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Introduction

Theoretical frameworks for axion-like particles address outstanding questions in the physics of
fundamental interactions. An astonishing experimental effort paves the way toward discoveries
that could lead to remarkable advancements in the understanding of both particle interactions
and the composition of our universe. Indeed the QCD axion provides an elegant solution to
two well-known drawbacks of the standard model (SM) of particle physics: the strong CP prob-
lem and the observed dark matter abundance.

The introductory part of this thesis will present the strong CP problem and how the Peccei-
Quinn mechanism provides a solution to these two open questions. The core of this work
will be to investigate a complementary manifestation of the axion on cosmological scales. In
particular, we will study an additional dark radiation component in the form of relativistic ax-
ions generated at high temperatures in the Early Universe, specifically around the ElectroWeak
Phase Transition (EWPT). Thermal production could lead to a potentially observable axion
contribution to the cosmic energy budget, conventionally parameterized by an effective num-
ber of additional neutrinos ( A ng).

The main goal of this thesis is to predict the axion contribution to A Nefr- We will consider the
relevant processes for the thermal production of axions and derive explicit expressions for cross-
sections. We will compute them above and below the EWPT and will connect the results across
this threshold. With these quantities then we feed the Boltzmann equations to derive A .
The last part of this research work involves the possibility of investigating the thermal produc-
tion of axion dark radiation in momentum space. More specifically, we will introduce a new
formalism based entirely on phase space analysis, presented in a model-independent way in [1].
We will apply this general formalism to axion dark radiation and outline the necessary steps
needed for a phase-space analysis. So we provide the frameworks for future works meant to ex-
tract more accurate predictions for Ay, Current observations align with the SM prediction
for A g yet upcoming experiments promise to refine bounds on this parameter and poten-
tially discover deviations from the SM. In this context, the implications of our findings could
be a significant step towards a more accurate prediction of the axion dark radiation impact
on the effective number of neutrinos. If detected, this contribution could help to validate the

axion’s role in the ongoing exploration of physics beyond the SM.



In Chapter 1, we present the Strong CP Problem, a fundamental issue in Quantum Chro-
modynamics (QCD), which is our model for strong interactions. The problem arises from a
contradiction between experimental results and theoretical expectations: the apparent viola-
tion of CP symmetry in the QCD Lagrangian, quantified by the & term, is not detected exper-
imentally, and one has to invoke a surprisingly small # parameter to account for experimental
bounds.

In Chapter 2, the axion is presented as a solution to this problem. The key ingredient is a new
scalar field, 4, introduced within an effective field theory (EFT) framework, characterised by a
suppressing energy scale £, which sets the limit to its validity. The low-energy behavior of the
axion potential drives the field to the CP-conserving minimum, effectively setting the & term
to zero, thereby dynamically solving the Strong CP Problem. We complete the discussion with
the main features of some candidate models in the search for an axion Quantum Field Theory
(QFT) that could serve as the high-energy completion of the axion effective Lagrangian.

Some cosmological implications of the axion are briefly explored in Chapter 3. In particular,
its production as a cold relic through the misalignment mechanism, which makes the axion a
viable dark matter candidate, is presented. Furthermore, axion interactions with thermal bath
particles can lead to a population of axions that, if the mass is small enough, can still be rela-
tivistic around recombination and contribute as an additional component to the radiation at
the stage of CMB formation—this is known as axion dark radiation.

Chapter 4 is devoted to exploring the thermal production of axions across the electroweak
phase transition (EWPT). Starting from the axion Lagrangian, we derive the necessary cou-
plings and collect the relevant scattering processes involving third-generation fermions (top and
bottom quarks). Explicit expressions for the cross sections both above and below the EWPT
are provided and analytically matched at this threshold.

In Chapter s we solve the Boltzmann equations for axion (comoving) number density using
the canonical approach. First, thermally averaged cross sections are evaluated both above and
below the EWPT and then smoothly connected. Then, the numerical solution is derived and
connected to AN,z The results are summed up in some plots showing AN, as a function of
the axion scale £, for top and bottom couplings.

The last chapter (6) is devoted to the perspective of a phase-space anlysis. We present the steps
to build an integro-differential system that allows tracking the phase-space distribution func-
tion’s evolution in an expanding Universe, while accounting for the feedback on the thermal
bath as well. This formalism, when adapted to the case of axion dark radiation, serves as the

foundation for a phase-space analysis aimed at providing a more detailed and accurate predic-



tion of axion production across the EWPT. In particular, we implement a code using Python
in order to numerically integrate the Boltzmann system. Given this, new preliminary results
for AN, are derived.

Finally this work is complemented by four appendices that have been useful for writing the
thesis and are meant to be a support in its reading. They cover different aspects: a brief sum-
mary on the Standard Model (A), detailed calculations for the scattering cross sections (B), the
derivation of the Boltzmann equation in the number density approach (C), and some hints of

the code that we employed to solve the phase-space evolution (D).






Strong CP Problem

The Standard Model of particle physics serves as a powerful tool for explaining experimental
observations, yet it is affected by the presence of some theoretical shortcomings related to the
appearance of small numbers, leading to ‘naturalness issues’. Among these challenges lies the
strong CP problem, which question the absence of significant violation of CP simmetry in
QCD despite theoretical expectations. The axion emerges as the most valued solution to such
inconsistency.

In the first paragraph 1.1 we present the QCD Lagrangian in its CP invariant form which is gen-
erally used to get experimental predictions. Then we sum up the topics of discrete symmetries
with the remarkable result of CPT theorem (1.1.1) and of global symmetries (1.1.2) in the SM.
In the second part 1.2 we introduce the two CP violating terms in the Lagrangian showing how
they can be related and reduced to the single ‘topological’ term, whose relevance is enlightened:
despite being initially considered negligible, its significance emerged through the discovery of
instanton solutions, that we briefly sketch in 1.2.1.

The most important observations supporting the existence of the strong CP problem is the re-
markably small neutron electric dipole moment (nEDM). This experimental result, that con-
straints the possible violation of CP symmetry within QCD, is shortly presented in the last

paragraph 1.2.2.



1.1 QCD LAGRANGIAN PART I

Quantum chromodynamics (QCD) is the theory of strong interactions. Its Lagrangian, in the

form that is usually engaged in the experimental sector, reads:

— (. 1 aly g va
Locp = Zq(z;/ﬂD" —my)q — ZG “G,, (1.1)
g

This expression is invariant under CP symmetry, reflecting what is empirically observed for
QCD. Before diving further in this aspect is useful to address the topic of discrete and global

symmetries in Particle Physics. The main reference for this partis [2].

1.1.1  DISCRETE SYMMETRIES

Let’s sketch how quantum fields behave under the discrete space-time transformations of parity,
i.e. space inversion ¥ — —%, time reversal # — —¢, and charge conjugation, which physically

corresponds to reversing the sign of all chargese — —e.

PARITY

From classical considerations' we recover the transformation properties of the electromagnetic
fields under the parity induced unitary operator, then we require scalar and pseudo-scalar fields
to be respectively even and odd under parity and, finally, the behavior of spinors can be deduced

requiring Dirac equation be invariant under it. We obtain:

U(P)AH(E, ) UP) ™ = () 4(—F, 1)
U(P)S(%,t)U(P) " = S(—X, ¢)
UP)P(Z,t)UP) ™" = —P(—X%,1)
UR)Y(x, )UP) ™ = y,p(—%,1)

with () = 1for x = 0 and »(x) = —1 otherwise. Given these, one deduces the transforma-
tion rules of fermion-antifermion bilinears and applies them to the currents in A.2.2. It turns

that the electro-weak sector is parity violating: electromagnetism is parity invariant while, since

L 2 dﬁ B N N N . . . .
The Lorentz force F = 7 = g(E 4 ¢ X B) has to change sign under parity transformation, since p — —p
as reversing the space coordinates.



parity exchange chiral fields, weak interactions are not. The strong interactions, however, are

invariant under Parity.

CHARGE CONJUGATION

Charge conjugation phisically sends the electric charge ¢ — —e, this coincides for the vector

potential to transform as:

U(C)4*(x)U(C) ™! = —4*(x)

Instead for Dirac fields, since charge conjugation should transform particles into antiparticles,

this operation essentially corresponds to Hermitian conjugation:
U(Ox)U(C) ™ = Cylx)!

where C is defined requiring invariance of Dirac equation by the condition Cy** C! = -,
and so depends on the form of the y matrices used: in the Majorana base C = 1, whereas in
the Dirac formalism C = }/2 Again, deriving the transformation of fermionic bilinears we
have that electromagnetic interactions are C-invariant. To guarantee invariance of the quark
gluon interaction terms, since SU(3) matrices A, get transposed in the bilinears, it is necessary
to assume that the charge conjugation properties of the gluon fields themselves vary according

to which component one is dealing with. We get:
U(C) A (x)U(C) ™" = —y(a)d;(x)

where 77(a) = 1 for the symmetric generators, (2) = —1 for the anti-symmetric ones. Finally,

the transformation properties of SU(2) matrices imply that

vC)ywi.uC)t = -k

:F

Nevertheless, even so, as it is experimentally verified, the simultaneous presence of vector and
Y
pseudo-vector parts in the weak interacting currents, which are affected by C in different ways,

drives us to conclude that they violate also charge conjugation.

TIME REVERSAL

Classically, temporal invariance means that the very same equations of motion describe both a

particle going from A to B along a path than from B to A, that is the time reversed motion. In



quantum mechanics, time reversal, and so effectively the interchange of incoming and outgoing
states, is implemented by an anti-unitary operator U(7) = V(7T)K, being V(7T) unitary while
K complex conjugates any number quantity it acts on*. The transformation property of the
electromagnetic field can be deduced again from the classical case, instead for spinor fields this
is derived by asking that the action of U(T) on (X, #) produce another solution of the Dirac

equation. We have:

U(T) A (%, ) U(T) ™ = y()d* (%, )
UT)y(E, ) UP) ™ = Ty(%, 1)

The form of the matrix 7 also depends on which representation is used as long as it satisfies
the conditions to get the invariance of the Dirac equation: 79T~ = »° and T/*T~! = ¥
In the Majorana base 7" = »°y°. Remembering that U(7) complex conjugates c-numbers,
transformation properties for fermion-antifermion bilinears appearing in SM currents can be
deduced. So one sees that both QCD and electroweak interactions in A.2.2 turn to be invariant,
provided that the gauge fields transform according to the fact that for SU(3) only 2, 25 and A,

are imaginary, and for SU(2) only ¢ is imaginary:

U(T)A4(%, ) U(T) ™ = —y(u)p(a)d4(%, —t)

However T violation emerges in the Yukawa sector because of the complex nature of the Yukawa
couplings as presented in A.2.3. Here we show that, after diagonalization, the source of T vio-
lation can be transferred to the electroweak sector expressed in the mass basis and encoded in

the complex phase of the CKM matrix.

CPT THEOREM IMPLICATIONS

It turns out that if nature is described by a relativistic quantum field theory, with alocal Lorentz
invariant and hermitian lagrangian, its action is always invariant under the combined applica-
tion of a C, a P, and a T transformation. This result, known as the CPT Theorem, has deep
implications. Indeed it is meant to hold when we have violation of the individual symmetries
and it establish the substantial equivalence between a T transformation and a CP transforma-

tion, that is Parity and Charge Conjugation together. We can sketch how the CPT results

*The need for complex conjugation can be understood noticing that, provided that the Hamiltonian is real,
the complex conjugation of the wave function plus the reversal in the direction of time y* (¥, ) is also a solution
of the Schrodinger equation.



from the underlying complementary action of CP and T on operators O(x) and complex num-
bers ¢ in a hermitian lagrangian, i.e. in the form L(x) = 20(x) + 4*O(x)!. Under T the
operator is unchanged and the c-number is complex conjugated: O(¥,¢) EN O(X, —¢) and
4 = a*. Under CP the first is replaced by its hermitian adjoint and the second stays the same:
O(¥, ¢) TN O(—%,¢)" and 4 4 . Combing the two we see that L(x) L, L(—x), and

performing change of the space-time integration variable in the action, we see this is invariant.

1.1.2 CONTINUOUS GLOBAL SYMMETRIES

Approximate global symmetries result from eftectively neglecting certain parameters in our the-
ory, otherwise a symmetry is exact. Both exact and approximate global symmetries can be mani-
fest (Wigner-Weyl realized) or spontaneously broken (Nambu-Goldstone realized), depending
on whether or not the vacuum state respects the symmetry. In the first case we will see de-
generate multiplets of states in the spectrum of the theory, while if a symmetry group G is
spontaneously broken to a subgroup H, then #n = dimG/H massless scalars appear, known as
Nambu-Goldstone bosons.

QCD manifests an approximate global symmetry, rising from the fact that the lightest quark
masses are much smaller than the dynamical scale of the theory m,,, m; << Agcp, and so negli-
gible. In this limit, and considering only up and down quarks kinetic terms, QCD Lagrangian

can be written in the following chiral representation:

Locp O Z (éLﬁqL + éRﬁqR>

q=u,d

that is invariant under the rotation (Z) — FaTi (Z) and (Z) — FurT (Z) with
L L R R

T; = (7;,I). Thisisaglobal U(2); x U(2)r = U(2)y x U(2), symmetry, that can be
splitin SU(2) 4 x SU(2)y x U(1)g x U(1), and that is actually a symmetry of QCD at the
classical level. It turns, indeed, that U(1) 4 is broken at quantum level. Among the others, only
SU(2)y and U(1) p are manifest symmetries, whereas SU(2) 4 is spontaneously broken by the
formation of u and d quark condensates (7x) = (dd) # 0, leading to the appearance of three
Nambu-Goldstone bosons, which are identified as the pions. The manifest SU(2), symmetry
is the well-known isospin symmetry of the strong interactions, with the associated approximate
nucleon N = (p, n) and pion 7 = (74, 7_, mp) multiplets. Instead U(1) is actually an exact

global symmetry of QCD, corresponding to a common phase quark rotation. This is also a



symmetry of the electroweak sector, leading to the conserved quantity of the baryon number
B. Furthermore in the Standard Model we can make a similar argument for leptons, entailing
the lepton number L conservation. Nevertheless neither L or B are conserved at quantum level,
while the only true global quantum symmetry is B — L. Finally we remark that in the limit of
vanishing neutrino masses, separate conserved numbers referred to different fermion species L,

emerge at the classical level, while at the quantum level each 3L, — B is conserved.

QUANTUM CHIRAL ANOMALY

When a symmetry of a classical theory is not a symmetry at quantum level, it is said to be anoma-
lous and the associated current will not be conserved. This is because certain 1-loop diagrams,
as triangle diagrams, introduce anomalous terms which prevent the Ward identities from repro-
ducing themselves at higher orders in the perturbative expansion.

The existence of the chiral U(1) 4, anomaly was formally explained by Adler Bell and Jackiw in
this terms, pointing out that it is not possible to preserve both the axial and vector currents be-
cause of the singular behavior of the three-point functions involving them[3]. Such behaviour
brings into the lagrangian a gauge field structure o F* "WF;V =2 f‘”"‘ﬁ}féﬁ}ffw, that is C even, but
both P and T odd, providing additional sources of CP violation.

This is common whenever there are fermions in our theory. Indeed it was later pointed out
by Fujikawa[4] that the 4B/ anomalous term could be recovered directly in the path-integral
formalism as an extra Jacobian factor, since the measure for gauge invariant fermion theory is

not invariant under the y; transformation. As we will see, this will be crucial for QCD.

1.2 QCD LAGRANGIAN PART II

At experimental level QCD turns to be unexpectedly invariant under charge and parity trans-

formation. Conversely QCD Lagrangian in its most general form can be written:

. 1 e N
_ —( 10, S _ (awuya 5 auy
Locp = % 7y, D = myd™)g — LG Gy, + Pyl G, (1.2)

This contains two potential sources of CP violation: the phases of the quark masses &,, and
the ‘topological term’, proportional to ¢, that we will address to as GG. Let’s explore the con-
nection between the two CP violating terms. We perform a global chiral transformation on a

single quark field g — ¢75%g sending the two chiral components gg — ¢“qr and g, — ¢ ¢;.

I0



The associated axial current is not conserved for two reasons. First the quark mass term gets
modified as §, — &, + 2, and, as previously anticipated, this transformation is an anomaly,
so the non-invariance of the path integral measure under the transformation rise a term in the
action that is equivalent to the shift § — ¢ — 2a. 3
Generalizing to quark multiplet g = («,d, ...)" with ns flavours the mass term can be rear-
ranged as:

g LM qq R+ b.c.

where M, = diag(m,, my, ...) and ArgdetM, — ArgdetM, + 2a. We see that performing a
chiral rotation is possible to cancel one or the other CP violating term, for instance making ¢

the only source of CP violation in Lycp.

