Contact-Graspnet configuration and of 80.3% with Fast-EgoHOS-Graspnet. Results

are obtained considering a set of 19 distinct objects presented in various positions.
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Chapter 1

Introduction

In recent years, there has been a growing interest in the collaboration between humans and

robots in industrial and social environments, especially in dynamic and unstructured settings.

This is also evidenced by the increasing number of global sales and integration of collaborative

robots in industry [5], [6], which are designed to work alongside human workers. One of the

key challenges in developing cobots is the development of appropriate systems to effectively

respond and perceive to external stimuli, especially in workspaces that may include the presence

of people [7]. These robots are employed in various scenarios, such as warehouse management

[6], healthcare [8] and agriculture [9], where flexibility, dexterity, and adaptability are important

factors to be considered.

The interaction between people and collaborative robots can be summarized as cooperation

and collaboration. These terms are typically used interchangeably in Human-Robot Interaction

(HRI) research, although they are not the same concept. The cooperation between agents is

described as a sequence of independently executed actions towards a shared goal. In contrast,

collaboration is described as a sequence of shared actions towards a common goal [6], [10].

Collaboration between humans and robots can be exemplified as the combined actions needed

to achieve a common task, i.e. assembling an object. In this particular context, a robot may

collaborate with a human operator by passing the appropriate object at the right time, or, in an

industrial environment, helping him to transport part of it.

The ability of robots to interact with diverse and unpredictable environments is an essential

skill for human-robot interaction, with object manipulation being an important part of it [11]–

[15]. One of the ways robots can interact with objects is by grasping them, which is the action

of constraining an object by applying forces and torques on its surface [16].

For a robotic arm, manipulating the environment can be challenging in terms of perception,

planning and control. Let us take as an example the pick-and-place problem, which requires the

robot to move an object from one location to another. The perceptual aspect of this problem
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Figure 1.1: Illustration taken from [19]. This image shows an example of how grasps in the H2R

paradigm can be pre-planned according to the manner in which an object is held by a person.

concerns the robot’s ability to perceive its surrounding environment, identifying the objects in

the scene. In particular, the perceptionmust focus on the object to be picked up and on the contact

points that would lead to a robust grip. Once the target object has been selected, a set of possible

grasps must be computed, selecting only those which are located within the robot’s workspace.

At this point, the planning and control systems need to identify which is the optimal route to

reach the generated grasp, while avoiding other elements present in the scene. The overall task

can be computationally expensive, proportional to the number of robot degrees of freedom to

be managed [17]. The task can also be challenging depending on the system’s knowledge about

its surrounding, particularly in the case of objects with unknown characteristics, such as size,

weight, or shape.

The pick-and-place task can be further complicated when a human being is involved, for

instance, when an object needs to be picked up from their hand or vice versa. In such cases,

the action performed is termed object handover, which is the act of transferring an object from

a giver to a receiver [15]. The challenges are mainly the same as the previous example, with a

particular emphasis on the safety aspect. In fact, the robot must take into account the motions

and the unpredictability of the person.

According to the definition of object handover, there are three distinct paradigms between

human and robot agents: human-to-human (H2H), robot-to-human (R2H), and human-to-robot

(H2R). H2H interactions, in the context of handover, refer to the joint actions between two hu-

mans exchanging an object. Although this type of actions may appear natural to us, it involves

different and complex aspects, from the representation of the goals to the processes for accom-

plishing them. These processes may include monitoring the execution of the task and predicting

the action the other agent may perform. People tend to form representations either of their own

goals and tasks and those of their partner. They also monitor the advancement of the tasks and

try to predict the outcome of one’s actions in the immediate future [18].

On the other hand, R2H and H2R handover paradigms involve the presence of a robot as the

giver or the receiver. In both cases, the main actions to be performed are similar to the ones of

the H2H paradigm. To better clarify this concept, it is possible to define a sequence of actions
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Figure 1.2: Illustration taken from [20]. This image shows where a suitable location for human-

robot interaction can be located. In particular, it can be located at the intersection between both

human and robot workspace. The image illustrates this area for various distances (70cm, 110cm,

150cm) between the two agents.

that are in common to the three paradigms. The first one involves the communication of intents,

which is the ability of communicate and comprehend the intentions of the other agent. In the

case in which the human agent passes an object to the robot, the intent of the person can be in-

terpreted by robots, for instance, analysing human’s kinematic features [21]. The second action

is the grasp planning, which consists of the giver planning their motions considering the task of

the receiver. For instance, in case the task involves a handover, the giver considers how to grasp

the object so as to offer it to the receiver in the best way possible. An example of this is pro-

vided by Figure 1.1, where some predefined grasps poses are defined. The third action is about

the perception of the scene, which is the ability of gathering information about the surrounding

environment. For human-robot handovers, it consists of distinguishing the human’s body, the

object to pick and the elements being part of the environment. The fourth one regards the lo-

cation in which the handover should occur, which must be reachable by both agents. In H2H

handovers, it has been observed that the location occurs midway [22], while for the H2R and

R2H paradigms, it should take place at the intersection between human and robot workspaces, as

depicted in Figure 1.2. In particular, the H2R handover generates a set of feasible grasps starting

from the knowledge provided by the perception system. Some examples based on deep learning

techniques, which will be discussed in Chapter 2, include GraspNet [2], 6-DoF GraspNet [3],

Contact-GraspNet [4], or AnyGrasp [23]. Finally, the fifth action is the motion planning and

control, which consists of the actuation of the motion for performing the task. In the H2H inter-

action, movements are generally smooth [24]. In contrast, for the other paradigms, motions are

represented as a sequence of separate and successive phases. These involve the motion legibility

and predictability, which are the ability of one agent to understand and predict the other agent’s

movements. Furthermore, the phases should also allow for the robot’s motion robustness, reac-
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Figure 1.3: Illustration taken from [12]. Left: A typical robotic arm configuration with an

eye-in-hand camera. This is the same configuration that will be used in the experimental part.

Right: The three aspects that are involved in object handover, namely, grasp pose detection, to

generate a set of suitable grasps for the object, grasp planning, to generate a trajectory, in order

to successfully grasp the object, and the control subsystem, to actually move the robotic arm.

tivity and context awareness, which consists of the adaptation of the motion to changes in the

environment [25].

This sequence of actions, in the context of handover, can be divided into two main phases

[15]: the pre-handover phase, which involves communication between the two agents about their

intentions and the grasp detection, and the physical handover, which begins when the receiver

makes contact with the object and ends when the object is fully in the hold of the receiver.

Although R2H and H2R interaction paradigms involve the presence of a robot as an agent,

they face different issues, especially in terms of safety [14], [15].

Some of the challenges that R2H handovers may face are: the human comfort, where the

robot performs the task according to human expectations, such as where, how quickly, and in

which direction objects should be handed; the proactivity of the robot, in which it needs to decide

the timing and method of the handover; and the determination of when to release the object.

Instead, H2R handovers have different priorities, such as: the uncertainty of human be-

haviour, since humans may behave differently when passing an objects, e.g., in terms of speed

and grasp location and orientation; a real-time response to the human motion, which requires

efficient sensor data and fast action generation, e.g., to cope with the hand movements and ob-

stacles; and a safe grasping strategy, in which the robot must plan collision-free trajectories and

grasps pick up the object safely, without pinching the human operator or colliding with his body

part.

A complete robotic grasp system usually comprises three main modules [12]: grasp pose

detection, grasp planning and control subsystem. These are depicted in Figure 1.3. The grasp
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pose detection part is responsible for generating a dense set of grasp poses on the target object’s

surface, eventually with the object’s pose in space. The grasp planning subsystem has the role of

representing the grasps in the robot’s coordinate frame and generating a feasible path to guide

the manipulator to the target pose. Finally, the control subsystem module is responsible for

determining the inverse kinematics solution to physically move the robot.

The first module requires the implementation of a perception system. To achieve this objec-

tive, one or multiple cameras need to be installed to provide a comprehensive view of the scene.

According to their number and placement, three system configurations can be identified: the

fixed configuration, or eye-to-hand, in which a single camera is mounted on a fixed location;

themobile configuration, or eye-in-hand, where a single camera is attached to the robot; and the

hybrid configuration, in which multiple cameras are involved [17]. The role of the perception

system is to enable the robot to acquire knowledge of its surrounding environment. In the con-

text of object handover tasks, a visual systemmay comprise an RGB-D camera, that is, a camera

with an incorporated depth sensor, in a fixed or mobile configuration. The use of this type of

sensor is to facilitate the elaboration of the scene, providing depth information that would other-

wise be unavailable to a single RGB camera. Indeed, as it will be discussed in Chapter 2, depth

data can be utilized as input for image processing algorithms or to assist the robot in grasping the

target object [19], [26]–[28]. Moreover, given the depth information, it is possible to represent

the scene in the form of point clouds, which are a representation of three-dimensional data. A

point cloud is a collection of data points, defined by their x, y, and z coordinates, in a 3D space.

Figure 1.3 illustrates a typical robotic arm configuration for the pick-and-place task, equipped

with an eye-in-hand RGB-D camera. This is the same configuration that will be used in this

thesis, which is possible to see in Figure 1.4.

A possible way of processing an input image or point cloud is through the use of segmen-

tation techniques, which consist of partitioning the input into distinct regions according to their

characteristics. Segmentation techniques are referred to as 2D or 3D segmentation, respectively,

depending on the type of input data, which may be 2D images or 3D point clouds. In an object

handover task, in which the involved parts are a human and a robot, the visual system, together

with the segmentation techniques, can be utilized for distinguishing the objects from the human

body. Techniques for segmenting the human hand from the interacting object, such as Ego-

HOS [1], have already been developed. However, these are not always suitable for real-time

applications, due to their low inference speed.

