
UNIVERSITÀ DEGLI STUDI DI PADOVA
Master Degree Thesis in
Computer Engineering

A comparison of two auditory front-end
models for horizontal localization of

concurrent speakers in adverse acoustic
scenarios

Author:

Andrea Almenari

Supervisor:

Prof. Giorgio Maria Di Nunzio

Co-Supervisor:

Dott. Roberto Barumerli

A.Y. 2018/2019





1

CONTENTS

1 Introduction 3
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Fundamentals of Auditory Processing . . . . . . . . . . . . . . . . . . . 4

1.2.1 The human auditory system . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Binaural audio . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Computational Auditory Scene Analysis . . . . . . . . . . . . . . 7
1.2.4 Binaural features . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Open questions on human brain’s binaural processing . . . . . . 10
1.2.6 The front-back confusion and frequency-related problems . . . . 12
1.2.7 Head Related Transfer Functions . . . . . . . . . . . . . . . . . 12
1.2.8 Binaural audio synthesis using HRIRs . . . . . . . . . . . . . . . 13
1.2.9 Room Acoustic Simulation . . . . . . . . . . . . . . . . . . . . . 15
1.2.10 The Sabine formula . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Computational tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Machine Learning: a brief introduction . . . . . . . . . . . . . . 18
1.3.2 Datasets in ML . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Used Machine Learning techniques . . . . . . . . . . . . . . . . 20

2 Materials 29
2.1 Software, libraries and databases . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Auditory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 May’s 2011 auditory model . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Dietz’s 2011 auditory model . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Ma’s 2017 auditory model . . . . . . . . . . . . . . . . . . . . . 35
2.2.4 A simple HMM for DOA estimation . . . . . . . . . . . . . . . . 37

3 Simulations 41
3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Papers’ models replica . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 May’s 2011 model experiments . . . . . . . . . . . . . . . . . . 43
3.2.2 Dietz 2011 Experiments . . . . . . . . . . . . . . . . . . . . . . 44

3.3 New experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Models’ extension . . . . . . . . . . . . . . . . . . . . . . . . . 45



2

3.3.2 May’s and Dietz’s models re-training . . . . . . . . . . . . . . . 45
3.3.3 Ma’s 2017 model training . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 HMM model training . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.5 Extended models evaluation . . . . . . . . . . . . . . . . . . . . 47

4 Results 49
4.1 Reproducibility of experiments . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 May 2011 experiments . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Dietz 2011 experiments . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Models’ extension experiments . . . . . . . . . . . . . . . . . . 50
4.2.3 Confusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Discussion 57
5.1 Reproduction of papers’ experiments . . . . . . . . . . . . . . . . . . . 57

5.1.1 May’s 2011 model paper’s reproduction . . . . . . . . . . . . . . 57
5.1.2 Dietz’s 2011 model paper’s reproduction . . . . . . . . . . . . . 57

5.2 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusion 63

A Code Documentation 65
A.1 Main structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.1.3 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.1.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.1.6 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B ICA 2019 Publication 69



3

SECTION1
INTRODUCTION
Ears are complex and extraordinary instruments which help humans understand what is
happening around them. By using two ears (binaural hearing), a person can localize
multiple sound sources and focus his attention to a specific acoustic source. This is very
important because, if someone cannot understand the location of the sound source, it
becomes difficult to perceive and interact with the environment, especially in the pres-
ence of noise. Since the second half of the past century, several studies have been done
to explore how mammal’s auditory processing encodes acoustic information. The first
auditory models appeared in literature in the previous century [16], [33], [40], [32], [52];
nowadays, new approaches extend previous findings [54], [63], [4], [12], [38]. An exten-
sive research has been carried out through the years, but many details of the auditory
processing remain unclear: auditory modelling tries to replicate ears’ functionality suc-
ceeding only partially or with some caveats (i.e. high level analysis performed by the
brain are not exploited at the time of writing [64]). In this document, two of these
auditory models will be analyzed and extended. Such models were proposed in [13] and
in [38].
The thesis is organized as follows: the next section will provide to the reader an intro-
duction about auditory processing, than an overview of binaural listening for Direction
of Arrival (DoA) estimation and, finally, the machine learning tools employed. In the
second chapter, the software and auditory models used are described and explained,
while in the third chapter experimental setups for paper’s replicas and new experiments
are provided. Finally, the last sections cover the results and their discussion.

1.1 Research Questions

This manuscript wants to deal with the following open questions:

• What are the actual performances of the evaluated models for binaural azimuth
estimation? Can different model’s assumptions lead to similar results?

• Can a model simulate a real user only relying on his acoustic description?

• Which metric can better describe the evaluation of an auditory model?

• Is it possible to improve the auditory models by using different classification meth-
ods?
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Figure 1: Ear anatomy - picture from Wikipedia1

1.2 Fundamentals of Auditory Processing

1.2.1 The human auditory system

Before starting to write about computational auditory models, we proceed to describe
the components which compose the human auditory system. This is important because
knowing the elaboration of the acoustic wave-field can allow more reliable and precise
replication of the real human auditory processing.

The human auditory system includes both sensory organs and the auditory parts of
the sensory system. A representation is available in Fig. 1. It is formed by three main
parts:

• Outer ear is composed by auricles, cartilages which surround the ear canal. Pinna
is made by folds of cartilage into the auricle, which reflects or attenuates sound
waves as visible in Fig. 2. The ear canal amplifies sound frequencies between 3
and 12 kHz until the tympanic membrane. It can be noticed that outer ear can
boost the sound pressure from 30 to 100 times near 3 kHz frequency [8].

• Middle ear starts with the tympanic membrane, where sound waves arrives and
making it vibrate. The tympanic membrane transfer its movement to three specific
bones, the malleus, the incus and stapes, which amplify the sound pressure at the
oval window, approximately with a gain of at least 18:1 and with different lever arm
factors for different frequencies (2 from 0.1 to 1 kHz, 5 at 2 kHz and decreasing fast

1https://commons.wikimedia.org/wiki/File:Anatomy_of_the_Human_Ear.svg, downloaded on
May 10th, 2019

2http://www.cochlea.eu/en/ear/external-ear, downloaded on May 13th, 2019
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Figure 2: Outer ear frequency amplification. (c) refers to the ear canal while (p) refers
to the pinna and (t) is the total amplification - picture from cochlea.eu2

above this last frequency) [29]. This increase of pressure in vibrations is necessary
because, from the oval window, vibrations travel through a liquid instead of air.
This allows impedance matching of sound travelling through a liquid in the inner
ear instead of air. In some particular cases, sound pressure can also be damped
through dedicated muscles (i.e. stapedius muscle, tensor tympany muscle) [29].

• Inner ear: in this part of the auditory system the acoustic vibrations are transduced
in nerve impulses by the cochlea. Moreover the cochlea is also connected with the
vestibular system. Cochlea is formed by three fluid-filled sections, scala media,
tympani and vestibuli [67]. Vibrations, which arrive from the oval window, make
the round window move, and the liquid, named endolymph, with it. The acoustic
waves can arrive through air conduction (from the tympani) or bone conduction
(from the skull) and they are threaten in the same way. The basilar membrane
is the place where sound vibrations are captured in function of their frequency
[55]. As a rule of thumb, the frequency is an exponential function of the length
of the cochlea within the organ of Corti, as shown in Fig. 3. This last organ,
positioned into the scala media, transforms sound vibrations into nerve signals
using specific hair cells. These cells are separated into inner or outer and these
are displaced as in Fig. 4. Inner cells actively convert vibrations into nerve impulses
while outer cells amplify vibrations in a specific way and act as a motor structure.
Inner cells’ output, in contrast with neurons which show a spike response, exhibit
a graduated response. In this point of the auditory system, mechanical signal
is transformed into an electric signal which will be sent to the middle brain for
high-level elaborations [24].

