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Introduction

Theorized by Glauber in the 1960s, Intensity Interferometry (II) has found applications

in a wide variety of fields. The first to use it for astronomical measurements, albeit

in its ªanalogº form, were Hanbury-Brown and Twiss [1], culminating their research

by measuring the angular diameter of more than thirty stars from the Narrabri obser-

vatory, in Australia. Very recently, a research group at the University of Padua and at

the Observatory of Padova of the National Institute of Astrophysics obtained the first

astronomical II measurements by means of a ªquantumº approach, measuring the sec-

ond order correlation function of Vega using two ultrafast photon counting photometers

coupled to two mid-class telescopes available at Asiago (Italy). Nowadays, due to the

planned construction of large telescope arrays, and thanks to the enormous advances

in electronics, II is acquiring a central role, with great prospects for the further charac-

terization of various celestial bodies. In this context, the objective of this thesis is to

evaluate, through simulations, the capabilities of the ASTRI Mini-array telescope sys-

tem to characterize binary systems using the II technique.

The thesis is structured as follows. In the first chapter, the physical concept behind II

is explained, and in the second chapter, some applications of this technique are illus-

trated. In the third chapter, the structure of the software for simulating II data for the

ASTRI Mini-array is presented, and in the fourth chapter, the results of some simula-

tions of binary systems are commented on. Finally, in the conclusion chapter, what has

been achieved with this work and the future prospects for the ASTRI Mini-array are

discussed.
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Chapter 1

Intensity Interferometry: a quantum effect

The behavior of light fluctuations has been extensively described by Mandel’s monog-

raphy [2]. The following is just a brief resume of his work.

Radiation fluctuations were first investigated by Einstein, who first applied the energy

fluctuation formula to the black body radiation of an enclosure in thermal equilibrium.

The investigation mainly concerned the limitations that these fluctuations impose on the

accuracy of radiation measurements. However, after the first successful experiments of

Hanbury-Brown and Twiss in the field of intensity interferometry, it rapidly became of

great interest. Hanbury-Brown and Twiss followed a classical approach, considering

the phenomenon using wave theory. Even if the classical, wave, picture can account

quantitatively for many of the observed effects, it fails in accounting for the statistical

errors in the fluctuations measurement and for those effects which are concerned with

discrete quantum events. The first who treated light fluctuations considering the particle

behavior (i.e. quantum) was Purcell [3].

This chapter is divided as follows: in the first section the classical interpretation is de-

scribed, while in the second one, the particle interpretation is presented.

1.1 Wave interpretation

Assuming the light being emitted from a thermal source, the beam can be considered as

a superposition of waves of many different frequencies ν, lying within some continuous

range ∆ν. Not having a definite phase relationship between the frequency components,

the resultant wave amplitude V (r)(t), where the apex (r) indicates the wave real compo-

nent, in the interval T , can be described by a Fourier series as:

V (r)(t) =
∑

n

ancos(2πnt/T ) + bnsin(2πnt/T ) . (1.1)

For a stationary process, and a sufficiently long T , the Fourier coefficients an and bn

can be considered statistically independent Gaussian random variables with the same

variance. Then, assuming the light to be linearly polarized, consider two points P1 and

P2, and the respective light waves function V1(t) and V2(t) at these points. The mutual

coherence function of the two waves is defined as:

Γ12(τ) = ⟨V1(t + τ)V∗2 (t)⟩ , (1.2)

and the normalized coherence function is:

γ12(τ) = Γ12(τ)/
√

⟨I1⟩⟨I2⟩ , (1.3)

where ⟨I1⟩ and ⟨I2⟩ are the time averaged intensities at P1 and P2. These can be

computed as:

⟨Ii(t)⟩ = lim
T→∞

1

T

∫ T
2

− T
2

Ii(t)dt . (1.4)

The instantaneous intensities can be written respectively as:

I1(t) = V1(t)V∗1 (t) , (1.5)

I2(t) = V2(t)V∗2 (t) , (1.6)
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2 Chapter 1

hence the mutual coherence function of the intensities, i.e. the second order coher-

ence function of the waves amplitude, is:

⟨I1(t + τ)I2(t)⟩ =
〈

V1(t + τ)V∗1 (t + τ)V2(t)V∗2 (t)
〉

=

=

〈

V
(r)

1

2
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2
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〉

+

〈
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2
(t + τ)V

(i)

2

2
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+

+
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2
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2

2
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〉

+

〈

V
(i)

1

2
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(i)

2

2
(t)

〉

.

(1.7)

where the (r) and (i) apexes indicate the wave real and imagery parts respectively. It

can be shown that the correlation functions are related to the mutual coherence function

by:

〈

V
(r)

1

2
(t + τ)V

(r)

2

2
(t)

〉

=

〈

V
(i)

1

2
(t + τ)V

(i)

2

2
(t)

〉

=
1

2
Re[Γ12(τ)] , (1.8)

−
〈

V
(r)

1

2
(t + τ)V

(i)

2

2
(t)

〉

=

〈

V
(i)

1

2
(t + τ)V

(r)

2

2
(t)

〉

=
1

2
Im[Γ12(τ)] . (1.9)

Finally, by means of equations (1.8) and (1.9), equation (1.7) can be written as:

⟨I1(t + τ)I2(t)⟩ = ⟨I1⟩⟨I2⟩ + |Γ12(τ)|2 = ⟨I1⟩⟨I2⟩
[

1 + |γ12(τ)|2
]

. (1.10)

In the same way, it is possible to write the correlation between the fluctuations of I1

and I2, expressed as ∆Ii = Ii(t) − ⟨Ii⟩, in the following way:

⟨∆I1(t + τ)∆I2(t)⟩ = ⟨I1(t + τ)I2(t)⟩ − ⟨I1⟩⟨I2⟩ = ⟨I1⟩⟨I2⟩ |γ12(τ)|2 . (1.11)

Considering now unpolarized light, the previous equation takes the form:

⟨∆I1(t + τ)∆I2(t)⟩ = 1

2
⟨I1⟩⟨I2⟩ |γ12(τ)|2 . (1.12)

This equation establishes the basic principles on which an intensity interferometer

depends. In appendix A it is reported how Hanbury-Brown and Twiss used this equation

to measure stellar diameters.

In practical application, equation (1.12) does not fully agree with the experimental re-

sults. This is due to two reasons:

• the wave interpretation cannot describe the large fluctuations in the output of a

photo-multiplier. These arise primarily from the shot noise of the photo-current

and can only be described by assuming the quantum nature of the radiation;

• equation (1.10) describes the correlation of the instantaneous intensities I(t). Al-

though I(t) changes slowly compared with the wave function V(t), yet its fluc-

tuations are normally too rapid for an electronic correlator to follow. Roughly

speaking, the frequency spread of the fluctuations of I(t) is of the same order as

the frequency spread ∆ν of the incident light. The signal on which the electronic

correlator operates is therefore already some short time average of I(t).

To solve these issues a particle, or quantum, approach is needed. This is described

in the next section.
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1.2 Particle interpretation

Since only the results of the interactions between photons with the photo-detector are

observed, the following discussion will refer to the interaction products, i.e. the photo-

electrons. To compute the probability of detecting a photon by its interaction at a certain

point at a certain time, a wave function for the photons of the radiation field must be

defined. The photon wave function ψ(k, t), in the momentum-spin space can be defined

as:

ψ(k, t) =

√

(

2

kℏ
ζ(k)exp(ickt)

)

, (1.13)

where k is the wave vector, whose magnitude, k, is the wave number 2πν/c, and

ζ(k) represents the Fourier coefficients.

The Fourier transform of equation (1.13) is:

Ψ(r, t) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
ψ(k, t)exp(−ik · r)dk , (1.14)

It can be shown that ψ(k, t) is a SchrÈodinger type equation of motion and that

ψ∗(k, t)ψ(k, t)dk can be interpreted as the probability of finding the photon in the mo-

mentum interval dk. Being interested in determining the position with an accuracy of

the order of a wavelength, Ψ∗(r, t)Ψ(r, t) can be treated as the spatial probability den-

sity.

A real light beam is composed of many photons not in a pure quantum state. Consid-

ering non-interacting photons it is possible to write down a symmetrized momentum-

spin SchrÈodinger wave function, consisting of products of the functions ψi(k, t). From

this, the probability of finding one photon in the momentum interval dk is found to be
∑

i ψ
∗
i
(k, t)ψi(k, t)dk, where the sum is to be taken over all the photons of the system.

Supposing now the photons are in a mixed quantum state, this implies that the state can

be described by a statistical ensemble of SchrÈodinger wave functions and that all the

probabilities must be computed by averaging over the ensemble. Representing each

photon wave function as ψ∗
i
(k, t), then the probability of finding one photon in the

momentum interval dk is N ⟨ψ∗(k, t)ψ(k, t)⟩ dk, where the square brackets denote the

ensemble average and N is the number of particles. Now, from equation (1.14), the

ensemble of functions ψ(k, t) generates an ensemble of functions Ψ(r, t). It follows that

the probability of finding one photon within the space interval dr is given by the ensem-

ble average N ⟨Ψ∗(r, t)Ψ(r, t)⟩ dr.

If all the Fourier coefficients ζ(k) of Ψ(r, t) are statistically independent for different

k, then the central limit theorem of statistics states that its expansion would generate

a Gaussian random function. Since photons of different energies produced by thermal

sources are normally independent, it follows that Ψ(r, t) is to be regarded as a Gaussian

random function for thermal light.

For a plane, linearly polarized, quasi monochromatic beam of thermal light, it can be

shown that the classical wave function representation, V(r, t), and Ψ(r, t) are equiva-

lent apart from a constant and have identical statistical properties. Hence, being their

statistical properties similar, the probability of detecting a photon at r at time t, which

is proportional to Ψ∗(r, t)Ψ(r, t), is also proportional to V∗(r, t)V(r, t) = I(r, t). Pho-

tons can only be detected by their interactions with charges, but, if the higher order

interactions are ignored, the probability that a photon of given momentum falling on a

photo-cathode ejects a photo-electron will be just a constant α, representing the quan-

tum sensitivity of the cathode. If the intensity I(t) of the quasi-monochromatic light

beam is measured in units of photons per second, then the probability that this beam,

falling on the photo-electric detector, gives rise to a count in an interval dt, is simply

αI(t)dt.