THE U(1) 4 PROBLEM

Historically the development of QCD, in the framework we presented in 1.1.1, was displaying
a puzzling issue that we can deem being a forerunner of the Strong CP Problem.

Consider the quark sector of QCD Lagrangian in the reasonable limit of vanishing up and
down quark masses (72,4 << Agcp). As seen, this has a large global symmetry: UQ2)y x
U(2) 4, broken spontaneously by quark condensates (47) and so one expects the emergence of
Nambu-Goldstone bosons, that are associated light particles in the hadronic spetrum. What
we find experimentally is that the vector symmetry, which can be decomposed as isospin times
baryon number U(2), = SU(2); x U(1)s, is a good approximate symmetry of nature, but
on the other hand we observe no light state that could correspond to the Goldstone boson of
a U(1)4. This is a puzzle that baffled physicists in the *7os, addressed as ‘the U(1) 4 problem’.
As pointed out in the previous section, the solution lays in the fact that no Goldstone boson
must be expected since U(1) 4 is not a true symmetry but it is indeed an anomaly under the
symmetry group of QCD, meaning that at level of path integral the measure is not invariant.
From its transformation a term that resemble the GG in 1.2 rise in the action. So the solution
of the U(1) 4 problem turns into the question of why, despite this term, CP is not badly broken
in QCD. This is the strong CP problem.

3from DgDg — DgqDg exp (—iz & GG)

167*
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1.2.1 MEANING OF THE ¢ TERM

Let’s now explore the role of the operator GG, once we suppose to encapsulate all source of CP
violation in the 4 term, to ensure that this must be included in the action. Indeed we have that
GG can be re-written as a total derivative:
auy ;A _ uvpa &s abe ga 4b 4¢
G* G:;V_QuKW = 8}‘9 P (AVGﬁo.— gfﬂ AVAﬁAy) (1.3)
where K, is named Chern-Simons current. So one could argue that it has no physical relevance.
But this is not actually true. Indeed if we use Gauss theorem to write the volume integral of the

operator GG as a surface integral, we can look for field configurations such that its contribution

to the path integral is finite.

/ d*xG*G,, = / d*x0,K* = ) do, K* (1.4)
5
where S3 denotes the three-sphere of infinite radius and element of hypersurface do,,. If K van-
ishes faster than 1/7” at infinity, then this quantity will integrate to zero and & cannot have any
physical effect. It turns out that finite energy field configurations where K ~ 1/7° and the
surface integral does not vanish at infinity exist. These are called instantons, alluding to field
configurations localized in space and time. Let’s look for them. Since we want a system with
finite energy, to have finite action we require boundary conditions lim|y GZV = 0. This is
satisfied by 4|5, = 0 on S5, and all the other configurations that can be obtained from this by

a gauge transformation, in the form of a pure gauge at the boundaries:
! _ 1 718
A/‘ |S3 == Z(é U (A U

We are interested in pure gauges for which U cannot be continuously deformed into the iden-
tity in group space. More precisely we ask whether the gauge configurations that 4, goes to at
infinity are all equivalent, or to phrase it in the parlance of a mathematician, whether the map-
pings between the gauge group, SU(3), and the sphere at infinity, S5, are all equivalent. It is
worth to claim in general that if the homotopy group between the physical space and the group
space for which the theory is invariant is not trivial then soliton solutions can exists. In partic-

ular, one can prove that 73(SU(3)) = Z*. This implies that all field configurations in their

+We can think at gauge configurations that the field can go to at infinity as characterized by an integer. There-
fore, as integers are not smoothly connected, they cannot be smoothly deformed into each other. [s]

I2



asymptotic behavior (i. e. SU(3) mappings) are characterized by an integer n, typically called
the winding number. It turns out that the winding number of any given gauge configuration

can be determined by:

1 .
397 /d%G"’”’G’;V =n—n,=v (1.5)

where 7, and 7, are the winding numbers of the gauge field at the boundaries, and » is the
so called the Pontryagin index. One can build these gauge field configurations explicitly and
show that their finite action corresponds to a minimum, which implies that they are solutions
of the classical equation of motion in Euclidean space. In particular since these are self-dual
G = G we have T+(GG) = Tr(G?) and we obtain the following contribution:

872

1 1

Being of finite action, these gauge configurations are localised in all the four dimensions which
justifies the name instantons. Thus, from 1.5, we can state that the instanton describes a solu-
tion of the gauge field equation tunnelling from one vacuum state (pure gauge, i.e. G, = 0)°
to a gauge rotated one with different winding number. Since the action 1.6 is finite we have a
non zero transition amplitude between this gauge rotated vacua. Taking all possible values 7,
one obtains an infinite number of homotopically inequivalent vacua, and the transition ampli-
tude between them is non-zero. An important issue is that K, by itself is not gauge invariant,
and so different  labelling the vacuum states have no real physical meaning: indeed the action
of a gauge transformation on them corresponds to a relabelling Ulz;) = |n:41). A proper

definition for a gauge invariant vacumm is therefore:

—+00

6 =Y ) (1.7)

—0o0

where ¢ is what is called a super-selection rule. One can show that states labelled by different &
are ground states of independent superselection sectors ((4|O|¢) = 0 and any observables O
connecting different vacua is zero), meaning that is impossible to transition from one value of
¢ to another. Therefore when defining a theory, one chooses a single value of ¢ and throws out

all other values. Finally in field theories the f-vacuum is tipically introduced as an additional

5 All n states have the same energy. Each of these states is specified by how the gauge field falls off at infinity.
The lowest energy state in each of these sectors is when the gauge field takes on its asymptotic value at all points
in space time. Because the gauge field is pure gauge, they all have zero E and B fields and thus the same energy.[s]

13



term in the action entering the path integral, that is the familiar:

9
3272

/ d4xG‘Z/‘V@ZV =0

1.2.2 THE CORE OF STRONG CP PROBLEM

As seen at the beginning of this section, to reach a physical basis where the quark masses are
real, one must diagonalize the quark mass matrix A, and in doing so one performs a chiral
transformation which changes 6 by ArgdetM,,. Besides 0=0+4 rgdetM, is invariant under a
quark chiral rotation, and therefore linked to physically observable quantities, from which we
infer whether strong interactions violate CP. Among these, neutron electric dipole moment
shows up as the most sensitive one. We can define nEDM in non-relativistic approach as the
coupling with the electric field in the Hamiltonian H = —d,S - E. This can be thought as

derived from a Lorentz invariant lagrangian operator:
7
L= —d,inaﬂ,,;/snlfw,

The dependence of d,, on 6 can be estimated as 6,

1 m, Ge 165
d, ~ _2_q_ ~10"%Gecom
874 m, m,
The current best measurement of the neutron e DM isd,, < 1072 e cm, so to agree with exper-
imental bounds we need & < 107", This results in an incredibly small number, basically zero,
whereas, being a dimensionless coupling, it is quite natural to expect it to be of order one. Why

this should be so is a mystery. We are at the core of the strong CP problem.

6Being a dimension five operator, we naively expect its Wilson coefficient to be of O(1/m,,) size. Then to
compensate the imaginary unit we need the phase of a light quark mass ¢ a2 1+ 76 (in a proper basis). Finally we
insert two extra suppression factors for dipole loop. [6]

14



The Axion

The axion was so named after an American laundry detergent, to denote the particle that washes
away the issue of CP violation in QCD, providing an efficient solution to the strong CP prob-
lem. Itis introduced in EFT framework (which is discussed in the first section 2.1), and so it is
associated to a suppressing scale f,. Here we require axion coupling with the very same CP vio-
lating gluon term of QCD, so that the minimum of axion potential occurs when the coefficient
of such term vanishes. Subsequently (2.1 and 2.1.1), we report model-independent properties,
i.e. the axion mass and some couplings, than can be derived from a chiral Lagrangian formula-
tion of axion potential. Finally, in the second paragraph we present the receipt to build a QFT
that could match the axion effective lagrangian. Candidate models are indeed based on sponta-
neous breaking of a global Peccei-Quinn U(1) symmetry at some high energy scale, and in this

scenario, the axion emerges as a pseudo-Nambu Goldstone Boson.

2.1 AXION SOLUTION IN CHIRAL QCD

The key ingredient for the PQ solution is a new scalar field 2(x), called the axion field, whose

effective Lagrangian is defined at energies far below a scale £, and the electroweak scale and reads:

1, 2,
L,= 5(8#4) + L(Opa, ¥) + 3‘5;2;—;GG (2.1)
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where ¢ generically denotes some other fields. We observe that the transformationa — 2 +«f,
leaves this Langrangian invariant up to the GG term: since x is arbitrary, one can exploit this
quasi shift simmetry to remove the fin Locp (in an appropriate basis where the CP violation
is encapsulated by GG term). Considering this theory at low energies, the CP violating term
provides a potential, whose minumum lays at 2 = 0. In fact, a theorem of Vata and Witten
guarantees that the instanton potential is minimized at the CP conserving value, so we have
(a) = 0. ". Then once the axion relaxes to the minimum of its potential, the strong CP prob-
lem is dinamically solved. However the low energy behaviour of this theory is well described
by chiral QCD and it is useful to look at the axion potential obtained in this framework, to
investigate axion properties. One can define ‘axion dressed’ parameters and consider them in
the chiral lagrangian, which describes the low energy non perturbative behaviour of QCD in
terms of pions. We report here the main results of the derivation [6]. In particular, on the pion
ground state, the chiral perturbation theory axion potential, coming from the non derivative

part of the lagrangian, takes the form:

2 __smuma 504
Via) = mﬁ 1 (mu+md)zsm (Zﬂ)

Expanding this for 2 /f, << 1we can read the axion mass term 3m2a” with:

2 1012
m? = et — ma:S.70—G€V[ueV (2.2)

© et ma)? f fa

2.1.1 SOME AXION COUPLINGS

We can include in 2.1 model depending terms accounting for the interaction of axion with
other particles.
The interaction with a fermion has derivative structure (preseving invariance under shift), so

we expect an axion-quark coupling of the kind:

Cog_
Log = 2—1547/‘754@4

Tor e_quivalently, not performing the « shifting, the potential Erovided by the CP-violating term depending
now on & + a/f, drives to the CP-conserving minimum ata = —4/f,
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Here, g denotes the quark field, with mass 2,, and C,, is a numerical coefficient®. Then, invok-
ing again chiral perturbation theory, the derivative part of the axion chiral Lagrangian yields
the axion-pion coupling:

C.. ) L Cf.
= a(20,n’n T — 2Ot — 'O T) + ——
3ff7r “ “ 2](;

with G = 0 + %, — C°  where for completeness we added model-dependent couplings
Cgu and ng‘

We can also think of a photon-axion interaction term included in 2.1:

L,,= 0,a0,7" (2.3)

1 -
Loy = jgualF

Indeed it is convenient to first eliminate in the axion QCD lagrangian the 4GG term via an
a field-dependent axial transformation of the quark fields. In general this transformation is
anomalous under QED, so it will affect the lagrangian adding a term oc FF. Therefore sup-
posing a model dependent coupling g, to which this effect is summing to, we obtain the

axion-photon coupling (evaluated taking into accounts also contribution by axion-pion mix-

; _ 0 a_ 2 4mgtmy
iNg) ay = Lay T 5273 ety -

Finally we report the relevant term of axion interaction Lagrangian [6], where we included
by completeness interaction with matter fields /' = #, p, ¢ and the nEDA operator:
a Cony i

el — & gy,

. 1 ~
Llnl‘ D g, FF+ +
a 4g 4 ﬁ"uyifa/‘d 3ff7r

where [07z7|* denotes a short form for the expression in 2.3.

2.2 AXION MODELS

The Lagrangian 2.1 constitutes a non-renormalizable effective theory that breaks down at ener-
gies of the order of /. In the searching for a UV completition, we briefly consider three general

types of QCD axion model, that share the common framework of a U(1)pp spontaneously

*This very same form makes up axion coupling to a generic fermion and so to electron: indeed, additionally
to possible model dependent tree level contribution, the axion-photon interaction implies a loop-induced axion-
p 1% P p P
electron interaction.
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broken with the axion being its pNBG. In Peccei-Quinn-Weinberg-Wilczek (PQWW) model
f lays at the electroweak scale, so, since all axion couplings are suppressed by 1/f, they are
too large and therefore excluded by experiments. In the Kim-Shifman-Vainshtein-Zakharov
(KSVZ) and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models instead the scale f, is an arbi-
trary parameter that can be properly adjusted. Both their axions are indeed known as invisible

axions.

2.2.1  PQWW axionN

The PQWW model introduces one additional complex scalar field to the Standard Model as a
second Higgs doublet: we have one Higgs field giving mass to the up type quarks @ , while the
other to the down type quarks @,. Then we can choose whatever to give mass to leptons (also a
third field). So this new field couples to the standard model particles in the usual Yukawa terms

rising the fermions mass.
LPQWW = _AZQZ%”C’% - 2’3@2@25[1‘% + h.c+ V(?U @2)

In unitary gauge:

U1 +./0 iax/v 1 V2 +./0 ia/xv 0
0, = \/zle /F(O) 0, = \/52€/F X

where vy = \/m and x = v,/v;. The axion is the common phase field 2. We take the
theory invariant under a global chiral U(1) pg symmetry, that acts on @, as a shift in the angular
part and the invariance of the Yukawa terms under global rotations fixes the U(1) pg charges of
the various fermions: 2 — 4 + avp, iy — ¢y, dy — ¢*/*d),.

Symmetry breaking of @, occurs, akin the Higgs, at the electro-weak phase transition. The

potential is the usual:
2

Vip) = Mef - =)’

and @, acquires a vacuum expectation value (@) = % In the original Peccei-Quinn model

fa ~ vp = 250 GeV/, so we can take for simplicity x =~ 1. So after SSB, having integrated out

the radial part, we can parametrize @, = (@) /¥, The angular field  is the Goldstone boson

;

of the spontaneously broken U(1) pgp symmetry and it coincides with the axion. The Yakawa
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term reads:

UFel'a/zﬁl (/‘ll]*l p/ + /11]211 d/ ) + b 5 a i a 'Zil' dl, + b Z a —; ;
v . . ",

Expanding ¢/%+ ~ 1+ 7a/2f, we got the couplings with quarks®. The chiral anomaly induces
couplings to gauge bosons rising the term needed to solve the strong-CP problem, whereas the
quarks tree level derivative couplings are obtained considering how the transformation affects
the fermion kinetic terms. Since this model has been excluded, we now focus on the other two,

remembering that however the procedure to get the axion effective couplings is quite general
and applicable also to the PQWW axion.

2.2.2 KSVZ ax1ioN

The KSVZ axion model introduces, alongside with the scalar ¢ ~ (1,1,0), a heavy quark
doublet Q ~ (3,2, 0) of components Q;, Qg, that under chiral U(1) p transform as: Q; z —
¢E2/2Q; p, @ — ¢“@. The simmetry is, again, spontaneously broken by the potential:
2 +ﬁ )
V(o) = A(|o]> — 2)? _ Ya TP jafu, .
() =A(lpl" =) and  p=—pe (2.4)
where the axion field  corresponds to the Goldstone mode. The scalar @ and the heavy quarks

interact via the PQ-invariant Yukawa term in the Lagrangian:

Lisvz = (0,9)*QiQ — 200 Q, Qr + h.c. — V(p)

This provides the heavy quark mass mgy = v,4 / V/2 in the broken phase, while the radial mode
P, acquires m, = V/2w,. Setting v, at large scale, the quark field is heavy and can be integrated
out. On the other hand the operator GGis produced by chiral anomaly and stays, at EFT level,
as the only modification to SM Lagrangian. Indeed we have no other tree-level couplings to

standard model matter fields. To see this, we look at the term:

—mQrQre™™ + b.c.

(1£y5)

2

>we have considered gg 1 = ¢, and summing with the h.c. only the part with 75 survives.
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and perform an axial transformation Q — ¢~ 54/ 20 Q that is equivalent to Q;, — &/ ZU”QL

and Qp — ¢~/?% Qy. Being anomalous under QCD, the non-invariance of the path integral
L a

3272 v,

measure brings the additional term to the lagrangian dLggy, = GG, that is the required
one with the identification v, = f;.

We can explore the KSVZ model in a more general scenario where the heavy fermions Qliveina
generic reducible representation ), (Co, g, Yg) of the SU(3) x SU(2),, x U(1) y gauge group,
where at least one Cy is non trivial. Both a QCD and electromagnetic anomalous term will rise,
parametrised by the coefficients N = 37, Ngand £ = }_, Eq, with Ng and £ indicating
the contributions to the anomalies of each irreducible representation*. After removing the

axion field from the Yukawa Lagrangian via the chiral transformation, we obtain the effective

2
52 ande = 5):

anomalous interactions (with &, =

sy = 2NLGG+ ZELFF
47 v

2 47 v,
Then setting f, = v, /2N we rewrite:
a, a _~ a Ea -~
disyz = ——GG+ ———FF
KSVZ2 = 8 fa 87 Nf,
where we normalised the first term as in 2.1 so that we recognise the model dependent coupling
0 _ a E

gﬂ}’ — 22f, N

As we will later see, the QCD induced axion potential is periodic with a number of inequiva-
lent degenerate minima written in terms of the QCD anomaly factor Npy = 2NN, which has

remarkable consequences in axion cosmology.

