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Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) is a scintillation detector, currently under
construction, which aims to solve the neutrino mass hierarchy by measuring reactor νe energy spectrum
with a resolution of 3%/

√
E(MeV) - the highest ever achieved in a large mass neutrino detector. Several

approaches for energy reconstruction are being evaluated on simulated data, and Deep Learning
methods have already shown promising results, both in accuracy and efficiency. In this work, a new
Convolutional Neural Network with a rotational invariant architecture is trained on a small dataset
of 160k instances, and is fine-tuned to exploit the detector’s spherical symmetry and make use of
position and timing data from individual photomultipliers. This approach proves to be insensitive
to the presence of dark noise from thermal fluctuations, leading to a (2.45± 0.03)% visual energy
resolution at 2 MeV, only slightly higher than the 2.2% expected from theory, with a reconstruction bias
well below 1%. However, a simpler Fully Connected Neural Network, replicated from previous work,
which uses only integral data and is trained on a larger dataset (750k instances), leads to a slightly
better resolution of (2.26± 0.05)% at 2 MeV, while being more sensitive to added noise - proving that
there could still be some margin of improvement for more complex methods.

Organization

The first chapter explains the main specifics of JUNO, and the Inverse Beta Decay and scintillation
detectors physics. The task of energy reconstruction is introduced in the second chapter, along with
a quick review of supervised learning and Deep Neural Networks. In the third chapter two deep
learning approaches are explored: a baseline model based upon previous work and a new Spherical
Convolutional Neural Network with rotational invariance. Their performance is then evaluated on the
available datasets, with or without the presence of noise. At last, conclusions are drawn in the final
chapter.
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Notation
Multidimensional quantities are denoted in bold: vectors with lowercase letters, higher order tensors
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example E

∗,(i) is the true value of energy for the i-th event.
The following abbreviations will be used:

IBD Inverse Beta Decay

PE Photoelectron

FV Fiducial Volume

PMT Photomultiplier

DN Dark Noise

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

DNN Deep Neural Network

CNN Convolutional Neural Network

MLP MultiLayer Perceptron
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Chapter 1

Introduction

1.1 The JUNO Experiment

The Jiangmen Underground Neutrino Observatory [1] is a large scintillation detector currently being
built in Jinji town near Kaiping city, within the Guangdong province in Southern China. Its main goal
is to establish the neutrino mass ordering.
It is known from particle physics that neutrinos are produced in definite flavors - electronic (|νe〉),
muonic (|νµ〉) and tauonic (|ντ 〉). However, experimental evidence, for example that of the 1998
Super-Kamiokande detector [2], shows that neutrinos travel through spacetime in mass eigenstates
(|ν1〉, |ν2〉 and |ν3〉) which are distinct from the flavor eigenstates. The time evolution operator acts
differently on the different masses mi, and this leads to the phenomenon of neutrino oscillation, where
a neutrino of initial flavor νi can be detected as a neutrino with flavor νf after a certain travelled
distance L.
More precisely, the relation between mass eigenstates {|νi〉} and flavor eigenstates {|να〉} is given by
the 3× 3 Maki-Nakagawa-Sakata-Pontecorvo [3, 4, 5] (MNSP) matrix U :


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3


Assuming U is exactly unitary, it can be parametrized in a standard way using 3 mixing angles
θ12, θ13, θ23 and a parameter δ called the Dirac CP-violating phase.

The main sources of neutrinos in the JUNO experiment are two nuclear power plants located at 53 km
from the detector, which produce mainly anti-electron neutrinos (ν̄e) with energies lower than 10 MeV
[1, p. 188]. These neutrinos can’t be flavor-tagged after oscillating to νµ or ντ , as they do not meet the
required threshold for generating a µ or τ . So, the most interesting observable is simply their survival
probability:

P (ν̄e → ν̄e) = 1− sin2 2θ12c
4
13 sin2

(
∆m2

21L

4E

)
− sin2 2θ13

[
c2

12 sin2
(

∆m2
31L

4E

)
+ s2

12 sin2
(

∆m2
32L

4E

)]
(1.1)

where sij ≡ sin θij , cij ≡ cos θij , E is the neutrino energy, L the travelled distance and ∆m2
ij ≡ m

2
i −m

2
j .

Past experiments have already given estimates for ∆m2
21, |∆m2

31| and the 3 mixing angles.
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The aim of JUNO is then to improve these results, and especially fix the sign of ∆m2
31 by discriminating

between two possibilities (fig. 1.1):

• Normal Ordering (NO), where |∆m2
31| = |∆m2

32|+ |∆m2
21|, and m1 < m2 < m3

• Inverted Ordering (IO), where |∆m2
31| = |∆m2

32| − |∆m2
21|, and m3 < m1 < m2

In fact, depending on the sign of ∆m2
31, the plot of (1.1) is slightly different, as can be seen in fig. 1.2.

