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“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so thatwe may fear less.”
—Marie Curie
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Abstract

Metagenomics is the study of the genetic material of microorganisms sampled directly from the envi-
ronment. This approach expands the field of study ofmicroorganisms, adding results to those obtained
with traditional microbiological techniques. One of the main tasks of metagenomics is the reconstruc-
tion of genomes contained in environmental samples, which often contain unknown species. To do this,
the genetic content of an environmental sample is first sequenced, resulting in short DNA sequences
called “reads”. To assemble reads into longer DNA sequences, called “contigs”, in order to group them
into bins that will form the reconstructed genomes, so-called reference-free assembly tools are needed,
which assemble the reads together without prior knowledge. The goal of this thesis is to develop an
assembly quality assessment tool using deep learning to improve the quality of reconstructed genomes,
also called metagenomic assembled genomes (MAGs).

Particular attention is paid to the identification of assembly errors due to repetitions within the
genomes of differentmicroorganisms. The starting dataset is the collection of over 1.5millionmicrobial
genomes hosted at the University of Trento. A synthetic dataset of reads is built by simulating the Illu-
mina sequencing process on several genomes almost perfectly complete and free from contamination.
The assembly procedure is then applied to simulated reads frompreviously selectedhigh-quality genome
pairs having highly similar genomes, to increase the possibility of assembly errors due to DNA repeats
in the obtained contigs. The simulated reads are then re-mapped onto the assembly contigs, in order to
assign a degree of error per position as a function of the depth of coverage, i.e. how many reads align
at a given position along a given contig. Briefly, if a region is not completely mapped by either genome,
it is considered incorrectly assembled. Two different deep learning models, together with a benchmark
model and two ensemble models, are trained on these data to predict the presence of misassembled re-
gions in contigs, with the aim of developing a post-assembly quality control tool.

The models generalize quite well, particularly when combined into an ensemble, achieving AUC
scores of ∼ 0.8 on training-related genomes and ∼ 0.7 on external genomes. While to be optimized,
the presentedmodels are capable of learningDNA-related properties of the genomic sequences in order
to distinguish between correctly and erroneously assembled genomic regions in bacteria.
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1
Introduction

1.1 DNA and the genetic code

Deoxyribonucleic acid (DNA) is a chemical compound that carries genetic instructions for the func-
tioning and reproduction of all known organisms. Themolecules composingDNA aremade up of two
paired twisted strands, known as “double helix”. Each DNA strand is composed of four units called nu-
cleotide bases, i.e. adenine (A), thymine (T), guanine (G) and cytosine (C). These four bases constitute
the genetic alphabet that encodes information withinDNA. In fact, the order of these bases determines
the content of information in the DNAmolecule, and this is why we often speak of DNA “sequences”.
Within the double helix, bases on opposite strands always have a specific pairing pattern: A pairs with T
and C pairs with G. Therefore, knowing the identity of one of the bases in the pair automatically deter-
mines the other base in the pair, and then to report a DNA sequence is sufficient to report the sequence
of bases in only one of the two strands. Two other important concepts to define are genome and gene.
A genome is defined as the entire genetic information of an organism, while a gene is a section of DNA
that contains instructions for making a functional product, such as a protein.

The building blocks of an organism are proteins that are formed by chains of amino acids. The se-
quence of amino acids in a protein determines its structure and functions. DNA contains the instruc-
tions to synthesize amino acids, and thus proteins. These instructions are encoded by codons and the
set of rules that translates the DNA code, composed by 4 letters, to the codons code is named genetic
code. Codons are DNA sequences made up of three nucleotide bases, and each codon encodes a signal
to start or stop protein synthesis or for a specific amino acid. While there are 64 possible codons, there
are 20 amino acids used to build proteins. This fact implies the so-called redundancy of the genetic code,
that is, that some amino acids are encoded by more than one codon. A crucial aspect of genetic code is
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that the same codons code for the same amino acids in nearly all species, meaning that genetic code is
universal across almost all living organisms. We can say then that DNA is the universal language of life,
which makes its understanding and study a crucial aspect of biology.

1.2 Illumina sequencing

DNA sequencing is the process of determining the exact order of nucleotide bases in DNA. One of the
most used technologys in the field of DNA sequencing is Illumina sequencing, which is based on the
sequencing-by-synthesismethod. In the following, we give a brief overview of the main steps in Illumina
sequencing.

The first step in Illumina sequencing is the fragmentation of the DNA contained in the sample on
which we want to perform sequencing. This step can be done using techniques such as those based
on the use of ultrasonic sound waves, which break the DNA strands into smaller pieces, usually about
50-500 base pairs (bp) long. Once fragmented, adapters, that are short synthetic DNA sequences, are
added to the edges of each DNA fragment. Adapters are made by three main parts: a sequence that
is complementary to the small DNA sequences anchored to the flow cell, the barcode sequence, that
serves to identify samples since Illumina sequencing can handle multiple samples in parallel, and by a
binding site for the sequence primer. A primer is a short sequence of DNA which acts as a trigger for
the synthesis of a new strand ofDNA.The result of this process is calledDNA library, that containsmil-
lions of different fragments. Then, the prepared DNA library is loaded onto a flow cell, which is a small
glass surfacewith thousands of short nucleotide sequences anchored that can bind to the first part of the
adapters and act as a support to hold the DNA strands during the process. Through bridge amplifica-
tion, a technique used to duplicate DNA strands, many identical copies of each fragment are generated.
These amplified fragments form dense clusters of identical DNA sequences. This is to ensure that the
sequencing process produces reliable results. After amplification, the true sequencing-by-synthesys pro-
cess begins. A primer attaches the strands adapter primer binding site and a polymerase starts adding
fluorescently tagged nucleotides to the strands. A polymerase is the enzyme responsible for the synthesis
of the DNA strand complementary to a given strand. Each of the four fluorescently tagged bases can
be excited in order to emit a unique wavelength, so by recording all the emissions the machine records
which bases are added during the synthesis.

A key concept in DNA sequencing is depth of coverage. Depth of coverage, sequencing coverage, or
simply coverage, is defined as the average number of times each nucleotide base in a genome is sequenced.
It indicates howwell a sample is covered by sequencing reads: the higher the value, the better the analysis
and the subsequent sequencing steps.

Themain advantage of Illumina sequencing is the ability to sequence millions of DNA fragments in
parallel in a short amount of time and at a reduced cost. This technology is also called high-throughput
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sequencing (HTS) and generates sequencing data known as reads, which are essentially transcripts of
short DNA sequences of length 50-300 bp.

1.3 Metagenomics

The study of microorganisms, particularly bacteria, traditionally involves bacterial cultivation. This
technique involves isolating and growingmicroorganisms in the laboratory under controlled conditions.
However, this technique has an important limitation: a significant portion of existing microorganisms
cannot be easily grown in the laboratory, due to the difficulty in recreating the environmental conditions
in which these organisms live.

With the development of high-throughput sequencing technologies such as Illumina sequencing,
it becomes possible to study the genetic material from entire ecosystems. Specifically, the study of the
geneticmaterial ofmicroorganisms sampled directly from the environment is calledmetagenomics. This
approach avoids the need to culture individual organisms prior to DNA sequencing, thus enabling new
studies and research in the field of microbial studies. Metagenomics has allowed the study of microbial
communities in their natural environments, such as soil [1][2], oceans [3], human gut [4] and food [5].
In particular, it has led to the identification of new species, the determination of the functional roles of
different organisms in different environments, and the interactions that occur between different species.

1.4 Reference-free assembly: reconstructing genomes

One of the critical challenges in reconstructing a genome from rawDNA sequencing data is assembling
the sequencing reads in order to form longer DNA sequences that actually belong to the genome one
wants to reconstruct. Assembly is performed by the usage of informatic tools, that are traditionally
reference-based. Reference-based assembly tools rely on a reference genome (an already reconstructed
and characterized genome) that serves as a guide to assemble sequencing reads into continuous DNA
sequences. In the context of metagenomics, where the species in a sample are typically unknown, this
kind of approach is not useful. Therefore, reference-free assembly, or de novo assembly, becomes essen-
tial. These kind of tools do not rely on prior knowledge, and they perform assembly solely from raw
sequencing data.