2.2.3 DFSZ ax10N

The DFSZ model introduces two Higgs doublets /,, ~ (1, 2, —%), H; ~ (1,2, —i—%) as well as
the PQ scalar ¢ ~ (1,1,0). Then the two Higgs couple to SM fermions in the usual Yukawa

sector, and so, requiring this to be PQ invariant, fermions must have charges under U(1) PQ:

LDSFZ = —Z%QLHZ,%R — /‘ldQLHddR + b.c + V(|Hu|, |Hd’, @) + AH@TZHqu + [/ez'netz'c]

*Ng = ;(Qd([Q) T(Cp) and Ep = ;(Qd(CQ) Tr(qZQ) where d(Cyg) and d(Iy) denote the dimension of the
colour and weak isospin representations, 7(Cp) the colour index, g9 = T3Q + Yp is the EM charge and Xow =
X, = F1 /2 the PQ charge depending on whether the quark bilinear Q, Qr couples to @ or p'.
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that haslinearly independent U(1) symmetres: the hypercharge and the PQ. The PQ symmetry
acts on the fields as a phase rotation of charge y, with 7 = #,d, @. The lepton sector can either

couple with A, (DSFZ-I) or H, = icH* (DSFZ-II). We take the potential such that to ensure
that the three additional fields acquire a vev:

v, 1 vy 0 Uy .
Hu — M auv H)) = = iaq/va _ P ag/vs
Ha = e (0) \Ha) = 5 (1) (P =3¢

The axion in this case is identified in terms of the 4, as it follows: taking in mind the infinitesimal
transformation H, 4/@ ~ (1 + iy, , 5D)H”’d /@ we look at the part of PQ current containing

our new fields and expand them about their v.e.v. What we obtain is

<= <= <=
f;fQ - _l'(l},@T 0 up ‘*’&HZ 0 uH, +)(dHIz 0 wHy) > Z X 0:0ua; = 0,0,a
i=p,u,d

From this weread 2 = - 3=, y.v,a; and o = 3, y>v7. In this way, since under a PQ rotation
a; — a; + xy.a; one finds the usual shift 2 — 2 + xa. To determine the PQ charges of the
scalar sector, needed to express the lagrangian in terms of the axion field so defined, we impose
two conditions. First we require the invariance of the operator !>, H, under PQ tranfor-
mation, yielding the condition y, + v, — 2;(@. Then we impose the orthogonality between
the PQ current evaluated at the axion field ), y,4,0,4; and the analogue hypercharge current
> Y;0,0,4;, corresponding to ;(uvi +x dvf, = 0. We fix the normalisation by choosing a con-
ventional value X, =1 and setting v, /v = sinB and v, /v = cos B with v =~ 246GeV the usual
electromagnetic scale we obtain y, = 2 cos? Gy, =2 sin® 8. With these a trivial substitution
yields o7 = 7, yvr = v; + 0*(sin(26)?) =~ v, taking v, >> v. Then from the defining
relation for 4, we express 4, 4 in terms of 2 and select in the lagrangian, where the fields are

replaced by their vevs, only the 2 dependent terms:
LDSFZ D — (WluﬁLuké‘%‘i + md;l’Lng%i + /oc)

From the expansion of the exponential we get again axial current couplings between the ax-
ion and fermions in the form m,(a/f)igy,q. Again, chiral anomaly induces the GG and FF

couplings, once removed the axion field from the mass terms via field-dependent axial transfor-
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mations’:

. a . a
u— e Ty d — e T
The rising anomalous term reads:

4 - aF
sz = ~-2GG + =L FF

87 f, 87 Nf,
with f, = v,/2Nand in DSFZ-I we have E/N = 8/3, while in DSFZ-IL /N = 2/3°.

In the DSFZ models we do have tree-level couplings between the axion and standard model
fermions. Indeed chiaral rotations of the up and down quarks do not leave the fermion kinetic
terms invariant, and their variation corresponds to derivative couplings of the axion to the SM
fermion fields:

_ O _ 1
(i) = 5y = 5 co¥ fumu

8 1
d(ddd) = d?’“ ysd = g sin /370«'7“ 7sd
0,a

1 0,a
d(ede); = Xdﬁ@/‘yse =3 Sinzﬂ?@/‘;@e dNede)y = —y,—— 2, efye = -3 coszﬂszﬂE;/‘;/se
We conclude with remarking that both KSVZ and DFSZ models, as seen, produce the correct
term necessary to solve the Strong CP problem: the main difference between them is that for

DEFSZ this term is induced by light quark loops calculated at low energy, rather than via the
integrating out of a heavy quark.

*PQ invariance of the mass terms implies y, +y, =y, andy, +x, = x,so we notice that these trans-
formations basically redefine the left and right chiral fields with a phase transformation proportional to their PQ
charges.

°Given ny = 3 the number of fermion generations we calculate for DFSZ-I:

N=nf(%zu+%zd)=3><z¢=3
E:nf(3(2) ., +3(— ));(d (=1, = 4(r, +2,) =38

instead for the DFSZ-II model, the leptons couple to the complex conjugate up-type Higgs [:Iu instead than to H,
that corresponds to changing y, — —y, in the last term for .
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Axion Cosmology

Not only do axions ‘clean” QCD from the Strong CP Problem, but they figure as appealing
dark matter candidates, whose relic abundance is meant to account for the present Dark Mat-
ter (DM) content Qpyh* = 0.12. Indeed the process of ‘vacuum realignment’, that is the
axion relaxation to the minimum of its potential, turns to be a palatable production process,
generally known as misalignment mechanism, where the resulting energy density has the same
behaviour as ordinary matter. The dependence of the axion potential and mass on the temper-
ature of the thermal bath plays a crucial role in determining the abundance of axions generated
through this mechanism, as it is displayed in 3.1. Then in 3.2 we address axion evolution. First
in 3.2.1 we scan the possible initial values for the axion field, i.e. for the ‘misaligned’ angle, that
is related to its role during the inflation era. Then in 3.2.2 we present the misalignment mech-
anism itself pointing out its relevance in making axion a suitable Cold Dark Matter (CDM)
candidate. Furthermore (3.2.3) we give a hint about other possible CDM contributions in the
form of topological defects related to the axion in a spontaneous symmetry breaking frame-
work.

The Misalignment mechanism is not the only mechanism of production for axions. As shown
in 3.3, scatterings and decays of particles in the primordial plasma can produce relativistic ax-
ions. If their decoupling occurs at high enough temperatures, they remain relativistic through-
out the history of the Universe. In this case, axions are dark radiation and they are the main

concern of this work.
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3.1 TEMPERATURE DEPENDENCE IN AXION POTENTIAL

We previously presented the axion potential derived using chiral perturbation theory, which
allowed us to determine axion properties at zero temperature. Nevertheless this approach is no
more useful when the temperature reaches the critical value 7 around 160 MeV when quarks
are no more confined.

Let’s see how we can qualitatively guess a form for such potential. We saw that the axion field is
nothing but the angular degree of freedom of a complex scalar, that undergoes global U(1) SSB
at scale f,. The axion is left as the corresponding massless Goldstone boson that therefore is
exhibiting a shift symmetry. Then non-perturbative processes (i.c. the instanton term) induce
an axion potential by breaking this shift symmetry at a specific energy scale, which, nevertheless,
being the axion still the angular degree of freedom of a complex field, must satisfy a residual
discrete shift symmetry of the kind 2 — 4 + 27, /Npy.". The potential is therefore periodic,

a choice is:

N“} (3.1)

Vla) = £r2(1) [1 o

where the mass is temperature, and so time, dependent. We can assume that well above 7¢ such

dependence can be parametrised in terms of the zero temperature mass 2.2 as:
T Ve
2 ~ 2 C
ma( ~m, (7 (32‘)

with y ~ 8. In the limit of small displacements from the potential minimum (2 /£, << 1), the

potential can be Taylor-expanded in the quadratic $m24>.

"Here Npyr = 2N is also known as the domain wall number, where N denotes the color anomaly of the PQ
symmetry. Indeed a PQ rotation of the quark fields, as seen, implies an anomalous term added to the Lagrangian,
that, in the case of SU(3), takes the form

S%S+/d“x g &Gé
3272 f,

where No,, = 2Tr[QpoT,T}], depending on the fermion content of our theory. The colour anomaly basically
sets the number of minima in the potential, and so the number of vacua for 2. Unless otherwise stated we will set
Npw = 1.
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3.2 AXION AS cOLD DARK MATTER

The temperature dependence of the axion potential and mass will be crucial in the determi-
nation of its abundance as cold dark matter relic due to misalignment mechanism. To this
purpose we report for simplicity the equation® that the homogeneous component of the axion

field in terms of 6pp = 4 /f. obeys to, taking into account only the quadratic potential:
épQ+3H9pQ+mi(n€PQ =0 (3-3)

where H = ;—’ is the Hubble parameter ad now « denotes the scale factor in FLRW metric.
Here we will assume to be in a radiation-dominated background where A = 2%, needing all
of this to happen before matter radiation equality in order for axions to describe dark matter.
Therfore we observe that this equation resemble the motion of a harmonic oscillator with time-
dependent friction and axion mass term. The change from over-damped to under-damped

motion, will occur when H ~ m,, and the axion field starts oscillating, thus behaving as matter-

like field3.

3.2.1 AXION AS A SPECTATOR DURING INFLATION

In order to solve axion field’s evolution, we need to account for initial conditions. To this pur-
pose we explore different scenarios that rise according to whether the PQ symmetry is broken or
unbroken during inflation. The temperature of the Universe during inflation can be estimated
through the Gibbons-Hawking formula 7; = H;/2z, with H; the inflationary Hubble scale.

Experimental constraints give us 77 < 1.4 X 10° GeV/ [7]. Therefore we have two options:

*The motion of #is easy to understand as the the one of a scalar field initially displaced from the minimum of

& 262
its potential%‘%mﬁ po- The axion Lagrangian density can be written in terms of Opg as Lg,, = A3 - mﬂng} and
the equation of motion is obtained as usual through the variation of the action in FLRW background:
O/—gL P 0v/—4¢L
09 # a(a“e)

>The axion field, initially displaced from its vacuum expectation value, begins to oscillate coherently across
the universe as the Hubble parameter drops below the axion mass. These oscillations behave like a harmonic
oscillator with minimal spatial variation and are coherent across large regions of the universe, leading to a nearly
uniform field. This coherence means that the oscillations are in phase over vast distances, which is key to the
axion field acting as Cold Dark Matter. Indeed in momentum space the Fourier transform of this field peaks at
low momentum, corresponding to low velocities for the axions. This slow velocity characterizes axions as CDM,
crucial for cosmic structure formation.
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* fa < H;/27 and PQ symmetry is unbroken during inflation, so @ has zero vacum ex-
pectation vale. Then when the radiation temperature falls below £, after inflation, the
symmetry breaking occurs and @ acquires a vev. Upon reaching this stage, the Universe
results splitin casually disconnected patches, each of which selects a distinct value for the
angular variable 2 /fa2 = 0py. Moreover f, is greater than the scale of non-perturbative
physics, so at this time there is no preferred value for 85, that is randomly selected out of
a uniform distribution on [—7, 7| for every Hubble patch. We can think at our current
Universe as composed of several patches with varying initial &pp values that, although
not initially in causal contact, now assemble the region enclosed by our Hubble horizon.
To solve the equation of motion, we will need the initial value ;. In the post-inflationary
scenario, this can be extracted from the mean value of a uniform distribution over the
unit circle, reading for a quadratic potential:

6= \/ () = % ~ 1.81 (3.4)

Another important feature of this scenario is the rising of topological defects from the
spontaneous breaking of a global symmetry, such as domain walls and cosmic strings.

* f. > H;/27 and PQ symmetry is broken during inflation. Also in this framework we as-
sist to the formation of topological defects as phase transition relics, but in this case they
are later diluted by inflation. Again, causally unconnected patches with varying values
of &pp form, but inflation expands them in a way that our current observable universe
has started out at the end of inflation with a single, constant value everywhere. *

3.2.2 MISALIGNMENT MECHANISM

Misalignment mechanism is a non-thermal production process that entails the oscillation of
fpp around the minimum of its potential. Indeed, as seen in the previous section, in any case
the initial §; has stochastic origin, so we can easily suppose that at early times it is ‘misaligned’
with the vacuum dpy = 0. At high temperatures the axion is basically massless and the solution
of 3.3 is Opyp = const = ;. Then when the temperature T approaches 7¢, the contribution
of the mass term in 3.3 becomes comparable to the expansion rate of the Universe, and the

axion starts to roll toward the minimum, and then oscillates around it’ with angular frequency

+This value is entirely arbitrary and uniformly distributed, however one could argue that the presence of nu-
merous distinct Hubble patches implies that values of @ near to zero cannot be ruled out unless invoking anthropic
principle.

5This is in analogy with coherent oscillations of the inflaton field, but with no suppression due to decay. This
field drives the rapid expansion in the inflationary phase of the early Universe and, at the end of his motion,he
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m,(T). It is instructive to visualize the solution in the simplified case of a scalar field with a

mass 72, that is not temperature dependent. Indeed in this case the exact solution is:

2 \+ (5
6= e(m—t> F(g)];(mﬂt)

where I is the gamma function and / the Bessel’s function . Depending on the relative weight
of the damping term and the mass term, we clearly distinguish two regimes for this solution.
Initially the system is overdamped while the Hubble parameter is dominant, but at some point,
once the damping term has decayed away, it begins to oscillate because of the mass term con-
trolling its dynamics. The oscillating behaviour is even more evident considering the latest
moments of the evolution, that is taking the limit of large m,z. Since for large x the Bessel’s
function becomes /1 (x) = (mx/2)"Y/2 cos(x — 7/3), we can parametrize the late time evolu-

tion with a slowly decaying term times a fastly oscillating one:
6(r) ~ A(z) cos (m,t)

The main difference between this scalar case and the real axion is that we have a temperature-
dependent axion mass, making a bit more difficult to find the solution, but the qualitative
behaviour stays the same. Now we turn to the energy density stored in this late time solution,
which could be done in a clever way. Multipying 3.3 by &pp, at this stage we can substitute
ﬁf,Q by its average over one oscillation, which is the energy density of axion field (6*) = p =

ﬁ[é’?)Q + %%Q] obtaining[8]:

P, = [— — 3H:|ﬁd — p = comz‘d—3 (3.5)

Soasp ~ a3, 0 falls off as 2—3/2. This is telling us that the axion energy density varies in
terms of the scale factor in the same way as non-relativistic matter in FLRW Universe, making
the misalignment axion a valid DM candidate. This is particularly evident at zero tempera-
ture since before the mass is still varying with T. On the other end, the axion number density

n, =p_ [m,(T) ~ a3, implying that its comoving number density (i.c. the ratio of number

settles near the minimum of its potential undergoing coherent oscillations. As the inflaton oscillates, it decays
into other particles, heating the universe and seeding the particles that form matter and radiation, through the
<

reheating’. The coherent oscillations of the axion field, instead, do not decay, and since they act like a collection
of extremely light, slow-moving particles, they contribute to the universe’s energy density as cold dark matter.
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density to entropy density s° where the entropic degrees of freedom g, , can be confused with
effective number of relativistic degrees of freedom g, at high T) is fixed and so one can exploit
this to evaluate the present axion amount. The initial energy density trapped in the misaligned
axion field is the purely potential term Pui = mﬂ(Tm)Zﬁfg, where T, determines the start
of oscillations and its defined by the condition 2, (7,,) = 3H(T,). Then the ratio between
£, ./ ma(T,) and the entropy density 5(7,,) is preserved up to the current value, assuming no
turther entropy production. Multiplying this by the entropy density today sy and by z,, we
can derive the current axion energy density and its contribution to the cosmic energy budget,

noticing how the result depend on the initial displacement angle &;. We obtain:

1 ges(T0) T
= _6 allta Tvo:c :
./00 2 ﬁm m ( )g*75<7;5€>7-3

os¢

Sincein radiation dominated era H(Tosc) ~ g.(7,s) T%,, the solution to the condition 2, ( 7

os¢?