The medium baseline available to JUNO is optimal for distinguishing the two possibilities, but still an
exceptional energy resolution is required.

Figure 1.1 – Depending on the sign of ∆m2
31, two orderings

are possible for the neutrino masses. Image from [6].
Figure 1.2 – Oscillation probability as function of L/E

ratio for the normal or inverted ordering [6].

To achieve such a resolution, JUNO will employ a huge active volume, realized by an acrylic sphere
with a diameter of 35.4 m filled with 20 kt of liquid scintillator (fig. 1.3). A larger spherical structure of
∅19.5 m hosts 17 571 large photomultipliers (∅20 inch) alternated by 25 600 smaller ones (∅3 inch) for
a total coverage of 78% of the total surface. The acrylic sphere and PMTs are housed in a cylindrical
pool filled with ultra-pure water, that acts as a buffer to shield background radiation. Another set of
2400 large PMTs monitor the water buffer, and act as a Cherenkov detector for muon tracks, with
an estimated efficiency of over 95%. On top of the detector, three plastic scintillator layers, the Top
Tracker, detect cosmic muons to offer an even more reliable background removal.

Figure 1.3 – Structure of the JUNO experiment [6].
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1.2 Inverse Beta Decay

The main channel for νe detection is given by the Inverse Beta Decay (IBD) interaction (fig. 1.4):

νe + p → e+ + n

The large active volume of JUNO is needed to have many protons available for interaction. After
an IBD event, the positron promptly annihilates with an electron producing a γ rays pair, while the
neutron is captured by a nucleus after an average delay of about 236 µs:

e+ + e− → 2γ ; n + 1H→ 2H∗ → 2H + γ(2.2 MeV)

IBD has a relatively low threshold of 1.8 MeV, high cross section and is easily distinguishable from
background thanks to the delayed γ signature. Almost all energy is carried by the e+, and the total
neutrino energy Eν can be reconstructed as:

Eν = E
e+ + (mn −mp)

Knowing the energies of the reactor νe and the IBD cross-section, the spectrum shown in fig. 1.5 is
expected.
To make discussion easier, the following notation is introduced:

• Ek is the kinetic energy of the emitted positron in a IBD event

• E0 = Ek + 0.511 MeV is the positron total energy

• The visible energy in the detector is that of the positron-electron annihilation:
Evis = E0 + 0.511 MeV = Ek + 1.022 MeV

Due to the phenomenon of oscillation, and assuming a 3% energy resolution for the detector, the
expected visual energy spectra in case of NO or IO are plotted in fig. 1.6.

Figure 1.4 – Inverse Beta Decay interaction [6].

Figure 1.5 – Observed energy spectrum in absence of os-
cillation [6].

Figure 1.6 – Expected Evis spectrum given neutrino oscil-
lation and 3% energy resolution [7].
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1.3 Scintillation detector

To estimate Eν , the energy deposited in the detector is measured thanks to the scintillation mechanism
[8], by which ionising radiation is transformed to visible photons that can be efficiently detected by
PMTs. The active volume of JUNO is filled with Linear alkylbenzene (LAB), an organic light sensitive
molecule that emits 280 nm radiation (in the middle UV) upon γ excitation. As organic scintillators are
opaque to their light, the produced signal must be converted to a larger wavelength to be observable,
and also be adapted to the PMTs input range for better efficiency. This is done using wavelength
shifter molecules, and the fluorescence mechanism. Energy from the excited primary scintillator is
transferred to secondary (and tertiary) flours through the non-radiative process of Förster resonance
energy transfer (a kind of dipole-dipole coupling between chromophores) and then emitted as visible
photons.
JUNO will employ two flours [6] (fig. 1.7): 2,5-Diphenyloxazole (PPO), with a concentration of 2.5 g L−1

and peak emission at 390 nm (UVA) and 3 mg L−1 of Bis-MSB, emitting at 430 nm (violet light).
Finally, the produced light is collected by the PMTs around the active volume, and converted to an
electrical signal which is then amplified and digitized by the electronics, ready to be analyzed.
Such a setup can satisfy the optical requirements for JUNO: a light output of 104 photons per MeV
(leading to ∼ 1200 PEs per MeV in the PMTs) and high transparency (attenuation length > 20 m at
430 nm).

Figure 1.7 – The scintillating molecules used in JUNO [6].
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Chapter 2

Frameworks

2.1 Supervised learning

The task of energy reconstruction consists of calculating E0 given all the available experimental
information D for an event i. Several approaches exist to tackle this problem. One possibility is that of
supervised learning, where a system is built in such a way that it automatically “learns” from given
examples and extrapolates an underlying general pattern. That can be summarized in the following
points:

1. Data specification. A set of labeled data Dtrain
L = {x(i),y(i)}i=1,...,m is produced. Each pair

i is called an instance, and contains all the relevant information about the i-th event. The
vector x(i) represents the features of that event, that is a set of chosen functions of the available
experimental data. On the other hand, y(i) contains the values of observables of interest, such as
the true energy E

∗,(i)
0 .