One of the most used approaches for this type of assembly tools is based on the De Bruijn Graph
(DBG) approach. A popular tool based on this method is MEGAHIT [6]. In this type of methods,
sequencing reads are split into smaller overlapping sequences of length k, called k-mers. For example,
an “ATGC” read can be split into 3-mers: “ATG”, “TGC”. Genomes are represented as directed graphs:
eachnode in the graph is represented by a k-mer, and edges in the graph connect nodes that share overlap-
ping sequences. Assembly algorithms based on the DBG approach aim to find multiple paths through
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the graph that collectively “explain” all the edges. In the DBG there are often multiple valid traversals,
and identifying the correct one is the main source of computational complexity in the assembly. When
ambiguities cannot be resolved, the assembly breaks the traversal and returns fragmented reconstruc-
tions of the original genome, i.e. DNA sequences called contigs. Contigs are usually returned in FASTA
format, a format used in bioinformatics that is a textual representation of nucleotide sequences, where
each sequence is preceded by the sequence name and comments.

In the field of metagenomics, reference-free assembly is commonly used to reconstruct the genomes
of individual organisms present in an environmental sample. The main steps to perform this operation
are as follows:

• Samples collection and DNA extraction: collection of environmental samples, followed by
DNA extraction in order to obtain the genetic material from all microorganisms present in the
sample.

• Sequencing data acquisition: the DNA extracted is then subjected to HTS technologies, such
as Illumina sequencing, generating numerous short reads that represent fragments of genomes
from the entire microbial community present in the collected sample.

• Reads preprocessing: the raw sequencing data are then processed to remove low-quality reads,
adapters and other artifacts.

• Reference-free assembly: the cleaned reads are assembled into contigs by using reference-free
assembly algorithms.

• Binning: assembled contigs are grouped into bins, which represent the overall structure of the
genomes contained in the collected sample. Binning tools, such asMetaBAT [7], ensures that the
contigs are ordered correctlywithinbins. Theoutput reconstructed genomes are calledmetagenome-
assembled genomes (MAGs).

• Refinement: the resultingMAGs are then refined in order to correct any remaining errors. Tools
such as CheckM [8] are used to assess the quality of MAGs.

• Annotation and analysis: high-quality MAGs are then annotated. Annotation involves identi-
fying genes andother functional regions in the genome. This canbedone through computational
methods and by comparing the assembled genome to known databases of gene sequences. The
final assembled and annotated genome is then ready for further analysis.

In Figure 1.1 the critical steps for the reconstruction of the genomes present in an environmental
sample are schematized.
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Figure 1.1: Main steps for genomes reconstruction for a metagenomic sample. The first step is to recover the sample
from the environment, such as living organisms (human gut), soil, or water. After the DNA has been fragmented into small
pieces of controlled length, DNA sequencing is performed using a specialized machine. The ouput of DNA sequencing
are text‐based files (FASTQ) containing all the information of sequencing, in particular the nucleotide base sequences of
short DNA fragments, i.e. sequencing reads. After preprocessing this data, a reference‐free assembly tool is applied to
create longer DNA sequences, called contigs, belonging to the different genomes contained in the original sample. One of
the most commonly used tools is MEGAHIT. These contigs are then binned, or scaffolded, to be sorted and clustered into
reconstructed genomes, i.e. a MAG, through a specific bioinformatics tool.

1.5 Deep learning in metagenomics

The development of backpropagation and the increase in computational power in recent years have
made deep learning, a branch of machine learning, highly popular due to its ability to identify complex
patterns in large and intricate datasets. Deep learning focuses on algorithms based on multi-layered
neural networks (NNs), which is where the term “deep” comes from. In these networks, each layer
receives and processes information from the previous layers [9].

Metagenomic datasets are typically very large, complex, and often unlabeled or unannotated, making
traditionalmethods often insufficient. Deep learning offers valid alternativemethods to overcome these
limitations. Various deep learning-based tools have been developed in the field of metagenomics, from
protein structure prediction to taxonomic classification, i.e. the way of organizing living organisms into
groups based on their similarities and differences, of assembled contigs [10].

A deep learning application we are interested in is the classification of raw DNA sequences. This
task falls under supervised deep learning, where labels, i.e. the information we want the model to learn
to predict, are provided to the model beforehand. In this context, the main goal of the deep learning
model training is to minimize a loss function, which measures how well the model performs in making
accurate predictions. This is achieved by adjusting the weights of the neurons through backpropaga-
tion at each epoch. By providing the model with appropriately encoded DNA sequences, most of the
feature extraction is managed directly by the NN, removing the need for prior knowledge or manual
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feature engineering. For this type of sequence classification task, CNN architectures have shown the
best performance [11].

Another interesting type of NN architectures is based on natural language processing (NLP). These
models use techniques like attention mechanisms, word embeddings, and transformers [12] to under-
stand andmodel themeaning of text. An interesting analogy is between text andDNAsequences: DNA
can be seen as a kind of text, with its own alphabet (nucleotide bases) and words (k-mers). Because of
this similarity, attention-based tools, particularly transformers, seemwell-suited for rawDNA sequence
classification. For example, tools like VirNet [13] and DLMeta [14] use such models for classification
tasks. VirNet employs a deep attentionmodel to identify viruses, while DLMeta combines CNNs with
transformers to perform various metagenomic identification tasks, such as viral identification.

1.6 Assessment of assembly quality

A key aspect of metagenomics is the construction of reliable MAGs, which are derived by binning as-
sembled contigs into distinct genomic bins. However, metagenomic assembly is computationally chal-
lenging due to the complexity ofmanagingDNA sequences that involve both intra-genomic repeats (re-
peated DNA sequences within the same organism) and inter-genomic repeats (DNA sequences shared
between different organisms). Although inter-genomic repeats in bacteria are typically small (usually
under 104 bp), intra-genomic repeats can bemuch larger, sometimes almost as long as the genome itself.
This is due to the fact that certain genes can differ between closely related bacterial genomes within ami-
crobial community, leading to almost the entire genome potentially being regarded as an inter-genomic
repeat. As a consequence, metagenome assemblies are often incomplete and likely contain errors.

The main factors that can influence the performance of DBG assemblers are sequencing errors, se-
quencing coverage depth, and the presence of repeats. Especially due to this last source of assembly
error, it can happen that so-called chimeric assemblies are formed, in which sequences from different
genomes are mistakenly joined.

Two main approaches are commonly used to assess assembly quality: reference-based and reference-
freemethods. In reference-based error detection, assembly errors are found by comparing the assembled
data with reference genomes that have already been sequenced. On the other hand, reference-free meth-
ods look at the features within the assembled data itself to find inconsistencies thatmight indicate errors.

Reference-based methods work well when testing assemblies of communities with known compo-
sitions. However, these methods are less effective when applied to metagenomics data. For example,
if a metagenomic sequence comes from a genome that does not have available reference, the reference-
based approach cannot be used to check for errors. Furthermore, it is difficult to state if differences
between an assembled sequence and the reference are actual errors or if they are real variations between
the genomes in the metagenomic sample. An example of a reference-based approach is provided by
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MetaQUAST[15].
Reference-free methods, on the other hand, offer a more flexible and widely applicable solution for

assessing the quality of metagenomic assemblies.

1.7 Assembly reference-free assessment tools: relatedworks

Existing reference-free strategies are consistency-based. These methods identify errors by aligning se-
quencing reads with assembled sequences. In this context, the alignment procedure consists in remap-
ping the sequencing reads onto the contigs assembled from them, in order to find the exact position
of each read along the assembly contigs. From alignment information, various features are extracted,
such as sequencing coverage, mapping quality, alignment length and mismatch rates. These features
are subsequently utilized in statistical or machine learning models to detect misassemblies. In the fol-
lowing, we report the most popular reference-free methods. ALE [16] assesses the quality of assemblies
as the likelihood that the observed sequencing reads could be produced from a specific assembly, based
on a model of the sequencing process. VALET [17] identifies misassemblies by analyzing a combina-
tion of different metrics derived from the alignments. metaMIC [18] is a machine learning-based tool
that extracts features from read alignments and uses them to train its model for identifying misassem-
blies. SuRankCo [19] applies machine learning to rank contigs using features such as their lengths and
coverage. Methods that use deep learning are DeepMAsED [20] and ResMiCo [21], which harness
features analogous to those used by metaMIC. A novel reference-free method is DeepMM [22], which
transforms alignments into images for feature learning and applies contrastive learning to better detect
misassemblies from different perspectives.

