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INTRODUCTION 

Bitumen oxidation is one of the phenomena that contribute most to the deterioration of road 

pavements’ performances and it occurs both in the mixing process and during the service life of 

the infrastructure. The present work focuses on the laboratory reproduction of aging phenomena 

that take place only in the binder aging and on the experimental characterization of the initial 

and final binder’s properties in three different case studies. 

 

Although asphalt has been used for more than a century to pave roads, the behaviour of its 

chemical, rheological and mechanical properties over time is not known yet. Moreover, in the 

past decades the heavy traffic has greatly increased and the need of economic and 

environmental-friendly disposal of  waste material has arose, thus leading to the study of new 

materials and of methods for reclaiming materials from the aged pavement. 

Hence, while on one hand the need of characterizing the behaviour of the whole bituminous 

pavement has arose, on the other studying the properties of its single components is getting more 

and more important. In particular, since the aging of the asphalt is mainly due to the aging of its 
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organic component, studying the behaviour of the binder is the fundamental to start to 

understand the final properties of the mix and to improve them. 

This work focuses mainly on binders aged according to standard laboratory procedures (Rolling 

Thin Film Oven Test, EN 12607-1, and Preassure Aging Vessel, EN 14769). The advanced 

experimental characterization of rheological properties is carried out by the Dynamic Shear 

Rheometer (EN 14770), while chemical properties are evaluated using both the infrared 

spectroscopy (Fourier Transorm Infrared Sectroscopy) and the size-exclusion chromatography 

(Gel Permeation Chromatography). Three case studies are analysed: 

− Laboratory aging of warm mix asphalt: using warm mix asphalt instead of 

conventional hot mix asphalt the working temperature can be reduced, without 

decreasing the mix workability. The aim of this part of the study is to find a test 

procedure reflecting the binder aging in warm asphalt at the lower temperatures used in 

the production process that could replace the European standard EN 12607-1, developed 

for hot mix asphalt. 

− Polymer degradation in polymer-modified binders: modifying the binder with chemical 

additives is a widespread technique to improve the final performances of a pavement. 

The aim of this part of the study is to analyse the polymer degradation caused by 

oxidation, estimating it by specific indexes, and to evaluate its rheological outcomes. 

− Progressive oxidation in repeated recycling of pavement: the presence of road facilities 

paved with recycled asphalt raises the problem of recycling asphalt more than once. The 

aim of this part of the study is to understand the influence of the aged and several time 

recycled binder on the chemical and rheological properties of the final blend. 

The thesis is divided in three ideal parts: 

− Chapters from 1 to 3: theoretic introduction to bitumen, to its chemical and rheological 

properties and to the experimental procedures used for their evaluation. 

− Chapter 4: preliminary tests. 

− Chapters from 5 to 7: description of the projects, of their experimental development and 

of their results. 
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INTRODUZIONE 

Uno dei fenomeni che più concorre a compromettere le prestazioni delle pavimentazioni stradali 

in conglomerato bituminoso è l’ossidazione del legante, sia durante la posa in opera che nel 

corso della vita utile dell’infrastruttura. Il presente lavoro di tesi si è focalizzato sulla 

riproduzione in laboratorio dei fenomeni di invecchiamento del bitume e sulla caratterizzazione 

sperimentale delle proprietà iniziali e finali dei leganti in tre distinti casi di studio. 

Nonostante il conglomerato bituminoso sia usato da più di un secolo per la realizzazione di 

pavimentazioni stradali, non sono ancora completamente noti i processi di modifica delle sue 

caratteristiche chimico-fisiche e meccaniche nel corso del tempo. Negli ultimi decenni, inoltre, 

l’incremento di traffico e la necessità di disporre economicamente ed ecologicamente del 

materiale delle vecchie infrastrutture ha portato allo studio di nuovi materiali e metodi per 

riciclare il manto stradale. 

Se, quindi, da un lato si è sviluppata l’esigenza di caratterizzare prestazionalmente il 

conglomerato nel suo insieme, dall’altro è sempre più necessario lo studio delle caratteristiche 

dei singoli componenti di questo. In particolare, essendo l’invecchiamento del conglomerato 

dovuto all’invecchiamento della sua parte organica, la ricerca sulle proprietà del solo legante è 
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punto di partenza imprescindibile per comprendere le proprietà finali delle miscele e per 

migliorare le stesse. 

Nel corso di questo lavoro si sono analizzati principalmente leganti invecchiati in laboratorio 

tramite procedure standard (Rolling Thin Film Oven Test, EN 12607-1, e Pressure Aging Vessel, 

EN 14769), la cui caratterizzazione sperimentale avanzata delle proprietà reologiche è stata 

effettuata tramite il Dynamic Shear Rheometer (EN 14770) mentre le proprietà chimiche sono 

state analizzate sia tramite spettrografia a luce infrarossa (Fourier Transorm Infrared 

Sectroscopy) che tramite cromatografia ad esclusione molecolare (Gel Permeation 

Chromatography). I tre casi di studio su cui si è focalizzata la ricerca sono i seguenti: 

− Riproduzione dei fenomeni di invecchiamento nelle miscele a tiepido: l’impiego di 

miscele a tiepido consente di ridurre le temperature di lavorazione del conglomerato 

mantenendo la stessa lavorabilità delle miscele a caldo. Scopo di questa parte dello 

studio è determinare una procedura per l’invecchiamento a breve termine in laboratorio 

che rifletta le reali temperature di lavorazione di tale tecnologia e sostituisca lo standard 

europeo EN 12607-1, sviluppato per le miscele a caldo. 

− Degradazione dei polimeri nei leganti modificati: l’additivazione/modifica dei leganti è 

pratica ormai molto diffusa per migliorare le prestazioni finali della pavimentazione. 

Scopo di questa parte dello studio è l’analisi della degradazione dei polimeri 

conseguente all’ossidazione, con quantificazione della stessa attraverso appositi indici, e 

analisi delle conseguenze reologiche di tale degradazione. 

− Ossidazione progressiva nel riciclaggio oltre la seconda generazione: la presenza di 

infrastrutture stradali pavimentate con conglomerato parzialmente riciclato pone oggi il 

problema di investigare sul riciclaggio della pavimentazione oltre la seconda 

generazione. Scopo di questa parte dello studio è comprendere l’influenza del legante 

invecchiato e riciclato più volte sulle caratteristiche chimiche e reologiche del legante 

nel conglomerato finale. 

La tesi si articola idealmente in tre parti: 

− Capitoli da 1 a 3: introduzione teorica al materiale, alle sue proprietà chimico-fisiche e 

reologiche e alle procedure sperimentali per la determinazione delle stesse. 

− Capitolo 4: test preliminari. 

− Capitoli da 5 a 7: presentazione dei progetti di ricerca, del loro sviluppo sperimentale e 

dei risultati ottenuti. 
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CHAPTER 1:  THE BITUMEN 

1.1 INTRODUCTION 

Bitumen is the most used binder for street paving, thanks to its adhesive and waterproofing 

properties. It is sticky, black and highly viscous liquid or semi-solid form of petroleum which 

can be found in “natural” form the pitch lakes or it can be a refined product. 

 

1.1.1 EARLY USES 

The first uses of natural bitumen date back to the third millennium B.C., when it was used by 

Middle Eastern populations as waterproofing and binding agent for water tanks. Later on, it has 
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been used as waterproofing coat for boats, aqueducts and rooftops, as well as fuel for the Greek 

Fire, but it was not used for road paving until the half of the nineteen century. 

Asphalt pavements started to be developed in France in the late 1830s, when natural deposit 

(pitch lakes and bituminous rocks) were found, and then the technique spread in the U.K. 

(1830s) and in the U.S.A. (1870s). However, only after the First World War asphalt concrete 

widespread worldwide and, as a consequence, bitumen started to be produced out of crude oil. 

Nowadays almost all of the bitumen used in the world is petroleum-derived. 

 

1.1.2 MANIFACTURE 

Crude oil is a mixture of hydrocarbons differing in molecular weight and in chain length: 

Alkanes or Paraffins (open chins of saturated hydrocarbons); Naphthenes  (cyclic chain of 

saturated hydrocarbons); Aromatics (hydrocarbon with alternating double and single bonds 

between carbon atoms forming rings); Asphaltenes (complex mixtures containing hundreds or 

even thousands of atoms). 

To extract the bitumen (and all the others petroleum-derived materials) out of the crude oil the 

latter is fractional distilled in tall steel towers known as distillation columns (Read, et al., 2003). 

The heavy hydrocarbons composing the bitumen flow out of the bottom on the column and, after 

other refining processes, over 20 different grades of bitumen can be obtained. The physical 

properties can be modified by changing temperature and pressure in the vacuum tower, as well 

as through other processes like air blowing. 

After the production, bitumen can be stored in tanks and delivered at elevated temperatures, 

provided that it is handled properly and oxidizing conditions are avoided. 
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1.1.3 STRUCTURE AND CONSTITUTION 

Bitumen is a colloidal system consisting of high molecular weight asphaltene micelles dispersed 

or dissolved in lower molecular weight oily medium (martens) (Read, et al., 2003). The colloidal 

nature is responsible for the time dependence of the deformations of this material. 

Depending on the amount of resins and aromatics, the bitumen can have a SOL or a GEL 

structure (Figure 1). The first structure allows the bitumen to behave like a Newtonian fluid at 

high temperatures and as a viscous solid at low temperatures. On the contrary, the latter type of 

bitumen behaves like a non-Newtonian flow at high temperatures and as an elastic solid at low 

temperatures. 

 

 
Figure 1: SOL (left) and GEL (right) type bitumen (Read, et al., 2003) 

 

Most of the bitumen actually has an intermediate structure and their rheological properties are 

largely dependent on the asphaltenes concentration. 

The bitumen behaviour is influenced also by the amount of saturated oils, because they enhance 

the solubility of the asphaltenes in the martens and help the flocculation of the formers.  

 

From a chemical point of view, the bitumen is constituted by the following fractions: 

element percentage on the total weight 

carbon 82-88% 

hydrogen 8-14% 

sulphur 0-8% 

oxygen 0-2% 

nitrogen 0-1.5% 
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The actual composition of the single binder depends on the source of the crude oil and on the 

production process. 

A complete chemical description of this material is almost impossible, due to its complexity. 

Moreover, this complexity would make it impossible to correlate chemical aspects with 

rheological ones. Therefore, only a broad separation of the fractions is usually done and four of 

them are identified: 

1. Asphaltenes: highly polar and complex aromatic materials of high molecular weight 

(600 to 300000mol, depending on the separation technique), constituting 5% to 25% in 

weight of the bitumen. These black or brown amorphous solids are insoluble in n-

heptane and, apart from carbon and hydrogen, they can contain nitrogen, sulphur and 

oxygen. The higher the asphaltenes content, the higher are softening point and viscosity 

and the lower the penetration index. 

2. Aromatic martens: non-polar carbon chains of low molecular weight (300 to 2000mol), 

constituting 40% to 65`% in weight of the bitumen. They are dark brown viscous 

liquids, with high dissolving ability for high weight hydrocarbons. 

3. Saturate maltens: non-polar chains of aliphatic hydrocarbons, alkyl-naphthenes and 

alkyl-aromatics, with low molecular weight (300 to 2000mol). They are viscous oil with 

white colour and they form 5% to 20% in weight of the bitumen. Most of the paraffin 

wax in the bitumen belongs to these compounds, which give elasticity to the bitumen. 

4. Resins: solid or semi-solid polar materials, with strong adhesive properties and medium 

molecular weight (500 to 50000mol). They are dark brown particles, soluble in n-

heptane and with a chemical composition much alike the asphaltenes’ one. They are 

dispersing or peptisers agents for the asphaltenes, governing the type character of the 

bitumen (SOL or GEL). 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES

 

 

1.2 AGING 

Exposition to oxygen, UV radiation and temperature change

causing it to oxidise and lose 

alteration of chemical, physical and rheological properties, thus affecting the 

bitumen and of the asphalt: when

cracking and ravelling. 

Two aging mechanism can be identified:

− Irreversible aging:

chemical properties of the bitumen. The m

of volatile components and exudation of the oils into the aggregates. As a result, polar 

molecules with high weight are produced out of non

− Reversible aging:

molecular structure into the optimum state. If reheated, the bitumen can recover the 

original viscosity.

Aging occurs during the whole lifetime of the pavement, but begins before the construction 

progress: in fact, the first aging step occurs during the 

EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES

 

Exposition to oxygen, UV radiation and temperature changes affects the bitumen greatly, 

oxidise and lose volatile components. This process is named 

alteration of chemical, physical and rheological properties, thus affecting the 

bitumen and of the asphalt: when aged, the binder is stiffer, but more fragile and keen to 

 

Two aging mechanism can be identified: 

Irreversible aging: it is the main responsible for the aging and it is due to changes in the 

chemical properties of the bitumen. The main causes of this process are: oxidation, loss 

of volatile components and exudation of the oils into the aggregates. As a result, polar 

molecules with high weight are produced out of non-polar lighter ones.

Reversible aging: known also as physical hardening, it is due to the rearrangement of the 

molecular structure into the optimum state. If reheated, the bitumen can recover the 

original viscosity. 

Aging occurs during the whole lifetime of the pavement, but begins before the construction 

the first aging step occurs during the mixing (Figure 2).

Figure 2: aging process (aging index is a ratio of two values)
(Read, et al., 2003) 
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The first phase is faster and, thanks to the high temperature of the process involved, it leads to 

chemical changes in the bitumen. The mix with aggregates, in fact, occurs at high temperatures, 

where the oxidation and loss of volatiles are enhanced. 

The second phase, on the contrary, is slow and does not affect greatly the chemical composition. 

Only the surface layer is seriously damaged, because directly exposed to oxygen, radiations and 

chemical agents. As for the deeper layers, the magnitude of long term aging is mainly related 

with the porosity of the asphalt and its void content. 

 

1.2.1 LABORATORY AGING 

To simulate the field aging a number of tests have been studied. The aging speed is enhanced 

increasing the temperature, decreasing the bitumen film thickness and increasing the oxygen 

pressure(Lu, et al., 2002). 

The tests can be broadly classified as tests over the bitumen and tests over the asphalt mixture. In 

this study only two tests of the first kind have been used and, thus, will be described. 

 

1.2.1.1 ROLLING THIN FILM OVEN TEST (RTFOT) 

This test is used to simulate the short-term aging. It “was developed by the California Division 

of Highways and involves rotating eight glass bottles each containing 35g of bitumen in a 

vertically rotating shelf ( 15 rev/min), while blowing hot air (4000ml/min) into each sample 

bottle at its lowest travel position. During the test, the bitumen flows continuously around the 

inner surface of each container in relatively thin films of 1.25�mm at a temperature of 163°C 

for 75�min. ” (Airey, 2003). 

During the process the high temperatures combined with the forced oxygen flows cause the 

oxidation of the bitumen and the loss of volatile components. The latter can be quantified by 

weighting the material before and after the RTFOT, while the first one can be revealed by the 

rheological, physical and/or chemical tests.  

The conditions simulated by this test are not the same of the practical ones, but can be 

reasonably well correlated. 
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1.2.1.2 PRESSURE AGING VESSEL (PAV) 

This test is used to simulate the long-term aging and usually is performed after the RTFOT: 50g 

of binder aged with the RTFOT are poured in a 140�mm diameter pan ( 3.2�mm binder film); 

the pan is then placed in a heated vessel, pressurized with air to 2.10�MPa for 20�h at 100°C. 

Thanks to the not very high temperature and the high pressure, the conditions that this test 

simulates are comparable to 5-10 years of field aging. After the PAV, the material can be tested 

for rheological, chemical and physical properties. 

 

 

 

  



 THE BITUMEN 
 
 

| 20   

 

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  21 | 

 

CHAPTER 2:  RHEOLOGICAL CHARACTERIZATION 

OF BITUMINOUS BINDERS 

2.1 INTRODUCTION 

Since the late eighties, empirical tests over the binders’ properties have proved to be unable to 

completely characterize the bitumen behaviour. In fact, these tests focus more on some 

mechanical performances then on rational (and correlated to real life) parameters and they are 

not sufficient to characterize modified binders or non-conventional asphalts. Thus, the need for a 

better description and for pavement’s life forecasts has led to the implementation of a new set of 

tests, which outputs are fundamental rheological parameters.  