3https://www.britannica.com/science/basilar-membrane, downloaded in May 13th, 2019
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Figure 3: Relationship between basilar membrane and sound frequency - picture from
Encyclopædia Britannica3

The mid-brain organization of the human auditory system is then formed of several
parts:

• trapezoid body, which carries information used in binaural computations into the
brain and helps sound localization [41];

• superior olivary complex, which detects interaural level and time differences (ITD
and ILD) [43];

• inferior colliculi, which integrates localization information found by the superior
olivary complex and dorsal cochlear nucleus before sending it to thalamus and
auditory cortex [46] [47];

• primary auditory cortex, the first region of the external cortex which receives au-
ditory inputs. Here there’s the pitch, rhythm and speech perception. Neurons of
this auditory cortex are selectively perceptive based on frequency [48] [66];

• ventral and dorsal streams, which are two different pathways for neural transmission
of a sound. The ventral stream is responsible for sound recognition and mean-
ing extraction from sentences, while the dorsal stream helps sound localization,
articulation, phonological encoding and verbal working memory [23].

1.2.2 Binaural audio

Humans rely on two separate ears to analyze the acoustic environment. This ability let
them to enhance hearing capabilities for instance: ease of listening and speech recog-
nition, as reported in [15]. In addition, binaural hearing permits also to localize with a
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Figure 4: Inner cells and outer cells - picture from [27]

good accuracy the position of a sound source. The human brain has the extraordinary
capacity to isolate a sound coming from a specific position, focusing only on what is
the subject evaluates as interesting (cocktail party effect) [22]. An important challenge,
which aggregates different research fields, is the computational auditory modeling which
aims to develop a digital systems for enhancing speech intelligibility using spatial filters
or localizing a sound from a specific position from a binaural source. These technologies
can become very important for different type of applications: electronic hearing aids,
cochlear implants and virtual or augmented reality. In this manuscript, the focus will be
on sound localization; different models about this topic have been developed, both for
horizontal and vertical planes. Horizontal-plane models as [38] or [13] are focused on the
azimuth perceived by the listener, while the vertical-plane ones as [4] on the elevation.

Here the features for audio localization will be presented, together with methods to
generate spatial audio used in experiments described in Section 3.

1.2.3 Computational Auditory Scene Analysis

Computational Auditory Scene Analysis (CASA) is the study of auditory scenarios by
computational means, trying to replicate how the human listeners do when they listen.
To achieve this purpose, auditory models which model outer, middle and inner ear are
necessary. In particular, several types of filters are usually used in order to mimic the
human auditory system behaviour, as lowpass, bandpass, highpass (especially for outer
and middle ear) and Gammatone filters. This last type of filters have been used quite
often in literature in filter-banks to model how basilar membrane responds to different
frequencies because it has the potential to better resolve the harmonics of complex tones
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Figure 5: Example of Gammatone filter - picture from Wikipedia4

[61]. A Gammatone filter is essentially the product of a gamma function for a pure tone:

g(t) = atn−1e−2πbt cos(2πft+ φ) (1)

where f is the center frequency, φ the phase of the carrier, a the amplitude, n the
filter order, b the bandwidth and t the time. The typical shape of a Gammatone filter
is in Fig. 5. Filter-bank structure is usually created by spacing each filter of a
Equivalent Rectangular Bandwidth (ERB) measure unit, which gives an approximation of
the bandwidth of human auditory filters. This permits to simplify that filters by modeling
them as bandpass filters. ERBs have been defined by Moore and Glasberg using two
different formulations, which are valid for moderate sounds and young listeners:

• polynomial approximation (dated 1983), valid from 0.1 to 6.5 kHz [42]:

ERB(f) = 6.23 · f 2 + 93.39 · f + 28.52 (2)

• linear approximation (dated 1990), valid from 0.1 to 10 kHz [20]:

ERB(f) = 24.7 · (4.37 · f + 1) (3)

In the above formulas, f is the center frequency of the filter in kHz and ERB(f) the
bandwidth of the filter in Hz.

The firing rate in the auditory nerve is quite-often used rather than spikes, modeling
hair cells’ behaviour with an half-wave rectification followed by a square-root compres-
sion.

4https://upload.wikimedia.org/wikipedia/commons/9/94/Sample_gammatone.svg, downloaded in
May 13th, 2019
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For pitch perception, instead, two different theories have been developed, place theory
and temporal theory, emphasizing respectively resolved or unresolved harmonics. Using
these two theories in the time domain and by auto-correlating the simulated auditory
nerve activity to the output of each frequency channel, a correlogram can be computed.
Using this information, and then, pooling the auto-correlation across frequency, pitch
can be extracted from the correlogram as dominant peaks [65]. To determine the sound
source, using the fact that ears receives sounds at different times, delays between ears
can be exploited by using the cross-correlation of the signals at the left and right ears,
or with alternative techniques [65]. The question about the use of cross-correlation for
sound sources’ extraction is still open and details can be found in next paragraphs.

1.2.4 Binaural features

The main important features used for audio Direction of Arrival (DOA) localization are:

• Interaural Phase Difference (IPD): the phase difference of a pure-tone signal when
arriving before in a ear and after in the other.

• Interaural Time Difference (ITD): the time difference of an broadband audio signal
to be heard from the other ear when arrived to the first ear.

• Interaural Level Difference (ILD): the acoustic source’s difference of sound pressure
between the outer ears.

These features can be adopted with the desired referral system (for example, ITD positive
if the signal arrives before in the left ear and negative on the other side, or vice-versa). For
frequencies below 1400 Hz, head’s dimensions are smaller than the half of the wavelength
of the sound waves and the auditory system can determine easily phase delays between
ears. Level differences, instead, are difficult to estimate because of their low values. The
situation becomes more critical below 200 Hz, because a precise localization is nearly
impossible using level differences. Phase differences also become very low below 80 Hz.
High frequencies also impose constraints on sound localization: if they’re above 1.6 kHz
head’s dimensions are greater than the wavelength of sounds. Using only IPDs for DOA
estimation is ambiguous, and here the use of ILDs can help to remove the ambiguity
because they become strong enough to be used [55].

According to [11] and as written before, ITD and ILD are elaborated by the superior
olivary complex in humans. Even if quite accurate artificial neural circuits have been
developed above these features, how the human brain decodes these features it is still
not clear. Such knowledge can improve the limits of cochlear implants for binaural
hearing and threat with more precision hearing disorders. The first model to process
the ITD feature was proposed in the Jeffress’s work [25]: calculation relies on delay
lines, where neurons on the superior olivary complex accept innervation from ears with



10

axons (impulses’ conductors of neurons) of different length. Delay elements compensate
the ITD in order to detect the coincidence. This behaviour was considered in line with
physiology outcomes because of the observation of these axonal delays and of an array
of coincidence detectors in the barn owl and in other mammals spieces such as cats, and
owls [68] [53]. This model can be considered as a physiological representation of the
cross-correlation of the left and right signal perceived by ears. A lot of models today
use cross-correlation to estimate the Direction of Arrival of a sound source (DOA) with
very good performance (see [38], its derivatives [36], [35] and [31]), but the Jeffress’s
model cannot explain the precedence effect of sound event separation when two sounds
are emitted with a sufficient delay time [11]. In addition, studies on guinea pigs do not
support the existence of the previous cited physiological structure [39]. Finally, other
computational models have been developed, but their results are not as good as the
ones relying on cross-correlation. It is unclear if these worse performances are related to
a fundamentally incorrect formulation or to lack of development as in cross-correlation-
based models over several decades [11]. Moreover, actually auditory models operates for
very-specific problems, as horizontal or vertical localization, leading to the absence of a
general model.

1.2.5 Open questions on human brain’s binaural processing

The academic and industrial research on human auditory system has more than fifty
years of development, but some open issues still remains on how human process the
acoustic information.

One of the most singular facts is that neurons responds maximally with ITD different
from zero [26]. The distribution of ITDs at which the response of neurons is maximum
is referred, according to the work of Stern and Colburn [58], as the p(τ) function, where
τ is the delay perceived. The debate occurs when investigating if the maximum of that
distribution is in the zero delay or in a delay approximately equal to an IPD of 45°[39].
This maximum delay is also called best delay. The distribution of these best delays and
the cause of the non-zero delay have not been explained yet.