Hence, the quantity I(t) bridges the gap between the particle and the wave models and
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many of the previous results based on the wave picture now become applicable. The

two models can be seen to have much in common, but the output of a photo-detector

is no longer to be regarded as a continuous function of time and the discrete quantum

phenomena, such as shot noise, can now be examined.

The statistics of the counts obtained with a photodetector illuminated by a light beam

are described by the probability distribution p(n,T ) of obtaining n counts in a time in-

terval T . We can define now a time dependent probability distribution p(n,T, t), which

denotes the probability that n counts are detected in the time interval [t, t + T ]. It then

follows that p(1, dt, t) = αI(t).

It can be shown that the probability distribution p(n,T, t) is a Poisson distribution, with

parameters given by the expectation value of n in the interval t to t+T . This is equal to:

n = α

∫ t+T

t

I
(

t′
)

dt′ , (1.15)

thus:

p(n,T, t) =
1

n!

[

α

∫ t+T

t

I
(

t′
)

dt′
]n

exp

[

−α
∫ t+T

t

I
(

t′
)

dt′
]

. (1.16)

Being I(t) a random function, the probability p(n,T, t) is itself a random function,

and p(n,T ) must be obtained by it by taking its time average.

However, the probability p(n,T ) for a general T is not easily computed. But being

interested in the count variance, this can be treated with the generating momentum,

as described in the appendix B. Following this approach, the variance
〈

(∆n)2
〉

results

equal to:

〈

(∆n)2
〉

= α⟨I⟩T + α2⟨I⟩2
∫ ∫ 1

2
T

− 1
2

T

|γ11(t1 − t2)|2dt1dt2 = ⟨n⟩[1 + ⟨n⟩ξ(T )/T ] , (1.17)

where, according to [4], ξ(T ) is equal to:

ξ(T ) =
2

T

∫ T

0

(

T − t′
)

∣

∣

∣γ11

(

t′
)

∣

∣

∣

2
dt′ . (1.18)

Finally, the count variance can be expressed as:

〈

(∆n)2
〉

=

{

⟨n⟩(1 + ⟨n⟩) T ≪ 1/∆ν

⟨n⟩[1 + ⟨n⟩ξ(∞)/T ] T ≫ 1/∆ν
. (1.19)

where the first equation can be recognized as characteristic of the Bose-Einstein

distribution, while the second is the characteristic expression for n bosons distributed

among T/ξ(∞) cells of phase space, so that ξ(∞) should be identified as the coherence

time of light.

The time dependent probability distribution expressed in equation (1.16) allows us to

calculate the correlation of the number of counts n1 and n2, recorded by two photo-

detectors illuminated by partially coherent light beams for a time T . The expectation

value of the product ⟨n1n2⟩ is:

⟨n1n2⟩ =
∞
∑

n1=0

∞
∑

n2=0

n1n2 ⟨p1(n1,T, t)p2(n2,T, t)⟩ . (1.20)

By inserting the mean values of the Poisson distribution, it is possible to write:

⟨n1n2⟩ = α1α2

∫ ∫ t+T

t

〈

I1(t′)I2(t′′)
〉

dt′dt′′ = α1α2

∫ ∫ t+T

t

〈

I1(t + t′ − t′′)I2(t)
〉

dt′dt′′ .

(1.21)
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Assuming now that the spectral distributions of the two beams are equal, the nor-

malized coherence function can be written as:

γ12(τ) = γ12(0)γ11(τ) . (1.22)

By substituting it in equation (1.21), it results:

⟨n1n2⟩ = α1α2⟨I1⟩⟨I2⟩∆T 2 + α1α2⟨I1⟩⟨I2⟩|γ12(0)|2
∫ ∫ ∆T

0

∣

∣

∣γ11

(

t′ − t′′
)

∣

∣

∣

2
dt′dt′′

= ⟨n1⟩⟨n2⟩ + ⟨n1⟩⟨n2⟩[ξ(∆T )/∆T ]|γ12(0)|2 ,
(1.23)

then, the correlation of the fluctuations ⟨∆n1∆n2⟩ is given by:

⟨∆n1∆n2⟩ = ⟨n1n2⟩ − ⟨n1⟩⟨n2⟩ = ⟨n1⟩⟨n2⟩[ξ(∆T )/∆T ]|γ12(0)|2 . (1.24)

This is analogous to the correlation equation used by Hanbury-Brown and Twiss

(equation (A.7)), except that it is applied to linearly polarized light.

The first order correlation function γ12(0) is related to the source brightness distribution

through the Van Cittert Zernike theorem.

This fundamental theorem, named by Van Cittert - Zernike [6], states that for a non-

coherent and almost monochromatic extended source, the complex visibility, µ, is the

normalized Fourier transform of the brightness distribution of the source, I. The com-

plex visibility is a measure of the contrast of interference in any system subject to wave

superposition. It can be defined as:

µ =
Imax − Imin

Imax + Imin

, (1.25)

where Imax is the maximum intensity of the oscillations and Imin the minimum in-

tensity of the oscillations.

The Van Citert-Zernike theorem can be then expressed as:

µ(u, v) =

∫ ∞

−∞

∫ ∞

−∞
I(α, β)exp(2πi(αu + βv))dαdβ , (1.26)

where (α, β) represent angular coordinates on the sky, and (u, v) represent spatial

frequencies.

By considering the correlation has been computed in the interval ∆T , equation (1.23)

can be written as:

|γ12(0)|2 =
[

⟨n1n2⟩
⟨n1⟩⟨n2⟩

T

∆T
− 1

]

∆T

τ0

. (1.27)

This equation will be used to compute the second order correlation function, and

then to fit the star diameter from it.





Chapter 2

Astronomical applications of intensity

interferometry techniques

Intensity interferometry is an ideal tool for achieving angular resolutions that are not

possible with traditional imaging techniques. This is also simplified by the fact that it

is not necessary to have very high-quality optical surfaces to make II measurements,

besides the fact that seeing does not have a big impact, contrary to amplitude interfer-

ometry techniques that instead require very high-quality optical paths.

In fact, in an intensity interferometer, the optical quality of the telescope is not really im-

portant as any imperfections in the optical path of the incoming light can be acceptable

down to a few centimeters since the time resolution given by the acquisition electronics

is always in the order of a nanosecond, corresponding to ∼ 30 cm traveled by the light.

2.1 Hanbury-Brown and Twiss first experiments

Hanbury-Brown and Twiss were the first to use II technique for astronomical measure-

ments between the 50s and the 70s. As explained in Hanbury-Brown’s book [7], the

concept was initially born to overcome the need for highly stable oscillators for very

long baseline interferometers in the radio domain. During their first experiments, they

noticed that the system was also insensitive to atmospheric scintillations. Also, consid-

ering that they did not need high optical quality but only a large enough collecting area,

they decided to build an interferometer in the optical band, which led to the develop-

ment of the Narrabri Observatory.

Nevertheless a lot of initial criticism, Hanbury-Brown and Twiss succeeded in design-

ing and building the first optical II at Narrabri, a small country town on the river Namoi

in the northern New South, Australia. By using two movable 6.5 meters mirrors as

collectors, they were able to obtain baselines between 10 and 188 meters. During a

decade of observations [8], they measured the radii of 32 single O-F spectral type stars,

making the first ever measurements of a main sequence star. Moreover, the experiment

demonstrated the potentialities of what a larger intensity interferometer could do, such

as limb darkening, stellar rotation, and polarization characterization, or the observation

of pulsations in radius of a Cepheid variable [7].

The Narrabri observatory consisted of:

• two reflectors, composed of regular 12-sided polygons, with a diameter of 6.5 m;

• two interference filters, with a central wavelength of 443 nm, and a 5 nm band-

width;

• two photomultipliers, on which the collected light was focused;

• a correlator, which correlated in real time the two current signals from the photo-

multipliers;

• a data handling system, which displayed the measured data.

The Narrabri II was operated in the analog mode, whereby the currents of the two

photomultipliers were directly correlated. Its configuration is shown in Figure (2.1).

The instrument worked as follows: the light from the star is received on two separated

collectors and it is focused at each onto a photomultiplier. Then the two signals are

7



8 Chapter 2

Fig. 2.1. Narrabri II concept: the system acquires the light by means of two collectors, and

the two signals generated by the photomultipliers are input to a correlator.
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connected to the inputs of a correlator. The correlation was recorded by an integrating

motor, while the RMS value of the noise at the output was recorded by a second inte-

grating motor. The obtained correlation observing Sirius is represented in Figure (2.2).

Fig. 2.2. Narrabri measured correlation: the dots represent the measured correlation at dif-

ferent baselines, while the continuous line represents the ideal correlation [7].

2.2 II at Asiago: Aqueye+ and Iqueye

Since 2005, a team of researchers from the University of Padova and from the Ital-

ian National Institute of Astrophysics (INAF) in Padova Observatory has been investi-

gating very high time resolution astrophysical phenomena in the optical band [9]. In

this context, two instruments were built in order to perform photon counting with sub-

nanosecond temporal accuracy [10]. The first, called Aqueye+, is regularly mounted

at the 1.8 m Copernicus telescope in Asiago, while the second, Iqueye, was mounted

at the ESO New Technology Telescope in Chile, at the William Herschel Telescope,

and at the Telescopio Nazionale Galileo on the Roque, Canary Islands. Finally, after

delivering extraordinarily accurate results in optical pulsar timing, Iqueye was moved

to Asiago and mounted at the 1.2 m Galileo telescope, enabling experiments of optical

intensity interferometry on a baseline of a few kilometers, together with the Copernicus

telescope.

Aqueye+ and Iqueye are narrow Field Of View (FOV) photon counting photometers

with sub-ns absolute time accuracy. They are both composed of a pyramidal mirror,

that splits the incoming beam after the telescope focus into four sub-apertures focused

on four independent SPADs detectors. This 4-split pupil optical configuration allows to

perform a cross-correlation of the signal also at zero baseline (that is among different

portions of the same telescope), which is crucial to calibrate the degree of coherence.