Furthermore, segmentation masks can be used to remove certain of the generated grasps that

may result in the robot pinching or hitting the human body. Grasps can be generated directly

on the image plane [29], [30] or on the point cloud of the object [2]–[4], [23], [31]–[33], based

on the available data. Consequently, they can be visually be represented in the image plane in

5



(a) (b)

(c) (d)

Figure 1.4: The figure illustrates an example of object handover during the experimental phase.

Figure 1.4a shows the robot analysing the scene to segment the hand from the object and compute

a set of feasible grasp poses. In Figure 1.4b the robot moves to an approach position. Figure

1.4c and Figure 1.4d display the robot grasping the object and keep it.

the form of rectangles, which reflect the physical characteristics of the gripper, or in the form

transformation matrices, which represent the translation and rotation the end effector frame has

to perform in order to be aligned to the computed grasp pose.

The thesis will be based on theH2R handover task, which can be visualized in Figure 1.4, that

illustrates an handover attempt of the implemented approach using a wooden stick. In particular,

it focuses on the segmentation part, which is responsible for distinguishing the hand from the

object, and the grasp detection component, which is responsible for generating a set of feasible

grasps. The main contributions are the following:

1. A faster method, called Fast-EgoHOS, for the segmentation of hand and object, which is

designed to achieve good accuracy while maintaining the system fast, utilizing a smaller

network with emphasis on a post-processing phase;
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2. The adaptation of three different state-of-the-art grasp generation models, namely Grasp-

Net [2], Contact-GraspNet [4], and 6-DoF GraspNet [3], originally designed for objects

placed on a plane surface, to work in the H2R context;

3. An offline evaluation of either the segmentation and grasp generation modules is con-

ducted in terms of execution time, accuracy, and ability to generate feasible grasps, with

the objective to select the best segmentation-grasp generation pair;

4. An online evaluation, of the selected configuration, is performed in terms of success rate

and execution time on a set of 15 distinct objects, varying in size and shape, for a total

of 456 handover trials. This is followed by an analysis of the encountered problems and

limitations.

This thesis is organized as follows. Chapter 2 offers a review of the state-of-the-art tech-

nologies regarding 2D and 3D segmentation and grasp generation, along with some examples

of complete handover pipelines found in the literature. Chapter 3 presents the proposed solution

for this problem, while Chapter 4 describes the obtained experimental results together with the

encountered difficulties and limitations.
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Chapter 2

Literature Review

As discussed in [12], [14], a generic framework for the grasp detection system comprises three

steps: grasp pose detection, grasp planning and the control subsystem. As previously stated in

the introduction, the grasp pose detection necessitates the presence of a visual perception system,

usually comprising RGB-D cameras to have both RGB data and depth information of the scene,

along with the implementation of segmentation techniques, to distinguish the human body from

the object to pick.

It is therefore possible to rearrange these steps into four in the following way, as illustrated

in Figure 2.1. The first step concerns the visual perception system, which comprises the sen-

sors that enable the robot to perceive the scene. Then, the second step consists of the scene

understanding algorithms, which includes the visual algorithms that elaborate the scene, such

as through segmentation. The third one is the grasp detection module, which consisting of the

algorithms that allow the generation of a set of possible grasps on the object’s surface. Finally,

a motion planning module is required to physically move the robot to the selected grasp pose.

From the image, it can be observed that this type of framework is a closed loop. This is

because, in the ideal case, a robot should be able to perceive the environment and react to any

changes that occur within it. This could include the avoidance of obstacles or the motion of the

target object to be picked.

This chapter is organized as follows. Sections 2.1 and 2.2 reviews the state-of-the-art tech-

nologies for the image and point cloud segmentation. Sections 2.3 revises the grasp detection

Figure 2.1: A human-robot object handover framework as described in [12].
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taxonomy with the corresponding techniques, and Section 2.4 the used datasets and evaluation

metrics. Finally, Section 2.5 briefly describes some complete pipeline frameworks for the H2R

problem found in the literature.

2.1 Image Segmentation

Image processing refers to the manipulation and analysis of digital images, using computer

algorithms. There are numerous ways in which an image can be elaborated and analyzed. One

example is through feature extraction, which is defined as the process of extracting important

and invariant characteristics of the image. Another is object detection, which is the process of

recognizing which elements are present and where they are located in the image. Finally, image

classification, which is the task of assigning a class of belonging to the image, according to its

characteristics.

The application of machine learning to the field of computer vision is not a recent phe-

nomenon, for example [34] applies it successfully in 1989. However, it has received more

interest following the introduction of the AlexNet [35] model, which demonstrated the success-

ful application of deep learning to the image classification task. Although this model reaches

state-of-the-art performance with respect to other technologies, it suffers of some limitations,

such as the high computational cost and overfitting. Moreover, deep networks may also suffer

of the problem of vanishing or exploding gradients, especially in the context of Convolutional

Neural Networks (CNNs) [36], an architecture for the image processing in machine learning.

These two issues manifest during the learning process, resulting in either an insufficient growth

of the neural network weight parameters, or alternatively, in an exponential growth.

More recently, the ResNet [37] architecture has emerged with the objective of overcoming

some of the inherent limitations of deep networks. This approach has improved the efficiency

in image-based tasks through the introduction of residual blocks, which address the issues of the

vanishing and exploding gradients.

In the context of this thesis, the task of semantic segmentation is of particular relevance.

It consists of the process of partitioning an input image into distinct regions and assigning to

each pixel a specific category [38]. If there is the necessity to distinguish each of the regions

as different instances of the same object, then the task is named instance segmentation. An

example of instance segmentation is Figure 2.5, where left and right hand are distinguished as the

interacting objects. Thanks to its ability of dealing with deep networks, the ResNet architecture

is widely employed as backbone for image segmentation tasks [1], [26], [27], [29], [39].

Amodel that makes use of it for the instance segmentation task is EgoHOS [1]. The objective

of this model is to infer a per-pixel segmentation mask of hands and objects from an input image,

10



Figure 2.2: On the left, the three steps through which an input image passes. On the right,

the resulting instance segmentation result is displayed. This result is provided by the EgoHOS

model [1].

Figure 2.3

Figure 2.4

Figure 2.5: Example of the segmentation process applied on images. Example taken from Ego-

HOS [1].
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as shown in Figure 2.2. In particular, the network is designed to segment the left and right hands

with the corresponding interacting objects. The network then proceeds to elaborate the image in

accordance with a three-step procedure. The initial stage consists of inferring the segmentation

mask of left and right hands. The second step consists of inferring the contact area between the

hand and the object, basing on the result of the previous step. Finally, the last phase consists

of finding the mask of the interacting object with the knowledge provided by the previous step

outputs.

2.2 Point Cloud Segmentation

The application of deep learning on 3D point cloud data is more recent than its application on

RGB images. One of the earliest deep learning networks to accept this type of data is VoxNet

[40], which demonstrated its efficacy in the object recognition task. In this work, 3D data was

represented in the form of volumetric occupancy grid of size 32x32x32, which captures the

probability of occupancy for each voxel. This representation suffers of the following limita-

tions: the computational costs, especially for high-resolution point clouds; a limited scalabil-

ity, since its performance is highly dependent on the data resolution; and the information loss,

which is caused by the voxelization process. Other methods represent voxels data in a more

space-efficient manner, by leveraging on octrees, a data structure used to organize 3D space.

The resolution of octrees adapt recursively to the complexity of the subject, facilitating the rep-

resentation of complex three-dimensional structures. This technique is employed by OctNet

[41].

A deep learning architecture that significantly improved the performance on 3D data pro-

cessing was PointNet [42]. The fundamental concept is to directly elaborate raw point clouds

with a network’s response that is invariant from the points permutations. The ability of this

network to extract local and global features from point clouds demonstrates its efficacy for this

type of data. Indeed, this network achieved state-of-the-art results in both classification and 3D

data segmentation. An improvement of this architecture is PointNet++ [43], which recursively

applies PointNet to the point cloud.

The PointNet and PointNet++ networks are currently employed in the contexts where 3D

data, in the form of point clouds, is involved. As will be detailed in the next section, in the

context of this thesis, 3D grasp detection methods make use of these architectures, for example,

to evaluate the generated grasp poses [3], [33] or infer the approaching vectors on the point

cloud [2].

12



Figure 2.6: Exhaustive taxonomy of grasp detection methods taken from [12].

2.3 Grasp Detection

As discussed in detail in [11]–[13], [44], grasp detection techniques are responsible for pre-

dicting a set of possible grasps for an object in a given scene. The objective of these techniques

is to facilitate the picking up of target objects and estimate its pose. To get a better overview

of the grasp detection methods that will be explored in this section, the taxonomy depicted in

Figure 2.6 can be used as a reference.

Grasp detection technologies can be classified into twomain categories: analytic, also called

geometric, and data-driven, also called empirical [12]. In the former category, grasps are found

by analyzing the kinematic and dynamic modeling of the grasp operation and the physical char-

acteristics of the object, such as its geometry and motion state. In contrast, the latter employs

machine learning algorithms to generate gripper poses, thanks to the availability of large amount

of data.

Moreover, data-driven methods can also be categorized as model-based or model-free, de-

pending on the available knowledge regarding the object [12]. Model-free technologies are the

ones suitable for an object-agnostic handover task and can be further classified into perception-

based and learning-based approaches. The former focuses on identifying the geometric struc-

ture of data to generate and rank grasp candidates, whereas the latter aims to leverage machine

learning-based methods to directly generate a set of robotic grasps.

In the case of unknown objects, learning-based approaches can be divided into two cate-

gories: pipeline methods, which distinguish between the grasp generation and path planning

13



Figure 2.7: Both images show the 5-DoF rectangles used to represent a grasp in the image plane.

On the left, the one considered by [30]. On the right the one by [47].

phases, and end-to-end methods, which directly map from image data to grasp action [12].

Pipeline methods, like [2], [3], [32], output either a robustness evaluation for the grasps, such

as their probability of success, or a structured output, that directly identifies the grasp pose. In

contrast to the previous approach, end-to-end methods learn visuomotor control policies directly

from the input, in an image-to-action manner. For example, [45] directly assigns a score to each

pixel of the input image and associates it to a grasping primitive action.