Rheology is the science of deformation and flow of matter (Barnes, et al., 1989), a discipline that 

studies the stress-strain interaction in the materials and it allows to forecasts its behaviour under 

well-defined conditions. Together with chemical inquiries and large-scale tests, the study of 

bitumen rheology is central in the project of long-life pavements. 
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2.2 RHEOLOGY  

Bitumen is a viscous elastic material, owning both “solid” (elastic) and “liquid” (viscos) 

properties. 

The elastic materials, when stressed, suffer some deformation but, in the process, they develop 

some potential energy which allows them, when the stress is taken off, to gain back the original 

shape . On the contrary, liquid materials own no shape and their deformation is completely 

irreversible.  

As said, bitumen owns both natures and the predominance of one over the other is temperature 

dependent: at high temperature the bitumen reacts like a liquid, allowing to be poured and mixed 

whit aggregates, while at low temperature it stiffens to a solid, bounding the aggregates together 

to the asphalt. 

The following paragraphs describe the rheological laws of ideal solid, ideal liquid materials and 

of their ideal combinations. The basic hypothesis behind these laws is that the material is 

continuous, homogenous and isotropic. 

 

2.2.1 IDEAL ELASTIC SOLID 

The behaviour of on elastic matter was described for the first time by Robert Hooke: Ut tension, 

sic vis1 (As the extension, so the force). This law, nowadays know as Hooke law of elasticity, is 

manly used for describing the spring behaviour and can be represented by the following 

equation: 

 � � � � � ( 1 ) 

where: F = force 

 k = stiffness constant 

 x = extension 

                                                      
1 Hooke, Robert. Lectures de Potentia Restitutiva, or of spring explaining the power of springing bodies. John Martyn, 

1931. 
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For common application in civil engineering, this law has been modified to the following one, 

where the main parameters are stress and strain: 

 � � � � �   ( 2 ) 

where: E = Young tensile modulus [N/mm2] 

ε = tensile strain  

σ = tensile stress 

 

Meanwhile, elastic solids follow another law, known as Poisson effect2: 

 

����������
���� � � ( 3 ) 

where: ν = Poisson ratio 


���������� = transverse strain  


���� = axial stress 

 

Eventually, joining model ( 2 ) and ( 3 ), for homogenous and isotropic materials the following 

equations can be written: 

 

�� � 1
� ��� �  ���� � ���� 

�� � 1
� ��� �  ���� � �� � 

�� � 1
� ��� �  ���� � �� � 

!�� � "��
#  

!�� � "��#  

!�� � "��
#  

( 4 ) 

where: # � $
%�&'(  

In these solids, when the force is removed, the strain is completely recovered. 

 

                                                      
2 When a material is compressed in one direction, it usually tends to expand in the other two directions perpendicular 

to the direction of compression (Wiki) 
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2.2.2 IDEAL VISCOUS LIQUID 

The viscosity of a fluid represents its attitude to dissipate energy when a force is applied to it. 

This dissipation is caused by friction between parcels that are moving at different velocities in 

different layer of the flow. Due to the energy dissipation, the strain can not be recovered when 

the force that caused it is removed. 

The shear-driven flow is often illustrated by the Couette flow (Figure 3) and described by the 

differential Newton law: 

 " � ) � !*     ( 5 ) 

where: τ = shear stress 

) = dynamic viscosity [Pa � s] 

! *  = shear rate (the speed of the strain) 

When to a viscous flow a normal stress is applied the Newton law becomes: 

 � � )� � �*     ( 6 ) 

where: � = normal stress 

)� = extensional viscosity [Pa � s] 

�* *  = strain rate (the speed of the strain) 

   
Figure 3: Couette configuration using two infinite flat plates (Wiki) 

 

In a pure viscous fluid (also known as Newtonian fluid) the magnitude of ) is strain-independent 

and this parameter is the slope of the flow curve in the τ- ) plane. While this is the ideal fluid 

behaviour, there are many non-Newtonian fluids: 

− Bingham plastics (viscoplastic): material that behaves as a rigid body at low stresses but 

flows as a viscous fluid at high stress 
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− Shear thickening (dilatant): the viscosity 

− Shear thinning (pseudoplastic): the fluid viscosity decrease a

 

2.2.3 VISCO-ELASTIC MAT

In these materials the stress depends both on the strain and on the strain rate, thus combining the 

viscose and the elastic properties. When, in addition, 

independent from the stress application conditions,

viscoelastic3. 

The viscoelastic behaviour

mechanical elements like dampers and springs. The two main models are the Maxwell and the 

Kelvin-Voigt ones: the first on

while the second one describes the 

behaviour can be described superposing these two basic models.

                                        
3 § 2.4 
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Shear thickening (dilatant): the viscosity increases with the shear rate

Shear thinning (pseudoplastic): the fluid viscosity decrease as the shear rate rises 

Figure 4: viscosity in different materials (Wiki) 

ELASTIC MATERIALS 

In these materials the stress depends both on the strain and on the strain rate, thus combining the 

viscose and the elastic properties. When, in addition, both the modulus and the viscosity are 

independent from the stress application conditions, the material are 

behaviour can be described through many different models, made up from basic 

mechanical elements like dampers and springs. The two main models are the Maxwell and the 

Voigt ones: the first one describes the delayed elasticity with unrecoverable strains, 

while the second one describes the creep with asymptotic recovery of the strain. The bitumen 

can be described superposing these two basic models. 

                                                      

EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

25 | 

increases with the shear rate 

the shear rate rises  

 

In these materials the stress depends both on the strain and on the strain rate, thus combining the 

both the modulus and the viscosity are 

al are labelled as linear 

can be described through many different models, made up from basic 

mechanical elements like dampers and springs. The two main models are the Maxwell and the 

with unrecoverable strains, 

with asymptotic recovery of the strain. The bitumen 
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2.2.3.1 MAXWELL MODEL 

Maxwell has modelled the viscoelastic behaviour as a connection in series of purely viscose 

dumper and of a purely elastic spring (Figure 5).  

The differential equation that represents the model is: 

where: &.
/0
/� = spring component 

 
0
1 = dumper component 

The spring component reacts as soon as the stress is applied and 

relaxes immediately when the stress is removed. On the other 

hand, the dumper component grows exponentially during the 

application of the stress and it exponentially relaxes as the stress 

is taken back. 

This model allows predicting the results of a stress relaxation test4, while it cannot predict 

accurately the creep5 results. 

 

2.2.3.2 KELVIN-VOIGT MODEL 

This model consists of a purely viscose dumper and of a purely elastic spring connected in 

parallel (Figure 6). 

The differential equation that represents the model 

is: 

where: ! � # = stress on the spring 

 ) /2
/� = stress on the dumper 

                                                      
4 A sudden strain is applied and kept still for the whole test. As a result, the stress will decay. 
5 A sudden stress is applied and kept still for the whole test. As a result, the strain will increase and, at the end, there 

will be some non-reversible deformations.  

 3/2
/�4�5� � &

.
/0
/� � 0

1  ( 7 ) 

 " �  ! � # � ) 
!

6  ( 8 ) 

Figure 6: Kevin-Voigt model 

Figure 5: Maxwell model 
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Through this model a viscoelastic strain affecting a solid can be represented. When the constant 

stress is applied, the material deforms at a decreasing rate, asymptotically approaching the 

steady-state strain. When the stress is released, the material gradually relaxes to its previous 

shape.  

This model allows predicting the results of a creep test, while it can not predict accurately the 

stress relaxation results 

In the following table (Table 1) are shown the viscoelastic functions for both models 

 Maxwell Kevin-Voigt 

7�6 � 1
#�6  7� � 6

)� 7� � 81 � e: ;<=> 

#�6  #� � 81 � e: ;<=> #� 

#?�@  
#� � @%A�%1 � @%A�%

 #� 

#??�@  
#� � @A�

1 � @%A�%
 @ � )� 

7?�@  7� 
7�

1 � @%A�%
 

7??�@  
1

@)� 
7� � @A�1 � @%A�%

 

Table 1: Maxwell & Kevin-Voigt equations 

where: A� � 1B
.B 

 

2.2.3.3 GENERALIZED MODELS 

Describing real life materials needs more complex rheological models than the ones previously 

seen. However, as it has already been stated, the basic elements are always springs and dumpers 

somehow connected. The main generalized models are the extension of Maxwell’s and Kelvin-

Voigt’s. 

The first one is used when strain cannot be described as the combination of a single strain and of 

a single dumper. The model, therefore, is made of many simple Maxwell elements, assembled in 

parallel (Figure 7). 
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The second one, on the other hand, describes a material in which relaxation occurs at a 

distribution of times. It is made of several Kelvin-Voigt elements, connected in series (Figure 8). 

 

 

 

2.3 DYNAMIC ANALYSIS 

Rheological properties of a bitumen system are determined by measuring its viscosity at 

different rates of shear for a given temperature, shear stress and time (Loeber, et al., 1998). The 

measures can be done with stead-state tests or with dynamic tests. 

While creep and relaxation tests are convenient for studying the material response for a long 

time load, the short time response can be evaluated only through dynamic tests, in which the 

stress (or strain) resulting from a sinusoidal strain (or stress) is measured. These tests can 

provide the Master Curve of a material in a wide range of frequencies (10-9 – 109) and in a 

relatively short time (at most a couple of hours). 

Figure 8: generalized Kelvin-Voigt model (Mazzotta, 2011/2012) 

Figure 7: generalized Maxwell model (Mazzotta, 2011/2012) 
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2.3.1 RHEOLOGICAL PARAMETERS

When a viscoelastic material is subjected to a s

reached in which the resulting strain is also sinusoidal, having the same angular frequency but 

retarded in phase by an angle 

the strain is the controlled variable.

material can be easily defined

− in-phase (

− out-of-phase (

− : viscoelastic materials.

 

Selecting the origin along the time axis to 

maximum, the strain and stress functions can be written as:

 

where: ,  

  = maximum stress

  = phase angle, 

Once the parameters above are known, it is possible to define the 

modulus: 

 

This modulus is defined as complex because it can be represented properly in 

(Figure 10): using an algebraic 

and other harmonic systems, it is convenient to write 

in phase with the strain and whose imaginary part is 90

EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES

 

RHEOLOGICAL PARAMETERS 

When a viscoelastic material is subjected to a sinusoidal varying stress, a state will eventually be 

in which the resulting strain is also sinusoidal, having the same angular frequency but 

retarded in phase by an angle δ (Roylance, 2001), known as phase angle

the strain is the controlled variable. By knowing the value of the phase angle, the rheology of a 

material can be easily defined (Figure 9): 

): ideal elastic materials; 

): viscous liquids; 

: viscoelastic materials. 

Figure 9: schematic representation of viscoelasticity 

Selecting the origin along the time axis to coincide with a time at which the strain has its 

maximum, the strain and stress functions can be written as: 

 

     

 

= maximum stress,  = maximum strain 

= phase angle,  = frequency 

Once the parameters above are known, it is possible to define the absolute value of the 

  

This modulus is defined as complex because it can be represented properly in 

: using an algebraic manoeuvre common in the analysis of reactive electrical circuits 

and other harmonic systems, it is convenient to write as a complex quantity whose

e with the strain and whose imaginary part is 90◦ out of phase with it:
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inusoidal varying stress, a state will eventually be 

in which the resulting strain is also sinusoidal, having the same angular frequency but 

phase angle. This is true even when 

By knowing the value of the phase angle, the rheology of a 

 

coincide with a time at which the strain has its 

( 9 ) 

absolute value of the complex 

( 10 ) 

This modulus is defined as complex because it can be represented properly in the complex plane 

common in the analysis of reactive electrical circuits 

as a complex quantity whose real part is 

 out of phase with it: 
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where:  is the 

  is the 

Figure 10

 

Similarly, the complex compliance

 

However, while G* and J* are mutual, this is not true for 

From the equations above, the following one can be deducted:

 

Moduli and phase angle are frequency dependent, although the explicit dependence has been 

omitted in this paragraph, for the sake of simplicity.

 

                                                      
6 “These terms are sometimes misinterpreted as the elastic and viscous moduli; in reality, the elastic component of the 

response only represents part of the storage modulus, and the viscous response only part of the

addition to the elastic and viscous response, most real viscoelastic materials exhibit a significant amount of delayed 

elastic response that is time-dependent but completely recoverable. In interpreting the storage and loss moduli, it 

should be kept in mind that both these parameters reflect a portion of the delayed elastic response” 

1994) 
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is the storage modulus 

is the loss modulus6 

 
10: G* in the complex plane (Interactive, 2011) 

complex compliance (mutual of the complex modulus) can be defined as:

  

 

However, while G* and J* are mutual, this is not true for their real and imaginary part.

From the equations above, the following one can be deducted: 

  

Moduli and phase angle are frequency dependent, although the explicit dependence has been 

or the sake of simplicity. 

              
“These terms are sometimes misinterpreted as the elastic and viscous moduli; in reality, the elastic component of the 

response only represents part of the storage modulus, and the viscous response only part of the

addition to the elastic and viscous response, most real viscoelastic materials exhibit a significant amount of delayed 

dependent but completely recoverable. In interpreting the storage and loss moduli, it 

uld be kept in mind that both these parameters reflect a portion of the delayed elastic response” 

 

( 11 ) 

 

(mutual of the complex modulus) can be defined as: 

( 12 ) 

their real and imaginary part. 

( 13 ) 

Moduli and phase angle are frequency dependent, although the explicit dependence has been 

“These terms are sometimes misinterpreted as the elastic and viscous moduli; in reality, the elastic component of the 

response only represents part of the storage modulus, and the viscous response only part of the loss modulus. In 

addition to the elastic and viscous response, most real viscoelastic materials exhibit a significant amount of delayed 

dependent but completely recoverable. In interpreting the storage and loss moduli, it 

uld be kept in mind that both these parameters reflect a portion of the delayed elastic response” (Anderson, et al., 
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2.3.2 TIME-TEMPERATURE SUPERPOSITION

Temperature has a dramatic influence on rates of viscoelastic response, and in practical work it 

is often necessary to adjust a viscoelastic analysis for varying temperature. 

superposition (TTS, also 

applied: 

− To determine the temperature dependence of the rheological

material 

− To expand the time or

behaviour is studied

This is due to the fact that the various relaxation times belonging to a given relaxation process 

have the same temperature dependence: the effect of lowering the temperature is simply to shift 

the viscoelastic response (plotted against log time) to the right without change in shape

(Roylance, 2001) & (Van Gurp, et al., 1998)

 

A reference temperature T

the horizontal shift that must be applied to a response curve (C

temperature T, in order to move it to the curve measured at T

It is theoretically assumed that the same shift factor can be applied to every viscoelastic 

property. 

Some popular models for 

− Arrhenius (mainly used for the glassy range of temperatures):

EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES

 

TEMPERATURE SUPERPOSITION 

Temperature has a dramatic influence on rates of viscoelastic response, and in practical work it 

is often necessary to adjust a viscoelastic analysis for varying temperature. 

superposition (TTS, also known as method of reduced variables) is a procedure frequently 

determine the temperature dependence of the rheological behaviour

o expand the time or frequency regime at a given temperature at which the material

is studied 

This is due to the fact that the various relaxation times belonging to a given relaxation process 

have the same temperature dependence: the effect of lowering the temperature is simply to shift 

e viscoelastic response (plotted against log time) to the right without change in shape

(Van Gurp, et al., 1998). 

Figure 11: T.T.S. shifting factor 

eference temperature TREF being given, the time-temperature shift factor

the horizontal shift that must be applied to a response curve (CRESP), measured at an arbitrary 

in order to move it to the curve measured at TREF (Figure 

It is theoretically assumed that the same shift factor can be applied to every viscoelastic 

Some popular models for  are the following ones: 

Arrhenius (mainly used for the glassy range of temperatures): 
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Temperature has a dramatic influence on rates of viscoelastic response, and in practical work it 

is often necessary to adjust a viscoelastic analysis for varying temperature. Time-temperature 

is a procedure frequently 

behaviour of a viscoelastic 

iven temperature at which the material 

This is due to the fact that the various relaxation times belonging to a given relaxation process 

have the same temperature dependence: the effect of lowering the temperature is simply to shift 

e viscoelastic response (plotted against log time) to the right without change in shape 

 

temperature shift factor is defined as 

), measured at an arbitrary 

Figure 11). 