Then, an acquisition system capable of sub-ns time tagging accuracy with respect to

UTC, saves the data.

The Galileo telescope and the Copernicus telescope are located respectively in the re-

sorts of Pennar and Cima Ekar, almost 4 km apart. Equipped with Aqueye+ and Iqueye,

the two telescopes provided a suitable site to realize a photon counting km-baseline

intensity interferometer. In this context, Aqueye+ has been directly mounted at the

Copernicus telescope, while Iqueye has been fiber-coupled with the Galileo telescope

by means of the Iqueye Fiber Interface instrument [11].
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The latter configuration was used to investigate Vega. The choice of such a bright star is

motivated by the need to measure the correlation in a reasonable time using telescopes

with a small collecting area. The measurements were performed using two different

sets of filters: an Hα filter plus a x10 neutral density filter (ND1) with a narrow band

interferometric filter to calibrate the response of the system and to measure the actual

correlation.

The experiment [12] successfully detected the temporal correlation of Vega at zero

baseline and performed a measurement of the correlation on a projected baseline of

∼ 2km. The computed average discrete degree of coherence at zero baseline for Vega

is
〈

g2
〉

= 1.0034 ± 0.0008, providing a detection with a signal-to-noise ratio (SNR) of

4. The measurements and the SNR are consistent with the expected degree of spatial

coherence for a source with the 3.3 mas angular diameter of Vega. Moreover, as shown

in Figure (2.3), no correlation is detected over the km baseline.

Fig. 2.3. Asiago II results: the two blue dots with their relative errors represent the measured

second order correlation function at the two different baselines [12].

2.3 ASTRI Mini-Array

This section is just a brief description of the ASTRI Mini-Array system, for more de-

tails, refer to [13].

The ASTRI Mini-Array is an international collaboration aimed at the deployment of

nine imaging atmospheric Cherenkov telescopes. The name ASTRI, meaning ªAs-

trofisica con Specchi a Tecnologia replicante Italianaº, comes from the technology

with which the mirrors are manufactured.

Even if devoted primarily to study γ-ray sources at very high energies, it will also give

the opportunity to perform measurements using the II technique. The nine telescope

configurations will give the opportunity to use 36 different baselines, between 100 and

700 meters, providing an angular resolution below 100 µas. This resolution will en-

able the possibility to reveal details on the surface and on the environment surrounding
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bright stars visible in the night sky 1.

Fig. 2.4. The first ASTRI telescope mounted at the Teide Observatory.

2.3.1 The ASTRI Stellar Intensity Interferometer (SI3) configuration

In contrast to the Narrabri interferometer, which worked in analog mode, the ASTRI

Mini-array SI3 will measure the second order correlation function by a post-process

analysis of the arrival times of photons, which will be stored in a suitable archiving

system. This approach has the advantage that the data reduction chain could be re-

peated several times, enabling the possibility of checking for systematics, tuning the

parameters of the analysis, optimizing the procedure, and increasing the accuracy of

the results. Moreover, working in photon counting, so at the limit of detection, allows

observing higher magnitude stars.

The instrument setup consists of:

• nine 4 meter diameter dual-mirrors telescopes;

• an interference filter for each telescope. The spectral band will be very narrow,

between 3 and 8 nm, centered at a desired wavelength in the B band;

• four square silicon photomultiplier (SiPM) sensors, in a 4-quadrant configura-

tion. SiPMs are single photon sensitive devices based on single photon avalanche

diodes (SPADs). Each SiPM is 3mm wide;

• a complex electronic train that time tags each incoming photon;

• a server to save and post-process the data.

1As Pedro Casaldaliga said ªo mundo Âe pequeno quando os motivos de encontro são grandesº. In-

deed, almost one year and a half ago, during my work at EIE, I had the privilege to work on the installa-

tion and tuning of the first ASTRI Mini-Array telescope. In Figure (2.4) its sunrise, kissed by the Canary

Sun, is represented.
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2.3.2 The instrument design

The main criteria in the SI3 design were to have an independent and compact instru-

ment, minimizing its size, weight, and interfaces, in order to not affect gamma-ray

observations.

The instrument is composed of three different modules:

• the focal plane module (FPM), containing the optics, the detectors, and the read-

out electronics.

• the front end electronics (FEE) module, which performs the signal conditioning

and detects the photons;

• the back end electronics (BEE) module, which adds the time tags to the detected

photons.

The FPM is positioned on the telescope focal plane, in front of the Cherenkov camera.

It will be deployed through a dedicated mechanical arm during the SI3 observations.

The optical design is based on a prefocal system, as shown in Figure (2.5).

Fig. 2.5. SI3 focal plane module optical design in the special case of measuring the zero

baseline correlation using one telescope [13]

The instrument is a catadioptric system composed of a spherical convex mirror (M3,

180 mm in diameter), two spherical lenses (L1, L2, 40 − 60 mm in diameter respec-

tively), and one interferometric filter (IF, 40 mm in diameter). As represented in the

above figure, the beam from the telescope secondary mirror is intercepted by M3 at

the ASTRI camera level before reaching the focus; is then collimated by L1, passes

through the interference filter, and finally is refocused by L2 onto the II focal plane,

where a four-quadrant SiPM is placed. The detectors have a spectral response range

from 270 nm to 900 nm, with peak sensitivity at 450 nm, and are cooled with a single

Peltier cell to maintain their temperature at a few degrees Celsius, reducing the dark

noise. The signal from the detectors is read by a commercial evaluation board and am-

plified with four broadband amplifiers.

Having four sensors, it is in principle possible to measure the zero cross correlation for

each individual telescope; but as it is not possible to accurately predict the crosstalk

noise among the sensors, one telescope of the ASTRI Mini-Array will host a slightly

modified camera. The latter contains, in addition to the catadioptric system, a cubic

beam splitter to split the light beam into two channels, providing the zero baseline

measurement. In addition, the four detectors will allow an alignment control of the in-

strumentation during measurements, considering that a well centered target will have
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similar count rates in all the detectors.

The FEE module is located on the telescope mast. In this module, the signal is input

to two high speed comparators (with ∼ 300 ps response time) which generate Positive

Emitter Coupled Logic (PECL) digital pulses. These pulses are then sent to the BEE

module. For a more detailed description of the FEE module and its components refer to

[14].

In the BEE module, the electronics tag the detected photons with the required timing

accuracy (<< 1 ns) at a rate up to 100 Mct/s. The data stream is then transferred to the

Array Data Acquisition System (ADAS) for on-site acquisition and storage. The core

of the BEE is a fast Time-to-Digital-Converter board, mounted on an Industrial PC and

disciplined with a Pulse-Per-Second and a 10 MHz reference signal from a Time Distri-

bution Unit (TDU). The reference and PPS signals are used to reconstruct the absolute

time in the post-processing algorithm. The system will acquire ∼ 100 TB of raw data

each month that will be transferred and analyzed off-site before the start of the follow-

ing observing run. Assuming an average data transfer rate of ∼ 125 MB/s, all the data

are transferred in ∼ 10 days.

The raw data acquired by the BEE will be processed to produce reconstructed and cal-

ibrated event lists using the time reference signals from the TDU. The obtained final

photon time tags will all be referred to UTC and will have an accuracy below 1 ns.

After removing low quality data by filtering them through suitable quality checks, the

event lists are ready for scientific analysis. They are then segmented into chunks of size

adequate for being efficiently handled in the following steps. Then, coincidences are

searched for in the arrival times at different telescopes varying the time delay between

them. The entire procedure has already been developed and tested in the Asiago in-

tensity interferometry experiment [12], the only caveat will be to scale up the needed

hardware, given the large amount of data. What is expected from observing a bright star

like Spica for around 18 hours is represented in Figure (2.6).

Fig. 2.6. Spica observed with SI3 simulation. The orange points represent the simulated mea-

sured second order correlation function for each of the 36 ASTRI Mini-array baselines.

The final goal will be to perform image reconstruction of bright stars using ASTRI SI3

data.
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2.3.3 The scientific targets

The possibility to measure the angular shape of stars with a resolution of 100 µas on

multiple baselines will enable the study of many different aspects of stars, extending in

the visible band what today can be done in the near Infrared (IR) band using telescopes

such as CHARA, VLTI, and others [15].

Imaging with this resolution allows, for example, the detection of surface features such

as dark or bright spots, revealing the possible asymmetry in the surface brightness dis-

tribution of the star, and measuring the oblateness of high speed rotating stars. Further-

more, observing the stars’ circumstellar discs will reveal details of the disc structure,

its density gradients, and scale height, essential data to understand how these systems

evolve and dynamically interact. In this context, the ASTRI Mini-array operated in stel-

lar intensity interferometry mode will give an an extraordinary set of data regarding the

brightest nearby stars and their environments. Hence, the optimal targets would be stars

with high brightness temperature, with a significant photon flux, and structures small

enough to produce coherence over long baselines. O-thorough-G type stars of adequate

brightness are all suitable and potential targets, which makes the B band, between 420

nm and 500 nm, the appropriate working wavelength window.
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The ASTRI SI3 simulator

To simulate the Astri Mini-array SI3 observational performance a dedicated software

has been developed by Dr. Michele Fiori. The software, totally written in python,

simulates the entire observation process, from data acquisition to its post-processing.

At the moment it is possible to simulate a uniform disk source only, but in the future,

it is foreseen the possibility to simulate different source irradiance profiles. The aim

of this thesis was to add a module for modeling, simulating, and fitting SI3 data in the

case of observations of binary systems, in order to assess the capabilities of ASTRI to

study such systems. To this purpose, initially, a 1-dimensional (1D) model has been

developed, to assess which binaries were well identifiable given the characteristics of

the array. Once the best binary systems have been identified, a 2-dimensional (2D)

model was developed to assess their actual observabilities. In the following section, the

software architecture is described.

3.1 The software architecture

The software architecture can be subdivided into the following blocks:

• the environmental block, where all the environmental variables are computed for

each pair of telescopes;

• the correlation function block, where the theoretical and simulated correlation

functions are computed;

• the fit block, where the correlation function is fitted to a model and the target star

parameters are obtained.