3H(T,) involves temperature dependence of g, ;. Indeed, having in mind the temperature de-

endence of 72, in 3.2, we solve:
p 21N 3

2

10 a2
E:c - ( B maMPl) y 71?—4
/4 g*(nxc) '

We can adjust y = 8, T = 150 MeV, m, = 10 eV to have T, = 1 GeV. So reasonably the
oscillations will begin between the electroweak and QCD eras, when we can take the effective
number of relativistic degrees of freedom to be g, ; ~ g, = 61.75, while the entropic degrees of
freedom today is g, ; = 3.91. The prevision for the axion contribution in terms of fraction of
the total cosmic energy density is obtained dividing p, by p, . = 3H;M7,. This esteem would
depend on m,, f, and ;. Using 2.2 we can relate f, to m,, and obtain a prediction for 7z, that

could match the present dark matter content[9]:

z e %
Qﬂhzmo.lzﬁf(zk'meV) zO.IZ( 6 ) (9~0#€V)

Mg Mg

. 2 . .
Here the choice for §; comes from the average value of (¢;)”, considering a not exact quadratic

7/

. . . ~7/6
potential, but an actual cosine’. The axion mass dependence 72, */” tells us that we get a smaller

“The entropy density is scaling with the temperature as s(7) = #g* (DT
7The reason why this corrected value is higher than (1.81)* obtained at 3.4 is that the gradient of a cosine
potential is shallower compared to a harmonic potential at large & therefore the start of oscillations is delayed, and
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dark matter density when the axion mass is heavier. This, that at first glance could seem a little
counter-intuitive, can be explained remembering that the number density is set at 7, and then
gets diluted by the expansion until today. So the later 7,,. occurs, the least axions get diluted
and we are left with a bigger density. Then, since 7}, is defined when the Hubble scale drops
below the mass, we see that lighter axions start oscillating later. Finally we can assert that, in

order to explain dark matter, is very likely for axion particle to have a mass of order 10 ue V.

3.2.3 TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

In post-inflationary scenarios the production of cold axions from misalignment discussed in
the previous section is not the only Cold Dark Matter production mechanism. Additional
contributions are related to the existence of topological defects.

Indeed spontaneous symmetry breaking in the early Universe is associated with phase transi-
tions, leading to the possibility of formation of topological defects, such as domain walls and
strings [10]. As seen, these are relevant only in the post inflationary scenario. Let’s briefly
sketch in intuitive way how these form.

At the end of the phase transition related to the spontaneous breaking of the PQ symmetry,
the phase for the vacuum 4(x) /£, of the PQ field is position dependent and acquires all values
between [0, 27| in different causally uncorrelated domains. Let’s observe a closed loop in phys-
ical space intersecting such regions, which is shrinking to a point. Since at the edge the phase
cannot change continuosly, there must be a point within the path where this is undefined and,
by continuity, the field is zero (false vacuum). In order to avoid for the path to be topologically
trivially contracted, such points are aligned in a close or infinite string, called the axion string.
As the Universe expands and cools down, at some point perturbative QCD effects provide
an axion potential (see 3.1) with periodicity 2z, /N, characterised by N equivalent minima,
which are related by a Z; discrete symmetry. In different casually disconnected patches, the
field assume different minima, so, in order for the transition to be smooth, there must be in
between a region of false vacuum. Field configurations that interpolate in space between neigh-

bouring vacua are domain walls.

so we get more axions out of them than we would in the harmonic approximation. [9]
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3.3 THERMAL PRODUCTION

If axions stay in contact with the thermal bath particles, then mutual production and annihila-
tion, as well the decay of some massive particles coupled to the axion can lead to a population of
relativistic axions. Our Universe, as tested through the cosmological data, is compatible with
the degrees of freedom predicted by the SM. Therefore, any form of an additional population
that is created at early times, must be very little but yet detectable by better resolved probes.
Alongside CyB (i.e. CMB) and CvB, it may be possible to see a cosmic axion background CaB
as well.

In order to create a thermal population of axions the dominant process is pion-axion conver-
sion N+7 — N+a, where nucleons /N are non-relativistic, since they came into existence only
after the quark/hadron transition (7"~ 200Me¢V’), and so the interaction rate is exponentially
cut off. At higher temperatures, before QCD phase transition, there are no nucleons or pions
but only quarks and gluons free in the plasma, and the dominant axion production process
is photon or gluon production 2 + g — ¢ + ¥/G. These interactions are relevant until the
interaction rate I drops below the Hubble expansion rate A, then the axions decouple from
the thermal bath. At this point the axion abundance is fixed by freeze-out at the decoupling
temperature 7p, which occurs when I' ~ H. Axions produced in this way are relativistic as
long as Tp > my,, then, once they decouple, their temperature redshifts independently from
the thermal bath. If their mass is large enough (72, > 1e¢V), thermal axions contribute as
Hot Dark Matter (HDM), a component that behaves like matter at late times, but was initially
produced while relativistic and so free-streamed during early structure formation. In this case
axions would behave similarly to massive neutrinos preventing the formation of cosmic struc-
tures below the free-streaming scale. Nowadays we can state that axion is excluded as a hot
dark matter candidate by the current mass bounds. Nevertheless a CaB, not necessarily com-
ing from HDM contribution, is possible if the mass of the axion is negligible compared to its
thermal energy for most of the cosmic history. In particular, if the axions produced at early
times are still relativistic around recombination, they should show up as an additional contri-

bution to the amount of radiation at the time of CMB formation.

In general the energy density stored in relativistic degrees of freedom can be probed at two

key moments in the cosmic evolution: the Big Bang Nucleosynthesis (BBN)?®, for which the

¥Big Bang Nucleosynthesis (BBN) is the process responsible for the synthesis of light nuclei in the early uni-
verse, beginning at a temperature scale of around 1 MeV and concluding at approximately 6o keV, lasting for about
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amount of light particle is mostly relevant when Universe was one second old and at a tem-
perature of ~ 1 MeV, and the last scattering surface, namely the stage at which protons and
electrons form neutral hydrogen, and photons could travel undisturbed afterward, dubbed the
Cosmic Microwave Background (CMB) radiation, corresponding to T¢as ~ 0.3 ¢/ and a

quite young the universe (approximately 380.000 years old).

Generically light particles that can be present in the relativistic regime with a significant cos-
mic abundance at the time of BBN and CMB, alongside photons and neutrinos, are address
to as ‘dark radiation’. Historically, the presence of this dark radiation is quantified in terms
of an effective number of additional neutrino species, that we will estimate for axion across a
specific stage of our early Universe. In particular the goal of this work is to evaluate thermal

axion production above and below the ElectroWeak Phase Transition (EWPT).

More explicitly, the energy density of relativistic particles at the time of CMB formation can

be written as )
T = = |1 7 4 6
./0R< CMB)_ﬁy+ﬁv+ﬁd_ +§ eff ﬁ -P}/ (3)

where the first term in the bracket is referred to photon contribution and the second one,
weighted by the statistical Fermi-Dirac factor and the fourth power of the neutrino to pho-
ton temperature ratio 7,/T, = (4/ 11)5, to neutrinos and possible dark radiation amount.
Here figures the number of effective neutrino species N,g: if we limit to the SM prediction,
then this is naively the number of fermion generations. i.e. three. Nowadays outcomes are
consistent with such prediction’. Nevertheless upcoming trials are meant to improve bounds
on this quantity and could potentially discover a deviation from the SM, enhancing extra dark
radiation components in form of relativistic species which decoupled at high temperatures, as

high as the EWPT.

three minutes. During this period, the formation of nuclei is critically dependent on the neutron-to-proton ra-
tio, which in turn is influenced by the decoupling of neutrons from the thermal bath. In a radiation-dominated
universe, the Hubble expansion rate H scales as H ~ /g%, where g; is the effective number of relativistic degrees
of freedom contributing to the energy density. A higher g; implies that a greater number of relativistic particles
are present in the MeV range, leading to a faster expansion rate . So the point at which the weak interaction
rate falls below the Hubble rate (i.e., when I' < H') occurs earlier. This earlier decoupling results in a higher
neutron-to-proton ratio at the time of nucleosynthesis, as neutrons have less time to decay into protons before
they become bound in nuclei.

°BBN and CMB currently exhibit similar sensitivities in probing the effective number of neutrino species.
For BBN (where the effective number of neutrino species is usually denoted by IV, ), analysis of light element
abundances yields IV, = 2.889 £ 0.229 [11, 12]. On the CMB side, the most precise measurement comes from
the Planck satellite, giving Npjzner o = 2.99 £ 0.17 [13], which at the moment, represent the best sensitivity
available .
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Production of hot axions above and below

the EWPT

In chapter 2 we presented axion couplings to matter fields. We sum up them in two classes
of interactions: couplings with gauge bosons X = {G, W7, B}, that rise if the PQ symmetry is
anomalous under the associated gauge group, and with SM fermions ¥ = {Q;, g, dr, L1, ¢r}-

We report them in the following:

L = % [ CX:—f[X“’f‘”X‘:V + ,aCylfy (4.1)
As seen in the previous chapter, thermal axions can be produced either via scatterings or decays
in the thermal bath. In particular, while both classes of interactions are relevant for scatterings,
only coupling to fermions could account for production via tree-level decays if the fermion bi-
linear comprises fields belonging to different fermion generations, that is flavor violating cou-
plings. The bosonic operators are suppressed by a loop factor and indeed should be understood
as quantum level contributions due to the effects of the presence of some fermion that couples
to the axion. In this work we focus on axion interactions with SM fermions, in particular with
third generation quarks, and therefore on binary scatterings. These collisions always involve
two SM fermions, the axion itself and one SM boson. At temperatures above the EWPT, this

can be any of the four real component of the Higgs doublet, instead it can be a gauge field only
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below the EWPT. In this chapter we aim to derive scattering cross section for these collisions.
We look for the needed axion-quark couplings to select the interesting production process, for
whose we list the computed cross sections (4.1 and 4.2). Detailed computations are sketched
in appendix B. To be consistent with a smooth treatment of the EWPT, we expect to find
the matching between the cross sections evaluated above and below this critical threshold, as

showed in 4.3 The outcomes of this chapter are in agreement with the results presented in [14].

4.1 ABOVE THE EWPT

Since decays are loop and CKM suppressed in the flavor conserving case, we focus on binary
scatterings. We write explicitly the axion derivative interaction terms with quarks, in the case

of flavor conserving couplings:

Dua < _ I i
FC = fL Z (CoQ Q1 + Cuitgy sy + Cadrydy) (4.2)
4 =1
where we introduced the dimensionless coefficients Cy, C,, and Cj. It’s convenient to redefine

the fields rotating them by an axion dependent phase:
. CH L . . Cui . . 'C: a .
Q; — R Q; u.— &y dy — ¢ dy

As a consequence of these chiral rotations the axion couplings to gauge bosons are affected by
anomalous terms while, from the quark kinetic term, we generate new axion derivative cou-
plings that simplify the ones presented above 4.2. Finally and most important for us, the axion

field appears in the Yukawa sector:
—Lypc = fl'(cd_CQ)fi"idQL¢dR + elA(C“_CQ)fiaiuQLéuR + h.c.

where the hatted matrices 4, ; are diagonal in flavor space. So scattering amplitudes can depend
only on two linear combinations of the three coefficients. Since we only focus on the third
quark generation, we label with the top and bottom quark as C;, = —Cyp + C, and C, =

—Co+ Cy. Then, calling their chiral components #7, £z and b;, b, we move to mass eigenstates
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exploiting the parametrization for the Higgs doublet:

A b= in(p) = %
Ao —X_

@ =
wherey = (y,)Tand ¥, = (y,)!. The Lagrangian becomes:

_L?FC :}’tfl'(a)ﬁ M);Lfk _X_ZLl‘R] +)’b€i(Cb)’% [Z—J‘LbR +XOZLbR} +

P - e _ (4.3)
D ot — o] +yoe Vi [y bty + 2 b

+ye
Since we are looking for collisions producing one axion field in final state, we can expand at first
orderé'fs ~ 1+ z'j%ﬂ. From 4.3 we can read the couplings of amplitudes for scatterings involving,
beside the axion, two fermions, that can be either both in the initial state or one in the initial
state and the other one in the final state, and a component of the Higgs Boson'. Then we can
evaluate the amplitudes for the various binary scatterings and derive the cross sections*. We list

all the possible processes and the associated cross section in 4.1.

4.2 BerLow EWPT

As a consequence of electroweak symmetry is broken the Higgs field gets a vev rising mass terms
for SM particles (see A.2.1). Then let’s go back to 4.2 and consider it in mass basis. What we

have is:

3

0,a ~ 5
;Z:C = fL Z (CQIZL}/‘%L + CQdL}/ldL + CML_tR}/M%R + CddR}"udR) (4~4)

a =1

"In this basis is evident that there is no process involving SM gauge bosons. Alternatively, if we insisted on
working in the basis where axion is derivatively coupled to SM fermions then we obtain all binary amplitudes to
vanish as they would require a fermion chirality flip, that is not possible in the unbroken phase because we have
no mass term for the fermion itself.

*Those are obtained via integration of the formula for the differential cross section in the center of mass
(COM) frame, that we are familiar to in literature:

de 1 |p|

= = Ly e
dQ 647 |pl M

where s denotes the usual COM squared energy.
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Process CP conjugate | o sy X 647{]‘3
it — x4 it — x4 Cry?
bb — yya | bb— yia Chy;
th—ya| bt =y a Cry; + Chy,
o, >t | ol —ia Cy?
v, — ta I, > ta Cry?
by, = ba | by, — ba Coy;
by — ba | by, — ba Ciyi
go—ba| oy —ba | Cyi+Cyp
by, > ta| by —ia C2y; + Chy;,

Table 4.1: In the first two columns we list the possible scattering processes producing axions above the EWPT. We can
either have fermion/antifermion annihilations producing an axion and any of the components of the Higgs doublet or just
one fermion plus a Higgs component in the initial state. For each process the scattering cross section is provided.

Specitying the chiral components for the third generation quark fields we obtain:

0,4 _
3rd = 2 [5*(Cry + Cay)t+ b (Crg +a.a 7))
where we define axial and vector quark couplings as Cy, = (C, + Cp) and C4, = (C, — Cp)
with ¢ = u, d referred to third generation quarks. Nevertheless only the axial contribution is

relevant since, exploiting total derivative invariance of the Lagrangjan:

uagqy'q = —ad,(qyq) =

by conservation of axial vector current. Then we notice that C4, = C; and C4;, = Cj. Finally

the interactions we will consider are of the kind:

0 _
= Zijg(ar;/‘fw Cibyy’b) (45)

Here we can read the axion couplings to quark, instead the quark couplings to gauge fields are
the SM ones (A.2.2).

The available interactions rising from such couplings can be be split in two main types: we can
either have quark-antiquark in the initial annihilation into a gauge boson plus axion, or quark
scattering with a boson producing an axion in the final state. All the possible processes are
listed in 4.2. Since the explicit expressions for the corresponding cross sections are too long to

be displayed in the table, we report them in B. Besides the main steps for complete calculations
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Process CP conjugate | oji si,
99 — ya SAME B.7
99 — ga SAME B.8
99 — ha SAME B.9
tt— 2% SAME B.s
bb — Z°a SAME B.10

th— Wta | bt — W-a | B.ax
qy — qa qy — qa B.12
qg — qa qg — qa B.13
gh — ga gh — ga B.14
tZ° = ta 7° — ta B.6
bZ° — ba b7 — ba B.1s
tW~ = ba | TW* — ba | B.16
bWt —ta| bW — 7t | By

Table 4.2: In the first two columns we list the possible scattering processes producing axions below the EWPT. We can
either have quark-antiquark annihilation into one gauge boson plus axion, or quark scattering with a boson rising an axion
in the final state. Here g = ¢, b. For each process the scattering cross section is provided.

of cross sections are here explained for two processes, in order to outline the adopted procedure.

4.3 MATCHING AT THE EWPT

Once we have collected all the analytical expressions for cross sections above and below the
EWPT, we may ask whether these actually match at this critical threshold. In particular since
three out four components of the Higgs doublet correspond to the longitudinal components
of the Z° and W™ bosons below the EWPT, we want to connect the process involving them
across this stage. Indeed a proof of consistency is to check that in the limit of vanishing masses
the cross sections below EWPT coincide exactly with those above. Looking at the expressions

in 4.1 and 4.2, one can easily see this is happening for*:

* neutral annibilations:

Cry;

32zf?

3As said, the Z and W components involved in the following processes are the longitudinal ones and will

Tiisypa T Tiiypa = Tiisha + T 200 =

be therefore denoted with an index L. Indeed since cross section calculations engage the scattering amplitudes
averaged over initial states, one can check that the expressions involving initial bosons that we consider here differ
from the ones reported in B of a factor three.
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* neutral scatterings

Ty, —>ta + T —ta = Tth—ta + 91720 —ta =
Chy;
32zf?

