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Introduction

Theoretical frameworks for axion-like particles address outstanding questions in the physics of
fundamental interactions. An astonishing experimental effort paves theway toward discoveries
that could lead to remarkable advancements in the understanding of both particle interactions
and the composition of our universe. Indeed the QCD axion provides an elegant solution to
twowell-knowndrawbacks of the standardmodel (SM)of particle physics: the strongCPprob-
lem and the observed dark matter abundance.
The introductory part of this thesis will present the strong CP problem and how the Peccei-
Quinn mechanism provides a solution to these two open questions. The core of this work
will be to investigate a complementary manifestation of the axion on cosmological scales. In
particular, we will study an additional dark radiation component in the form of relativistic ax-
ions generated at high temperatures in the Early Universe, specifically around the ElectroWeak
Phase Transition (EWPT). Thermal production could lead to a potentially observable axion
contribution to the cosmic energy budget, conventionally parameterized by an effective num-
ber of additional neutrinos ( ΔNeff).
The main goal of this thesis is to predict the axion contribution to ΔNeff. We will consider the
relevant processes for the thermal production of axions and derive explicit expressions for cross-
sections. Wewill compute them above and below the EWPTandwill connect the results across
this threshold. With these quantities then we feed the Boltzmann equations to derive ΔNeff.
The last part of this research work involves the possibility of investigating the thermal produc-
tion of axion dark radiation in momentum space. More specifically, we will introduce a new
formalism based entirely on phase space analysis, presented in amodel-independent way in [1].
We will apply this general formalism to axion dark radiation and outline the necessary steps
needed for a phase-space analysis. So we provide the frameworks for future works meant to ex-
tract more accurate predictions for ΔNeff. Current observations align with the SM prediction
for ΔNeff, yet upcoming experiments promise to refine bounds on this parameter and poten-
tially discover deviations from the SM. In this context, the implications of our findings could
be a significant step towards a more accurate prediction of the axion dark radiation impact
on the effective number of neutrinos. If detected, this contribution could help to validate the
axion’s role in the ongoing exploration of physics beyond the SM.
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In Chapter 1, we present the Strong CP Problem, a fundamental issue in Quantum Chro-
modynamics (QCD), which is our model for strong interactions. The problem arises from a
contradiction between experimental results and theoretical expectations: the apparent viola-
tion of CP symmetry in the QCD Lagrangian, quantified by the θ term, is not detected exper-
imentally, and one has to invoke a surprisingly small θ parameter to account for experimental
bounds.
In Chapter 2, the axion is presented as a solution to this problem. The key ingredient is a new
scalar field, a, introduced within an effective field theory (EFT) framework, characterised by a
suppressing energy scale fa which sets the limit to its validity. The low-energy behavior of the
axion potential drives the field to the CP-conserving minimum, effectively setting the θ term
to zero, thereby dynamically solving the Strong CP Problem. We complete the discussion with
the main features of some candidate models in the search for an axion Quantum Field Theory
(QFT) that could serve as the high-energy completion of the axion effective Lagrangian.
Some cosmological implications of the axion are briefly explored in Chapter 3. In particular,
its production as a cold relic through the misalignment mechanism, which makes the axion a
viable dark matter candidate, is presented. Furthermore, axion interactions with thermal bath
particles can lead to a population of axions that, if the mass is small enough, can still be rela-
tivistic around recombination and contribute as an additional component to the radiation at
the stage of CMB formation—this is known as axion dark radiation.
Chapter 4 is devoted to exploring the thermal production of axions across the electroweak
phase transition (EWPT). Starting from the axion Lagrangian, we derive the necessary cou-
plings and collect the relevant scatteringprocesses involving third-generation fermions (top and
bottom quarks). Explicit expressions for the cross sections both above and below the EWPT
are provided and analytically matched at this threshold.
In Chapter 5 we solve the Boltzmann equations for axion (comoving) number density using
the canonical approach. First, thermally averaged cross sections are evaluated both above and
below the EWPT and then smoothly connected. Then, the numerical solution is derived and
connected to ΔNeff. The results are summed up in some plots showing ΔNeff as a function of
the axion scale fa for top and bottom couplings.
The last chapter (6) is devoted to the perspective of a phase-space anlysis. We present the steps
to build an integro-differential system that allows tracking the phase-space distribution func-
tion’s evolution in an expanding Universe, while accounting for the feedback on the thermal
bath as well. This formalism, when adapted to the case of axion dark radiation, serves as the
foundation for a phase-space analysis aimed at providing a more detailed and accurate predic-
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tion of axion production across the EWPT. In particular, we implement a code using Python
in order to numerically integrate the Boltzmann system. Given this, new preliminary results
for ΔNeff are derived.
Finally this work is complemented by four appendices that have been useful for writing the
thesis and are meant to be a support in its reading. They cover different aspects: a brief sum-
mary on the StandardModel (A), detailed calculations for the scattering cross sections (B), the
derivation of the Boltzmann equation in the number density approach (C), and some hints of
the code that we employed to solve the phase-space evolution (D).
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1
Strong CP Problem

The Standard Model of particle physics serves as a powerful tool for explaining experimental
observations, yet it is affected by the presence of some theoretical shortcomings related to the
appearance of small numbers, leading to ‘naturalness issues’. Among these challenges lies the
strong CP problem, which question the absence of significant violation of CP simmetry in
QCD despite theoretical expectations. The axion emerges as the most valued solution to such
inconsistency.
In the first paragraph 1.1we present theQCDLagrangian in itsCP invariant formwhich is gen-
erally used to get experimental predictions. Then we sum up the topics of discrete symmetries
with the remarkable result of CPT theorem (1.1.1) and of global symmetries (1.1.2) in the SM.
In the second part 1.2we introduce the twoCP violating terms in the Lagrangian showing how
they can be related and reduced to the single ‘topological’ term, whose relevance is enlightened:
despite being initially considered negligible, its significance emerged through the discovery of
instanton solutions, that we briefly sketch in 1.2.1.
The most important observations supporting the existence of the strong CP problem is the re-
markably small neutron electric dipole moment (nEDM). This experimental result, that con-
straints the possible violation of CP symmetry within QCD, is shortly presented in the last
paragraph 1.2.2.
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1.1 QCD Lagrangian part I

Quantum chromodynamics (QCD) is the theory of strong interactions. Its Lagrangian, in the
form that is usually engaged in the experimental sector, reads:

LQCD =
∑

q

q̄(iγμD
μ −mq)q−

1
4
GaμνGa

μν (1.1)

This expression is invariant under CP symmetry, reflecting what is empirically observed for
QCD. Before diving further in this aspect is useful to address the topic of discrete and global
symmetries in Particle Physics. The main reference for this part is [2].

1.1.1 Discrete symmetries

Let’s sketchhowquantumfields behaveunder thediscrete space-time transformations of parity,
i.e. space inversion x⃗ → −x⃗, time reversal t → −t, and charge conjugation, which physically
corresponds to reversing the sign of all charges e→ −e.

Parity

From classical considerations1 we recover the transformation properties of the electromagnetic
fields under the parity induced unitary operator, thenwe require scalar and pseudo-scalar fields
to be respectively even andoddunder parity and, finally, the behavior of spinors canbe deduced
requiring Dirac equation be invariant under it. We obtain:

U(P)Aμ(x⃗, t)U(P)−1 = η(μ)Aμ(−x⃗, t)
U(P)S(x⃗, t)U(P)−1 = S(−x⃗, t)
U(P)P(x⃗, t)U(P)−1 = −P(−x⃗, t)
U(P)ψ(x⃗, t)U(P)−1 = γ0ψ(−x⃗, t)

with η(μ) = 1 for μ = 0 and η(μ) = −1 otherwise. Given these, one deduces the transforma-
tion rules of fermion-antifermion bilinears and applies them to the currents in A.2.2. It turns
that the electro-weak sector is parity violating: electromagnetism is parity invariant while, since

1The Lorentz force F⃗ =
dp⃗
dt = q(E⃗ + v⃗ × B⃗) has to change sign under parity transformation, since p → −p

as reversing the space coordinates.

6



parity exchange chiral fields, weak interactions are not. The strong interactions, however, are
invariant under Parity.

Charge Conjugation

Charge conjugation phisically sends the electric charge e → −e, this coincides for the vector
potential to transform as:

U(C)Aμ(x)U(C)−1 = −Aμ(x)

Instead for Dirac fields, since charge conjugation should transform particles into antiparticles,
this operation essentially corresponds to Hermitian conjugation:

U(C)ψ(x)U(C)−1 = Cψ(x)†

where C is defined requiring invariance of Dirac equation by the condition Cγμ∗C−1 = −γμ,
and so depends on the form of the γ matrices used: in the Majorana base C = 1, whereas in
the Dirac formalism C = γ2. Again, deriving the transformation of fermionic bilinears we
have that electromagnetic interactions are C-invariant. To guarantee invariance of the quark
gluon interaction terms, since SU(3)matrices λa get transposed in the bilinears, it is necessary
to assume that the charge conjugation properties of the gluon fields themselves vary according
to which component one is dealing with. We get:

U(C)Aμ
a(x)U(C)−1 = −η(a)Aμ

a(x)

where η(a) = 1 for the symmetric generators, η(a) = −1 for the anti-symmetric ones. Finally,
the transformation properties of SU(2)matrices imply that

U(C)Wμ
±U(C)−1 = −Wμ

∓

Nevertheless, even so, as it is experimentally verified, the simultaneous presence of vector and
pseudo-vector parts in the weak interacting currents, which are affected by C in different ways,
drives us to conclude that they violate also charge conjugation.

Time reversal

Classically, temporal invariance means that the very same equations of motion describe both a
particle going from A to B along a path than from B to A, that is the time reversed motion. In
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quantummechanics, time reversal, and so effectively the interchangeof incoming andoutgoing
states, is implemented by an anti-unitary operatorU(T) = V(T)K, being V(T) unitary while
K complex conjugates any number quantity it acts on2. The transformation property of the
electromagnetic field can be deduced again from the classical case, instead for spinor fields this
is derived by asking that the action of U(T) on ψ(x⃗, t) produce another solution of the Dirac
equation. We have:

U(T)Aμ(x⃗, t)U(T)−1 = η(μ)Aμ(x⃗,−t)
U(T)ψ(x⃗, t)U(P)−1 = Tψ(x⃗,−t)

The form of the matrix T also depends on which representation is used as long as it satisfies
the conditions to get the invariance of the Dirac equation: Tγ0∗T−1 = γ0 and Tγi∗T−1 = γi.
In the Majorana base T = γ0γ5. Remembering that U(T) complex conjugates c-numbers,
transformation properties for fermion-antifermion bilinears appearing in SM currents can be
deduced. So one sees that bothQCDand electroweak interactions inA.2.2 turn to be invariant,
provided that the gauge fields transform according to the fact that for SU(3) only λ2, λ5 and λ7
are imaginary, and for SU(2) only σ2 is imaginary:

U(T)Aμ
a(x⃗, t)U(T)−1 = −η(μ)η(a)Aμ

a(x⃗,−t)

HoweverTviolation emerges in theYukawa sectorbecauseof the complexnature of theYukawa
couplings as presented in A.2.3. Here we show that, after diagonalization, the source of T vio-
lation can be transferred to the electroweak sector expressed in the mass basis and encoded in
the complex phase of the CKMmatrix.

CPT theorem implications

It turns out that if nature is described by a relativistic quantumfield theory, with a local Lorentz
invariant and hermitian lagrangian, its action is always invariant under the combined applica-
tion of a C, a P, and a T transformation. This result, known as the CPT Theorem, has deep
implications. Indeed it is meant to hold when we have violation of the individual symmetries
and it establish the substantial equivalence between a T transformation and a CP transforma-
tion, that is Parity and Charge Conjugation together. We can sketch how the CPT results

2The need for complex conjugation can be understood noticing that, provided that the Hamiltonian is real,
the complex conjugation of the wave function plus the reversal in the direction of time ψ∗(x⃗, t) is also a solution
of the Schrodinger equation.
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from the underlying complementary action of CP andT on operatorsO(x) and complex num-
bers c in a hermitian lagrangian, i.e. in the form L(x) = aO(x) + a∗O(x)†. Under T the
operator is unchanged and the c-number is complex conjugated: O(x⃗, t) T−→ O(x⃗,−t) and
a T−→ a∗. Under CP the first is replaced by its hermitian adjoint and the second stays the same:
O(x⃗, t) CP−→ O(−x⃗, t)† and a CP−→ a. Combing the two we see that L(x) CPT−−→ L(−x), and
performing change of the space-time integration variable in the action, we see this is invariant.

1.1.2 Continuous global symmetries

Approximate global symmetries result from effectively neglecting certain parameters in our the-
ory, otherwise a symmetry is exact. Both exact and approximate global symmetries can bemani-
fest (Wigner-Weyl realized) or spontaneously broken (Nambu-Goldstone realized), depending
on whether or not the vacuum state respects the symmetry. In the first case we will see de-
generate multiplets of states in the spectrum of the theory, while if a symmetry group G is
spontaneously broken to a subgroupH, then n = dimG/Hmassless scalars appear, known as
Nambu-Goldstone bosons.
QCD manifests an approximate global symmetry, rising from the fact that the lightest quark
masses aremuch smaller than the dynamical scale of the theorymu,md << ΛQCD, and so negli-
gible. In this limit, and considering only up and down quarks kinetic terms, QCDLagrangian
can be written in the following chiral representation:

LQCD ⊃
∑

q=u,d

(q̄L✓✓∂qL + q̄R✓✓∂qR)

that is invariant under the rotation

(

u
d

)

L

→ eaαiLTi

(

u
d

)

L

and

(

u
d

)

R

→ eaαiRTi

(

u
d

)

R

with

Ti = (τi, I). This is a global U(2)L × U(2)R = U(2)V × U(2)A symmetry, that can be
split in SU(2)A × SU(2)V × U(1)B × U(1)A and that is actually a symmetry of QCD at the
classical level. It turns, indeed, thatU(1)A is broken at quantum level. Among the others, only
SU(2)V and U(1)B are manifest symmetries, whereas SU(2)A is spontaneously broken by the
formation of u and d quark condensates ⟨ūu⟩ = ⟨d̄d⟩ ̸= 0, leading to the appearance of three
Nambu-Goldstone bosons, which are identified as the pions. The manifest SU(2)V symmetry
is thewell-known isospin symmetry of the strong interactions, with the associated approximate
nucleonN = (p, n) and pion π = (π+, π−, π0)multiplets. InsteadU(1)B is actually an exact
global symmetry of QCD, corresponding to a common phase quark rotation. This is also a

9



symmetry of the electroweak sector, leading to the conserved quantity of the baryon number
B. Furthermore in the Standard Model we can make a similar argument for leptons, entailing
the lepton numberL conservation. Nevertheless neitherL orB are conserved at quantum level,
while the only true global quantum symmetry is B− L. Finally we remark that in the limit of
vanishing neutrinomasses, separate conserved numbers referred to different fermion speciesLi

emerge at the classical level, while at the quantum level each 3Li − B is conserved.

Quantum chiral anomaly

When a symmetry of a classical theory is not a symmetry at quantum level, it is said to be anoma-
lous and the associated current will not be conserved. This is because certain 1-loop diagrams,
as triangle diagrams, introduce anomalous termswhich prevent theWard identities from repro-
ducing themselves at higher orders in the perturbative expansion.
The existence of the chiralU(1)A anomaly was formally explained by Adler Bell and Jackiw in
this terms, pointing out that it is not possible to preserve both the axial and vector currents be-
cause of the singular behavior of the three-point functions involving them[3]. Such behaviour
brings into the lagrangian a gauge field structure∝ F̃a,μνFaμν = 1

2ε
μναβFaαβFaμν, that is C even, but

both P and T odd, providing additional sources of CP violation.
This is common whenever there are fermions in our theory. Indeed it was later pointed out
by Fujikawa[4] that the ABJ anomalous term could be recovered directly in the path-integral
formalism as an extra Jacobian factor, since the measure for gauge invariant fermion theory is
not invariant under the γ5 transformation. As we will see, this will be crucial for QCD.

1.2 QCD Lagrangian part II

At experimental level QCD turns to be unexpectedly invariant under charge and parity trans-
formation. Conversely QCD Lagrangian in its most general form can be written:

LQCD =
∑

q

q̄(iγμD
μ −mqeiθqγ5)q−

1
4
GaμνGa

μν + θ
g2s

32π2G
aμνG̃a

μν (1.2)

This contains two potential sources of CP violation: the phases of the quark masses θq, and
the ‘topological term’, proportional to θ, that we will address to as GG̃. Let’s explore the con-
nection between the two CP violating terms. We perform a global chiral transformation on a
single quark field q→ eiγ5αq sending the two chiral components qR → eiαqR and qL → e−iαqL.
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The associated axial current is not conserved for two reasons. First the quark mass term gets
modified as θq → θq + 2α, and, as previously anticipated, this transformation is an anomaly,
so the non-invariance of the path integral measure under the transformation rise a term in the
action that is equivalent to the shift θ→ θ− 2α. 3

Generalizing to quark multiplet q = (u, d, ...)T with nf flavours the mass term can be rear-
ranged as:

q̄LMqqR + h.c.

whereMq = diag(mu,md, ...) and ArgdetMq → ArgdetMq + 2α. We see that performing a
chiral rotation is possible to cancel one or the other CP violating term, for instance making θ
the only source of CP violation in LQCD.

TheU(1)A problem

Historically the development of QCD, in the framework we presented in 1.1.1, was displaying
a puzzling issue that we can deem being a forerunner of the Strong CP Problem.
Consider the quark sector of QCD Lagrangian in the reasonable limit of vanishing up and
down quark masses (mu,d << ΛQCD). As seen, this has a large global symmetry: U(2)V ×
U(2)A, broken spontaneously by quark condensates ⟨qq̄⟩ and so one expects the emergence of
Nambu-Goldstone bosons, that are associated light particles in the hadronic spetrum. What
we find experimentally is that the vector symmetry, which can be decomposed as isospin times
baryon number U(2)V = SU(2)I × U(1)B, is a good approximate symmetry of nature, but
on the other hand we observe no light state that could correspond to the Goldstone boson of
a U(1)A. This is a puzzle that baffled physicists in the ’70s, addressed as ‘the U(1)A problem’.
As pointed out in the previous section, the solution lays in the fact that no Goldstone boson
must be expected since U(1)A is not a true symmetry but it is indeed an anomaly under the
symmetry group of QCD, meaning that at level of path integral the measure is not invariant.
From its transformation a term that resemble the GG̃ in 1.2 rise in the action. So the solution
of theU(1)A problem turns into the question of why, despite this term, CP is not badly broken
in QCD. This is the strong CP problem.