In Figure (3.1) it is represented the software architecture.

Fig. 3.1. Model block diagram. Each blue square corresponds to a dedicated function block,

that runs specific functions.

In the following subsections, each block will be explained in more detail.

3.1.1 The environmental block

This block computes all the variables that depend on the environment at the time of

the measurement. All the environmental variables are computed with respect to the

foreseen ASTRI Mini-array location, as represented in Figure (3.2).

The telescopes are being built at the Izaña observatory, near the Teide volcano, in Tener-

ife island, ESP. The telescopes coordinates are reported in Table (3.1).

15
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Fig. 3.2. ASTRI Mini-array telescopes location. the red dots represent the nine telescopes

[16].

Telescope no. Latitude Longitude Height[m]

1 28◦18′03.69′′ −16◦30′28.69′′ 2359

2 28◦18′02.43′′ −16◦30′23.78′′ 2348

3 28◦18′08.52′′ −16◦30′29.82′′ 2364

4 28◦18′08.31′′ −16◦30′23.90′′ 2356

5 28◦18′08.73′′ −16◦30′17.63′′ 2358

6 28◦18′14.92′′ −16◦30′24.88′′ 2351

7 28◦18′15.56′′ −16◦30′18.56′′ 2342

8 28◦17′57.45′′ −16◦30′31.34′′ 2376

9 28◦18′02.75′′ −16◦30′33.98′′ 2359

Table 3.1: ASTRI Mini-array telescopes coordinates [16]
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The environmental variables are:

• the baselines and the time delays;

• the target altitude and azimuth and expected count rates;

• the Moon altitude and azimuth and expected count rates;

• the night sky background (NSB) count rates.

This block can be divided into the functions computeBaselines, checkObservability,

computeAltAz, computeCountRates, and simulateOrbit. Its workflow is represented in

Fig. (3.3).

Fig. 3.3. Environmental block workflow. First, the user selects the target, then the block se-

quentially executes the functions highlighted by the rectangles. The last function, simulateOr-

bit is only executed in the case of a binary system.

In the following sections, each of these functions is described.

computeBaselines function

This function computes the 36 different baselines and the respective time delays of the

ASTRI mini-array SI3. First, the various telescope locations are transformed into the

International Terrestrial Reference System using the astropy function EarthLocation().

Then, the distance between each pair of telescopes is measured simply as:

di j =

√

(xi − x j)2 + (yi − y j)2 + (zi − z j)2 . (3.1)

The distance along the line of sight can be computed with the following equation:

δi j = (xi − x j)sin(α)sin(γ) + (yi − y j)sin(α)cos(γ) + (zi − z j)cos(α) , (3.2)

where α and γ are the target star zenith and azimuth angles respectively. The delay

time is:

dτi j = δi jnair/c , (3.3)
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where nair is the air index of refraction, considered equal to 1.000293.

Finally, the baselines are:

bi j =

√

d2
i j
− δ2

i j
. (3.4)

Baseline computation is fundamental for any kind of interferometer. This is the

vector connecting two telescopes. For an interferometer with N elements, there are

N(N − 1)/2 independent baselines.

checkObservability function

Considering that SII observations will only be carried out on full or near-full moon

nights, as Cherenkov observations with such a high NSB are not possible, to simulate

the data the software must first select the best nights during the year given the coor-

dinates of the source under investigation. To this end, the checkObservability function

checks the night of the year in which the source reaches its maximum altitude above the

horizon and then looks for the nearest full Moon night. The function must then check if

the Moon is at angular distances greater than 40 degrees from the target. This is needed

because for smaller values the noise will be too high to perform the SII observation, as

can be seen from Figure 3.4 [17] (during the full moon nights for distances from the

target of less than 40-50 degrees the NSB will be much more than 20 times larger than

the NSB of a moonless night). In the case of angular distances less than 40 degrees,

the software thus discards the night and re-runs this check for subsequent (or previous)

full moon periods until this condition is satisfied. As a final output checkObservability

returns the dates of the 3 nights in which the observations could be performed.

Fig. 3.4. NSB for nights around full moon [17]. The black line represents the ratio between

the NSB with the Moon in different phases and the dark NSB in function of the angular dis-

tance to the Moon. The colored dotted line represents particular NSB levels (12, 20, and 100

times the dark NSB).

computeAltAz function

This function computes the altitude and azimuth coordinates of a celestial body. Given

the time of the observations, the astropy AltAz() function from SkyCoord() converts the
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Right Ascension (RA) and Declination (DEC) in altitude and azimuth.

computeCountRates function

This function computes the count rates of the target star background, with and without

the Moon. These are obtained by first importing the star spectra according to the star

type from the database developed by [18]. Then, the photon flux is computed as:

Φ = 10−0.4mBJ0dν , (3.5)

where :

• m is the star magnitude;

• B is a conversion constant, from Jy to 1/(m2s);

• J0 is the zero point flux density in the V band, equal to 3640 Jy;

• dν is the filter bandwidth, considered equal to 3 nm;

Then, a tophat transmission filter is applied to the photon flux, obtaining the effective

star photon rate Φ in counts/(cm2s). Finally, the count rates are estimates using the

following equation:

ct = ΦATQT f ilter , (3.6)

where :

• A is the effective area of each telescope, equal to 7m2;

• T is the optical transmission, equal to 0.5 (this includes the reflectivity of the 3

mirrors and the focusing optics, 0.85x0.85x0.85x0.8 ∼ 0.5);

• Q is the quantum efficiency of the detector, equal to 0.5@440nm;

• T f ilter is the filter transmission at full width half maximum (FWHM), equal to

0.35.

Moreover, this function computes also the NSB count rate, needed to simulate the in-

duced noise.

The NBS countrate is computed following the just explained procedure, but considering

for simplicity a flat sky background spectrum with a magnitude in the V-band of ∼ 21.5

per squared arcsecond (mag/arcsec2) [24] and a detector size of 600ºx600º. This value

is indeed an overestimation of the possible NSB level at the site.

Other kind of noises, such as scintillations, Cherenkov effects, and other noises, have

not been considered. Indeed, as explained in [7], II technique is almost insensitive to

them.

simulateOrbit function

This function is used only for computing particular parameters when simulating binary

systems. In fact, it calculates the angular separation ρ and the position angle PA given

the orbital parameters of a binary system and the time of the observation.

This is done by following the procedure described by [25]. First, the eccentric anomaly,

E, is computed using the function:

E − esinE =
2π(t − T )

P
, (3.7)
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where e is the eccentricity, t is the observation time, in Julian date, T is the periastron

epoch, in Julian date, and P is the orbit period, in days. Equation (3.7) can be solved by

using an iterative method. Once done this, the true anomaly, ν, can be computed using

the following equation:

tan(ν/2) =

√

1 + e

1 − e
tan(E/2) . (3.8)

Then, the radius vector, r, is defined as:

r =
a
(

1 − e2
)

1 + ecosν
. (3.9)

Finally, the angular separation and the position angle can be respectively computed

using the following equations:

tan(PA −Ω) = tan(ν + ω)cosi , (3.10)

ρ = r
cos(ν + ω)

cos(PA −Ω)
, (3.11)

where:

• i is the orbit inclination;

• ω is the periastron argument;

• Ω is the longitude of the node.

For example, considering the orbital parameters of HD 37742 (see Table (4.3)), the

apparent orbit for an entire period starting from 25/10/2023 is represented in Figure

(3.5).

Fig. 3.5. HD 37742 apparent orbit. This represents the motion of the secondary star around

the primary one.
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3.1.2 The correlation function block

This block computes the theoretical and simulated correlation functions. The block can

be divided into the following functions:

• computeVisibility;

• simulateVisibility;

• compute2DVisibility;

• computeUVTracks.

The block workflow is represented in Figure (3.6).

Fig. 3.6. Correlation function block. This figure shows the two workflows of the block. The

lower one is run in the case of a binary system.

In the following subsections, the single functions are described.

computeVisibility function

This function computes the visibility function given a certain model for the selected tar-

get. This can be a uniform disk or a binary system. The equations have been developed

referring to [19].

The visibility, µ, is related to the brightness distribution by the Van Cittert - Zernike

theorem, as described in equation (1.26). Hence, for a circular uniform disk source, the

visibility can be written in polar coordinates as:

µ(r, ϕ) =

∫ 2π

0

∫ ∞

0

I(ρ, θ)exp(−2πi(ρrcos(θ − ϕ))ρdρdθ , (3.12)

where ρ and θ represent the polar coordinates in the object plane, while r and ϕ

represent the polar coordinates in the (u, v) plane, where u and v are spatial frequencies,

or the conjugated coordinates of the spatial coordinates in the image plane. They can

be computed as:



22 Chapter 3

ρ =

√

α2 + β2 , (3.13)

θ = tan−1
(

β

α

)

, (3.14)

r =
√

u2 + v2 , (3.15)

ϕ = tan−1
(

v

u

)

. (3.16)

where (α, β) represents the angular coordinates on the sky, and (u, v) represents the

corresponding spatial frequencies.

Equation (3.12) can be written as:

µ(r) = 2π

∫ ∞

0

I(ρ)J0(2πρr)ρdρ , (3.17)

where J0 is the zeroth-order Bessel function of the first kind. By representing the

uniform disk source as:

I(ρ) =

{

4/(πθ2) ρ ≤ θ/2
0 ρ > θ/2

, (3.18)

and substituting it in equation (3.17), the normalized visibility is:

V(u, v) = 2
J1(πθr)

πθr
, (3.19)

where J1 is the first order Bessel function of the first kind.

In an intensity interferometer, it is measured the second order correlation function,

hence, the squared visibility is equal to:

|V(u, v)|2 =
(

2
J1(πθr)

πθr

)2

. (3.20)

In the uniform disk case, the PA has not been considered, being a model with radial

symmetry.

For example, considering a uniform disk with an angular diameter of 0.5 mas the ob-

tained visibility is represented in Figure (3.7).

In the case of a system with multiple bodies, the total brightness distribution can be

expressed as:

I(α, β) =

n
∑

j=1

I j(α, β)δ(α − α j, β − β j) , (3.21)

where α j and β j represent the angular coordinates on the sky of the j-th body.