It is theoretically assumed that the same shift factor can be applied to every viscoelastic 
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 log FG � $H
I 3&

G � &
GJKL4  ( 14 ) 

where: �M = activation energy 

 R = gas constant 

− Williams-Landel-Ferry (for temperatures near or above the glass temperature) 

 log FG � � NO�G:GP 
NQ'G:GP  ( 15 ) 

where C1 and C2 are positive constants that depend on material and reference 

temperature 

 

The theoretical aspects of this phenomenon has been firs investigated by Prince E. Rouse in his 

A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers 

(published in 1953); there, he described the viscose material as a system made of beads 

connected by polymeric harmonic springs, in which each bead suffers from random thermal 

forces and drag forces. 

However, while for the simpler material only the horizontal shift factor aT is needed, for more 

complex ones another factor must be evaluated: the vertical shift factor bT. This depends mainly 

on the high density variations that occur to some materials while the temperature changes, but 

also on other hardly identifiable parameters. For this reason, bT has not been properly modelled 

yet, and it is often neglected in the bitumen study. 

 

2.3.3 THE MASTER CURVE 

A series of creep or relaxation data taken over a range of temperatures can be converted to a 

single master curve via this horizontal shifting. The curve usually represents the trend of a 

viscoelastic variable, plotted against time or frequency. 

Thanks to the TTS principle, the master curve at a reference temperature can represent a range of 

frequency (or application time) wider than the experimental one.  

When the data are gained by sinusoidal oscillatory analysis, the master curve can be evaluated 

through the reduced frequency: 

 @R�S� �  FG � @�S   ( 16 ) 
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Along with the master curve, the aT vs. temperature behaviour is plotted, in log scale. 

The mostly used master curve is the one where complex shear modulus G*(ω) and the phase 

angle δ are plotted against frequency on a log-log scale. The behaviour of this curve is material-

dependent, but can always be described by some parameters: 

− Glassy modulus (Gg): at low temperatures and high frequencies entropic motions are 

frozen and only elastic bond deformations are possible. It is a relatively high modulus on 

the order of 1 GPa. 

− Steady-state viscosity (η0):  at high temperatures and low frequencies the stiffness 

decreases of two orders of magnitude. Where the rubbery state is reached, the zero-shear 

rate viscosity (value of apparent viscosity in resting fluid) can be evaluated as )�� �
limVWX .Y

V  and, for very low frequencies, )X � )��.  

− Crossover frequency (ωc) and crossover time (tc): the frequency, at a given temperature, 

where tan \ � 1. At this point, the storage and loss moduli are equal. For bitumen, the 

crossover frequency is nearly equal to the point at which the viscous asymptote 

intersects the glassy modulus. The crossover time is the reciprocal of the crossover 

frequency 6] � &
V^. 

− Rheological index (R): the difference between the glassy modulus and the dynamic 

complex modulus at the crossover frequency, _ � #` � #Y�@] . The rheological index 

is directly proportional to the width of the relaxation spectrum and is a measure of the 

shear-rate dependency of bitumen. 

The parameters for the master curve, as described above, are meant to be clearly definable 

characteristic parameters, as opposed to statistically determined parameters that may or may not 

truly reflect the mechanical properties of bitumen (Anderson, et al., 1994). 
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2.4 LINEAR VISCOELASTIC CONDITIONS IN BITUMEN 

The viscoelastic parameters seen can be defined properly only in the linear-viscoelastic region of 

response, where the stress-strain relationship is not influenced by the magnitude of one of them 

(Airey, et al., 2004). Thus, the first investigation over a material must be the linearity test, 

performed through stress/strain sweep tests using a Dynamic Shear Rheometer (DSR).  

The linearity of bitumen has already been investigated and modelled by various researchers. The 

main work in literature is the study published in 1994 by the Strategic Highway Research 

Program, which will be summarized in the following paragraph. 

The complex mechanical behaviour of viscoelastic materials such as asphalt cement is a result of 

the interaction of both time and temperature dependence. In the mathematical modelling of the 

LVE behaviour of bitumen, these effects must be treated separately. Time dependency is 

reflected in the location (tc or ωc) and shape (R) of the master curve; temperature dependency is 

indicated by the plot of log F�S  vs. temperature. 

 

2.4.1 S.H.R.P. MODEL 

The linear strain limit is arbitrarily established as the strain at which the storage modulus 

decreases at the 95% of its maximum value (Anderson, et al., 1994). It has been seen that the 

LVE (Linear Viscoelastic) limit increases with temperature. 

So, for the region within the previous limit, it was found that the following series of equations 

can well approximate the empirical master curves. 

 

#Y�@ � #` a1 � 3V^
V 4�5`%/Ic � I

�5`%  

\�@ � 90
1 � 3@]@ 4 fgh2_ 

_ � log 2 �
log j#Y�@ #` k
log 31 � \904   

( 17 ) 

where: #Y�@  = complex modulus [Pa] 
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 \�@  = phase angle 

 @ = given frequency [rad/s] 

 #` = glassy modulus (usual 1GPa7) 

 @] = crossover frequency [rad/s] 

 R = rheological index 

 

The equations ( 17) can be manipulated to get the shear stress and strain LVE limits as a function 

of the complex modulus (Airey, et al., 2004): 

 
!lm$ � 12.0

#YX.%o 

"lm$ � 0.12#YX.p& 

( 18 ) 

where:  !lm$ = shear strain at the limit of the LVE 

 "lm$ = shear stress at the limit of the LVE 

 #Y�@  = complex modulus [Pa] 

 

2.4.2 EUROPEAN STANDARD 

In 2012 the European Committee for standardization published the latest norm about the 

Dynamic Shear Rheometer: EN 14770, Bitumen and bituminous binders - Determination of 

complex shear modulus and phase angle - Dynamic Shear Rheometer (DSR). 

In the Annex C the procedure for the determination of the viscoelastic linear range is carried out 

(CEN, 2012): 

− The determination of the linear region should be done for each selected geometry 

− For a given geometry, determination of the linear region on the all selected temperature 

ranges shall consist, at least, of carrying out: 

− strain (or stress) sweep at the lowest temperature and at the highest frequency 

− strain (or stress) sweep at the highest temperature and at the lowest frequency 

in order to select the adequate strain level. 

                                                      
7 (Anderson, et al., 1994) 



 RHEOLOGICAL CHARACTERIZATION OF BITUMINOUS BINDERS 
 
 

| 36   

− To remain in the linear range, the value of G’ and G’’ must not differ by more than 5 % 

of the initial value over the stress or strain range chosen. The initial value can be taken 

as the intercept of a regression line fitted to the first measured values. 

 

2.4.3 ASTM STANDARD 

In the Annex X1 of the D7175–08 norm (ASTM, 2008) is provided the test method for proving 

the linearity of a binder through the DRS tests. The determination is based on the change in 

complex shear modulus at 10 rad/s when the strain is increased from 2% to 12%. 

To define the linear region the test is carried on by producing a strain sweep at constant 

frequency (10 rad/s, which is assumed to be the frequency of a normal street). Then, the modulus 

ratio is calculated as the complex shear modulus at 12% strain divided by the complex shear 

modulus at 2% strain. 

According to this norm, the measurement was performed in the non-linear range of the material 

if the modulus ratio is < 0.900 and linear if is > 0.900. 

 

2.5 DYNAMIC SHEAR RHEOMETER TESTS 

The aim of this dynamic test is to evaluate the complex 

modulus and the phase angle of the tested bitumen. It is 

performed by rotating the upper plate in an alternating 

clockwise and counter-clockwise position (oscillating). 

If the bitumen test specimen is seen as a series of 

circular layers, rotating one with respect to another. The 

shear strain is defined as the distance the point rotates 
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divided by the specimen thickness. Therefore, the shear strain is zero at the centre and it 

increases to the maximum at the outer edge of the specimen, where, also, most of the shear 

resistance is developed.  

The complex modulus G* is evaluated by a set of equation whose main assumption is the 

linearity of the material. If the modulus varies with the magnitude of the shear strain, the 

previous assumption is not valid and the measured modulus could be in error. Given that, the test 

must be applied only to the LVE region, which can be estimated by testing a sample in a wide 

range of strains. Once obtained the whole G*/strain curve, the linear region can be easily 

identified as the one in which the value of G* is constant.  

The load (being it strain or stress controlled) can be applied mainly in four different ways: 

1. Repeated loading from zero to the peak and back to zero, with the load changing at a 

linear rate. 

2. Step load: sudden application of a load, which is held constant for a finite period of time 

(creep test). 

3. Repeated creep: repeated application of a step load with the load always applied so that 

the upper plate moves in one direction when loaded. 

4. Sinusoidal loading pattern: repeated application of a sinusoidal load that causes the plate 

to move back and forth about the zero position.  

This last method is used to evaluate modulus and phase angle in the DSR test, whether stress or 

strain controlled. The curve of strain and the one of stress are not synchronized with each other, 

the first one lagging behind the second. This lag is also known as phase angle and it express the 

attitude of the material to recover deformation: a low value (gained at low temperature or at high 

frequencies) represents a very elastic behaviour, while a value of about 90° represents a 

completely viscose behaviour without recovery of the strain. 

 

2.5.1 SAMPLING AND TESTING PROCEDURE 

The following tests have been executed according to the E.U. standards EN14770:2012 and EN 

12594:2007. The rheometer used was Physica MCR 301 by Anton Paar. 
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2.5.1.1 PREPARATION OF THE RHEOMETER 

According to the manufacturer’s instructions, before switching on the equipment the water and 

the air flow must be opened up, so that they can start the temperature-control system. After the 

switch on of both the equipment and the software, the selected testing geometry must be 

mounted and the plates must be cleaned properly. Then, the zero gap between plates is set with 

both plates nominally at the same reference temperature as required for the first test temperature.  

 

2.5.1.2 SAMPLE PREPARATION 

Given the small amount of bitumen needed for the testing, it has been followed the procedure at 

the point 7.1.1 of the EN 12594.  

The binder has been poured in a small container which has been placed in the oven for 15 to 20 

minutes at a temperature related to the kind of bitumen and to its aging conditions (Table 2). 

 Unaged bitumen Aged bitumen 

20/30 145°C 155°C 

30/45 142°C 152°C 

35/50 140°C 150°C 

40/60 138°C 148°C 

50/70 136°C 146°C 

70/100 133° 143°C 

100/150 129°C 139°C 

160/220 125°C 135°C 

250/330 120°C 130°C 

Polymer modified 190q10°C 190q10°C 

Table 2: table of the temperatures used in oven heating 

 

Then, the container has been removed from the oven and the melted sample has been stirred, 

allowing air bubbles to escape and, especially for polymer modified binders, to ensure 

homogeneity. Afterwards the container has been placed again in the oven for some minutes (less 

than 5). 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  39 | 

The shape needed for the DSR test has been gained by pouring the melted binder into silicone 

moulds, allowing them to be overfilled in order to prevent the volume loss due to the 

temperature induced shrinkage. The entire procedure (melting, homogenising and moulding) has 

been carried out within 30 minutes. The following minimum and maximum storage durations 

before the de-moulding and testing procedure have been followed: 

− Minimum delay: 2 h for pure bitumen; 12 h for PmBs. 

− Maximum delay: 3 days whatever the binder. 

Just before the measurement, the excess of bitumen of the samples has been cut to the mould 

height using a hot knife. The moulds with the samples, then, have been placed in the refrigerator 

for 5 to 10 minutes. In the meantime, to ensure adhesion between sample and plates, the latter 

have been heated at 80°C to 90°C for 5 to 10 minutes. Then, the binder sample has been 

removed from the mould and placed to the lower plate (for the 8mm geometry) or the mould has 

been pushed closed to the upper plate till the sample stuck on it (for the 25mm geometry). 

Immediately after mounting the test specimen, the plates have been brought to the selected 

testing gap plus 0.025 mm (this addition was automatically performed by the rheometer). 

Maintaining the bonding temperature, the excess binder has been trimmed with the aid of a hot 

spatula. Care has been taken so that the sample covered the whole measuring plates and that the 

trimming tool did not dig into the specimen between plates. Then, the plates have been brought 

to the exact testing gap of 1 mm (25 mm plate) or 2 mm (8 mm plate). 

 

2.5.1.3 TESTING PROCEDURE 

Before starting the test, the starting temperature has been set and held constant for 10 to 20 

minutes, in order to gain a thermal equilibrium state of the sample. 

The rheometer has been set to perform the tests in the oscillatory mode, to ensure dynamic 

response, always in the strain control mode. The parameters that have been set were: frequency 

(single value or sweep), strain (single value or sweep), number of registering points, temperature 

(single value or multiple). 
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2.5.1.4 CLEANING 

When the test is finished, the temperature of the plates must be raised to 80°C-90°C and kept 

still for some minutes in order to remove the binder. Only after this heating the plates can be 

raised and the bitumen can be easily taken off with the aid of soft cleaning cloth or paper. 

Then, the plates must be removed from the equipment and cleaned first with toluene, to dissolve 

bitumen, and afterward with acetone, to dissolve any residuals of the toluene. 
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CHAPTER 3:  CHEMICAL CHARACTERIZATION OF 

BITUMINOUS BINDERS 

3.1 INTRODUCTION 

Along with the rheological characterization of the bitumen, in the past twenty years their 

chemical characterization has become more and more important. This is due to increasing use of 

polymeric additives in the binders and to the need of better understanding the aging mechanisms: 

with time passing by, in fact, the binders suffer from oxidation and loss of volatile components, 

while it has been observed a reduction of the polymers (Lu, et al., 2002). 

For the purposes of this thesis, two different techniques have been used: 

− Fourier Transform Infrared Spectroscopy: it combines a user-friendly approach to the test 

with reliable and repeatable results regarding aliphaticity, aromaticity and oxygenation rate. 

− Gel Permeation Chromatography: it allows to characterize the polymers according to their 

molecular size and to easily estimate their aging condition. 
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3.2 FOURIER TRANSFORM

The infrared spectroscopy is an analytic technique u

to get the infrared spectra of absorption, emission or ph

In fact, every atom in a molecule 

structure and the frequency of the absorbed radiation is associated with a particular normal mode 

of motion and a particular bond type.

This kind of spectroscopy deals with the infrared region of the electromagnetic spectrum

analysing wavelengths8 from 0,8

regions: 

− Near-Infrared: 14000-4000 cm

− Mid-Infrared: 4000-400 cm

rotational-vibrational structure.

− Far-Infrared: 400-10 cm-

Figure 12: electromagnetic spectrum, with emphasis on the infrared region and on the mid

 

                                                      
8 Usually, instead of the wavelength the wavenumbe

waves existing in a specified distance which, in spectroscopy is cm. Thus, the unit for the wavenumber is cm

CHEMICAL CHARACTERIZATION OF BITUMINOUS BINDERS 

 

SFORM INFRARED SPECTROSCOPY 

The infrared spectroscopy is an analytic technique used in both organic and inorganic chemistry 

spectra of absorption, emission or photoconductivity. 

in a molecule absorbs a specific frequency that is characteristic of his 

structure and the frequency of the absorbed radiation is associated with a particular normal mode 

of motion and a particular bond type. 

of spectroscopy deals with the infrared region of the electromagnetic spectrum

from 0,8 µm to 1000 µm (14000 to 10 cm-1), and its divided in three 

4000 cm-1 

400 cm-1, used to study the fundamental vibrations and associated 

vibrational structure. 
-1, used for rotational spectroscopy 

: electromagnetic spectrum, with emphasis on the infrared region and on the mid-infr

              
Usually, instead of the wavelength the wavenumber is used. This is the mutual of the wavelength or the number of 

waves existing in a specified distance which, in spectroscopy is cm. Thus, the unit for the wavenumber is cm

 

INFRARED SPECTROSCOPY  

sed in both organic and inorganic chemistry 

absorbs a specific frequency that is characteristic of his 

structure and the frequency of the absorbed radiation is associated with a particular normal mode 

of spectroscopy deals with the infrared region of the electromagnetic spectrum, 

), and its divided in three 

the fundamental vibrations and associated 

 
infrared one 

r is used. This is the mutual of the wavelength or the number of 

waves existing in a specified distance which, in spectroscopy is cm. Thus, the unit for the wavenumber is cm-1. 
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The FTIR (Fourier Transform Infra

(with increasing interferences at the lower limit) (

spectroscopies, the FTIR collects

contains many frequencies, but at every step it is modified to a different combination of 

frequency. Eventually, a computer inf

wavenumber. 