The input to these methods is typically RGB-D images, such as in [29], [30], [46], or partial

point clouds, such as in [2]–[4], [23], [31]–[33], depending on how grasps are represented.

Depending on the implemented technique and the given input data, which is usually provided

by an RGB-D sensor, grasp poses can be represented in different ways. Some techniques infer

them directly from an RGB image, with the additional knowledge provided by the depth sensor,

such as [29], [30], [46]–[48]. Other require the point cloud representation for the 3D data, such

as [2]–[4], [23].

A common representation, which can be displayed as a rectangle on the image plane, as

shown in Figure 2.7, is in the form of 7-DoF objects [30]. This representation consists of the pose

the manipulator arm must assume to pick up the object. In this case, considering as reference

the image, a grasp pose rectangle can be specified by 5-DoF object, consisting of (rg, cg, ng,mg,

θg), where rg and cg refer to the upper-left corner of the rectangle, ng andmg are the dimension

of the rectangle and θg the angle between the first edge and the image plane x-axis. The other 2

parameters are related to the distance of the center of the rectangle from the camera, zg, and the

opening width w of a parallel-jaw gripper. These 7 parameters allow for a full representation of

the grasp pose. The translation vector t and the orientation θwith respect to the camera frame the

robotic arm needs to assume to grasp the object can be retrieved from the computed parameters.

Alternatively, they can be represented as a simplification of the previous representation as 5-

DoF objects [48]. In this case, it is implicitly assumed that a 2D grasp can be projected back
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(a) (b) (c)

Figure 2.8: From left to right, how grasps are represented in a 3D space in [3], [4], and [2].

Images taken from their corresponding paper.

to 3D and executed by the robot viewing the scene. Therefore, the only necessary information

for representing a grasp would be analogous to an object detection problem with the addition

of the grasp orientation. The needed parameters are (x, y, width, height, θ), where x and y

are the coordinates of the rectangle’s center, width and height its size, representing also the

opening width of a gripper, and θ its orientation with respect to the camera frame [47]. Such

representations constrain the gripper to approach the object from an orthogonal direction with

respect to the image plane, limiting the diversity of potential grasps that can be detected. In fact,

early works in grasp detection were inspired by object detection techniques, focusing on finding

top-down grasps [13].

To overcome this issue, grasp poses can be directly predicted on the partial point cloud and

represented in SE(3), as in [32] or [3]. The first method, GPD, generates 6-DoF grasps in a

sampling-evaluation manner, treating grasp detection as an object detection task, with a set of

grasp candidates being sampled on the observed scene, according to some predefined conditions,

and evaluated using an end-to-end approach. Similarly, PointNetGPD [33] employs PointNet

[42] to evaluate a set of heuristically generated grasps. The second, 6-DoF GraspNet, whose

grasp representation is shown in Figure 2.8a, uses a two-step pipeline comprising a generative

approach for sampling a set of potential grasps, followed by an evaluation phase for rejecting

implausible ones and, simultaneously, a refinement step for improving the detection. 6-DoF

GraspNet employs the variational auto-encoder architecture [49], with both the encoder and

decoder based on PointNet++ [43] and the grasp evaluation based on PointNet [42].

An efficient grasp detection model is GraspNet [2], which is trained on the GraspNet-1Bil-

lion dataset [2], comprising more than 1-billion grasp poses generated on a set of 88 objects.

Grasp poses are represented as shown in Figure 2.8c and are defined with respect to the cam-

era frame. Their analytical representation consists of the following matrix: G = [R t w],

where R ∈ R3x3 denotes the rotation matrix associated to the gripper orientation, t ∈ R3x1 the

translation vector associated with the grasp center position, and w ∈ R the end-effector width

necessary for picking up the target object. Since generating rotation matrices is a challenging
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Figure 2.9: Overview of the GraspNet [2] model. The model comprises three sub-networks,

ApproachNet, OperationNet, and ToleranceNet. ApproachNet is used to infer vectors of the

grasps. OperationNet to infer the orientation that the gripper must have to pick up the object.

ToleranceNet to make the grasps robust against noise. Image taken from [2].

task for neural networks due to their geometric properties, GraspNet first generates the position

of the grasps and then infers the rotation associated with a viewpoint. The pipeline to generate

grasps comprises three main phases, as shown in Figure 2.9: the Approach Network, which is

based on PointNet++ [43], to infer approaching vectors and feasible grasp positions; the Op-

erational Network, which is responsible for predicting in-plane rotation, approaching distance,

gripper width, and grasp confidence; and the Tolerance Network, that predicts the tolerance to

perturbation for each grasp pose. GraspNet analytically computes a score to each potential grasp

according to the force-closure metric, as in [33]. In particular, given a grasp pose, the object

point cloud and a friction coefficient, it assigns a binary label indicating whether the grasp is

antipodal or not [50]. Then, the resulting score is computed according to

s = 1.1− µ,

where µ is the friction coefficient which is gradually decreased from 1 to 0.1. The grasp

with lower friction coefficient is the one with higher probability of success.

Another model is Contact-GraspNet[4], which proposes a 4-DoF grasp and represent it as

in Figure 2.8b. This method is based on the assumption that, given a point cloud, at least one

of the two contact points of a parallel-yaw gripper is visible. Therefore, the only parameters to

estimate are those related to the rotation and to the gripperwidth, with the additional advantage of

facilitating the learning process. Each of the produced grasps is scored with a two-step process:

(1) potential contact points for a successful grasps are found and scored, then (2) a network

predicts the ideal placement and configuration of the end-effector for achieving a stable grasp.
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The output of all the networks, however, can be easily represented in SE(3), thus as a

transformation matrix with respect to the camera frame. They used a different representation

for the grasps to facilitate the learning process, thus reducing the number of parameters.

It is noteworthy that all the methods seen so far have one important thing in common: they

generate grasps starting from static objects placed on a table. It is possible to utilize them even

with this limitation, adapting them to the situation.

One promising state-of-the-art method for overcoming this issue is AnyGrasp [23], which

incorporates center-of-mass knowledge of the object and the spatial-temporal domain for ensur-

ing both temporal continuity and grasp quality. This method can generate dense and temporally

consistent 7-DoF grasp poses for moving objects, using as input partial point clouds. The al-

gorithm comprises two modules: a geometry processing module, which samples grasps given a

partial point cloud, and a temporal association module, which enables grasp pose tracking across

consecutive frames, allowing to deal with moving objects.

A different approach for the grasp generation on generic objects is the one proposed by [31],

which consists of applying a point cloud shape simplification. In this case, point clouds are

simplified into a collection of simpler shapes, such as cylinders, spheres, ellipsoid, or paral-

lelepipeds, and grasps are sampled on this new representation.

Due to the prevalence of models which are trained on static objects placed on a flat surface,

these networks need to be adapted to amore dynamic environment for tasks such as the H2R han-

dover. In the context of this thesis, GraspNet [2], 6-DoF GraspNet [3], and Contact-GraspNet

[4] are implemented and adapted for a human-robot handovering, as explained in Chapter 3.

2.4 Dataset and Evaluation Metrics

The objective of grasp detection technologies is to infer a diverse set of grasp poses from the

RGB-D data representing the object. As previously described, grasps can be represented in two

forms: as rectangles on the image plane or as poses in the 3D space.

In order to ensure that a model generalizes well on unseen data, the datasets should be suffi-

ciently large and include a variety of different objects. In particular, grasps should be generated

to cover the entire surface of a generic point cloud [2]. For the H2R handover task, the number

of grasps should be large enough to allow the best one to be selected at a location that is not

close to the body.

In the grasp detection techniques seen in the previous section, some methods construct their

own dataset, such as [2], [3], [33], starting from a set of 3D models provided by ShapeNet [51],

YCB [52] or DexNet [53]. While other, such as [4], [29], train their own network on already

existing datasets, for example Graspnet-1Billion [2] or ACRONYM [54].
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The generation of datasets typically requires the execution of multiple steps. One example is

the generation process in [3], which, after sampling a set of grasps based on the object geometry,

employs a physics simulation tool to validate them as successful or not. The simulation consists

of testing the grasp robustness through the application of a shaking motion, keeping the surface

friction and the object density properties constant. Another example is the generation of the

GraspNet-1Billion [2] dataset, in which a set of grasps is sampled on the entire object surface

and evaluated using a force-closure metric with different coefficients of friction. Only those

grasps that are able to maintain the object with a low friction coefficient value are retained. After

this step, a collision check is performed to prevent the generation of invalid poses. Moreover, a

validation check is conducted to select only those grasps that allow a parallel-jaw end effector

to pick the object.

With regard to the evaluation of human-robot interactions, there is a lack of standardised

measurement tools and metrics for a fair comparison between different techniques [15], since

their evaluation highly depends on the task to be performed. Moreover, the evaluation results

may depend on the utilized number or type of objects, which can differ. To overcome this issue,

some datasets, like YCB [52], suggest a collection of object that are readily available. Some

commonly used metrics for measuring the overall performance are the success rate and the task

completion time. While the former does not explain the causes of the issues, the latter depends

on other factors, such as the chosen motion speed, particularly in the context of safety.

2.5 Human-To-Robot Handover Pipelines

In this section, some complete frameworks for the H2R handover task are analyzed.

The most common used vision system configurations are the eye-to-hand and eye-in-hand,

with a single RGB-D camera. For what concern the type of gripper, a parallel-jaw one is usually

considered, as shown in Figure 2.8. H2R handover tasks can be implemented following either

an open-loop approach or a closed-loop one. In this context, the open-loop addresses the task of

reaching the best grasp without dealing with potential hand motions. In contrast, the closed-loop

one attempts to cope with them by updating the goal in case of motions.