3fromDqDq̄→ DqDq̄ exp (−iα g2S
16π2GG̃)
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1.2.1 Meaning of the θ term

Let’s now explore the role of the operatorGG̃, once we suppose to encapsulate all source of CP
violation in the θ term, to ensure that this must be included in the action. Indeed we have that
GG̃ can be re-written as a total derivative:

GaμνG̃a
μν = ∂μKμ = ∂μεμνρσ(AνGρσ −

gs
3
fabcAa

νAb
ρAc

σ) (1.3)

whereKμ is namedChern-Simons current. So one could argue that it has no physical relevance.
But this is not actually true. Indeed if we useGauss theorem towrite the volume integral of the
operatorGG̃ as a surface integral, we can look for field configurations such that its contribution
to the path integral is finite.

∫

d4xGaμνG̃a
μν =

∫

d4x∂μKμ =

∫

S3
dσμKμ (1.4)

where S3 denotes the three-sphere of infinite radius and element of hypersurface dσμ. IfK van-
ishes faster than 1/r3 at infinity, then this quantity will integrate to zero and θ cannot have any
physical effect. It turns out that finite energy field configurations where K ∼ 1/r3 and the
surface integral does not vanish at infinity exist. These are called instantons, alluding to field
configurations localized in space and time. Let’s look for them. Since we want a system with
finite energy, to have finite action we require boundary conditions lim|x|→∞ Ga

μν = 0. This is
satisfied byAa

μ|S3 = 0 on S3, and all the other configurations that can be obtained from this by
a gauge transformation, in the form of a pure gauge at the boundaries:

A′
μ|S3 = i

1
g
U−1∂μU

We are interested in pure gauges for which U cannot be continuously deformed into the iden-
tity in group space. More precisely we ask whether the gauge configurations that Aμ goes to at
infinity are all equivalent, or to phrase it in the parlance of a mathematician, whether the map-
pings between the gauge group, SU(3), and the sphere at infinity, S3, are all equivalent. It is
worth to claim in general that if the homotopy group between the physical space and the group
space for which the theory is invariant is not trivial then soliton solutions can exists. In partic-
ular, one can prove that π3(SU(3)) = Z

4. This implies that all field configurations in their
4We can think at gauge configurations that the field can go to at infinity as characterized by an integer. There-

fore, as integers are not smoothly connected, they cannot be smoothly deformed into each other. [5]
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asymptotic behavior (i. e. SU(3)mappings) are characterized by an integer n, typically called
the winding number. It turns out that the winding number of any given gauge configuration
can be determined by:

1
32π2

∫

d4xGaμνG̃a
μν = n1 − n2 ≡ ν (1.5)

where n1 and n2 are the winding numbers of the gauge field at the boundaries, and ν is the
so called the Pontryagin index. One can build these gauge field configurations explicitly and
show that their finite action corresponds to a minimum, which implies that they are solutions
of the classical equation of motion in Euclidean space. In particular since these are self-dual
Gaμν = G̃aμν we have Tr(GG̃) = Tr(G2) and we obtain the following contribution:

SE = −
1
4

∫

d4xGaμνGa
μν = −

1
2

∫

d4xTr(GμνGμν) = −
8π2

g2
ν (1.6)

Being of finite action, these gauge configurations are localised in all the four dimensions which
justifies the name instantons. Thus, from 1.5, we can state that the instanton describes a solu-
tion of the gauge field equation tunnelling from one vacuum state (pure gauge, i.e. Ga

μν = 0)5

to a gauge rotated one with different winding number. Since the action 1.6 is finite we have a
non zero transition amplitude between this gauge rotated vacua. Taking all possible values n,
one obtains an infinite number of homotopically inequivalent vacua, and the transition ampli-
tude between them is non-zero. An important issue is that Kμ by itself is not gauge invariant,
and so different n labelling the vacuum states have no real physical meaning: indeed the action
of a gauge transformation on them corresponds to a relabelling U |ni⟩ = |ni+1⟩. A proper
definition for a gauge invariant vacumm is therefore:

|θ⟩ =
+∞
∑

−∞
einθ |n⟩ (1.7)

where θ is what is called a super-selection rule. One can show that states labelled by different θ
are ground states of independent superselection sectors (⟨θ|O|θ′⟩ = 0 and any observables O
connecting different vacua is zero), meaning that is impossible to transition from one value of
θ to another. Therefore when defining a theory, one chooses a single value of θ and throws out
all other values. Finally in field theories the θ-vacuum is tipically introduced as an additional

5All n states have the same energy. Each of these states is specified by how the gauge field falls off at infinity.
The lowest energy state in each of these sectors is when the gauge field takes on its asymptotic value at all points
in space time. Because the gauge field is pure gauge, they all have zero E and B fields and thus the same energy.[5]
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term in the action entering the path integral, that is the familiar:

θ
32π2

∫

d4xGaμνG̃a
μν = νθ

1.2.2 The core of Strong CP Problem

As seen at the beginning of this section, to reach a physical basis where the quark masses are
real, one must diagonalize the quark mass matrix Mq and in doing so one performs a chiral
transformation which changes θ byArgdetMq. Besides θ̄ = θ+ArgdetMq is invariant under a
quark chiral rotation, and therefore linked to physically observable quantities, from which we
infer whether strong interactions violate CP. Among these, neutron electric dipole moment
shows up as the most sensitive one. We can define nEDM in non-relativistic approach as the
coupling with the electric field in the Hamiltonian H = −dnŜ · E⃗. This can be thought as
derived from a Lorentz invariant lagrangian operator:

L = −dn
i
2
n̄σμνγ5nFμν

The dependence of dn on θ can be estimated as 6:

dn ∼
1

8π2

mq

mn

θ̄e
mn
≈ 10−16θ̄ e cm

The current best measurement of the neutron eDM is dn ≤ 10−26 e cm, so to agree with exper-
imental bounds we need θ ≤ 10−10. This results in an incredibly small number, basically zero,
whereas, being a dimensionless coupling, it is quite natural to expect it to be of order one. Why
this should be so is a mystery. We are at the core of the strong CP problem.

6Being a dimension five operator, we naively expect its Wilson coefficient to be of O(1/mn) size. Then to
compensate the imaginary unit we need the phase of a light quark mass eiθ ≈ 1+ iθ (in a proper basis). Finally we
insert two extra suppression factors for dipole loop. [6]
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2
The Axion

Theaxionwas sonamedafter anAmerican laundrydetergent, todenote theparticle thatwashes
away the issue of CP violation in QCD, providing an efficient solution to the strong CP prob-
lem. It is introduced in EFT framework (which is discussed in the first section 2.1), and so it is
associated to a suppressing scale fa. Here we require axion coupling with the very same CP vio-
lating gluon termofQCD, so that theminimumof axion potential occurswhen the coefficient
of such term vanishes. Subsequently (2.1 and 2.1.1), we report model-independent properties,
i.e. the axion mass and some couplings, than can be derived from a chiral Lagrangian formula-
tion of axion potential. Finally, in the second paragraph we present the receipt to build a QFT
that couldmatch the axion effective lagrangian. Candidate models are indeed based on sponta-
neous breaking of a global Peccei-QuinnU(1) symmetry at some high energy scale, and in this
scenario, the axion emerges as a pseudo-Nambu Goldstone Boson.

2.1 Axion solution in chiral QCD

The key ingredient for the PQ solution is a new scalar field a(x), called the axion field, whose
effectiveLagrangian is defined at energies far below a scale fa and the electroweak scale and reads:

La =
1
2
(∂μa)2 + L(∂μa,ψ) +

g2s
32π2

a
fa
GG̃ (2.1)
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whereψ generically denotes some other fields. We observe that the transformation a→ a+κfa
leaves this Langrangian invariant up to the GG̃ term: since κ is arbitrary, one can exploit this
quasi shift simmetry to remove the θ̄ in LQCD (in an appropriate basis where the CP violation
is encapsulated by GG̃ term). Considering this theory at low energies, the CP violating term
provides a potential, whose minumum lays at a = 0. In fact, a theorem of Vafa and Witten
guarantees that the instanton potential is minimized at the CP conserving value, so we have
⟨a⟩ = 0. 1. Then once the axion relaxes to the minimum of its potential, the strong CP prob-
lem is dinamically solved. However the low energy behaviour of this theory is well described
by chiral QCD and it is useful to look at the axion potential obtained in this framework, to
investigate axion properties. One can define ‘axion dressed’ parameters and consider them in
the chiral lagrangian, which describes the low energy non perturbative behaviour of QCD in
terms of pions. We report here themain results of the derivation [6]. In particular, on the pion
ground state, the chiral perturbation theory axion potential, coming from the non derivative
part of the lagrangian, takes the form:

V(a) = −m2
πf2π

√

1− 4mumd

(mu +md)2
sin2

( a
2fa
)

Expanding this for a/fa << 1 we can read the axion mass term 1
2m

2
aa2 with:

m2
a =

mumd

(mu +md)2
m2

πf2π
f2a

−→ ma = 5.7
1012 GeV

fa
μeV (2.2)

2.1.1 Some axion couplings

We can include in 2.1 model depending terms accounting for the interaction of axion with
other particles.
The interaction with a fermion has derivative structure (preseving invariance under shift), so
we expect an axion-quark coupling of the kind:

La,q =
Caq

2fa
q̄γμγ5q∂μa

1or equivalently, not performing the κ shifting, the potential provided by the CP-violating term depending
now on θ̄+ a/fa drives to the CP-conserving minimum at a = −θ̄/fa
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Here, q denotes the quark field, withmassmq, andCaq is a numerical coefficient2. Then, invok-
ing again chiral perturbation theory, the derivative part of the axion chiral Lagrangian yields
the axion-pion coupling:

Laπ =
Caπ

3fafπ
∂μa(2∂μπ0π+π− − π0∂μπ+π− − π0π+∂μπ−) +

Caπfπ
2fa

∂μa∂μπ0 (2.3)

withCaπ =
mu−md
mu+md

+C0
au−C0

ad where for completeness we addedmodel-dependent couplings
C0
au and C0

ad.
We can also think of a photon-axion interaction term included in 2.1:

La,γ =
1
4
gaγaFF̃

Indeed it is convenient to first eliminate in the axion QCD lagrangian the aGG̃ term via an
a field-dependent axial transformation of the quark fields. In general this transformation is
anomalous under QED, so it will affect the lagrangian adding a term ∝ FF̃. Therefore sup-
posing a model dependent coupling g0aγ to which this effect is summing to, we obtain the
axion-photon coupling (evaluated taking into accounts also contribution by axion-pion mix-
ing) ga,γ = g0aγ + α

2πfa
2
3
4md+mu
mu+md

.

Finally we report the relevant term of axion interaction Lagrangian [6], where we included
by completeness interaction with matter fields f = n, p, e and the nEDM operator:

Lint
a ⊃

1
4
gaγaFF̃+

Caf

2fa
f̄γμγ5f∂μa+

Caπ

3fafπ
∂μa[∂πππ]μ −

a
fa
Canγ

mn

i
2
n̄σμνγ5nFμν

where [∂πππ]μ denotes a short form for the expression in 2.3.

2.2 Axion models

The Lagrangian 2.1 constitutes a non-renormalizable effective theory that breaks down at ener-
gies of the order of fa. In the searching for a UV completition, we briefly consider three general
types of QCD axion model, that share the common framework of a U(1)PQ spontaneously

2This very same form makes up axion coupling to a generic fermion and so to electron: indeed, additionally
to possible model dependent tree level contribution, the axion-photon interaction implies a loop-induced axion-
electron interaction.
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broken with the axion being its pNBG. In Peccei-Quinn-Weinberg-Wilczek (PQWW) model
fa lays at the electroweak scale, so, since all axion couplings are suppressed by 1/fa they are
too large and therefore excluded by experiments. In the Kim-Shifman-Vainshtein-Zakharov
(KSVZ) and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models instead the scale fa is an arbi-
trary parameter that can be properly adjusted. Both their axions are indeed known as invisible
axions.

2.2.1 PQWWaxion

The PQWWmodel introduces one additional complex scalar field to the Standard Model as a
secondHiggs doublet: we have one Higgs field giving mass to the up type quarks φ1, while the
other to the down type quarks φ2. Thenwe can choose whatever to givemass to leptons (also a
third field). So this new field couples to the standardmodel particles in the usual Yukawa terms
rising the fermions mass.

LPQWW = −λijuQ̄
i
Lφ1u

j
R − λijdQ̄

i
Lφ2d

j
R + h.c+ V(φ1,φ2)

In unitary gauge:

φ1 =
v1 + ρ1√

2
eiax/vF

(

1
0

)

φ2 =
v2 + ρ2√

2
eia/xvF

(

0
1

)

where vF =
√

v21 + v22 and x = v2/v1. The axion is the common phase field a. We take the
theory invariant under a global chiralU(1)PQ symmetry, that acts on φi as a shift in the angular
part and the invariance of the Yukawa terms under global rotations fixes theU(1)PQ charges of
the various fermions: a→ a+ αvF, u

j
R → eiαxujR, d

j
R → eiα/xdjR.

Symmetry breaking of φi occurs, akin the Higgs, at the electro-weak phase transition. The
potential is the usual:

V(φi) = λ
(

|φi|2 −
v2i
2
)2

and φi acquires a vacuum expectation value ⟨φi⟩ = vi√
2 . In the original Peccei-Quinn model

fa ∼ vF ≈ 250 GeV, so we can take for simplicity x ≈ 1. So after SSB, having integrated out
the radial part, we can parametrizeφi = ⟨φi⟩ eia/2fa . The angular field a is theGoldstone boson
of the spontaneously broken U(1)PQ symmetry and it coincides with the axion. The Yakawa
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term reads:

−vFeia/2fa√
2

(λijuūiLu
j
R+λijdd̄

i
Ld

j
R)+h.c. ⊃ −mu

a
fa
iūiLuiR−md

a
fa
id̄iLdiR+h.c. =

∑

q

mq
a
fa
iq̄iγ5q

i

Expanding eia/2fa ∼ 1+ ia/2fa we got the couplings with quarks3. The chiral anomaly induces
couplings to gauge bosons rising the term needed to solve the strong-CP problem, whereas the
quarks tree level derivative couplings are obtained considering how the transformation affects
the fermion kinetic terms. Since this model has been excluded, we now focus on the other two,
remembering that however the procedure to get the axion effective couplings is quite general
and applicable also to the PQWW axion.

2.2.2 KSVZ axion

The KSVZ axion model introduces, alongside with the scalar φ ∼ (1, 1, 0), a heavy quark
doubletQ ∼ (3, 2, 0) of componentsQL,QR, that under chiralU(1)PQ transform as: QL,R →
e±iα/2QL,R, φ→ eiαφ. The simmetry is, again, spontaneously broken by the potential:

V(φ) = λ
(

|φ|2 − v2a
2
)2 and φ =

va + ρa√
2

eia/va (2.4)

where the axion field a corresponds to the Goldstonemode. The scalar φ and the heavy quarks
interact via the PQ-invariant Yukawa term in the Lagrangian:

LKSVZ = (∂μφ)2Q̄i✓✓∂Q− λQφQ̄LQR + h.c.− V(φ)

This provides the heavy quark massmQ = vaλ/
√
2 in the broken phase, while the radial mode

ρa acquiresmρa =
√
2λva. Setting va at large scale, the quark field is heavy and can be integrated

out. On the other hand the operatorGG̃ is produced by chiral anomaly and stays, at EFT level,
as the only modification to SM Lagrangian. Indeed we have no other tree-level couplings to
standard model matter fields. To see this, we look at the term:

−mQQL̄QReia/va + h.c.

3we have considered qR,L =
(1±γ5)

2 q, and summing with the h.c. only the part with γ5 survives.
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and perform an axial transformation Q → e−iγ5a/2vaQ that is equivalent to QL → eia/2vaQL

andQR → e−ia/2vaQR. Being anomalous under QCD, the non-invariance of the path integral
measure brings the additional term to the lagrangian δLKSVZ =

g2s
32π2

a
vaGG̃, that is the required

one with the identification va = fa.
We can explore theKSVZmodel in amore general scenariowhere the heavy fermionsQ live in a
generic reducible representation

∑

Q(CQ, IQ,YQ)of the SU(3)c×SU(2)L×U(1)Y gauge group,
where at least oneCQ is non trivial. Both aQCDand electromagnetic anomalous termwill rise,
parametrised by the coefficients N =

∑

QNQ and E =
∑

Q EQ, with NQ and EQ indicating
the contributions to the anomalies of each irreducible representation4. After removing the
axion field from the Yukawa Lagrangian via the chiral transformation, we obtain the effective
anomalous interactions (with αs = g2s

4π2 and α =
e2
4π2 ):

δLKSVZ =
αs
4π

N
a
va
GG̃+

α
4π

E
a
va
FF̃

Then setting fa = va/2Nwe rewrite:

δLKSVZ =
αs
8π

a
fa
GG̃+

α
8π

E
N

a
fa
FF̃

wherewe normalised the first term as in 2.1 so that we recognise themodel dependent coupling
g0aγ = α

2πfa
E
N .

As we will later see, the QCD induced axion potential is periodic with a number of inequiva-
lent degenerate minima written in terms of the QCD anomaly factorNDW = 2N, which has
remarkable consequences in axion cosmology.