1.8 Goal

Aspreviouslymentioned, all existing reference-free assemblyquality assessmentmethods rely on features
derived from aligning reads against assemblies. Our goal is to develop a deep learning algorithm capable
of distinguishing well-assembled sequences frommisassembled ones directly from rawDNA sequences,
without the need for reads alignment, thereby avoiding a computationally expensive step. Furthermore,
in our work, we focus particularly on identifying assembly errors caused by repeats, such as chimeric
assemblies, which are assembly contigs obtained by mistakenly joining regions of DNA from genomes
belonging to different species.

To achieve this, we create a synthetic dataset that highlights errors due to repeats while controlling
ones due to coverage depth. The main idea is that by assembling reads from very similar genomes,
chimeric assemblies are highly likely to occur. We set a high coverage value to simulate reads from high-
qualityMAGs coming from the same species-level genome bins (SGBs), and thenwe assemble these reads
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together. Species-level genome bins [23] are clusters of genome bins that span 5% genetic diversity. Es-
sentially, genomes belonging to the same SGB share at least 95% of their genomes.

The high coverage value, set equally for all read simulations, serves two purposes: it limits assembly
errors due to depth of coverage and establishes the expected coverage value for well-assembled sequences.
Taking this last consideration into account, we develop two methods to define binary labels based en-
tirely on coverage data. Once the labels are assigned, model training is performed only on raw assembly
sequences, using an appropriate encoding. Wedemonstrate that themodel can learn effectively from raw
data, and the results obtained are very conservative, i.e., the model recognizes almost all well-assembled
sequences. However, the algorithm is not yet optimal, as only a portion of misassembled sequences is
identified. Nevertheless, the results are promising, as the algorithm can effectively recognize a part of
misassembled sequences without discarding well-assembled ones, potentially improving the quality of
the binning step.
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2
Theoretical Background

In this chapter, we present a brief overview of the primary neural network architectures employed in
this work.

2.1 Multilayer perceptron

Amultilayer perceptron (MLP) is a feedforward neural network consisting of an input layer, an output
layer, and at least one hidden layer. At each layer, except for the input layer, there is an associated weight
matrix and a bias vector. The output of each non-input layer is computed as a vector resulting from
a vector-matrix multiplication between the output vector of the previous layer and the weight matrix
associated with the current layer, summed with a bias vector, and then passed through an element-wise
nonlinear activation function.

Consider anMLPwithN+ 1 layers, whereDd denotes the dimensionality of the output of the d-th
layer for d ∈ {0, . . . ,N}. Here, d = 0 corresponds to the input layer, and d = N corresponds to the
output layer. Given the output vector of the d-th layer, x⃗d ∈ RDd , the output of the (d+ 1)-th layer is
computed as

x⃗d+1 = σd+1(Wd+1 · x⃗d + b⃗d+1), (2.1)

where b⃗d+1 ∈ RDd+1 is the bias vector, σd+1 : RDd+1 → RDd+1 is the element-wise nonlinear activation
function andWd+1 ∈ RDd+1×Dd is the weight matrix associated with the (d+ 1)-th layer.

The total number of trainable parametersMMLP of a MLP is given by the following equation:

MMLP =

N−1∑
d=0

(DdDd+1 +Dd+1). (2.2)
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The time complexity of a forward pass of such architecture is equal to:

O

(N−1∑
d=0

DdDd+1

)
. (2.3)

2.2 Convolutional Neural Network

ACNN is a type of feedforward neural network that is typically used in deep learning for tasks such as
image processing and computer vision. Although CNNs are typically applied to images, they can also
be adapted to one-dimensional sequences, which is the case we consider in this section.

The building block of a CNN is the convolutional layer. The key idea is to convolve a kernel, or filter,
with the input sequence. Note that sequences are often encoded and therefore represented as matrices
with a length, which corresponds to the sequence length, and a depth, which is the dimensionality of
the encoding for each element in the sequence. Kernels are matrices with the same depth as the input
but with a shorter length. The trainable parameters of the layer are represented by the kernels, together
with the bias term added after the convolution operation. Two other hyperparameters control the con-
volution operation: stride S, which defines how the kernel moves along the sequence, and padding P,
which determines how the input sequence is augmented at its boundaries, e.g., for zero padding with
zeros.

Given an input x ∈ RLin×Cin of length Lin and depth Cin, the convolution operation with a kernel
w ∈ RK×Cin of length K at position i along the padded sequence, also considering the bias term b,
produces the output:

yj =
K∑

m=0

Cin∑
n=0

xPi+m,nwm,n + b, (2.4)

where y ∈ RLout is the output sequence of length Lout and xP ∈ R(Lin+2P)×Cin is the padded input.
The final output is the concatenation of all output vectors for each applied kernel. Its length Lout is

determined by

Lout =

⌊
Lin + 2P− K

S

⌋
+ 1, (2.5)

and its depthCout corresponds to the number of filters applied. After the convolution, an element-wise
nonlinear activation function is applied to the output.

The total number of trainable parametersMCL in a convolutional layer is given by:

MCL = (KCin + 1)Cout. (2.6)

It is important to note that the number of parameters does not depend on the input length Lin. This is
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because the parameters are shared across the entire input sequence through the convolution operation.
On the other hand, time complexity of a forward pass depends on it, and it is

O(LinKCinCout), (2.7)

since from Equation 2.5 we see that Lout strictly depends on Lin.
CNNs usually implement convolutional layers to extract features, pooling layers to reduce data size

and improve efficiency, and fully connected layers, or MLPs, to combine features for final predictions
in supervised learning tasks.

2.3 Self-attention mechanism

The self-attentionmechanism enables a deep learningmodel to quantify the importance of each element
in a sequence in relation to all other elements. Unlike recurrent neural networks (RNNs), which pro-
cess input sequences sequentially, self-attention processes the entire input at once. This fact enables
the model to capture long-range dependencies within the sequence more effectively, addressing a key
limitation of RNNs where information tends to degrade over long sequences.

Given an encoded input sequence X ∈ RL×dmodel of length L and encoding depth dmodel, the self-
attentionmechanism begins by applying three linear projections ofX, obtaining three distinct represen-
tations: the value V ∈ RL×dV , query Q ∈ RL×dK , and key K ∈ RL×dK representations. Specifically,
the three projections are performed as follows:

V = XWV; Q = XWQ; K = XWK, (2.8)

where WV ∈ Rdmodel×dV , WQ ∈ Rdmodel×dK , and WK ∈ Rdmodel×dK are weight matrices containing
learnable parameters. Query and key representations are used to compute attention weights, which are
then applied in a weighted average of the values for each position within the sequence. This operation
is carried out by the attention function, defined as follows:

Attention(V,Q,K) = softmax
(
QK⊤
√
dK

)
V. (2.9)

In the equation above, the softmax function is applied row-wise in order to normalize the weights. This
ensures that the weighted average is simply a weighted sum. The factor (dK)−1/2 has the function of
counteracting the growth of the dot product as dk increases. Without this scaling, the dot product
could become excessively large, pushing the softmax into regions where the gradient becomes very small,
making learning difficult.

In summary, the attention function in Equation 2.9 computes a sequence representation where each
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element, i.e. each row of the output matrix, is a weighted sum of all other elements in the sequence,
where the weights, which are calculated using the query and key representations, capture contextual
relationships.