 

3.2.1 THE INTERFEROMETER

The combination of frequencies in the light beam is changed at every step through the use of the 

Michelson Interferometer (

beam in two beams, which

recombine again on the splitter and, de

splitter to mirrors, the interference will be constructive or destr

 

The interferometer implemented in the FTIR equipment has a moving mirror, so that for its 

every position different frequencies are destructed in the interference. At the detector, an 
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(Fourier Transform Infra-Red) technique collects samples from the second region 

(with increasing interferences at the lower limit) (Figure 12). Unlik

spectroscopies, the FTIR collects samples from a wide spectral range at once: the light beam 

contains many frequencies, but at every step it is modified to a different combination of 

frequency. Eventually, a computer infers the data backwards to get the absorption level for every 

THE INTERFEROMETER 

The combination of frequencies in the light beam is changed at every step through the use of the 

Michelson Interferometer (Figure 13): the beam splitter is partially reflective and 

beams, which will be reflected by the mirrors (M1 and M2)

recombine again on the splitter and, depending on the difference between the distances from 

splitter to mirrors, the interference will be constructive or destructive. 

Figure 13: Michelson interferometer 

The interferometer implemented in the FTIR equipment has a moving mirror, so that for its 

every position different frequencies are destructed in the interference. At the detector, an 

EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

43 | 

technique collects samples from the second region 

Unlikely other type of 

samples from a wide spectral range at once: the light beam 

contains many frequencies, but at every step it is modified to a different combination of 

ers the data backwards to get the absorption level for every 

The combination of frequencies in the light beam is changed at every step through the use of the 

is partially reflective and divides the 

will be reflected by the mirrors (M1 and M2). Then both beams will 

pending on the difference between the distances from 

 

The interferometer implemented in the FTIR equipment has a moving mirror, so that for its 

every position different frequencies are destructed in the interference. At the detector, an 
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interferogram is generated by making measurements of the signal at many discrete positions of 

the moving mirror. 

Then, the interferogram is converted in an actual spectrum by a Fourier Transform. 

 

  

3.2.2 THE SPECTRUM EXTRACTION 

The total intensity at the detector is a function of the path length difference and of the 

wavelength: 

 

r�� �  s r��, uv w
X 
uv � &

% s r�uv �1 � cos� 2yuv� �
uv                  z�w
X   

r� uv �  { r��, uv w
X


� � 4 { ar�} � 1
2 r �} � 0 c cos� 2yuv� 
�                  z�w

X
 

( 19 ) 

where r�� � spectrum 

 uv = wavenumber 

 � � path length difference 

The two functions in ( 19) can be interconverted by using a Fourier transform  

 

3.2.3 ATTENUATED TOTAL REFLACTANCE 

In this study the Attenuated Total Reflectance (ATR) technique has been used to collect the 

FTIR spectra. This method allows examining a material without further preparation, simply by 

placing it on the ATR crystal, because it measures the changes that occur in a totally internally 

reflected infrared beam when the beam comes into contact with a sample (Figure 14).  
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Figure 14: schematic representation of the ATR crystal 

 

The beam of light is directed into a dense crystal (germanium, KRS-5, zinc selenide and 

diamond) with a reflective index higher than the one of the testing material. The internal 

reflectance produces an evanescent infrared wave that extends for 0.5-5 µm into the surface of 

the sample. In regions of the infrared spectrum where the sample absorbs energy, the evanescent 

wave will be attenuated or altered. 

 

3.2.4 SPECTRUM ANALYSIS 

Every single organic material owns a specific spectrum, which depends on the molecular 

structure of the material itself. During this project work the absorbance spectrum has been used 

in the analysis, where absorbance (at a specific wavelength) is defined as: 

 ~�A � � log �O
�P  ( 20 ) 

where rX = intensity of the radiation falling upon a material 

 r& = intensity of the radiation transmitted through the material 

Within the mid-infrared spectrum two regions can be defined: 

− Functional groups area: it stretches between 4000 and 1500 cm-1. The functional groups 

are groups of atoms or bonds within molecules that are responsible for the characteristic 

chemical reactions of molecules of that specific group. 

− Fingerprint area: it stretches between 1500 and 700 cm-1. In this area, each different 

material produces a unique pattern. 
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Once the spectrum is given, it is compared with known spectra measured under the same 

conditions to uniquely identify the compound. Moreover, the peaks in the fingerprint area can be 

used to evaluate some indexes that should give some quantitative information about the material. 

 

3.2.4.1 BITUMEN SPECTRUM 

The bitumen absorbance spectrum is characterized by the following peaks: 

− 2870 cm-1  and 2920 cm-1: methyl and methylene bonds (C-H) 

− 1709 cm-1: carbonyl stretching vibration (C=O) 

− 1460 cm-1: asymmetric vibration of ethylene bonds (CH2) 

− 1375 cm-1: bending vibration of methyl bonds (CH3) 

− 1030 cm-1: sulfoxide stretching vibration (S=O) 

 
Figure 15: FTIR bitumen spectrum 

 

3.2.4.2 INDEXES 

The oxidation of the bitumen causes the formation of new C=O and S=O bonds, while no change 

is applied to the CH2 and to the CH3 peak. Hence, the Oxidation Indexes have been defined as: 
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�F��g��f r�
�� ��r � MB^�
M��Q'M���

  

��f�g��
� r�
�� ��r � ~��5~N�Q � ~N��
 

( 21 ) 

where  ~�]5 � area centred on the carbonyl peak 

 ~��5 � area centred on the sulfoxide peak 

 ~N�Q � ~N��  = reference area, centred around the CH2 ant the CH3 peaks 

As integration limits for the area calculation the valley values (deepest inflexion points) at each 

side of the peak has been taken (Poulikakos, et al., 2014) (Figure 16). In general, the following 

limits have been found: 

− carbonyl area: around 1660 cm-1 and 1725 cm-1 

− sulfoxide area: around 985 cm-1 and 1045 cm-1 

− CH2 area: around 1330 cm-1 and 1393 cm-1 

− CH3 area: around 1393 cm-1 and 1513 cm-1 

 

 
Figure 16: peaks' limits 
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3.2.5 SAMPLING AND TESTING PROCEDURE 

3.2.5.1 PREPARATION OF THE FTIR 

In this study the Nicolet iS5 FTIR with iD5 ATR from 

Thermo Scientific has been used (Figure 17). The equipment 

requires no operation but the switch on for being ready to 

collect the spectrum. 

Once it is switched on, along with its computer software, it is 

necessary to collect a sample of the background (spectrum 

absorbed by the crystal) which will be later (and 

automatically) subtracted from the sample’s spectra. Then, a 

couple of “empty” spectra should be collected, in order to 

check for the actual cleanliness of the crystal. 

 

 
Figure 18: background spectrum 
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Figure 17: Nicolet iD5 and iS5 
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Figure 19: "empty" spectrum 

 

The peak situated around 2355 cm-1 is typical of the crystal (diamond) used for this ATR-FTIR. 

Anyhow, it doesn’t affect the measurements, since no bitumen characteristic peak is situated at 

that point. 

 

3.2.5.2 SAMPLE PREPARATION 

The bitumen needed for the test (roughly 0.1-0.2g) is 

extracted from its container using a small spatula. 

First of all, the layer of material directly exposed to air has 

to be discarded (given the unknown oxidation process that 

it might have suffered of). Then, a small amount must be 

placed onto the crystal surface, so that it completely covers 

the latter (Figure 20). 

 

-0,03

-0,02

-0,01

0

0,01

0,02

5001000150020002500300035004000

a
b

so
rb

a
n

ce
 [

%
]

wavenumber [cm-1]

Figure 20: FTIR sample preparation 



 CHEMICAL CHARACTERIZATION OF BITUMINOUS BINDERS 
 
 

| 50   

3.2.5.3 TESTING PROCEDURE 

The test is automatically run by the software (Ominc 7, provided by Thermo Scientific). The 

operator can only choose the number of points, of steps and the wavenumber limits. 

Eventually, the spectrum will be measured and it saved in a file compatible with Excel. 

 

3.2.5.4 CLEANING 

When the test is finished, the binder is removed using toluene and, afterwards, acetone. Then, 

the effective cleanliness must be assessed performing another empty test. 
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3.3 GEL PERMEATION CHROMATOGRAPHY 

Chromatography is the generic name of a large set of laboratory techniques used for the 

separation of mixtures (analytes). In general, the mixture is 

dissolved in liquid phase (mobile phase) and forced to pass 

through a structure holding another material (stationary 

phase). The separation is based upon the differential 

interaction of the analyte with the mobile and stationary 

phases. 

In this study the Gel Permeation Chromatography (GPC) has 

been used. This technique is a type of the Size Exclusion 

Chromatography, where the molecules are separated by their 

size which is related to the molecular weight (Figure 22). 

 

 
Figure 22: Molecules of various sizes elute from the column at different rates. 

 

The main advantage of GPC is that there is almost no chemical or polar interaction between the 

stationary phase and the analytes, but the separation is obtained via the use of porous beads 

packed in a column: the porous surface of the beads retains the smaller particles longer than the 

bigger ones (Figure 22).  

There is a limited range of molecular weights that can be separated by each column depending 

on the pore size of the packing material. Therefore the size of the pores for the packing should 

Figure 21: pore vs analytes 
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be chosen according to the range of molecular weight of analytes to be separated. In fact, the 

molecules bigger than the pores are completely un

retained for an extremely and excessive long time.

In the picture below (Figure 23

(Agilent Technologies, 2014): 

Figure 

 

In this study two detectors were used: Ultra violet detector (UV

absorption of UV light) and a refractive index detector (RI

refractive index between the dissolved analyte and the pure solvent).

 

3.3.1 BITUMEN CHROMATOGRAM

The results of GPC analysis are chromatogram, where the intensity (molecular volume) detected 

by the detector is plotted against the retention time (

time is dependent on the molar mass of the single molecule: the shorter the RT, the higher the 

molar weight of the molecule. 

The bitumen chromatogram obtained with the 

peaks: 

CHEMICAL CHARACTERIZATION OF BITUMINOUS BINDERS 

 

be chosen according to the range of molecular weight of analytes to be separated. In fact, the 

molecules bigger than the pores are completely un-retained, while smaller ones might be 

retained for an extremely and excessive long time. 

23) the main components of the used GPC system are shown 

 

Figure 23: main components of a GPC/SEC system 

In this study two detectors were used: Ultra violet detector (UV-detector, it measures the 

absorption of UV light) and a refractive index detector (RI-detector, it assesses 

refractive index between the dissolved analyte and the pure solvent). 

BITUMEN CHROMATOGRAM 

The results of GPC analysis are chromatogram, where the intensity (molecular volume) detected 

by the detector is plotted against the retention time (Figure 24). As it has been said, the retention 

time is dependent on the molar mass of the single molecule: the shorter the RT, the higher the 

en chromatogram obtained with the GPC system is characterized by the following 

 

be chosen according to the range of molecular weight of analytes to be separated. In fact, the 

retained, while smaller ones might be 

) the main components of the used GPC system are shown 

 

detector, it measures the 

 the difference in 

The results of GPC analysis are chromatogram, where the intensity (molecular volume) detected 

). As it has been said, the retention 

time is dependent on the molar mass of the single molecule: the shorter the RT, the higher the 

is characterized by the following 
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− Asphaltene’s peak: it occurs at about 15.6 minutes for the RI detector and at about 15.4 

minutes for the UV detector. 

− Maltene’s peak: it occurs at about 17.7 minutes for both the detectors. 

The two peaks are actually partially overlapping, so a quantification of the single compound is 

almost impossible. 

The modification of the binder with polymers leads to the appearance of new peaks. Because of 

the higher molar mass of the polymers, these peaks occur before the bitumen’s ones and, 

because of their high sensitivity to oxidation, tend to disappear after aging. 

 

 
Figure 24: Chromatogram of Polymer Modified Bitumen. 

 

 

3.3.1.1 CALIBRATION 

When the molar weight of the compounds is needed, a calibration procedure must be run: the 

retention time of a monodispersed polymer standard is evaluated and the known molar weights 

of its peaks are plotted in the software to obtain the calibration curve (Figure 25). 
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Figure 25: creation of a calibration curve. 

The calibration curve, then, can be used to evaluate the actual molar weight9 of the samples’ 

peaks and the concentration of every single compound. 

 

3.3.2 SAMPLING AND TESTING PROCEDURE 

3.3.2.1 SAMPLE PREPARATION 

The bitumen needed for the test (about 200mg) is extract from the container with the aid of a 

spatula or of a cutter without heating and put in a small 25 ml glass flask. Then, the sample is 

dissolved in Tetrahydrofuran (THF, (CH2)4O) to obtain the required concentration of 

approximately 10 mg/ml (Figure 26). 

                                                      
9 Several definition of average molecular weight can be used to characterize the nature of a polymer: 

− Number average molar mass: �� � ∑ �B�B
∑ �B  

− Mass average molar mass (formerly called weight average): �� � ∑ �BQ �B
∑ �B�B  

− Viscosity average molar mass: �� � �∑ �BO ¡ �B
∑ �B�B ¢

O
¡
, where a is an exponent that relates intrinsic viscosity and 

molecular mass. 

− Z average molar mass: �� � ∑ �B� �B
∑ �BQ�B  
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Figure 26: solutions of bitumen and THF 

 

Once the bitumen is completely dissolved, the solution is diluted to 2 mg/ml. The accurate 

concentration is calculated from the mass of bitumen and THF, which have been weighed before 

with a precision of 1 mg. For the injection sample, about 2ml of the solution are taken up with a 

syringe, and filtered through a 0.45 um PTFE-Filter into a 2ml flask. Eventually, the labelled 

flasks are placed in the sample tray of the automatic sampler of the GPC-system (Figure 27). 

 
Figure 27: sample tray and automatic sampler 
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3.3.2.2 TESTING PROCEDURE 

The test is automatically run by the software Agilent GPC, provided by the manufacturer. 

Through the software the components of the equipment can be switched on and the test 

parameters (solvent flow in the system, sampling time, temperature, etc.) can be set. 

In this study the followings parameters have been used: 

− solvent flow: 1.00 ml/min. 

− sampling time: 30 minutes. 

− RI temperature: 35°C. 

− UV wavelength: 215 nm 

 

 

 

3.3.3 DATA ANALYSIS 

The analysis of the chromatogram can be performed in two ways: 

− Through the software itself: once a standard material has been tested and the molecular 

weight of its components registered, the calibration procedure is run by the software. As 

a result, the molecular weight of the peaks will be given. 

− Analysing the changes in the retention time of the chromatogram peaks or the area of the 

peaks in a spreadsheet like MS-EXCEL. 

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  57 | 

 

CHAPTER 4:  PRELIMINARY TESTS 

4.1 DYNAMIC SHEAR RHEOMETER 

4.1.1 LINEAR VISCO-ELASTIC (LVE) DOMAIN 

The linear viscoelastic domain has been determined in conformity to the standard presented in 

the paragraph 2.4. The bitumen analysed was a styrene-modified bitumen 13/80 produced in 

1996. 

In the following charts the G*-strain curves are displayed, at different test temperature. 
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Figure 28: complex modulus vs strain at 0°C. 

 

 
Figure 29: complex modulus vs strain at 10°C. 
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Figure 30: complex modulus vs strain at 20°C. 

 

The results of the analysis fit the prediction of the SHRP model (see §2.4.1), with a LVE strain 

limit that decreases with both increasing frequency and decreasing temperature. As expected, the 

complex modulus at the LVE strain limits increases with both increasing frequency and 

decreasing temperature. 