2.2.3 DFSZ axion

The DFSZmodel introduces two Higgs doubletsHu ∼ (1, 2,− 1
2),Hd ∼ (1, 2,+ 1

2) as well as
the PQ scalar φ ∼ (1, 1, 0). Then the two Higgs couple to SM fermions in the usual Yukawa
sector, and so, requiring this to be PQ invariant, fermions must have charges underU(1)PQ:

LDSFZ = −λuQ̄LHuuR − λdQ̄LHddR + h.c+ V(|Hu|, |Hd|,φ) + λHφ†2HuHd + [kinetic]

4NQ = χQd(IQ)T(CQ) and EQ = χQd(CQ)Tr(q2Q) where d(CQ) and d(IQ) denote the dimension of the
colour and weak isospin representations, T(CQ) the colour index, qQ = T3

Q + YQ is the EM charge and χQR
=

χQL
= ∓1/2 the PQ charge depending on whether the quark bilinear Q̄LQR couples to φ or φ†.
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that has linearly independentU(1) symmetres: the hypercharge and the PQ.The PQ symmetry
acts on the fields as a phase rotation of charge χi with i = u, d,φ. The lepton sector can either
couple withHd (DSFZ-I) orHũ = iσH∗

u (DSFZ-II). We take the potential such that to ensure
that the three additional fields acquire a vev:

⟨Hu⟩ =
vu√
2
eiau/vu

(

1
0

)

⟨Hd⟩ =
vd√
2
eiad/vd

(

0
1

)

⟨φ⟩ = vφ√
2
eiaφ/vφ

The axion in this case is identified in termsof theai as it follows: taking inmind the infinitesimal
transformation Hu,d/φ ∼ (1 + iχu,d,φ)Hu,d/φ we look at the part of PQ current containing
our new fields and expand them about their v.e.v. What we obtain is

JPQμ ⊃ −i(χφφ†←→∂ μφ+ χuH
†
u
←→
∂ μHu + χdH

†
d
←→
∂ μHd) ⊃

∑

i=φ,u,d

χivi∂μai ≡ va∂μa

From this we read a = 1
va

∑

i χiviai and v
2
a =

∑

i χ2i v
2
i . In this way, since under a PQ rotation

ai → ai + κχiai, one finds the usual shift a → a + κa. To determine the PQ charges of the
scalar sector, needed to express the lagrangian in terms of the axion field so defined, we impose
two conditions. First we require the invariance of the operator φ†2HuHd under PQ tranfor-
mation, yielding the condition χu + χd − 2χφ. Then we impose the orthogonality between
the PQ current evaluated at the axion field

∑

i χivi∂μai and the analogue hypercharge current
∑

i Yivi∂μai, corresponding to χuv
2
u + χdv

2
d = 0. We fix the normalisation by choosing a con-

ventional value χφ = 1 and setting vu/v = sin β and vd/v = cos βwith v ≃ 246GeV the usual
electromagnetic scale we obtain χu = 2 cos2 β, χd = 2 sin2 β. With these a trivial substitution
yields v2a =

∑

i χ2i v
2
i = v2φ + v2(sin(2β)2) ≈ vφ taking vφ >> v. Then from the defining

relation for a, we express au,d in terms of a and select in the lagrangian, where the fields are
replaced by their vevs, only the a dependent terms:

LDSFZ ⊃ −(muūLuReiχu
a
va +mdd̄LdReiχd

a
va + h.c.)

From the expansion of the exponential we get again axial current couplings between the ax-
ion and fermions in the form mq(a/fa)iq̄γ5q. Again, chiral anomaly induces the GG̃ and FF̃
couplings, once removed the axion field from themass terms via field-dependent axial transfor-
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mations5:
u→ e−iγ5χu

a
2va u d→ e−iγ5χd

a
2va d

The rising anomalous term reads:

δLDSFZ =
αs
8π

a
fa
GG̃+

α
8π

E
N

a
fa
FF̃

with fa = va/2N and in DSFZ-I we have E/N = 8/3, while in DSFZ-II E/N = 2/36.
In the DSFZmodels we do have tree-level couplings between the axion and standard model

fermions. Indeed chiaral rotations of the up and down quarks do not leave the fermion kinetic
terms invariant, and their variation corresponds to derivative couplings of the axion to the SM
fermion fields:

δ(ū✓✓∂u) = χu
∂μa
2va

ūγμγ5u =
1
3
cos2 β

∂μa
2fa

ūγμγ5u

δ(d̄✓✓∂d) = χd
∂μa
2va

d̄γμγ5d =
1
3
sin2 β

∂μa
2fa

d̄γμγ5d

δ(ē✓✓∂e)I = χd
∂μa
2va

ēγμγ5e =
1
3
sin2 β

∂μa
f
ēγμγ5e δ(ē✓✓∂e)II = −χu

∂μa
2va

ēγμγ5e = −
1
3
cos2 β

∂μa
2fa

ēγμγ5e

We conclude with remarking that both KSVZ and DFSZ models, as seen, produce the correct
term necessary to solve the Strong CP problem: the main difference between them is that for
DFSZ this term is induced by light quark loops calculated at low energy, rather than via the
integrating out of a heavy quark.

5PQ invariance of the mass terms implies χuR + χuL = χu and χdR + χdL = χd so we notice that these trans-
formations basically redefine the left and right chiral fields with a phase transformation proportional to their PQ
charges.

6Given nf = 3 the number of fermion generations we calculate for DFSZ-I:

N = nf
( 1
2
χu +

1
2
χd
)

= 3× χφ = 3

E = nf
(

3(
2
3
)2)χu + 3(− 1

3
)2)χd + (−1)2χd = 4(χu + χd) = 8

instead for theDFSZ-IImodel, the leptons couple to the complex conjugate up-typeHiggs H̃u instead than toHd,
that corresponds to changing χd → −χu in the last term for E.
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3
Axion Cosmology

Not only do axions ‘clean’ QCD from the Strong CP Problem, but they figure as appealing
dark matter candidates, whose relic abundance is meant to account for the present Dark Mat-
ter (DM) content ΩDMh2 = 0.12. Indeed the process of ‘vacuum realignment’, that is the
axion relaxation to the minimum of its potential, turns to be a palatable production process,
generally known asmisalignment mechanism, where the resulting energy density has the same
behaviour as ordinary matter. The dependence of the axion potential and mass on the temper-
ature of the thermal bath plays a crucial role in determining the abundance of axions generated
through this mechanism, as it is displayed in 3.1. Then in 3.2 we address axion evolution. First
in 3.2.1 we scan the possible initial values for the axion field, i.e. for the ‘misaligned’ angle, that
is related to its role during the inflation era. Then in 3.2.2 we present the misalignment mech-
anism itself pointing out its relevance in making axion a suitable Cold Dark Matter (CDM)
candidate. Furthermore (3.2.3) we give a hint about other possible CDM contributions in the
form of topological defects related to the axion in a spontaneous symmetry breaking frame-
work.
TheMisalignment mechanism is not the only mechanism of production for axions. As shown
in 3.3, scatterings and decays of particles in the primordial plasma can produce relativistic ax-
ions. If their decoupling occurs at high enough temperatures, they remain relativistic through-
out the history of the Universe. In this case, axions are dark radiation and they are the main
concern of this work.
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3.1 Temperature dependence in axion potential

We previously presented the axion potential derived using chiral perturbation theory, which
allowed us to determine axion properties at zero temperature. Nevertheless this approach is no
more useful when the temperature reaches the critical valueTC around 160MeVwhen quarks
are no more confined.
Let’s see howwe can qualitatively guess a form for such potential. We saw that the axion field is
nothing but the angular degree of freedomof a complex scalar, that undergoes globalU(1) SSB
at scale fa. The axion is left as the corresponding massless Goldstone boson that therefore is
exhibiting a shift symmetry. Then non-perturbative processes (i.e. the instanton term) induce
an axionpotential by breaking this shift symmetry at a specific energy scale, which, nevertheless,
being the axion still the angular degree of freedom of a complex field, must satisfy a residual
discrete shift symmetry of the kind a→ a+ 2πfa/NDW.1. The potential is therefore periodic,
a choice is:

V(a) = f2am2
a(T)

[

1− cos
Na
fa

]

(3.1)

where themass is temperature, and so time, dependent. We can assume thatwell aboveTC such
dependence can be parametrised in terms of the zero temperature mass 2.2 as:

m2
a(T) ≈ m2

a

(

TC

T

)γ

(3.2)

with γ ∼ 8. In the limit of small displacements from the potential minimum (a/fa << 1), the
potential can be Taylor-expanded in the quadratic 1

2m
2
aa2.

1HereNDW = 2N is also known as the domain wall number, whereN denotes the color anomaly of the PQ
symmetry. Indeed a PQ rotation of the quark fields, as seen, implies an anomalous term added to the Lagrangian,
that, in the case of SU(3), takes the form

S→ S+
∫

d4x
g2s

32π2
Na
fa

GG̃

where Nδab = 2Tr[QPQTaTb], depending on the fermion content of our theory. The colour anomaly basically
sets the number of minima in the potential, and so the number of vacua for a. Unless otherwise stated we will set
NDW = 1.
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3.2 Axion as cold DarkMatter

The temperature dependence of the axion potential and mass will be crucial in the determi-
nation of its abundance as cold dark matter relic due to misalignment mechanism. To this
purpose we report for simplicity the equation2 that the homogeneous component of the axion
field in terms of θPQ = a/fa obeys to, taking into account only the quadratic potential:

θ̈PQ + 3Hθ̇PQ +m2
a(T)θPQ = 0 (3.3)

where H = ȧ
a is the Hubble parameter ad now a denotes the scale factor in FLRW metric.

Here we will assume to be in a radiation-dominated background where H = 1
2t , needing all

of this to happen before matter radiation equality in order for axions to describe dark matter.
Therforewe observe that this equation resemble themotion of a harmonic oscillator with time-
dependent friction and axion mass term. The change from over-damped to under-damped
motion, will occur whenH ∼ ma and the axion field starts oscillating, thus behaving asmatter-
like field3.

3.2.1 Axion as a spectator during inflation

In order to solve axion field’s evolution, we need to account for initial conditions. To this pur-
posewe explore different scenarios that rise according towhether the PQ symmetry is broken or
unbroken during inflation. The temperature of theUniverse during inflation can be estimated
through the Gibbons-Hawking formula TI = HI/2π, with HI the inflationary Hubble scale.
Experimental constraints give us TI < 1.4× 103 GeV [7]. Therefore we have two options:

2Themotion of θ is easy to understand as the the one of a scalar field initially displaced from the minimum of

its potential f
2
a
2m

2
aθ

2
PQ. The axion Lagrangian density can be written in terms of θPQ as LθPQ = f2a[

θ2PQ
2 −

m2
aθ

2
PQ

2 ] and
the equation of motion is obtained as usual through the variation of the action in FLRW background:

∂
√−gL
∂θ

− ∂μ
∂
√−gL
∂(∂μθ)

3The axion field, initially displaced from its vacuum expectation value, begins to oscillate coherently across
the universe as the Hubble parameter drops below the axion mass. These oscillations behave like a harmonic
oscillator with minimal spatial variation and are coherent across large regions of the universe, leading to a nearly
uniform field. This coherence means that the oscillations are in phase over vast distances, which is key to the
axion field acting as Cold Dark Matter. Indeed in momentum space the Fourier transform of this field peaks at
low momentum, corresponding to low velocities for the axions. This slow velocity characterizes axions as CDM,
crucial for cosmic structure formation.
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• fa < HI/2π and PQ symmetry is unbroken during inflation, so φ has zero vacum ex-
pectation vale. Then when the radiation temperature falls below fa after inflation, the
symmetry breaking occurs and φ acquires a vev. Upon reaching this stage, the Universe
results split in casually disconnected patches, each ofwhich selects a distinct value for the
angular variable a/fa = θPQ. Moreover fa is greater than the scale of non-perturbative
physics, so at this time there is no preferred value for θPQ, that is randomly selected out of
a uniform distribution on [−π, π] for every Hubble patch. We can think at our current
Universe as composed of several patches with varying initial θPQ values that, although
not initially in causal contact, now assemble the region enclosed by ourHubble horizon.
To solve the equation ofmotion, wewill need the initial value θi. In the post-inflationary
scenario, this can be extracted from the mean value of a uniform distribution over the
unit circle, reading for a quadratic potential:

θi ≡
√

⟨θPQ⟩2 =
π√
3
≃ 1.81 (3.4)

Another important feature of this scenario is the rising of topological defects from the
spontaneous breaking of a global symmetry, such as domain walls and cosmic strings.

• fa > HI/2π and PQ symmetry is broken during inflation. Also in this framework we as-
sist to the formation of topological defects as phase transition relics, but in this case they
are later diluted by inflation. Again, causally unconnected patches with varying values
of θPQ form, but inflation expands them in a way that our current observable universe
has started out at the end of inflation with a single, constant value everywhere. 4

3.2.2 Misalignment mechanism

Misalignment mechanism is a non-thermal production process that entails the oscillation of
θPQ around the minimum of its potential. Indeed, as seen in the previous section, in any case
the initial θi has stochastic origin, so we can easily suppose that at early times it is ‘misaligned’
with the vacuum θPQ = 0. At high temperatures the axion is basicallymassless and the solution
of 3.3 is θPQ = const = θi. Then when the temperature T approaches TC, the contribution
of the mass term in 3.3 becomes comparable to the expansion rate of the Universe, and the
axion starts to roll toward theminimum, and then oscillates around it5 with angular frequency

4This value is entirely arbitrary and uniformly distributed, however one could argue that the presence of nu-
merous distinctHubble patches implies that values of θnear to zero cannot be ruled out unless invoking anthropic
principle.

5This is in analogy with coherent oscillations of the inflaton field, but with no suppression due to decay. This
field drives the rapid expansion in the inflationary phase of the early Universe and, at the end of his motion,he
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ma(T). It is instructive to visualize the solution in the simplified case of a scalar field with a
massma that is not temperature dependent. Indeed in this case the exact solution is:

θ = θi
(

2
mat

) 1
4

Γ
(

5
4

)

J 1
4
(mat)

where Γ is the gamma function and J the Bessel’s function . Depending on the relative weight
of the damping term and the mass term, we clearly distinguish two regimes for this solution.
Initially the system is overdampedwhile theHubble parameter is dominant, but at some point,
once the damping term has decayed away, it begins to oscillate because of the mass term con-
trolling its dynamics. The oscillating behaviour is even more evident considering the latest
moments of the evolution, that is taking the limit of large mat. Since for large x the Bessel’s
function becomes J 1

4
(x) ≈ (πx/2)−1/2 cos(x − π/3), we can parametrize the late time evolu-

tion with a slowly decaying term times a fastly oscillating one:

θ(t) ≈ A(t) cos (mat)

The main difference between this scalar case and the real axion is that we have a temperature-
dependent axion mass, making a bit more difficult to find the solution, but the qualitative
behaviour stays the same. Now we turn to the energy density stored in this late time solution,
which could be done in a clever way. Multipying 3.3 by θPQ, at this stage we can substitute
θ2PQ by its average over one oscillation, which is the energy density of axion field ⟨θ2⟩ = ρa =

f2a[θ
2
PQ +

m2
aθ2PQ
2 ] obtaining[8]:

ρ̇a =
[

ṁa

ma
− 3H

]

ρa −→ ρa = const
ma(T)
a3

(3.5)

So as ρa ∼ a−3, θ falls off as a−3/2. This is telling us that the axion energy density varies in
terms of the scale factor in the same way as non-relativistic matter in FLRWUniverse, making
the misalignment axion a valid DM candidate. This is particularly evident at zero tempera-
ture since before the mass is still varying with T. On the other end, the axion number density
na = ρa/ma(T) ∼ a−3, implying that its comoving number density (i.e. the ratio of number

settles near the minimum of its potential undergoing coherent oscillations. As the inflaton oscillates, it decays
into other particles, heating the universe and seeding the particles that form matter and radiation, through the
‘reheating’. The coherent oscillations of the axion field, instead, do not decay, and since they act like a collection
of extremely light, slow-moving particles, they contribute to the universe’s energy density as cold dark matter.
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density to entropy density s6 where the entropic degrees of freedom g∗,s can be confused with
effective number of relativistic degrees of freedom g∗ at high T) is fixed and so one can exploit
this to evaluate the present axion amount. The initial energy density trapped in themisaligned
axion field is the purely potential term ρa,i = ma(Tosc)

2θ2i
f2a
2 , where Tosc determines the start

of oscillations and its defined by the conditionma(Tosc) = 3H(Tosc). Then the ratio between
ρa,i/ma(Tosc) and the entropy density s(Tosc) is preserved up to the current value, assuming no
further entropy production. Multiplying this by the entropy density today s0 and by ma, we
can derive the current axion energy density and its contribution to the cosmic energy budget,
noticing how the result depend on the initial displacement angle θi. We obtain:

ρ0 =
1
2
θf2amama(Tosc)

g∗,s(T0)T3
0

g∗,s(Tosc)T3
osc

Since in radiationdominated eraH2(Tosc) ∼ g∗(Tosc)T4
osc, the solution to the conditionma(Tosc) =

3H(Tosc) involves temperature dependence of g∗,s. Indeed, having in mind the temperature de-
pendence ofma in 3.2, we solve:

Tosc =

(

√

10
π2g∗(Tosc)

maMPl

) 2
γ+4

T
γ

γ+4
C

We can adjust γ = 8, TC = 150MeV,ma = 10 μeV to have Tosc ≈ 1 GeV. So reasonably the
oscillations will begin between the electroweak and QCD eras, when we can take the effective
number of relativistic degrees of freedom to be g∗,s ≈ g∗ = 61.75, while the entropic degrees of
freedom today is g∗,s = 3.91. The prevision for the axion contribution in terms of fraction of
the total cosmic energy density is obtained dividing ρ0 by ρtot = 3H2

0M2
Pl. This esteem would

depend onma, fa and θi. Using 2.2 we can relate fa toma, and obtain a prediction forma that
could match the present dark matter content[9]:

Ωah2 ≈ 0.12θ2i

(

4.7μeV
ma

) 7
6

≈ 0.12
(

θi
2.155

)2(9.0 μeV
ma

) 7
6

Here the choice for θi comes from the average value of ⟨θi⟩2, considering a not exact quadratic
potential, but an actual cosine7. The axionmass dependencem−7/6

a tells us thatwe get a smaller

6The entropy density is scaling with the temperature as s(T) = 2
45π2 g∗,s(T)T

3

7The reason why this corrected value is higher than (1.81)2 obtained at 3.4 is that the gradient of a cosine
potential is shallower compared to a harmonic potential at large θ therefore the start of oscillations is delayed, and
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dark matter density when the axion mass is heavier. This, that at first glance could seem a little
counter-intuitive, can be explained remembering that the number density is set atTosc and then
gets diluted by the expansion until today. So the later Tosc occurs, the least axions get diluted
and we are left with a bigger density. Then, since Tosc is defined when the Hubble scale drops
below the mass, we see that lighter axions start oscillating later. Finally we can assert that, in
order to explain dark matter, is very likely for axion particle to have a mass of order 10 μeV.