Another open question is how the DOA estimation is performed by the brain. Four
approaches are commonly proposed in literature, but no one claims that there is a perfect
match with physiological correlates. An overview is available in [11]. To understand
better the meaning of the following formulas, some variables have to be defined:

• n: the n-th neuron, where 1 ≤ n ≤ N and N is the total number of neurons;

• Rn: the response of the neuron n;

• α0: the direction of arrival (degrees);
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• BDn: the best delay for the neuron n (milliseconds);

• dir: the final direction of arrival estimate (degrees).

The proposed approaches are:

• Place code: it is used by the majority of the delay-line based models. The ITD is
compensated by the neuron’s best delay, but in this way neurons’ weak responses
are ignored [25].

dir = arg max
n

(Rn(a0)) (4)

• Hemispheric rate difference: this technique involves all neurons and compares the
neural activity of the two hemispheres or compares the sum of the activity of
neurons with positive best delay with ones with negative, even for neurons with
atypical behaviour [62].

dir ∝
∑
n

Rn,Right(α0)−
∑
n

Rn,Left(α0) (5)

• Centroid : the total activity of coincidence-counting neurons is considered and the
centroid along the best-delay axis is computed. This technique can give similar
results of place code method if signal have reinforcing ITDs of small magnitude
[58].

dir ∝
∑
nBDn ×Rn(α0)∑

n α0
(6)

• Pattern Matching and Maximum Likelihood Estimation: detection is done using a
model which learns the response of all neurons in function of their direction. For
each stimulus, the direction will be the one which agrees better with the learned
response [9] [21].

dir = arg max
T

∑
nRn(α0)Rn(αT )√∑

nRn(α0)2
√∑

nRn(αT )2
for PM (7)

dir = arg max
α

(P (Rn(α0)|α)) for MLE (8)

In the last years, cortical electrophysiologic data were also taken into account, but
discovering of real mechanisms of human’s DOA estimation remain one of the most
important challenges in binaural audio research.

In addition to the four measurements presented into the previous section, there is
another unclear feature, the Interaural Group Delay (IGD), which is the derivative of
ITD in the frequency. IGD becomes important for complex stimuli, since in pure-tone
sounds phase difference is constant. In order to exploit better ITD variation, some
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Figure 6: The confusion cone concept. Picture from 5

.

models decompose the signal into different frequency bands and extract ITDs or cross-
correlations from each one of them, but IGD calculation has not been used yet directly
in any model.

1.2.6 The front-back confusion and frequency-related problems

Currently, the presented binaural features do not completely account an important issue:
the front-back confusion. Front-back confusion is a phenomenon where, in the horizontal
planes, a DOA can be misunderstood and perceived in the opposite hemifield. This
depends on small differences of binaural features for directions affected by this issue.
The problem, indeed, can be threaten also considering elevation in addition to azimuth,
bringing the ambiguity not only to two ambiguous positions, but to infinite positions
mapped by a cone of confusion. This ambiguity derives from the inability of common-
used binaural features (ITD, ILD and IPD), with today’s techniques, to be distinguished
in these ambiguous situations. So, other techniques need to be exploited to remove
ambiguity, as for example, head rotation [36].

1.2.7 Head Related Transfer Functions

As described in the section 1.2.1, the pinna can be modelled as an spatial-dependent set
of acoustic filters. They account the pinna’s shape, which lets to generate a particular
frequency spectrum derived from direct and reflected sounds thanks to its asymme-
tries and complex folds. The obtained spectrum is associated to specific DOAs [6].
This pinna-filtering can be modeled with the so-called Head-Related Transfer Func-
tions (HRTF), whose temporal representations are the Head-Related Impulse Responses
(HRIR). HRTFs are usually recognized as Linear Time-Invariant (LTI) systems and can

5https://humansystems.arc.nasa.gov/groups/ACD/images/The.Role.of.D.Fig2.gif, downloaded in
May 13th, 2019
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Figure 7: Measures involved in HRTFs - Picture from 6

.

be written as:

Hd = Hd(r,Θ, φ, ω, α) = Pd(r,Θ, φ, ω, α)/P0(r, ω) (9)

where d is the direction (left or right), Pd is the amplitude of the sound pressure in the
direction d, P0 is the amplitude of sound pressure at the center of the head, while r is
the distance center-of-head - source, Θ is the azimuth, φ is the elevation, ω the angular
velocity and α the equivalent dimension of the head.

HRTF acquisition is not a simple process, which requires measuring them on a spatial
grid with discrete frequency samples in anechoic chambers. The complexity of the whole
thing depends on the fact that each acquisition is a very delicate process, where many
accidental variables can change the final result. Several studies on HRTF measurement
repeatability have shown different sources of variability on the acquired quantities [2].

1.2.8 Binaural audio synthesis using HRIRs

Using HRIRs, a monophonic sound can be transformed and spatialized by headphones
listening. The procedure involves the convolution of the monophonic signal with left and
right HRIRs for specific azimuth, elevation and distance. Since a HRIR database contains
a finite number of HRIRs, an interpolation technique is required. The convolution with
left and right HRIRs permits to obtain a stereophonic signal which contains the spatial
information. The listener have to listen with headphones in order to simulate the ears’
filtering to perceive spatial audio.

A simple schema of the procedure is in the Fig. 8.

HRTF datasets HRTF datasets are composed by HRTF recorded from real subjects
or dummy head (i.e. KEMAR mannequin). Some of the most famous datasets available
in literature are the following ones:

6https://it.mathworks.com/help/audio/ref/interpolatehrtf.html, downloaded in May 13th, 2019
7https://it.wikipedia.org/wiki/File:Hrir_binaural_synthesis.png, downloaded in May 14th, 2019
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Figure 8: Binaural synthesis schema - picture from Wikipedia7

Figure 9: A KEMAR mannequin - picture from 8

• MIT : recorded using a KEMAR mannequin, available in full and compact versions,
often used in many publications;

• CIPIC : recorded using 45 real subjects and KEMAR mannequin;

• ARI : recorded using over 170 listeners and two KEMAR mannequins;

• TU-Berlin: recorded using a KEMAR and a FABIAN dummy heads.

A KEMAR (Knowles Electronics Manikin for Acoustic Research, in Fig. 9) is the first
head and torso simulator designed for acoustic research. It has been designed with median
human adult dimensions and the ear mounted on it can be replaced with different types
of pinnaes and shapes. Its main goal is to make audiology measurements as repeatable
as possible, simulating how a real human listens.

8https://www.gras.dk/products/head-torso-simulators-kemar/kemar-for-hearing-aid-test-1-
ch/product/499-45bb-1, downloaded in May 14th, 2019
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HRTF limitations Since pinna’s shapes are different from person to person, the con-
sequent spatial filtering varies. This problem introduces the need to personalize the
spatialization techniques when the acoustic environment is rendered on headphones.
Some ways to approach this problem would be HRTF personalization or best-HRTF
selection.

• HRTF personalization consists on recording the HRIRs and to use them (also with
interpolation) to generate spatial audio.

• Best-HRTF matching : by using a set of pre-recorded HRIR dataset it is possible
to build some perceptual metrics to select the user nearest HRIR database.

The main disadvantage of these methods is the difficulty of training, which requires the
listener to spend a significant quantity of time in order to obtain a binaural audio system
that fits its needs. Other approaches were also tried, for example HRTF’s synthesis based
on ears’ shape, but these techniques require a complex mathematical tools although
leading to a limited spatialization accuracy.

1.2.9 Room Acoustic Simulation

A room can be seen as a Linear-Time-Invariant (LTI) system if source and receiver are
fixed in the room. For this reason, it is possible to define the room with an impulse
response. The impulse response of a room is usually shortened with the acronym RIR.
A RIR defines exactly a source-receiver combination inside a room; as an example, if a
RIR has been recorded from a seat in a theatre, and if that RIR is convoluted with a
monophonic sound and reproduced on headphones, that sound will be perceived as if
the user is listening to it from that seat.

There are two ways to obtain a RIR of a room:

• Direct recording : position a dummy head/mannequin in the desired receiver posi-
tion, a source in its position and then the RIR is recorded. This approach permits
to obtain a very precise impulse response, but it is poor in terms of flexibility
because a RIR needs to be recorded for each source - receiver positions;

• Room simulation: use a software to simulate a room and different source-receiver
configurations. Room simulation leads to worse results with respect to direct RIR
recording but it allows more flexibility in positioning sources and receivers.