Then, the visibility is:

µ(u, v) =

n
∑

j=1

F jV(u, v)exp(2πi(uα j + vβ j)) , (3.22)

and the normalized squared visibility is:

|V(u, v)|2 =
∑n

j=1 F jV(u, v)exp(2πi(uα j + vβ j))
∑n

j=1 F j

. (3.23)

In the specific case of a binary system, considering that both stars have finite size,

the squared visibility can be written as:
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Fig. 3.7. Ideal uniform disk squared visibility. This plot represents the second order correla-

tion function for different baselines.

|V(u, v)|2 =
V2

1
+ f 2V2

2
+ 2 f |V1||V2|cos(2π/λBρ)

(1 + f )2
. (3.24)

where:

• Vi is the visibility of the i-th star, computed with equation (3.19);

• f is the flux ratio between the two bodies,

• B is the baseline vector, computed as:

|B| = λ
√

u2 + v2 ; (3.25)

• ρ is the separation vector, expressed as:

|ρ| =
√

(α1 − α2)2 + (β1 − β2)2 , (3.26)

where (α1, β1) and (α2, β2) are the bodies angular coordinates.

Expanding the product Bρ as:

Bρ =

(

u

v

) (

α

β

)

= u|ρ|sin(PA) + v|ρ|cos(PA) = |B||ρ|(cosϕsin(PA) + sinϕcos(PA)) ,

(3.27)

where ϕ is defined in equation (3.16) and PA is the position angle, the visibility can

be written:

|V(u, v)|2 =
V2

1
+ f 2V2

2
+ 2 f |V1||V2|cos(2π(u|ρ|sin(PA) + v|ρ|cos(PA)/λ))

(1 + f )2
. (3.28)

Figure (3.8) represents the ideal squared visibility of a binary system with the following

parameters:
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• angular diameters equal to 0.5 mas;

• flux ratio equal to 0.1;

• perpendicular to the baseline;

• angular separation of 3 mas;

• λ equal to 440 nm.

Fig. 3.8. Ideal binary system squared visibility. It can be seen immediately how, compared to

the case of a uniform disc case, represented in Figure (3.7), the presence of a secondary body

induces fluctuations in the second order correlation function.

simulateVisibility function

To simulate realistic visibility data we should define somehow the response of the in-

strument and determine the expected uncertainties. It is possible to do it starting from

the theoretical expression of the SNR, as computed by HBT [7]:

S NR =

√
η1η2τc

√
T/2dt|γ12|2

(1 + α)
, (3.29)

where:

• η1 and η2 are the photon count rates on the two detectors. These depend on the

target magnitude, the target declination, the atmosphere transmittance, and the

detectors’ response;

• T is the integration time;

• dt is the sampling tim, in the case of SI3 it would be of the order of ∼ 1ns;

• |γ12|2 is the second order correlation function. This depends on the model and on

the baseline between the two detectors;
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• α is defined as:

α =

√
ηbkg,1ηbkg,2
√
η1η2

, (3.30)

where ηbkg,i are the background count rate on the two detectors. Essentially, α

depends on the target distance from the Moon;

• τc is the coherence time and can be defined as:

τc = λ
2/∆λc , (3.31)

where λ is the filter central wavelength, ∆λ is the bandwidth of the filter in the

system, and c is the speed of light.

Knowing the expected value of each measurement (from |γ12|2) and the associated un-

certainty given a certain observing time from the theoretical formula of the SNR, it is

possible to generate the simulated data following a Gaussian distribution. The distribu-

tion will have mean and standard deviation given by:

µG =
1

2
|γ12|2

τc

dt
; (3.32)

σG = µG/S NR , (3.33)

considering that S NR = µG/σG.

compute2DVisibility function

This function computes the ideal squared visibility of the target system on a 2D plane.

This is done similarly as in the 1D case. However, in this case, the baselines are simply

the points in the (u,v) plane.

Figure (3.9) represents the 2D squared visibility of HD 144217 considering a position

angle equal to 75◦, and a separation angle of 1.42 mas.

computeUVTracks function

This function computes the (u, v) tracks of the target for each baseline. These represent

the spatial frequency sampling due to the Earth rotation. Following [20], the baseline

vector B can be defined as:

B = λ

(

u

v

)

, (3.34)

but this can also been written as:

B

λ
=

(

−sin(l)sin(h) cos(h) cos(l)sin(h)

sin(l)cos(h)sin(δ) + cos(l)cos(δ) sin(h)sin(δ) −cos(l)cos(h)sin(δ) + sin(l)cos(δ)

)





















∆xi j

∆yi j

∆zi j





















,

(3.35)

where:

• l is the site latitude;

• h is the target hour angle;

• δ is the target declination;



26 Chapter 3

Fig. 3.9. HD 144217 2D squared visibility. In the figure, it is clearly visible the inclination

due to the PA and the fluctuations in the squared visibility due to the presence of the secondary

star.

• ∆xi j is the difference toward the North between the i-th and j-th telescope;

• ∆yi j is the difference toward the East between the i-th and j-th telescope;

• ∆zi j is the difference toward the Meridian between the i-th and j-th telescope.

Hence, by means of equations (3.34) and (3.35) it is possible to write:

uλ = (−sin(l)sin(h)∆x + cos(h)∆y + cos(l)sin(h)∆z) , (3.36)

vλ = [(sin(l)cos(h)sin(δ) + cos(l)cos(δ))∆x+

+sin(h)sin(δ)∆y + (−cos(l)cos(h)sin(δ) + sin(l)cos(δ))∆z] .
(3.37)

The just obtained equations are used to compute the (u, v) tracks given the hour angle,

the target declination, and the site latitude (l = 28.301◦).
An example of (u,v) tracks computed considering a target declination of -20◦ observed

with the 9 ASTRI Mini-array telescopes for 8 hours is shown in Figure (3.10).

Once computed the (u, v) tracks and the 2D squared visibility the actual visibility mea-

sured over time from each baseline can be obtained. This is done by using the values of

the (u, v) tracks as input to equation (3.28).

Considering the binary system HD 144217 at a declination of −20◦, the squared visibil-

ity measured by observing with the baseline between the first and the second telescope,

considering 8 hours of observation, is represented in Figure (3.11).

The corresponding observed squared visibility as a function of the hour angle (and thus

of the observing time) is shown in Figure (3.12).

Finally, the obtained data to be fitted are the simulated observations along the 36 base-

lines, are represented in Figure (3.12).
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Fig. 3.10. ASTRI Mini-array (u, v) tracks for a −20◦ declination target. The different colored

lines represent the (u, v) track for each couple of telescopes.

Fig. 3.11. The white line represents the (u,v) track for a binary system at a dec −20◦ observed

with ASTRI 1 and 2 for 8 hours, overlaid to the binary system squared visibility model.
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Fig. 3.12. 1st baseline measured squared visibility. This represents the squared visibility mea-

sured by the ASTRI 1 and 2 telescopes for a 8 hours observation time.

Fig. 3.13. Baselines HD 144217 simulated observations. The red dots and their relative er-

rors represent the observations, while the blue lines represent the ideal correlation.



3.1. THE SOFTWARE ARCHITECTURE 29

3.1.3 The fit block

These data are fitted by means of a single function, called fitData. This is represented

in Figure (3.14).

Fig. 3.14. Fit block. This is composed by only one function.

Initially, the Linear Least Squares (LLS) method was used to fit the data simulated

with the uniform disk model, but for the binary system this method is not suitable, so

a different method has been added to the software. The selected method is a Markov

Chain Monte Carlo (MCMC) algorithm as implemented in python by the package emcee

[22]. This method is based on the likelihood function optimization. The likelihood

function, the probability of a dataset given the model parameters, can be written as

[23]:

ln p = −1

2

∑

n

[

(

|Vn(u, v)|2 − |V(u, v)|2)2
)

σ2
n

+ ln
(

2πσ2
n

)

]

, (3.38)

where |Vn(u, v)|2 are the simulated data and |V(u, v)|2 the fitting model, while σ2
n are

the error associated to each simulated measurement.

Not intending to be a comprehensive explanation of how an MCMC works, the algo-

rithm implemented by the emcee package is explained in more detail in Appendix C.

An example of the fit for a single observation is represented in Figure (3.15).

In the fitting procedure of the angular diameters of the two stars in a binary model, it

is taken into account that these measurements are made every few hours. This results

in multiple measurements of the diameters, together with the relative positions of the

stars, as will be seen in the next chapter. The final angular diameters are then obtained

with a weighted average of the fitted diameters using the following equation:

x =

∑n
i=1(xiwi)
∑n

i=1 wi

, (3.39)

where wi are the weights, computed as the reciprocal of the variance:

wi =
1

σ2
1

, (3.40)

while its error is computed as:

σx =

√

1
∑n

i=1 wi

. (3.41)

Figure (3.16) represents the parameters covariance of a single three hours observa-

tion fit.
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Fig. 3.15. Single observation fit. The orange dots represent the fitted points, while the blue

line represents the ideal correlation. In the upper legend, the ideal and the fitted results are

reported.

Fig. 3.16. Parameters covariance for a three hours observation. Each one- and two-

dimensional projection of the sample represents the covariances of the fitted parameters.
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While the fitted positions on the sky for the secondary component (the primary is con-

sidered to be fixed at x = 0 and y = 0) can be expressed as:

x = ρsin(PA) ; (3.42)

y = ρcos(PA) , (3.43)

and their relative errors are computed following the error propagation formula as::

σx =

√

|sin(PA)|σ2
ρ + |ρcos(PA)|σ2

PA
; (3.44)

σy =

√

|cos(PA)|σ2
ρ + |ρsin(PA)|σ2

PA
, (3.45)

where σPA and σρ are the errors extracted from the fitting procedure on the position

angle and on the angular separation respectively. When propagating the errors, the

covariance terms between ρ and PA have been considered negligible since only a very

small correlation is found between these two parameters.
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Results

In this chapter, the results from the simulations made with the software described in the

previous chapter, are presented and commented on.