=0 —ia T Ty —ia = Tih—ia T T2 >t

* charged annibilations:

2,2 2,2

s A Ohy a0y _ G TG
Ttb—y,a T b=y a = Tgswia ™ Thiswia = 3212
a

* charged scatterings
Ty —ba T Ty, —ta = TtW——ba T Ot e =

C2y2 + CZ 2
- /B i
_a't;(+—>ba + O-Z;(i%m - Jth—)ba + JbWZ—)tﬂ - 32”]%
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Tracking the number density

The equation ruling the axion number density evolution with time is the following Boltzmann

equation, whose derivation is presented in C:

d T e
R + 3Hn, = ;R(nj —n,) (s-1)

where H is the Hubble parameter. We underline that this equation has been derived under the
assumption of kinetic equilibrium for the axion, and also of chemical equilibrium for bath par-
ticles. The collision operator on the RHS involves the sum over thermally averaged scattering

cross sections that are linked to the quantities we previously evaluated:

_ &g T Oodjl(s,m,',mj)
Vs

where A(s, m;, m;) = [s — (m; + m;)?][s — (m; — m;)*] and the minimum center of mass

Vs

iV (2

) (5.2)

energy is S, = Max((m; + m;)?, m;) depending on the process. K, (z) are the modified
Bessel function of the second kind. As it is common in literature, we switch our unknown to
Y, = n,/s and our evolution variable to x = m/T, where m is the haviest mass involved in

the process and 7" the thermal bath temperature *. The equation that we are going to solve

"We have that the LHS is #, + 3Hn, = 4_3(43@) = 5(n./s) = sY,, supposing entropy in conserved

in a cohomoving volume. Also, to perform the change of variable we have in mind that 47 = —%%[T =
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numerically is finally:

ay, ldlng’ Y,
sHx dx - <1 5 dlnx >(¥747S) (1 )/gq) (53)

withy o= ng Ls.
The main focus of section 5.1 is to depict y, , as function of the temperature 7 for the various

processes across the EWPT.

S.I THERMALLY AVERAGED CROSS SECTIONS

In order to analyze quantities that are function of the temperature alone, we remove the depen-

dence on the other parameters in Y, through the definition:

o ﬁ}/a,S

y (T,) _ ﬁya,S
s Cf,b}’rz,b

" W ey

(5-4)

respectively for all neutral and charged scatterings involving third generation quarks # and b.
The quantity y, involves an integral that can be always computed numerically in a specific tem-
perature range, and so we evaluate it for each process above and below EWPT accounting for
the playing temperatures.

In particular we take as reference threshold the critical temperature corresponding to the Higgs
vev v ~ 245 Gel. Then for cross sections above the EWPT y is easy to compute analyti-
cally: for each of them we get a dependence ~ 7°. Then all results are summed up to obtain
D sabore’s = Vapowe a0d displayed in a logarithmic plot as a function T. This is done for a tem-

perature range [10%, 245] GeVin s.1.

—Z[-HT/(1+ %dlslgo((ég;) )] and dlogT = —dlogx
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Figure 5.2: Plot of log, () as a function of log,, (7) after electroweak symmetry breaking for a T range of [245, 1] GeV.
Thin blue lines are referred to each single process in 4.2 summing up to the total rate in red.
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Figure 5.1: Plot of log10 (7) as a function of loglO(T) before electroweak symmetry breaking for a T range of
[245, 104] GeV. We plot the rate for each single process where the component of the Higgs doublet is in the initial state
(orange) or in the final state (blue), and the total rate (green) accounting for all scatterings in 4.1.

For cross sections below the EWPT the integral 5.2 is too complicated to be solved ana-
lytically, but we are able to find a numerical solution: therefore we evaluate it for temper-
atures in a range of [1,245] Gel for every process listed in 4.2. Then we sum them up to
> Stedow?s = Vi A logarithmic plot for y, ,  is shown in 5.2 . Finally the total rates y,, .
and y, , ~calculated for scattering processes, respectively, above and below the EWPT, are ex-
pected to connect smoothly at this threshold: this is easy visualised in 5.3. Here we considered
processes involved in the matching that we presented in 4.3, where the yukawa couplings have

been introduced for rates above the EWPT and the axion-quark couplings have been set to one.
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Figure 5.3: Matching of rates above and below the electroweak phase transition. The total rate for interactions involving
massive bosons below this threshold smoothly connects with their counterparts in the unbroken phase. All axion-quark
couplings have been set to one.

In the following we will switch on separately the top- and bottom-axion couplings and eval-

uate the total rates imposing C, = 1 or C; = 1 respectively.
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Figure 5.4: Matching of rates above and below the electroweak phase transition for top-axion coupling (a) and for bottom-
axion coupling (b).

5.2 EVALUATION OF ANeﬁr

The rates that we obtained in the previous section are needed to solve the Boltzmann equation
5.3. Therefore we perform interpolations of such total rates and plug these into the equation.
This is then numerically solved. The numerical solution is evaluated from an initial tempera-
ture 7 = 10* GeV and assuming the initial abundance of axions to be zero down to the EWPT
stage (7, ~ 245 GeV), using the above EWPT interpolated rate, and then down to the lower

temperature of 7y = 1 Gel” with an initial thermal abundance of axions at 7, exploiting the
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results obtained below the EWPT. The very same result is obtained considering a single rate
across the EWPT and solving the equations from 7; down to a temperature 7. In particular
we derive solutions for bottom and top axion couplings separately, that we set to one, depend-

ing on the axion suppressing scale f,.

This results need to be connected to our relevant physical observable, that is AN,z
We previously discussed the effective number of neutrinos N, that is related to the radiation
energy density o = p, +p, + p,,, which includes any relativistic particle with a non-negligible
contribution, by 3.6. What we are interested in is the deviation from the predicted value, that

accounts only for neutrinos contribution, due to axion dark radiation. This defines:

8 (11\*p
ANg=Ny— NYH = =) == .
off = Neff — Negr 7<4> ’, (s-5)

Since we derived the Boltzmann equations for the axion comoving number density Y, = #,/s,

we connect AN to this quantity *:

ANy ~ 74.8449Y/> (5.6)

We notice that this last step required converting the asymptotic comoving number density
into an asymptotic comoving energy density, thus we made the further assumption of chemical
equilibrium also for axion particle. This implies the expressions for the number density and the

energy density being the equilibrium ones:

E) _ =
na——T3 ﬁ“_3_074

T2

that are valid for Bose-Einstein (BE) statistics.

. .. 2 . . 3
*Given that the entropy density is s = 24% & 7? and the axion number density reads 7, = [57) T3, we can

4/3
invert both and find two expression for 7% one will be inserted in Py = %2 T = 23%2 (2:;2} ) while the other

4/3
inp, = ;ZZ—O T = ;ZZ—O (’Eé‘s’) . Combining the two into AN, and the the considering value of g} = 43/11 at

recombination, we obtain its relation to Y.
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Figure 5.5: ANfﬁr as function off; for top and bottom axion coupling separately

Given this is easy to evaluate AN,z The results are shown in 5.5a and 5.5b for top-axion
and bottom-axion couplings respectively as a function of the scale f;.
The general behaviour is that the signal increases as £, decreases, reflecting the fact that the axion
decouples at lower temperatures, where the number of degrees of freedom in thermal equilib-
rium is smaller, and yields a bigger AN, 4. Indeed this can be easily understood observing that
the axion decouples from the thermal bath when its interaction rate drops below the Hubble
expansion rate. For smaller £;, the axion-quark interactions are stronger, leading to decoupling
at lower temperatures. Consequently, the axion remains in thermal equilibrium for a longer
period, contributing more significantly to the radiation density and thus increasing AN,z We
set C; = 1in our equations, effectively examining the results as a function of f, /C;. The clear
conclusion is that larger couplings keep the axion in thermal equilibrium down to lower tem-
peratures, resulting in a larger axion relic density and a higher AN 4.
However, this increase in AN, does not continue indefinitely. The plateau observed in the
figure arises because, at some point, even though the interaction rate continues to increase as
fa decreases, the comoving number density of axions saturates. This saturation occurs when
the decoupling temperature reaches a regime where the thermal bath is dominated by particles
that are already non-relativistic, limiting further increase in the axion number density and thus
in ANy
We also observe that for £, < 10? Gel processes involving the axion-bottom coupling become
efficient and provide a larger AN, 5 compared to the axion-top case. The top quark, due to its
larger mass, decouples from the thermal bath earlier compared to the bottom quark and thus
the overall AN, turns to be smaller. Nevertheless, because the top mass (or equivalently the

top Yukawa coupling) is larger, and the cross section is proportional to the mass, the suppres-
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sion of AN,g at larger £, is less pronounced.

In summary: when f; is large, the axion-top quark interaction dominates because of the larger
cross-section, but since the top quark decouples earlier, the axion contribution to ANy re-
mains smaller. Asf, decreases, axion-bottom quark interactions become more significant. Since
the bottom quark decouples later than the top quark, this results in a larger AN,g because the
axion remains coupled to the thermal bath for a longer period. For very low f, , the axion
continues to interact with quarks down to even lower temperatures. However as the bottom
quark decouples, no further increase in AN,z is observed, leading to the saturation of ¥, and

the formation of a plateau.
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Towards a Phase Space analysis

As seen, interactions in the thermal bath dump relativistic axion particles into the early Uni-
verse in the form of dark radiation. If such processes occur rapidly enough compared to the
expansion rate of the Universe, these may even lead to thermal equilibrium, until at some point
the Universe become so cold and diluted that particles cannot interact anymore and they just
free-stream uninterrupted. The goal of our discussion is to estimate their contribution to the
energy density stored in relativistic degrees of freedom at the time of CMB formation, quan-
tified by AN,g. To this purpose in chapter 5 we exploited the formalism of the Boltzmann
equation for the number density, but in this section we aim to lay the foundations to a more
accurate analysis that could improve our predictions. Indeed solving ordinary differential equa-
tions that track a given moment of the distribution function allows to predict the amount of
dark radiation with a certain accuracy, but these are based upon some assumptions that are not
always justified. In what follows we will portray a formalism based entirely on a phase space
analysis, presented in a model independent way in [1], and apply it to the specific case of axion
production across the EWPT. We will build an integro-differential Boltzmann equation that
allows to track the particle distribution in the phase space without the assumption of reaching
a thermal profile, as happens for ordinary methods. We list the main novelties of this approach,

displayed in [1].

* Non-thermalized relics: starting form initial conditions at early times with no addi-
tional dark radiation, if the interaction strength is insufficient, these particles might not
have thermalized in the early Universe but still exist in measurable quantities today. Our
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approach takes into account parameter space regions in which they never reaches ther-
malization;

* Decoupling epoch: the decoupling of particles is neither instantaneous nor momentum-
independent. Methods based on ordinary differential equations already go beyond the
instantaneous decoupling, but they still need to assume the phase space distribution
(PSD) to be thermal after decoupling. In [1] is shown how different momenta decou-
ple at different times and such difference in the decoupling temperature for the various
momentum bins originates distortions of the PSD from the thermal profile;

* Quantum statistical effects: while adopting ordinary differential equations describing
the evolution of number or energy densities, at some point one is forced to employ the
Maxwell-Boltzmann statistics, neglecting quantum statistics of dark radiation particles.
This assumption is never needed in a formalism where the original integro-differential
equations are employed;

* Feedback on the thermal bath: while on one side dark radiation keeps being produced,
on the other side, thermal bath particles lose energy. So we would like to account for the
whole system. That’s why we rather deal with a system of equations: an extra Boltzmann
equation that takes into consideration the changes in the thermal bath’s energy density"
completes our framework.The right hand side of this equation has a collision term quan-
tifying the energy exchanged with the dark radiation sector alongside its evolution due
the Hubble expansion.

6.1 DERIVATION OF THE THEORETICAL FRAMEWORK

In appendix C we presented the Boltzmann equation C.1 in simple form. If we evaluate the
Liouville operator for dark radiation what we obtain is:
df,(k, )

WP — CIfik 7)) (6.1)

with the C[f{k, T)] being the collision operator C.3 that encodes the dynamics mediating the
interaction processes. As said, the radiation energy density p, evolves, both because of the en-

ergy exchanged between visible and dark sectors and of the dilution due to expansion. What

' As we believe SM interactions are enough efficient to ensure thermalization at early times, it is sufficient to
monitor the primordial bath’s energy density without delving into phase space this time.
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we can do is to integrate both sides of Boltzmann equation for the axion obtaining:

dp, B Pk df, Ak
@ g | (25)" dr e« 2 Vel0)

and this quantity has to be, with the opposite sign, equal to the right-hand side of the equation
accounting for the red-shift of the bath energy density. So the evolution of thermal bath with

density p, and pressure pp is encoded by:

dpy dp A3k

P53 :—( a 4H>:—a/—Cd/e,t 6.
With these two (6.1 and 6.2) we track the evolution of the dark radiation PSD for axion and
the bath energy density. To complete the system we need one more equation and this is the
Friedmann equation for the Hubble rate H = 4/a, where a(¢) is the FLRW scale factor, for
which we assumes that there is no other contribution to the energy density besides the ones

from the thermal bath and the dark radiation. The final system is:

ar,(k,
W = Clftk. )

dpp 3

T+ 3H(oy + py) = —ga [ G Clfa(k,0)] (6.3)
+ a

i\

Energy density p, and pressure pp are related via the equation of state pp = wgp,.

Once collisions have stopped happening at a significant rate, the phase space evolution is

just due to free-streaming and the dark radiation energy density scales ~ a4

as the photon
energy density (at temperatures below the electron mass). Thus once we are well below the
MeV scale, the ratio % reaches a constant value, and this ratio is crucial to quantify the amount

Y
of additional radiation, as shown by s.5.

6.1.1 COLLISION TERM

We now focus on the collision operator for binary scatterings of the kind BB, — Bsa. We

account for the relativistic dispersion for dark radiation # = % and factor out the only term
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involving the PSD, so we have:

df(k) Ak
ra (1 ﬁq(/w‘))

where we denote with £;, (#, ¢) the equilibrium PSD for axion without chemical potential. For
binary scatterings of the kind By B, — Bsa we have:

1
Cp,B,—Bsa = " / ATLATLdTT3(27) 0 (p1 + p2 — ps — k)| Mbp,—s b, fof5, (1 £+ f3,)

We report here the analytical result for the collision operator derived in [15] for a generic mas-
sive particle wirh mass 7z, in the final state and we specify it for the axion dark radiation. We
first remember the definition for the Mandelstam variables s = (p; + p,)* = (ps + k)* and
t = (pr — p3)* = (p» — k)*. In the center of momentum frame of the collision, initial state

particles and final state particles have opposite momenta with equal modulus:

}I(;? my, le)

P12 = 2\/}

)'(57 ms, ma)

25

with the usual A(s, m;, m;) = [s — (m; + m;)?][s — (m; — m;)?]. With some tricks one can

and ki, =

rewrite the integration measure as:

) = 419203 dsdtde

- 1287[316 A /}1(57 ms, mﬂ)

ATLATL AT (27)*8* (1 + pr — p3 —

So the collision term becomes:

t’l’lﬂx
218283
T, k)= d dt| M( 6.
o 2567r3wk/m /A(s, m3, my) / 53/tmm AM(z,s) ’ffz (6.4)

with $,,;, = Max((my + my)?, (m3 + m,)*) and we denote with ¢; the energy for the bath

particle in the final state. The integration over des has boundaries that come from the values

of s in the frame in which the axion has four-momentum (@, k), and they are found by solving

s=md 4+ m? + 2(wer Th(\/ £ — md))

the equation:
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The variable ¢ in the COM frame is:

t=mi+m> — \/m1 +p12\/m + k3, — cos(61,)praks.) (6.5)

and the maximum and minimun value for ¢ are found setting for the scattering angle in the
COM frame cos(6),) = —1and cos(f,) = +1 respectively. Then, as it is reasonable, if we
assume equilibrium distributions for bath particle By, B, and B,, it is easy to perform the in-

tegral over &3 analytically. We can exploit the conservation of energy to write /7 (p1)f5 (p2) =
e~ ate)/T = ¢=(&+2)/T and performing the integration we obtain:

T _w/T d _ Lnax
C(T, k) = 8285 ¢ / T L (ST — T / At Mz, 5)?
S, nin

25673 wk 5, M3, M)
Now we are ready to take 7, — 0 in the case of dark radiation. We have that e goes to infinity
while &5 remains finite, so that, performing the limit we obtain:

2 2
k) m km
3 3

_l’_

ngglo s = 4k s—m3
and so:
/€/T I ) /em3 tmax
818285 1e ds ( ot 2)/ / R
(T, k) / . = AMEs)P  (66)
25673 K2 ), s—mj -
with

2(s — m3) < /

2 3 2 2

tmin max — M — mi + p D )
/ 1 /_45 1 12 12

Finally this has to feed the system:

dfa(k, 2 (R,
B — ok, ) (1- £

d a

B4 3H(1+ wy)p, = g | EskClk () (1~ £42) (67)
_ [rstA,

H= 3M3

As the collision operator in temperature dependent we can also employ this last as evolution
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variable *:

kD) ClT) (1 ﬁz(/m>

dllog7) — H ST
dey g B Fu(k,T)

d(lo;T) - (1 + wB)JOB + g}_[ (27[)3/€C(k7 n <1 - feq(/e,T)> (68)
_ [Pt

H= 3BMI%1

where we can safely take the equilibrium distribution being the Maxwell Boltzmann’®f;, 45(k, T) =

_k
¢ T.