The complexity of the problem depends on room’s size and structure, wall materials and
physical conditions, as for instance temperature and humidity. The common simulation
approach is ray-tracing technique and many commercial solutions relies on this 9 10 11

9Odeon, available at https://odeon.dk/
10CATT Acoustic, available at http://www.catt.se/
11EASE, available at https://ease.afmg.eu/
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Figure 10: An overview of a channel of a RIR. Picture from [34]
.

[57]. Ray-tracing uses the hypothesis that sound wave propagates with specular reflec-
tions on the walls inside the room. The more are the rays, the more precise will be the
synthetic RIR. Sound rays are emitted by a sound source in several directions according
to the source emitting pattern and the reflections are captured by a receiver, both local-
ized in a specific point of the room. The sum of rays captured by the receiver contains
reverberation pattern which are related to the geometry and the acoustic parameters of
the simulated room and can be divided into several parts:

• Direct sound : it is the first impulse in the RIR waveform and is generated by direct
rays which hit the receiver.

• Early reflections: they can be seen in the waveform as the first part of the re-
verberant tail. They have quite large peaks and generated by first reflections of
sound rays.

• Late reverations: they form the last part of the reverberant tail and they are
generated by sound rays which are reflected several times.

Sound rays’ intensity in time tends to fade out because of absorption and diffusion
phenomena: the walls absorb some quantity of sound energy and reflect the remaining
sound. After a number of iterations each rays will be completely lose its energy.

An example of the method is illustrated in the Fig. 11.
An implementation used to synthesize the RIR is the image-source method [34]. In

this case (Fig. 12), the sound source is mirrored in the room’s walls to create virtual
sources corresponding to the real one and the RIR can be computed considering all the
straight lines starting from all sources (real and virtual) and arriving to the receiver.
This method tends to be usually more efficient than a general ray-tracing method but it
remains inaccurate for high-order reflections computation. To overcame this limitation
the diffuse rain algorithm can be used [34].

To generate a sound from a position not recorded by RIRs, instead, is necessary to
elaborate impulse responses in a such way that accounts positions not recorded by the
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Figure 11: Ray-tracking for room simulation. Picture from [34]

Figure 12: Image-sources for room simulation. Picture from [34]
.

responses’ dataset. Two important techniques are used to overcome this issue: one is
interpolation, which let to estimate a RIR which is between two different responses (using
for example bilinear interpolation); the second one is related to the distance. This last
problem can be solved accounting the attenuation due to the ray’s path length. Distance
attenuation works on the principle that the sound energy decreases proportional to the
square of the distance.

1.2.10 The Sabine formula

This formula, used to estimate reverberation times in a simple room, is based on three
important assumptions:

• persistence: two different sounds with a time distance of less than 0.1 s cannot
be distinguished;
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• sound speed : it is of 340 m/s in a room with temperature of 20° .

• position: the sound source and the listener must be in the same axis with respect
to the obstacle.

The main Sabine formula formulation is the following:

T60,f = 0.16 · V∑
i αi,fAi

(10)

where V is the volume of the room, αi,f is the absorption coefficient of the room’s wall
i at a certain frequency f and Ai is the area of the wall i.

With the assumptions written above, the formula can be inverted and αi,f for every
frequency f can be found.

1.3 Computational tools

In this section the computational tools used in this work are illustrated.

1.3.1 Machine Learning: a brief introduction

Machine Learning (ML) is a branch of artificial intelligence (AI) which is focused on
making a computer capable of learning information and predict results. Research in this
field started from the ’50s, when some researchers (Minsky, Samuel and Rosenblatt)
tried to understand if computers can learn from data [49]. The first time the expression
"neural network" has been used was in the late 50s [1]. The architecture of the network
at that time was very different from the one which is intended now: it was formed by
a single perceptron, a binary classifier which used linear models to predict a boolean
value [45]. Some first probabilistic models were also created, but they were plagued
by problems [45]. Research continued slowly in particular in the Information Retrieval
(IR) and the pattern matching fields because of domination of expert systems while, in
the ’80s, back propagation applied to neural networks has been discovered ([45]) and,
from the ’90s, researchers started to solve practical problems instead of "obtaining" the
artificial intelligence [30]. ML also started to separate from symbolic approaches given
by AI and began to be coupled with statistical models and methods [30].

Since ML procedures are data-centric, it is essential to have enough data related to
reveal the mathematical model behind the studied problem. Data in ML can be used for
training, validation and testing purposes [5].

ML is implemented with different assumptions, depending on the type of the problem:

• Supervised Learning, where each given training input has also the desired output
(usually called label)
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• Unsupervised Learning, where only training inputs are given without labels and the
model has to find a structure inside data

• Reinforcement Learning, where the model tries to reach a goal with a "teacher"
which tells the system if it succeeded or not.

For each one of the methods above, there can be three different categories of tasks:

• Classification: predicted labels are finite and cannot be different from the ones
used for the training set. It will be the type of problem which will be analyzed in
this document.

• Regression: predicted labels can be different from the ones used in the training
set. Usually they’re continuous real values.

• Clustering : labels do not come from the training set, data is divided into groups
by an unsupervised learning technique.

ML can be done using different types techniques, each one with a strong mathemat-
ical background behind, for example: Neural Networks (NN), Linear prediction, Logistic
Regression, Support Vector Machines (SVM), Gaussian Mixture Models (GMM), Hidden
Markov Models (HMM), Bayesian Networks.

In this manuscript GMMs, NNs and HMMs will be used and explained.

1.3.2 Datasets in ML

As mentioned above, ML requires data in order to train a specific model. Data can be
grouped to three different sets:

• Training set: used to train the model

• Validation set: used to verify if the trained model is good enough and optimize
hyper-parameters if necessary (usually with model-selection)

• Test set: used to test performances of the chosen model.

In supervised learning, every set is accompanied by a specific error metric, which denotes
in classification the probability of a prediction mismatch with respect to initially assigned
samples’ values. In addition, training error can not be representative of the real perfor-
mance of the model. As an example (Fig. 13), consider a 10 points training set brought
from points of a curve. Since points are 10, it can be seen that the polynomial which fit
better them is a 10-degree polynomial, with a null training error. But, if other points of
the curve outside the training set are chosen, predictions will be not so good. For this

12https://medium.com/@lotass/machine-learning-what-you-need-to-know-about-model-selection-
and-evaluation-8b641fd37fd5, downloaded in May 16th, 2019
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Figure 13: The polynomial example - picture from 12

Figure 14: Model selection curve for the polynomial example - picture from 12

reason, model selection and validation have been introduced: to train using different
models with the same training set and to verify their performances with another set of
samples, i.e. the validation set. Looking for the trend of training and validation errors
(model-selection curve) in Fig. 14, it can be seen the model which does fit better the
initial curve. It can also be seen that there are models which are too simple to fit the
problem (causing underfitting) and others which captures a lot of information from the
training set, but do not generalize well (causing overfitting).

To test final performances of the selected model the Test set is used, since it has
not been touched by the previous operations.

In the following sections the ML techniques used in this work are explained in detail.

1.3.3 Used Machine Learning techniques

Gaussian Mixture Model (GMM) Suppose data have been generated according
to a mix of different probabilistic distributions (mixtures), but after generation data
can be only identified ad produced by a unique multi-modal distribution. The main
purpose is to try to identify the single distributions’ parameters inside the multi-modal
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distribution, acting as a sort of clustering algorithm. It is assumed for simplicity that,
at the beginning, every distribution has the same mathematical description. A common
case of this scenario is the one where these distributions are multi-normal (Gaussian)
and it is needed to estimate their parameters (mean (µ) vectors, covariance (Σ) matrices
and α coefficients) [50].