In the first section, a brief analysis of the simulations performed with the uniform disk

model will be presented in order to understand which characteristics are most suitable

for a star that can be studied with the ASTRI Mini-Array. In the second section, the

simulations carried out with the binary system model will be analyzed, taking various

systems into consideration and evaluating which of them are suitable for more in-depth

studies.

4.1 Uniform disk simulation

As a first analysis, the capabilities of ASTRI Mini-array in characterizing ideal stars

(i.e. with a uniform irradiance and a radial symmetry) under varying parameters were

studied.

The parameters to be varied are the angular diameters and fluxes of some ideal stars. In

this way, we can map the parameter space and find the optimal ranges within which the

Mini-array can work.

To do so, however, a number of other parameters must be fixed so that a meaningful

comparison can be made. The fixed parameters are:

• the zenith angle equal to 60◦;

• the azimuth angle equal to 30◦;

• the central wavelength equal to 440 nm with a bandwidth of 3 nm;

• a sampling time of 1 ns;

• a total observing time of 8 hours.

These analyses did not have the objective of defining the tolerances and observability

limits of the system. However, they can be useful for understanding the main measure-

ment dependencies.

4.1.1 Variable diameters

This analysis considers as a reference a B0 type star with a fixed magnitude of 2. The

following angular diameters were analyzed: 0.1 mas, 0.5 mas, 1 mas, 3 mas, and 10

mas. The NSB is computed as explained in the computeCountRates() function section.

By looking at equation (3.19), it is expected that the resulting visibility spreading would

decrease as the diameter increases. Given the average baselines of the ASTRI Mini-

array (between 100 and 700 meters), it is clear that the best performances can be ob-

tained for quite small targets (below 500 mas) as can be seen from Figure (4.1).

Therefore, to get an estimate of the performance of the LLS fit implemented in the soft-

ware, as the angular diameter varies, a Markov Chain Monte Carlo (MCMC) analysis is

carried out with 1000 samples (for each angular diameter studied). The results obtained

are then fitted with a Gaussian curve to extract the average value and the standard de-

viation. As an example, in Figure (4.2) the results of the analysis for a diameter of 0.5

mas are represented.

33
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Fig. 4.1. Ideal uniform disks squared visibility with variable angular diameter. As the diame-

ter increases, squared visibility narrows.

Fig. 4.2. MC results fitting a 0.5 mas uniform disk. The dotted red line represents the Gaus-

sian fit, while the blue histogram represents the LLS fit results.
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The final error can be computed as:

ϵ =
|x − µ|

x
, (4.1)

where x is the simulated diameter, and µ is the fitted diameter measured from the

Gaussian distribution.

The fit performance is reported in Table (4.1).

Secondary diameter [mas] Relative error [%]

0.1 0.1

0.5 0.1

1 21.5

3 17.8

10 66.8

Table 4.1: Fit performance for variable diameters.

For diameters larger than ∼500 mas, the visibility becomes much narrower and the

baselines will only cover the part of the visibility that is almost constantly zero, making

it more difficult to fit the diameter of the stars.

4.1.2 Variable star fluxes

The same procedure was followed in analyzing a variable magnitude. This was simu-

lated by varying the star magnitude and spectral type while keeping the angular diameter

fixed, which was set equal to 0.5 mas. The following magnitude values were simulated:

• A1 type star, with magnitude equal to −1.46;

• B1 type star, with magnitude equal to 0.97;

• B8 type star, with magnitude equal to 2.06;

• M5 type star, with magnitude equal to 3.06;

• K3 type star, with magnitude equal to 4.

By looking at equation (3.29), the SNR is expected to increase with increasing photon

flux, while the correlation function does not change. Finally, the performance of the fit

is represented in Table (4.2).

As expected, the accuracy of the fit decreases with increasing magnitude. A more de-

tailed study on how performance changes as parameters vary in the two-telescope sce-

nario can be found in [26].

4.2 Binary system preliminary simulations

As in the case of a uniform disk source, at the beginning of the analysis, the visibility

dependence on various parameters was investigated. In this way, it is possible to under-

stand how the visibility curve changes changing these parameters: the angular diameters

of the stars in the binary system, the flux ratio between the two stars, the position angle

at the time of the observation, and the angular separation at the time of the observation.

Instead, the following parameters are assumed constant:
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Star magnitude Relative error [%]

-1.46 0.1

0.97 0.1

2.06 4.7

3.06 59.5

4 68.1

Table 4.2: Fit performance for variable fluxes.

• the zenith angle equal to 60◦;

• the azimuth angle equal to 30◦;

• the central wavelength equal to 440 nm with a bandwidth of 3 nm;

• a sampling time of 1 ns;

• a B0 type star with magnitude equal to 2;

• an observing time of 8 hours.

The NSB is computed as explained in the computeCountRates() function section.

It was chosen to keep the angular diameter of the primary fixed as we are interested in

understanding how the introduction of a companion star perturbs the squared visibility

of the main body. Furthermore, considering the diameter of the primary star as the

largest, the effect of the secondary body, as will be seen in the following analysis, is a

modulation of the visibility of the primary body alone.

4.2.1 Variable diameters

This analysis makes varying the secondary diameter, assuming the following values:

0.10 mas, 0.82 mas, 1.55 mas, 2.27 mas, and 3.00 mas.

Instead, the following values were assumed to be constant: primary diameter: PA equal

to 90◦, flux ratio equal to 0.1, ϕ equal to 0◦, and ρ equal to 3 mas.

The obtained squared visibilities are shown in Figure (4.3).

4.2.2 Variable flux ratio

This analysis makes varying the flux ratio, assuming the following values: 0.0100,

0.2575, 0.5050, 0.7525, and 1.0000.

Instead, the following values were maintained constant: secondary diameter equal to

0.5 mas, PA equal to 90◦, ϕ equal to 0◦, and ρ equal to 3 mas.

The obtained squared visibilities are represented in Figure (4.4).

4.2.3 Variable position angle

This analysis makes varying the position angle, assuming the following values: 0.0◦,
22.5◦, 45.0◦, 67.5◦, and 90.0◦.
Instead, the following values were maintained constant: secondary diameter equal to

0.5 mas, flux ratio equal 0.1, ϕ equal to 0◦, and ρ equal to 3 mas.

The obtained squared visibilities are represented in Figure (4.5).



4.2. BINARY SYSTEM PRELIMINARY SIMULATIONS 37

Fig. 4.3. Binary system squared visibility with variable secondary body diameter. The various

colored lines represent various binary system models with different secondary diameter val-

ues. The smaller the diameter of the secondary star, the larger the modulation remains even

at large baselines. For sufficiently large diameters of the secondary (much larger than the pri-

mary star), the modulation is instead only visible at the smallest baselines.

Fig. 4.4. Binary system squared visibility with variable flux ratio. The various colored lines

represent various binary system models with different flux ratio values. The larger the flux

ratio, the larger the squared visibility fluctuations. In all the cases, however, the visibility that

would be obtained from the primary body alone is modulated.
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Fig. 4.5. Binary system squared visibility with variable PA. The various colored lines rep-

resent various binary system models with different PA values. For a PA equal to the baseline

orientation ( PA = ϕ = 0◦[±180◦] ) the squared visibility is equivalent to that obtained

for a single star. In contrast, in the case of a PA perpendicular to the baseline orientation (

PA = ϕ = 90◦[±180◦]) the fluctuations reach maximum levels. For all the situations in be-

tween, the fluctuation tends to disappear as the PA tends to zero.

4.2.4 Variable angular separation

This analysis makes varying the angular separation, assuming the following values:

1.00 mas, 1.75 mas, 2.50 mas, 3.25 mas, and 4.00 mas.

Instead, the following values were maintained constant: secondary diameter equal to

0.5 mas, flux ratio equal to 0.1, PA equal to 90◦, and ϕ equal to 0◦.
The obtained squared visibilities are represented in Figure (4.6).

4.3 Selected binary systems

Through a search in the literature, a preselection was made of the potential binary sys-

tems that might have the right characteristics to be studied with the ASTRI Mini-array.

The main criteria used for the pre-selection of the binary system were the total bright-

ness of the systems (magnitude < 5) and the angular size of the main component (< 600

mas). The selected systems are: HD 37742, HD 144217, and HD 24912.

The flux ratio, when the two stars magnitude were found, has been computed using the

following equation [27]:

f = 2.512∆m , (4.2)

where ∆m is the two stars magnitude difference in the B band. In the case the

magnitude difference between the two bodies in the binary system is not known through

spectroscopic or photometric studies, an iterative approach can be used by varying the

flux ratio initial guess in the emcee fit until the result agrees with the orbital parameters

measured by spectroscopy. It is certainly a time-consuming and expensive method, but

it would allow the flux ratio between the two bodies to be measured.

In the following tables, the orbital parameters of the various systems are reported.
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Fig. 4.6. Binary system squared visibility with variable angular separation. The various col-

ored lines represent various binary system models with different angular separation values.

The larger the distance, the higher will be the frequency of the modulation, while the ampli-

tude of this modulation seems to be unaffected by this parameter. This also means that for very

large distances between the two stars, the frequency will be so high that it will actually not be

easy to measure.

4.3.1 HD 37742

HD 37742 is part of a triple star system called Alnitak. The system is located in the

constellation of Orion. In this thesis, the binary system consisting of ζ Ori Aa and ζ Ori

Ab was considered. ζ Ori Aa is a blue supergiant of spectral type O9.5Iab, while ζ Ori

Ab is a blue subgiant of spectral type B1IV [28].

Table (4.3) reports the orbital parameters of HD 37742.

4.3.2 HD 144217

HD 144217 is a component of the multiple star system named β Scorpii, located in the

southern zodiac constellation of Scorpius. At present, the system is thought to consist

of 6 stars. Of these we are interested in the binary system consisting of β Sco Aa and

β Sco Ab. These are the most massive members of the system, and their respective

spectral types are estimated to be B0.5 and B1.5 [31].

Table (4.4) reports the orbital parameters of HD 144217.

4.3.3 HD 24912

HD 24912, also called ζ Persei, is a star in the northern constellation of Perseus. HD

24912, according to [35], is classified as a lower luminosity B1 Ib supergiant star.

Table (4.5) reports the orbital parameters of HD 24912.