The first revised approach, Rosenberger et al. [26], performed the handovering of 13 distinct

objects of different sizes and shapes, with an eye-in-hand perception system. The presented

approach comprises several steps, some of which are performed simultaneously. The initial step

involves processing the RGB image and its depth in order to segment the body of the person,

with particular attention paid to its hand, and to detect the held object. The segmentation masks

and the bounding box of the object are then used to generate a set of grasps with the GG-CNN

[46] model. Since the model has been trained on static objects positioned on a plane surface, a
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virtual plane is placed behind the target object in order to simulate the same situation. As last

step, the best generated grasp by the grasp detectionmodel is executed. In this proposed pipeline,

as highlighted in [26], the limitations are mainly attributed to the object detector module, which

results in the object being not detected.

Another pipeline is the one proposed by Yang et al. [19], whose main objective was to in-

vestigate the preconditions and policies for a handover operation. In this case, the handover

is performed with a single object, utilizing a restricted set of predefined grasps, which directly

depend on how the object is held. The grasp detection model performs a simple pose classi-

fication, given as input an RGB-D image from an external camera. As described in [19], the

limitations are mainly due to the presence of unseen grasp poses and to the lack of legible and

friendly robot motions.

In their study, Liu et al. [28] presented a closed-loop approach for this task with an eye-

in-hand RGB-D camera. The captured scene is used to perform a hand and object detection,

followed by a segmentation of the hand. Then, the GraspNet [2] model is employed to infer

a set of grasps on the object point cloud, retaining only those with a specific orientations with

respect to the human body position. The pipeline was tested on 8 distinct objects. The observed

limitations of this method [28] were the generation of unfeasible grasps, which were probably

due to the lack of good-quality point cloud data, and the low number of points due to an excessive

occlusion of the hand.

Finally, Yang et al. [27] presented a pipeline whose objective is to grasp generic objects.

In particular, the implementation was tested on 26 different objects, with a perception system

setup comprising an external RGB-D camera. Given the produced inputs, a hand segmentation

module is used to obtain the corresponding mask from the RGB image, while the depth is used

to extract the point cloud of the hand holding an object. Then, grasps are detected only on the

object point cloud using the GraspNet [2] model. Since GraspNet is trained on static objects, it

has been adapted to a dynamic context. To ensure temporal consistency over consecutive frames,

a perturbation is applied to the generated grasps at each time stamp, retaining only those grasps

that lead to an improvement in the score. Otherwise, if the score is lower, perturbed grasps are

accepted with a probability that depends on the new and old scores. They demonstrated that, in

this way, grasps are more stable and consistent over time, maintaining a relatively constant pose

with respect to the objects. Moreover, in their experiments, they assumed that the human will

adapt to the robot’s motion. The observed limitations, as described in [27], were due to: the high

computational costs required to continuously update the target grasp to maintain a closed-loop

approach; the lack of some depth information due to the object properties, i.e. dark surface;

some segmentation problems, where the hand was considered to be part of the object; the noise

of the point cloud due to nearby objects.
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Human-2-Robot handover is a task that involves various fields of study, especially com-

ing from computer vision and robotics. For this reason, the necessity for the development of

reliable and efficient segmentation and grasp generation technologies plays an important role.

The implementation of a complete pipeline for the H2R handover evidences a series of different

problems from both the aforementioned fields of study. These include the difficulty of detect-

ing feasible grasps due to a noisy point cloud, the difficulty of segmenting the object correctly

due to its physical characteristics, the high computation cost for a closed-loop approach, and

the lack of legible and friendly robot motions for a reliable handover. The handover task has

been implemented by Rosenberger et al. [26], Yang et al. [19] and Liu et al. [28] following an

open-loop approach, while Yang et al. [27] has considered a closed-loop approach.

Furthermore, the absence of a uniform evaluation metric for this kind of task makes it chal-

lenging to compare different implementations, either in terms of robustness of grasping generic

objects and safety.
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Chapter 3

Proposed Pipeline for H2R handover

In this chapter, a proposed solution to the H2R handover problem is presented, which can be

seen as a three-step procedure, as in Figure 3.1. The initial step exploits a segmentation module

to distinguish between the hand and the object from other elements captured by the camera. Two

approaches, namely, Fast-EgoHOS and Complete-EgoHOS are described. This is followed by

a grasp generation module to detect a set of gripper poses on the given object point cloud. In

this phase, three different models described, namely, GraspNet [2], Contact-GraspNet [4], and

6-DoF GraspNet [3]. Finally, a selection module is employed to choose and move the robot arm

towards the optimal grasp. In this phase, three discarding criteria are defined.

The considered robot configuration for the implementation consists of an RGB-D camera

mounted on the robot’s end effector.

3.1 Segmentation Module

The segmentation module is responsible for distinguishing between the human hand and the

object being held. In the context of the H2R handover task, the segmentation mask is useful for

enabling the system to localize the specific region of the image that contains the hand and which

is associated with the object. This allows for the removal of grasps that may result in the robot

colliding or pinching the hand.

One of the goal of this thesis is to achieve a good trade-off between accuracy and processing

speed for the entire handover pipeline. For this purpose, since the grasp generation module is

the most onerous one in terms of execution time, reducing the processing time where possible

is necessary. To achieve this result, the EgoHOS [1] model is selected, mainly for two reasons.

Firstly, it is specifically suited for our scenario where the camera has an egocentric view with

respect to the human body, and thus to the hand and the object. In this case, the egocentric view

is from the point of view of the robot, which is similar to the one adopted by [1] to train the
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Figure 3.1: This scheme shows the main parts of the proposed pipeline for the H2R handover

task.

segmentation model. Secondly, this model is designed for a per-pixel segmentation of hands

and generic objects with which the person is interacting. Segmenting a generic object is crucial

in our scenario, since the main purpose is to enable a robotic arm to pick up any object from a

human’s hand.

As shown in Section 2.1, the EgoHOS pipeline consists of three subsequent steps, each

exploiting a different model and receiving as input the initial RGB image concatenated with the

previous step outputs. The first step consists of segmenting the left and/or the right hands that

could be present in the image, without taking into consideration any object. Then, since directly

segmenting a generic object can capture background clutter, a second step is needed to focus

on inferring the contact region, called dense contact boundary [1], between the hands and the

objects. This phase helps improve the segmentation accuracy providing a cue to discriminate

between the many background objects in the input image and the important objects. Finally, the

last step consists of predicting the object mask with the knowledge given by the previous steps.

A result of this pipeline is shown in Figure 3.2.

As mentioned at the beginning of this section, one of the key aspects to keep into consider-

ation is the trade-off between accuracy and speed. To this end, two solutions are proposed: one

that is more accurate but slower, which will be called Complete-EgoHOS, and the other that is
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Figure 3.2: The image shows the EgoHOS result for an input image. It consists of a segmentation

mask of the hand, the contact boundary and the interacting object.

Figure 3.3: This scheme shows how the segmentation is done for the Complete-EgoHOS

methodology.

less accurate but faster, called Fast-EgoHOS.

The first proposed solution is based on directly inferring the hand and the object with the

complete implementation of the EgoHOS model, as shown in Figure 3.3. Since the model is

trained for segmenting hands along with their interacting objects and contact boundary, two

main advantages have been observed.

Instead, the main idea behind the second one consists of using only the initial part of the

EgoHOS pipeline, specifically the hand segmentation part, while relegating the object segmen-

tation to a post-processing stage. The reason for this choice is to accelerate the segmentation

process, with a compromise in terms of accuracy in exchange for a real-time approach.

The input data is provided by the only sensor available in our setup. The RGB image feeds

the segmentation model to infer the hand mask, while the depth is used as input for the post-

processing part. The proposed method leverages the assumption of a single hand-object inter-

action. While this assumption simplifies the problem, it may not be suitable for all scenarios

where there are multiple hands and clutter.

As illustrated in Figure 3.4, the proposed post-processing method is as follows. Given the

hand mask, the mean distance between the camera and the hand is computed, allowing the es-

timation of how far the hand and the object are. To retrieve the object mask, only the depth
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Figure 3.4: This scheme shows how the segmentation is done for the Fast-EgoHOS methodol-

ogy.

values which are not associated with the hand and fall within two distance-based thresholds are

kept. This range, whose values directly depend on the previously computed mean distance, can

be visualized as two virtual planes, one behind the object and one in front of it. In this way, the

only values that are kept are the ones related to any object whose depth is within the specified

thresholds.

Then, since there may be outliers, it is necessary to remove the remaining depth values that

are not associated to the correct object. For this to be achieved, the intersection area between a

bounding box around the hand’s convex hull and a bounding box around each potential object’s

blob is computed. Then, leveraging the aforementioned assumption, the blob with the largest

intersection area is selected, which is likely the one associated with the manipulated object.

After this procedure, the object mask is associated to the blob with the largest intersection area,

discarding all the other.

The common post-processing operation between the two solutions is the dilation and repre-

sentation as a convex hull of the hand mask. The convex hull is necessary for merging different

parts of the hand in case of occlusions, while the dilation is applied to avoid any values near the

hand from being misclassified as object. Finally, starting from the object mask, an estimate of

the length of the object is computed. This value will be used on Section 3.3 to discard some of

the grasps.

The main distinction in terms of outcomes between the two approaches follows the trade-off
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Figure 3.5: These images show the point cloud that is expected from the models. In particular

they expect to receive a plane surface with objects laying on it. From left to right, images are

taken from [3], [4] and [2].

between accuracy and processing speed, as demonstrated in Section 4.2.1.

Moreover, in the first segmentation method there is no need for the post-processing part to

understand which blob is the object, since only an RGB image is required as input.

3.2 Grasp Generation Module

The grasp generation module has the objective to generate a set of potential grasps for the

object. It is important to highlight that this thesis focuses only on the data-driven case, in which

the object model is unknown and a learning method is exploited. Therefore, the following three

models to generate grasps starting from a point cloud have been considered: GraspNet [2],

6DoF-GraspNet [3], and Contact-GraspNet [4]. Moreover, the choice of these grasp planners

was driven by the fact that they are model-free and efficient.