2.4 Multi-head self-attention

Multi-head self-attention involves applying the self-attentionmechanism h times in parallel to the input
X ∈ RL×dmodel . The resultingmatrices for each head are then concatenated, and a final linear projection
is applied to this combined representation. This approach allows the model to learn information from
multiple representation subspaces. Specifically, we have that:

MultiHead(X) =Concat(head1, . . . , headh)W0

with headi =Attention(XWV
i ,XW

Q
i ,XW

K
i ),

(2.10)

whereWV
i ∈ Rdmodel×dV ,WQ

i ∈ Rdmodel×dK ,WK
i ∈ Rdmodel×dK are the weight matrices of the i-th self-

attention head, with i ∈ {1, . . . , h}, andW0 ∈ RhdV×dmodel is the weight matrix associated with the last
linear projection.

Since dmodel ≃ dV ≃ dK is the most common case, we consider dmodel = dV = dK = d for
simplicity. Therefore, the total number of learnable parametersMMHA of a multi-head attention layer
is:

MMHA = d2(3+ h). (2.11)

The initial linear projections are performed in parallel as matrix-matrix multiplications, resulting in a
time complexity of O(Ld2). The final projection has the same time complexity. The attention com-
putation requires O(L2d), and this operation is also performed in parallel across all attention heads.
Therefore, the overall time complexity of a forward pass is:

O(Ld2 + L2d). (2.12)

2.5 Transformer Encoder

A transformer encoder layer is composed of two sub-layers: a multi-head self-attentionmechanism layer
followed by an MLP. Each of these sub-layers is accompanied by a residual connection, and after the
addition of the residuals, layer normalization [24] is applied. The output of each sub-layer is given by
LayerNorm(X+Sublayer(X)), where Sublayer(X) represents the operation performed by the sub-layer.
The MLP sub-layer is applied to each position separately and identically. It is made up of one hidden
layer, after which the ReLU activation function is applied. The dimensionality of input and output
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layers is dmodel while the hidden layer has dimensionality dff. A diagram of this architecture is shown in
Figure 2.1.

Figure 2.1: Diagram of a transformer encoder layer. Given an input sequence X ∈ RL×dmodel , the output Y has the same
dimensionality.
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3
Methods

3.1 Chimeric assembly contigs dataset

Our goal is to train a deep learning model capable of distinguishing between well-assembled and misas-
sembled DNA sequences. To achieve this, we build a dataset that includes examples of both scenarios.
The main idea is that by assembling reads coming from organisms that have very similar genomes, it
is very likely that the resulting assembly may contain errors caused by repeats and chimeric assembly
contigs.

The starting dataset consists of more than 106 genomes originated from various samples. While this
dataset is not yet publicly available, further details can be found in the referenced paper [25]. Each
genomewithin this dataset is stored as a FASTAfile. The dataset is organized into Species-level Genome
Bins (SGBs). We select from this dataset only bacterial genomes with completeness greater than or equal
to 98% and a contamination less than or equal to 2%. Completeness and contamination are commonly
usedmetrics to evaluate the quality of assembled genomes, particularly in the case ofMAGs. Complete-
nessmeasures whether a genome is complete, that is, whether it includes all expected genes. Contamina-
tion measures the presence of external genetic material within a genome. Both metrics were estimated
using the tool CheckM. From these selected genomes, only SGBs that contain at least 50 genomes are
considered. Then, for each SGB, only the best 50 genomes are kept. The metric used for the last step
is completeness -3contamination, a commonly used metric to evaluate the quality of a genome. The
resulting dataset is made up of 3800 high-quality genomes: 50 genomes per 76 SGBs.

Since we do not have the original reads fromwhich the genomes were assembled, we need to simulate
them. The simulation is performed using the tool CAMISIM [26], which returns reads in FATSQ
format from a given genome in FASTA format. The following parameters are used for the simulation.
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• The IlluminaHiSeq 2500 system is selected, awidely used high-throughput sequencing platform.

• Paired-end simulation is performed, meaning that each DNA fragment is sequenced from both
ends, generating two reads per fragment.

• The length of the reads is set to 150 bases, a typical choice for Illumina sequencing.

• The coverage is set to 100, which means that each base in the genome is sequenced 100 times on
average.

• The mean size of the DNA fragments that are being sequenced is set to 400 base pairs with a
standard deviation of 10 base pairs.

The next step is to assemble reads simulated from different genomes belonging to the same SGB.
For each SGB, 10 genome pairs are randomly sampled from the 50 genomes, and the corresponding
simulated reads are assembled for each of these pairs: the read files are concatenated and then assembled
using the tool MEGAHIT. The results of this procedure are 760 FASTA files. Contigs with less than
1000 bases are removed from these files, as short sequences are of little significance in the process of
reconstructing a genome.

Once we have obtained the assembly contigs, we need to compute alignment coverages in order to
calculate a label per position, as we will explain in detail later. Coverage is defined as the number of
reads aligned at a given position along the DNA sequence. To obtain these coverages we need to align
the simulated reads on the corresponding assemblies. Since each assembly comes from a pair of genomes,
two alignment operations per file are needed. The alignments are performed using the tool Bowtie2 [27]
by setting the “very-sensitive-local” mode. In order to consider only high-quality alignments, a filter is
applied on the obtained BAM files: only alignments with mapping quality (MAPQ) greater than 20
and which have at least 120 alignment matches are considered.

Once the assembly and alignment files are obtained, all necessary information per assembly can be
stored in a single file, hereafter referred with the seqcov (sequence-coverage) extension. An example of
this file is shown in Figure 3.1.
It is important to say that all the software tools mentioned and used (CheckM, CAMISIM, Megahit,
Bowtie2) arewell knownandconsidered reliable by the scientific communitydealingwithmetagenomics.
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Figure 3.1: Example of a seqcov file. The main header lists the genomes used to create the chimeric assembly. Following
this, there is a header for each contig (indicated by a “>” at the beginning of the line) that specifies the name of the contig
and its length. Below the header, the nucleotide sequence is provided, followed by the coverage for each genome, with
coverage values listed per position and separated by commas.

3.2 Labels

Given an assembly contig, the main challenge is to define a binary label that can indicate whether a po-
sition within the sequence belongs to a well-assembled sequence, therefore belonging to a true own ge-
nomic sequence, or if it belongs to an artifact sequence. As anticipated, alignment coverages per genome
are used to compute these labels. The idea is that since the reads from which the assemblies are derived
are simulated with a coverage of 100, well-assembled regions are expected to show a similar coverage
value, while misassembled regions do not. Therefore, by somehow setting a threshold on the coverage
values, it is in principle possible to determine such a label. The reason for choosing high coverage in read
simulations is that this leads to less ambiguity in defining labels, since statistical fluctuations in coverage
are less significant.

Tounderstand the assembly coverage statistics, the global histogram that collects all coverage values in
all assembly files is shown in Figure 3.2. For the following observations and for simplicity of calculation,
fromnowonwe consider the coverage values as i.i.d. continuous randomvariables. From the histogram,
wenote that thedistributionof coverage values appears tobe separated into threeparts: for large coverage
values, the frequencies appear to follow a normal distribution centered in 100, for lower coverage values
seem to follow a uniform distribution and finally there is a frequency peak corresponding to the bin
[0, 5). The first part is not surprising. Since the reads were simulated with average coverage equal to
100, we expect that along the well-assembled regions the alignment coverage values follow a normal
distribution centered in 100. The second part is due to the “tails” of well-assembled sequences. In a well-
assembled sequence, on average, the coverage is lower at the beginning and end because fewer reads can
align in these regions. As you move toward the central zone, coverage increases until it stabilizes, here
following a normal distribution. The same pattern shows in reverse toward the end, where coverage
gradually decreases. This happens because there are fewer alignment possibilities at the edges of the
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sequence. In summary, for positions within the tails of well-assembled regions, we assume that they
follow normal distributions with variable means depending on the position in the tail: for positions
in the tails closer to the central zone of the corresponding well-assembled sequence, these distributions
have larger means and vice versa. As a result, the overall distribution of these positions appears to follow
a uniform-like distribution, as seen in the histogram for coverage interval [5, 70]. It is also important
to note that there are far fewer positions within the tails than those within well-assembled sequences or
within the frequency peak for 0 coverage value. For sequence positionswithinmisassembled regions, we
expect coverage values equal to 0, apart from small fluctuations. The frequency peak corresponding to
the first bin of the histogram is due to this last fact and the fact that we are considering the coverage data
for the alignments of both genomes used for the assembly. Therefore, in addition to the misassembled
regions in which for a given assembly neither of the two genomes has coverage values other than 0, there
are also regions in which for a genome the sequence is well-assembled, therefore with coverage values
that follow the normal distribution centered in 100, while for the other genome the coverage value is
equal to 0. This happens because the initial genomes are different, so there are regions that are not in
common.