To construct DL one needs to run an experiment with a known outcome. This can be done
through a calibration procedure, or with computer simulations. The former option leads to
more representative data, but it’s limited in terms of control of the system’s state and amount
of instances generated. The latter one allows for total control of all relevant parameters and
limitless instances, but no warranty to be completely representative of the real apparatus.

2. Model specification. A model fW is chosen, that is a function from the vector space of features
to that of labels. fW is completely specified by a set W of parameters.

3. Training. Initially the parameters are randomly chosen from a distribution. A cost function,
called loss, measures how far are the predictions fW (x) from the known values y. Then the
parameters W are tweaked by an optimizer in order to lower the loss value. The process is
iterated many times, until a good candidate for fW has been found.

4. Validation. If the process of supervised learning succeeded, fW should be able to generalize,
that is predict accurate labels for features that were not part of Dtrain

L . This can be checked by
evaluating the model’s performance on another labeled set Dval

L (validation set). If the losses on
both Dtrain

L and Dval
L are similar and too high, the model is said to have underfit, i.e. failed to

learn enough information. However, often the performance is good on Dtrain
L , but not at all on

Dval
L . In that case the model has overfit, i.e. learned useless noise patterns from data. Both cases

are undesirable, and can be corrected by adding more instances to Dtrain
L , or more features per

instance, or modifying the model.
Also, the process of supervised learning requires many arbitrary choices: for example, the specific
form of fW , the loss, the optimizer. These are called the model’s hyper-parameters. The validation
set Dval

L can be used to select the best options, through a trial-and-error process called fine-tuning.

5. Testing. The general performance of the model is evaluated one last time on a labeled set
Dtest
L , different from all the previous DL. This is done because hyper-parameters fine-tuning may
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specialize the model on specifics of Dval
L which are not representative of a general sample, leading

to an overly optimistic estimate of the method’s performance.

2.2 Deep Neural Networks

Deep Neural Networks are a large class of trainable pattern-recognition models that have found success
in many applications in the last years, especially thanks to advances in computation hardware. The
concept of an artificial neural network originated in the 60s [9], finding inspiration in the structures of
the human brain.
The simplest model is called Perceptron [10], and consists of a single unit that computes a linear
combination of its inputs x with an added offset b:

f(x) = W · x+ b; x,W ∈ Rm, b ∈ R

where the vector W contains the parameters - called weights - of the perceptron, and the offset b is
called bias. Each weight wn can be seen as the “strength” of a connection between a certain input xn
and the perceptron itself. In this picture, usually the bias is seen as the weight w0 connecting to a
constant input x0 = +1 (fig. 2.1).

Σ σ

+1

x1

x2

x3

xn

w
0

w
1

w2

w3

w n

σ

(
w0 +

n∑
i=1

wixi

)

...

I1

I2

I3

Input
layer

Hidden
layer

Output
layer

O1

O2

Figure 2.1 – Graph representation of a single perceptron (left) and a Multi Layer Perceptron network (right) [11].

The output is then passed to an activation function h(y), that introduces some sort of non-linearity.
The simplest possibility is given by a step function, that sets the output at 1 if f(x) is over a certain
fixed threshold τ , and to 0 otherwise. Another choice is the sigmoid, that is a “more gradual” step:

h(y) = 1
1 + e−y

As today, the Rectified Linear Unit (ReLU) is most used for its semplicity and effectiveness [12]:

ReLU(y) = max(0, y)

So, the total action of the perceptron is given by the composition of the linear unit and the activation:

P (x) = (h ◦ f)(x)

Many perceptrons can be connected to form a Multi Layer Perceptron (MLP). Units are organized in
layers, such that each perceptron receives all the outputs from the previous layer. The first and last
layer make up respectively the input and output, and any layer in between (if present) is an hidden
layer.
Let Nj + 1 be the number of units of the j-th layer, with the 0-th unit always outputting a constant 1
(for the bias). As biases only act as inputs for the following layers and do not receive connections from
the previous ones, the output of the j-th layer will be a vector a(j) ∈ RNj .
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Let then w(j)
ik ∈ R be the weight connecting the k-th input of the j-th layer to the i-th unit of the

following (j + 1)-th layer. For a given layer j, the set of w(j)
ik with 0 ≤ k ≤ Nj and 1 ≤ i ≤ Nj+1 forms

a Nj+1 × (Nj + 1) matrix W (j) called the weights matrix. Knowing a(j), it is now possible to compute
a(j+1) as:

a(j+1) = h

W (j)

 1
a(j)


where h is the activation function, applied element-wise.
MLPs of sufficient size can model arbitrary functions, given a proper choice for the weights. These can
be learned through supervised learning if a sufficiently sized labeled set DL is available. Weights are
initialized randomly, and the loss function L is computed over the entire Dtrain

L . Then one proceeds
to calculate the derivatives ∂L/∂w(j)

ik (for example using the backpropagation algorithm, or numerical
methods such as autodiff ), and weights are slightly nudged to reduce L. That is the gist of the gradient
descent algorithm.
To achieve faster convergence, an optimizing step may be made using subsets of Dtrain

L with size s
(batch size), leading to the stochastic gradient descent algorithm [13].