The hand-object mask, produced in the previous step, is received by this module, where a

common pre-processing procedure is applied to the data. In particular, the knowledge of the

hand-object mask is exploited to remove from the depth map the information related to the hand

and the background, thus distinguishing the elements not directly related to the object.

Input and output of the three chosen models are the same: a point cloud of the scene or of

the object only and a set of grasps represented in SE(3), respectively. In particular, each grasp

is represented as a transformation matrix g = [R t] with respect to the camera frame, where

R ∈ R3x3 denotes the rotation matrix associated to the gripper orientation and t ∈ R3x1 the

translation vector associated with its center position. For further details, see Section 2.3.

It is important to notice that these models were developed for generating a set of grasps on a

collection of objects positioned on a plane surface, i.e. a table. In this case, however, there is a

significant distinction: objects are not laying on a surface. As illustrated in Figure 3.5, models
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(a) (b)

Figure 3.6: Examples of the two approaches used to process the input point clouds. On the left

image the approach involving the imitation of a plane; on the right image the approach which

directly isolates the object point cloud.

have been trained on point clouds consisting of a set of objects on a table. Consequently, it was

necessary to adapt the provided input to the requirements of the networks.

Two distinct approaches have been investigated and evaluated for adapting it, both exploiting

the knowledge given by the hand-object mask. The first method, shown in Figure 3.6a, consists

of creating a virtual plane situated below the object, flattening all the depth data not related to

it, thereby imitating a flat surface. Instead, the second, shown in Figure 3.6b, directly removes

all the surrounding elements, isolating the object point cloud.

The creation of a virtual plane has been demonstrated, in Chapter 4, to be an effective ap-

proach when applied to the input data of GraspNet. While, the isolation of the object point

cloud was evaluated for either the Contact-GraspNet, GraspNet and the 6-DoF GraspNet mod-

els. Both adaptation approaches allow the models to produce a dense set of suitable grasp poses

positioned on the entire object’s surface.

3.3 Grasp Selection Module

The grasp selection module is responsible for selecting which of the generated grasps are suit-

able for execution by the robot. In particular, a filtering mechanism must be applied to remove

the grasps that may be infeasible for the robot to reach or may result in the robot colliding with

the person. Therefore, the filter is applied with the objective to discard those grasp candidates

that could potentially hit the person or wrongly pick the object.

Given the results of the previous modules, namely the set of grasps, the hand-object mask,

the mean distance, and the estimated object length, it is necessary to select which of the received

grasps are suitable for the handover. For this reason, the applied safety policy is based on the

implementation of three criteria:

1. Hand-grasp distance, in which grasps are discarded according to their distance from the
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Figure 3.7: Problem that could arise if grasps not satisfying the first criterion were allowed.

hand. The hand-object segmentation mask is used to achieve this;

2. Object-grasp distance, in which grasps that are not close to the object are discarded, as

the one in Figure 3.7;

3. Grasp orientation, in which grasps with an orientation that may cause the end effector to

collide with the object or the person are removed, as shown in Figure 3.8.

In the first criterion, grasps are discarded according to their distance from the hand. In

particular, only those grasps whose distance is larger than the average distance between each

grasp and the projected hand mask are selected. The projection was computed based on the

mean distance, calculated in Section 3.1, rather than the corresponding depth value according

to the mask. In fact, values not associated with the hand could be included if the dilated hand

mask was considered, resulting in an inaccurate projection.

For the second criterion, all the outlier grasps that are not close to the object are discarded.

For this purpose, they are removed if their position is not within a threshold which is based on

the mean distance computed during the segmentation process. This criterion is useful in case

a virtual plane is placed behind the object, in fact, some grasps may be generated on the plane

border, as can be observed in Figure 3.7. The main issue arises when that grasp is the only one

available or is the one with higher score.

Finally, in the third criterion, all grasps whose orientation, with respect to the camera frame,

causes the end effector to collide with the object or the person are deleted. To accomplish this,
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(a) Roll range. (b) Pitch range.

(c) Yaw range.

Figure 3.8: These three images show the allowed ranges for the roll, pitch, and yaw angles.

Figure 3.8c, is displayed with a top view of the robot. The green areas are allowed ones.

three ranges are computed for the roll, pitch, and yaw angles, respectively. Since the robot is

assumed to have a constant initial configuration, the roll and pitch ranges are fixed, while the yaw

range depends on the object orientation. In particular, the yaw range is calculated according to

the orientation of the longest side of the object with respect to the camera, allowing only grasps

nearly perpendicular to the object to be selected. The configuration of these ranges allows to

discard grasps whose orientations result in the robot assuming poses that are in proximity to the

person or that interpenetrate the object, as shown in Figure 3.9.

In the current implementation, the grasp detection and selection modules are executed mul-

Figure 3.9: Problem that could arise due to the point cloud quality. This type of grasp is not

satisfying the third criterion.
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tiple times to collect a sequence of potential grasp candidates on successive frames. This is done

to obtain a greater number of grasps from which to select if the proposed criteria result in the

elimination of a significant number of candidates.

To prevent grasps from being located far fromwhere the handover should occur, i.e. the final

position of the hand, grasps from consecutive frames are compared and discarded according to

their distance in the space. For example, let us consider the case where a set of grasps is detected

when the hand and the object have just entered the camera’s field of view, and another set is

detected when the hand is in its final position. If the distance between the best grasps is larger

than a certain threshold, defined based on the estimated object length computed in Section 3.1,

then all the grasps should be recomputed for the successive new frames.

The last step of this module consists of selecting which of the remaining grasps of the se-

quence should be executed. Since the grasp generation models provide a score, the grasp with

the higher one is chosen for execution.
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Chapter 4

Experimental Evaluation

The objective of this chapter is to perform an experimental evaluation of the entire imple-

mented procedure. To test the modules, two different evaluations are performed: an offline

evaluation and an online one. A first evaluation is conducted with the aim of selecting which

pair of models for the segmentation and grasp detection perform better according to the time-

accuracy trade-off. The segmentation models are evaluated in terms of Intersection-Over-Union

(IoU) and Average Execution Time (AET) on a previously recorded set of data comprising im-

ages of an hand holding an object. While, the grasp detection models are evaluated according

to the number of generated grasps and how many of them are discarded, based on the criteria

described in Chapter 3. The selected segmentation-grasp detection pair should exhibit good

performance both in terms of time, performance and grasp generation.

A second evaluation is conducted on the physical robot to validate the efficacy of the previ-

ously selected pair of models a set of generic objects.

The evaluation is organized as follows. Section 4.1 describes the experimental setup, the

hardware involved and the protocol used in the experiments. Section 4.2 analyzes the per-

formance of the implemented methodology through an offline evaluation, while Section 4.3

presents the results obtained by testing with the robot. Finally, Section 4.4 analyzes the encoun-

tered difficulties and limitations of the current implementation.

4.1 System and Experiments Setups

The experiments were conducted with the 7-DoF Franka-Emika Panda robot, shown in Figure

4.1, mounted on a table with a two-finger parallel-jaw gripper as end-effector and MoveIt! [55]

as motion planner. To increase the friction, thus the grasp robustness, two pieces of foam rubber

were attached to it. The perception system is constituted by an Intel RealSense D455 RGB-D

camera mounted on the robot’s end-effector, which allows for an egocentric point of view of
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Figure 4.1: 7-DoF Franka-Emika Panda robot used for the experiments.

the scene. This is captured with a resolution of 1280x720 at 30 FPS. For the experiments, the

robot starts from a predefined pose in order to ensure that the object and the hand are within the

camera’s field of view. The segmentation and grasp generation models run simultaneously on

an NVIDIA GeForce RTX 2080 GPU.

The objective of the experiment is the successful transfer of an object from the human hand

to the robot. The handover operation consists of the following phases:

1. the segmentationmodule is employed to distinguish between hand and object in the image;

2. the grasp generation module is implemented to generate a set of valid grasp poses, given

as input the segmentation mask;

3. the selection of a subset of grasps according to the criteria described in Section 3.3;

4. the control of the robot manipulator is employed to plan a trajectory to an approaching

pose, which is defined such that the desired grasp pose can be reached by performing a

straight motion;

5. the grasping operation is performed by closing the end-effector fingers, after the grasp

pose has been reached;

6. the robot arm moves backward while grabbing the object.

To test the system, a collection of 15 different objects, shown in Figure 4.2, is selected. The

objects have been selected to have different characteristics in terms of size, shape and materials
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Figure 4.2: List of 15 objects used for testing. The set comprises a variety of different objects

which mostly differ on their size and shape.

(a) | (b)—

(c) \ (d) /

Figure 4.3: Example of the type of images in the dataset.
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in order to validate both the segmentation and grasp detection modules. Some of the objects

have a similar geometric shape, but different sizes. The objects were selected considering the

maximum opening width of the gripper. For instance, the remote, the white rectangle, the Rasp-

berry box, and the hard disk box share the main shape, which is rectangular, but with different

thickness. The same shape is also shared between the spray can, the marker, the wood stick,

and the red screwdriver, which is cylindrical. Objects such as the hammer and the spray have

a reflective surface, which may cause segmentation problems. While, objects like the tape and

the controller have a shape which may be challenging for grasp detection.

To validate its robustness in response to different types of handover, each object is presented

to the robot from four different orientations, which are represented, in the results, with the fol-

lowing symbols: |, —, \, and /, as can be seen in Figure 4.3. The objects are held at one end,

so that the robot can grasp them from the other end. Moreover, four of them have been handled

in two different ways, according to their shape or size. For instance, rectangular objects, such

as boxes, can be presented to the camera in either a horizontal or vertical orientation, and the

tape can be handled in a manner that either shows the hole or does not. This difference, in the

experimental results, is highlighted with an underscore in the object name, followed by h or

v, which correspond to horizontal or vertical, respectively. In total, the are 76 distinct object

configurations.