3.2.3 Topological defects from symmetry breaking

In post-inflationary scenarios the production of cold axions from misalignment discussed in
the previous section is not the only Cold Dark Matter production mechanism. Additional
contributions are related to the existence of topological defects.
Indeed spontaneous symmetry breaking in the early Universe is associated with phase transi-
tions, leading to the possibility of formation of topological defects, such as domain walls and
strings [10]. As seen, these are relevant only in the post inflationary scenario. Let’s briefly
sketch in intuitive way how these form.
At the end of the phase transition related to the spontaneous breaking of the PQ symmetry,
the phase for the vacuum a(x)/fa of the PQ field is position dependent and acquires all values
between [0, 2π] in different causally uncorrelated domains. Let’s observe a closed loop in phys-
ical space intersecting such regions, which is shrinking to a point. Since at the edge the phase
cannot change continuosly, there must be a point within the path where this is undefined and,
by continuity, the field is zero (false vacuum). In order to avoid for the path to be topologically
trivially contracted, such points are aligned in a close or infinite string, called the axion string.
As the Universe expands and cools down, at some point perturbative QCD effects provide
an axion potential (see 3.1) with periodicity 2πfa/N, characterised by N equivalent minima,
which are related by a ZN discrete symmetry. In different casually disconnected patches, the
field assume different minima, so, in order for the transition to be smooth, there must be in
between a region of false vacuum. Field configurations that interpolate in space between neigh-
bouring vacua are domain walls.

so we get more axions out of them than we would in the harmonic approximation.[9]
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3.3 Thermal production

If axions stay in contact with the thermal bath particles, thenmutual production and annihila-
tion, as well the decay of somemassive particles coupled to the axion can lead to a population of
relativistic axions. Our Universe, as tested through the cosmological data, is compatible with
the degrees of freedom predicted by the SM. Therefore, any form of an additional population
that is created at early times, must be very little but yet detectable by better resolved probes.
Alongside CγB (i.e. CMB) and CνB, it may be possible to see a cosmic axion background CaB
as well.
In order to create a thermal population of axions the dominant process is pion-axion conver-
sionN+π → N+a, where nucleonsN are non-relativistic, since they came into existence only
after the quark/hadron transition (T ≃ 200MeV), and so the interaction rate is exponentially
cut off. At higher temperatures, before QCD phase transition, there are no nucleons or pions
but only quarks and gluons free in the plasma, and the dominant axion production process
is photon or gluon production a + q → q + γ/G. These interactions are relevant until the
interaction rate Γ drops below the Hubble expansion rate H, then the axions decouple from
the thermal bath. At this point the axion abundance is fixed by freeze-out at the decoupling
temperature TD, which occurs when Γ ∼ H. Axions produced in this way are relativistic as
long as TD > ma, then, once they decouple, their temperature redshifts independently from
the thermal bath. If their mass is large enough (ma ≥ 1eV), thermal axions contribute as
Hot DarkMatter (HDM), a component that behaves like matter at late times, but was initially
produced while relativistic and so free-streamed during early structure formation. In this case
axions would behave similarly to massive neutrinos preventing the formation of cosmic struc-
tures below the free-streaming scale. Nowadays we can state that axion is excluded as a hot
dark matter candidate by the current mass bounds. Nevertheless a CaB, not necessarily com-
ing from HDM contribution, is possible if the mass of the axion is negligible compared to its
thermal energy for most of the cosmic history. In particular, if the axions produced at early
times are still relativistic around recombination, they should show up as an additional contri-
bution to the amount of radiation at the time of CMB formation.

In general the energy density stored in relativistic degrees of freedom can be probed at two
key moments in the cosmic evolution: the Big Bang Nucleosynthesis (BBN)8, for which the

8Big Bang Nucleosynthesis (BBN) is the process responsible for the synthesis of light nuclei in the early uni-
verse, beginning at a temperature scale of around1MeVand concluding at approximately 60 keV, lasting for about
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amount of light particle is mostly relevant when Universe was one second old and at a tem-
perature of ∼ 1MeV, and the last scattering surface, namely the stage at which protons and
electrons form neutral hydrogen, and photons could travel undisturbed afterward, dubbed the
Cosmic Microwave Background (CMB) radiation, corresponding to TCMB ∼ 0.3 eV and a
quite young the universe (approximately 380.000 years old).

Generically light particles that can be present in the relativistic regime with a significant cos-
mic abundance at the time of BBN and CMB, alongside photons and neutrinos, are address
to as ‘dark radiation’. Historically, the presence of this dark radiation is quantified in terms
of an effective number of additional neutrino species, that we will estimate for axion across a
specific stage of our early Universe. In particular the goal of this work is to evaluate thermal
axion production above and below the ElectroWeak Phase Transition (EWPT).

More explicitly, the energy density of relativistic particles at the time of CMB formation can
be written as

ρR(TCMB) = ργ + ρν + ρa =
[

1+
7
8
Neff

(

4
11

) 4
3
]

ργ (3.6)

where the first term in the bracket is referred to photon contribution and the second one,
weighted by the statistical Fermi-Dirac factor and the fourth power of the neutrino to pho-
ton temperature ratio Tν/Tγ = (4/11)

1
3 , to neutrinos and possible dark radiation amount.

Here figures the number of effective neutrino species Neff: if we limit to the SM prediction,
then this is naively the number of fermion generations. i.e. three. Nowadays outcomes are
consistent with such prediction9. Nevertheless upcoming trials are meant to improve bounds
on this quantity and could potentially discover a deviation from the SM, enhancing extra dark
radiation components in form of relativistic species which decoupled at high temperatures, as
high as the EWPT.

three minutes. During this period, the formation of nuclei is critically dependent on the neutron-to-proton ra-
tio, which in turn is influenced by the decoupling of neutrons from the thermal bath. In a radiation-dominated
universe, the Hubble expansion rate H scales asH ∼√g∗ρ , where g∗ρ is the effective number of relativistic degrees
of freedom contributing to the energy density. A higher g∗ρ implies that a greater number of relativistic particles
are present in the MeV range, leading to a faster expansion rate H. So the point at which the weak interaction
rate falls below the Hubble rate (i.e., when Γ < H ) occurs earlier. This earlier decoupling results in a higher
neutron-to-proton ratio at the time of nucleosynthesis, as neutrons have less time to decay into protons before
they become bound in nuclei.

9BBN and CMB currently exhibit similar sensitivities in probing the effective number of neutrino species.
For BBN (where the effective number of neutrino species is usually denoted by Nν), analysis of light element
abundances yieldsNν = 2.889± 0.229 [11, 12]. On the CMB side, the most precise measurement comes from
the Planck satellite, giving NPlanck,eff = 2.99 ± 0.17 [13], which at the moment, represent the best sensitivity
available .
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4
Production of hot axions above and below

the EWPT

In chapter 2 we presented axion couplings to matter fields. We sum up them in two classes
of interactions: couplings with gauge bosons X = {G,W,B}, that rise if the PQ symmetry is
anomalous under the associated gauge group, andwith SMfermionsψ = {QL, uR, dR,LL, eR}.
We report them in the following:

Lint
a =

1
fa

[

aCX
αX
8π

Xa,μνX̃μν
a + ∂μaCψψ̄γμψ

]

(4.1)

As seen in the previous chapter, thermal axions can be produced either via scatterings or decays
in the thermal bath. In particular, while both classes of interactions are relevant for scatterings,
only coupling to fermions could account for production via tree-level decays if the fermion bi-
linear comprises fields belonging to different fermion generations, that is flavor violating cou-
plings. The bosonic operators are suppressed by a loop factor and indeed should be understood
as quantum level contributions due to the effects of the presence of some fermion that couples
to the axion. In this work we focus on axion interactions with SM fermions, in particular with
third generation quarks, and therefore on binary scatterings. These collisions always involve
two SM fermions, the axion itself and one SM boson. At temperatures above the EWPT, this
can be any of the four real component of theHiggs doublet, instead it can be a gauge field only
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below the EWPT. In this chapter we aim to derive scattering cross section for these collisions.
We look for the needed axion-quark couplings to select the interesting production process, for
whose we list the computed cross sections (4.1 and 4.2). Detailed computations are sketched
in appendix B. To be consistent with a smooth treatment of the EWPT, we expect to find
the matching between the cross sections evaluated above and below this critical threshold, as
showed in 4.3 The outcomes of this chapter are in agreement with the results presented in [14].

4.1 Above the EWPT

Since decays are loop and CKM suppressed in the flavor conserving case, we focus on binary
scatterings. We write explicitly the axion derivative interaction terms with quarks, in the case
of flavor conserving couplings:

La
FC =

∂μa
fa

3
∑

i=1

(

CQQ̄
i
Lγ

μQi
L + CuūiRγμuiR + Cdd̄

i
RγμdiR

)

(4.2)

where we introduced the dimensionless coefficients CQ, Cu and Cd. It’s convenient to redefine
the fields rotating them by an axion dependent phase:

Qi
L → eiCQ

a
faQi

L uir → eiCu
a
fa uiR diR → eiCd

a
fa diR

As a consequence of these chiral rotations the axion couplings to gauge bosons are affected by
anomalous terms while, from the quark kinetic term, we generate new axion derivative cou-
plings that simplify the ones presented above 4.2. Finally andmost important for us, the axion
field appears in the Yukawa sector:

−La
Y,FC = ei(Cd−CQ)

a
fa λ̂dQ̄LφdR + ei(Cu−CQ)

a
fa λ̂uQ̄Lφ̃uR + h.c.

where the hattedmatrices λ̂u,d are diagonal in flavor space. So scattering amplitudes can depend
only on two linear combinations of the three coefficients. Since we only focus on the third
quark generation, we label with the top and bottom quark as Ct ≡ −CQ + Cu and Cb ≡
−CQ+Cd. Then, calling their chiral components tL, tR and bL, bR, wemove tomass eigenstates
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exploiting the parametrization for the Higgs doublet:

φ =

(

χ+
χ0

)

φ̃ = iσ2(φ†)T =

(

χc0
−χ−

)

where χ− = (χ+)
† and χc0 = (χ0)

†. The Lagrangian becomes:

−La
Y,FC = yte

i(Ct)
a
fa
[

χc0t̄LtR − χ−b̄LtR
]

+ ybe
i(Cb)

a
fa
[

χ+t̄LbR + χ0b̄LbR
]

+

+ yte
−i(Ct)

a
fa
[

χ0t̄RtL − χ+t̄RbL
]

+ ybe
−i(Cb)

a
fa
[

χ−b̄RtL + χc0b̄RbL
]

(4.3)

Sincewe are looking for collisions producing one axion field in final state, we can expand at first
order ei

a
fa ≈ 1+i afa . From4.3we can read the couplings of amplitudes for scatterings involving,

beside the axion, two fermions, that can be either both in the initial state or one in the initial
state and the other one in the final state, and a component of the Higgs Boson1. Then we can
evaluate the amplitudes for the various binary scatterings and derive the cross sections2. We list
all the possible processes and the associated cross section in 4.1.

4.2 Below EWPT

As a consequence of electroweak symmetry is broken theHiggs field gets a vev risingmass terms
for SM particles (see A.2.1). Then let’s go back to 4.2 and consider it in mass basis. What we
have is:

La
FC =

∂μa
fa

3
∑

i=1

(

CQūLγμuL + CQd̄LγμdL + CuūRγμuR + Cdd̄RγμdR
)

(4.4)

1In this basis is evident that there is no process involving SM gauge bosons. Alternatively, if we insisted on
working in the basis where axion is derivatively coupled to SM fermions then we obtain all binary amplitudes to
vanish as they would require a fermion chirality flip, that is not possible in the unbroken phase because we have
no mass term for the fermion itself.

2Those are obtained via integration of the formula for the differential cross section in the center of mass
(COM) frame, that we are familiar to in literature:

dσ
dΩ

=
1

64π2s
|p′|
|p| |M|

2

where s denotes the usual COM squared energy.
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Process CP conjugate σij→ka × 64πf2a
tt̄→ χ0a tt̄→ χc0a C2

t y2t
bb̄→ χ0a bb̄→ χc0a C2

by2b
tb̄→ χ+a bt̄→ χ−a C2

t y2t + C2
by2b

tχ0 → ta t̄χc0 → t̄a C2
t y2t

tχc0 → ta t̄χ0 → t̄a C2
t y2t

bχ0 → ba b̄χc0 → b̄a C2
by2b

bχc0 → ba b̄χ0 → b̄a C2
by2b

tχ− → ba t̄χ+ → b̄a C2
t y2t + C2

by2b
bχ+ → ta b̄χ− → t̄a C2

t y2t + C2
by2b

Table 4.1: In the first two columns we list the possible scattering processes producing axions above the EWPT. We can
either have fermion/antifermion annihilations producing an axion and any of the components of the Higgs doublet or just
one fermion plus a Higgs component in the initial state. For each process the scattering cross section is provided.

Specifying the chiral components for the third generation quark fields we obtain:

La
3rd =

∂μa
2fa
[

t̄γμ(CV,t + CA,tγ5)t+ b̄γμ(CV,d +A,d γ5)b
]

where we define axial and vector quark couplings as CV,q = (Cq + CQ) and CA,q = (Cq − CQ)

with q = u, d referred to third generation quarks. Nevertheless only the axial contribution is
relevant since, exploiting total derivative invariance of the Lagrangian:

∂μaq̄γμq = −a∂μ(q̄γμq) = 0

by conservation of axial vector current. Then we notice that CA,t ≡ Ct and CA,b ≡ Cb. Finally
the interactions we will consider are of the kind:

La
3rd =

∂μa
2fa

(Ctt̄γμγ5t+ Cbb̄γμγ5b) (4.5)

Here we can read the axion couplings to quark, instead the quark couplings to gauge fields are
the SM ones (A.2.2).
The available interactions rising from such couplings can be be split in twomain types: we can
either have quark-antiquark in the initial annihilation into a gauge boson plus axion, or quark
scattering with a boson producing an axion in the final state. All the possible processes are
listed in 4.2. Since the explicit expressions for the corresponding cross sections are too long to
be displayed in the table, we report them in B. Besides the main steps for complete calculations
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Process CP conjugate σij→ka
qq̄→ γa SAME B.7
qq̄→ ga SAME B.8
qq̄→ ha SAME B.9
tt̄→ Z0a SAME B.5
bb̄→ Z0a SAME B.10
tb̄→W+a bt̄→W−a B.11
qγ→ qa q̄γ→ q̄a B.12
qg→ qa q̄g→ q̄a B.13
qh→ qa q̄h→ q̄a B.14
tZ0 → ta t̄Z0 → t̄a B.6
bZ0 → ba b̄Z0 → b̄a B.15
tW− → ba t̄W+ → b̄a B.16
bW+ → ta b̄W− → t̄a B.17

Table 4.2: In the first two columns we list the possible scattering processes producing axions below the EWPT. We can
either have quark‐antiquark annihilation into one gauge boson plus axion, or quark scattering with a boson rising an axion
in the final state. Here q = t, b. For each process the scattering cross section is provided.

of cross sections are here explained for twoprocesses, in order to outline the adopted procedure.

4.3 Matching at the EWPT

Once we have collected all the analytical expressions for cross sections above and below the
EWPT, we may ask whether these actually match at this critical threshold. In particular since
three out four components of the Higgs doublet correspond to the longitudinal components
of the Z0 andW± bosons below the EWPT, we want to connect the process involving them
across this stage. Indeed a proof of consistency is to check that in the limit of vanishing masses
the cross sections below EWPT coincide exactly with those above. Looking at the expressions
in 4.1 and 4.2, one can easily see this is happening for3:

• neutral annihilations:

σtt̄→χ0a + σtt̄→χc0a = σtt̄→ha + σtt̄→Z0
La =

C2
t y2t

32πf2a
3As said, the Z and W components involved in the following processes are the longitudinal ones and will

be therefore denoted with an index L. Indeed since cross section calculations engage the scattering amplitudes
averaged over initial states, one can check that the expressions involving initial bosons that we consider here differ
from the ones reported in B of a factor three.
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• neutral scatterings

σtχ0→ta + σtχc0→ta = σth→ta + σtZ0
L→ta =

=σt̄χc0→t̄a + σt̄χ0→t̄a = σt̄h→t̄a + σt̄Z0
L→t̄a =

C2
t y2t

32πf2a

• charged annihilations:

σtb̄→χ
+
a + σbt̄→χ

−
a = σtb̄→W+

L a + σbt̄→W−

L a =
C2
t y2t + C2

by2b
32πf2a

• charged scatterings

σtχ
−
→ba + σbχ

+
→ta = σtW−→ba + σbW+→ta =

=σt̄χ
+
→b̄a + σb̄χ

−
→t̄a = σt̄W+

L →b̄a + σb̄W−

L →t̄a =
C2
t y2t + C2

by2b
32πf2a
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5
Tracking the number density

The equation ruling the axion number density evolutionwith time is the following Boltzmann
equation, whose derivation is presented in C:

d
dt
na + 3Hna =

∑

S

Γ̄s(neqa − na) (5.1)

where H is the Hubble parameter. We underline that this equation has been derived under the
assumption of kinetic equilibrium for the axion, and also of chemical equilibrium for bath par-
ticles. The collision operator on the RHS involves the sum over thermally averaged scattering
cross sections that are linked to the quantities we previously evaluated:

Γ̄S =
gigj

32π4neqa
T
∫ ∞

smin

ds
λ(s,mi,mj)√

s
σij→ka(s)K1(

√
s

T
) (5.2)

where λ(s,mi,mj) = [s − (mi + mj)
2][s − (mi − mj)

2] and the minimum center of mass
energy is smin = Max((mi + mj)

2,m2
k) depending on the process. Kn(z) are the modified

Bessel function of the second kind. As it is common in literature, we switch our unknown to
Ya = na/s and our evolution variable to x = m/T, where m is the haviest mass involved in
the process and T the thermal bath temperature 1. The equation that we are going to solve

1We have that the LHS is nȧ + 3Hna = a−3(a3na)˙ = s(na/s)˙ = sYa˙ , supposing entropy in conserved
in a cohomoving volume. Also, to perform the change of variable we have in mind that dx

dt = − m
T2

dT
dt =
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numerically is finally:

sHx
dYa

dx
=

(

1− 1
3
d ln g∗s
dlnx

)

(
∑

S

γa,S)
(

1− Ya

Yeq

)

(5.3)

with γa,S ≡ neqa Γ̄S.
The main focus of section 5.1 is to depict γa,S as function of the temperature T for the various
processes across the EWPT.

5.1 Thermally averaged cross sections

In order to analyze quantities that are function of the temperature alone, we remove the depen-
dence on the other parameters in γa,S through the definition:

γS(T) =
f2aγa,S
C2
t,by2t,b

or γS(T) =
f2aγa,S

C2
t y2t + C2

by2b
(5.4)

respectively for all neutral and charged scatterings involving third generation quarks t and b.
The quantity γS involves an integral that can be always computed numerically in a specific tem-
perature range, and so we evaluate it for each process above and below EWPT accounting for
the playing temperatures.
In particular we take as reference threshold the critical temperature corresponding to theHiggs
vev v ∼ 245 GeV. Then for cross sections above the EWPT γS is easy to compute analyti-
cally: for each of them we get a dependence∼ T6. Then all results are summed up to obtain
∑

S,above γS ≡ γabove and displayed in a logarithmic plot as a function T. This is done for a tem-
perature range [104, 245]GeV in 5.1.