Figure 3.2: Histogram that collects all coverage values in all assembly files. The values reported on the y‐axis represent the
percentage frequency, while the x‐axis shows the coverage values separated into bins of size 5.

In light of these considerations, wewant to define away to state that a certain position in the sequence,
given the corresponding coverage values, does not belong to a well-assembled sequence. To simplify the
calculation, we make the following assumptions: coverage values for positions within well-assembled
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sequences are continuous random variables i.i.d. according to the normal distributionN (μ = 100, σ2),
and coverage values greater than 70 coming from well-assembled sequence tails do not significantly in-
fluence this distribution. The first hypothesis, as alreadymentioned, derives from the fact that the reads
are simulated with coverage 100. The second one comes from the fact that, as previously observed, the
positions belonging to the tails are few compared to those belonging to the central regions of the well-
assembled sequences. Since the overall distribution of coverage values is a mixed distribution, it is diffi-
cult to separate these two parts and, to simplify the calculation, wemake this assumption. Furthermore,
the positions belonging to the tails also come from well-assembled regions, so mistakenly considering
the coverage values of these positions as belonging to the normal distribution would not be a problem
for our purposes. We perform aBayesian inference to estimate the variance σ2 of the normal distribution
N (μ = 100, σ2). This involves determining the conditional probability density function (PDF) of the
variance given the observed data D, in other words the posterior distribution p(σ2|D), given the likeli-
hood p(D|σ2) and the prior p(σ2) PDFs. The relationships between these PDFs comes from the Bayes
Theorem, as reported in the following proportion:

p(σ2|D) ∝ p(D|σ2)p(σ2). (3.1)

The likelihood PDF is defined as:

p(D|σ2) =
n∏
i=1

N (ci; μ = 100, σ2) = (2π)−n/2(σ2)−n/2 exp
{
−
∑n

i=1(ci − μ)2

2σ2

}
, (3.2)

where ci ∈ D, with i = 1, ..., n, are the coverage values and n = |D| the number of samples. As a prior
distribution we choose a scaled inverse chi-squared distribution, defined as follows

f(x; ν, τ2) =
(τ2ν/2)
Γ(ν/2)

ν/2

x−(1+ν/2) exp
{
−ντ2

2x

}
, (3.3)

which is the conjugate prior of a normal distribution with known mean and unknown variance. The
chosen prior is defined as p(σ2) = f(σ2; ν = 1, τ2 = 10). With these choices, the posterior is a scaled

inverse chi-squared distributionwith parameters
(
ν+ n;

ντ2 +
∑n

i=1(ci − μ)2

ν+ n

)
. The estimated value

of the variance σ̃2 is the one thatmaximizes the posterior, in otherword themode of the posterior, which
is equal to:

σ̃2 =
ντ2 +

∑n
i=1(ci − μ)2

n+ ν+ 2
. (3.4)

Only coverage values within the range [70, 130] are considered for inference, range where it is assumed
that data not coming from well-assembled sequences does not affect significantly the normal distribu-
tion. Finally, substituting the chosen parameterswithin equation (3.4), we obtain an estimated standard
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deviation of σ̃ = 10.3. The estimated likelihood and the histogram for data within the range considered
for inference are shown in Figure 3.3.

Figure 3.3: Histogram for coverage values in the interval [70, 130] with bin size 5 and the corresponding inferred normal
distributionN (μ = 100, σ = 10.3). The histogram is normalized such that its total area is equal to 1, so that it can be
compared to a PDF.

From the estimated PDF, we can state that a position belonging to a well-assembled sequence has a
coverage value greater than μ − 2σ̃ ≃ 80 with probability of 97.4%. On the other hand, as we said
before, it is very unlikely that a position belonging to an artifact sequence has a coverage value signifi-
cantly greater than 0. Besides this, positions belonging to tails are assumed to be few with respect to the
ones belonging to well-assembled sequences, and they have typically lower coverage values. Then it is
reasonable, from now on, to set the coverage value threshold at 80 to define whether a position belongs
to a well-assembled sequence or not.

For each position within the assembly contigs, there are two coverage values, one for each of the
genomes used for the reads simulation. Therefore, for each position, there are three possible cases: both
coverage values are greater than the threshold, one coverage value is greater and the other is less than the
threshold, and both coverage values are less than the threshold. In the first case, the position belongs
to a well-assembled region with respect to both the genomes, so that position actually exist within both
of them. In the second case, the position only exists in one of the two genomes. Therefore, in the first
two cases, we can say that the position comes from a well-assembled sequence. On the other hand, in
the latter case we have a position that does not belong to either of the two genomes, so the position does
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not come from a well-assembled sequence. Having made these observations, we illustrate the process
of assigning labels to each position of the assembly. Consider the two coverage sequences separately. If
a coverage value is above the defined threshold of 80, it is very likely that the corresponding position
belongs to a well-assembled DNA sequence. Then, for each coverage sequence, the labels are assigned
position by position: label 1 if coverage is above the threshold, label 0 otherwise. Occasionally fluctua-
tions in labels occur along thewell-assembled sequence, that is, somepositions have the label 0. The ideal
case would be that well-assembled sequences were labeled continuously, without fluctuations, since the
ultimate goal is to return clean and reasonably long sequences to the binner. Then, we first “smooth”
the sequence of labels, i.e. if within a sequence of labels 1 there are short fluctuations of labels 0, we
change them to 1. This is done using a sliding window of length 21. The most frequent class within
the window is assigned to the considered position, which is the central one in the sliding window. After
this operation, only sequences consecutively labeled as 1 longer than 300 are retained; otherwise, the
labels are set to 0. Once obtained the sequence labels considering the two genomes, we need to compute
an unique set of labels. There are two possible ways to label a position, one for genome. These labels
consist of sequences of 1, longer than 300, and sequences of 0. If there is no overlap between sequences
labeled as 1, then the final labels are the sequences themselves. If instead there is overlap, only the longest
sequence of labels is retained. Recall that the goal is to improve the performance of the binner, so the
longer the clean sequences are, the better is. This last step is represented in Figure 3.4.

Figure 3.4: Visual representation of the final step to compute labels. The first two lines represent the labels calculated sep‐
arately from the coverages of the two genomes. The last row represents the final labels. 1 labels are represented in green;
0 labels in black. In the last row, representing the final labels, we can see that the first sequence of labels 1 comes from
the first genome while the second sequence comes from the second genome. For these two cases, there is no overlap
between sequences labeled as 1 of the two genomes. On the other hand, the third sequence of labels 1 derives from an
overlap. Since the one belonging to the first genome is the longest of the two overlapping sequences, this will be the final
labeling.

To include the information that a position belongs to a well-assembled sequence tail, the label se-
quences are smoothed by applying a moving average with a sliding window of size 301. The average cov-
erage value in the sliding window is assigned to the center position. With this definition of label, labels
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no longer represent binary classes but probabilities, in particular, the probability that a given position
belongs to a well-assembled sequence. This last operation is performed to make the model better un-
derstand, through the loss computation, when a position belongs to a tail of a well-assembled sequence,
distinguishing this situation from the one in which the position is instead found in the center of the
sequence.

So far, labels are definedby combining labels assigned based on coverage relative to individual genome
alignments. Another possible way to assign labels is to consider, for each position, the coverage values
for each of the two alignments simultaneously. To do this, for each position, we calculate the average of
the strictly positive coverages PAi(ci,1, ci,2), as defined in Equation 3.5, where ci,1 and ci,2 are the coverage
values with respect to the two alignments at the position i.