MLPs are an example of Full Connected Networks, as all units are connected to every other in the
adjacent layers. This gives huge flexibility to the model, but also increases computational cost and can
lead to overfitting. If input data is of very high dimensionality, such as in the case of high resolution
images, MLPs prove difficult to train, and need huge datasets to reach useful results. Also, MLPs
cannot exploit symmetries, and are sensitive to small changes in the inputs.
All these problems can be alleviated by using instead a Convolutional Neural Network (CNN) [14].
Inspired by neurons in the visual cortex, CNNs make use of partial connections and weight sharing to
reduce network complexity.
Input data in a CNN is usually a multichannel image, that is a 3D tensor X ∈ Rd1×d2×d3 [13], where
d1 and d2 are the image’s dimension, and d3 is the number of channels.
Each unit in a convolutional layer is connected only to a small square window of input pixels, the
receptive field or kernel, and weights are shared between all units. This limits the number of free
parameters, and also leads to some kind of translational invariance, as equal patterns in different
positions produce the same activation of different neurons.
This is mathematically equivalent to computing the cross-correlation of X with a small 3D tensor
Fk ∈ Rw×w×d3 (filter), where w is the kernel size, leading to an output Ok ∈ R(d1−w+1)×(d2−w+1):

Okij = 〈[X]ij ,Fk〉 =
w∑
i
′=1

w∑
j
′=1

d3∑
l=1

[X]i+i′−1,j+j′−1,l[Fk]i′,j′,l

where [X]ij ∈ Rw×w×d3 is a small square “patch” of X starting at pixel (i, j), and 〈·, ·〉 is the inner
tensor product (tensor contraction).
Usually, convolutional layers make use of a number K ≥ 1 of filters, and all their outputs are simply
stacked on different channels, leading to O ∈ R(d1−w+1)×(d2−w+1)×K , which is then transformed by an
element-wise activation function.
To detect patterns at different sizes, and to exploit symmetries, CNNs employ Pooling layers, that
“distill” the outputs of convolutional layers. This is done by sliding a window over the input and
computing a statistic (such as maximum or average) over the selected values. For example, using a 2×2
kernel size leads to an output of half the resolution, that hopefully preserves the main characteristics
of interest.
More details on these architectures, and on modern training techniques are referred to literature [15].
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2.2.1 Technical details

Several efficient libraries to create, train and evaluate Deep Neural Networks are already available for
many programming languages. In this work, Tensorflow for Python 3.6.7 [16] is used, together with its
optimized implementation of the Keras API.
Training is done on a virtual machine hosted on Cloud Veneto, using a Nvidia Titan Xp GPU with
12 GB of vRAM, a 8 cores CPU, 40 GB of RAM and 500 GB of available storage on a SSD. In fact, as
Deep Neural Networks involve lots of matrix operations, a GPU can provide a significant speed up for
calculations - achieving up to a 10 fold gain on performance compared to a normal CPU.
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Chapter 3

Analysis

3.1 Datasets

All the labeled datasets used in the following analysis are generated by means of Monte Carlo simulation
through the SNiPER software [17]. Specifically:

• Dtrain
L and Dval

L are formed by partitioning a set SA of 106 instances with uniformly distributed
energies E∗k ∈ [0, 10]MeV.

• Dtest
L consists of 10 sets SB, each with 2·103 instances each and discrete energy E∗k ∈ {0, 1, 2, . . . , 9}MeV.

To simplify analysis, the following points are made:

• Only large PMTs (∅20 inch) are considered, while ignoring the rest (∅3 inch). That reduces
the size of datasets, and prevents a more difficult analysis of two different classes of features.

• Only events with vertices inside a fiducial volume (FV, defined as R∗ < 17.2 m) are considered,
at the cost of losing ∼ 8% of data. That is done because photons emitted near the edge of the
acrylic sphere tend to be reflected at the interface and absorbed by the liquid, vastly reducing
the amount of detected photoelectrons and the accuracy of energy reconstruction.
Fortunately, previous results [18][19] show that events inside/outside the FV can be reliably
distinguished by experimental data alone, through the use of an appropriate classifier. Hence,
this a priori cut can be made even with real data.

• PMTs are sometimes triggered even in absence of any signal, because of leakage currents,
thermal noise or other effects [20]. Specifically, of the 18k large PMTs, 25% of them are made
by Hamamatsu, and the remaining 75% by NNVT, respectively with measured dark rates of
∼ 16 kHz and of ∼ 50 kHz. Such Dark Noise (DN) is simulated in the available datasets, but it
is totally removed for the first analysis, and will be examined later in section 3.4.