The strain limit is very low in all the study cases, leading to the following conclusions: 

− the material has a limited linear region, very sensitive to temperature and frequency 

− the testing condition must be studied carefully before carrying on further tests 

 
Figure 31: SHRP Linear ViscoElastic Limit 
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Figure 32: Complex Modulus in correspondence of the SHRP LVE Limit 

 

The EU standard (§2.4.2) requires using the value of the modulus for zero strain, which is a 

value that cannot be straight evaluated. In this case, it has been calculated as the mean value 

within the ones produced by a strain lower than the 1%. 

As the following chart reports, the linear region defined by the EU standard is limited too.  

 
Figure 33: EU Linear ViscoElastic Limit 
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Comparing the results gained with the EU and the SHRP standards, it can be seen that the 

second one is more binding than the first and, for safety’s sake, should be used when testing this 

type of binder. 

 
Figure 34: LVE - SHRP vs EU standards 

 

As a consequence of the limited linear region, if the linearity test is carried out according to the 

ASTM standard (§2.4.3), 11 out of 12 samples should be rejected as non-linear, having a 

modulus ratio smaller than 0.9. Moreover, in 2 tests the 12% of deformation could not been 

reached, due to equipment limits. 

 
Figure 35: ASTM Linearity Test 
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4.1.2 REPEATABILITY 

In order to assess the test repeatability six samples of bitumen 40/50 have been tested under the 

same conditions: 

− frequency sweep from 1 to 100 rad/s 

− fixed strain at 0.1% 

− fixed temperature at 40°C 

− 25mm plate and 1mm gap 

As stated in the European Standard (CEN, 2012), the precision of this test method has not yet 

been established. However, the same standard suggests meeting at least the following criteria: 

− The complex modulus should not differ from the mean by more than the 15% 

− The phase angle should not differ from the mean by more than 3° 

In the charts below the average of the complex modulus and of the phase angle are shown, where 

the error bars represent the maximum difference between values and average for a given 

frequency. 

 
Figure 36: repeatability. Complex modulus. 
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Figure 37: repeatability. Phase angle [°] 

 

Thanks to this test, it has been proved that both the equipment and the procedure meet the EU 

suggestions: the maximum difference between G* and the average for every given frequency is 

about 10%, far less than the recommended 15%, while the maximum difference between phase 

angle and the average for every given frequency is about 0.23°, far less than the recommended 

3°. 

 

  

60

62

64

66

68

70

72

74

0 20 40 60 80 100

p
h

a
se

 a
n

g
le

 [
°]

angular fprequency [rad/s]



 PRELIMINARY TESTS 
 
 

| 64   

4.2 FOURIER TRANSFORM INFRARED SPECTROSCOPY 

4.2.1 NOISE 

The noise in the fingerprint region has been evaluated as the bigger peak-to-valley distance 

(Figure 38). Three different “empty” spectra have been analysed and, as a result, it was chosen 

to discard as noise the fluctuations smaller than 0.0005%. 

 
Figure 38: "empty" spectrum 
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In order to assess the repeatability of the test and of the oxidation indexes evaluation, six 
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Figure 39: FTIR  repeatability 
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Figure 40: fingerprint spectra 
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CHAPTER 5:  AGING OF WARM ASPHALT 

5.1 INTRODUCTION 

Warm Mix Asphalt (WMA) technologies have been developed during the last two decades as a 

solution for environmental issues in the paving process: the conventional Hot Mix Asphalt 

(HMA) is a source of pollution because of the high temperatures (160°C to 180°C) needed for its 

production and the consequent huge amount of energy spent. By implementing WMA 

technologies, mixing and compaction temperatures can be decreased by 40°-50°C, thus reducing 

fuel consumption and greenhouse emissions. 

To lower the mixing temperature a decrease in the viscosity of the mix is needed and can be 

gained in different ways: using foam bitumen, using emulsions or modifying the binder with 

additives, either organic or inorganic. Lower asphalt temperatures lead also to other advantages: 

longer hauling distances, better working conditions (less harmful fume emissions and lower 

spreading temperature), extended paving season and quick turnover to traffic, decrease of the 
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binder aging during production(Rubio, et al., 2011) (Silva, et al., 2010). However, some 

drawbacks are to be pointed out: lack of data concerning the long-term performance, higher 

production costs, for some WMA types greater rutting potential and moisture susceptibility, 

coating and bonding problems. 

5.2 OBJECTIVE AND SCOPE 

The aim of this part of the study is to find a test procedure reflecting the binder aging in warm 

asphalt at the lower temperatures used in the production process. The standard procedure in EN 

12607-1 was developed for HMA and requires an aging temperature of 163°C, which is not 

reached in the case of warm asphalt. Three additives have been studied with laboratory tests: a 

Fischer-Tropsch wax and two patented chemical additives. Of the latters, one has also been aged 

in situ. 

In order to assess the rheological changes caused by aging, the complex moduli and the phase 

angles of unaged, aged, unmodified and modified blends have been measured. To prove that the 

laboratory aging mimic the field conditions, the properties of recovered bitumen have also been 

inquired and compered to the laboratory aged binder results. 

5.3 LITERATURE REVIEW AND STATE OF THE ART 

Warm Mix Asphalt can be obtained by different methods (Rubio, et al., 2011): 

− Foaming process: water is mixed with the hot bitumen and thus transformed into steam. 

This generates a large volume of bitumen foam which reduces the mix viscosity for a 

limited time. The water can be added to the binder directly (water-based techniques) or 
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by adding synthetic zeolite with water trapped in the crystalline lattice (water-containing 

technologies) (Rubio, et al., 2011) 

− Emulsions: produced adding chemical packages to a mix of water and bitumen. When 

mixed with hot aggregates the water flashes off as steam (Silva, et al., 2010) 

− Organic additives: waxes added to the binder do both decrease the viscosity at high 

temperature (above the melting point of the wax, about 110°) and increase the stiffness 

of the binder as the mixture cools down by creating a crystalline lattice of uniformly 

distributed particles (Rubio, et al., 2011) (Kheradmand, et al., 2013). Three kind of 

organic additives can be identified: Fischer-Tropsch waxes (method for the synthesis of 

hydrocarbons and other aliphatic compounds from synthesis gas); fatty acid amide 

(manufactured synthetically by causing amines to react with fatty acids); Montan waxes 

(lignite wax consisting mainly of fossil fatty acid esters). 

− Chemical additives: to reduce the friction in asphalt: chemical patented additives, 

containing emulsification agents, surfactants, polymers and additives to improve 

coating, mixture workability and compaction as well as adhesion promoters 

(antistripping agents) (Mo, et al., 2012). These additives can be used to produce 

emulsions or directly mixed with bitumen before batching it into the asphalt mix. 

The additives used in the present study belong to the last two families. 

5.3.1 SYNTHETIC F-T PARAFFIN WAX 

This additive is a long chain of aliphatic hydrocarbons produced from the gasification of coal 

though the Fischer-Tropsch method. The melting point is at about 85°-115°C and the wax is 

completely soluble in bitumen for temperatures higher than 115°C. For temperatures above the 

melting point the wax reduces the binder viscosity while for lower temperatures it creates a 

crystalline lattice that help increasing the bitumen resistance to deformation. 

As numerous studies have proved, with respect to the binder source this additive increases the 

complex modulus at medium-sweep temperature, #Y/ sin \, the Zero Shear Viscosity, the 

softening point and the maximum force of ductility, while reducing the non-recoverable 

compliance, the phase angle, the penetration number and the Fraass breaking point (Jamshidi, et 

al., 2012).  
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It has also been shown that the degree of change in the rheological and chemical properties of 

the modified binder depends on the wax content, the bitumen type and chemical structure. 

Qin, et al. (Qin, et al., 2014) found that time–temperature superposition fails at temperatures 

above 30 °C and suggested that the formation of network or semi-solid like structure is 

responsible for this breakdown. 

Concerning the oxidation, resistance to oxidation properties have been observed both analysing 

rheological results (Banerjee, et al., 2012) and FTIR results (Jamshidi, et al., 2012).  The 

modified binder extracted from short-term-aged and long-term-aged WMA, in fact, shows less 

aging in terms of normalized viscosity, #Y/ sin \, #Y sin \, and binder stiffness, compared to 

binder extracted from HMA samples thanks to the reduced volatilization and oxidation caused 

by the  lower construction temperatures. 

Within the drawbacks of this kind of additives there are reduced resistance on low-temperature 

and increased fatigue potential, both due to the increased stiffness (Jamshidi, et al., 2012). 

 

5.3.2 CHEMICAL ADDITIVES 

It has been found that this kind of additive does not modify the failure temperature and have 

little effect on the infrared absorbance spectra for unaged samples (Xiao, et al., 2012). It was 

also found that WMA produced with chemical additives has significantly lower aging factor 

compared to control HMA, and this linked to the higher rutting depth at the early stage of 

pavement serviceability. Additionally, the result indicated that the production temperature and 

amount of additive used to produce WMA did not considerably contributed to the complex 

modulus, fatigue life, tensile strength and TSR of WMA mixture (Goh, et al., 2013) 
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5.4 EXPERIMENTAL 

5.4.1 MATERIALS 

The base binder used is a bitumen 50/70 delivered for the research package PLANET.  Three 

different additives have been used: one organic wax (FR-WAX) and two synthetic additives 

(FR-PACK and PA-PACK). In the table below the producers’ direction for blending and mixing 

are shown: 

Product Dosage of additive  (w/w) to bitumen Mix temperature 

FR-PACK 0.4% 130 

FR-WAX 3% 130 

PA-PACK 1% 130 

Table 3: dosage of the used additives. 

 

Modified binders have been prepared by heating 250 g of bitumen for 40 minutes at 130°C, until 

liquid. Then the pre-weighted amounts of additives have been added and the blends have been 

stirred for 5 minutes with a mechanical stirrer. The modified bitumen has been placed in the 

oven at 130°C for other 10 minutes and then stirred manually to obtain good homogeneity. 

Only the modified binder FR-PACK was used in a test field. On this example the aging in the 

field was compared with the binder aging in the laboratory. It has been extracted and recovered 

according to the EN 12697-1 and 12697-3. 

5.4.2 AGING PROCEDURE 

To simulate the aging in the mixing plant the binders have been aged according to EN 12607-1 

with the Rolling Thin Film Oven Test (RTFOT): 

− Virgin binder: the aging has been run for 75 minutes at 163° (standard procedure) 

− Modified binders: the aging has been run for 75 minutes at a reduced temperature of 

130°C, which is the mixing temperature used for these types of warm asphalt. 
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After the aging procedure, the aged binders of the RTFOT glasses have been combined in a 

single container, heated again at 130° for 10 minutes and homogenised with a glass rod. 

Then, to simulate the in situ aging of the binder during use of the road the Pressure Aging Vessel 

test (EN 14769) has been run: the samples are aged at 100° at a pressure of 2.10 MPa for 20 

hours. After the test, the aged binder was combined and homogenized again at 130° (148° for the 

unmodified bitumen) for 20 minutes. 

In the Table 4 the sample labels are shown: 

Additive unaged after RTFOT after PAV 

No additive A0 A0-r A0-p 

FR-PACK AC AC-r AC-p 

FR-WAX AS AS-r AS-p 

PA-PACK AG AG-r AG-p 

Table 4: labelling of the test samples. 

 

5.4.3 TEST METHODS 

Along with the conventional softening point test, the rheological properties of the binders have 

been measured  using the DSR  in the oscillation  mode, at 10°, 20°, 30°, 40°, 50°, 60° and 

different frequencies, to get enough data for a master curve.  For every material, two geometries 

have been used: 

− 8mm geometry, for 10° to 40°C 

− 25mm geometry, for 30° to 60°C 

The infrared spectra of the binders have been obtained using the ATR-FTIR in the absorbance 

mode to determine the aging indexes (see §3.2.4.2). 

 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  73 | 

5.5 RESULTS 

5.5.1 SOFTENING POINT10 

The chart below (Figure 41) shows the values of the ring and ball softening point. In the unaged 

state, two of the modified binders have a softening point lower than the virgin bitumen, while the 

wax modified sample showed a considerable higher value. 

The introduction of the wax, in fact, creates a crystal lattice that makes the material more viscous 

at temperature below the melting point of the wax itself and, as a consequence, more resistant to 

permanent deformation. 

The softening point of the binders modified with the chemical additives is similar to the non-

modified binder in the virgin state. The slight decrease of 3°C in the softening point of the two 

chemical modified binders FR-PACK and PA-PACK is marginal and should not affect greatly 

their in situ performances. 

 
Figure 41: Results of softening points ring and ball before and after aging 

                                                      
10 The softening points below 80° were obtained in water bath while the ones above 80° were obtained in glycerol 

bath, according to the European standard EN 1427-2007 (CEN, 2007) 
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The influence of the reduced working temperature is clearly visible when comparing the 

softening points before and after the RTFOT: the warm asphalt binders, in fact, show smaller 

increments than the unmodified one (3° to 1°C vs 6°C). This proves that the lower aging 

temperatures have a positive effect on the short term oxidation. 

On the contrary, long term aging seems to affect equally unmodified bitumen and bitumen 

modified with chemical additives: the softening point, in fact, is increased by 14°C with respect 

to the value in the unaged state for all of the three materials. The wax modified bitumen is an 

exception as already the value before aging is 80°C, which is 26°C higher compared to the non-

modified bitumen. On the other hand, the increase after aging with RTFOT or PAV is much 

smaller (1 and 4°C).  

The sample from the test field shows a similar softening point as the laboratory sample after 

RTFOT aging. 

 

5.5.2 FOURIER TRANSFORM INFRARED SPECTROSCOPY 

In the charts below the spectra for the different binder are shown. The unaged binders’ spectra 

are overlapping in the fingerprint region (Figure 42), but the peaks due to the chemical additive 

addition11.  

After RTFOT aging, the virgin binder has increased the carbonyl and sulfoxide peak more than 

the modified binders (Figure 43), while this difference decreases after the PAV aging (Figure 

44). 

                                                      
11 See APPENDIX A: CHEMICAL ADDITIVES SPECTRA. 

 

 

 

 

APPENDIX A: CHEMICAL ADDITIVES SPECTRA 
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Figure 42: warm asphalt. Unaged binders' fingerprint spectra 

 

 
Figure 43: warm asphalt. RTFOT binders’ Carbonyl peaks (left) and Sulfoxide peaks (right) 
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Figure 44: warm asphalt. PAV binders’ Carbonyl peaks (left) and Sulfoxide peaks (right) 

 

Then, from the FTIR spectra the Carbonyl and Sulfoxide Indexes have been evaluated (Table 5). 

As it is shown in the charts below (Figure 45 and Figure 46), the reduction of the working 

temperature leads to a consistent reduction of the CI in the RTFOT binders. Also the SI is 

reduced with respect to the virgin binder, but the improvement is less pronounced. 

 

  
Carbonyl Index Sulfoxide Index 

A0 

unaged 0 0.035713 

after RTFOT 0.002858 0.044308 

after PAV 0.023049 0.078156 

AC 

unaged 0 0.02144 

after RTFOT 0.000102 0.028311 

after PAV 0.020216 0.074905 

AG 

unaged 0 0.027008 

after RTFOT 0.000608 0.03292 

after PAV 0.019054 0.076121 

AS 

unaged 0 0.020277 

after RTFOT 5.04E-05 0.030472 

after PAV 0.020038 0.071312 
Table 5: warm asphalt. Carbonyl and Sulfoxide Indexes. 
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Figure 46: Warm asphalt, reduction of the indexes with respect to the unmodified binder 

 

Concerning the PAV aged binders, the additives seem to have almost no effect in preventing the 

long period aging (Figure 47). Moreover, when the Carbonyl and Sulfoxide Indexes are 

compared with their value after the RTFOT (Figure 48) you can see that the increments in the CI 

are about the same for all of the binders and the Sulfoxide ones are even higher for the modified 

binder than for the virgin one.  
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Figure 45: warm asphalt. RTFOT binders’ Oxidation Indexes 
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Figure 48Carbonyl (left) and Sulfoxide (right) increment with respect to the RTFOT aged binders. 