The implementation of the three modules, described in Chapter 3, requires some parameters

to be chosen in advance, mostly on the basis of empirical evidence. The parameters that need

to be chosen in the Segmentation Module, see Section 3.1, are the following: (1) the depth

threshold distance beyond which depth data are ignored, that in our case has been set to 80 cm,

and (2) the distance at which to place the two virtual planes with respect to the object, which

has been set to 7 cm.

For what concern the Grasp Generation Module, see Section 3.2, the parameter to be chosen

is the distance at which to place the virtual surface to simulate a table. This value can be fixed,

that is selected in advance, or variable, thus depending on the mean distance of the hand, as in

Figures 3.7 and 3.6a, respectively. In the former case, the table can be positioned far from the

object at a predefined distance, whereas in the latter, the distance between the surface and the

object can be adjusted either closer or farther, depending on the applied displacement.

Finally, the Grasp Selection Module, Section 3.3, requires the following parameters to be

selected: (1) the window size, that is the number of set of grasps to consider before choosing

the final one; (2) the distance, relative to the camera frame, above which erroneously generated

grasp poses are discarded, i.e. if they are on the table or on outlier points of the point cloud,

as can be seen in Section 4.2.1; (3) the threshold distance under which to discard grasps, that

has been set to be the average between each grasp and the hand; (4) the allowed range of values
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of roll, pitch and yaw angles with respect to the camera frame, which have been empirically

set. As can be observed in Chapter 3 at Figure 3.8, roll and pitch have been chosen to ensure

that the robot does not assume poses under the object or with the arm on the same side of the

person, whereas the yaw value has been chosen such that to force the end-effector to assume

poses perpendicularly to the object orientation. The ranges have been defined as follows: the

roll interval has been set to [−π/4, π/3]; the pitch range to [−π/4, π/4]; the yaw ranges to

[θ+π/6, θ+5π/6] and [θ−5π/6, θ−π/6], given θ the orientation of the the object with respect

to the camera frame. The yaw interval covers a 120° area on either sides of the object.

4.2 Offline Evaluation

The offline evaluation consists of testing the performance of both the segmentation and grasp

detection modules with a collection of recorded data. This set comprises a sequence of approx-

imately 50 to 60 images for each pose of the objects, for a total of 4013 frames. As shown in

Figure 4.3, the images depict a hand holding an object directly in front of the camera.

4.2.1 Segmentation Module Evaluation

In order to evaluate the two proposed solutions for the hand-object segmentation, namely

Fast-EgoHOS and Complete-EgoHOS, two metrics have been selected: the mean Intersection-

Over-Union (IoU) and the Average Execution Time (AET). The IoU consists of measuring the

overlap between a ground truth mask and a predicted one. This metric has been selected to

quantitatively measure the object segmentation, comparing the ground truth masks, found using

the Segment Anything tool [56], with the inferred object masks. Since the segmentation focuses

on the object mask, the ground truths have been obtained by segmenting only the object being

held. Instead, the AET measures the time required by each solution to infer the hand-object

mask.

The objective of computing these two metrics is to have a comparison of the two methods,

selecting which offers a good balance between accuracy and execution time.

In order to compute the IoU, a subset of the images was chosen, with one frame chosen every

five, resulting in a total of 760 images, with 10 images per pose. While, the AET was computed

averaging over the inference time for each image of the dataset.

FromTables 4.1 and 4.2, it is possible to observe the obtained results for the twometrics. The

secondmethod, which does not include the post processing phase, has shown better performance

in terms of IoU, while the first one, has shown better AET. It is important to mention that, in

case of the first method, the inference time is the average time needed for only inferring the

hand mask, while for the second, it also includes the inferencing of the contact boundary and
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Object IoU Fast-EgoHOS IoU Complete-EgoHOS Mean Difference

hard_disk_box_h 0.8961 0.9142 0.0181

hard_disk_box_v 0.7728 0.8987 0.1259

ball 0.8233 0.8355 0.122

controller 0.8858 0.9123 0.0265

blue_cube 0.83 0.8868 0.0568

hammer 0.7172 0.8189 0.1017

hand_cream 0.8531 0.8686 0.0155

marker 0.7 0.7735 0.0735

pink_object 0.773 0.8237 0.0507

raspberry_box_h 0.8977 0.8907 -0.007

raspberry_box_v 0.882 0.9075 0.0255

remote 0.7838 0.8379 0.0541

screwdriver 0.6829 0.7021 0.0192

spray 0.8490 0.8775 0.0285

tape_h 0.3301 0.4968 0.1667

tape_v 0.7995 0.8608 0.0613

white_rectangle_h 0.8531 0.7556 0.0975

white_rectangle_v 0.8554 0.8592 - 0.0038

wood 0.7901 0.8210 0.0309

Total: 0.788 0.8284 0.0404

Table 4.1: Comparison in terms of IoU between Fast-EgoHOS and Complete-EgoHOS. Values

are expressed as mean IoU and are computed over a subset of the dataset, consisting of 40 images

per object, 10 per pose. The last column shows the difference between Complete-EgoHOS

results and the Fast-EgoHOS ones.

the object mask. Moreover, the processing time is the mean time needed to process the masks, as

explained in Section 3.1, while the total time is the time needed to infer, process and publish the

result. Moreover, the last column of 4.1 shows the difference in the mean values. It is possible

to notice that Fast-EgoHOS reaches performance comparable with Complete-EgoHOS.

As already described, in the context of an handover, accuracy and execution time are two

crucial aspects to consider. According to the obtained results, which compare two proposed

solutions, both aspects have been considered. Complete-EgoHOS reached a mean IoU value of

0.8284, which is better than the one obtained by Fast-EgoHOS, that is 0.788. In the case of AET,

the situation is inverted, with Fast-EgoHOS performing with an average time of 0.076 seconds

per image, while Complete-EgoHOS took an order of magnitude more, with 0.22 seconds.

Based on the obtained results, the selectedmethod for hand-object segmentation in the online

evaluation is Fast-EgoHOS, as it offers a good balance between IoU and AET results.

Figure 4.4 shows the difference between the object masks provided by the two methods. In

particular, it is evident that the segmentation inferred by Fast-EgoHOS is more fragmented and
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Inference [s] Processing [s] Total [s]

Fast-EgoHOS 0.056 0.02 0.076

Complete-EgoHOS 0.219 0.01 0.22

Table 4.2: Comparison in terms of AET between Fast-EgoHOS and Complete-EgoHOS.

(a) (b)

Figure 4.4: On the left the object mask found by Fast-EgoHOS; on the right the object mask

inferred by Complete-EgoHOS.

less accurate with respect to the one provided by Complete-EgoHOS, as confirmed by Table

4.1. This difference is mainly due to the manner in which masks are extracted. In the first case,

the mask is inferred starting from the knowledge of the hand mask and the depth, while in the

second case, the mask is inferred by the neural network from the RGB image only. In practice,

this difference is not a significant issue, especially for the grasp detection module. In this case,

rather that utilizing the RGB image as input, grasp poses are generated from point clouds, which

may be inaccurate; it is sufficient to have the contour of the correct object. It is important to

notice that, as shown in Figure 4.5, some outlier points can be considered for the grasp detection

in case of over-segmentation, specifically when the depth associated with a specific pixel is not

excluded by the constraints. This issue has been observed only with the Complete-EgoHOS

method, since it is image-based only.

4.2.2 Grasp Detection and Selection Evaluation

To evaluate these two modules, which are closely related, a set of grasps is firstly generated

by the Grasp Detection Module and then processed by the Grasp Selector1, according to the

procedure described in Sections 3.2 and 3.3.

The evaluation of these modules is carried out in accordance with the following metrics: the

number of frames that allows to generate at least one grasp, the quantity of generated grasps, the

quantity of discarded grasps, according to the discarding criteria described in Section 3.3, and

1From now on, we refer to the set of grasps processed according to the criteria described in Section 3.3 as pruned

grasps.
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Figure 4.5: Problem that arises when an over-segmented mask is used to generate the object

point cloud. From the image, it is possible to observe that grasps are generated on the object,

located on the left, but also on some outlier points, on the right. The image shows only a subset

of the total of the generated grasps.

the time required to convert the RGB-D data into a point cloud for the network, along with its

inference time.

In addition, in order to analyze the distribution of generated and pruned grasps on the objects,

the following values are considered: the mean distance between the best grasp, in terms of score,

to the hand, Db_h, and the mean distance between the best grasp and all the other grasps of the

same set, Db_g.

These two distance-based metrics are utilized to evaluate the ability of the grasp generation

modules to generate a diverse set of grasps, specifically in this context. In particular, the aim is

to verify whether the set of pruned grasps still contains grasps that are not in proximity to the

hand or with a wrong orientation. To this end, Db_h is used to compare the distance to the hand

between the best grasp of the pruned set and the original set, whereasDb_g is employed to verify

how grasps are distributed with respect to the best ones.

In order to evaluate each metric, the hand-object masks generated by both Fast-EgoHOS and

Complete-EgoHOS are utilized as input, along with the corresponding depth. Instead, grasps are

evaluated using the following grasp detection models: GraspNet [2], Contact-GraspNet [4], and
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6-DoFGraspnet [3]. They accept the object point cloud as input, however only GraspNet accepts

a point cloud with a virtual surface behind the object. In this case, the distance at which to place

the plane has been set at 1 mm along the camera z-axis. Although this value lacks a physical

meaning, it enables the model to generate more consistent grasps than those generated with the

object point cloud only, as can be observed in Figure 4.6. The figure illustrates the distinction

between some grasp poses generated by GraspNet with and without the virtual plane. This

behavior is probably due to the overall impact these points have on the computation.

The decision regarding the distance at which to place the virtual plane was based on em-

pirical evidence, in line with the number and quality of grasps observed during preliminary

experiments.

The evaluation is done considering all the segmentation and grasp detection configurations,

resulting in 8 tables, which are shown in Appendix A. These tables show the metric results for

each object and for each segmentation-grasp detection pair.