3.2 Baseline model

A first approach for energy reconstruction is based upon [19], and it is replicated in this section. The
obtained results will then be used as baseline for comparison with a different model.
For this method, a “minimalistic” set of features for each event is selected, consisting in:

1. Number of photo-electrons detected (totalPE_lpmt)

2. Average hit time (ht_mean) in ns, relative to the first hit time of the first fired PMT.

3. Center-of-hits radius (cohR) and z-coordinate (cohZ).
Let NPMT be the number of PMTs, {rj}j=1,...,NPMT

their positions (in mm) relative to the center
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of the detector, and {nj}j=1,...,NPMT
the number of hits for each PMT. Then, the center-of-hits is

defined as the vector:

CoH = 1
NPE

NPMT∑
j=1

rjni NPE =
NPMT∑
j=1

nj

cohR is defined as the norm of CoH:

cohR = ‖CoH‖

All features are normalized to have 0 average and unit standard deviation:

x′ = x− x̄
σx

; x̄ = 1
m

m∑
j=1
x(j); σx = 1

m− 1

 m∑
j=1

(x(j) − x̄)� (x(j) − x̄)

 1
2

(3.1)

where square root and multiplication (�) are computed element-wise.
The only label is given by the total positron energy E

∗
0, without any normalization.

Dtrain
L and Dval

L are generated by a 75%− 25% split of SA after the FV cut and normalization, resulting
in ∼ 688k instances for training and ∼ 229k for validation.

The model consists of a Fully Connected Neural Network with 5 hidden layers of 128 neurons each,
using the ReLU activation function, and is implemented in Keras 2.2.4-tf within Tensorflow 2.0.0-beta1
[16]. The loss function is the Mean Absolute Percentage Error (MAPE):

MAPE = 1
m

m∑
i=1

∣∣∣∣∣f(x(i))− y(i)

y(i)

∣∣∣∣∣
where m is the number of instances in DL. MAPE is chosen because it is not sensitive to outliers, as
would be the Mean Squared Error (MSE). Also, MAPE minimizes the relative error rather than the
absolute one (computed in the Mean Absolute Error - MAE) leading to a better performance in the
task of energy resolution. However, MAPE makes convergence more difficult than the alternatives:
depending on the weights initialization, it can be necessary to train the model with MAE in the first
few epochs, and then switch to MAPE in the proximity of the global minimum.
The optimizer is Nadam (Adam with Nesterov acceleration) [21], with initial learning rate of 10−3,
β1 = 0.9 and β2 = 0.999. The learning rate is halved every 5 epochs where the validation loss does not
decrease.
Convergence is reached after 50 epochs with batch size of 64, reaching a min validation loss of ∼ 1.37.

The model’s performance is evaluated on Dtest
L , consisting of instances of SB after the FV cut. Test

features are normalized using the previously computed average and standard deviation for training
and validation by applying (3.1).
For each E

∗
k:

1. Predictions {yi}i=1,...,m for E0 are computed using the model and plotted as an histogram.

2. Let ȳ be the average of {yi} and σy their standard deviation. A gaussian is fitted to predictions
in [ȳ − 4σy, ȳ + 4σy], leading to estimates for the centroid µ± σµ and the width σ ± σσ (fig. 3.2).
The presence of outliers will be analyzed later.

3. The energy resolution at E∗vis = E
∗
k + 1.022 MeV is computed as:

σ% = σ

E
∗
vis
· 100
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where σ is the estimate computed at point 2. A plot of σ%(E∗vis) together with the sample
standard deviation σy is shown in fig. 3.1. The red dashed line is the expected energy resolution
given by the detector’s characteristics, as reported in [1, p. 195]:

σ√
Evis

=
√( 2.68√

Evis

)2
+
( 0.9
Evis

)2
(3.2)

4. Mean energy bias is defined as the normalized distance of the mean predicted visual energy from
the true value E

∗
vis. As the predicted E0 differs from Evis by a constant (Evis = E0 + 0.511 MeV),

the following formula can be used:

Bias% = µ− E
∗
0

E
∗
vis

where µ is the estimate computed at point 2. A plot of the energy bias is shown in fig. 3.3.

Several observations can be made thanks to fig. 3.1, 3.2, and 3.3:

• Predicted energies E0 for the first test dataset (E∗k = 0 MeV) are not normally distributed around
E
∗
0 = 0.511 MeV (fig 3.2). That happens because values E0 < E

∗
0 are physically impossible. The

gaussian fit is then not representative, and a better estimate for energy resolution is given by
using the sample standard deviation (σy) instead of the fitted σ.