Figure 47: warm asphalt. PAV binders’ Oxidation Indexes. 
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5.5.3 DYNAMIC SHEAR RHEOMETER 

The rheological behaviour found with the R&B tests is confirmed by the DSR test. 

Comparing the master curve for the different aging conditions, it can be seen that the hardening 

occurs for every kind of binder. Nevertheless, the hardening due to the RTFOT is less 

pronounced in the modified binder than in the virgin one and is almost inconsistent in the FR-

WAX modified bitumen. 

 
Figure 49: warm asphalt. Virgin binder’s master curve. 

 

 
Figure 50: warm asphalt. FR-PACK modified binder’s master curve. 
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Figure 51: warm asphalt. FR-WAX modified binder’s master curve. 

 

 
Figure 52: warm asphalt. PA-PACK modified binder’s master curve. 
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(higher complex modulus and lower phase angle) by the modification with the wax, while are 

slightly decreased by the two chemical packages (Figure 53 and Figure 54).  

 
Figure 53: warm asphalt. Variation of the complex modulus with respect to the unmodified binder. 

 

 
Figure 54: warm asphalt. Variation of the phase angle with respect to the unmodified binder 
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Comparing the changes in the complex modulus and phase angle before and after the two aging 

steps, some characteristic pattern can be seen: the aging hardening due to the RTFOT is less 

pronounced in the modified binder than in the virgin one (Figure 55), while the phase angle after 

the PAV aging is increasing more in the modified ones than in the virgin one (Figure 56). 

 

 

 

Figure 56: warm asphalt. Variation of the phase angle at 20° (left) and 50° (right). 

Figure 55: warm asphalt. Variation of the Complex modulus at 20° (left) and 50° (right). 
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5.5.4 FIELD AGED BINDER 

From a rheological point of view, the behaviour binder recovered from the test field is 

reproduced well by the RTFOT aged binder (Figure 50). On the other hand, the results of the 

infrared analysis lead a different conclusion: the oxidation of the field binder is almost as high as 

the oxidation of the PAV aged binder (Figure 57). However, the oxidation after PAV seems to 

have little influence on the rheological behaviour of the binder. 

The difference in the results of the rheological analysis and chemical analysis, moreover, shows 

that a direct correlation between the two analyses is not always possible and advisable. 

 
Figure 57: warm asphalt. FR-PACK binders’ carbonyl peaks (left) and sulfoxide peaks (right). 
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5.6 CONCLUSIONS 

In this work the influence of the working temperature reduction on short and long term aging has 

been investigated. The rheological properties have been evaluated using the softening point and 

the DSR, while the chemical ones have been evaluated by infrared spectroscopy. Besides, the 

results concerning one laboratory-aged blend have been compared with the results of the same 

blend from the test field. 

Based on the analysis presented in the previous paragraphs, the following conclusions can be 

drawn about the laboratory-aged bitumen: 

− The lower RTFOT aging temperature for warm asphalt binders representing the mixing 

temperature shows a significant decrease in the aging behaviour in terms of softening 

point and complex modulus (DSR), which correspond perfect with the results from the 

recovered field sample. From the rheological point of view, the short term aging is 

reduced when the WMA technique is applied. When long term aged, instead, the 

difference between WMAs and HMA tends to disappear. 

− The long term aging after PAV is similar for modified and non-modified binders. Due to 

the recent construction date no field sample was available to be compared to the lab 

results. The rheological data about the wax-modified bitumen show and increased 

resistance to deformation at medium to low temperature, which is not influenced by the 

aging of the material. 

− The infrared spectra analysis reveals that the short term oxidation is largely reduced and 

that the effect of this reduction is still present in the long term aged materials. 

From the comparison of the laboratory aged samples and the field ones the following 

conclusions can be drawn: 

− The RTFOT is representative of the rheological behaviour of a short aged material but 

not of its oxidation state. 

− A direct correlation between the rheological and the chemical results it is not always 

possible and the oxidation state might not have a strong influence on the rheological 

behaviour of a binder. 

 

 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  85 | 

CHAPTER 6:  EFFECTS OF AGING ON POLYMERS IN 

POLYMER-MODIFIED BITUMEN 

6.1 INTRODUCTION 

Since the 1970s synthetic polymers have been added to conventional bituminous binders to 

improve mechanical and rheological properties of the latters and thus answering the increasing 

design requirements of the pavements. Polymer Modified Bitumen (PmBs) are mainly used for 

highly trafficked roads or for innovative pavements, like draining or noise-reducing surface 

layers, thanks to their increased resistance to rutting, low temperature cracking, stripping and 

aging(Mouillet, et al., 2008). 

Most of the used additives belong to the elastomeric family and, within this group, the styrene 

block copolymers have shown the best potential to blend with bitumen(Airey, 2003). Their 

structure consists of Styrene Butadiene Styrene (SBS) tri-block chains, whose strength the 

elastic poly-butadiene middle part and the two poly-styrene end parts, which allow good fixation 



 EFFECTS OF AGING ON POLYMERS IN POLYMER-MODIFIED BITUMEN 
 
 

| 86   

in the bitumen matrix.. The polystyrene end blocks are responsible for the strength of the 

polymer, while the polybutadiene blocks are responsible of its elasticity (Sengoz, et al., 2008). 

However, also the polymers suffer from aging and degradation both during mixing and during 

the service life due to the double bonds of the poly-butadiene part, which are sensitive to 

oxidation, which result in cleavage of the polymer. The issue is to understand the extent of this 

phenomenon and its effects on the PmBs properties on the short and long period. 

Three different polymer modified bitumen have been studied with laboratory tests: the RTFOT 

was performed to simulate the short term aging, while the long term one was simulated by the 

PAV test. 

6.2 OBJECTIVE AND SCOPE 

The aim of this part of the study is to analyse the effects of the polymer degradation in polymer 

modified bitumen and to find a correlation between chemical and rheological properties. 

The polymer degradation and the chemical changes in bitumen have been analysed by Infrared 

Spectroscopy and Gas Permeation Chromatography, which allowed identifying the products of 

aging, while in order to assess the rheological changes complex moduli and phase angles have 

been measured. The tests have been run for every aging condition 

6.3 LITERATURE REVIEW AND STATE OF THE ART 

Polymer modified bitumen is a modified bitumen obtained incorporating the polymer in the 

bitumen using mechanical mixing or chemical reactions. The properties of the final blend of 
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polymer and bitumen depend on the characteristics of the original materials, but also on the 

polymer content and on the manufacturing process (Lu, et al., 19997). 

The polymers used to additive the bitumen can be divided in two families (Bulatovic , et al., 

2012): 

− Thermoplastic polymers: they have a glass transition temperature higher than the 

bitumen and are used to improve the resistance of the latter to high temperatures 

− Elastomeric polymers (or rubbers): they have a glass transition temperature lower than 

the bitumen and are used to improve the resistance of the latter to low temperatures 

SBS copolymers combine both elastomeric and thermoplastic properties and are therefore know 

as thermoplastic rubbers(Airey, 2003). This dual behaviour, together with his relatively low cost, 

has made SBS the most used polymer in bitumen modification (Wu, et al., 2009) and nowadays 

a great variety of different SBS polymers is available, with different molecular architecture and 

block lengths (Canto, et al., 2006). 

Considerable research has been undertaken in the investigation of the aging effects on SBS 

modified binders. Airey (Airey, 2003), studying the rheological changes in laboratory aged 

modified bitumen, found that they have different behaviour depending on the polymer content: 

the low polymer content binders show stiffening comparable to the one of normal bitumen, 

while ones with the high content show a shift toward more elastic behaviour. The same results 

were found by Senegoz and Isikyakar (Sengoz, et al., 2008) analysing the bitumen with 

fluorescent microscopy. 

Cortizo et al(Cortizo, et al., 2004) studied the chemical changes that occur with aging and found 

out that products of the polymer degradation can combine with some bitumen components (like 

C=C double bonds) increasing polarity and molecular size of the latters. They also found that the 

differences in the architecture or molecular weight of different kinds of SBS are responsible of 

important differences in the interaction between bitumen and polymer or degradation products. 

Mouillet et al (Mouillet, et al., 2008) found that SBS modified bitumen becomes more 

homogenous when aged, because of polymer degradation and consequent better compatibility 

between smaller polymer chains and bigger molecules of the oxidized bitumen. On the contrary, 

Wu et al (Wu, et al., 2009) found that the changes that occur during aging lead to an 

incompatible system in the blend, thus impairing the function of SBS modifiers. They also 

proved that after aging the mechanical and rheological behaviour of PmB tends to be like the one 

of un-modified bitumen. 
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Studying the differences between laboratory and field aged PmBs, Liu et al (Liu, et al., 2014) 

found that the first have more asphaltenes than the latter and that the aging time to correctly 

reproduce field aging are different for chemical and rheological properties. 

 

6.4 EXPERIMENTAL 

6.4.1 MATERIALS 

Three modified bituminous binders have been used. The samples were part of a wider project 

concerning fracture toughness evaluation (Bueno, et al., 2014) on polymer-modified binders. 

The materials were provided by the manufacturer, thus binder formulation and modification as 

well as polymer type and content are unknown. 

The three binders were artificially aged with the RTFOT and the PAV techniques. 

Binder type Characteristics Labels 

PmB 50/70-53 Polymer modified bitumen F4 

PmB 25/55-65 Polymer and wax modified bitumen F6 

PmB 90/150-60 Polymer modified bitumen F15 

Table 6: labels for the Polymer modified Bitumens 

6.4.2 TEST METHODS 

The rheological properties of the binders have been measured  using the DSR  in the oscillation  

mode, at 0°C, 10°C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C and different frequencies, to get 

enough data for  master curves and black diagrams (§2.3.3).  For every material, two geometries 

have been used: 

− 8mm geometry, for 0° to 40°C 
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− 25mm geometry, for 40° to 80°C 

The infrared spectra of the binders have been obtained using the ATR-FTIR in the absorbance 

mode to determine the aging indexes (see §3.2.4.2) and the changes in the polymers’ peaks. 

Eventually, the GPC has been used to assess the chemical degradation of polymers (see §3.3.2 

and §3.3.3). Only the retention times of the peaks and their broadness have been considered. The 

molecular weights of the bitumen blends were not evaluated. 

 

6.5 RESULTS 

6.5.1 FOURIER TRANSFORM INFRARED SPECTROSCOPY 

The infrared spectra reveal the presence of the polymers in the blend: the styrene peak is 

showing up at 697 cm-1 (C-H aromatic bonds) and the butadiene peak at 964 cm-1 (C-H vinyl 

bonds). 

 
Figure 58: PmBs. Infrared spectra of unaged binders. 
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The main chemical modification detected by the infrared analysis is the oxidation of the bitumen 

components. After the RTFOT the Carbonyl Index shows the same grade of oxidation for all 

three materials, while the Sulfoxide Index is higher for the F6 and F15. After the PAV, on the 

contrary, the Sulfoxide Index is almost the same for all three materials, while according to the 

Carbonyl Index the F4 the more oxidised. 

 
Figure 59: PmBs. Carbonyl Index. 

 
Figure 60: PmBs. Sulfoxide Index. 
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where  ~o§¨ is the area centred on the butadiene peak, at about 964 cm-1. 

 ~§op is the area centred on the styrene peak, at about 697 cm-1. 

The degradation of the polymers could be detected analysing the Butadiene Index only in sample 

F4: in this binder the index is clearly decreasing after the aging procedures, while in the other 

two bitumens its value is almost stable or slightly increasing.  

The Styrene Index appears to be stable for the F4 and increasing with aging in F6 and F15. This 

behaviour might be due to the degradation of other components of the binder, whose products 

have a peak partially overlapping with the styrene one.  

 

 
Figure 61: PmBs. Butadiene Index. 

 

0,0441
0,0424

0,0373
0,0350

0,0379 0,0372

0,0307
0,0341

0,0327

0

0,01

0,02

0,03

0,04

0,05

unaged after 

RTFOT

after 

PAV

unaged after 

RTFOT

after 

PAV

unaged after 

RTFOT

after 

PAV

F4 F6 F15

B
u

ta
d

ie
n

e
 I

n
d

e
x



 EFFECTS OF AGING ON POLYMERS IN POLYMER-MODIFIED BITUMEN 
 
 

| 92   

 
Figure 62: PmBs. Styrene Index. 
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Figure 63: PmBs. Black Diagram of F4. 

 

The bitumen modified with the non-waxy polymer (Figure 64) is more elastic then the reference 

one for every aging condition and shows higher influence of the polymer degradation: for G* 

lower than 104 the aging increments the viscosity of the material, probably because of the 

degradation of the polymer. 

 
Figure 64: PmBs. Black Diagram of F15. 
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Eventually, the bitumen modified with the waxy polymer is the most elastic of the three 

materials. In unaged conditions it shows the typical behaviour of high polymer content bitumen 

(Airey, 2003):  for G* higher than 105 the behaviour is influenced mostly by the bitumen and 

between 105 and 104 a plateau can be found, while for lower values of complex modulus the 

phase angle decrease. 

The deterioration of the polymer during the aging tests is clear in this material: after the RTFOT 

for low values of complex modulus the behaviour of the material changes dramatically and gets 

closer to the behaviour of the other materials (and of penetration grade bitumen). The PAV aging 

emphasizes this effect and makes the bitumen almost linear. 

 

 
Figure 65: PmBs. Black Diagram of F6. 
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Figure 66: PmBs. Black Diagram of unaged binders. 

 

 
Figure 67: PmBs. Black Diagram of PAV aged binders. 
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Figure 68: PmBs. Complex modulus ratio at 5.15rad/s. 
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Figure 69: PmBs. UV chromatogram of F4 samples. 

 

Both F15 (Figure 70) and F6 (Figure 71) modified binders have two peaks due to the polymers: 

the first one has its maximum about 12.4 min and it lasts for about 0.6 min, while the second one 

has its maximum about 13.1 min and it lasts for about 0.5 min. After the RTFOT both peaks are 

largely reduced but can still be distinguished.  After the PAV the first peak is completely gone 

and the second one has been absorbed by the area of the degraded bitumen molecules. As for the 

reference binder, also the bitumen suffers some damage and the products of this damage can be 

found in the area of medium retention time. 

 
Figure 70: PmBs. UV chromatogram of F15 samples. 
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Figure 71: PmBs. UV chromatogram of F6 samples. 
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Figure 72: PmBs. AI1. 

− AI2: the products of the degradation of the first peak and of the bitumen peak are 

partially located in this area. The stable value of the index is probably due to that, even 

though it cannot be excluded that this kind of polymer could resist to aging degradation. 

− AIm: the products of the degradation of the first peak and of the bitumen peak are mainly 

located in this area. Thus, the index is slightly increasing during the aging process. 

 
Figure 73: PmBs. AIm. 
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6.6 CONCLUSIONS 

In this part of the study the aging of polymer modified bitumen has been investigated. The 

polymers’ degradation have been evaluated using infrared spectroscopy (FTIR) and size-

exclusion chromatography (GPC), while the rheological properties of unaged and aged binders 

have been evaluated using the DSR. 

Based on the analysis presented in the previous paragraphs, the following conclusions can be 

drawn about the degradation of the polymers: 

− The standard aging procedures cause the degradation of polymers in PmBs. The 

chemical analysis (GPC) shows that roughly the 70% if the polymers’ volume is 

degraded to smaller compounds after the long term aging. From a rheological point of 

view (DSR), the behaviour of aged PmBs is similar to the one of non-modified aged 

binders, likely because of the demolition of the polymers due to the aging. 

− Half of the loss of polymers’ volume in the binders is due to the short term aging and for 

two out of three binders the rheological behaviour changes after the RTFOT from the 

one typical f PmBs to the one typical of pen-grade binders. This suggests that PmBs 

with low polymer content might not have better real life performances than non-

modified binders. 