PAi(ci,1, ci,2) =



ci,1 + ci,2
2

if ci,1 > 0 and ci,2 > 0

ci,1 if ci,1 > 0 and ci,2 = 0

ci,2 if ci,2 > 0 and ci,1 = 0

0 if ci,2 = 0 and ci,1 = 0

(3.5)

After that, a threshold of 80 is applied to obtain the label for all positions. The same operations as before
are then applied: fluctuations and short sequences are removed and the tails of the sequences labeled as
1 are smoothed with a moving average. This labeling method is computationally preferable to the first.
The first method assigns labels based on the coverage of all genomes used to create an assembly that,
in principle, can involve more than two genomes. The second method, instead, directly computes the
average coverages, which is more efficient, especially if the work is extended to include a larger number
of genomes for each assembly.

As an example, in Figure 3.5, the coverage values are shown relative to the positionwithin an assembly
contig for both alignments. In Figure 3.6, the corresponding labels for both proposed methods are
displayed. From now on, we will refer to the two labeling methods as “heuristic” labels and “positive
average” labels.
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Figure 3.5: Example of coverage values for an assembly contig. The plot shows the coverage values at each position rela‐
tive to both of the genomes used to simulate reads for assembly.

Figure 3.6: Example of an assembly contig labeling, whose coverage values are shown in Figure 3.5. On the left, the heuris‐
tic labeling is shown, where the two alignments are considered separately. The labels corresponding to the individual
genomes are illustrated in blue and orange, while the final labels are shown in black. On the right is shown the positive
average labeling, which is based on the average of the strictly positive coverage values.

3.3 Models

The models considered are seq2posmodels, which take as input an encoded DNA sequence x⃗i, where i
represents the position within a given assembly contig at the center of the input sequence. The output
of the model is a scalar value h(x⃗i) within the interval [0, 1], representing the probability that the posi-
tion i is part of a well-assembled sequence. The predicted label C(x⃗i) is then determined by applying a
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probability threshold of 0.5 to the model output, such that:

C(x⃗i) =

0 if h(x⃗i) < 0.5

1 if h(x⃗i) ≥ 0.5.
(3.6)

The choice of this kind of models allows flexibility in the length of an assembly contig given as input,
as classification is performed for each position. This fact is particularly useful since contig lengths are
highly variable: they can range from 103 to 105 positions.

In order to choose the fixed length of the input sequence, we have to make some considerations. In-
cluding more positions in the input window gives the model more information. Therefore, the longer
the sequence length, the greater thepredictive ability of themodel. On theother hand, in general, consid-
ering longer sequences requires more computational resources for both training and final predictions.
Another consideration is about padding. Since assembly contigs are assumed to be part of longer se-
quences, i.e. genomes, complete ignorance of the bases before and after a contig is assumed. This is
equivalent to assigning to these positions the same probability of having any base. Having longer win-
dows corresponds to having a greater number of padded positions for windows close to contigs edges,
thus having windows with greater uncertainty about the sequences they contain. Trying different set-
tings, we choose a fixed input length of 501, which is a compromise between the previous considerations.
The length is chosen odd, since we want the same amount of positions before and after the central one.
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4
Training and Results

4.1 DNA Sequence Encoding

The first step in the processing of DNA sequences is selecting an encoding method. To do this, we
implement one-hot encoding. In one-hot encoding, each nucleotide in theDNA sequence is represented
by a binary vector, where each position in the vector corresponds to a specific nucleotide, and the vector
consists of a single 1 in the position corresponding to the nucleotide and 0s elsewhere. Specifically, the
nucleotides are encoded as follows:

A → [1, 0, 0, 0]

C → [0, 1, 0, 0]

G → [0, 0, 1, 0]

T → [0, 0, 0, 1].

However, DNA sequences often contain positions with uncertain nucleotides. These degenerate po-
sitions are represented using the IUPAC code [28]. Each of these symbols corresponds to uncertainty
in the assignment of the nucleotide, so for each symbol, we assign an identical probability in the corre-
sponding component of the one-hot encoding vector. The complete encoding is illustrated in Table 4.1.
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Symbol Base Encoding
A A [1, 0, 0, 0]
C C [0, 1, 0, 0]
G G [0, 0, 1, 0]
T T [0, 0, 0, 1]
R A or G [1/2, 0, 1/2, 0]
Y C or T [0, 1/2, 0, 1/2]
S G or C [0, 1/2, 1/2, 0]
W A or T [1/2, 0, 0, 1/2]
K G or T [0, 0, 1/2, 1/2]
M A or C [1/2, 1/2, 0, 0]
B Not A [0, 1/3, 1/3, 1/3]
D Not C [1/3, 0, 1/3, 1/3]
H Not G [1/3, 1/3, 0, 1/3]
V Not T [1/3, 1/3, 1/3, 0]
N Any nucleotides [1/4, 1/4, 1/4, 1/4]

Table 4.1: IUPAC symbols, correspondig bases and encoding.

Padding values are set to represent complete uncertainty about bases and are then denoted by the
symbol “N”.

4.2 Model architectures

4.2.1 CNNmodel

The main advantages of using a CNN are its efficiency from a computational point of view and its abil-
ity to capture local patterns along a sequence. By concatenating several alternating CNN layers with
maximum pooling layers, the model can capture increasingly global patterns, condensing sequence in-
formation into a shorter but deeper sequence. This condensed sequence is finally flattened and provided
as input to a multilayer perceptron (MLP) for classification. Themodel considered is made up of 4 con-
volutional layers alternating with 3max pooling layers, followed by anMLPwith one hidden layer. The
structure of the model used is described in detail in Table 4.2.

4.2.2 CNN-Transformer EncoderModel

The second model considered is a combination of a CNN and a transformer encoder, followed by the
usual MLP for classification. The initial CNN aims to learn a representation of the sequence given as
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Layer Type Input Size Output Size Kernel Size
1 1D CNN+MaxPool 501× 4 247× 16 8
2 1D CNN+MaxPool 247× 16 120× 32 8
3 1D CNN+MaxPool 120× 32 57× 64 7
4 1D CNN 57× 64 51× 128 7
5 Dense 6528 32 /
6 Dense 32 1 /

Table 4.2: Architecture of the Convolutional Neural Network (CNN) used for classification. The CNN layers considered
have stride 1. The first five layers are followed by the ReLU activation function. The first three layers, immediately after the
activation function, are followed by a max pooling layer (kernel size 2, stride 2). After the last layer, the sigmoid activation
function is applied to produce an output value between 0 and 1. The total number of trainable parameters used in this

architecture is 285489.

input, capturing local correlations. This representation of the sequence is then given as input to a trans-
former encoder, which using the self-attention mechanism takes into account long-range relationships
within the sequence. The main advantage of the transformer compared to RNN, such as LSTM and
GRU, is due to its well-known ability to encode long-range relationships. Therefore, after these two
blocks, the input sequence is encoded in a representation that takes into account both local and global
correlations. Finally, by flattening this representation vector, the MLP is used for classification. Similar
work was done in [29]. In Table 4.3 is shown in detail the architecture used.

Layer Type Input Size Output Size Kernel Size
1 1D CNN+MaxPool 501× 4 247× 32 8
2 1D CNN+MaxPool 247× 32 120× 64 8
3 1D CNN+MaxPool 120× 64 57× 64 7
4 TransformerEncoder (×4) 57× 64 57× 64 /
5 Dense 3648 32 /
6 Dense 32 1 /

Table 4.3: Architecture of the CNN‐Transformer Encoder used for classification. The convolutional layers considered have
stride 1. The first 3 layers, immediately after the ReLU activation function, are followed by a max pooling layer (kernel size
2, stride 2). The transformer encoder layer consists of four identical stacked layers, each with the following specifications:
an embedding dimension of 64, 4 attention heads, a feedforward network dimension of 1024, ReLU activation applied
after the intermediate layer, and a dropout rate of 0.3. After the last layer, the sigmoid activation function is applied to
produce an output value between 0 and 1. The total number of trainable parameters used in this architecture is 759265.

4.2.3 Benchmark model

In order to verify that our objective is both achievable and reasonable, and to evaluatewhether themodel
can effectively learn from the data, it is important to establish a benchmark model. This benchmark is
used to evaluate the performance of more sophisticated models and to confirm that the complexity we
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aim to incorporate is justified. The benchmarkmodel we chose is simply theMLPused for classification
applied directly to the flattened input sequence, as shown in Table 4.4.