• For most points, σy and σ are close (fig. 3.1), but for Evis ∈ {4, 7, 10}MeV σy is significantly
larger than σ. That is due to the presence of outliers: predicted values that are outside a 4σ
region centered on the mean. Each sample comprises ∼ 1800 instances, and so these points
should be very unlikely (frequency outside 4σ range is 1 : 15 787). However, for Evis = 7 MeV
there are 2 outliers of this type.
All these outliers have predicted energies much lower than the sample mean. Table 3.1 shows
their relevant features. It can be noted that all of them happen at a radius near the FV cut, and
are cases where a significant part of the event’s energy is not detected, making it impossible to
reach a satisfying reconstruction.
The problem of distinguishing outliers from experimental data alone is not of easy resolution,
and will not be addressed in this work.

• Energy biases are normally distributed around 0 (fig. 3.3), with deviations not higher than 0.1%.
This is well within the JUNO expected energy accuracy of 1%.
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Figure 3.1 – Energy resolution for the Baseline model

E
∗
vis

[MeV]
E0 pred.
[MeV]

NPE − N̄
σ

R∗

[m]
4 1.03 −9.01 16.81
7 5.88 −2.71 16.58
7 2.97 −7.30 17.19
10 7.07 −5.19 16.79

Table 3.1 – Relevant data for all the observed
outliers for the baseline model: true visual energy
(E∗vis), predicted E0, number NPE of collected
photons and true radius R∗. For each event, N̄ is
the average number of collected PE at the same
energy is computed, and σ is the corresponding

standard deviation.
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Figure 3.3 – Energy bias for the baseline model
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3.3 Spherical model

Deep Neural Networks are suited for complex analysis of a large number of features, and are able to
extract meaningful representations from raw data. In the following section, a “maximal” information
approach is attempted for energy reconstruction.

3.3.1 Data preparation

The individual response of each PMT can be simulated using Monte Carlo methods. For each event,
every photoelectron collected by the detector is tagged by the PMT hit (pmt_id), hit time (hit_time,
in ns, relative to the instant of positron emission) and origin, whether signal or noise (isDN). PMTs
positions relative to the detector center are known, and so signals can be reconstructed on a spherical
surface.
It is not trivial how to use this kind of data with a DNN, and a reasonable representation is needed.
The two main challenges are:

1. Spherical signal. A valid model should be able to learn spatial correlations and exploit
rotational invariance. In fact, the predicted energy should not change after rotating the signal.

2. Time dependence. Temporal correlations should be exploited to improve energy reconstruction
and better distinguish signal from noise.

Convolutional Neural Networks have achieved state of the art results for many pattern recognition tasks,
given their ability to harness spatial and temporal correlations. However, CNNs are usually employed
on Euclidean geometries, where they exhibit translational invariance. Rotations are considerably more
difficult, as no completely symmetrical discretization of the sphere can be made. For example, while it
is easy to compute a “translation by one pixel”, an analogue “rotation by one pixel” is ill-defined -
therefore a naive approach for computing spherical cross-correlation is impossible. Notwithstanding, it
is possible to define spherical convolutions by multiplication in the spectral domain. That is usually a
computationally intensive task, even using Fast Fourier Transforms. Fortunately, an alternative and
quicker approach to reach rotational invariance exists, as demonstrated in the DeepSphere model [22].

Deepsphere is a Spherical Convolutional Neural Network optimized for the HEALPix discretization,
which stands for a Hierarchical, Equal Area and iso-Latitude Pixelization of the sphere, developed by
NASA for astrophysics research [23]. The HEALPix scheme starts by dividing the spherical surface in
12 equal area quadrilaterals of varying shape, organized in three rings - two around the poles and one
around the equator (fig. 3.4). Each pixel can then be divided in 4 equal area parts, and the process
repeated until the desired resolution is achieved. The number of divisions along the side of one of the
original 12 pixels is the Nside parameter, which needs to be a power of 2 to preserve the hierarchical
structure. The total number of partitions is then Npix = 12N2

side.

Given the available simulated data, conversion to the HEALPix discretization is achieved using methods
from the Healpy library [24] in Python 3.6.
For the following model Nside = 16 is chosen, corresponding to Npix = 3072, or 5.77 PMTs per pixel.
That allows to retain most of the information about individual PMTs, while producing datasets of a
more manageable size. In fact, to have at most one PMT per pixel one would need to choose Nside = 64,
leading to a whopping Npix = 49 152.

The following features are selected:

• Total charge. For each spherical pixel the total charge (number of PE hits) of the corresponding
PMTs is computed. All hits due to Dark Noise are ignored.

• First hit time. Each spherical pixel is associated to the minimum first hit time of the
corresponding PMTs, rounded to the nearest ns, where 0 ns is the instant of positron emission
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Figure 3.4 – From top moving clockwise: partitions corresponding to Nside = 1, 2, 4, 8. All pixels have equal area, and
their centers (the black dots) are organized in iso-latitude rings. One of the polar base-resolution pixel is colored in
light-gray, while an equatorial one is in dark-gray. To increment resolution by one step, every pixel is split in 4 parts.