6.1.2 SYSTEM SETUP

In this section, we present the key setup for deriving the numerical solution # and its relation to
ANz We rewrite 6.7 in a more convenient way following the formalism adopted in [1]. First
we employ as time variable the scale factor 4(z), in particular denoted with 4; the scale factor
ata temperature 77 = 10* GeV we use the dimensionless ratio 4 = 4 /a;. Then we introduce

the COIIlOViI’lg momentum:

and the comoving energy density of the thermal bath and axions:

£ £
RB = Ra =
T;

In this way we scale out the effect of the Hubble expansion since the physical momentum for
dark radiation scales like 27! and the energy density for radiation-like fluid is proportional to

a % The comoving energy density for axion can be computed at each value of A integrating

*We used for the change of variable the following d(lff D__H

3 Alternatively we can think of accounting for the bosonic nature of axion, i.e. the fact that multiple particles
can occupy the same quantum state , via the Bose Einstein distribution:

1
f;%BE(k7 T) = K_T

-1

At high temperatures, we can think of the particles as widely spread out in phase space, so that the probability of
multiple particles occupying the same quantum state is low: the —1 in the denominator becomes negligible and
the formula reduces to the classical MB one.

+A preliminary attempt at a numerical procedure is provided in D.2
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the PSD:
3
R, =% / dqq’fa(q, 4 (6.9)

The Boltzmann system that we plug in our code is finally:

dfi(q.4) _ Clg.4) (1 _ ﬁ(M))

dlogd — HL) Flg )

d a d a 7A
At (3up — 1) RB s [l (1 — L) A))> (6.10)
H = Rg+R, T

30, e

This is an integro-differential system. Indeed the first equation ruling the temporal evolution
of f, contains on the right-hand side the Hubble parameter: this is determined by the third
equation and so it is set by the energy content of the universe. This results from the integral
of f, over momentum for dark radiation 6.9 and from the second equation for the bath energy
density, that is also integro-difterential.

We write a code to solve the system numerically and extract AN,g. The first step consists in
evaluating the collision operator using 6.6 for all the processes considered in the previous sec-
tion, that is all the scattering amplitudes |M(z, s)|* reported in appendix D.1. The integral is
numerically solved for a range of momenta and temperatures, these last depending on whether
the corresponding process occurs above or below the EWPT. The sums of all rates above and
below the threshold are then interpolated in two dimensions, resulting in the function C(k, 7,
that enters the 6.10. This selects the above-EWPT interpolating function for values of the tem-
perature T higher than 245 Gel and returns the below-EWPT one otherwise.

To model the phase space distribution, the momentum space is divided into discrete intervals
called momentum bins. Each bin represents a range of momenta, and the code calculates the
value of £, (g, A) within each bin, allowing to capture the continuous spectrum of dark radi-
ation in a simple way. By summing over these bins, we can compute quantities like the total
energy of axion dark radiation. To connect the values of the temperature T to the variable A

one can invert: 5

T
Rold) = g (1)) 4° (6.11)

that comes from the usual formula for relativistic energy density.

The initial distribution is assumed to be zero, indicating no axion dark radiation at the start,
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and the initial comoving energy density is:

7[2
Rp(d=1) = 3—0g;(T1)

corresponding to the thermal bath at the initial temperature 7. The system needs to be inte-
grated starting from 4; = 1 up to values of the scale factor 47 corresponding to a temperature
Trbelow the electron mass (~ 0.5 Mel)’, so that the effective number of relativistic degrees of
freedom does not change afterward, i.e. g,(7' << TF) = const, and therefore the ratio g, /0,
stays constant across the expansion of the Universe.

Rewriting the axion and photon energy densities in 5.5 in terms of the comoving ones ex-

tracted from our solution we obtain the final formula:

8 11N\s  R,(4p)
ANy = 5(2) 2R (A7) g (Tr) (6.12)

where the 2 factor comes from the two photon polarization and g7 ( 77) denotes the number of

relativistic degrees of freedom at the considered end temperature.

C=1 Cr=1

0.03 0.03

ANerr
ANerr

(a) (b)

Figure 6.1: AN‘ﬁr as function offﬂ for top and bottom axion coupling separately, derived with the phase-space approach.

In figures 6.1a and 6.1b we show the results for AN,gras a function of the axion scale £, in the

case we switch on top-axion and bottom-axion couplings separately. The overall beahaviour

5Far above the QCD phase transition (QCDPT), axions can be produced efficiently through scatterings with
quarks, but as the temperature of the Universe lowers below the GeV scale, these interactions turn to be irrele-
vant since quarks become confined into hadrons. So the idea is to consider a rate function C(g, 4) that switches
between the interpolated integrals valid above and below Tgppr = 245 Gel and is set to zero once 1 GelVis
exceeded.
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reflects the one already found for AN,z with the canonical formalism, but there are some key
differences between the two approaches. Indeed, as said, the comoving number density formal-
ism typically assumes that the axions reach thermal equilibrium with the primordial bath. On
the other hand, by directly solving the equation for the distribution function, we might capture
the additional non-thermal axion production that the number density approach misses. Hence
higher values for AN, g may derive from considering non-thermal behaviour of the PSD and ac-
counting for out-of-equilibrium axion interactions, particularly at high values of £;, when the
interactions are not strong enough to mantain full thermal equilibrium, but yet contribute to
the overall axion abundance. Indeed there is an extension of the plot to slightly larger values of
fa»> suggesting that smaller couplings give a significant contribution to non-thermal production.
This is likely due to the more precise handling of the distribution function, which accounts for
the gradual decoupling of axions rather than assuming a sharp transition. Also with this ap-
proach, we note that AN,z remains higher for bottom quark interactions due to his longer

period of coupling.
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6.2 CONCLUSIONS

The effective number of neutrino species /g leads to observable consequences in the CMB
temperature and polarization anisotropy, making it a powerful observable to probe extensions
of the SM containing new light degrees of freedom, such as the axion. Indeed, axions pro-
duced via scatterings with thermal bath particles can contribute to the radiation energy density
of the universe, if they remain relativistic, at the time of recombination. As mentioned, cur-
rent measurements of N,g are consistent with the SM prediction. However, future observa-
tions of the CMB aim to improve bounds on this quantity: this introduces the possibility of
detecting deviations from the SM due to extra dark radiation components in the form of rel-
ativistic axions produced at high temperatures. Nowadays, the best sensitivity we have comes
from Planck satellite (o'(]\l;ﬁr) ~ 0.17), yet in the near future, we expect to move further, up
to (Nz) =~ 0.05 due to the Simons Observatory [16] or o(Nyz) ~ 0.03 with Cosmic Mi-
crowave Background ‘Stage 4" (CMB — S4) [17],[18]. There are also futuristic proposals [19]
with the target o(Ng) ~ 0.0014.

Motivated by these advancements, we evaluate the amount of axion dark radiation produced
in the Early Universe across the stage of EWPT in terms of AN,z; with the hope that ongoing
and future cosmological probes will provide valuable data to test these predictions.

After investigating the scattering processes involving third generation quarks, our results de-
pend on two couplings, C, and Cj. In our analysis, we switch on separately the bottom and top
axion couplings, setting them to one. This corresponds to examining the results as function
of £,/ C;, which quantifies the strength of axion-quark interaction. The scattering amplitudes
and cross sections contribute to the interaction rate that appears on the right hand side of our
equations.

First, we adopt the canonical approach, which solves the Boltzmann equation for the axion
number density. This provides an estimate for AN,z as a function of the axion energy scale
f. (figures s.sb ands.sa). Smaller £, values, corresponding to larger axion-quark couplings,
mean stronger interactions that keep axion in thermal equilibrium with the primordial bath
for longer time, leading to a greater amount of axion dark radiation and, consequently, a big-
ger AN,g. Roughly speaking, this increasing behaviour is significant as long as the axion decou-
pling temperature is high enough to produce the fermions involved in the scatterings, i. e. top
and bottom quarks. Beyond this point, AN,z changes slowly with interaction strength as the
axion comoving number density saturates. Since the top quark is heavier, and so it decouples

from the thermal bath earlier compared to the bottom quark, processes involving the axion-
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bottom coupling provide a larger AN,z On the other hand, given that the cross section is
proportional to the mass, the interaction rate is larger for the top quark, making axion produc-
tion relevant even at larger £,. The results obtained with this method chapter are in agreement
with the ones presented in [14]. It is worth to notice that we are evaluating axion production
without accounting for the backreaction on the energy density. The thermal bath evolves ac-
cording to the Hubble expansion and changes in the effective number of relativistic degrees of
freedom as the temperature evolves, but without any direct energy transfer from axion produc-
tion.

In the last part of this work, we enlightened how a phase-space formalism, which tracks the
evolution of the axion distribution function while accounting for feedback from the thermal
bath, could be applied to the case of axion production across the EWPT. This can be done
by plugging the expressions for the scattering amplitudes, calculated in this work and shown
in D.1, into the equations derived in 6.1. With a numerical approach based on such calcu-
lations, future works may reveal a more refined trend for ANg, offering a slightly different
picture. Our results (figures 6.1b and 6.1a) indicate a plot for AN, that is extending across a
tiny wider range of f, values, suggesting that axion production is relevant even at higher £, or
equivalently smaller couplings, where the canonical method might underestimate the contri-
bution. The last method can portray regimes where interactions are significant but not strong
enough to maintain full thermal equilibrium and axions are produced in smaller quantities but
that can still contribute significantly to dark radiation. Furthermore, we rely on the fact that
both the axion abundance and the evolution of the primordial plasma are self-consistently ac-
counted for, as well as the ability to resolve momentum-specific details, that are averaged out in
the canonical number density approach. This potentially gives us a more complete description.
For this reasons, we believe that this formalism could provide a more accurate prediction for
the contribution of axion dark radiation to AN,z which is crucial in the light of the upcoming
high-precision CMB measurements.

The comparison between the results obtained with the two different methods is visualised 6.2a
and 6.2b, which shows different plots at higher £, but the same behaviour for stronger cou-
plings, when the thermal equilibrium is ensured. Here we also portray the trend for AN, gboth
obtained with accounting for the bosonic nature of axion, i. e. considering a Bose Einstein equi-
librium distribution and the derived statics, than with using the classical approximation, i. e.

the Maxwell Boltzamnn. The deviation of the values obtained with the phase-space approach
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with respect to the number density one at higher £, is shown in 6.3aand 6.3b ¢

005 G=1 Cr=1
—— number density BE
—— number density MB
004 phase space BE
—— phase space MB

—— number density BE

—— number density MB
phase space BE

—— phase space MB

ANes
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(a) (b)
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Figure 6.2: Comparison of trends for ANcﬁr as function ofﬁ,, for top and bottom axion coupling separately, derived with

the number density and the phase-space approach, cosidering the Maxwell-Boltzamnn or the Bose-Enstein as axion equi-
librium distribution.
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Figure 6.3: Deviation of A]\Zgﬁr evaluated with the phase space approach , with respect to the number density result, for
the MB (blue) and the BE (red) cases as function offﬂ.

We finally precise that the results obtained in this last chapter for AN, gshould be considered
preliminary and require further validation. In this sense our analysis lays the foundation for a

more refined study to fully capture the dynamics of axion production across the EWPT.

®Since the bottom quark, being lighter, decouples later than the top quark, axion interactions involving bot-
tom quarks persist until a lower temperature. This makes any minor changes in the axion abundance, coming
from non-thermal production mechanisms, more significant for the bottom quark. Consequently, the effects

captured in the phase-space approach could lead to a more pronounced enhancement in AN for the bottom
quark compared to the top quark.
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The Standard Model of particle physics

This section is devoted to the main features of the Standard Model of particle physics, which is
the most comprehensive and empirically validated theory of fundamental interactions by now.
It is built upon the framework of gauge theories and it is based on the group Gy = SU(3), x
SU(2), x UQ1)y". In the first part we review the path to our modern theoretical picture of the
strong interactions, introducing quarks and QCD, whose Lagrangian is presented in 1.1 and
1.2. The second paragraph resumes the main steps in the construction of our current model

for electroweak interactions.

A.1 Asout QCD

In order to explain their rich spectrum, elementary constituents of strongly interacting par-
ticles were introduced: the quarks (Gell-Mann and Zweig, 1963). Mesons were interpreted
as quark-antiquark bound states, and baryons as bound states of three quarks. At first, three
species of quarks were assumed (up, down, and strange), then the discovery of additional par-
ticles pointed out the existence of other three species (charm, bottom, and top). We refer to

this characterization as flzvor. However this model presented two issues. Indeed free particles

"Here SU(3), is the symmetry group of strong ‘colored’ interactions, i.e. QCD, SU(2); is the weak isospin
that only regards left-handed particles since right-handed are not subjected to weak interactions; the subscript Y
to U(1)y denotes the hypercharge, that, as we will see, is related to the electric charge and weak isospin.
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with fractional charge* were not observed. Then, despite being spin 1/2 particles (which are
meant to obey Fermi-Dirac statistics) , in order to explain the spectrum of baryons, it seemed
unavoidable to assume their quarks wavefunction to be symmetric under the interchange of
quantum numbers. To recover the agreement with Fermi-Dirac statistics, an additional quan-
tum number was introduced, the color: if baryon wavefunctions are antisymmetric in color
and symmetric in spin and flavor, then are antisymmetric overall. This color is nothing but the
charge for a new internal SU(3) simmetry, and quarks corresponds to its fundamental repre-
sentation. Denoting them as ¢, with 7 = 1, 2, 3 being the color index, the invariance of hadron
wavefunctions under SU(3) allows only the combinations: 7,g;, *q.q,q., and £;34°g/g". This
means that physical hadrons are singlets under color and the only admitted ones are mesons,
baryons, and antibaryons, as observed. Finally the bosons associated to the SU(3) gauge field
are called gluons. QCD Lagrangian (1.2) has been discussed in chapter 1.1.

A.2 ELECTROWEAK INTERACTIONS

A unified and experimentally correct description of weak and electromagnetic interactions is
realized by the model, introduced by Glashow, Weinberg and Salam, of spontaneously broken
gauge theory SU(2), x U(1)y — U(1).

A.2.1 THE BOoSONIC SECTOR

Let’s start with a theory with SU(2) and U(1) gauge simmetries (the latter needed since other-
whise SSB would lead to a system with no massless photon). To operate SSB, we introduce a
complex scalar field in the spinor representation of SU(2) and charge +1/2 under U(1) sym-

metry, so that its complete gauge transformation is
i7" iB/2
o — "7

where 7 = ¢* /2 denotes the generators of SU(2) (¢* are Pauli matrices).

The covariant derivative of @ is

Z,
D,p = (0, — igdy™ — 78 B,)p (A1)

*To have baryons with integer charges, we need to assign to quarks fractional electric charge: +2/3 foru, ¢, t

and —1/3 ford, s, b.
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with 4 and B, respectively, the SU(2) and U(1) gauge bosons, and different coupling con-

stants ¢ and ¢’. The gauge bosons sector reads:
1 auy ga 1 72 t t
Lo = =A™ 4y, — SB"B, + (Dup)'Dup — Vp'p)

where 45, and B,, are the field strength tensors making up the kinetic term for SU(2) and
UQ).