− The FTIR spectroscopy is not able to show the degradation of the three analysed 

polymers: This is because only a small percentage of the C-C double bonds of the 

polymers are destroyed. But the cut of one double bond is already enough to show a 

significant change in the rheological behaviour of the PmB. This can not be detected by 

FTIR, because it is showing the sum of all C-C double bonds.  
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CHAPTER 7:  AGING OF REPEATED RECYCLED 

ASPHALT 

7.1 INTRODUCTION 

Since the late Seventies asphalt pavements have been reclaimed and recycled, in order to reduce 

both the amount of waste material to dispose of and the use of expensive virgin materials. 

Reclaimed Asphalt Pavement (RAP) is a complex material: it is composed of aggregates, filler 

and oxidised binder. The latter is stiffer than the virgin one and has different performances, so its 

presence must be taken into account in the mix design.  

Repeated recycling is one of the main issues nowadays: the massive use of reclaimed asphalt, 

indeed, dates back to more than twenty years ago, thus leading to the need of a destination for 

the by now damaged second generation asphalt. So, as to reduce the waste material, the higher 

amount of this second generation asphalt must be reclaimed and re-used, along with the 

minimum amount of virgin materials possible. 
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In order to understand how the several times recycled binder within the RAP can affect the 

properties of the final binder, aging till the fourth generation has been reproduced in the 

laboratory: the original binder has been aged and, after that, mixed again with some virgin 

bitumen. Then, rheological and chemical properties of the different blends have been evaluated. 

 

7.2 LITERATURE REVIEW AND STATE OF THE ART 

When a pavement has expired its service life, the rutted and cracked asphalt must be milled and 

disposed. In order to reduce the amount of waste material, the reclaimed asphalt is recycled in 

the new pavement. 

The national standards of various countries are limiting the percentage of RAP that is allowed in 

a mix (Al-Qadi, et al., 2007): in fact, past studies have found that, when it is mixed with virgin 

materials, the bitumen of the RAP blends with the virgin one (Hussain, et al., 2013) and 

modifies the properties of the latter according to the amount of RAP in the mix (Bowers, et al., 

2014). It has been suggested that when less than 15% of RAP is added to the mix the blend can 

be considered as stiff as the virgin bitumen, while when more than the 25% of it is added the 

stiffness of the resulting grade must be evaluated for every specific case (Kandhal, et al., 1997). 

In order to improve the environmental and economic benefits of the use of RAP, high rates of 

the latter should be used. Several studies, both in laboratory and in the field, have shown the 

feasibility of mixing including up to 80% of RAP. In fact, recycled mixtures seem to behave like 

conventional high modulus binder (Valdes, et al., 2011), especially when high percentage of fine 

RAP are added. The same study showed also that aged RAP blends have the same rheological 

and mechanical properties of aged high modulus binders, thus leading to the possibility of 

recycling RAP aged binders as if it was conventional binder. 
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7.3 EXPERIMENTAL 

7.3.1 MATERIALS AND AGING PROCEDURE 

The base binder used is a bitumen 70/80. The aged binders have been obtained by the following 

procedure: 

− The base bitumen has been mixed with aggregates and aged for four days at 100°C. 

− The bitumen has extracted and recovered from the RAP thus obtained. 

− The recovered binder has been mixed with a blend of 70/80 (22%) and 160/220 (78%), 

in order to get the same penetration value of the base binder. 

− The blend has been mixed with aggregates and aged as at the 1st point. 

The cycle has been stopped at the 2nd point to simulate the RAP at the first recycling. To get the 

second/third recycling binders the procedure above has been run two/three times. 

In the table below (Table 7) the percentages of virgin and aged binder in every blend are shown. 

 blend 

binder virgin mix 1st recycling 2nd recycling 3rd recycling 

new 100% 60% 60% 60% 

recycled once 
 

40% 24% 24% 

recycled twice 
  

16% 9,6% 

recycled three times 
   

6,4% 

Table 7: percentages of virgin and aged binders in the blends. 

 

7.3.2 TEST METHODS 

The rheological properties of the blends have been measured using the DSR in the oscillation 

mode and every 5°C. For every material, two geometries have been used: 

− 8mm geometry, for 0° to 40°C 

− 25mm geometry, for 40° to 80°C 

The infrared spectra of the blends have been obtained using the ATR-FTIR in the absorbance 

mode and, then, the oxidation indexes have been evaluated. 
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7.4 RESULTS 

7.4.1 DYNAMIC SHEAR RHEOMETER 

In order to show the rheological changes that occurred to the binder during the recycling process, 

the master curves of virgin and recycled materials are plotted (Figure 74). 

While the first recycling process causes a remarkable hardening in the binder, the complex 

modulus is not increased by the following steps. Hence, the presence of material which has been 

recycled more than once seems not to have any effects on the rheological properties of the 

studied blends.  

On the other hand, blending softer and stiffer binder to get a specific penetration grade seems not 

to reproduce the actual rheological behaviour of the original binder.    

 
Figure 74: repeated recycling. Master curves. 
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7.4.2 FOURIER TRANSFORMAT INFRARED SPECTROSCOPY 

From the FTIR spectra the Oxidation Indexes have been evaluated. As it is shown in the charts 

below (Figure 75), the oxidation is not increased by the repeated recycling process: the main 

changes in the chemical properties are the ones that occur in the first aging step and the presence 

of several times recycled materials has no influence on them. 

 
Figure 75: repeated recycling. Carbonyl (left) and Sulfoxide (right) Indexes 

  



 AGING OF REPEATED RECYCLED ASPHALT 
 
 

| 106   

7.5 CONCLUSIONS 

In this study the influence of repeated recycled RAP on the binder has been investigated, both 

from a rheological and chemical point of view. The following conclusion can be drawn: 

− The amount of oxidation products (expressed as Oxidation Indexes) seems to be not 

increased by recycling the bitumen more than once. Hence, from a chemical point of 

view, no drawbacks for the repeated recycling can be pointed out. 

− The rheological behaviour of several time recycled blends is almost alike the one of 

simple RAP. Thus, also from a rheological point of view, no drawbacks for the repeated 

recycling can be pointed out. 

− Comparing the rheological properties of the original binder and of the blends, it can be 

seen that the latters are stiffer than the former, despite the blending of RAP wit binder 

softer than the original one. Thus, blending softer and stiffer binders according to the 

penetration value to get the mechanical properties of a goal binder is not always 

reproducing the actual rheological properties of the latter. 
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CONCLUSIONS 

In this thesis three cases of bitumen aging have been studied, assessing both rheological and 

chemical properties. The conclusions for the single study case have been displayed in the 

previous chapters12, while here some final conclusions on bitumen aging and testing procedures 

in general will be drawn: 

− Within the aging procedures, the PAV test is the most severe. It is able to reproduce the 

oxidation phenomena that occur in the test field from both a rheological and a chemical 

point of view. The RTFOT, on the contrary, is less severe and seems not to be always 

able to reproduce the chemical changes that occur in the mixing process. 

− When the aging of bitumen needs to be assessed, the FTIR analysis has proved to be the 

most interesting: it allows to easily quantifying the increase of C=O bonds, which is a 

good indicator for bitumen oxidation. 

− When, on the other hand, the bitumen is modified with polymers and the degradation of 

the latters has to be evaluated, the GPC analysis is the most valuable one. Indeed, it 

                                                      
12 See §5.6, §6.6 and §7.5. 
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allows seeing and measuring the degradation of the polymers’ larger molecules into 

smaller ones. 

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  111 | 

 

  



 AGING OF REPEATED RECYCLED ASPHALT 
 
 

| 112   

 

 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  113 | 

 

ACKNOWLEDGEMENTS 

This work would not have been born unless an uncountable number of people had helped and 

supported me in many different ways.  

 

I owe my sincere gratitude to my advisor, Prof. Marco Pasetto, for his support, guidance and all 

the efforts he has spent for giving me the chance of writing this thesis abroad. For the same 

reasons, I am in debt with Prof. Gabriele Tebaldi, who has continuously supervised my work and 

has greatly helped me with his advices. 

Having this thesis being developed and written at EMPA (Swiss Federal Laboratories for 

Materials Science and Technology), I am deeply grateful to the whole department of Road 

Engineering / Sealing Component for the assistance, the comments and the encouragement 

given. My deepest appreciation goes particularly to my supervisor, Dr. Martin Hugener, whose 

punctual guidance and the great effort he put into training me in the scientific field have been 

invaluable. 

 



 ACKNOWLEDGEMENTS 
 
 

| 114   

The unconditioned support of my family has been fundamental, from both an emotional and a 

financial point of view. I especially thank my parents, for always letting me choose my way in 

this life and not letting me down when I mostly needed some backing up, and my sister, for her 

being always my best friend. All my love goes also to my grandparents, who have always 

listened to my problems, supported me and made me become a better person. 

If I got till the end of this academic degree it is also because of the brilliant I have shared these 

last five years with. Studying with motivated people like you has been the best encouragement I 

could have asked for. 

Last but by no means least, I would like to thank all my friends and flatmates, who have always 

remembered me that there is a life out of the university and helped me not to become a too 

serious engineer. Without you, these years would have been much duller! I owe some special 

thanks to Beatrice, Camilla, Caterina and Veronica: we have known each other for more than ten 

years and without you I would not be the person I am now. 

 

 

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  115 | 

 

  



 ACKNOWLEDGEMENTS 
 
 

| 116   

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  117 | 

 

 

BIBLIOGRAPHY 

[Online] // Wikipedia. - en.wikipedia.org. 

Agilent Technologies An Introduction to Gel Permeation Chromatography and Size Exclusion 

Chromatography. - 10 February 2014. 

Airey Gordon D, Rahimzadeh Behzad and Collop Andrew C. Linear Rheological Behavior 

of Bituminous Paving Materials [Journal] // Journal of Materials in Civil Engineering . - [s.l.] : 

American Society of Civil Engineers (ASCE), May 2004. - 3 : Vol. 16. - pp. 212-220. - ISSN 

08991561. 

Airey Gordon D. Rheological properties of styrene butadiene styrene polymer modified road 

bitumens [Journal] // FUEL. - [s.l.] : ELSEVIER, 2003. - Vol. 82. - pp. 1709-1719. 

Airey Gordon D. State of the Art Report on Ageing Test Methods for Bituminous Pavement 

Materials [Journal] // International Journal of Pavement Engineering. - [s.l.] : Taylor & Francis, 

2003. - 3 : Vol. 4. - pp. 165-176. 



 <BIBLIOGRAPHY 
 
 

| 118   

Airey Gordon D. Use of Black Diagrams to Identify Inconsistencies in Rheological Data 

[Journal] // Road Materials and Pavement Design. - [s.l.] : Taylor & Francis, 2002. - 4 : Vol. 3. - 

pp. 403-424. 

Airey Gordon D., Hunter A.E. and Rahimzadeh Behzad The influence of geometry and 

sample preparation on dynamic shear rheometer testing [Conference] // Performance of 

Bituminous and Hydraulic Materials in Pavements / ed. Zoorob Salah E., Collop Andrew C. and 

Brown Stephen F.. - Nottingham : A. A. Balkema, Swets & Zeitlinger B. V. , 2003. - ISBN 90 

5809 375 1. 

Al-Qadi Imad L., Elseifi Mostafa A. and Carpenter Samuel H. Reclaimed Asphalt Pavement 

– A Literature Review [Report] / Department of Civil and Environmental Engineering - Illinois 

Center for Transportation (ICT) ; University of Illinois at Urbana-Champaign . - Urbana, IL : 

[s.n.], 2007. - p. 25. - FHWA-ICT-07-001. 

Anderson David A. [et al.] BINDER CHARACTERIZATION AND EVALUATION [Book] / 

ed. Stanton Lynn E.. - Washington D.C. : Strategic Highway Research Program, 1994. - Vol. 

III : p. 152. - ISBN 0309058090. 

Asphalt Institute Asphalt Binder Testing // Technician's Manual for Specification Testing of 

Asphalt Binders. - [s.l.] : Asphalt Institute, 2007. - 5. - ISBN 1 934154 26 1. 

ASTM Standard Test Method for Determining the Rheological Properties of Asphalt Binder 

Using a Dynamic Shear Rheometer // D7175 – 08. - [s.l.] : ASTM International, august 2008. - 

D7175 – 08. 

Banerjee Ambarish, de Fortier Smit Andre and Prozzi Jorge A. The effect of long-term 

aging on the rheology of warm mix asphalt binders [Journal] // Fuel. - [s.l.] : ELSEVIER, 

February 2012. - 97. - pp. 603-611. 

Barnes Howard A., Hutton John Fletcher and Walters Kenneth An introduction to rheology 

[Book]. - Amsterdam : ELSEVIER, 1989. - Vol. III. - ISBN 0444871403. 

Bowers Benjamin F. [et al.] Investigation of Reclaimed Asphalt Pavement blending efficiency 

through GPC and FTIR [Journal] // Construction and Building Materials. - [s.l.] : Elsevier, 

jenuary 2014. - Vol. 50. - pp. 517-523. 

Bueno Moises, Hugener Martin and Partl Manfred N. Fracture Toughness Evaluation of 

Bituminous Binders at Low Temperatures [Report] / Road Engineering/Sealing Components ; 

EMPA. - 2014. 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  119 | 

Bulatovic V.O., Rek V. and Markovic K.J. Polymer modified bitumen [Journal] // Materials 

Research Innovations. - [s.l.] : Maney Publishing, February 2012. - 1 : Vol. 16. - pp. 1-6. 

Canto L.B. [et al.] Molecular Characterization of Styrene-Butadiene-Styrene Block Copolymers 

(SBS) by GPC, NMR, and FTIR [Journal] // Polymer Bullettin. - [s.l.] : Springer-Verlag, 2006. - 

Vol. 57. - pp. 513-524. 

CECA Cecabase RT [Online]. - Ceca Arkema Group. - 

http://www.ceca.fr/sites/ceca/en/business/bitumen_additives. 

CEN Bitumen and bituminous binders - Accelerated long-term ageing conditioning by a 

Preassure Ageing Vessel (PAV). - May 2005. - EN 14769:2012: E. 

CEN Bitumen and bituminous binders - Determination of the resistance to hardening under the 

influence of heat and air - Part 1: RTFOT method. - March 2007. - EN 12607-1:2007: E. 

CEN EN 12594 - Bitumen and bituminous binders - Preparation of test samples. - March 2007. - 

EN 12594:2007:E. 

CEN EN 14770 - Bitumen and bituminous binders - Determination of complex shear modulus 

and phase angle - Dynamic Shear Rheometer (DSR). - May 2012. - EN 14770:2012:E. 

CEN EN1427 - Bitumen and Bituminous binders - Determination of the softening point - Ring 

and Ball method. - March 2007. 

Cortizo M.S. [et al.] Effect of the thermal degradation of SBS copolymers during the ageing of 

modified asphalts [Journal] // Polymer Degradation and Stability. - [s.l.] : ELSEVIER, 2004. - 

Vol. 86. - pp. 275-282. 

Djonlagic Jasna, Pap Imre and Jovanovic Jovan RHEOLOGICAL PROPERTIES OF 

POLYMER BITUMEN BLENDS: BLACK AND COLE-COLE DIAGRAM PRESENTATION 

AND ANALYSIS [Conference] // Eurasphalt & Eurobitume Congress. - Strasbourg : [s.n.], 

1996. 

Eddhahak-Ouni Anissa [et al.] Experimental investigation of the homogeneity of the blended 

binder of a high rate recycled asphalt [Journal] // Road Material and Pavement Design. - 

London : Taylor & Francis, september 2012. - 3 : Vol. 13. - pp. 566-575. 

Goh Shu Wei, Hasan Mohd Rosli Mohd and You Zhanping Performances Evaluation of 

Cecabase® RT in Warm Mix Asphalt [Conference] // Warm Mix Asphalt Technology, Procedia 

- Social and Behavioral Sciences. - [s.l.] : ELSEVIER, 2013. - Vol. 96. - pp. 2782-2790. - ISSN 

1877-0428. 



 <BIBLIOGRAPHY 
 
 

| 120   

Holleran Glynn and Holleran Irina Bitument processing, rheology, composition 

[Conference] // 25th ARRB Conference – Shaping the future: Linking policy, research and 

outcomes. - Perth : ARRB Group Ltd, 2012. 