Layer Type Input Size Output Size
1 Dense 2004 32
2 Dense 32 1

Table 4.4: Simple MLP used as benchmark model. Biases are considered, ReLU activation function si applied after the first
layer, sigmoid activation function is applied to produce an output value between 0 and 1 after the last layer. The total

number of trainable parameters used in this architecture is 64161.

4.2.4 Models combination

In addition to the two models just described, we propose two possible ways of combining them, with
the aim of obtaining a singlemodel capable of exploiting the strengths of both and thus obtaining better
performances.

The first combining method consists of simply averaging the two output probabilities. Let us define
the input sequence corresponding to the position i of a given assembly contig as x⃗i and the output prob-
abilities of the twomodels as f(x⃗i) and g(x⃗i) respectively. The final output of suchmodels combination
h(x⃗i) is

h(x⃗i) =
f(x⃗i) + g(x⃗i)

2
. (4.1)

The second combining method consists in building a simple meta-model that combines the two
model outputs. This meta-model, given the input sequence x⃗i, computes the output probabilities for
both models and combines these two predictions by applying a dense layer with bias followed by a sig-
moid activation function. This model has 3 trainable parameters, named w1,w2 and c. Therefore, the
final output probability h(x⃗i) of such a model is

h(xi⃗) = σ(w1f(x⃗i) + w2g(x⃗i) + c). (4.2)

4.3 Training, Validation and Test set definition

To compare the models considered, it is necessary to define fixed datasets: one used for training, one for
validation, and finally one to test the model ability to generalize outside the training set. Actually, due
to how the dataset is structured, we can think of three levels of generalization capacity of a model: the
ability to generalize on samples belonging to the same assembly files used for training, on different files
but belonging to the same SGBs used for training, and different files belonging to different SGBs. For
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this reason, we divide the test set into three parts, respecting the hierarchy just described. Intuitively, we
expect the model to generalize worse following the order of describing these 3 test datasets.

The procedure to define such datasets is the following: 25 SGBs are selected, fromwhich, for each of
them, 6 assembled files are selected. For each of these, 7680 windows are taken for training. From each
of the same files, 3840 windows are taken for validation and the same number for testing. In total, we
therefore used 1152000windows for training and 288000 for both validation and testing. Thewindows
used for validation and testing are chosen to have no overlapwith the trainingwindows. The test set just
described corresponds to the first level of testing for the generalization ability of the model, i.e. whether
it is able to generalize on samples belonging to the same assemblies used for training. The second test
set, following the hierarchical order of generalization, is made up of assembly files not used for training
but belonging to the same SGBs. Furthermore, the files were chosen in such a way that they were not
assembled from the genomes used to assemble the files considered for training. The files that respect this
last condition are 41. From each of these files, 7040 windows are selected, so the second test set is made
up of 288640 windows. The third test set is constructed by selecting 26 SGBs not used for training and
from each of these choosing 5 assembly files. For each of these files, 3840 windows are drawn, so the
third test set is made up of a total of 499200 windows.

4.4 Model training and evaluation

Themodels are trained on the dataset defined earlier, utilizing binary cross-entropy as the loss function.
Adam optimizer is selected with PyTorch default values. Batch gradient descent is used as the weight
update mechanism, with data processed in batches of 64 samples.

To mitigate overfitting, several strategies are implemented: early stopping, a learning rate scheduler,
and L2 regularization. As regards early stopping, the loss on the validation set calculated at the end of
each epoch is used as a criterion. The criterion for stopping training is as follows: if the validation loss
does not decreasewithin 30 epochs, the training is stopped. The difference between the best loss and the
current one is used asmetric: if this difference is greater than 10−4, then the best loss is updatedwith the
current one and the count of epochs without improvement is reset to zero. The learning rate scheduler
consists of two phases. In the first phase, which is the warm-up phase, the learning rate increases linearly
from 0 to 10−4 at each training step during the first 10 epochs. In the second phase, the learning rate
decreases linearly over the next 90 epochs, reaching 0 by the end of the 100-th epoch. L2 regularization
is applied with a weight decay set to 10−4. After each epoch, the training dataset is shuffled to ensure
that the model does not learn any unintended patterns from the order of the data, promoting better
generalization and preventing overfitting.

Themeta-model is trainedon the training set after the trainingof theCNNand theCNN-Transformer
Encoder have been completed. The training is performed without a learning rate scheduler, early stop-
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ping, and L2 regularization. The optimizer and loss function are the same as those used during the
previous training. The fixed learning rate is set to 10−4, and the training lasts for 5 epochs.

To evaluate the performance of different models, we calculate the area under the curve (AUC) and
construct confusion matrices for each of the three test sets. AUC provides an overall measure of model
performance and is preferred over accuracy because it is not affected by class imbalance. From the con-
fusion matrices, we also compute four additional metrics: true positive rate (TPR), true negative rate
(TNR), positive predicted value (PPV) and negative predicted value (NPV). TPR measures the ability
of themodels to identify well-assembled sequences, ensuring thatmost of them are preserved, which is a
key factor in our goal. TNRevaluates the capacity of themodels to detectmisassembled sequences. PPV
and NPV assess the accuracy of the models when predicting positive and negative cases, respectively.

The system used for training has 4 Intel Xeon Gold 6140 CPUs (144 threads total), large caches (L1:
2.3MiB,L2: 72MiB,L3: 99MiB), and a 4-nodeNUMAconfiguration, designed for high-performance
tasks. All models are defined using the PyTorch API, along with a data generator for efficient data feed-
ingduring training. Furthermore, the trainingprocess is designed to run alsoon aGPUwithCUDAsup-
port for enhanced performance. The developed code for training and testing is available on GitHub1.

4.5 Results and discussions

4.5.1 Heuristic labels

From Figure 4.1, which shows the training histories of the trained models, it is possible to note that the
benchmarkmodel triggers early stopping after a few epochs. This behavior suggests that themodel strug-
gles to generalize effectively in the validation set. In contrast, the other twomodels trigger early stopping
after significantlymore epochs and for a lower value of loss, indicating a stronger ability to generalize on
the validation set compared to the benchmarkmodel. This shows that theCNNandCNN-Transformer
Encoder models can capture patterns in the data more effectively than the benchmark model. Further-
more, theCNN-Transformer Encodermodel overfits quicker than theCNNmodel, i.e. during training
early stopping occurs after fewer epochs.

1https://github.com/marco-chiloiro/Deep-learning-methodologies-to-approach-the-problem-of-misassembled-
microbial-genomes
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Figure 4.1: Training history plots considering the heuristic labeling. The top plot represents the benchmark model, the
middle plot corresponds to the CNN model, and the bottom plot depicts the CNN‐Transformer Encoder model.
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In Table 4.5 are reported the results for all the 5 models considered on the 3 test set chosen. Finally,
all the 15 confusion matrices are shown in Figure 4.2. From these results, it is possible to make several
considerations. Firstly, it is noteworthy that even the benchmark model, despite its simplicity, is capa-
ble of learning from raw DNA sequences. This is evidenced by the fact that the AUC is significantly
larger than 0.500. Furthermore, it is able to recognize most of the well-assembled sequences, since it
obtains a TPR higher than 0.950 in all the test datasets. However, as indicated by the low TNR and
NPV values, the benchmark model has a limited ability to recognize misassembled sequences and a low
accuracy in predicting them. On the other hand, the two considered models, i.e. the CNN and CNN-
Transformer Encoder models, demonstrate significantly improved classification performance, as all the
considered evaluation metrics show higher values. In particular, these models exhibit a TNR value that
is almost double that of the benchmarkmodel, demonstrating a better ability to recognizemisassembled
sequences. For these models, the NPV values are comparable to the PPV values, both around 0.800, in-
dicating a good accuracy in classifying both positive and negative classes. Furthermore, thesemodels are
more conservative than the benchmark model, as evidenced by their higher TPR values. Overall, the
CNN model performs slightly better than the CNN-Transformer Encoder model, while maintaining
comparable performance.