Exploiting the unitary gauge, we can write ¢ = \/LE (0, v + h(x))?, were h(x) is a real scalar
field known as Higgs boson and v = x/+/2 is the minimum of the scalar potential ¥(o'p).
From the kinetic term of the scalar field (D, )" D, evaluated at its vacuum expectation value

<¢> = \%(0 U)Tone derives:

107
Lo > S IP (A + 2L + (~g) + ¢B)

We can identify the following vector bosons

R R _ 1 3 1 3,
WF_E(A/‘:FZAF) Zg_W(gA/‘_gBﬂ) AH_W@A‘“_F(?B#)
with my = Sgand myz = 51/g* + ¢, while the fourth orthogonal to Z; stays massless. One
can rewrite the expressions introducing the weak mixing angle 6,, as the angle that appears in the
: 3 : __z : __ £
change of basis from (4%, B) to (Z°, 4), thatis such that cos 6, = Jore andsin g, = e

Exploiting the unitary gauge we can also see that expanding the scalar potential we get a mass

term and self interactions for / field:
f N o2 ¢ t N2 1 5, 3 1.y
Vie'e) =o'l —Ap'p)” — Smyb” —dob” = 22h

where 72;, = v/2v denotes the mass of the Higgs boson.
Finally we note that the expansion of the kinetic energy for the scalar in unitary gauge, besides
rising the gauge boson mass terms, yields the interactions of the Higgs with other bosons:

2 2 + — 1 2 7u h\?
Log = =(0,h)* + [my W W, + Sm2Z AR (1 + —)

1
2 v
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A.2.2 GAUGE COUPLINGS TO FERMIONS

The couplings of gauge bosons to fermions rise from the fermionic kinetic term. Let’s first
write the covariant derivative for a fermion belonging to SU(2) and with charge Yunder U(1),

in terms of the mass eigenstate fields:

D, =08, — iS5 (WITH + W T) — i—S5—2,(T — 5in 6,2Q)

\/§ 2 “ cosf, * w _M/zQ (A.2)

with 7% = 2(T'+/T%) = }(¢' +i0*),and Q = T°+ Y(where 7%, 7% and 7° denote the SU(2)
generators). We need to specify the quantum numbers of the fermion fields accounting for the

fact that the /7 boson couples only to left-handed helicity states of quarks and leptons. So we
assign the left-handed fermion fields to doublets of SU(2): E; = ( = ) and Q; = (d )
€L L

while making the right-handed fermion fields singlets under this group #, dx, ex.
Writing for the covariant derivative the expression A.2, we recover from the kinetic term | v viby

the Lagrangian for the electro-weak interactions of quarks and leptons:

Ly = EpidE; + epider + QLlﬂQL + apifug + driddy
+g(WI ™+ W+ Zf,) + edi
where

1

Fr= T(W‘q + arydy)

= e+ difu)

fe s () Dy
Fon = %j W yQy

A.2.3 FERMION MASS TERM: THE YUKAWA SECTOR

Since the left- and right-handed components of our fermion fields have different gauge quan-
tum numbers, a simple mass term would violate gauge invariance. Therefore we must again

invoke the scalar field ¢ realizing spontaneous symmetry breaking. We should recall that there
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are known to be three generations of quarks and leptons, so that in flavor space we organize the
matter fields in triplets, for instance #; x = (, ¢, )7 z. So in the following discussion we will
denote with 7 the flavour index for each of them, running from 1 to 3.

We can write the following gauge invariant lagrangian:
L, = —2E gy — 2)Q, pdy — 20Q, ot + b
Where we define ¢* = fbgbz. After SSB this sector reads:

_b+v

V2

where the 17s are complex flavour mixing matrices, violating CP.

L, = (V& dy + 20d, dy + 275 i)

These can be decomposed by mean of unitary matrices U, and W, such that lq = U,D, th,
where D, is a diagonal matrix with positive eigenvalues. Then performing a change of variables
9k = Wigkand ¢, = Ujq}, thatis converting the quark fields to the basis of mass eigenstates,

the previous expression reads:
h i~ i I i—i 7
L, =— (1 + —> [mgc‘LeR + myd dy + m,uuy
v
so that the quark masses are defined as 7}, = % Y,v, where D7 = y. In this basis, the mass
terms and Higgs couplings are diagonal in flavor and conserve P, C and T.
However because of unitarity of U, and ¥, matrices, this change of basis does not affect all
the other SM sectors but the charged weak interactions that mix #; and d;. Indeed the current
that couples with the I7* boson takes the form:
P iU =
u 74 \/5

V2

where V; is the Cabibbo-Kobayashi-Maskawa (CKA{) matrix, whose oft-diagonal terms allow

) Vidy

weak-interaction transitions between quark generations. It is worth to say that V is a general
unitary 3 X 3 matrix. Therefore it has 9 parameters, thatis 3 rotation angles (i.e. the number of
parameters of an O(3) element) and 6 complex phases. Through rotation of quarks,’ 5 out of

6 phases can be removed. The remaing phase, that makes some couplings of the 77 to quarks

3If quarks are rotated by an overall phase, the Lagrangian stays invariant: the baryonic number is indeed a
symmetry, associated to a coherent phase shift in all the quark fields.
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complex, is a source of CP violation in electroweak sector.
By sake of simplicity, we assumed no vz and no mass for neutrinos, implying no transitions

between leptons of different generations.*

#Since one can exploit any unitary matrix in order to represent the neutrinos in the mass basis, we are free to

choose U, = UI .
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Scattering Cross Sections

In this section we specify the procedure to compute the cross sections for the examined scat-
terings and give their result in the case below-EWPT. Being dark radiation, we will neglect the
axion mass in our discussion. Let’s first give some useful ingredients. Considering a process
of the kind 1 + 2 — 3 + 2 we define the Mandelstam variables in terms of the involved four-

momenta:
s=@tp) =@+ t=-p) =@k ==k = (2—ps)
with the usual constraints + # 4+ # = ), m?. The Lorentz invariant cross section is:
L [ iPao®
0142344 = 47 |M|"dD (B.1)

where |M]|? is the cross section averaged squared amplitude, and I is the flux factor, that in its

manifest Lorentz invariant expression reads:

_ 20mi A m3) | (mi—m3)?

S S

S
I= Plz'l’%—mlzmﬁzz\/l
6

5



The phase space for final state particles reads:

dp, dk
(27m)32E5 (27)3E},

dq)(z) — (27[)494@1 +p2 _P3 _ k) = (27[)454@1 —|—P2 —p3 — k)dn3dnﬂ

(B.3)
Since we are free to perform the integral over the phase space in any frame as long as the final
result is given in a manifest Lorentz invariant form, we give the expression for d®® in the

center of mass (COM) frame:

dQ m3
40 = s (1) (5.9

Now we proceed to sketch the computations to derive some specific binary scatterings cross
section both above and below the EWPT as a function of the variable s, that allow us to outline

a general procedure.

ABOoVvE EWPT

Let’s focus on £ — y,4, then the result can be easily generalised to all the scatterings presented
in 4.1. We remind that here all particle are taken massless. Using the coupling z'y,fCtz"E;(O?(l -

y° )t extrapolated from 4.2, the amplitude for this process is simple:

_ C,
Mt?—>;[oa = &U@Z)<1 - ?;)”@O
2fa
We then the square, average and sum over initial and final polarizations this expression. Here
the resulting fermionic trace can be easily solved exploiting known properties of y-matrices
obtaining finally:
_ 1 1y
MP* == x =222 x 8p, -
Since the particle are massless 2p; - p, = s and the cross section formula presented above gets

simplified. Combining these facts one can check our final expression:

. _lyg
x4 647[]%
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Figure B.1: Feynmann diagrams for the process #f — 2% including t and u channel contributions.

B.1  SCATTERING CROSS SECTIONS BELOW THE EWPT

In this section we will present the analytical results obtained for the cross sections of axion
scattering with third generation quarks below the EWPT. Firstly we give the computations
details for two of them to outline the general framework: 7z — Z%a, that is a process where
we have two initial quarks and one boson in the final state, and t7° — ta, that provides an

example for the case where the boson is in the inial state.

B.i1 7 — 2%

If we draw the Feynmann diagrams for this process, we see that it comprises the contribution of
tand # channels, that is a general feature for the considered scatterings of this kind. We derived
the axion-quarks couplings in 4.5, whereas we read the coupling of the quarks-Z vertexin A.2.2
where the axial and vector coefficients need to be specified for the top quark. The amplitude

therefore reads:

. Cl‘ * z +mt . . 2 1
My z00 =27~ 5) 2f /4(103 k”(ﬁz [7}; (9{ % ) W(Z_sze’”g_z )—|—

CRNYERE W EVETE S

%—Wl

The squared amplitude reads:

_ 1 7 P3ub3e
M|? =——=__ | —g. i g T
| |tt~)ZOa 4 cos? €w4ﬁ ( Gua + 2 )/6 /e/;

z
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where we have already performed the sum over polarization vectors and denoted with 7% the

trace over Dirac indices:

19 < gt ) (e + ) Ly B g, 1 1)
9= m) (77 P ) 4 e+ ) i m) )

t

where we absorbed in gj- and g4 the axial and vector coefficients. We evaluate this trace using
Dirac algebra and contract all the indices, then rearrange our expression for |M|? in terms of

Mandelstam variables’. In particular, setting for cos 8, = mZ /m2 we have:

1 ¢m 1
M 0, = 2 iszkaa B — (e — 1) (2m? (18mems — SImims, — Imimot — Imimyu+t

SOmmiyt + SIm;myu — 18m mytu — 32mymy + 64mymys — 32m7,ss + 40mpms, — 80mypmiys+

40mpymLst — 17myt™ — 25mytu — 17myu” + Imittu + Imitu®)

Then we use Mandelstam relation # = 2m? +m? — t— s to rewrite this espression as a function

of tand s only. Having defined & the scattering angle in the COM frame, we express # in terms

of sand &
tCOM:mf— e \/ ( \/5—4m2cost9)

and we plug it in the expression for |M|?. We are now ready to perform the integration in the
COM frame exploiting the B.4, where we set 73 = m. Finally accounting for the flux of this

process:

s 4m?

]?t—>Z°a = E 11—

k)

we find a Lorentz invariant expression for the cross section:

Cg'm? (s — m%) 5 = m;
Tt— 20 IISZWﬁmszWZ% §3/2 ,—s — 4mt2 P 4}%[2 an P ( mZ( m, mW)

+ 32my + 17ms) + Im(s — ZWL%)))

(B.s)

"This is done by mean of FeynCalc Mathematica Package
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B.i2 t2° >t

ZO

Figure B.2: Feynmann diagrams for the process tZ° = ta including s and u channel contributions.

The amplitude accounting for s and # channel contributions is the following:

mt

Mgy, =—=—

e 2f
G — sin’ ew% - Z;ﬁ) M ”f] (1)

3 u — m?

and the unpolarized squared amplitude therefore reads:

1 8 P2upra
My, = -—>— —gn+ ke, s 5
| |t —ta 6C082 ew%( g}w‘ 2 4

z

with:

5% <1t 4 m) (g VL Ly gy R ) 0, )

t

(p5 + my) (7”7;@{—7;%7’“@V+£A7;) + (g +gAVS)W7’V};)}

— 2
mt
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Analogously to the previous case we can solve this and express the result in terms of s, z and # *:

2 6,2 4 4 4 2 4 2
2m; (18m;my — S9m;my — Im,mys — Om; myu+

M) _ 1 gmz 1
Dt = G o Af Sk — 5) (mE — )

SOmimis + SOmimyu — 18mmsu — 32m'5,ms, + Ghmiymt — 32m,t0 + 40mims — 80m7,mit+

40mymut — 17mys™ — 2Smysu — 17mpu* + Imzs*u + Imsu™)

Then we apply again the Mandelstam trick and introduce the scattering angle ¢ in the COM.

This time the kinematics of the process yields the following relation between # and s:

S af L S N R G SR

25 25

Since the top quark is in the final state we set m3 = m; = m, and m, = m in B.4 and B.2.

After integration, our final Lorentz invariant expression reads:

Cg m; (s — m;)

345677 2m2 miy/ (m2 — m + 52)2 — 4m2s

Ti20 17 =

( =25 (—m% (9m? + 40m?,) + 32mty, + 17m3%)
byt = 2 (4 5) + (% — 5

m? + /(s — (m, — m.)?) (s — (m, + m,)*) —m? +s

+3§ m2 3m2+40m2 _
N T e B B

32my, — 8my + (m, — mz)(m, + myz) (32m/{/V — 40m3,m2 + 17m}) + 9mé52)
(B.6)

B.2  OTHER CROSS SECTIONS

Now we present the cross sections for the remaining processes. First we list the ones where we
have two fermions in the initial state and one gauge boson in the final state. In the following

q=t,b.

ZZCZ 2
_ 4G )tanh_l( (B.7)

Tagrre = 4rf? (s — 4m§

*We can check that our calculation is satisfying crossing symmetry property. Indeed in order to obtain
M,z0_,,, we need to replace in the matrix for the previous process My, », the momenta p, — —p3 and
p3 — —pa, that corresponds to switch # — s. Then, once accounted for the different polarization in the initial
state and for an overall minus sign since we are crossing one fermion field, this can be clearly seen if we compare
the two expressions.
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gZCfI mg 4m?
cosgn = b tanh™! 1-—1 B.8
s onfs (s — 4mj) wan < s ) (B.8)

202 2
YyCq (s —mp) 2 11 4m,
Tgg—sha = 64727% o am2) s(s — 4mZ) — 4m; tanh 1— - (B.9)

Cemy  (s—m3) s my
= 4 tanh™ (/1 — =2 | (—m3(9m; + 4m]
T S 2mfonimd 5 fs— amE \ \ s — Al ;) (maOmi + dmiy)

+ 8mt, + Smy) 4+ Ims(s — 2m%))>

(B.10)
gz(“ m%/V) 2 2 2
o, = ami((s—2m
e iy (< (i 1 3) + g () ) (B 2]
\/—Zmi (m2 +5) + m} + (s — m2) > + 25 (—mj + m] + 2m3,)
m2 —m? + s
coth™ b L )+ Cfmf((; — Zm%/V)
 —2m3 (m? +5) + mp + (s — m?)?
\/ 2m} (m2 +5) + mj + (s — m2) 2 + 25 (mj; — m; + 2m3y) (Ba1)
coth™ g s ) — dscymycm’
—=2m? (m2 +5) + mp + (s — m2)?
(coth™ g s +
/=2m3 (m2 4 s) + mp + (s — m?)?2
coth™! —mj +m; +s )
—=2m? (m2 +5) + mp + (s — m2)?
Finally the cross sections of scatterings involving bosons in the initial state are shown:
y g g
Qqu 2 mz 5
_ q q 2 2 2 4
Tgy—rqa = 322 25— m;) (25 log (m_é) — 35+ 4mqs mq) (B.12)
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Cog? m2 5
s q 2 2 2 4
Tg—sqa = 1927 (5 = m§> <25 log (;§> — 35" + dms — mq> (B.13)

C;}/; S— m? 2 2 2 2
s = G = ] |7 75 Wl O Pl )
2 2
2omilog ( B Vs — (my — my)[s — (my, + my)?] + 5 — m) + 7@)}
1 Vs = (my — my)?[s — (my, + m,)?] — 5+ mj — m?
(B.14)
ipy = G m3 (s — m3) (—252 (—mZ (9m7 + 4m3y,) + 80m3y, + Sm3)
—rboa
3456afs iy lm =i+ 37 =4\ S dt (2 4-9) + (2 — o)
2 — _ 2 _ 2\ _ 2
log mi + /(s — (my — m.)2) (s — (my + m,)*) — m% +s 32 (3 + 4,
my — /(s = (my — mz)?) (s — (my + mz)?) — m3 + 5
8myy, — 4my) + (my — my)(—4mimy, + 8myy, + Smiy) + 952mé)
(B.15)
_ g —m?)
OtW——ba =

4_ 2 2
3847 m 25 ((mtz_mVV2+5)2—4mt25)(\/WZt 2m?2 (mw? +5) + (mp? —s)

(cr’my” (m* 4+ m? (my” — 25) = 2mp* + mys +5°) + 2c,6m>m,”

(=m + mp” + 35) + ¢m (my> (m” — my” — 35) + s(m,”—

m2 — \/m/* —2m2 (my? +5) + (mp? —5) —mu?+s
m? + \/m/* — 2m? (my? +5) + (mp? —5)" —mu? +5
(2csmy” + ¢, (—my” + m” — 2my?)))

mp” +3))) + 2cms" log

(B.16)
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gz (s — mr2>

3847m s> ((mbz — mp? + 5)2 — 4my%s
(¢.*m (m/* + my? (mW2 — 25) — 2mpt + mpts + 52) + 2c,cm my’

(=my® + mp” + 3s) + o*my>(m/> (my® — my” — 3s) + s(my”—

my* — \/Wl/* —2m? (mp? + ) + (mp? —5)* — mpP +5
my? + \/mb‘* — 2mp? (my? +5) + (mp? —5)> — mp? +

(Zthz + ¢ (—mtz + m,* — 2mW2)))

Towt —ta =

) (yfmst = 2mi2 (m? +5) + (ma? — 5

my” +5))) + 2c;mys” log

(B.17)
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Boltzmann equation

The Boltzmann equation represents a fundamental tool to track the evolution of particles in
the Early Universe. In this section we will derive it for the number density and adjust it for the
case of binary scatterings.