Hussain Arshad and Yanjun Qiu Effect of Reclaimed Asphalt Pavement on the Properties of 

Asphalt Binders [Conference] // The 2nd International Conference on Rehabilitation and 

Maintenance in Civil Engineering. - [s.l.] : Procedia Engineering, 2013. - Vol. 54. - pp. 840-850. 

Interactive Pavement Dynamic Shear Rheometer [Online] // www.pavementinteractive.org. - 

Pavement Interactive, 21 april 2011. - http://www.pavementinteractive.org/article/dynamic-

shear-rheometer/#. 

Jamshidi Ali, Hamzah Meor Othman and You Zhanping [Journal] // Construction and 

Building Materials. - [s.l.] : ELSEVIER, October 2012. - 38. - pp. 530-553. 

Jamshidi Ali, Hamzah Meor Othman and You Zhanping Performance of Warm Mix Asphalt 

containing Sasobit: State-of-the-art [Journal] // Construction and Building Materials. - [s.l.] : 

ELSEVIER, October 2012. - 38. - pp. 530-553. 

Kandhal P. S. and Foo K. Y. Designing recycled hot mixture asphalt mixtures using SuperPave 

technology, NCAT Rep. No. 96-5 [Report] / National Center for Asphalt Technology. - Auburn, 

AL : [s.n.], 1997. - pp. 7-23. 

Karlsson Robert and Isacsson Ulf Application of FTIR-ATR to Characterization of Bitumen 

Rejuvenator Diffusion [Journal] // Jurnal of materials in civil engineering. - [s.l.] : ASCE, 

march/april 2003. 

Kheradmand Behnam [et al.] An overview of the emerging warm mix asphalt technology 

[Journal] // International Journal of Pavement Engineering. - September 2013. - 1 : Vol. 15. - pp. 

79-94. 

Lamontagne J. [et al.] Comparison by Fourier transform infrared (FTIR) spectroscopy of 

[Journal] // Fuel. - [s.l.] : Elsevier, 2001. - 80.4. - pp. 483-488. 

Lamontagne J. [et al.] Comparison by Fourier transform infrared (FTIR) spectroscopy of 

different ageing techniques: application to road bitumens [Journal] // Fuel. - [s.l.] : Elsevier, 

2001. - Vol. 80. - pp. 483-488. - PII S0016-2361(00)00121-6. 

Liu Gang [et al.] Rheological and chemical evaluation on the ageing properties of SBS polymer 

modified bitumen: From the laboratory to the field [Journal] // Construction and Building 

Materials. - [s.l.] : ELSEVIER, 2014. - Vol. 51. - pp. 244-248. 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  121 | 

Loeber L. [et al.] Bitumen in colloid science: a chemical, structural and rheological approach 

[Journal] // Fuel. - [s.l.] : Elsevier BV, October 1998. - 13 : Vol. 77. - pp. 1443-1450. - ISSN 

00162361. 

Lu X. and Isacsson U. Rheological characterization of styrene-butadiene-styrene copolymer 

modified bitumens [Journal] // Construction and Building Materials. - [s.l.] : ELSEVIER, 1997. - 

1 : Vol. 11. - pp. 23-32. 

Lu X. and Isacsson U. Rheological characterization of styrene-butadiene-styrene copolymer 

modified bitumens [Journal] // Construction and Building Materials. - [s.l.] : ELSEVIER, 

19997. - 1 : Vol. 11. - pp. 23-32. 

Lu Xiaohu and Isacsson Ulf Effect of ageing on bitumen chemistry and rheology [Journal] // 

Construction and Building Materials. - [s.l.] : Elsevier, 2002. - Vol. 16. - pp. 15-22. - PII S0950-

0618(01)00033-2. 

Mazzotta Francesco Studio reologico avanzato di bitumi modificati ed addittivati: proposta di 

una nuova procedura di aging [Report] : Master Thesis / Facoltà di Ingegneria. - Bologna : 

Università di Bologna, 2011/2012. 

Mo Liantong [et al.] Laboratory investigation of compaction characteristics and performance of 

[Journal] // Construction and Building Materials. - [s.l.] : ELSEVIER, August 2012. - 37. - pp. 

239-247. 

Mouillet Virginie [et al.] Infrared microscopy investigation of oxidation and phase evoltion in 

bitumen modified with polymers [Journal] // FUEL. - [s.l.] : ELSEVIER, 2008. - Vol. 87. - pp. 

1270-1280. 

Piacentini Veronica Caratterizazione reologica dei bitumi modificati con polimeri [Report] : 

Master Thesis / Facoltà di Ingegneria. - Pisa : Università di Pisa, 2004. 

Poulikakos Lily D. [et al.] Influence of short and long term aging on chemical, microstructural 

and macro-mechanical properties of recycled asphalt mixtures [Journal] // COnstruction and 

Building Materials. - [s.l.] : ELSEVIER, 31 January 2014. - Vol. 51. - pp. 414-423. 

Qin Qian [et al.] Morphology, thermal analysis and rheology of Sasobit modified warm mix 

asphalt binders [Journal] // Fuel. - [s.l.] : ELSEVIER , 2014. - 115. - pp. 416-425. 

Read John and Whiteoak David The Shell Bitumen Handbook [Book]. - London : Thomas 

Telford Publishing, 2003. - 5th. - ISBN: 072773220X. 

RILEM Proposal for a pre-normative FTIR method. - September 2012. 



 <BIBLIOGRAPHY 
 
 

| 122   

Roylance David ENGINEERING VISCOELASTICITY // Lecture. - Cambridge : 

Massachusetts Institute of Technology, 24 october 2001. 

Rubio M. Carmen [et al.] Warm mix asphalt: an overview [Journal] // Journal of Cleaner 

Production. - [s.l.] : ELSEVIER, 28 November 2011. - 24. - pp. 76-84. 

Sasol The Bitumen Additive for Highly Stable Easily Compactable Asphalts // Sasobit® Product 

Information 124. - Hamburg : Sasol Wax GmbH, 2004. 

Sengoz Burak and Isikyakar Giray Evaluation of the properties and microstructure of SBS 

and EVA polymer modified bitumen [Journal] // Construction and Building Materials. - [s.l.] : 

ELSEVIER, 2008. - Vol. 22. - pp. 1897-1905. 

Silva Hugo M.R.D. [et al.] Assessment of the Performance of Warm Mix Asphalts in Road 

Pavements [Journal] // International Journal of Pavement Research and Technology. - May 

2010. - 3 : Vol. 3. - pp. 119-127. - ISSN 1997-1400. 

Valdes Gonzalo [et al.] Experimental sstudy of recycled asphalt mixtures with high percentages 

of relaimed asphalt pavement (RAP) [Journal] // Construction and Building Materials. - [s.l.] : 

Elsevier, 2011. - Vol. 25. - pp. 1289-1297. 

Van Gurp Marnix and Palmen Jo Time-Temperature superposition for Polymeric Blends 

[Journal] // Rheology Bullettin / ed. Gupta Rakesh. - [s.l.] : The Society of Rheology, 1998. - 

67.1. - pp. 5-8. 

Wu Shao-peng [et al.] Influence of aging on the evolution of structure, morphology and 

rheology of base and SBS modified bitumen [Journal] // Construction and Building Materials. - 

[s.l.] : ELSEVIER, 2009. - Vol. 23. - pp. 1005-1010. 

Xiao Feipeng, Punith V.S. and Amirkhanian Serji N. Effects of non-foaming WMA additives 

on asphalt binders at high [Journal] // Fuel. - [s.l.] : ELSEVIER, 2012. - 94. - pp. 144-155. 

 

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  123 | 

 

TABELS 

Table 1: Maxwell & Kevin-Voigt equations ................................................................................ 27 

Table 2: table of the temperatures used in oven heating .............................................................. 38 

Table 3: dosage of the used additives. ......................................................................................... 71 

Table 4: labelling of the test samples. .......................................................................................... 72 

Table 5: warm asphalt. Carbonyl and Sulfoxide Indexes. ........................................................... 76 

Table 6: labels for the Polymer modified Bitumens .................................................................... 88 

Table 7: percentages of virgin and aged binders in the blends. ................................................. 103 

 

 

  



 TABELS 
 
 

| 124   

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  125 | 

 

FIGURES 

 

Figure 1: SOL (left) and GEL (right) type bitumen (Read, et al., 2003) ..................................... 15 

Figure 2: aging process (aging index is a ratio of two values) ..................................................... 17 

Figure 3: Couette configuration using two infinite flat plates (Wiki) .......................................... 24 

Figure 4: viscosity in different materials (Wiki) .......................................................................... 25 

Figure 5: Maxwell model ............................................................................................................. 26 

Figure 6: Kevin-Voigt model ....................................................................................................... 26 

Figure 7: generalized Maxwell model (Mazzotta, 2011/2012) .................................................... 28 

Figure 8: generalized Kelvin-Voigt model (Mazzotta, 2011/2012) ............................................. 28 

Figure 9: schematic representation of viscoelasticity .................................................................. 29 

Figure 10: G* in the complex plane (Interactive, 2011) .............................................................. 30 

Figure 11: T.T.S. shifting factor .................................................................................................. 31 

Figure 12: electromagnetic spectrum, with emphasis on the infrared region and on the mid-

infrared one .................................................................................................................................. 42 

Figure 13: Michelson interferometer ........................................................................................... 43 



 FIGURES 
 
 

| 126   

Figure 14: schematic representation of the ATR crystal .............................................................. 45 

Figure 15: FTIR bitumen spectrum .............................................................................................. 46 

Figure 16: peaks' limits ................................................................................................................ 47 

Figure 18: background spectrum .................................................................................................. 48 

Figure 17: Nicolet iD5 and iS5 ..................................................................................................... 48 

Figure 19: "empty" spectrum........................................................................................................ 49 

Figure 20: FTIR sample preparation ............................................................................................ 49 

Figure 21: Molecules of various sizes elute from the column at different rates. .......................... 51 

Figure 22: pore vs analytes ........................................................................................................... 51 

Figure 23: main components of a GPC/SEC system .................................................................... 52 

Figure 24: Chromatogram of Polymer Modified Bitumen. .......................................................... 53 

Figure 25: creation of a calibration curve..................................................................................... 54 

Figure 26: solutions of bitumen and THF .................................................................................... 55 

Figure 27: sample tray and automatic sampler ............................................................................. 55 

Figure 28: complex modulus vs strain at 0°C. ............................................................................. 58 

Figure 29: complex modulus vs strain at 10°C. ........................................................................... 58 

Figure 30: complex modulus vs strain at 20°C. ........................................................................... 59 

Figure 31: SHRP Linear ViscoElastic Limit ................................................................................ 59 

Figure 32: Complex Modulus in correspondence of the SHRP LVE Limit ................................. 60 

Figure 33: EU Linear ViscoElastic Limit ..................................................................................... 60 

Figure 34: LVE - SHRP vs EU standards .................................................................................... 61 

Figure 35: ASTM Linearity Test .................................................................................................. 61 

Figure 36: repeatability. Complex modulus. ................................................................................ 62 

Figure 37: repeatability. Phase angle [°] ...................................................................................... 63 

Figure 38: "empty" spectrum........................................................................................................ 64 

Figure 39: FTIR  repeatability ...................................................................................................... 65 

Figure 40: fingerprint spectra ....................................................................................................... 66 

Figure 41: Results of softening points ring and ball before and after aging ................................ 73 

Figure 42: warm asphalt. Unaged binders' fingerprint spectra ..................................................... 75 

Figure 43: warm asphalt. RTFOT binders’ Carbonyl peaks (left) and Sulfoxide peaks (right) ... 75 

Figure 44: warm asphalt. PAV binders’ Carbonyl peaks (left) and Sulfoxide peaks (right) ........ 76 

Figure 46: Warm asphalt, reduction of the indexes with respect to the unmodified binder ......... 77 



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  127 | 

Figure 45: warm asphalt. RTFOT binders’ Oxidation Indexes.................................................... 77 

Figure 47: warm asphalt. PAV binders’ Oxidation Indexes. ....................................................... 78 

Figure 48Carbonyl (left) and Sulfoxide (right) increment with respect to the RTFOT aged 

binders. ......................................................................................................................................... 78 

Figure 49: warm asphalt. Virgin binder’s master curve. .............................................................. 79 

Figure 50: warm asphalt. FR-PACK modified binder’s master curve. ........................................ 79 

Figure 51: warm asphalt. FR-WAX modified binder’s master curve. ......................................... 80 

Figure 52: warm asphalt. PA-PACK modified binder’s master curve. ........................................ 80 

Figure 53: warm asphalt. Variation of the complex modulus with respect to the unmodified 

binder. .......................................................................................................................................... 81 

Figure 54: warm asphalt. Variation of the phase angle with respect to the unmodified binder ... 81 

Figure 55: warm asphalt. Variation of the Complex modulus at 20° (left) and 50° (right). ........ 82 

Figure 56: warm asphalt. Variation of the phase angle at 20° (left) and 50° (right). ................... 82 

Figure 57: warm asphalt. FR-PACK binders’ carbonyl peaks (left) and sulfoxide peaks (right). 83 

Figure 58: PmBs. Infrared spectra of unaged binders. ................................................................. 89 

Figure 59: PmBs. Carbonyl Index................................................................................................ 90 

Figure 60: PmBs. Sulfoxide Index. .............................................................................................. 90 

Figure 61: PmBs. Butadiene Index. ............................................................................................. 91 

Figure 62: PmBs. Styrene Index. ................................................................................................. 92 

Figure 63: PmBs. Black Diagram of F4. ...................................................................................... 93 

Figure 64: PmBs. Black Diagram of F15. .................................................................................... 93 

Figure 65: PmBs. Black Diagram of F6. ...................................................................................... 94 

Figure 66: PmBs. Black Diagram of unaged binders. .................................................................. 95 

Figure 67: PmBs. Black Diagram of PAV aged binders. ............................................................. 95 

Figure 68: PmBs. Complex modulus ratio at 5.15rad/s. .............................................................. 96 

Figure 69: PmBs. UV chromatogram of F4 samples. .................................................................. 97 

Figure 70: PmBs. UV chromatogram of F15 samples. ................................................................ 97 

Figure 71: PmBs. UV chromatogram of F6 samples. .................................................................. 98 

Figure 72: PmBs. AI1. .................................................................................................................. 99 

Figure 73: PmBs. AIm. ................................................................................................................. 99 

Figure 74: repeated recycling. Master curves. ........................................................................... 104 

Figure 75: repeated recycling. Carbonyl (left) and Sulfoxide (right) Indexes ........................... 105 



 FIGURES 
 
 

| 128   

Figure 76: FR-PACK infrared spectrum. ................................................................................... 138 

Figure 77: PA-PACK infrared spectrum. ................................................................................... 138 

Figure 78: FTIR spectra for additive detection. ......................................................................... 139 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  129 | 

 

  



 FIGURES 
 
 

| 130   

 

  



EXPERIMENTAL CHARACTERIZATION OF BITUMEN’S AGING PROPERTIES 
 

 

  131 | 

 

APPENDIX A: CHEMICAL ADDITIVES SPECTRA 

The charts below show the spectra of the additive used for the warm asphalt production (§5.4.1). 

The main peak of the first one (Figure 76) is at about 1100 cm-1, corresponding to C-O stretching 

vibrations (possibly due to the presence of either aliphatic ether or secondary alcohol), while the 

main peak of the second (Figure 77) is at about 1741 cm-1, corresponding to C=O stretching 

vibrations (possibly due to the presence of esters). 

The presence of an additive (PA-PACK) in the mix can be clearly detected comparing the 

spectra of the mixes and the one of the rejuvenator itself. As it can be seen in the Figure 78, in 

the fingerprint region the spectrum shows a main peak in correspondence of 1744 cm-1. At the 

same wavenumber, the only difference between the mixes is found, with a new peak appearing 

in the modified mix. 

This result proves that, despite the little amount of addictive, this shows off in the mix spectrum, 

thus allowing, if the kind of addictive is not known, to identify it a posteriori.  
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Figure 76: FR-PACK infrared spectrum. 

 

 
Figure 77: PA-PACK infrared spectrum. 
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Figure 78: FTIR spectra for additive detection.  
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