For the sake of clarity, only the results presented in Table 4.3 are analyzed. In particular,

these are the results averaged over the objects for each models pair. It is evident that, in all

configurations, a significant number of grasps are discarded, up to 90% of them, especially due

to the exceedance of the roll and yaw ranges. Furthermore, the number of frames utilized for

grasp generation remains consistent, with the exception of the combination Complete-EgoHOS-

6-DoF Graspnet. This issue is probably caused by the presence of outliers in the point cloud,

which makes the generation more challenging for that particular network.

Table 4.4 shows the distribution of grasps with respect to the hand and with respect to the

best grasp. From the results, it is possible to notice that the Db_h is generally higher for the set

of pruned grasps than for the grasps generated by the model. This suggests that the grasp poses

of the pruned set are concentrated on the opposite side of the object with respect to the hand

position. This is confirmed by Db_g, which tends to be smaller for the pruned set. Overall, the

distances of the pruned grasps are approximately at 17 to 27 cm from the hand, while spanning

from 15 to 23 cm for the not pruned set. Moreover, the distances between all grasps and the best

one highlight that they tend to be closer on the pruned set.

For what concern the timing aspect, Table 4.5, shows the average time required by the net-

works to process the input and infer the grasps, along with the total time, which includes the

time needed to process, infer and publish the result. The faster networks were GraspNet and

Contact-GraspNet, which take 0.32 and 0.485 seconds per frame, respectively.

In light of the obtained results, especially those related to the timing aspect, the selected

models for the online evaluation were GraspNet and Contact-GraspNet.
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(a) Not pruned grasps. (b) Pruned grasps.

(c) Not pruned grasps. (d) Pruned grasps.

Figure 4.6: Difference between the generated grasps of GraspNet with the isolated object point

cloud, Figures 4.6a and 4.6b, and the generated grasps with a virtual plane placed at distance 1

mm along the z-axis of the camera frame, Figures 4.6c and 4.6d. These images show the first

50 grasps sorted according to their score.
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Models Inference [s] PC processing [s] Total [s]

Graspnet 0.24 0.03 0.319

6-DoF GraspNet 4.54 0.04 5.55

Contact-GraspNet 0.41 0.06 0.485

Table 4.5: Average time needed for each of the grasp detection models.

4.3 Online Evaluation

The online evaluation consists of testing the transfer of all the 76 object-pose combinations,

each for 3 times, resulting in a total of 228 handovers. Therefore, each object is tested 12 times.

As stated in [15], there is no a standard method for qualitatively evaluating the human-robot

interaction, as the choice of the metrics highly depends on the task to be performed. One of the

most frequently used metrics for H2R handovers is the success rate, which can be defined as the

number of successful handovers divided by the total number of trials. During the experiments,

an handover has been considered successful if it allows the robot to grasp the object and hold

it firmly for a few seconds, without touching either the human hand or the object during the

robot’s motion and without pinching the hand.

Referring to this general validation approach, the handover operations have been evaluated

considering two distinct metrics: the success rate, which is computed as the number of successful

handovers over the total attempts, and the task completion time, which is the time needed to

execute an handover in all its phases. In fact, referring to the handover stages in Section 4.1,

it is possible to identify three main phases, not directly related to the segmentation or grasp

detection modules. These are the selection of the best grasp, the trajectory planning and the

actuation of it.

In light of the obtained results, hand-object segmentation method is Fast-EgoHOS, since a

precise object mask is not needed for generating grasps and is suitable for a real-time approach.

Instead, the chosen grasp generation models are GraspNet, with the virtual plane placed at dis-

tance 1 mm, and Contact-GraspNet. 6-DoF GraspNet was not tested in a real environment

because, in its current implementation, it is not optimized for a real-time approach.

Due to the presence of some unpredictable errors attributable to the motion planner, such

as the robotic arm touching the object during its motion or the exceeding of the joint limits.

The success rate has been evaluated according to two different protocols. One through a simple

point-based assignment system, in which points are assigned according to the following criteria:

1 point, if the robot is able to grasp the object; 0.5 points, if the robot touches the object during its

motion or if the motion planner aborts2, provided that the robot could have successfully picked

2This is a problem caused by the exceeding of the joint limits, especially during the approaching phase, where

the robot follows a straight trajectory before closing its end effector. This problemwas mainly caused by the motion

planner and was not managed by us.
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up the object; 0 points, if it is unable to grasp the object, i.e. the grasp is not correct, or if no

plans are found after three attempts or if the hand is touched.

The other is a binary assignment system which assigns 1 point for success and 0 for failure,

without taking into account the issues related to the motion planner. Therefore, the handover

was considered successful also if the motion planner’s issues occurred.

Instead, for evaluating the efficiency of a handover, the task completion time metric was

computed.

Tables 4.7 and 4.8 show the handover results with the GraspNet model for both point sys-

tems. Table 4.7 shows the results for the point-based system. The object with the highest mean

success rate is the blue cube, with 0.916, while the one with the lowest value is the controller,

with 0.416. Instead, with the binary point system, shown in Table 4.8, the objects with highest

score are the blue cube, the hand cream and the wood stick, where every attempt was successful,

and the one with lowest value is the controller, with half of the attempts wrong.

Tables 4.9 and 4.10 present the handover results with the Contact-GraspNet model. The

object with the higher mean success rate obtained with the point-based system, see Table 4.7, is

the wood stick, with 0.958, while the one with the lowest value is the hard disk box in vertical

position, i.e. showing its shorter side to the camera, with 0.583. With the other assignment

system, shown in Table 4.8, the objects with highest score are the marker, the spray can and the

wood stick, where every attempt was considered successful, and the one with lowest value is

the tape in the vertical position, i.e. not showing the hole to the camera, with 0.583.

The obtained results are highly dependent on the utilized point assignment system. If the

issues of the motion planner were considered, then the overall score would be generally low,

vice versa for the binary system. Between the two methods, the one with Contact-Graspnet

performed better, achieving a higher total mean success rate with both point systems. Consider-

ing the binary point system, the combination Fast-EgoHOS-Contact-Graspnet reached a mean

success rate of 0.829, while Fast-EgoHOS-Graspnet of 0.803.

Finally, Table 4.6 shows the results for the time metric, along with their mean success rate.

These are comparable: each attempt takes approximately 20 seconds to be executed, 3 of which

for selecting and planning the motion to the best grasp. The two main reasons for the prolonged

execution time are, in part, intentional. Firstly, the robot speed is limited for safety reasons.

Secondly, the robot does not immediately move towards the optimal grasp pose; instead, it

moves to an approach position, from which it only needs to perform a straight motion along its

approaching axis. This motion is the cause of the frequent abortions given by the planner.

Based on the experiments, it was observed that cylindrical objects and rectangular ones,

with dimensions compatible with the end effector’s maximum opening size, lead to a higher

success rate. In particular, this was observed with the wood stick, the blue cube, and the remote.
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Model Selection [s] Planning [s] Attempts [s] Mean Success Rate

GraspNet 0.553 2.555 19.133 0.803

Contact-GraspNet 0.342 3.01 21.655 0.829

Table 4.6: Results of the models in terms of average time needed to prune grasps and select

which is the best one in terms of score, average time for the motion planner to find a plan, and

average time for the attempt.

Conversely, objects with a particular shape, such as the controller, the tape and the hammer, or

that require the end effector to be opened at maximum width, i.e. the white rectangle and the

hard disk box, result in a lower success rate.

It has been observed that the generation of feasible grasps is challenging for objects whose

point cloud is not precise enough. In particular, this can be observed with the tape, which has a

point cloud that tends to be incomplete due to its reflective surface and thin size of the border.
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Objects

Pose
| — \ / Mean Success Rate (0/1)

ball 3 3 3 2 0.917

blue_cube 3 3 3 3 1

controller 1 2 1 2 0.5

hammer 2 1 2 2 0.583

hand_cream 3 3 3 3 1

hard_disk_box_h 3 1 2 2 0.667

hard_disk_box_v 3 2 3 3 0.917

marker 3 3 2 2 0.833

pink_object 3 3 2 3 0.917

raspberry_box_h 2 1 2 2 0.583

raspberry_box_v 3 3 3 2 0.917

remote 3 3 2 3 0.917

screwdriver 3 3 2 2 0.833

spray 3 2 3 3 0.917

tape_h 2 2 2 1 0.583

tape_v 2 1 2 2 0.583

white_rectangle_h 3 3 2 0 0.667

white_rectangle_v 3 2 3 3 0.917

wood 3 3 3 3 1

Total 0.803

Table 4.8: Results obtained with GraspNet. Among the 228 handovers, the grasping procedure

failed (f) 45 times and it has successfully (s) grasped the object 183 times. The Mean Success

Rate (0/1) considers as points to be assigned 0 and 1.
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Objects

Pose
| — \ / Mean success rate (0/1)

ball 3 2 3 3 0.917

blue_cube 3 3 2 3 0.917

controller 2 3 2 1 0.667

hammer 1 2 3 2 0.667

hand_cream 3 3 2 3 0.917

hard_disk_box_h 3 1 3 2 0.75

hard_disk_box_v 2 1 3 3 0.75

marker 3 3 3 3 1

pink_object 2 2 2 2 0.667

raspberry_box_h 3 3 2 2 0.833

raspberry_box_v 3 3 2 3 0.917

remote 3 3 3 3 1

screwdriver 2 3 3 2 0.833

spray 3 3 3 3 1

tape_h 3 3 3 1 0.833

tape_v 2 2 1 2 0.583

white_rectangle_h 3 2 3 1 0.75

white_rectangle_v 3 2 3 1 0.75

wood 3 3 3 3 1

Total 0.829

Table 4.10: Results obtained with Contact-GraspNet. Among the 228 handovers, the grasping

procedure failed (f) 38 times and it has successfully (s) grasped the object 189 times. The Mean

Success Rate (0/1) considers as points to be assigned 0 and 1.
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(a) Spray can with GraspNet. (b) Spray can with Contact-GraspNet.