Given the distribution function f{x*, p*) for our particle, that in general will depend on its
spacetime position and its four momentum, we can generically write the Boltzamann equation

L] = Clf] (C.1)

On the left hand side we have the Liouville operator L, that represents the evolution for f'due
to spacetime geometry: denoted with A the affine parameter which parametrizes the particle’s

trajectory in the spacetime, it reads’:

A of A Of [ ,0 .0
LA = " 5w ™ d o (p{?_rwpﬁapu)f

"We used the fact that for the physical four-momentum p* = 4 (e have the geodesic equation:
d
p" +1* D =
where I}, = 5 Yk (37 o + = — ad%) is the affine connection.
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In a homogeneous and isotropic Universe, f turns out to depend only on the time and the
modulus of the momentum, or alternatively on the whole energy, i.e. f{#, E). Then in a FLRW

metric the Liuoville operator becomes®:

o .0

LAt E)| = E= — Hp" ==

B =E; —Hp' 5
where H = é is the Hubble parameter. Since we need an equation for the number density, we
integrate both sides of C.1 in d°p, and simultaneously multiply by @ and divide by £. Then

we require a little bit of work? to obtain:

a(t) + 3Hn(r) = —5— / d3pM (C.2)

(27)3 E

The right hand side takes into account all the possible interactions. Indeed C is known as the
collision operator: we immediately see from C.2 that if we have C = 0, meaning that the
particle does notinteract in any way, than the RHS vanishes and the equation yields (¢) ~ a7,
as we expect in an expanding universe. We are interested in tracking the number density of

axions 7,(¢) involved in collisions of the kind 1 4+ 2 — 3 + 4, so the collision operator reads:

RHS = / ATLATLATTdTL, (27*)0" (o1 + pa — p3 — k)| ML ifs (L) (L4 o) —
(M5 nfife £ AL £ 1)
(C3)
where dI1; = % and |M|* denotes the squared amplitude that is not yet averaged over

the initial polarizations. The terms of the kind 1 & £; account for quantum correction due to

*For a FLRW metric we have I’ 2- = aady;,

3The first term of the LHS is immediate:

(2i)3/dpaﬂgtE 6t( 27)3 / PﬂtE) = (1)

Instead exploiting EdE = pdp and integrating by parts, the second term can be rearranged as:

P 2 [ao -

[ _TC __
P

)3 /dppz/dQ = —3Hn(?)
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the statistics of the involved particles*. Neglecting them and supposing temporal invariance so

that [M|},_,;, = |M]3,, 1, the expression simplifies to:

RHS = / AL ATLATLdIL, (27*) 3 (b + p2 — ps — R M55, (s — i)

If we assume kinetic equilibrium is reached, meaning that collisions occur rapidly compared to
the time-scale under which conditions for our particles are changing, we can use for the phase
space distribution the equilibrium one, that becomes /' = m ~ ¢~(E=#)/T once ne-
glected quantum statistics. The chemical potential can be taken to be ¢, ~ 0 whenever also
chemical equilibrium is reached, meaning that both forward and backward reactions for parti-
cle 7 are efficient. This is the condition of thermodynamic equilibrium, that we will suppose
for particles 1, 2, and 3 in the thermal bath to solve our equation. Exploiting this assumption
plus the conservation of energy, the term 15 — afs = 151 (1 — n,(¢) /ns ). In a compact form

we have:
74(2) + 3Hn,(t) = Cryassia(n — na(2)) /0l (C.4)

We stress that this equation has been derived under the assumption of kinetic equilibrium

(as well as a MB profile) for the axion particle.

C.1 COLLISION OPERATOR FOR SCATTERINGS

For a scattering 1 4+ 2 — 3 + 4, where we take particles 1 and 2 to be in thermal equilibrium,

we obtained the following term in the collision operator:

Ciyas34a = /dHldHZdH3dH4(27r4)54(p1 2 —ps— A IMIE, 5, (Cos)

Here the squared matrix element is summed over both initial and final polarizations, without
taking any average. We can express the cross section formula B.1 in terms of Lorentz invariant

relative velocity between the particles 1 and 2, defined as:

— \/(pl 'PZ)Z - m%m% _ )'1/2(57 my, le) (CG)

PP P12

U12

“4Phase space ‘cells’ for final states may be already occupied, and fermions and bosons are less and more likely
to occupy the same states, respectively. This leads to Pauli-blocking (- sign) and Bose-enhancement (+ sign) phe-
nomena [15].
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wheres = (p1+p2)* and A(x, y,2) = [x— (y+2)?|[x— (y—2)?]. Indeed provided that the flux
can be written as / = pl - p,v1, and accounting for the phase space B.3, the Lorentz invariant

cross section reads:

1 1
Q192 4p1 - pavin

O14234a =

/ ATLATL | M|}y s, 27) 8 (o1 +po —ps — k) (C.7)

where we divided by an overall factor of ¢1¢, because here the squared amplitude is not averaged.

Then the C.5 can be written in terms of a thermally avraged cross section as it follows:

Cl+2—>3+a = 2g1gz/dn1dnzﬁqf§qll/2(5> my, mz)f71+2—>3+4 (C-S)
The integration measure is in polar coordinates is:

P1*d|pi|dQy |p2*d|p2|d Qs |pil|p2]
I1,dI1, = = EdE .
d 1d 2 (27[)32E1 (271’)32E2 30 d 1d zdcosﬁ (C 9)

Here the integration over three out of four angular variables has been trivially performed and
we have identified the fourth one with the angle & between the initial momenta. Moreover
since the particles are on-shell E,dE; = p,d| p_;| Now it is convenient to perform the following

change of variables:
E, =E+E E_ =FE -k s=m; + m5 + 2(E.Ey — |pi]|pa] cos 6)

leading to the measure:

dE, dE_ds
1287+
while the integration region (E; > my, E; > my, | cos 8] < 1) is delimited by:

dll,dll,d cos @ =

£ = Eu(mt —m3) o _ 26 mym)

$ 2 Smin = (miz + Wl%) E, = \/~_Y (EQ _5)1/2 — 5
+

Since the product £//5! = ¢~%+/T depends on E, the integration over dE_ is straightforward:

1
C1+2—>3+a = :fz% X d&;l(i, my, mz)a'1+2_>3+d(5) \/\/dE+€_E+/T(Ei _5)1/2
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Integration over dE yields a Bessel function, leading to our final expression for the collision

operator:

1
Cli2s34a = %T/ dfﬁl(% my, m2)71+2a3+a(5)K1(\/}/T) (C.10)

Combining this last and C.4 we finally obtain s.1.
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Code Implementation for Boltzmann

System Solution

This appendix complements Section 6.1.2 of Chapter 6, where the solution to the Boltzmann
system 6.7 for axion dark radiation across the EWPT, using the phase-space approach, is de-
rived.

In the first section, we list all the analytic expressions for the amplitudes [A(s, £)|* for the
scatterings considered in this work, which contribute to the collision rate 6.6. Following that,
we provide the main steps of the code that we used to derive numerical solution for 6.10. Ad-

ditionally, we provide some insights into the phase-space analysis.

D.1  SCATTERING AMPLITUDES

The generic expression for the amplitude of a process above the EWPT involving a quark ¢ =
t,bis:
‘Mljé—);(a - C;}/;S/ (4ﬁ) |M|521;(—>qa = _C;y;t/(2ﬁ> (DI)

On the other hand we have the following amplitudes below the EWPT:

ZC €2m2f2 2C2€2m2t2
|M2 — Qq 7 q |M|2 — Qq q q (DZ)

A f(m2 —o)(s+t— m2) T f(m2 —s) s+t — m2)
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22,22 22,2
ME 4ngfmq5 ME_, - ngm £
G ﬁ9(m§ —t)(s+1—m?) v fa6(ml —s)(t+ s —m3)
(D:3)
e y2C2 (m,am2 — mi;(m + 1) +s(m — 2m t+t(s+1)))
e 32/2 (mZ —t)(mj +m? —s5 — t) b
;P y2C2 (mbmj — mbt(m +5) + t(m — 2m s+s(t+3))) (D-4)
T 16 (m3 —s)(my +ml —t— 5)
C*m3
\M|%sp, = —‘iﬁtmzz <2mf(9mf(2m} — mys) + ImZ (mi(s + 4) + 2mist)+
a”rw
32my,(my — 5)* — 40mT,(m3, — mzs)* + 17mS, — 2m (175 + 9¢) + m (175> + 275t + 18£*) —
1
Imst(s + ¢ >
mzts +1)) Imy(m2 — t)(mt> + m% — s — 1)
C2 2
Moy, = if;:;z (2mf(9mf(2m} — myt) + Im> (m(t + 4s) + 2mts)+
a’’tw
32m(my — £)* — 40mi(ms, — mzt)* + 17ms — 2mS (17t + 9s) + mi (176 + 27t + 185%) —
1
Imits(t >
st + ) Imy(m2 — s)(me> + my — t —5)
(D.s)

82



CPm?
|M|§;_>Zoﬂ = —‘ifzbmzz (2m§(9m2(2m§ — ms) + Imy (mi(s + 4t) + 2mst)+
a’’""w

8myy(my — s)* — dmiy(my, — mys)* + Sml, — 2mS(5s + 9¢) + my(Ss* + 275t + 1847) —
1
Imyst(s + t )
mstls + 1)) Imy(m; — t)(mb? + m% — s — t)

2 glC%m%
|M’bZO—>Im = 24]%’”7%1/

(2m2(9m2(2m§ — mt) + Imy (mi (¢ + 4s) + 2mts)+

8myy(my — t)* — dmy(my, — mzt)? + Sml, — 2mS(St + 95) + mi (5% + 27ts + 185%) —

9m%ts(t + 5))) !
Ims(m; — s)(mb* +m% — t — )
(D.6)
\M% s = g (Cﬁmﬁ((—mﬁ — myy + s+ t) (my(my+
WA 8 faiml,(t — m2)(—m2 — mEy, + 5+ ¢)

m? —2(s+ 1)) +s(t — m?) + 2m3y)) + Cm((t — my) (m3(m; + m?> — s — 2£) + s(—m>+

s+ t))) + ZC;,miCtmf(J — m%/V)z)

2 _ _gl 22 2 2 2 2
M40 = 12 (s — m2) (—mi — iy £ 1 5) <Cbmb<(_mb — myy +t+5) (my(my, +

i = 2e+5)) + tls = m) + 2miy)) + Comi (s = my) (i (i, + mf — £ = 26) + s(=mi+
£45))) + 26 Conl (e = mi%y )

(D7)
As done for the corresponding cross sections (4.3), a good check is ensuring that in the limit

of vanishing masses the scattering amplitudes below EWPT involving the longitudinal compo-

nents of massive gauge bosons coincide exactly with those above. This is easy to see:

o neutral annibilations:

C? yzy
T
a
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* neutral scatterings

|M|t2;(0—>m + |M|t2;f0—>m - |M|t217—>m + |M|z222 =

—rta

2 2 2 —Chyit
t)t
:‘Ml%—ia + |M‘f;(0—>?2¢z = |M‘fb—>?a + ‘M’ZZQ—ﬁ‘a = fz
a

* charged annibilations:

(C7 + Coyy)s

2 2 _ 2 2
M| F My o = MG, + M, 2P

th—y. a

* charged scatterings

|M|t2)(*%bﬂ * ’M@H%m - |M|t2W*—>ba + |M|§W+—>m -

: 2 2 2 —(Coyt + Gyt
=M, g M, = IME g+ IME, = —— tﬁ

D.2 Tue CoDE

In this section we point out how Python could be used to model the evolution of the dark
radiation phase space distribution (PSD) due to interactions with the thermal bath, which in-
volves numerically solving an integro-differential system. Python is particularly well-suited for
this task due to its extensive ecosystem of scientific libraries, such as NumPy and SciPy, which
enable efficient numerical computations, differential equation solving, and data manipulation.
The combination of these tools makes Python a convenient and powerful choice for complex
physical simulations, such as tracking the behavior of dark radiation over time.

The first step is deriving the collision rate 6.6 for all scattering amplitudes presented in the
previous section. While for amplitudes above the EWPT, this integral is analitically solvable,
for the ones below the solution has to be fully numeric.

In what follows the create_rate_function(Msq, ml1, m2, m3, gl, g2, g3) takesas
input arguments a symbolic expression for the amplitude |M(#,s)|%, alongside the associated
masses and degrees of freedom. It returns a create_rate_function(T,p) that can be eval-

uated at a given temperature and momentum.
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The integral 6.6 can be solved for each process and evaluated for values of temperature 7'

and momentum k. The temperature covers the range [1, 245] GeV, for the sum of rates valid
below the EWPT, and [245,10000] GeV for the ones above. The momentum, instead, has to
be taken in a logarithmic spaced interval, such as ET € [107%,10%] GeV/, to carefully select the
relevant momenta. Then the rate values obtained in this way can be interpolated over a grid
[T, k/T] using RectBivariateSpline, resulting in two functions. Finally the rate C(k, T)
that enters the right hand side of the first two equations in the system 6.7 can be defined in
terms of an 1 f statement that switches between the interpolated functions obtained above and

below 245 GeV and is set it to zero once 1 GeV is exceeded:
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The top and bottom-axion couplings have been set to one: C;;, = 1. In what follows we re-
port the definitions of all the quantities and constants that feed the Boltzmann system. The
letter X is denotes generically dark radiation, in our case standing for axions. The value the
temperature of the thermal bath 7" can be obtained the evolution variable 4 through an it-
erative implementation. A key ingredient for the definition of the relationship 7(4) is the
function for the evolution of the effective number of the energy density degrees of freedom
g_star_rho_interp(T). This comes from interpolation of tabulated data of T and g;(T).
The same procedure is adopted for the function for the equation of state parameter evolution

w_B_fun(T).
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Finally the code provided below is designed to track how the distribution of axion dark radia-
tion changes due to scatterings with thermal bath particles as the universe expands, specifically
across the Electro-Weak Phase Transition. The momentum space is divided into logarithmi-
cally spaced intervals, referred to as momentum bins. This binning approach allows the model
to compute the distribution function across a wide range of energies, providing a detailed pic-
ture of how dark radiation evolves. By summing over these bins, the code performs the neces-
sary integrals to calculate quantities such as the energy density of the axions and the thermal
bath.

To carry out these integrals, the trapz function from the NumPy library is employed, which
uses the trapezoidal rule for numerical integration. This method is particularly effective for
integrating discrete data points, which is common in simulations involving momentum bins.
Additionally, the odeint function from SciPy’s integration module is used to solve the system
of differential equations over a range of scale factors, starting from an initial condition where
dark radiation is absent. This allows the model to dynamically evolve the dark radiation distri-

bution as the universe expands.
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We show the results for the PSD fx(g, 4), where the scale factor is given at given temperature

A(T), as function of the cohomoving momentum in figure D.1, both rescaled in a convenient
way in order to compare the shape of the PSD at given temperatures’.Here we use a definition

for the dark radiation temperature?, that does not rely upon the assumption of thermalization,

"The multiplicative factor (gx/27%)g> is needed to identify the integrand whose integral leads to the dimen-
sionless comoving energy density Ry. Indeed we divide by the quantity Ry to compare the PSD at different
moments. Initially, before the production processes become efficient, the value of f is rather small, and it grows
later on. Thus we are comparing the shape of the PSD at different times and not the overall normalization. The
choice of the variable on the horizontal axis is also convenient because we want to investigate when we achieve
thermalization.

*Applying this to the expression for f;,, one finds that the dark radiation temperature is equal to the one of
the thermal bath, i.e. Ty = T.
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extracted from the PSD as its second moment [1]:

Ty ¢ [ daq*fx(q, A)\ V2 5
Tdd) = 7<f dqqux(qaﬂ)> (2v3)

We compare the fx(g, A) with the reference thermal distribution, for which we take the MB
type: fogx(q,4) = exp (T1q/(ATx(A))). We notice that already at early-times the PSD, that
appears to be higher and skewed towards higher momenta, reaches a thermal profile, for lower
values of £, such that the interactions are efficient. This is likely due to the enhanced produc-
tion rates in the unbroken phase, where quarks are massless and there is no thermal suppression.
As the temperature drops and the EWPT occurs, the quarks gain their masses and the Universe
gets less dense, leading to a lower production. Finally, the late-time PSD, when axion produc-
tion has ceased, is the free-streaming one. Nevertheless also smaller couplings , i.e. values of £,
such that thermalization is never or barely achieved, could give a contribution to non-thermal
axion production. Furthermore this approach could possibly capture momentum-specific be-
haviours, that in general are neglected in the canonical number density approach, that averages
over all momentum modes and tends to smooth out the variations.

We conclude by stating that the computational implementation sketched in this appendix
should be considered preliminary and requires further validation as well as the employment of

more accurate numerical methods to ensure robustness and precision.
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Figure D.1: Plots offX as a function of the comoving momentum for production via top- and bottom-axion couplings (with
fﬂ = 106, 109). Various colors correspond to different scale factor values, i. e. different bath temperature T. We compare

qITiT=A)

them with the thermal distribution with temperature TX(A) (dotted black lines).
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