In this situation, the probability of the event x knowing Θ, which defines the multi-
normal distribution, would be the following:

p(x|Θ) =
∑
i=1...s

αi · pi(x|Θi) where Θi = {µi,Σi} (11)

Parameters estimation is done through the general criterion of maximum likelihood;
the likelihood is defined as

L(Θ|X) = p(X|Θ) =
∏

j=1...n

( ∑
i=1...s

αi · pi(xj|Θi)
)

(12)

where Θ defines the parameters andX the given patterns. For simplicity the logarithm of
the likelihood is maximized instead of the direct likelihood measure; indeed, the previous
formula becomes

logL(Θ|X) = log
∏

j=1...n

( ∑
i=1...s

αi · pi(xj|Θi)
)

=
∑

j=1...n
log

( ∑
i=1...s

αi · pi(xj|Θi)
)
(13)

Now, the main difficulty is the sum inside the logarithm, which makes the maxi-
mization procedure heavy to calculate. In order to remove that sum, it is necessary to
know what mixture component pi(·) generates every pattern xj. Here comes in aid the
Expectation-Maximization (EM), an iterative procedure which let the calculation of the
maximum likelihood when some data in X are missing (Y ).

EM is designed to maximize the log-likelihood of the full data (complete log-likelihood):

logL(Θ|Z) = logL(Θ|X, Y ) = p(X, Y |Θ) (14)

This can be done using two procedures until convergence:

• Expectation: the expectation of the complete log-likelihood is computed, given
the training set X and the parameters Θg calculated in the previous iteration.
Following that, the expectation (average) is computed with respect to the random
variable Y , governed by the distribution f(y|X,Θg).

Q(Θ|Θg) = E (log p(X, Y |Θ)|X,Θg) =
∫
y∈Ψ

log p(X, Y |Θ)·f(y|X,Θg)dy (15)

• Maximization: the maximum value of Θ is then computed from the previous
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Expectation step.
Θg+1 = arg max

Θ
Q(Θ|Θg) (16)

In this case, however, X is complete, but EM is used to make the internal sum’s
calculation easier. Y will indicate the unknown components which have generated every
single pattern. Each pattern has a hidden component yj which indicates what Gaussian
distribution has generated the pattern xj. Now, the complete log-likelihood can be
written in the following form:

logL(Θ|X, Y ) =
∑

j=1...n
log

(
αyj
· pyj

(xj|Θyj
)
)

(17)

An estimation of various yj can be derived by Θg available at the current iteration g.
Since, for a generic observation vector y:

P (y|X,Θg) =
∏

j=1...n
P (yj|xj,Θg) (18)

the expected value Q can be rewritten as:

Q(Θ|Θg) =
∑
y∈Ψ

logL(Θ|X, Y ) · P (y|X,Θg) =

∑
y∈Ψ

 ∑
j=1...n

log
(
αyj
· pyj

(xj|Θyj
)
)
·
∏

j=1...n
P (yj|xj,Θg)

 (19)

An important feature about GMMs is that can capture clusters of ellissoidal form
instead of only spheric form. Medium values µ are often called centroids.

An example of clustering with GMM can be seen in the Fig. 15

Neural Networks [10] Another method used to predict values from given data con-
sists on Neural Networks (NNs). They can be considered as a simplified model of human
brain, where the single units are called neurons. Each neuron receives data from input
or other neurons and elaborates a response through an activation function. Formally, if
each neuron input is xi, each input has a weight wi, and the activation function is σ,
the output response of the neuron will be:

out = σ(
∑
i

(wi · xi)) (20)

where σ(·) can be for example a sign, sigmoid or tanh function. In this section feedfor-
ward NNs will be discussed, but other types of NNs exist, such as Recurrent NNs and
Convolutional NNs, used a lot for image processing problems. A feedforward NN (Fig.
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Figure 15: An example of GMM fitting - picture from [5]

Figure 16: An example of feed-forward NN

16) can be seen as an oriented graph G =< V,E > where V is the set of vertices of
the neurons and E the set of edges, each one with a weight w(e), where w : E → <.
Vertices are arranged into layers, where the first layer is the input layer, the latter is the
output layer and remaining are called hidden layers. It can be seen the presence of the
bias for every layer through the vertex indicated as "1", which will be multiplied for the
bias weight.

Each NN has some properties associated:

• A node can belong only to a layer

• An edge cannot go backwards, but only from the layer t to the layer t+ 1

• Depth: the number of layers less the input layer

• Size: the number of nodes

• Width: the maximum number of nodes in a layer
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For example, the network of the picture above has Depth=2, Size=8 and Width=4.
Let’s see more in detail the point of view of a single node of the network and consider

the node vt+1,j, where t + 1 is the number of the layer and j the number of the node
inside the layer t + 1. The input of the node at+1,j(x) when x is fed to the NN can be
written as

at+1,j(x) =
∑

r:(vtr ,vt+1,j)∈E
w((vt,r, vt+1,j))ot,r(x) (21)

and the output of the node ot+1,j(x) at this point will be

ot+1,j(x) = σ(at+1,j(x)) (22)

Neural networks have two important features which make them very suitable for ML:
they can implement every binary operation and can be used as universal approximators.
Despite this, training time using a naive strategy of minimization of the training error
will be exponential. So, an alternative approach needs to be found for training and it was
discovered that heuristic with Stochastic Gradient Descent gives good results in practice
[5]. Gradient Descent (GD) is a technique used to find the minimum of a certain cost
function using the fact that the direction where the cost function decreases faster in
a point x is the one opposed to the gradient of x. This method starts from a initial
solution x0 chosen randomly and updates it using the formula:

xk+1 = xk + αk · pk (23)

where pk is the opposite of the gradient of x and α is the learning factor, i.e. the size of
the step of descent. If α is too large, the method will jump too much from a value to
another making difficult to reach the minimum, while a α too small makes the algorithm
converge very slowly. The size of α can be optimized using functions which makes it a
function of the previous updating steps. GD is a reliable procedure, but it tends to be
slow when data size is huge: it needs to check each training sample for every iteration.
In order to solve this problem, another variant of GD has been made, the Stochastic
Gradient Descent (SGD).

SGD works by considering only a sample or a small subset of data (mini-batch) for
each iteration, calculating the gradient only for those data, making the procedure way
faster than vanilla GD. Comparing the plot of the solution during various iterations, it
can be seen that both SGD and GD arrive to a minimum, but SGD has a more "noisy"
path. This because of the size of the set used for solution’s updating.

In the NN training main steps are the forward propagation and the backward prop-
agation, which form the backpropagation algorithm. The basis steps of this algorithm
are the following:

Initialize NN weights at random and do until convergence:
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Figure 17: The Markov chain of the example - picture from Wikipedia

• pick a sample (xk, yk) from training data at random;

• forward propagation: compute values vt,j of all nodes of the NN with current
weights;

• backward propagation: compute sensitivities of every node and layer (δtj) and
update all weights w(t)

i,j with SGD;

• return weights if converged, otherwise repeat.

Training usually needs to be repeated several times in order to verify if SGD algorithm
stops in a local minimum instead of a global minimum.

Markov Models Before entering into details of Markov Models, a simple Markov chain
is defined.

Markov chains13 Intuitively, a Markov chain gives a model to describe the be-
haviour of a discrete system which can be in a certain state in a specific time. The
system changes state in every time instant according to a probabilistic law. The most
important fact of a Markov chain is that, if the system is in the state s at a time t, it
can pass to another state v in the following time instant with a probability Ps,v indepen-
dent from the previous evolution of the chain. These probabilities Pi,j are defined in a
transition matrix which accounts all possibilities to pass from a state to another state in
the next time instant.

As an example, consider a simple weather model. The situation to be be modeled
will be the following: in a sunny day, the next day will be 90% sunny and 10% rainy,
while in a rainy day the next day will be sunny with 50% of probability and 50% rainy.
The Markov chain which represents this system is in Fig. 17

and the transition matrix T will be

T =
0.9 0.1

0.5 0.5


13Contents from http://www.dei.unipd.it/˜fornasini/10Bis_Catene%20di%20Markov.pdf and

Wikipedia at https://en.wikipedia.org/wiki/Examples_of_Markov_chains
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where first row/column represent the state "sunny" and the other the state "rainy".
The probability for the following day if today is sunny (i.e. x0 =

(
1 0

)
) is be given by

x1 = x0T =
(
0.9 0.1

)
which corresponds to the first row of the matrix T .