− x
T [−HT/(1+ 1

3
dlog(g∗s )
dlogT )] and dlogT = −dlogx
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Figure 5.2: Plot of log10(γ) as a function of log10(T) after electroweak symmetry breaking for a T range of [245, 1]GeV.
Thin blue lines are referred to each single process in 4.2 summing up to the total rate in red.

Figure 5.1: Plot of log10(γ) as a function of log10(T) before electroweak symmetry breaking for a T range of
[245, 104]GeV. We plot the rate for each single process where the component of the Higgs doublet is in the initial state
(orange) or in the final state (blue), and the total rate (green) accounting for all scatterings in 4.1.

For cross sections below the EWPT the integral 5.2 is too complicated to be solved ana-
lytically, but we are able to find a numerical solution: therefore we evaluate it for temper-
atures in a range of [1, 245] GeV for every process listed in 4.2. Then we sum them up to
∑

S,below γS ≡ γbelow. A logarithmic plot for γbelow is shown in 5.2 . Finally the total rates γabove
and γbelow calculated for scattering processes, respectively, above and below the EWPT, are ex-
pected to connect smoothly at this threshold: this is easy visualised in 5.3. Here we considered
processes involved in the matching that we presented in 4.3, where the yukawa couplings have
been introduced for rates above the EWPT and the axion-quark couplings have been set to one.
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Figure 5.3: Matching of rates above and below the electroweak phase transition. The total rate for interactions involving
massive bosons below this threshold smoothly connects with their counterparts in the unbroken phase. All axion‐quark
couplings have been set to one.

In the following we will switch on separately the top- and bottom-axion couplings and eval-
uate the total rates imposing Ct = 1 or Cb = 1 respectively.

(a) (b)

Figure 5.4: Matching of rates above and below the electroweak phase transition for top‐axion coupling (a) and for bottom‐
axion coupling (b).

5.2 Evaluation of ΔNeff

The rates that we obtained in the previous section are needed to solve the Boltzmann equation
5.3. Therefore we perform interpolations of such total rates and plug these into the equation.
This is then numerically solved. The numerical solution is evaluated from an initial tempera-
tureTi = 104GeV and assuming the initial abundance of axions to be zero down to the EWPT
stage (Tc ≃ 245 GeV), using the above EWPT interpolated rate, and then down to the lower
temperature of Tf = 1 GeV with an initial thermal abundance of axions at Tc, exploiting the
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results obtained below the EWPT. The very same result is obtained considering a single rate
across the EWPT and solving the equations from Ti down to a temperature Tf. In particular
we derive solutions for bottom and top axion couplings separately, that we set to one, depend-
ing on the axion suppressing scale fa.

This results need to be connected to our relevant physical observable, that is ΔNeff.
We previously discussed the effective number of neutrinosNeff that is related to the radiation
energy density ρR = ργ + ρν + ρa, which includes any relativistic particle with a non-negligible
contribution, by 3.6. What we are interested in is the deviation from the predicted value, that
accounts only for neutrinos contribution, due to axion dark radiation. This defines:

ΔNeff = Neff −NSM
eff =

8
7

(

11
4

)4/3 ρa
ργ

(5.5)

Since we derived the Boltzmann equations for the axion comoving number density Ya = na/s,
we connect ΔNeff to this quantity 2:

ΔNeff ≃ 74.8449Y4/3
a (5.6)

We notice that this last step required converting the asymptotic comoving number density
into an asymptotic comoving energy density, thus wemade the further assumption of chemical
equilibrium also for axion particle. This implies the expressions for the number density and the
energy density being the equilibrium ones:

na =
ζ(3)
π2 T3 ρa =

π2

30
T4

that are valid for Bose-Einstein (BE) statistics.

2Given that the entropy density is s = 2π2
45 g

∗
s T3 and the axion number density reads na = ζ(3)

π2 T
3, we can

invert both and find two expression for T: one will be inserted in ργ =
2π2
30 T

4 = 2π2
30

(

45s
2π2g∗s

)4/3

while the other

in ρa = π2
30T

4 = π2
30

(

π2na
ζ(3)

)4/3

. Combining the two into ΔNeff and the the considering value of g∗s = 43/11 at

recombination, we obtain its relation to Ya.
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sion of ΔNeff at larger fa is less pronounced.
In summary: when fa is large, the axion-top quark interaction dominates because of the larger
cross-section, but since the top quark decouples earlier, the axion contribution to ΔNeff re-
mains smaller. As fa decreases, axion-bottomquark interactionsbecomemore significant. Since
the bottom quark decouples later than the top quark, this results in a larger ΔNeff because the
axion remains coupled to the thermal bath for a longer period. For very low fa , the axion
continues to interact with quarks down to even lower temperatures. However as the bottom
quark decouples, no further increase in ΔNeff is observed, leading to the saturation of Ya and
the formation of a plateau.
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6
Towards a Phase Space analysis

As seen, interactions in the thermal bath dump relativistic axion particles into the early Uni-
verse in the form of dark radiation. If such processes occur rapidly enough compared to the
expansion rate of theUniverse, thesemay even lead to thermal equilibrium, until at some point
the Universe become so cold and diluted that particles cannot interact anymore and they just
free-stream uninterrupted. The goal of our discussion is to estimate their contribution to the
energy density stored in relativistic degrees of freedom at the time of CMB formation, quan-
tified by ΔNeff. To this purpose in chapter 5 we exploited the formalism of the Boltzmann
equation for the number density, but in this section we aim to lay the foundations to a more
accurate analysis that could improve our predictions. Indeed solving ordinary differential equa-
tions that track a given moment of the distribution function allows to predict the amount of
dark radiation with a certain accuracy, but these are based upon some assumptions that are not
always justified. In what follows we will portray a formalism based entirely on a phase space
analysis, presented in a model independent way in [1], and apply it to the specific case of axion
production across the EWPT. We will build an integro-differential Boltzmann equation that
allows to track the particle distribution in the phase space without the assumption of reaching
a thermal profile, as happens for ordinarymethods. We list themain novelties of this approach,
displayed in [1].

• Non-thermalized relics: starting form initial conditions at early times with no addi-
tional dark radiation, if the interaction strength is insufficient, these particles might not
have thermalized in the early Universe but still exist inmeasurable quantities today. Our
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approach takes into account parameter space regions in which they never reaches ther-
malization;

• Decoupling epoch: thedecouplingofparticles is neither instantaneousnormomentum-
independent. Methods based on ordinary differential equations already go beyond the
instantaneous decoupling, but they still need to assume the phase space distribution
(PSD) to be thermal after decoupling. In [1] is shown how different momenta decou-
ple at different times and such difference in the decoupling temperature for the various
momentum bins originates distortions of the PSD from the thermal profile;

• Quantum statistical effects: while adopting ordinary differential equations describing
the evolution of number or energy densities, at some point one is forced to employ the
Maxwell-Boltzmann statistics, neglecting quantum statistics of dark radiation particles.
This assumption is never needed in a formalism where the original integro-differential
equations are employed;

• Feedback on the thermal bath: while on one side dark radiation keeps being produced,
on the other side, thermal bath particles lose energy. So we would like to account for the
whole system. That’s whywe rather deal with a systemof equations: an extra Boltzmann
equation that takes into consideration the changes in the thermal bath’s energy density1
completes our framework.The right hand side of this equation has a collision term quan-
tifying the energy exchanged with the dark radiation sector alongside its evolution due
the Hubble expansion.

6.1 Derivation of the Theoretical Framework

In appendix C we presented the Boltzmann equation C.1 in simple form. If we evaluate the
Liouville operator for dark radiation what we obtain is:

ω
dfa(k, t)

dt
= C[f(k,T)] (6.1)

with the C[f(k,T)] being the collision operator C.3 that encodes the dynamics mediating the
interaction processes. As said, the radiation energy density ρB evolves, both because of the en-
ergy exchanged between visible and dark sectors and of the dilution due to expansion. What

1As we believe SM interactions are enough efficient to ensure thermalization at early times, it is sufficient to
monitor the primordial bath’s energy density without delving into phase space this time.
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we can do is to integrate both sides of Boltzmann equation for the axion obtaining:

dρa
dt

+ 4Hρa = ga
∫

d3k
(2π)3

ω
dfa
dt

= ga
∫

d3k
(2π)3

C[fa(k, t)]

and this quantity has to be, with the opposite sign, equal to the right-hand side of the equation
accounting for the red-shift of the bath energy density. So the evolution of thermal bath with
density ρB and pressure pB is encoded by:

dρB
dt

+ 3H(ρB + pB) = −
(dρa
dt

+ 4Hρa
)

= −ga
∫

d3k
(2π)3

C[fa(k, t)] (6.2)

With these two (6.1 and 6.2) we track the evolution of the dark radiation PSD for axion and
the bath energy density. To complete the system we need one more equation and this is the
Friedmann equation for the Hubble rate H ≡ ȧ/a, where a(t) is the FLRW scale factor, for
which we assumes that there is no other contribution to the energy density besides the ones
from the thermal bath and the dark radiation. The final system is:



















ωdfa(k,t)
dt = C[f(k, t)]

dρB
dt + 3H(ρB + pB) = −ga

∫ d3k
(2π)3C[fa(k, t)]

H =
√

ρB+ρa
3M2

Pl

(6.3)

Energy density ρB and pressure pB are related via the equation of state pB = wBρB.

Once collisions have stopped happening at a significant rate, the phase space evolution is
just due to free-streaming and the dark radiation energy density scales ∼ a−4 as the photon
energy density (at temperatures below the electron mass). Thus once we are well below the
MeV scale, the ratio ρa

ργ
reaches a constant value, and this ratio is crucial to quantify the amount

of additional radiation, as shown by 5.5.

6.1.1 Collision term

We now focus on the collision operator for binary scatterings of the kind B1B2 −→ B3a. We
account for the relativistic dispersion for dark radiation ω = k and factor out the only term

49



involving the PSD, so we have:

dfa(k, t)
dt

= C(k, t)
(

1− fa(k, t)
feq(k, t)

)

where we denote with feq(k, t) the equilibrium PSD for axion without chemical potential. For
binary scatterings of the kind B1B2 −→ B3awe have:

CB1B2−→B3a =
1
2ω

∫

dΠ1dΠ2dΠ3(2π)4δ4(p1 + p2 − p3 − k)|MB1B2−→B3a|2fB1fB2(1± fB3)

We report here the analytical result for the collision operator derived in [15] for a generic mas-
sive particle wirh massma in the final state and we specify it for the axion dark radiation. We
first remember the definition for the Mandelstam variables s = (p1 + p2)2 = (p3 + k)2 and
t = (p1 − p3)2 = (p2 − k)2. In the center of momentum frame of the collision, initial state
particles and final state particles have opposite momenta with equal modulus:

p12 =
√

λ(s,m1,m2)

2
√
s

and k3a =
√

λ(s,m3,ma)

2
√
s

with the usual λ(s,mi,mj) = [s − (mi + mj)
2][s − (mi − mj)

2]. With some tricks one can
rewrite the integration measure as:

dΠ1dΠ2dΠ3(2π)4δ4(p1 + p2 − p3 − k) =
g1g2g3
128π3k

dsdtdε3
√

λ(s,m3,ma)

So the collision term becomes:

C(T, k) =
g1g2g3

256π3ωk

∫

smin

ds
√

λ(s,m3,ma)

∫ ε+3

ε−3

dε3
∫ tmax

tmin

dt|M(t, s)|2f1f2 (6.4)

with smin = Max((m1 + m2)
2, (m3 + ma)

2) and we denote with ε3 the energy for the bath
particle in the final state. The integration over dε3 has boundaries that come from the values
of s in the frame in which the axion has four-momentum (ω, k), and they are found by solving
the equation:

s = m2
3 +m2

a + 2(ωε±3 ∓ k(
√

ε±3
2 −m2

3))
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The variable t in the COM frame is:

t = m2
1 +m2

a − 2(
√

m2
1 + p212

√

m2
a + k23a − cos(θ1a)p12k3a) (6.5)

and the maximum and minimun value for t are found setting for the scattering angle in the
COM frame cos(θ1a) = −1 and cos(θ1a) = +1 respectively. Then, as it is reasonable, if we
assume equilibrium distributions for bath particle B1, B2 and B2, it is easy to perform the in-
tegral over ε3 analytically. We can exploit the conservation of energy to write feq1 (p1)f

eq
2 (p2) =

e−(ε1+ε2)/T = e−(ε3+ω)/T and performing the integration we obtain:

C(T, k) =
g1g2g3
256π3

Te−ω/T

ωk

∫

smin

ds
λ(s,m3,ma)

(e−ε−3 /T − e−ε+3 /T)

∫ tmax

tmin

dt|M(t, s)|2

Nowwe are ready to takema −→ 0 in the case of dark radiation. We have that ε+3 goes to infinity
while ε−3 remains finite, so that, performing the limit we obtain:

lim
ma→0

ε−3 =
s−m2

3

4k
+

km2
3

s−m2
3

and so:

C(T, k) =
g1g2g3
256π3

Te−k/T

k2

∫

smin

ds
s−m2

3
e
−
(

s−m2
3

4k +
km2

3
s−m2

3

)

/T
∫ tmax

tmin

dt|M(t, s)|2 (6.6)

with
tmin/max = m2

1 −
2(s−m2

3)√
4s

(
√

m2
1 + p212 ± p12

)

Finally this has to feed the system:



















dfa(k,t)
dt = C(k,T(t))

(

1− fa(k,t)
feq(k,t)

)

dρB
dt + 3H(1+ wB)ρB = −ga

∫ d3k
(2π)3 kC(k,T(t))

(

1− fa(k,t)
feq(k,t)

)

H =
√

ρB+ρa
3M2

Pl

(6.7)

As the collision operator in temperature dependent we can also employ this last as evolution
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variable 2:


















dfa(k,T)
d(logT) = −

C(k,T)
H

(

1− fa(k,T)
feq(k,T)

)

dρB
d(logT) = 3(1+ wB)ρB +

ga
H

∫ d3k
(2π)3 kC(k,T)

(

1− fa(k,T)
feq(k,T)

)

H =
√

ρB+ρa
3M2

Pl

(6.8)

wherewe can safely take the equilibriumdistributionbeing theMaxwellBoltzmann3feq,MB(k,T) =
e− k

T .

6.1.2 System Setup

In this section, we present the key setup for deriving the numerical solution 4 and its relation to
ΔNeff. We rewrite 6.7 in a more convenient way following the formalism adopted in [1]. First
we employ as time variable the scale factor a(t), in particular denoted with aI the scale factor
at a temperature TI = 104 GeV we use the dimensionless ratio A ≡ a/aI. Then we introduce
the comoving momentum:

q ≡ ka
aITI

=
kA
TI

and the comoving energy density of the thermal bath and axions:

RB ≡
ρBA

4

T4
I

Ra ≡
ρBA

4

T4
I

In this way we scale out the effect of the Hubble expansion since the physical momentum for
dark radiation scales like a−1 and the energy density for radiation-like fluid is proportional to
a−4. The comoving energy density for axion can be computed at each value of A integrating

2We used for the change of variable the following d(log T)
dt = −H

3Alternatively we can think of accounting for the bosonic nature of axion, i.e. the fact that multiple particles
can occupy the same quantum state , via the Bose Einstein distribution:

feq,BE(k,T) =
1

e− k
T − 1

At high temperatures, we can think of the particles as widely spread out in phase space, so that the probability of
multiple particles occupying the same quantum state is low: the−1 in the denominator becomes negligible and
the formula reduces to the classical MB one.

4A preliminary attempt at a numerical procedure is provided in D.2
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the PSD:
Ra =

ga
2π2

∫

dqq3fa(q,A) (6.9)

The Boltzmann system that we plug in our code is finally:



















dfa(q,A)
dlogA =

C(q,A)
H(A)

(

1− fa(q,A)
feq(q,A)

)

dRB
dlogA + (3wB − 1)RB = − ga

H(A)

∫ dqq3
2π2 C(q,A)

(

1− fa(q,A)
feq(q,A)

)

H =
√

RB+Ra
3M2

Pl

T2
I

A2

(6.10)

This is an integro-differential system. Indeed the first equation ruling the temporal evolution
of fa contains on the right-hand side the Hubble parameter: this is determined by the third
equation and so it is set by the energy content of the universe. This results from the integral
of fa over momentum for dark radiation 6.9 and from the second equation for the bath energy
density, that is also integro-differential.
We write a code to solve the system numerically and extract ΔNeff. The first step consists in
evaluating the collision operator using 6.6 for all the processes considered in the previous sec-
tion, that is all the scattering amplitudes |M(t, s)|2 reported in appendix D.1. The integral is
numerically solved for a range of momenta and temperatures, these last depending onwhether
the corresponding process occurs above or below the EWPT. The sums of all rates above and
below the threshold are then interpolated in two dimensions, resulting in the functionC(k,T),
that enters the 6.10. This selects the above-EWPT interpolating function for values of the tem-
perature T higher than 245GeV and returns the below-EWPT one otherwise.
To model the phase space distribution, the momentum space is divided into discrete intervals
called momentum bins. Each bin represents a range of momenta, and the code calculates the
value of fa(q,A) within each bin, allowing to capture the continuous spectrum of dark radi-
ation in a simple way. By summing over these bins, we can compute quantities like the total
energy of axion dark radiation. To connect the values of the temperature T to the variable A
one can invert:

RB(A) =
π2

30
g∗ρ(T)

( T
TI

)4
A4 (6.11)

that comes from the usual formula for relativistic energy density.
The initial distribution is assumed to be zero, indicating no axion dark radiation at the start,
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reflects the one already found for ΔNeff with the canonical formalism, but there are some key
differences between the two approaches. Indeed, as said, the comoving number density formal-
ism typically assumes that the axions reach thermal equilibrium with the primordial bath. On
the other hand, by directly solving the equation for the distribution function, wemight capture
the additional non-thermal axionproduction that the number density approachmisses. Hence
higher values for ΔNeffmay derive from considering non-thermal behaviour of the PSD and ac-
counting for out-of-equilibrium axion interactions, particularly at high values of fa, when the
interactions are not strong enough to mantain full thermal equilibrium, but yet contribute to
the overall axion abundance. Indeed there is an extension of the plot to slightly larger values of
fa, suggesting that smaller couplings give a significant contribution to non-thermal production.
This is likely due to themore precise handling of the distribution function, which accounts for
the gradual decoupling of axions rather than assuming a sharp transition. Also with this ap-
proach, we note that ΔNeff remains higher for bottom quark interactions due to his longer
period of coupling.
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6.2 Conclusions