In this particular case, no data regarding the orbital parameters and the secondary star

diameter have been found. Following a conservative approach, a secondary diameter

of 0.15 mas was considered. Moreover, in [36], HD 24912 is considered as a runaway

star. According to [37] these kind of stars are usually single, so the literature results

can be due to a unspecified type of photospheric variability.
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HD 37742

Binary system WDS identifier J05407 − 0157Aa, Ab

Semimajor axis[29] 35.9 ± 0.2 mas

Eccentricity[29] 0.338 ± 0.004

Inclination[29] 139.3 ± 0.6◦

Angular diameters[30] 0.54 ± 0.01 mas - 0.45 ± 0.12

mas

B magnitudes[34] 1.797 − 3.553

Flux ratio 0.1984

Period [29] 2687.3 ± 7.0days

Longitude of the node [29] 83.8 ± 0.8◦

Periastron epoch [29] 2452734.2 ± 9.0 JD

Argument of periastron [29] 24.2 ± 1.2◦

Table 4.3: HD 37742 binary system parameters found in the literature.

HD 144217

Binary system WDS identifier J16054 − 1948AB

Semimajor axis[31] 1.42 ± 0.02 mas

Eccentricity[31] 0.291 ± 006

Inclination[31] 111.8 ± 0.7◦

Angular diameters[32] 0.422±0.026 mas - 0.264±0.019

mas

B magnitudes[34] 2.546 − 4.789

Flux ratio 0.1267

Period [33] 6.828245 days

Longitude of the node [33] 294.2 ± 0.8◦

Periastron epoch [33] 2449788.509 ± 0.019 JD

Argument of periastron [33] 54.8 ± 1.3◦

Table 4.4: HD 144217 binary system parameters found in the literature.
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HD 24912

Binary system WDS identifier J03590 + 3547AB

Semimajor axis[36] 2.4′′

Angular diameters[36] 0.216 ± 0.016 mas - ?

B magnitudes[34] 4.026 − 13.826

Flux ratio[36] 0.0001

Table 4.5: HD 24912 binary system parameters found in the literature.

4.3.4 Binary systems preliminary analysis

Investigating the orbital parameters of the various systems, HD 24912 is expected to

have a flux ratio too small to be distinguishable from a uniform disc. Furthermore, the

angular separation of HD 37742 is very high, causing large fluctuations in the squared

visibility. The values of HD 144217, on the other hand, seem to make it suitable to be

characterized by ASTRI. All these considerations are taken up in the next analyses.

In the next sections, the different systems squared visibilities were compared to a uni-

form disk squared visibility, to verify their actual difference from a simple one-body

model.

The following parameters were considered: PA equal to 90◦, and ϕ equal to 0◦.

HD 144217 Analysis

In Figure (4.7) it is represented the comparisons between HD 144217 squared visibility

in case of a binary system with the parameters reported in Table (4.4) and the following

uniform disk diameters: 0.4 mas, 0.5 mas, and 0.6 mas.

From the difference depicted in Figure (4.7) it is clear how the binary squared visibility

is well distinguishable against any kind of uniform disk.

Moreover, this system is quite close, around 300 mas, to another star whose magni-

tude is 5.856 [38], and whose angular diameter has not been found in the literature.

This has been considered equal to 0.21 mas. To quantify the extent to which this third

star can actually generate a measurable contribution, a 2D model of the sky brightness

distribution of the 3-stars system was implemented, and by directly applying the Van

Cittert-Zernike theorem, the squared visibility to compare with the simple binary sys-

tem case was obtained via a Fourier transform. The two obtained squared visibilities

are shown in Figure (4.8). The two models are practically indistinguishable, apart from

some minor differences that will not actually be measurable. This is basically due to

the fact that the flux of the third star is much smaller than the other components of the

system and justifies the simplification of considering only the two brightest components

in the subsequent analysis.

HD 37742 Analysis

In Figure (4.9) it is represented the comparisons between HD 37742 squared visibility

and the following uniform disk diameters: 0.6 mas, 0.7 mas, and 0.8 mas.

From the difference depicted in Figure (4.9) it is clear how the binary squared visibility

is well distinguishable against any kind of uniform disk. However, due to the wide

fluctuations in visibility, one would have expected a poor fit performance. This was

positively refuted in the following sections. In fact, the fluctuations decrease with the

PA.
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Fig. 4.7. HD 144217 squared visibility vs uniform disk squared visibilities. The upper figure

represents the squared visibilities for the various cases. The blue line represents the binary

system, while the other colors represent the uniform disk cases. The lower figure represents the

differences between the binary system squared visibility and the uniform disk ones.

Fig. 4.8. Fourier analysis on Beta Scorpii B disturbance. Two squared visibilities are rep-

resented, on the left the one obtained considering also the third star, and on the right the one

obtained without it.
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Fig. 4.9. HD 37742 squared visibility vs uniform disk squared visibilities. The upper figure

represents the squared visibilities for the various cases. The blue line represents the binary

system, while the other colors represent the uniform disk cases. The lower figure represents the

differences between the binary system squared visibility and the uniform disk ones.

Since ζ Ori B is about 3’ apart from the investigated binary system [28], it is expected

that this does not affect the binary system squared visibility, also considering the results

obtained when including the third component for HD 144217.

HD 24912 Analysis

In Figure (4.10) it is represented the comparisons between HD 24912 squared visibility

and the following uniform disk diameters: 0.2 mas, 0.22 mas, and 0.25 mas.

From the difference depicted in Figure (4.10) it is clear how the binary squared

visibility cannot be distinguished from a uniform disk. This is due to the low flux ratio

between the two stars.

4.4 HD 144217 characterization

Following the results shown in the previous sub-section, it was decided to proceed with

a more in-depth analysis of the binary system that gave the most promising results,

namely HD 144217.

Firstly, the best period for the observations was chosen following a slightly modified

procedure with respect to the one described in section 3.1.1 (to maximize the observing

hours the constraints on the full Moon were removed). The best period is shown in

Figure (4.11).

hence, 20/05/2025 is selected as the night of observation.

It was decided to simulate one observation every three hours, as the orbital period is

very short (only 6 days). Then, the ideal and simulated observations for the various

baselines along five consecutive observation nights are shown in Figure (4.12). These

were computed following the procedure described in section (3.1.3).
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Fig. 4.10. HD 24912 squared visibility vs uniform disk squared visibilities. The upper figure

represents the squared visibilities for the various cases. The blue line represents the binary

system, while the other colors represent the uniform disk cases. The lower figure represents the

differences between the binary system squared visibility and the uniform disk ones.

Fig. 4.11. Best observation night for HD 144217. It was decided the period in which the tar-

get binary system is higher in the sky. The red rectangle shows the best period of the year for

observing the system, while the red dotted line represents the selected night.
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Fig. 4.12. HD 144217 simulated observations. The blue lines represent the ideal correlation

measured by the 36 baselines, while the red dots, and the respective error bars, represent the

simulated observations.
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The fit has been performed only for four variables: the diameter of the two stars, the

position angle, and the angular separation.

In the case of the simulation represented in Figure (4.12) the fitted diameters are d1 =

0.422 ± 0.005 mas, and d2 = 0.242 ± 0.037 mas, while the real diameters are d1 =

0.422 ± 0.026 mas, and d2 = 0.264 ± 0.019 mas, well within the errors.

In Figure (4.13) the true orbit, computed as explained in the ªsimulateOrbit functionº

section, and the fitted positions with their relative errors are shown.

Fig. 4.13. HD 144217 fitted positions on the true orbit of the system. The blue line represents

the ideal orbit, computed using the binary system’s real parameters, while the crossed dots

represent the obtained points of the orbit using the fitted parameters.

The fit precision can be increased by observing for a longer time interval (for example it

would be possible to do one observation per night instead of two or three observations).

In Figure (4.14) are shown the fitted positions obtained with this procedure.

Fig. 4.14. HD 144217 fitted positions on the true orbit of the system for 6 hours observations.

The blue line represents the ideal orbit, computed using the binary system’s real parameters,

while the crossed dots represent the obtained points of the orbit using the fitted parameters.

The results look very promising, being capable of characterizing the target system with

the desired accuracy.



4.5. HD 37742 CHARACTERIZATION 47

4.5 HD 37742 characterization

Being able to characterize HD 144217, it is expected to be able to characterize HD

37742. However, being the period much longer, the observations should be in a larger

data frame. According to Figure (4.15), it was chosen as first night the 15/12/2025.

Fig. 4.15. Best observation night for HD 37742. It was decided the period in which the target

binary system is higher in the sky. The red rectangle shows the best period of the year for ob-

serving the system, while the red dotted line represents the selected night.

Then, as explained in the previous section, an observation every three hours for the

selected nights was simulated. The fitted positions are represented in Figure (4.16).

These results are also very good.

In the case of the simulation represented in Figure (4.16) the fitted diameters are d1 =

0.54±0.01 mas, and d2 = 0.45±0.03 mas, while the real diameters are d1 = 0.54±0.01

mas, and d2 = 0.45 ± 0.12 mas, well within the errors.
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Fig. 4.16. HD 37742 fitted positions on the true orbit of the system for 3 hours observations.

The blue line represents the ideal orbit, computed using the binary system’s real parameters,

while the crossed dots represent the obtained points of the orbit using the fitted parameters.
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Conclusions

In the first chapter of this thesis, the theory behind the physical phenomenon that led

to the development of II was investigated and presented. Its understanding was funda-

mental for the development of the model presented in this thesis and for interpreting the

results.

In the second chapter, a search in the scientific literature was conducted to see where

in the astronomical field the II technique has already been implemented, and its various

ways of use. This was really instructive, especially in seeing how research developed

70 years ago can now be revived and reused thanks to technological advances.

In the third chapter, the central work of this thesis is presented, which was the imple-

mentation and development of new theoretical models in a software dedicated to the

simulation and analysis of scientific targets of SI3, the instrument that will perform II

measurements for the ASTRI Mini-array. More precisely, the work carried out was to

introduce a model for the interpretation of interferometric data in the case of observa-

tions of binary systems. The final outcome is a very versatile software that allows the

simulation of a wide variety of cases, starting from the simple uniform disk model of a

single star to a much more complex model of a binary system.