For the day 2 probabilities can be computed as:

x2 = x1T =
(
0.86 0.14

)
but also as:

x2 = x0T
2 =

(
1 0

)0.9 0.1
0.5 0.5

2

=
(
0.86 0.14

)
which gives the final rule for the prediction for the n-th following day:

xn = x0T
n = x0

0.9 0.1
0.5 0.5

n

From a Markov chain steady-state probability can be also calculated. Steady-state
probability is defined as limn→∞ xn. It can be different from 0 only if there is at least
one T n with all non-zero entries. The steady-state probability for all states of a Markov
chain can be calculated knowing that, if qi = P steady

i :

(
q1 ... qn

)
T =

(
q1 ... qn

)
since qis are independent from initial conditions. Using the fact that q1 + ... + qn = 1,
a linear system can be obtained and qis can be obtained.

Hidden Markov Models14 In previous Markov models, states are explicit (each
one with a name) and observable because there are some observations which identify
singularly each state. As an example, a semaphore can be modeled as a Markov pro-
cess and states are explicit (light lamps) and observable (through a camera). In these
conditions, if noise is not present, a state is always observable through observation,
but with noise the prediction for the following state can become unfeasible. Hidden
Markov Models are based on an evolving system where some hidden states are defined
(hidden because of the noise). These states cannot be directly seen, but only another
phenomenon related to them (how cars in the street behaves). If the relation between
observations and hidden states can be found, an HMM can model with probabilities the
dynamic of that system.

14Contents from Wikipedia at https://it.wikipedia.org/wiki/Modello_di_Markov_nascosto (in Ital-
ian)
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A Hidden Markov Model (HMM) is a special type of Markov chain where:

• states cannot be directly observed;

• the chain has a certain number of states;

• states evolve according to a Markov chain;

• every state generates an event with a probability distribution which depends only
on that state;

• the event can be observed but the state can not.

Analysis of HMMs tries to recover the sequence of states from observed data. Data
have to be generated through a generative process in the form of state sequences.

An HMM is formed by these basic components:

• Hidden states S = {Si} for 1 < i < N : the states which cannot be seen directly.
In some cases, even they are hidden, a physical meaning can be inferred.

• A probability of initial states π = {πi}, where πi = P (Q1 = Si) for 1 < i < N

• A transaction probability between states A = {ai,j}, where ai,j = P (Qt =
Sj|Qt−1 = Si) for 1 < i, j < N

• An emission probability of symbols B = {bj(v)}, where

bj(v) = Pv∈V (v is emitted at time t|Qt = Sj)

and V is the set of symbols observable of the system.

An HMM can be used for the following base problems:

• Evaluation: given a sequence s and a model m, find P (s|m). It can be done using
the forward-backward procedure.

• Decoding : given a sequence s and a model m, find the optimal sequence of states
which generates the sequence s. It can be done with the Viterbi aglorithm.

• Training : given a set of sequences S, find the model m such that P (S|m)
is maximum. It can be done with the Baum-Welch algorithm, which uses the
Expectation-Maximization procedure seen before for GMMs, or with the Viterbi
training algorithm. In reality, HMMs can be seen as a generalization of GMMs.

In this document, training and evaluation of an HMM is discussed. An important thing
about training is that the Baum-Welch algorithm implements a sort of gradient-descent
algorithm, which is a local optimizer because of the multi-modality of the log-likelihood
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function. For this reason, it is important to initialize well transaction and emission
probabilities in order to not stop to a local maximum.

The Viterbi algorithm [19], instead of using the E-M algorithm, has the main pur-
pose of discovering the sequence of HMM sates which makes the joint probability of
observation maximum. Since all possible paths of an HMM must be evaluated, the
problem to solve becomes extremely heavy also for small HMMs. To overcome this
issue, the algorithm uses dynamic programming to keep track of consequent updates of
score values for each path. Precisely, the procedure creates a cost grid (trellis diagram)
where HMM states are vertically-placed and the sequence of observations is horizontal-
placed. In each cell (i, t) an accumulated probabilistic score αt(i) is calculated, which
is the probability to reach state i through an optimal sequence of states after the first t
observations. The Viterbi algorithm computes αt(i) for each node starting from t = 1
(first column). The maximum value of the last column is the probability to emit emit
the complete sequence of states through an optimal sequence of states, extracted by
a backtracking operation. Viterbi training segments data and then applies the Viterbi
algorithm to get the most likely state sequence in the segment, then uses that most likely
state sequence to re-estimate the hidden parameters. This procedure doesn’t give the
full conditional likelihood of the hidden parameters, as instead Baum-Welch algorithm
does, but is significantly faster than the latter one.
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SECTION2
MATERIALS
In this section the material needed for analysis and further elaborations of the auditory
models will be presented. Auditory models used for the study will be analyzed, compared
and tested with different machine learning methods: Gaussian Mixture Models, Neural
Networks and Hidden Markov Models.

Fig. 18 shows how every tool described before is combined with the others to perform
the simulation tasks.

Figure 18: Schema with tools used for tasks in this manuscript

2.1 Software, libraries and databases

This work is based on the following software:

2.1.1 Software

• MATLAB15 from MathWorks as development environment for audio modeling,
processing and simulation.

15https://www.mathworks.com/products/matlab.html
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• Room acoustic simulators: Roomsim in the two versions designed by Schimmel
[34] and Campbell [7].

2.1.2 Libraries

• The Auditory Modeling Toolbox [59], a toolbox which contains several implemen-
tations of different auditory models.

• The SOFA (Spatially Oriented Format for Acoustics) Library [37], used to load
HRTFs wrapped in a public format.

• The NETLAB library for MATLAB, used to train GMM models [44].

2.1.3 Datasets

• The TIMIT database, a corpus of recorded speech samples for acoustic and pho-
netic studies; it has been used as source to train and evaluate models discussed in
this document [18].

• MIT’s KEMAR HRTFs to generate binaural signals from voices of the TIMIT
database [17]. This dataset has been used in the compact version, with 72 azimuth
of the round corner spaced by 5° at elevation 0° .

2.2 Auditory Models

The following models have been analyzed and extended:

• "A Probabilistic Model for Robust Localization Based on a Binaural Auditory Front-
End", May et al., 2011 [38]

• "Auditory model based direction estimation of concurrent speakers from binaural
signals", Dietz et al., 2011 [13]

Variants of the first model have been also tested:

• "Exploiting Deep Neural Networks and Head Movements for Robust Binaural Lo-
calization of Multiple Sources in Reverberant Environments", Ma, May et al., 2017
[36]

• A simple Hidden Markov Model for DOA estimation
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2.2.1 May’s 2011 auditory model

The auditory model used in May’s paper uses ITD (Interaural Time Difference) and
ILD (Interaural Level Difference) as base features for the direction-of-arrival estimation,
constrained to the frontal horizontal plane at zero elevation.

The model mimics the processing of the peripheral human auditory system by using
a Gammatone filterbank with hair cell processing. Input sound is decomposed into 32
auditory channels thanks to a 4th-order Gammatone filterbank, with center frequencies
distributed between 80 Hz and 5 kHz. Later on, a halfwa1ve-rectification with square-
root compression is used to simulate neural transduction. Binaural cues are calculated
using a 20 ms window with a sampling frequency fs=44.1 kHz and a frame overlapping
of 50% to follow rapid changes in multi-source scenarios. Each auditory channel is
processed to find ILD by computing the ratio between the energy integrated in the
time interval between left and right ears. ITD, instead, is extracted for every frame as
(τ + δ)/fs where τ is the time lag which maximizes the normalized cross-correlation and
δ is the peak position relative to τ .

Formulas for normalized cross-correlation Ci(t, τ) and peak position δ̂i(t) are reported
in Equations 24 and 25, where t is the time in milliseconds, τ is the delay in milliseconds,
li, ri and Ci are the left, right and cross-correlation input functions, W the window size
and li and ri the average values of input left and right signals.