Model AUC TPR TNR PPV NPV
Test set 1

Benchmark 0.673 0.965 0.221 0.805 0.654
CNN 0.775 0.975 0.409 0.845 0.833

CNN-TransformerEncoder 0.764 0.971 0.405 0.844 0.810
Average model 0.780 0.980 0.397 0.843 0.860
Meta-model 0.777 0.977 0.403 0.845 0.838

Test set 2
Benchmark 0.680 0.962 0.234 0.833 0.610

CNN 0.763 0.971 0.428 0.871 0.789
CNN-TransformerEncoder 0.758 0.965 0.428 0.870 0.754

Average model 0.774 0.977 0.418 0.870 0.824
Meta-model 0.767 0.971 0.428 0.871 0.789

Test set 3
Benchmark 0.657 0.965 0.215 0.806 0.645

CNN 0.714 0.988 0.368 0.841 0.903
CNN-TransformerEncoder 0.713 0.981 0.373 0.841 0.850

Average model 0.720 0.990 0.364 0.840 0.912
Meta-model 0.719 0.986 0.368 0.841 0.884

Table 4.5: Area Under the Curve (AUC), True Positive Rate (TPR), True Negative Rate (TNR), Positive Predicted Value (PPV)
and Negative Predicted Value (NPV) for all models evaluated on the 3 test set, considering heuristic labeling.
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Figure 4.2: Confusion matrices for all models considering the heuristic labeling. Rows correspond to the models in the
following order: Benchmark, CNN, CNN‐TransformerEncoder, average, and meta‐ model. Columns represent the test sets
in the order: test set 1, 2, and 3.
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As can be seen from the results, bothmodels combinations showbetter performance than themodels
considered individually, highlighting slightly higher AUCvalues in all test datasets. Regarding themeta-
model training, the three learned parameters are w1 = 1.99, w2 = 3.60 and c = −2.89, indicating that
the meta-model gives more weight to the CNN-Transformer Encoder model. Nevertheless, the model
combination based on the average of the predictions, as described in Equation 4.1, performs slightly
better. Furthermore, this latter model has a lower TNR value and a higher NPV value than those of the
single models, demonstrating its ability to predict a slightly smaller fraction of misassembled sequences
but with greater accuracy.

As for performance in the three different test sets, as one might expect, all models perform best in
the first test set, with progressively worse performance on the second and third test sets. This trend is
consistent with the increasing generality and externality of the data in these test sets compared to the
training dataset.

4.5.2 Positive average labels

The training histories for all the models considered are shown in Figure 4.3. In Table 4.6 are reported
the results for all the 5 models considered on the 3 test set chosen. All the 15 confusion matrices are
shown in Figure 4.4. Regarding the training of the meta-model, the three parameters that the model
learned are w1 = 1.79, w2 = 4.02 and c = −3.11. The considerations on the results obtained with this
labeling method remain the same as those discussed in the previous subsection, indicating that the two
labeling methods produce similar results in terms of label assignment.

Model AUC TPR TNR PPV NPV
Test set 1

Benchmark 0.692 0.956 0.254 0.813 0.630
CNN 0.805 0.974 0.437 0.853 0.833

CNN-TransformerEncoder 0.797 0.966 0.441 0.853 0.795
Average model 0.812 0.978 0.430 0.853 0.852
Meta-model 0.810 0.968 0.450 0.856 0.805

Test set 2
Benchmark 0.670 0.954 0.274 0.843 0.593

CNN 0.802 0.968 0.469 0.882 0.780
CNN-TransformerEncoder 0.794 0.960 0.469 0.881 0.742

Average model 0.808 0.973 0.459 0.880 0.804
Meta-model 0.805 0.960 0.477 0.882 0.746

Test set 3
Benchmark 0.671 0.956 0.247 0.816 0.618

CNN 0.737 0.988 0.388 0.848 0.906
CNN-TransformerEncoder 0.729 0.977 0.397 0.849 0.832

Average model 0.740 0.988 0.386 0.848 0.905
Meta-model 0.738 0.979 0.393 0.848 0.846

Table 4.6: Area Under the Curve (AUC), True Positive Rate (TPR), True Negative Rate (TNR), Positive Predicted Value (PPV)
and Negative Predicted Value (NPV) for all models evaluated on the 3 test sets, considering positive average labeling.
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Figure 4.3: Training history plots considering the positive average labeling. The top plot represents the benchmark model,
the middle plot corresponds to the CNN model, and the bottom plot depicts the CNN‐Transformer Encoder model.
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Figure 4.4: Confusion matrices for all models considering the positive average labeling. Rows correspond to the models in
the following order: Benchmark, CNN, CNN‐TransformerEncoder, average, and meta‐ model. Columns represent the test
sets in the order: test set 1, 2, and 3.
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5
Conclusion

This thesis aims to develop a reference-free assembly assessment tool designed to identify misassembled
sequences directly from raw DNA sequences. Special attention is paid to assembly errors caused by
repeats, such as in the case of chimeric assemblies, which are simulated by assembling synthetic reads
derived from similar genomes.

The results demonstrate that deep learningmodels can effectively learn from rawDNA sequences for
this specific task. The benchmark model achieves an AUC score greater than 0.650 on all test datasets,
demonstrating its learning ability. The two models, based on CNN and transformer encoder archi-
tectures, show improved performance, particularly in their ability to identify misassembled sequences
with greater accuracy. The model combination approach which averages the predicted probabilities of
individual models is more effective than single models. This ensemble method not only increases the
overall AUC score but also enhances the accuracy of identifying misassembled sequences. As expected,
the performance of all models decreases when tested on external andmore generalized datasets than the
training set. Finally, the two labeling methods considered result almost equivalent from classification
performance point of view, making the positive average labeling preferable over the heuristic labeling
given its computationally efficiency.

This work demonstrates that, using appropriate deep learning models, it is possible to identify a por-
tion of the misassembled regions within contigs with reasonable accuracy, while preserving most of the
well-assembled ones. In fact, the models considered exhibit conservative behavior, identifying most of
thewell-assembled sequences. However, they struggle in detecting allmisassembled sequences, although
they still achieve a reasonable level of accuracy in doing so. This balance is consistent with our goals,
prioritizing reliable, even if not exhaustive, identification of misassembled sequences, while adopting a
conservative approach to well-assembled sequences. This approach, with further refinement, has signif-
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icant potential in the field of metagenomics. It could improve the binning quality by reliably excluding
some assembly errors.

While this work represents a promising initial step, it is not intended as a definitive tool. The training
was performed on a dataset limited in scope, focusing on a specific type of assembly error, and the syn-
thetic nature of the training data may not fully capture the complexity of real-world samples. Addition-
ally, the nature of metagenomic data makes training deep learning models computationally intensive,
both in terms of time and resources. As a result, both the complexity of the models and the volume of
training data had to be reduced to achieve meaningful results for the purposes of this work, ultimately
limiting their generalization capabilities and overall performance.

Despite these limitations, the results are encouraging and there are many possibilities for further de-
velopment and improvement. More complex datasets, such as contigs involving the assembly of more
than two genomes from the same SGB, could be synthesized to better reflect real-world metagenomic
challenges. Furthermore, by increasing the volume of training data and using more powerful hardware
andoptimized code, itwouldbepossible to improve the complexity of themodels. Thiswould also allow
for the exploration of alternative architectures and model ensembles, which have been shown to have
the potential for better generalization and classification performance. With access to additional com-
puting resources, a more robust hyperparameter optimization process, such as Bayesian optimization,
could be implemented to fine-tune the model performance. Further testing could also be conducted us-
ing increasingly realistic datasets. For example, metagenomic samples could be simulated by combining
multiple genomes in realistic proportions and assembling them together, resulting in a more accurate
representation of real-world scenarios. Finally, the performance of the tool could be compared with
existing methods to assess its effectiveness and potential advantages.

This study highlights the potential of deep learning to address critical challenges in metagenomic
assembly. With further refinement and exploration of the proposed directions, this approach could
evolve into a powerful tool, providing a robust framework to reliably identify misassembled sequences
while preserving well-assembled ones. This tool has the potential to significantly improve the quality
of MAGs and, consequently, the correctness of downstream processes such as binning and taxonomic
classification.
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