Finally, in the fourth chapter, the results obtained from the application of the software

to several actual observable binary systems are presented. In particular, it is shown how

the ASTRI Mini-array system is capable of characterizing binary systems up to a visual

magnitude of ∼3 with great accuracy, providing a method capable of characterizing

such binary systems at wavelengths below 500 nm.

A possible further extension of the software would be to implement a fit that allows the

orbital parameters of the binary system to be derived directly from the position angles

and angular separations fitted from the observed squared visibility at different times,

as this is not yet possible. However, deriving these parameters from interferometric

measurements alone could be complicated. A possible solution could be to perform the

measurements at different wavelengths or to complement the interferometric data with

spectroscopic observations, as explained, for example, in [25]. Another possible future

development of the software would be to include a module for 2D reconstruction of the

images of the observed targets, starting directly from the correlation, without having

to use any analytical model. This could even be used as a kind of ’digital twin’ that

could be linked to the observations in real time to check that everything is working

correctly. In addition, the software developed can be easily extended to other arrays

of telescopes with more baselines or bigger dishes, or to include multichannel inter-

ferometric measurements (measurements taken at different wavelengths during a single

exposure). The latter implementation is particularly important as it would significantly

increase the SNR and allow the study of fainter targets [42].

In conclusion, these results are very encouraging, both in terms of the results that will

be possible to obtain as soon as the ASTRI Mini-array is operational and for future ap-

plications of the II.

Finally, it is clear from the analyses carried out in this thesis that the high angular res-

olution achievable with the ASTRI Mini-array will allow the study of various binary

systems in great detail. The interferometric data, which can be complemented by spec-

troscopic and photometric data, will provide essential information to determine with

great precision the fundamental parameters of the stars within these systems (such as

masses and radii) and to study their evolution in great detail.
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II analogical implementation

The setup used by Hanbury-Brown and Twiss (HBT) at the Narrabri observatory is

shown in Figure 2.1. This consists of two collector mirrors, two interference filters,

two photomultipliers, and a correlator. What was measured by HBT was therefore a

correlation between currents, as depicted in Figure 2.2.

From this measure, the star diameter can be retrieved by relating the obtained correlation

to the first order correlation function (i.e. the visibility) and then relating the visibility

with the brightness distribution. This is done using the Van Cittert - Zernike theorem,

described in equation (1.26).

Assume now that the signal currents S 1(t) and S 2(t) to be correlated are proportional to

the time averages of I1(t) and I2(t) taken over short time T . Then it is possible to write:

S 1(t) =
α1

T

∫ 1
2

T

− 1
2

T

I1(t + t′)dt′ , (A.1)

S 2(t) =
α2

T

∫ 1
2

T

− 1
2

T

I2(t + t′)dt′ , (A.2)

where the constants α1 and α2 relate the photo current to the incident light intensity,

representing the photocathodes photosensitivity. Then the unpolarized light correlation

between the current fluctuations is:

⟨∆S 1(t)∆S 2(t)⟩ = 1

2

⟨S 1⟩⟨S 2⟩
T 2

∫ ∫ 1
2

T

− 1
2

T

|γ12(t′ − t′′)|2dt′dt′′ , (A.3)

In the case the light spectrum is identical on the two detectors, the coherence func-

tion can be written as:

γ12(τ) = γ12(0)γ11(τ) . (A.4)

The integral of equation (A.3) can be expressed as a single integral, in the form:

∫ ∫ 1
2

T

− 1
2

T

|γ12(t′ − t′′)|2dt′dt′′ = 2

∫ T

0

(

T − t′
)

|γ11(t′)|2dt′ = Tξ(T ) , (A.5)

where ξ(T ) is equal to:

ξ(T ) =
2

T

∫ T

0

(

T − t′
)

∣

∣

∣γ11

(

t′
)

∣

∣

∣

2
dt′ . (A.6)

as stated in [4].

Substituting it in equation (A.3), the correlation becomes:

⟨∆S 1(t)∆S 2(t)⟩ = 1

2
⟨S 1⟩⟨S 2⟩[ξ(T )/T ]|γ12(0)|2 , (A.7)

In the case of a simple rectangular filter and assuming T ≫ 1/∆ν, ξ(T )/T can be

written as:

ξ(T )

T
= 2
∆ f

∆ν
, (A.8)
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where ∆ν is the optical bandwidth, and ∆ f ∼ 1/T represents the bandwidth of a low

pass filter with resolving time T .

Finally, it is now possible to write the equation (A.7) as:

⟨c(d)⟩ = ⟨∆S 1(t)∆S 2(t)⟩ = e2A2α2n2|γd(0)|2∆ν∆ f (A.9)

where ⟨c(d)⟩ is the correlation or time average of the multiplier output when the

detectors are spaced by a distance d, A is the area of each detector, n is the intensity of

the light in photons per unit optical bandwidth per unit area and unit time, and |γd(0)|
is the degree of coherence corresponding to τ = 0 and a baseline d. From the previous

equation, it is possible to see that the correlation observed at any given baseline d is

proportional to |γd(0)|2 the square of the modulus of the complex degree of coherence.

This is the equation with which Hanbury-Brown and Twiss measured more than thirty

stars diameter at Narrabri.



Appendix B

Momentum analysis

From the properties of the Poisson distribution, it is possible to identify the moment

generating function Mn(x) of the distribution of n as:

Mn(x) =
〈

exp[αE(ex − 1)]
〉

, (B.1)

where ⟨⟩ denotes the ensemble average over the random variable E. By representing

the moment generating function of the distribution of E as ME(x), equation (B.1) can

be written as:

Mn(x) = ME(αex − α) , (B.2)

from which it is possible to write:

Kn(x) = KE(αex − α) , (B.3)

or:

∞
∑

i=1

xi

i!
kni =

∞
∑

i=1

αi (ex − 1)

i!
kEi , (B.4)

where Kn(x) and KE(x) are the corresponding cumulant generating functions, and

kni and kEi are the cumulants of the distributions of n and E. By means of the cumulants

kEi found in [39], equation (B.4) allows to write the cumulants kni of the distribution of

n. It can be shown [40] that:

kn1 = αkE1 , (B.5)

kn2 = αkE1 + α
2kE2, ... , (B.6)

where:

kEi =



















⟨E⟩ = ⟨I⟩T i = 1

(i − 1)!⟨I⟩i
∫ ∫ 1

2
T

− 1
2

T
...

∫

γ11(t1 − t2)γ11(t2 − t3)...γ11(ti − t1)dt1dt2...dti i , 1
.

(B.7)

These cumulants define the counting distribution of n and are equivalent to an ex-

plicit expression for p(n,T ). Two limiting cases are of particular interest. If the mean

light intensity ⟨I⟩ is extremely low, all the terms kni tend to become small compared

with the first term αKE1 = α⟨I⟩T = ⟨n⟩. It follows that the cumulants of the counting

distribution p(n,T ) all tend to ⟨n⟩, which means that the distribution becomes Poisso-

nian. Thus, at very low beam intensities, the photons behave like classical particles in

their statistical properties. On the other hand, at high intensities, when α⟨I⟩ becomes

very great, the last term becomes dominant in each kni, so the distribution of n tends to

become identical with the distribution of αE.

Now, the variance
〈

∆n2
〉

of the counting distribution p(n,T ), is identical with the second

cumulant kn2, thus:

〈

∆n2
〉

= α⟨I⟩ + α2⟨I2⟩
∫ ∫ 1

2
T

− 1
2

T

|γ11(t1 − t2)|2 dt1dt2 = ⟨n⟩[1 + ⟨n⟩ξ(T )/T ] , (B.8)
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where:

⟨n⟩ = α⟨I⟩T , (B.9)

and

ξ(T )

T
=

1

T 2

∫ ∫ 1
2

T

− 1
2

T

|γ11(t1 − t2)|2dt1dt2 . (B.10)



Appendix C

The emcee package

This python package is based on the affine invariant ensemble sampler for Markov

Chain Monte Carlo (MCMC) proposed by [41]. This algorithm is informally called

the ªstretch moveº, and it significantly outperforms the standard Metropolis-Hastings

(M-H) methods.

This method simultaneously evolves an ensemble of K walkers, S = {Xk}, where the

proposal distribution for one walker k is based on the current positions of the K − 1

walkers in the complementary ensemble S [k] = {X j,∀ j , k}. To update the position of

a walker at position Xk, a walker X j is drawn randomly from the remaining walkers S [k]

and the new position proposed is:

Xk(t)→ Y = X j + Z[Xk(t) − X j] , (C.1)

where Z is a random variable drawn from a distribution g(Z = z). In the case g

satisfies:

g
(

z−1
)

= zg(z) , (C.2)

equation (C.1) is symmetric. In this case, the chain satisfies detailed balance if the

proposal is accepted with probability

q = min

(

1,ZN−1 p(Y)

p(Xk(t))

)

, (C.3)

where N is the dimension of the parameter space. This procedure is then repeated for

each walker in the ensemble in series.

The stretch move algorithm can be parallelized by splitting the full ensemble into two

subsets S (0) = {Xk,∀k = 1, ...,K/2} and S (1) = {Xk,∀k = K/2 + 1, ...,K} and simulta-

neously updating all the walkers in S (0) based only on the positions of the walkers in

the other set S (1). Then, using the new positions S (0), it is possible to update S (1). The

pseudocode for this procedure is shown in Algorithm 1.

Algorithm 1 Parallelized stretch move algorithm

1: for i ∈ {0, 1} do

2: for k = 1, ...,K/2 do

3: // This loop can now be done in parallel for all k

4: // Draw a walker X j at random from the complementary ensemble S (∼i)(t)

5: Xk ← S
(i)

k

6: z← Z ∼ g(z)

7: Y ← X j + z[Xk(t) − X j]

8: q← zn−1 p(Y)/p(Xk(t))

9: r ← R ∼ [0, 1]

10: if r ≤ q then

11: Xk(t + 1/2)← Y

12: else

13: Xk(t + 1/2)← Xk(t)

14: end if

15: end for

16: t ← t + 1/2

17: end for
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