The effective number of neutrino species Neff leads to observable consequences in the CMB
temperature and polarization anisotropy, making it a powerful observable to probe extensions
of the SM containing new light degrees of freedom, such as the axion. Indeed, axions pro-
duced via scatterings with thermal bath particles can contribute to the radiation energy density
of the universe, if they remain relativistic, at the time of recombination. As mentioned, cur-
rent measurements of Neff are consistent with the SM prediction. However, future observa-
tions of the CMB aim to improve bounds on this quantity: this introduces the possibility of
detecting deviations from the SM due to extra dark radiation components in the form of rel-
ativistic axions produced at high temperatures. Nowadays, the best sensitivity we have comes
from Planck satellite (σ(Neff) ≃ 0.17), yet in the near future, we expect to move further, up
to σ(Neff) ≃ 0.05 due to the Simons Observatory [16] or σ(Neff) ≃ 0.03 with Cosmic Mi-
crowave Background ‘Stage 4’ (CMB− S4) [17],[18]. There are also futuristic proposals [19]
with the target σ(Neff) ≃ 0.0014.
Motivated by these advancements, we evaluate the amount of axion dark radiation produced
in the Early Universe across the stage of EWPT in terms of ΔNeff, with the hope that ongoing
and future cosmological probes will provide valuable data to test these predictions.
After investigating the scattering processes involving third generation quarks, our results de-
pend on two couplings,Ct andCb. In our analysis, we switch on separately the bottom and top
axion couplings, setting them to one. This corresponds to examining the results as function
of fa/Ci, which quantifies the strength of axion-quark interaction. The scattering amplitudes
and cross sections contribute to the interaction rate that appears on the right hand side of our
equations.
First, we adopt the canonical approach, which solves the Boltzmann equation for the axion
number density. This provides an estimate for ΔNeff as a function of the axion energy scale
fa (figures 5.5b and5.5a). Smaller fa values, corresponding to larger axion-quark couplings,
mean stronger interactions that keep axion in thermal equilibrium with the primordial bath
for longer time, leading to a greater amount of axion dark radiation and, consequently, a big-
ger ΔNeff. Roughly speaking, this increasing behaviour is significant as long as the axion decou-
pling temperature is high enough to produce the fermions involved in the scatterings, i. e. top
and bottom quarks. Beyond this point, ΔNeff changes slowly with interaction strength as the
axion comoving number density saturates. Since the top quark is heavier, and so it decouples
from the thermal bath earlier compared to the bottom quark, processes involving the axion-
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bottom coupling provide a larger ΔNeff. On the other hand, given that the cross section is
proportional to the mass, the interaction rate is larger for the top quark, making axion produc-
tion relevant even at larger fa. The results obtained with this method chapter are in agreement
with the ones presented in [14]. It is worth to notice that we are evaluating axion production
without accounting for the backreaction on the energy density. The thermal bath evolves ac-
cording to the Hubble expansion and changes in the effective number of relativistic degrees of
freedom as the temperature evolves, but without any direct energy transfer from axion produc-
tion.
In the last part of this work, we enlightened how a phase-space formalism, which tracks the
evolution of the axion distribution function while accounting for feedback from the thermal
bath, could be applied to the case of axion production across the EWPT. This can be done
by plugging the expressions for the scattering amplitudes, calculated in this work and shown
in D.1, into the equations derived in 6.1. With a numerical approach based on such calcu-
lations, future works may reveal a more refined trend for ΔNeff, offering a slightly different
picture. Our results (figures 6.1b and 6.1a) indicate a plot for ΔNeff that is extending across a
tiny wider range of fa values, suggesting that axion production is relevant even at higher fa, or
equivalently smaller couplings, where the canonical method might underestimate the contri-
bution. The last method can portray regimes where interactions are significant but not strong
enough tomaintain full thermal equilibrium and axions are produced in smaller quantities but
that can still contribute significantly to dark radiation. Furthermore, we rely on the fact that
both the axion abundance and the evolution of the primordial plasma are self-consistently ac-
counted for, as well as the ability to resolvemomentum-specific details, that are averaged out in
the canonical number density approach. This potentially gives us amore complete description.
For this reasons, we believe that this formalism could provide a more accurate prediction for
the contribution of axion dark radiation to ΔNeff, which is crucial in the light of the upcoming
high-precision CMBmeasurements.
The comparison between the results obtained with the two differentmethods is visualised 6.2a
and 6.2b, which shows different plots at higher fa but the same behaviour for stronger cou-
plings, when the thermal equilibrium is ensured. Herewe also portray the trend for ΔNeff both
obtainedwith accounting for the bosonic nature of axion, i. e. considering aBoseEinstein equi-
librium distribution and the derived statics, than with using the classical approximation, i. e.
the Maxwell Boltzamnn. The deviation of the values obtained with the phase-space approach

57





A
The StandardModel of particle physics

This section is devoted to the main features of the StandardModel of particle physics, which is
the most comprehensive and empirically validated theory of fundamental interactions by now.
It is built upon the framework of gauge theories and it is based on the groupGSM = SU(3)c×
SU(2)L×U(1)Y 1. In the first part we review the path to our modern theoretical picture of the
strong interactions, introducing quarks and QCD, whose Lagrangian is presented in 1.1 and
1.2. The second paragraph resumes the main steps in the construction of our current model
for electroweak interactions.

A.1 About QCD

In order to explain their rich spectrum, elementary constituents of strongly interacting par-
ticles were introduced: the quarks (Gell-Mann and Zweig, 1963). Mesons were interpreted
as quark-antiquark bound states, and baryons as bound states of three quarks. At first, three
species of quarks were assumed (up, down, and strange), then the discovery of additional par-
ticles pointed out the existence of other three species (charm, bottom, and top). We refer to
this characterization as flavor. However this model presented two issues. Indeed free particles

1Here SU(3)c is the symmetry group of strong ‘colored’ interactions, i.e. QCD, SU(2)L is the weak isospin
that only regards left-handed particles since right-handed are not subjected to weak interactions; the subscript Y
toU(1)Y denotes the hypercharge, that, as we will see, is related to the electric charge and weak isospin.
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with fractional charge2 were not observed. Then, despite being spin 1/2 particles (which are
meant to obey Fermi-Dirac statistics) , in order to explain the spectrum of baryons, it seemed
unavoidable to assume their quarks wavefunction to be symmetric under the interchange of
quantum numbers. To recover the agreement with Fermi-Dirac statistics, an additional quan-
tum number was introduced, the color: if baryon wavefunctions are antisymmetric in color
and symmetric in spin and flavor, then are antisymmetric overall. This color is nothing but the
charge for a new internal SU(3) simmetry, and quarks corresponds to its fundamental repre-
sentation. Denoting them as qi, with i = 1, 2, 3 being the color index, the invariance of hadron
wavefunctions under SU(3) allows only the combinations: q̄iqj, ε

ijkqiqjqk, and εijkq̄iq̄jq̄k. This
means that physical hadrons are singlets under color and the only admitted ones are mesons,
baryons, and antibaryons, as observed. Finally the bosons associated to the SU(3) gauge field
are called gluons. QCD Lagrangian (1.2) has been discussed in chapter 1.1.

A.2 Electroweak interactions

A unified and experimentally correct description of weak and electromagnetic interactions is
realized by the model, introduced by Glashow,Weinberg and Salam, of spontaneously broken
gauge theory SU(2)L × U(1)Y → U(1)em.

A.2.1 The Bosonic sector

Let’s start with a theory with SU(2) andU(1) gauge simmetries (the latter needed since other-
whise SSB would lead to a system with no massless photon). To operate SSB, we introduce a
complex scalar field in the spinor representation of SU(2) and charge +1/2 under U(1) sym-
metry, so that its complete gauge transformation is

φ→ eiαaτaeiβ/2φ

where τa = σ2/2 denotes the generators of SU(2) (σa are Pauli matrices).
The covariant derivative of φ is

Dμφ = (∂μ − igAa
μτa −

i
2
g′Bμ)φ (A.1)

2To have baryons with integer charges, we need to assign to quarks fractional electric charge: +2/3 for u, c, t
and−1/3 for d, s, b.
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with Aa
μ and Bμ, respectively, the SU(2) and U(1) gauge bosons, and different coupling con-

stants g and g′. The gauge bosons sector reads:

LGB = −
1
2
AaμνAa

μν −
1
2
BμνBμν + (Dμφ)†Dμφ− V(φ†φ)

where Aa
μν and Bμν are the field strength tensors making up the kinetic term for SU(2) and

U(1).
Exploiting the unitary gauge, we can write φ = 1√

2(0, v + h(x))T, were h(x) is a real scalar
field known as Higgs boson and v = μ/

√
λ is the minimum of the scalar potential V(φ†φ).

From the kinetic term of the scalar field (Dμφ)†Dμφ evaluated at its vacuum expectation value
⟨φ⟩ = 1√

2(0 v)
T one derives:

LGB ⊃
1
2
v2

4
[

g2(A1
μ)

2 + g2(A2
μ)

2 + (−gA3
μ + g′Bμ)

2]

We can identify the following vector bosons

W±
μ =

1√
2
(A1

μ∓iA2
μ) Z0

μ =
1

√

g2 + g′2
(gA3

μ−g′Bμ) Aμ =
1

√

g2 + g′2
(gA3

μ+g′Bμ)

withmW = v
2g andmZ = v

2

√

g2 + g′2, while the fourth orthogonal to Z0
μ stays massless. One

can rewrite the expressions introducing theweakmixing angle θw as the angle that appears in the
change of basis from (A3,B) to (Z0,A), that is such that cos θw =

g√
g2+g′2

and sin θw =
g′√
g2+g′2

.

Exploiting the unitary gauge we can also see that expanding the scalar potential we get a mass
term and self interactions for h field:

V(φ†φ) = μ2φ†φ− λ(φ†φ)2 −→ 1
2
m2

hh2 − λvh3 − 1
4
λh4

wheremh =
√
λv denotes the mass of the Higgs boson.

Finally we note that the expansion of the kinetic energy for the scalar in unitary gauge, besides
rising the gauge boson mass terms, yields the interactions of the Higgs with other bosons:

LGB =
1
2
(∂μh)2 +

[

m2
WWμ+W−

μ +
1
2
m2

ZZμZμ
]

·
(

1+
h
v

)2
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A.2.2 Gauge couplings to fermions

The couplings of gauge bosons to fermions rise from the fermionic kinetic term. Let’s first
write the covariant derivative for a fermion belonging to SU(2) and with charge Y underU(1),
in terms of the mass eigenstate fields:

Dμ = ∂μ − i
g√
2
(W+

μ T+ +W−
μ T−)− i

g
cos θw

Zμ(T3 − sin θw2Q)− iAμQ (A.2)

withT± = 1
2(T

1±iT2) = 1
2(σ

1±iσ2), andQ = T3+Y (whereT1,T2 andT3 denote the SU(2)
generators). We need to specify the quantumnumbers of the fermion fields accounting for the
fact that theW boson couples only to left-handed helicity states of quarks and leptons. So we

assign the left-handed fermion fields to doublets of SU(2): EL =

(

νL
eL

)

and QL =

(

uL
dL

)

,

while making the right-handed fermion fields singlets under this group uR, dR, eR.
Writing for the covariant derivative the expressionA.2,we recover fromthekinetic term

∑

ψ ψi��Dψ
the Lagrangian for the electro-weak interactions of quarks and leptons:

LK = ĒLi✓✓∂EL + ēLi✓✓∂eL + Q̄Li✓✓∂QL + ūRi✓✓∂uR + d̄Ri✓✓∂dR
+ g(W+

μ Jμ− +W−
μ Jμ+ + Z0

μJ
μ
Z) + eAμJ

μ
EM

where

Jμ+ =
1√
2
(ν̄LγμeL + ūLγμdL)

Jμ− =
1√
2
(ēLγμνL + d̄LγμuL)

JμZ =
1

cos θw

∑

ψ

[

ψ̄γμ
(T3

ψ

2
− Qψ sin2 θw

)

ψ+ ψ̄γμγ5(−
T3
ψ

2
)ψ
]

Jμem =
∑

ψ

ψ̄γμψQψ

A.2.3 Fermion mass term: the Yukawa sector

Since the left- and right-handed components of our fermion fields have different gauge quan-
tum numbers, a simple mass term would violate gauge invariance. Therefore we must again
invoke the scalar field φ realizing spontaneous symmetry breaking. We should recall that there
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are known to be three generations of quarks and leptons, so that in flavor space we organize the
matter fields in triplets, for instance uL,R = (u, c, t)TL,R. So in the following discussion we will
denote with i the flavour index for each of them, running from 1 to 3.
We can write the following gauge invariant lagrangian:

Lm = −λije Ē
i
Lφe

j
R − λijdQ̄

i
Lφd

j
R − λijuQ̄

i
Lφ̃u

j
R + h.c.

Where we define φ̃a = εabφ†
b. After SSB this sector reads:

Lm = −h+ v√
2
(λije ēiLe

j
R + λijdd̄

i
Ld

j
R + λijuūiLu

j
R)

where the λijs are complex flavour mixing matrices, violating CP.
These can be decomposed by mean of unitary matrices Uq andWq such that λq = UqDqW†

q,
whereDq is a diagonal matrix with positive eigenvalues. Then performing a change of variables
qiR = Wij

qqjR and qiL = Uij
qqjL, that is converting the quark fields to the basis of mass eigenstates,

the previous expression reads:

Lm = −
(

1+
h
v

)[

mi
eēiLeiR +mi

dd̄
i
LdiR +mi

uūiLuiR
]

so that the quark masses are defined as mi
q = 1√

2y
i
qv, where Dii

q ≡ yiq. In this basis, the mass
terms and Higgs couplings are diagonal in flavor and conserve P, C and T.
However because of unitarity of Uq andWq matrices, this change of basis does not affect all
the other SM sectors but the charged weak interactions that mix uL and dL. Indeed the current
that couples with theW+ boson takes the form:

Jμ+ ⊃ 1√
2
ūiLγμ(U†

uUd)ijd
j
L =

1√
2
ūiLγμVijd

j
L

whereVij is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, whose off-diagonal terms allow
weak-interaction transitions between quark generations. It is worth to say that V is a general
unitary 3×3matrix. Therefore it has 9 parameters, that is 3 rotation angles (i.e. the number of
parameters of anO(3) element) and 6 complex phases. Through rotation of quarks,3 5 out of
6 phases can be removed. The remaing phase, that makes some couplings of theW to quarks

3If quarks are rotated by an overall phase, the Lagrangian stays invariant: the baryonic number is indeed a
symmetry, associated to a coherent phase shift in all the quark fields.
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complex, is a source of CP violation in electroweak sector.
By sake of simplicity, we assumed no νR and no mass for neutrinos, implying no transitions
between leptons of different generations.4

4Since one can exploit any unitary matrix in order to represent the neutrinos in the mass basis, we are free to
chooseUν = U†

e .
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B
Scattering Cross Sections

In this section we specify the procedure to compute the cross sections for the examined scat-
terings and give their result in the case below-EWPT. Being dark radiation, we will neglect the
axion mass in our discussion. Let’s first give some useful ingredients. Considering a process
of the kind 1 + 2 → 3 + a we define the Mandelstam variables in terms of the involved four-
momenta:

s = (p1+ p2)2 = (p3+ k)2 t = (p1− p3)2 = (p2− k)2 u = (p1− k)2 = (p2− p3)2

with the usual constraint s+ t+ u =
∑

im2
i . The Lorentz invariant cross section is:

σ1+2→3+a =
1
4I

∫

|M̄|2dΦ(2) (B.1)

where |M̄|2 is the cross section averaged squared amplitude, and I is the flux factor, that in its
manifest Lorentz invariant expression reads:

I =
√

p21 · p22 −m2
1m2

2 =
s
2

√

1− 2(m2
1 +m2

2)

s
+

(m2
1 −m2

2)
2

s2
(B.2)
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The phase space for final state particles reads:

dΦ(2) = (2π)4δ4(p1 + p2− p3− k)
dp3

(2π)32E3

dk
(2π)3Ek

≡ (2π)4δ4(p1 + p2− p3− k)dΠ3dΠa

(B.3)
Since we are free to perform the integral over the phase space in any frame as long as the final
result is given in a manifest Lorentz invariant form, we give the expression for dΦ(2) in the
center of mass (COM) frame:

dΦ(2)
COM =

dΩ
32π2

(

1− m2
3

s

)

(B.4)

Now we proceed to sketch the computations to derive some specific binary scatterings cross
section both above and below the EWPT as a function of the variable s, that allow us to outline
a general procedure.