Finally, azimuth estimation is done through a probabilistic model based on GMMs
(Gaussian Mixture Models). The ML model has been applied to a features’ space created
by combining computed ITD and ILD from each frame, for each azimuth and Gammatone
filter.

The estimated azimuth is then computed by taking the direction which maximizes
the log-likelihood of the single observation across all Gammatone channels.

A more detailed schema about May’s 2011 model is shown in Fig. 20.
The training with GMMs for the original auditory model has been done using a

simulated room with [7] as described in Section 3 for fixed positions. Source signals
were mono voices from TIMIT database, convolved with BRIRs obtained by the room
simulator, where the KEMAR dummy head receiver was located at 1.5 m radial distance
from the sources. Some criteria have been introduced to remove noisy samples in order
to ensure a good training:

Ci(t, τ) =
∑W−1
n=0 (li(t ·W/2− n)− l̄i)(ri(t ·W/2− n− τ)− r̄i)√∑W−1

n=0 (li(t ·W/2− n)− l̄i)2
√∑W−1

n=0 (ri(t ·W/2− n− τ)− r̄i)2
(24)

δ̂i(t) = log Ci(t, τ̂i(t) + 1)− log Ci(t, τ̂i(t)− 1)
4 log Ci(t, τ̂i(t))− 2 log Ci(t, τ̂i(t)− 1)− 2 log Ci(t, τ̂i(t) + 1) (25)
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Figure 19: Examples of binaural features’ space for azimuth = 45°

• remove frames whose energy level dropped by more than 40 dB with respect to
the samples’ global maximum;

• keep frames where the target source was stronger than the interfering source;

• remove frames whose amplitude of cross-correlation was below a threshold θc set
by inspection, to consider only sounds not dominated by room reflections;

• remove frames where maximum value of cross-correlation corresponded to one of
the most lateral time lags of ± 1 ms.

This model has been used several times as base point for other more complex models,
as [36] and [56]. The model described in [36] will be further discussed.

2.2.2 Dietz’s 2011 auditory model

Dietz’s 2011 azimuth estimation model works on the horizontal plane at zero elevation
as the May’s one. It is an improved version of the model presented in [12], adding
some extra processing of the binaural features for the extraction of the DOA. First of
all, interaural parameters are extracted by implementing a processing pipeline inspired
on the audiology literature:

• the middle ear has been modeled with a 500-2000 Hz first-order band-pass filter;

• the basilar membrane has been represented by a band-pass filterbank with a 4th-
order Gammatone filterbank of 23 filterbands spaced of 1 ERB in 200-5000 Hz
range;

• cochlea compression using instantaneous compression with power 0.4 after the
filterbank;

• neural trasduction in inner hair-cells with half-wave rectification and a 770 Hz
fifth-order low-pass filter;

• temporal disparities with a second-order complex Gammatone filter [14].
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Figure 20: May’s 2011 model schema

After these procedures, complex signals g(t)l and g(t)r for both ears are obtained, each
one with amplitude a(t) and phase φ(t). The output of the peripheral processing for
each ear is processed separately by a fine-structure filter (Q=3) and modulation filters
(Q=8). These filters were used in order to have a better temporal resolution, since fine-
structure information is important for frequencies lower than 1.4 kHz, and modulation
becomes considerable above that frequency. In each separate process, ITF (t) (Interaural
Transfer Function) is calculated from the two g(t) and, from this last function, IPD(t)
can be extracted as the argument of ITF (t) and a specific low-pass filter. ITD can
be also extracted dividing IPD by the mean instantaneous frequency of left and right
signals. To derive ILD, instead, a second-order modulation low-pass filter with 30 Hz
cut-off frequency has been used both for left and right signals, obtaining an energy ratio
between right and left signal in dB. A schema describing the model is shown in Fig. 21.

The computed features were filtered by calculating the IVS (Interaural Vector Strength),
which captures the IPD fluctuation and can be used as an equivalent alternative of IC
(Interaural Coherence) which cannot be calculated because this model doesn’t rely on
cross-correlation:
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Figure 21: Dietz 2011 model schema - adapted from [13]

IV SG(t) = 1
τs
·
∣∣∣∣∫ ∞

0
dτei·IPD(t−τ)e−τ/τs

∣∣∣∣ (26)

where t is sample time and τs a time constant for temporal integration. A filter
mask can be derived from IVS in order to extract reliable segments, based on two binary
weights. The first weight discards every sample at time t which has IV S > IV S0,
where IV S0 is an arbitrary-defined threshold. The second one excludes samples where
the derivative of IV S(t) is less than 0. This in order to remove corrupted samples which
need an infinite time to drop below threshold IV S0. After reliable segments extraction,
IPD and ITD can be used in order to extract the correct azimuth. But there is an
ambiguity problem because ILD reaches its maximum at about 60°; for example, angles
> 60° can be ambiguous with angles < 60°, as described in Fig. 22.

To solve this issue, IPD has been used despite being ambiguous at frequencies above
700 Hz. But, after evaluation of some IPD studies, as reported in [13], it was reasonable
to define that the absolute value of IPD allowed to localize two possible directions:
α1 = pf (| IPD |) and α2 = pf (| 2π − IPD |), where pf is a IPD-to-azimuth mapping
function. By using this approach, IPD can be used to solve ILD ambiguities. Function
pf is a 9th-order polynomial function for continuous azimuth deriving. Its parameters
have been found by training the model with a short set of 10 speech segments convolved
with each one of 37 HRIRs from anechoic chamber. A histogram is then computed
based on the azimuth estimations for each frame involved in the process. At the end, a
sum of seven Gaussian functions is fitted on the histogram and the main peak is used
to derive the speakers’ direction. The Gaussian fit of the Dietz’s model is not currently
implemented in the toolbox [59] and it has been added using MATLAB built-in functions.
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Figure 22: Dietz 2011 ILD and IPD behaviour - single sound source in free-field envi-
ronment at 1kHz band

2.2.3 Ma’s 2017 auditory model

The Ma’s 2017 auditory model is based, differently from the two models above, on Deep
Neural Networks (DNN). This model uses a set of specifically designed DNNs for each
Gammatone filter, where the Gammatone filter-bank has been designed as [38]. Each
DNN receives in input, for every frame, a number of features which increases with the
sampling frequency of the signal, where all the features minus one are the frame’s cross-
correlations between left and right signals in an interval of ± 1 ms. The last feature in
input to each DNN is the ILD of the frame, computed as described in [38]. For example,
a binaural signal with sampling frequency fs = 16000 Hz has 34 features, while a signal
with fs = 44100 Hz has 90 features. The features are Gaussian-normalized before DNN
processing. Each DNN has been designed with an increasing number of hidden layers
(limited to 2 in [36]) containing 128 hidden nodes plus a softmax output layer, which
returns the probability of the frame of belonging to one of the azimuths trained for
the model (angles from -180° to 175° every 5° ). Outputs of the neural network are
considered as P (k|t, f), i.e. the probability of the azimuth k given the frame t and
the filter f . These values are then integrated across frequency to obtain P (k|t), the
probability of a certain azimuth k given a specific frame at time t, with the assumption
of no prior knowledge of the azimuth and equal probability for every source direction.

P (k|t) =
∑
f

P (k|t, f) (27)
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Figure 23: The head movement strategy described above - picture from [36]

Marginal probabilities P (k) can be calculated averaging the probabilities obtained for
every frame in the previous step.

P (k) = 1
T

t+T−1∑
t

P (k|t) (28)

This step is equivalent to considering a uniform probability distribution on t.