(c) Wood stick with GraspNet. (d) Wood stick with Contact-GraspNet.

(e) Remote with GraspNet. (f) Remote with Contact-GraspNet.

Figure 4.7: Example of the generated best grasp on the objects belonging to the dataset. Other

examples are shown in Appendix B

4.4 Problems and Limitations

During the experimental phase, some issues were observed. In particular, there were diffi-

culties when segmenting certain objects, namely the hammer, the tape and the marker, mainly

due to their reflective surface. Moreover, the segmentation process can also be problematic for
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the Fast-EgoHOS method, especially when dealing with transparent objects. Another issue was

the inability to find the motion plan. This problem occurred especially when the robot had to

perform the straight motion from the approach position. Finally, some problems were observed

when generating grasps. These were more evident for thick objects, which only allow grasps at

maximum grasp width, such as the hand cream, the hammer, the white rectangle and the con-

troller, and thin objects, such as the screwdriver, due to their limited number of points in the

point cloud.

The selection of the hand-grasp distance threshold and the roll, pitch and yaw intervals were

determinant for choosing which of the generated grasps to retain, with the objective of having

them placed on the same side of the robot and above the object. In some cases, these ranges

were too strict, as can be observed in Figures 4.8a and 4.8b, where all the generated grasps were

discarded due to the applied criteria. In this specific case, roll, pitch and the distance criteria

discarded one grasp each, while the yaw discarded two of them. The case in which all grasps

are discarded may happen for object whose point cloud has low resolution or for thick objects.

These aforementioned problems led the model to generate a limited number of suitable

grasps or, alternatively, discard them all. During the online evaluation, this was not a criti-

cal issue, since the cases in which the models were unable to generate at least one grasp were

not so frequent enough to slow down the overall process.

The most frequently observed issues, which were not directly related to the implementation

of the modules or to the type of objects, were attributed to the motion planner. The main ones

were related to the planner’s inability to find a trajectory for reaching the grasp pose, the abortion

during its motion, and the robot’s contact with the object. The latter issue was largely due to

the object not being treated as a collision box in the scene, which resulted in the planner lacking

knowledge about its presence.

Finally, the decision to employ an open-loop approach, that is without dealing with potential

hand motion during the robot’s movements, rather than a closed-loop one, was primarily influ-

enced by the limitations of the depth sensor. In fact, the depth camera has a minimum depth

distance of approximately 30 cm, which results in some measuring errors when the end effector

is in close proximity to the object.
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(a)

(b)

Figure 4.8: Issue that occurred when the roll, pitch and yaw ranges are narrow, see Section 3.3.

Figure 4.8a shows the generated grasps from the Contact-GraspNet model, while 4.8b displays

the remaining ones after the pruning operation. In this case no grasps are left.
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Chapter 5

Conclusions and Future Works

This thesis presented an approach to the H2R handover task for generic objects based on a

pipeline consisting of three phases. These stages are: a segmentation module to obtain a hand-

object mask of the scene, which is observed from an egocentric point of view with respect to

the robot; a grasp generation module to generate a set of grasps, starting from the hand-object

mask and the point cloud of the object; and finally, a grasp selection module to select which of

them are suitable for execution.

In particular, since the H2R task requires the system to be accurate and fast at the same time,

different state-of-the-art approaches for each module have been evaluated. For the segmentation

module, whose objective is to distinguish between the hand and the object being held, the com-

pared methodologies were Fast-EgoHOS and Complete-EgoHOS, both based on the EgoHOS

[1] model. Between these two choices, Fast-EgoHOS was selected as it offered a good balance

in terms of accuracy-time trade-off. With regard to the grasp generation module, an evaluation

has been conducted on the following state-of-the-art models: GraspNet [2], 6-DoF GraspNet

[3], and Contact-GraspNet [4]. The evaluation objectives were: firstly, the models’ capacity to

generate a dense set of feasible grasps on the given object point cloud in a short amount of time;

and secondly, to verify the possibility of adapting these models trained on static objects for the

H2R handover task. In order to select which of the grasp poses were feasible for execution, three

discarding criteria have been chosen based on the grasp distance to the hand, its distance to the

object, and its orientation. Among the three model proposals, GraspNet and Contact-GraspNet

were selected because they offer a good balance between grasp generation and total execution

time.

Each module has been subjected to both offline and online evaluation. The offline evalu-

ation was mainly used to identify which combination of segmentation-grasp detection models

performed better on a recorded dataset. With regard to the segmentation, the evaluation was

performed in terms of Intersection Over Union and Average Execution Time. Instead, for the
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grasp detection, the evaluation was conducted in terms of remaining grasps, after the applica-

tion of the chosen pruning criteria, and of distance-based metrics, with the objective of verify-

ing how grasps are distributed with respect to the hand. Based on the obtained offline results,

the segmentation-grasp generation pairs selected for the online evaluation were Fast-EgoHOS-

GraspNet and Fast-EgoHOS-Contact-GraspNet.

The online evaluation was performed on a set of 15 distinct objects, for a total of 228 han-

dovers. Each object was presented in four different orientations to test the robustness of the

system to the way objects can be handled. In this case, for evaluating the selected pair of mod-

els, two metrics were considered: the success rate, which is up 82.9% with the Fast-EgoHOS-

Contact-GraspNet pair, and the time required for each grasping attempt, which takes approxi-

mately 20 seconds, 3 of which for selecting and planning the motion to the best grasp.

From the results, it has been observed that adapting a grasp detection module from a static

to a dynamic scene is feasible, but with a trade-off in terms of accuracy, total number of grasps

and the execution time. Grasps are distributed on the entire object point cloud and the best one

is averagely positioned far from the hand. These models are capable of generating a dense set of

grasps on the object point cloud, however only a subset of them are suitable for execution, since

the correct execution highly depends on the robot’s physical limits and on the applied safety

policies.

In light of the limitations described in Section 4.4, some future work may focus on imple-

menting improvements to the system to enhance its reliability and speed, as well as defining

common evaluation criteria to ensure a fair comparison with other implementations. To im-

prove the system’s reliability, collision boxes can be applied on every obstacle in the scene,

including the hand, the person, and the object itself. This would enable the motion planner to

compute a trajectory that avoids these obstacles during the motion. Moreover, the overall exe-

cution time can be reduced if the robot’s followed optimal paths. This issue could be reduced

implementing a custom trajectory planner.

Finally, the implementation of a multi-camera system allows the approach to be closed-loop,

thereby overcoming the limitations caused by the depth sensor when objects are under a certain

distance. The presence of an eye-to-hand camera, which is not mounted on the end effector,

can enhance the robot’s perception capabilities, enabling it to perceive the scene from multiple

point of views, helping in case of occlusions.

In conclusion, even after applying the criteria to force the robot to pick up the object in a

certain way, the implemented system is not free from error and cannot be used without supervi-

sion. Further development is necessary to improve the performance and to make it more stable,

reliable and fast.
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Appendix A

Offline Evaluation

The following tables show the complete results obtained with all the configurations of the

segmentation models, namely Fast-EgoHOS (FE) and Complete-EgoHOS (CE), with the grasp

detection ones, namely GraspNet, 6-DoF GraspNet and Contact-GraspNet.

The results are in Tables: A.1 and A.2 for what concern the ones obtained with GraspNet

without the virtual plane; A.3 and A.4 for GraspNet with the virtual plane placed at 1 mm; A.5

and A.6 for 6-DoF GraspNet model; A.7 and A.8 for the results with Contact-GraspNet.
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Appendix B

Grasp Generation Results

The following images display the best grasps generated for every object of the dataset. Results

are obtained choosing the best grasp in terms of score after applying the pruning criteria defined

in 3.3. The models used to retrieve these results are GraspNet [2] and Contact-GraspNet [4].

From the results, it is possible to notice some of the issues described in Chapter 4, for ex-

ample, Figures B.2e and B.3g show a grasp interpenetrating the object point cloud, probably

due to its size that is comparable with the gripper’s maximum opening width, Figures B.3c and

B.3e show the difficulties of finding a good grasp for the tape, whose segmentation mask is not

precise.
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(a) Ball with GraspNet. (b) Ball with Contact-GraspNet.

(c) Green_cube with GraspNet.

(d) Green_cube with Contact-

GraspNet.

(e) Hammer with GraspNet. (f) Hammer with Contact-GraspNet.

(g) Hand cream with GraspNet.

(h) Hand cream with Contact-

GraspNet.

Figure B.1: Example of the generated best grasp on the objects belonging to the dataset. Other

examples are shown in Appendix B
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(a) Marker with GraspNet. (b) Marker with Contact-GraspNet.

(c) Pink with GraspNet. (d) Pink with Contact-GraspNet.

(e) Raspberry_h with GraspNet.

(f) Raspberry_h with Contact-

GraspNet.

(g) Raspberry_v with GraspNet.

(h) Raspberry_v with Contact-

GraspNet.

Figure B.2: Example of the generated best grasp on the objects belonging to the dataset.
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(a) Screwdriver with GraspNet.

(b) Screwdriver with Contact-

GraspNet.

(c) tape_h with GraspNet. (d) tape_h with Contact-GraspNet.

(e) tape_v with GraspNet. (f) tape_v with Contact-GraspNet.

(g) hard_disk_box_h with GraspNet.

(h) hard_disk_box_h with Contact-

GraspNet.

Figure B.3: Example of the generated best grasp on the objects belonging to the dataset.
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(a) hard_disk_box_v with GraspNet.

(b) hard_disk_box_v with Contact-

GraspNet.

(c) white_box_h with GraspNet.

(d) white_box_h with Contact-

GraspNet.

(e) white_box_v with GraspNet.

(f) white_box_v with Contact-

GraspNet.

Figure B.4: Example of the generated best grasp on the objects belonging to the dataset.
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