Above EWPT

Let’s focus on tt̄→ χ0a, then the result can be easily generalised to all the scatterings presented
in 4.1. We remind that here all particle are taken massless. Using the coupling iytCt

a
2fa χ0t̄(1 −

γ5)t extrapolated from 4.2, the amplitude for this process is simple:

M̄tt̄→χ0a =
ytCt

2fa
v̄(p2)(1− γ5)u(p1)

We then the square, average and sum over initial and final polarizations this expression. Here
the resulting fermionic trace can be easily solved exploiting known properties of γ-matrices
obtaining finally:

|M̄|2 = 1
2
× 1

2
y2t c2t
4f2a
× 8p1 · p2

Since the particle are massless 2p1 · p2 = s and the cross section formula presented above gets
simplified. Combining these facts one can check our final expression:

σtt̄→χ0a =
1

64π
y2t c2t
f2a
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where we have already performed the sum over polarization vectors and denoted withTμναβ the
trace over Dirac indices:

Tμναβ =Tr
[

(✓✓p1 +mt)

(

γμ(gV + gAγ5)
i(✓✓p1 −��p3 +mt)

t−m2
t

γνγ5 + γνγ5
(✓✓p1 − ✁✁k+mt)

u−m2
t

γμ(gV + gAγ5)
)

(��p2 −mt)

(

γνγ5
(✓✓p1 −��p3 +mt)

t−m2
t

γμ(gV + gAγ5) + γμ(gV + gAγ5)
(✓✓p1 − ✁✁k+mt)

u−m2
t

γνγ5
)]

where we absorbed in gV and gA the axial and vector coefficients. We evaluate this trace using
Dirac algebra and contract all the indices, then rearrange our expression for |M̄|2 in terms of
Mandelstam variables1. In particular, setting for cos θw = m2

w/m2
z we have:

|M̄|2t̄t→Z0a = −
1
4

g2m2
Z

m2
W4f2a

1
(9m4

z(m2
t − t)(m2

t − u)
(2m2

t (18m6
tm2

Z − 59m4
tm4

Z − 9m4
tm2

Zt− 9m4
tm2

Zu+

59m2
tm4

Zt+ 59m2
tm4

Zu− 18m2
tm2

Ztu− 32m2
Wm4

Z + 64m2
Wm2

Zs− 32m2
Ws2 + 40mWm6

Z − 80mWm4
Zs+

40mWm2
Zs2 − 17m4

Zt2 − 25m4
Ztu− 17m4

Zu2 + 9m2
Zt2u+ 9m2

Ztu2)

Thenwe useMandelstam relation u = 2m2
t +m2

Z−t−s to rewrite this espression as a function
of t and s only. Having defined θ the scattering angle in the COM frame, we express t in terms
of s and θ:

tCOM = m2
t −

(s−m2
Z)

2
√
s

(√
s−
√

s− 4m2
t cos θ

)

and we plug it in the expression for |M̄|2. We are now ready to perform the integration in the
COM frame exploiting the B.4, where we setm3 ≡ mZ. Finally accounting for the flux of this
process:

It̄t→Z0a =
s
2

√

1− 4m2
t

s
we find a Lorentz invariant expression for the cross section:

σt̄t→Z0a =
C2
t g2m2

t

1152πf2am2
Wm2

Z

(s−m2
Z)

s3/2
√

s− 4m2
t

(

4
√ s

s− 4m2
t
tanh−1

(

√

1− m2
t

s

)

(−m2
Z(9m2

t + 40m2
W)

+ 32m4
W + 17m4

Z) + 9m2
Z(s− 2m2

Z))

)

(B.5)

1This is done by mean of FeynCalc Mathematica Package
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Analogously to the previous case we can solve this and express the result in terms of s, t and u 2:

|M̄|2tZ0→ta =
1
6

g2m2
Z

m2
W4f2a

1
9m4

Z(m2
t − s)(m2

t − u)
2m2

t (18m6
tm2

Z − 59m4
tm4

Z − 9m4
tm2

Zs− 9m4
tm2

Zu+

59m2
tm4

z s+ 59m2
tm4

Zu− 18m2
tm2

Zsu− 32m4
Wm4

Z + 64m4
Wm2

Zt− 32m4
Wt2 + 40m2

Wm6
Z − 80m2

Wm4
Zt+

40m2
Wm2

Zt2 − 17m4
Zs2 − 25m4

Zsu− 17m4
Zu2 + 9m2

Zs2u+ 9m2
Zsu2)

I

Then we apply again the Mandelstam trick and introduce the scattering angle θ in the COM.
This time the kinematics of the process yields the following relation between t and s:

tCOM = m2
Z −

(s−m2
t )√

s

(

s+m2
Z −m2

t

2
√
s

−
√

[s− (mt −mz)2][s− (mt +mZ)2]

2
√
s

cos θ
)

Since the top quark is in the final state we setm3 = m1 ≡ mt andm2 = mZ in B.4 and B.2.
After integration, our final Lorentz invariant expression reads:

σtZ0→tZ =
C2
t g2

3456πf2a
m2

t (s−m2
t )

s2m2
Wm2

Z

√

(m2
t −m2

Z + s2)2 − 4m2
t s

(−2s2 (−m2
Z (9m2

t + 40m2
W) + 32m4

W + 17m4
Z)

+
√

m4
t − 2m2

t (m2
Z + s) + (m2

Z − s)2

log

(

m2
t +

√

(s− (mt −mz)2) (s− (mt +mz)2)−m2
z + s

m2
t −

√

(s− (mt −mZ)2) (s− (mt +mZ)2)−m2
Z + s

)

+ 3s
(

m2
Z
(

3m2
t + 40m2

W
)

−

32m4
W − 8m4

Z + (mt −mZ)(mt +mZ)
(

32m4
W − 40m2

Wm2
Z + 17m4

Z
)

+ 9m2
Zs2
)

(B.6)

B.2 Other cross sections

Nowwe present the cross sections for the remaining processes. First we list the ones where we
have two fermions in the initial state and one gauge boson in the final state. In the following
q = t, b.

σq̄q→γa =
Q2

qe2C2
q

4πf2a

m2
q

(s− 4m2
q)

tanh−1
(

√

1−
4m2

q

s

)

(B.7)

2We can check that our calculation is satisfying crossing symmetry property. Indeed in order to obtain
MtZ0→ta we need to replace in the matrix for the previous process Mt̄t→Z0a the momenta p2 → −p3 and
p3 → −p2, that corresponds to switch t → s. Then, once accounted for the different polarization in the initial
state and for an overall minus sign since we are crossing one fermion field, this can be clearly seen if we compare
the two expressions.
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σq̄q→ga =
g2s C2

q

9πf2a

m2
q

(s− 4m2
q)

tanh−1
(

√

1−
4m2

q

s

)

(B.8)

σq̄q→ha =
y2qC2

q

64πf2a
(s−m2

h)

s(s− 4m2
q)

(

√

s(s− 4m2
q)− 4m2

t tanh
−1
(

√

1−
4m2

q

s

))

(B.9)

σb̄b→Z0a =
C2
bg2m2

b
1152πf2am2

Wm2
Z

(s−m2
Z)

s3/2
√

s− 4m2
b

(

4
√ s

s− 4m2
b
tanh−1

(

√

1− m2
b
s

)

(−m2
Z(9m2

b + 4m2
W)

+ 8m4
W + 5m4

Z) + 9m2
Z(s− 2m2

Z))

)

(B.10)

σtb̄→W+a =
g2 (s−m2

W)

128πsf2am2
W (−2m2

b (m2
t + s) +m4

b + (s−m2
t )

2)

(

c2bm2
b((s− 2m2

W)

√

−2m2
b (m2

t + s) +m4
b + (s−m2

t )
2 + 2s

(

−m2
b +m2

t + 2m2
W
)

coth−1

(

m2
b −m2

t + s
√

−2m2
b (m2

t + s) +m4
b + (s−m2

t )
2

)

) + c2tm2
t ((s− 2m2

W)

√

−2m2
b (m2

t + s) +m4
b + (s−m2

t )
2 + 2s

(

m2
b −m2

t + 2m2
W
)

coth−1

(

−m2
b +m2

t + s
√

−2m2
b (m2

t + s) +m4
b + (s−m2

t )
2

)

)− 4scbm2
bctm2

t

(coth−1

(

m2
b −m2

t + s
√

−2m2
b (m2

t + s) +m4
b + (s−m2

t )
2

)

+

coth−1

(

−m2
b +m2

t + s
√

−2m2
b (m2

t + s) +m4
b + (s−m2

t )
2

)

)

(B.11)

Finally the cross sections of scatterings involving bosons in the initial state are shown:

σqγ→qa =
Q2

qC2
qe2

32πf2a

m2
q

s2(s−m2
q)

(

2s2 log
(

s
m2

q

)

− 3s2 + 4m2
qs−m4

q

)

(B.12)
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σqg→qa =
C2
qg2s

192πf2a

m2
q

s2(s−m2
q)

(

2s2 log
(

s
m2

q

)

− 3s2 + 4m2
qs−m4

q

)

(B.13)

σqh→qa =
C2
qy2q

64πf2a
s−m2

t

s[(m2
q −m2

h + s)2 − 4m2
qs]

[

(−m2
h +m2

q + s)
√

[s− (mh −mq)2][s− (mh +mq)2]−

2sm2
q log

(

−
√

[s− (mh −mq)2][s− (mh +mq)2] + s−m2
h +m2

q
√

[s− (mh −mq)2][s− (mh +mq)2]− s+m2
h −m2

q

)]

(B.14)

σbZ0→ba =
C2
bg2

3456πf2a
m2

b(s−m2
b)

s2m2
Wm2

Z
√

(m2
b −m2

Z + s)2 − 4m2
bs]

(−2s2 (−m2
Z (9m2

b + 4m2
W) + 80m4

W + 5m4
Z)

√

m4
b − 2m2

b (m2
Z + s) + (m2

Z − s)2

log

(

m2
b +

√

(s− (mb −mz)2) (s− (mb +mz)2)−m2
Z + s

m2
b −

√

(s− (mb −mZ)2) (s− (mb +mZ)2)−m2
Z + s

)

+ 3s(m2
Z(3m2

b + 4m2
W)−

8m4
W − 4m4

Z) + (m2
b −m2

Z)(−4m2
Wm2

Z + 8m4
W + 5m4

Z) + 9s2m2
Z

)

(B.15)

σtW−→ba =
g2 (s−mb

2)

384πmW2s2
(

(mt2 −mW2 + s)2 − 4mt2s
)(

√

mt4 − 2mt2 (mW2 + s) + (mW2 − s)2

(cb2mb
2 (mt

4 +mt
2 (mW

2 − 2s
)

− 2mW
4 +mW

2s+ s2
)

+ 2cbctmb
2mt

2

(

−mt
2 +mW

2 + 3s
)

+ ct2mt
2(mb

2 (mt
2 −mW

2 − 3s
)

+ s(mt
2−

mW
2 + s))) + 2c2tm2

t s2 log





mt
2 −

√

mt4 − 2mt2 (mW2 + s) + (mW2 − s)2 −mW
2 + s

mt2 +
√

mt4 − 2mt2 (mW2 + s) + (mW2 − s)2 −mW2 + s





(

2cbmb
2 + ct

(

−mb
2 +mt

2 − 2mW
2)))

(B.16)
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σbW+→ta =
g2 (s−mt

2)

384πmW2s2
(

(mb2 −mW2 + s)2 − 4mb2s
)(

√

mb4 − 2mb2 (mW2 + s) + (mW2 − s)2

(ct2mt
2 (mb

4 +mb
2 (mW

2 − 2s
)

− 2mW
4 +mW

2s+ s2
)

+ 2ctcbmt
2mb

2

(

−mb
2 +mW

2 + 3s
)

+ cb2mb
2(mt

2 (mb
2 −mW

2 − 3s
)

+ s(mb
2−

mW
2 + s))) + 2c2bm2

bs2 log





mb
2 −

√

mb4 − 2mb2 (mW2 + s) + (mW2 − s)2 −mW
2 + s

mb2 +
√

mb4 − 2mb2 (mW2 + s) + (mW2 − s)2 −mW2 + s





(

2ctmt
2 + cb

(

−mt
2 +mb

2 − 2mW
2)))

(B.17)
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C
Boltzmann equation

The Boltzmann equation represents a fundamental tool to track the evolution of particles in
the Early Universe. In this section we will derive it for the number density and adjust it for the
case of binary scatterings.
Given the distribution function f(xμ, pμ) for our particle, that in general will depend on its
spacetime position and its fourmomentum, we can generically write the Boltzamann equation
as:

L[f] = C[f] (C.1)

On the left hand side we have the Liouville operator L, that represents the evolution for f due
to spacetime geometry: denoted with λ the affine parameter which parametrizes the particle’s
trajectory in the spacetime, it reads1:

L[f(xμ, pμ)] =
dxμ

dλ
∂f
∂xμ

+
dpμ

dλ
∂f
∂pμ

=

(

pμ
∂

xμ
− Γμνρpνpρ

∂

∂pμ

)

f

1We used the fact that for the physical four-momentum pμ = dxμ
dλ we have the geodesic equation:

dpμ

dλ
+ Γμνρpνpρ = 0

where Γμνρ = 1
2g

μγ(
∂gγν

∂xρ +
∂gγρ

∂xν −
∂gνρ

∂xγ ) is the affine connection.
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In a homogeneous and isotropic Universe, f turns out to depend only on the time and the
modulus of the momentum, or alternatively on the whole energy, i.e. f(t,E). Then in a FLRW
metric the Liuoville operator becomes2:

L[f(t,E)] = E
∂f
∂t
−Hp2

∂f
∂E

whereH = ȧ
a is the Hubble parameter. Since we need an equation for the number density, we

integrate both sides of C.1 in d3p, and simultaneously multiply by g
(2π)3 and divide by E. Then

we require a little bit of work3 to obtain:

ṅ(t) + 3Hn(t) =
g

(2π)3

∫

d3p
C[f(t,E)]

E
(C.2)

The right hand side takes into account all the possible interactions. Indeed C is known as the
collision operator: we immediately see from C.2 that if we have C = 0, meaning that the
particle doesnot interact in anyway, than theRHSvanishes and the equationyieldsn(t) ∼ a−3,
as we expect in an expanding universe. We are interested in tracking the number density of
axions na(t) involved in collisions of the kind 1+ 2→ 3+ a, so the collision operator reads:

RHS =
∫

dΠ1dΠ2dΠ3dΠa(2π4)δ4(p1 + p2 − p3 − k)[|M|212→3af1f2(1± f3)(1+ fa)−

|M|23a→12f3fa(1± f1)(1± f2)]
(C.3)

where dΠi =
d3pi

(2π)32Ei and |M|
2 denotes the squared amplitude that is not yet averaged over

the initial polarizations. The terms of the kind 1 ± fi account for quantum correction due to

2For a FLRWmetric we have Γ0ij = aȧδij, Γi0j = Γij0 = ȧ
a

3The first term of the LHS is immediate:

g
(2π)3

∫

d3p
∂f(t,E)

∂t
=

∂

∂t

(

g
(2π)3

∫

d3pf(t,E)
)

= ṅ(t)

Instead exploiting EdE = pdp and integrating by parts, the second term can be rearranged as:

g
(2π)3

∫

d3pH
p2

E
∂f
∂E

=
g

(2π)3

∫

dpH
p4

E
∂f
∂E

∫

dΩ =
g

(2π)3

∫

dpHp3
∂f
∂p

∫

dΩ = −3H g
(2π)3

∫

dpp2
∫

dΩ = −3Hn(t)
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the statistics of the involved particles4. Neglecting them and supposing temporal invariance so
that |M|212→3a = |M|23a→12, the expression simplifies to:

RHS =
∫

dΠ1dΠ2dΠ3dΠa(2π4)δ4(p1 + p2 − p3 − k)|M|212→3a(f1f2 − f3fa)

If we assume kinetic equilibrium is reached, meaning that collisions occur rapidly compared to
the time-scale under which conditions for our particles are changing, we can use for the phase
space distribution the equilibrium one, that becomes f = 1

exp((E−μ)/T)±1 ≃ e−(E−μ)/T once ne-
glected quantum statistics. The chemical potential can be taken to be μi ≃ 0 whenever also
chemical equilibrium is reached, meaning that both forward and backward reactions for parti-
cle i are efficient. This is the condition of thermodynamic equilibrium, that we will suppose
for particles 1, 2, and 3 in the thermal bath to solve our equation. Exploiting this assumption
plus the conservation of energy, the term f1f2− f3f4 = feq1 f

eq
2 (1−na(t)/n

eq
a ). In a compact form

we have:
ṅa(t) + 3Hna(t) = C1+2→3+a(neqa − na(t))/neqa (C.4)

We stress that this equation has been derived under the assumption of kinetic equilibrium
(as well as a MB profile) for the axion particle.

C.1 Collision operator for scatterings

For a scattering 1 + 2 → 3 + a, where we take particles 1 and 2 to be in thermal equilibrium,
we obtained the following term in the collision operator:

C1+2→3+a =

∫

dΠ1dΠ2dΠ3dΠa(2π4)δ4(p1 + p2 − p3 − k)feq1 f
eq
2 |M|21+2→3+a (C.5)

Here the squared matrix element is summed over both initial and final polarizations, without
taking any average. We can express the cross section formula B.1 in terms of Lorentz invariant
relative velocity between the particles 1 and 2, defined as:

v12 =
√

(p1 · p2)2 −m2
1m2

2

p1 · p2
=

λ1/2(s,m1,m2)

p1 · p2
(C.6)

4Phase space ‘cells’ for final states may be already occupied, and fermions and bosons are less and more likely
to occupy the same states, respectively. This leads to Pauli-blocking (− sign) and Bose-enhancement (+ sign) phe-
nomena [15].
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where s = (p1+p2)2 and λ(x, y, z) = [x−(y+z)2][x−(y−z)2]. Indeed provided that the flux
can be written as I = p1 · p2v12 and accounting for the phase space B.3, the Lorentz invariant
cross section reads:

σ1+2→3+a =
1

g1g2
1

4p1 · p2v12

∫

dΠ3dΠa|M|21+2→3+a(2π)4δ
4(p1 + p2 − p3 − k) (C.7)

wherewe divided by an overall factor of g1g2 because here the squared amplitude is not averaged.
Then the C.5 can be written in terms of a thermally avraged cross section as it follows:

C1+2→3+a = 2g1g2
∫

dΠ1dΠ2f
eq
1 f

eq
2 λ

1/2(s,m1,m2)σ1+2→3+4 (C.8)

The integration measure is in polar coordinates is:

dΠ1dΠ2 =
|p1⃗|2d|p1⃗|dΩ1

(2π)32E1

|p2⃗|2d|p2⃗|dΩ2

(2π)32E2
=
|p1⃗||p2⃗|
32π4 dE1dE2d cos θ (C.9)

Here the integration over three out of four angular variables has been trivially performed and
we have identified the fourth one with the angle θ between the initial momenta. Moreover
since the particles are on-shell EidEi = pid|pi⃗|. Now it is convenient to perform the following
change of variables:

E+ = E1 + E2 E− = E1 − E2 s = m2
1 +m2

2 + 2(E1E2 − |p1⃗||p2⃗| cos θ)

leading to the measure:

dΠ1dΠ2d cos θ =
dE+dE−ds
128π4

while the integration region (E1 ≥ m1, E2 ≥ m2, | cos θ| ≤ 1) is delimited by:

s ≥ smin = (m2
1 +m2

2) E+ =
√
s

|E− − E+(m2
1 −m2

2)/s|
(E2

+ − s)1/2
≤ λ1/2(s,m1,m2)

s

Since the product feq1 f
eq
2 = e−E+/T depends on E+ the integration over dE− is straightforward:

C1+2→3+a =
g1g2
32π4 ×

∫

smin

ds
1
s
λ(s,m1,m2)σ1+2→3+a(s)

∫

√
s
dE+e−E+/T(E2

+ − s)1/2
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Integration over dE+ yields a Bessel function, leading to our final expression for the collision
operator:

C1+2→3+a =
g1g2
32π4T

∫

smin

ds
1√
s
λ(s,m1,m2)σ1+2→3+a(s)K1(

√
s/T) (C.10)

Combining this last and C.4 we finally obtain 5.1.
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D
Code Implementation for Boltzmann

System Solution

This appendix complements Section 6.1.2 of Chapter 6, where the solution to the Boltzmann
system 6.7 for axion dark radiation across the EWPT, using the phase-space approach, is de-
rived.

In the first section, we list all the analytic expressions for the amplitudes |M(s, t)|2 for the
scatterings considered in this work, which contribute to the collision rate 6.6. Following that,
we provide the main steps of the code that we used to derive numerical solution for 6.10. Ad-
ditionally, we provide some insights into the phase-space analysis.