(Image taken from [23]).

(assumed known). That is done because usually the most relevant information is given by the
first hit, as subsequent ones can be reflections and/or noise.
However, experimentally the exact instant for the IBD cannot be measured, and so hit times
must be expressed relative to an arbitrary time. That adds noise to the dataset, and its effect on
performance will be studied later in sec. 3.4.
Pixels that correspond to PMTs that are never hit are assigned (arbitrarily) a first hit time value
of 1024 ns. This is done for two reasons: such a value is easily distinguished from all other data,
and it is large enough to form a visual gradient, as all events result in a pixel hit first, surrounded
by pixels hit gradually at later times. Hence, in a certain sense, empty pixels are hit “at infinity”.

Charge c and hit times h vectors, with dimension = Npix, are collected in two spherical channels for
each event: x(i) = (c(i),h(i)) (fig. 3.5).

Figure 3.5 – Mollweide Projection of spherical channels: total charge per pixel (left) and first hit time (right)

The only label is, as before, E∗0.

A dataset SC is produced using 200k events from SA and applying the FV cut, leading to a total of ∼
180k instances. Features are normalized by scaling each channel maximum to 1:

x′ =
(
c

cmax
,
h

hmax

)
(3.3)

where cmax and hmax are the maximum values of charge/first hit amongst all instances and pixels of
the entire dataset.
SC is then split in 160k and 38k labeled datasets for training and validation.
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3.3.2 Model architecture and hyper-parameters

16 16

32 32 8

64 64 4
128 128 2

10
0

10
1

Figure 3.6 – Representation of the spherical model’s architecture. Convolutional layers are in yellow, maxpool in red
and fully connected in purple. Number of filters is reported below each convolutional layer, as their size in Nside units
(the sloped number). For fully connected layers, the sloped number represents the number of neurons. Plotted using [25].

The Deepsphere model is created using the publicly available code in [26] and Tensorflow 1.14 [16],
following the published example for multi-channel regression.
The architecture is made of a convolutional block, followed by a fully connected segment (fig. 3.6):

1. The CNN Block contains 7 layers with ReLU activation, the first with 16 filters, followed by
couples of layers with doubled filters, so that the last two layers have 128 filters. Before every
doubling a Maxpooling layer halves the number of pixels. Also, batch normalization is executed
after each layer.

2. The fully connected segment is made of three layers with ReLU activation, with 100, 10 and 1
neurons respectively. The last layer has no activation, and it is used as the regression output.

Between the CNN block and the full connected segment there is a single statistical layer, as specified
by the DeepSphere model, that averages the previous filters to preserve rotational invariance.
The model’s architecture is inspired from that of LeNet [13], with the number of filters doubled after
every maxpooling layer to maintain a constant complexity. Many different alternatives, especially in
full-connected segment, are evaluated on Dval

L , and the one here presented is the best performing found.
In fact, adding more dense layers at the end generally leads to overfitting, without significant improve-
ment even on the training loss.

For the loss function Mean Absolute Error (MAE) is used, that is the normalized `1 distance between
predictions and labels:

MAE = 1
m

m∑
i=1
|f(x(i))− y(i)|

MAE is here preferred over MAPE because it converges faster and more reliably while maintaining a
similar performance.

Training is done with a batch size of 64 (which is both a factor of Dtrain
L size and a power of 2, for better

speed and stability), and the Adam optimizer, with initial learning rate of 0.1 and β1 = 0.8, β2 = 0.9,
ε = 10−3. Learning rate is decayed by a factor of 0.95 at the end of every epoch, and convergence is
reached after ∼ 60 epochs. Training takes about 8 hours on a Titan Xp GPU.
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Figure 3.7 – Energy resolution (left) and bias (right) for the spherical model, in the absence of Dark Noise.

3.3.3 Computing Model Performance

The same dataset Dtest
L introduced for the baseline model is used to compute the features needed

for the spherical model, which are normalized using the same parameters hmax and cmax calculated
during training (3.3). Evaluation proceeds with the same method as before, leading to a plot of energy
resolution and energy bias (fig. 3.7). The point at Evis = 1 MeV lies at the edge of the training dataset,
leading to an estimate which is not representative of the reconstructed resolution, and is therefore
omitted.
As before, for Evis ∈ {4, 7, 10}MeV the sample standard deviation of predictions differs significantly
from the σ of the fitted gaussian. This is due to the same 4 outliers already discussed for the baseline
model.
While the resolution performance is comparable to that of the baseline model, the energy bias for the
spherical architecture is much higher. This could be due a slight overfit, or an unfortunate weights
initialization. However, for the mid energies (4− 6 MeV) the bias is well within the 1% required range.
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3.4 Response to Dark Noise

The presence of Dark Noise in PMTs introduces perturbations in the training data, making the task of
energy reconstruction significantly harder.
Following the same procedure of the previous section, both Baseline and Spherical model are trained
and tested on datasets that incorporate Dark Noise.
Regarding the spherical model, an additional preprocessing step is applied to data:

• All hit times are expressed relative to the start of a peak in the detection rate. More precisely,
the simulated hit times for a certain event (with 0 ns corresponding to the instant of positron
emission) are counted in bins bi of 1 ns width, each starting from (tmin + i)ns with tmin ≡ −100 ns.
Let bi′ be the first bin containing more hits than an arbitrary threshold of 15. Then (tmin + i′)ns is
set as the new time reference zero for that event. That procedure limits the information available
to the model to that which is experimentally measurable.
The threshold can be any number larger than the dark noise hit rate per ns, but lower than
the maximum hit rate per ns of any event in the dataset. The chosen value of 15 satisfies both
requisites, and is found by manually examining the hit times histogram of several events.
Using the new hit times, and following the suggestion in [27], all hits after 300 ns are ignored,
and do not contribute to total charge nor first hit time. Most of late hits, in fact, are due to
Dark Noise, as can be seen in fig. 3.8. This kind of data rejection can be easily implemented on
experimental data, leading to a slightly clearer signal, especially in the areas that receive few hits.

Both models are trained using the same hyper-parameters as before. The added disturbance make the
spherical model’s training longer, now requiring ∼ 100 epochs to reach convergence.
The results of evaluation are plotted in fig. 3.9 and 3.10. The following observations can be made:

• Both models perform well in the presence of Dark Noise, reaching comparable resolutions. The
baseline model suffers most from the added perturbation, but still achieves a slightly better result
than the spherical one.
This could be due the following:

– The spherical model is trained on only 160k instances, versus the 750k of the baseline model.

– The resolution given by Nside = 16 is not sufficient to represent data from single PMTs,
leading to a loss of useful information.

These limitations were imposed to simplify the model’s training. In fact, the Deepsphere code
can be directly used only if the entire dataset is loaded in RAM, limiting the number of instances
and their resolution. Also, training time needs to be considered, as hyperparamethers fine-tuning,
which was necessary to find the best architecture, requires the evaluation of many different
models.
Nonetheless, the spherical model proves to be efficient at generalization: even with much more
complexity and a smaller dataset it manages to only slightly overfit, reaching a training MAE
loss of 0.065 versus 0.084 for the validation set. This is thanks to rotational invariance, and the
relative low number of units in the full-connected segment.

• Bias ranges are similar and well under the 1% threshold for both methods. The baseline model
systematically underestimates the energy: this can be due the added variance from dark noise, and
the fact that the MAPE loss function tends to penalize overestimates more than underestimates.
Also the spherical model tends to predict lower energies, but this could be due to a slight overfit
of events at low Evis, that could be corrected by using a larger dataset for training.
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Figure 3.8 – Histograms for signal and DN hits for a certain event. Normalization is applied for better visualization,
and alters the Signal to Noise Ratio (SNR) by a constant factor. As observed, after 300 ns most hits are due to DN.
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Figure 3.9 – Energy resolution (left) and bias (right) for the Baseline model in the presence of DN. Resolution without
DN is reported as comparison.
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Figure 3.10 – Energy resolution (left) and bias (right) for the Spherical model in the presence of DN. Resolution without
DN is reported as comparison.
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Chapter 4

Conclusions and Outlook

Two approaches using Deep Neural Networks have been evaluated on simulated IBD events. The first
is a baseline model, based upon previous work, that consists of a Fully Connected Neural Network
trained on 750k instances and using only a “minimalistic” set of features - such as the total collected
charge in an event, and the mean hit time of all PMTs. This method proves to be sensitive to dark
noise, but still achieves a visual energy resolution of (2.26± 0.05)% at 2 MeV, comparable to the 2.2%
expected from theory (3.2).
The second approach employs a Convolutional Neural Network with spherical invariance, based upon
the Deepsphere model, which uses a “maximal” set of features - that is position and timing data
from each PMT. This model proves to be insensitive to dark noise, and achieves a good resolution
of (2.45± 0.03)% at 2 MeV with a much smaller dataset of only 160k instances. Hence, rotational
invariance should be a desired property for a Deep Neural Network. However, the more complex
architecture of such a spherical model makes it more difficult and computationally costly to train.
In the end, the baseline model achieves the best results for energy reconstruction - proving that there
could still be some margin of improvement for more complex methods. Specifically, the following points
can be expanded in future work:

• Using more instances to train the spherical model, and a better resolution - associating each
spherical pixel with at most one PMT - at the cost of much larger datasets and longer training
times. This will likely require adapting the Deepsphere internal code, as currently it can be easily
used only if all data is loaded in RAM.

• Using a custom graph for the PMTs positions, without having to resort to the HEALPix
discretization.

• Using dropout layers to generate ensembles for the network. That would allow to estimate the
confidence for reconstructed energies, predicting results with error-bars.
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