D.1 Scattering amplitudes

The generic expression for the amplitude of a process above the EWPT involving a quark q =

t, b is:
|M|2qq̄−→χa = C2

qy2qs/(4f2a) |M|2qχ−→qa = −C2
qy2qt/(2f2a) (D.1)

On the other hand we have the following amplitudes below the EWPT:

|M|2qq̄−→γa =
Q2

qCqe2m2
qs2

f2a(m2
q − t)(s+ t−m2

q)
|M|2qγ−→qa = −

Q2
qC2

qe2m2
qt2

f2a(m2
q − s)(s+ t−m2

q)
(D.2)
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|M|2qq̄−→ga =
4C2

qg2sm2
qs2

f2a9(m2
q − t)(s+ t−m2

q)
|M|2qγ−→qa = −

C2
qg2sm2

qt2

f2a6(m2
q − s)(t+ s−m2

q)
(D.3)

|M|2qq̄−→ha =
y2qC2

q

32f2a

8(m4
hm2

q −m2
hs(m2

q + t) + s(m4
q − 2m2

qt+ t(s+ t)))
(m2

q − t)(m2
h +m2

q − s− t)

|M|2qh−→qa = −
y2qC2

q

16f2a

8(m4
hm2

q −m2
ht(m2

q + s) + t(m4
q − 2m2

qs+ s(t+ s)))
(m2

q − s)(m2
h +m2

q − t− s)

(D.4)

|M|2tt̄−→Z0a = −
g2C2

tm2
Z

16f2am2
W

(

2m2
t (9m4

t (2m4
Z −m2

Zs) + 9m2
t (m4

Z(s+ 4t) + 2m2
Zst)+

32m4
W(m2

Z − s)2 − 40m2
W(m3

Z −mZs)2 + 17m8
Z − 2m6

Z(17s+ 9t) +m4
Z(17s2 + 27st+ 18t2)−

9m2
Zst(s+ t))

) 1
9m4

Z(m2
t − t)(mt2 +m2

Z − s− t)

|M|2tZ0−→ta =
g2C2

tm2
Z

24f2am2
W

(

2m2
t (9m4

t (2m4
Z −m2

Zt) + 9m2
t (m4

Z(t+ 4s) + 2m2
Zts)+

32m4
W(m2

Z − t)2 − 40m2
W(m3

Z −mZt)2 + 17m8
Z − 2m6

Z(17t+ 9s) +m4
Z(17t2 + 27ts+ 18s2)−

9m2
Zts(t+ s))

) 1
9m4

Z(m2
t − s)(mt2 +m2

Z − t− s)
(D.5)
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|M|2bb̄−→Z0a = −
g2C2

bm2
Z

16f2am2
W

(

2m2
b(9m4

b(2m4
Z −m2

Zs) + 9m2
b(m4

Z(s+ 4t) + 2m2
Zst)+

8m4
W(m2

Z − s)2 − 4m2
W(m3

Z −mZs)2 + 5m8
Z − 2m6

Z(5s+ 9t) +m4
Z(5s2 + 27st+ 18t2)−

9m2
Zst(s+ t))

) 1
9m4

Z(m2
b − t)(mb2 +m2

Z − s− t)

|M|2bZ0−→ba =
g2C2

bm2
Z

24f2am2
W

(

2m2
b(9m4

b(2m4
Z −m2

Zt) + 9m2
b(m4

Z(t+ 4s) + 2m2
Zts)+

8m4
W(m2

Z − t)2 − 4m2
W(m3

Z −mZt)2 + 5m8
Z − 2m6

Z(5t+ 9s) +m4
Z(5t2 + 27ts+ 18s2)−

9m2
Zts(t+ s))

) 1
9m4

Z(m2
b − s)(mb2 +m2

Z − t− s)
(D.6)

|M|2tb̄−→W+a =
g2

8fa2m2
W(t−m2

b)(−m2
b −m2

W + s+ t)

(

C2
bm2

b((−m2
b −m2

W + s+ t)(m2
W(m2

b+

m2
t − 2(s+ t)) + s(t−m2

t ) + 2m4
W)) + C2

tm2
t ((t−m2

b)(m2
W(m2

b +m2
t − s− 2t) + s(−m2

t+

s+ t))) + 2Cbm2
bCtm2

t (s−m2
W)2
)

|M|2tW−−→ba =
−g2

12fa2m2
W(s−m2

b)(−m2
b −m2

W + t+ s)

(

C2
bm2

b((−m2
b −m2

W + t+ s)(m2
W(m2

b+

m2
t − 2(t+ s)) + t(s−m2

t ) + 2m4
W)) + C2

tm2
t ((s−m2

b)(m2
W(m2

b +m2
t − t− 2s) + s(−m2

t+

t+ s))) + 2Cbm2
bCtm2

t (t−m2
W)2
)

(D.7)

As done for the corresponding cross sections (4.3), a good check is ensuring that in the limit
of vanishingmasses the scattering amplitudes below EWPT involving the longitudinal compo-
nents of massive gauge bosons coincide exactly with those above. This is easy to see:

• neutral annihilations:

|M|2tt̄→χ0a
+ |M|2tt̄→χc0a

= |M|2tt̄→ha + |M|2tt̄→Z0
La
=

C2
t y2t s
2f2a
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• neutral scatterings

|M|2tχ0→ta + |M|2tχc0→ta = |M|2th→ta + |M|2tZ0
L→ta =

=|M|2t̄χc0→t̄a + |M|t̄χ0→t̄2a = |M|2t̄h→t̄a + |M|2t̄Z0
L→t̄a =

−C2
t y2t t
f2a

• charged annihilations:

|M|2tb̄→χ
+
a + |M|2bt̄→χ

−
a = |M|2tb̄→W+

L a + |M|
2
bt̄→W−

L a =
(C2

t y2t + C2
by2b)s

2f2a

• charged scatterings

|M|2tχ
−
→ba + |M|2bχ

+
→ta = |M|2tW−→ba + |M|2bW+→ta =

=|M|2t̄χ
+
→b̄a + |M|2b̄χ

−
→t̄a = |M|2t̄W+

L →b̄a + |M|
2
b̄W−

L →t̄a =
−(C2

t y2t + C2
by2b)t

f2a

D.2 The Code

In this section we point out how Python could be used to model the evolution of the dark
radiation phase space distribution (PSD) due to interactions with the thermal bath, which in-
volves numerically solving an integro-differential system. Python is particularly well-suited for
this task due to its extensive ecosystem of scientific libraries, such as NumPy and SciPy, which
enable efficient numerical computations, differential equation solving, and data manipulation.
The combination of these tools makes Python a convenient and powerful choice for complex
physical simulations, such as tracking the behavior of dark radiation over time.

The first step is deriving the collision rate 6.6 for all scattering amplitudes presented in the
previous section. While for amplitudes above the EWPT, this integral is analitically solvable,
for the ones below the solution has to be fully numeric.
In what follows the create_rate_function(Msq, m1, m2, m3, g1, g2, g3) takes as
input arguments a symbolic expression for the amplitude |M(t, s)|2, alongside the associated
masses and degrees of freedom. It returns a create_rate_function(T,p) that can be eval-
uated at a given temperature and momentum.
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1 import numpy as np
2 import sympy as sp
3 from scipy.integrate import quad
4 import matplotlib.pyplot as plt
5 from scipy.interpolate import RectBivariateSpline
6

7 # symbolic variables
8 t,s= sp.symbols('t, s')
9

10 # Function to evaluate t_max and t_min
11 def calculate_tmin_tmax(s_val, m1, m2, m3):
12 lamb = (s_val - (m1 + m2)**2) * (s_val - (m1 - m2)**2)
13 k12 = np.sqrt(lamb / (4 * s_val))
14 tmax = m1**2 - 2 * (s_val - m3**2) / np.sqrt(4 * s_val) *
15 (np.sqrt(m1**2 + k12**2) - k12)
16 tmin = m1**2 - 2 * (s_val - m3**2) / np.sqrt(4 * s_val) *
17 (np.sqrt(m1**2 + k12**2) + k12)
18 return tmin, tmax
19

20 # Function to create the rate
21 def create_rate_function(Msq, m1, m2, m3, g1, g2, g3):
22 Msq_func = sp.lambdify((t, s), Msq, 'numpy')
23

24 def rate_function(T, p):
25

26 def integrand_s(s_val):
27 # Calcola tmin e tmax
28 tmin, tmax = calculate_tmin_tmax(s_val, m1, m2, m3)
29

30 # Integrand with respect to t
31 def integrand_t(t_val):
32 return Msq_func(t_val, s_val)
33
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34 # Numerically integrate over t
35 integral_t_val, _ = quad(integrand_t, tmin, tmax, limit=1000)
36

37 # Calculates E3
38 E3 = ((s_val-m3**2)/(4 * p))+((p * m3**2)/(s_val-m3**2))
39

40 # Integrand with respect to s
41 return np.exp(-E3 / T) * integral_t_val / (s_val - m3**2)
42

43 # Calculate smin
44 smin = max((m1 + m2)**2, m3**2)
45

46 # Numerically integrate over s
47 Integral, _ = quad(integrand_s, smin, np.inf, limit=1000)
48

49

50 # Final rate
51 rate = (g1 * g2 * g3 / (256 * np.pi**3)) * (T * np.exp(-p / T)
52 / p**2) * Integral
53

54 return rate
55

56 return rate_function

The integral 6.6 can be solved for each process and evaluated for values of temperature T
and momentum k. The temperature covers the range [1, 245] GeV, for the sum of rates valid
below the EWPT, and [245, 10000] GeV for the ones above. The momentum, instead, has to
be taken in a logarithmic spaced interval, such as k

T ∈ [10−4, 103] GeV, to carefully select the
relevant momenta. Then the rate values obtained in this way can be interpolated over a grid
[T, k/T] using RectBivariateSpline, resulting in two functions. Finally the rate C(k,T)
that enters the right hand side of the first two equations in the system 6.7 can be defined in
terms of an if statement that switches between the interpolated functions obtained above and
below 245 GeV and is set it to zero once 1 GeV is exceeded:
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1 def unified_interpolation(T, k):
2 if T > 245:
3 return rate_interpolated_above(T, k/T)
4 if 245 >= T >= 1:
5 return rate_interpolate_below(T,k/T)
6 else :
7 return np.zeros_like(rate_interpolated_below(T, k/T))

The top and bottom-axion couplings have been set to one: Ct,b = 1. In what follows we re-
port the definitions of all the quantities and constants that feed the Boltzmann system. The
letter X is denotes generically dark radiation, in our case standing for axions. The value the
temperature of the thermal bath T can be obtained the evolution variable A through an it-
erative implementation. A key ingredient for the definition of the relationship T(A) is the
function for the evolution of the effective number of the energy density degrees of freedom
g_star_rho_interp(T). This comes from interpolation of tabulated data of T and g∗ρ(T).
The same procedure is adopted for the function for the equation of state parameter evolution
w_B_fun(T).

1 # Constants
2 M_pl = 2.4 * (10**18) # Planck mass
3 T_I = 10**4 # High-temperature scale
4 g_X = 1.0 # Placeholder for degrees of freedom of dark radiation
5

6 # Function C(q, A)
7 def C(q, A,T, fa):
8 k=q*T_I/A
9 T_A=T
10 result=unified_interpolation(T_A,k)#
11 # print(f"C_rate result for T={T_A}, k={k}: {result}")
12

13 if result is None:
14 raise ValueError("The unified_interpolation returned None.")
15 return result.flatten()/ (fa**2)
16
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17 # Function for the equilibrium distribution of X
18 def f_eq_X(q, A, T):
19 k=q*T_I/A
20 T_A=T
21 return np.exp(- k / T_A) #MB 1 / (np.exp(k / T_A) - 1)#BE
22

23

24 # Function to calculate R_X(A)
25 def R_X(f_X, q_bins):
26 return (g_X / (2 * np.pi**2)) * np.trapz(q_bins**3 * f_X, q_bins)

Finally the code provided below is designed to track how the distribution of axion dark radia-
tion changes due to scatterings with thermal bath particles as the universe expands, specifically
across the Electro-Weak Phase Transition. The momentum space is divided into logarithmi-
cally spaced intervals, referred to as momentum bins. This binning approach allows the model
to compute the distribution function across a wide range of energies, providing a detailed pic-
ture of how dark radiation evolves. By summing over these bins, the code performs the neces-
sary integrals to calculate quantities such as the energy density of the axions and the thermal
bath.
To carry out these integrals, the trapz function from the NumPy library is employed, which
uses the trapezoidal rule for numerical integration. This method is particularly effective for
integrating discrete data points, which is common in simulations involving momentum bins.
Additionally, the odeint function from SciPy’s integrationmodule is used to solve the system
of differential equations over a range of scale factors, starting from an initial condition where
dark radiation is absent. This allows the model to dynamically evolve the dark radiation distri-
bution as the universe expands.

1 import numpy as np
2 from scipy.integrate import odeint
3

4 # Function C(q, A)
5 def C(q, A,T, fa):
6 k=q*T_I/A
7 T_A=T
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8 result=unified_interpolation(T_A,k)#
9 # print(f"C_rate result for T={T_A}, k={k}: {result}")
10

11 if result is None:
12 raise ValueError("The unified_interpolation_2 returned None.")
13 return result.flatten()/ (fa**2)
14

15 # Function for the equilibrium distribution of X
16 def f_eq_X(q, A, T):
17 k=q*T_I/A
18 T_A=T
19 return np.exp(- k / T_A) #1 / (np.exp(k / T_A) - 1)#
20

21

22

23 # Function to calculate R_X(A)
24 def R_X(f_X, q_bins):
25 return (g_X / (2*( np.pi**2))) * np.trapz((q_bins**3)* f_X, q_bins)
26

27 T_values=[]
28 # System of differential equations
29 def derivatives(y, logA, N_q, q_bins, fa):
30 A = np.exp(logA)
31 f_X = y[:N_q]
32 R_B = y[N_q]
33

34 R_X_val = R_X(f_X, q_bins)
35

36 TT=1/A
37 for i in range(7):
38 TT = ( R_B /(np.pi**2/30 * g_star_rho_interp(TT)) )**(1./4.)
39 *T_I /A
40 #print(TT)
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41 T_values.append(TT)
42 # Calculate R_X(A)
43

44

45 # Update Hubble parameter H
46 H = np.sqrt((R_B + R_X_val) / (3 * (M_pl**2))) * (T_I**2 / A**2)
47

48 # Differential equations for f_X
49 d_f_X_dlogA = np.zeros(N_q)
50 for i, q in enumerate(q_bins):
51 C_val = C(q, A, TT, fa)
52 d_f_X_dlogA[i] =(C_val / H) * (1 - f_X[i] / f_eq_X(q, A, TT))
53

54

55

56 integrand = q_bins**3 * (1 - f_X / f_eq_X(q_bins, A, TT)) *
57 C(q_bins, A,TT, fa) / H
58 integral = np.trapz(integrand, q_bins)
59 dR_B_dlogA = - (3 * w_B_fun(TT) - 1) * R_B- (g_X / (2 * np.pi**2))
60 * integral
61

62 return np.concatenate([d_f_X_dlogA, [dR_B_dlogA]])
63 # Number of momentum bins
64 N_q = 64
65

66 # Define logarithmically spaced bins
67 q_bins = np.logspace(np.log10(0.005), np.log10(20), N_q)
68

69

70 # Set initial conditions
71 initial_f_X = np.zeros(N_q) # Initial f_X(q, A)
72 initial_R_B = g_star_rho_interp(T_I) *np.pi**2/30 # Initial R_B
73 initial_conditions = np.concatenate([initial_f_X, [initial_R_B]])
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74

75 # Define the range for integration
76 logA_start =0
77 logA_end = np.log10(T_I/2e-6)
78

79 A_steps= np.logspace(0,logA_end,100)
80

81

82 # Extract results for a fixed value of fa
83 solution = odeint(derivatives, initial_conditions, np.log(A_steps),
84 args=(N_q, q_bins, 10**6), atol=1e-6, rtol=1e-6, hmax=0.01)
85

86

87 f_X_solution = solution[:, :N_q]
88 R_B_solution= solution[:, N_q]
89 R_X_solution= R_X(f_X_solution, q_bins)
90

91

92 DeltaN_eff=8/7 * ((11/4)**(4/3))*(R_X_solution[-1]/(2*(R_B_solution[-1])
93 /g_star_rho_interp(T_values[-1]))
94 print(DeltaN_eff)

We show the results for the PSD fX(q,A), where the scale factor is given at given temperature
A(T), as function of the cohomoving momentum in figure D.1, both rescaled in a convenient
way in order to compare the shape of the PSD at given temperatures1.Here we use a definition
for the dark radiation temperature2, that does not rely upon the assumption of thermalization,

1The multiplicative factor (gX/2π2)q3 is needed to identify the integrand whose integral leads to the dimen-
sionless comoving energy density RX. Indeed we divide by the quantity RX to compare the PSD at different
moments. Initially, before the production processes become efficient, the value of fX is rather small, and it grows
later on. Thus we are comparing the shape of the PSD at different times and not the overall normalization. The
choice of the variable on the horizontal axis is also convenient because we want to investigate when we achieve
thermalization.

2Applying this to the expression for feq, one finds that the dark radiation temperature is equal to the one of
the thermal bath, i.e. TX = T.
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extracted from the PSD as its second moment [1]:

TX(A) =
TI

A

(

∫

dqq4fX(q,A)
∫

dqq2fX(q,A)

)1/2
(2
√
3)−1

We compare the fX(q,A) with the reference thermal distribution, for which we take the MB
type: feq,X(q,A) = exp (TIq/(ATX(A))). We notice that already at early-times the PSD, that
appears to be higher and skewed towards higher momenta, reaches a thermal profile, for lower
values of fa, such that the interactions are efficient. This is likely due to the enhanced produc-
tion rates in the unbrokenphase, where quarks aremassless and there is no thermal suppression.
As the temperature drops and the EWPToccurs, the quarks gain theirmasses and theUniverse
gets less dense, leading to a lower production. Finally, the late-time PSD, when axion produc-
tion has ceased, is the free-streaming one. Nevertheless also smaller couplings , i.e. values of fa
such that thermalization is never or barely achieved, could give a contribution to non-thermal
axion production. Furthermore this approach could possibly capture momentum-specific be-
haviours, that in general are neglected in the canonical number density approach, that averages
over all momentummodes and tends to smooth out the variations.

We conclude by stating that the computational implementation sketched in this appendix
should be considered preliminary and requires further validation as well as the employment of
more accurate numerical methods to ensure robustness and precision.
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