The best azimuth found by the procedure is, at this point, simply the one which has
the higher probability in the whole signal.

k̂ = arg max
k

P (k) (29)

In addition to the evaluation using a single sound source to detect the DoA, a technique
which uses a random head rotation in the range of [-30° to +30°] was also tested in the
paper, increasing the accuracy of the model of about a 5-10 percent. This technique
allowed to detect the phantom peak related to front-back confusion, as described in the
Fig. 23. This part of the model has not been replicated in this manuscript. The training
set used in [36] to train DNNs consisted in 30 voices for each of the 72 azimuths trained
at a SNR of 20, 10 and 0 dB. White Gaussian noise with mean 0 and variance 0.4 has
been added to each sample of the training set in order to avoid over-fitting. This model
was then compared to GMM models to underline performance’s differences: the DNN
showed the best results, especially with more than one simultaneous voices. A diagram
of the system proposed in this paragraph is in the Fig. 24. The Ma’s 2017 model has
been implemented from scratch both for training and for evaluation, trying to be more
compliant possible with informations reported inside [36]. Instead of Stochastic Gradient
Descent (SGD) with mini-batch size of 128 samples, Gradient Descent has been used
because MATLAB does not support SGD for custom neural networks.
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Figure 24: Ma’s 2017 model schema - adapted from [36]

2.2.4 A simple HMM for DOA estimation

In addition to these documented models, a new model with HMMs has been created
based on May’s 2011 binaural features ITD and ILD. This model uses simple binary
Markov chains for each trained azimuth and a Gammatone filterbank (32 filters for [38]),
where hidden states are identified as values of every combination of feature and azimuth
in the same Gammatone filter. The two states of every chain have been called "YES"
and "NO"; the first one identifies a situation where a "valid" state for that azimuth has
been found and the second one the opposite situation. Since MATLAB r2019a does not
support HMMs with continuous hidden states, these have been calculated, for each Gam-
matone and feature, by computing the median of every value set for each azimuth and
quantizing the features to train as the ones corresponding to the nearest median related
to a certain azimuth. Median has been used as a simple outliers’ removal technique.
After some experimentation, the Viterbi training performed better than Baum-Welch,
not only in speed, but also in overall DOA estimation precision. Initial guesses for each
HMM has been done using the following setup:

• Transition matrix guess: YES-YES transition with probability equal to the sum of
the probabilities of the n most-frequent hidden states in the training set related to
a certain filter and azimuth until at least 80%, YES-NO with the complementary-
to-1 value; for the NO-YES and NO-NO combinations, the same as above, but
the opposite values. This approach has been used to lower probability of "YES"
when an anomalous sample is found.

• Emission matrix guess: the first row (state "YES") has the probabilities of each
state in the training set, while the second row (in the state "NO") tries to invert
the behaviour with respect the row above, making a subtraction (one minus each
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value of the row above) and then normalizing to obtain a sum-to-one for each
value of the row. This approach tries to model the behaviour that, if the chain
is in the "NO" state, it is more probable that the following hidden state will be
"not allowed" for that feature, Gammatone and azimuth. The opposite, instead,
for the state "YES".

A separate training has been done for each Gammatone, azimuth and feature, giving a
total of |azimuths| × |Gammatones| × |features| (hidden) Markov chains.

Evaluation follows a procedure similar to the training one, but the discrete hidden
states (and median values) are the same as in the training step for conformity. The
sequence of states is then given to an evaluation forward-backward algorithm which
computes the probability, for a certain Gammatone, that ITD or ILD is of a certain az-
imuth. The "YES" probability is accounted for each feature and threatening each feature
as independent, the product between probability values related to each Gammatone and
azimuth is done.

PMIX
f,a = P ITD

f,a ∗ P ILD
f,a where 1 ≤ f ≤ |Gammatones| and 1 ≤ a ≤ |azimuths| (30)

Then, the probability of every azimuth is the product of the probability of the azimuth
for all Gammatone filters (integration on all frequencies).

Pa =
∏
f

PMIX
f,a (31)

The final estimated azimuth is computed as the one which occurs with higher frequency.

azimuthfinal = max
a

Pa (32)

A simplified schema of the processing both for training and evaluation procedures is in
the Fig. 25.
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Figure 25: HMM model schema
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SECTION3
SIMULATIONS
In this section, experiments performed for performance evaluation of models discussed
before will be presented and explained. In Section 4, results about what is discussed
here will be shown.

3.1 Metrics

Before listing the simulations, this section describes the metrics introduced to compare
the results. For the experiments, the following metrics have been used:

• Accuracy: number of correctly-classified audio samples with an error less than 5°
over the total number of samples, expressed in percentage, inspired by metrics in
[38] and [36].

• Correctness: as Accuracy, but also considering as accurate a front-back estima-
tion if the error is, as before, less than 5°. This metric was used for extended
horizontal plane experiments.

• Front-back confusion: number of audio samples where the estimated DOA is
the complementary angle with respect to the real one. Example: real DOA of 20°,
estimated DOA of 160°.

In addition, additional data to compute confusion matrices were collected and other
metrics from Information Retrieval have been tested. Confusion matrices are particular
types of matrices where classification results are arranged counting how much data with
a certain label x are classified with a label y. From these matrices, four types of values
for every class/label can be extracted:

• True Positives (TP): the number of elements labeled x which are classified as x;

• True Negatives (TN): the number of elements not labeled x which are not classified
as x;

• False Positives (FP): the number of elements not labeled x which are classified as
x;

• False Negatives (FN): the number of elements labeled x which are not classified
as x;
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For a multi-class classification problem, these values can be calculated according to Fig.
26.

Figure 26: True and False Positives and Negatives on a confusion matrix. Picture from
16

Now, the other metrics can be defined:

• Precision: Pr = TP/(TP + FP ), it is the number of correct predictions for a
class x divided by the total number of prediction for the same class

• Recall: Re = TP/(TP +FN), it is the number of correct predictions for a class
x divided by correct predictions and predictions of values of other classes which
are really belonging to x

• F-measure: the harmonic mean of Precision and Recall, Fm = 2·(Pr·Re)/(Pr+
Re)

3.2 Papers’ models replica

In the first part of this work, some experiments found in the models’ papers have been
replicated in order to evaluate the performances of the models implemented in the toolbox
[37]:

• May 2011 - Figure 4: anomalies with constant RT60 and different receiver posi-
tions.

16https://stackoverflow.com/questions/31324218/scikit-learn-how-to-obtain-true-positive-true-
negative-false-positive-and-fal, downloaded on May 20th, 2019
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Figure 27: Room configuration for May’s 2011 model simulations

• Dietz 2011 - Figure 5c: frequency charts of azimuth with one, two, three concur-
rent speakers.

For each experiment performances were tested for both models.

3.2.1 May’s 2011 model experiments

May’s model experiments were done in a reverberated room of 5.1 × 7.1 × 3 m with
different reverberation times. The general room configuration used for experiments in
this manuscript is shown in the Fig. 27.

The evaluated positions for receivers are the ones marked withy, while the sources’
positions are shown for the receiver number 5 as an example: 21 different azimuths from
-50° to 50°, spaced by 5° and with a source-receiver distance of 1.5 m.

In the paper’s experiment, Fig. 4 shows that was used an average reverberation time
across the entire room of 0.69 s. The environments simulated in [38] did not reported
the absorption coefficients used in the experiments. In order to find the correct ones, it
was made an attempt to "reverse-engineer" the reverberation times and the estimation
of absorption coefficients has been done using the RT60’s values in [38] and the Sabine
formula.

Under these conditions, the evaluation procedure has been made for every receiver
and every source position with:

• 1: single source from -50° to 50°
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Frequency [Hz] 125 250 500 1000 2000 4000 mean
RT60 [s] 1.26 1.03 0.69 0.48 0.37 0.29 0.69

α 0.096 0.118 0.176 0.253 0.325 0.406

Table 1: Reverberation times used in [38] for the experiment in this manuscript and
absorption coefficients from Sabine’s formula used to obtain average RT60=0.69s.

• 2, 3, 4: added other 1, 2, 3 random sources such that the distance between every
source was at least 10°

The experiment tries to estimate anomalies in azimuth estimation, which are counted
for every source in a specific scenario.

The experiment has been carried out by operating with with a Gaussian fitting with
one Gaussian for May’s model and 7 Gaussians for the Dietz’s one.

Reverberation effects have been simulated using [34]. Monoaural voices from TIMIT
database were normalized to 0 dB before processing, resampled from 16 kHz to 44.1
kHz to adhere to the one of RIRs, convolved with impulse responses and then resampled
again to 16 kHz for memory usage reasons. Each experiment reported in this section
has been replicated 3 times for each model in order to have a more robust result.

3.2.2 Dietz 2011 Experiments

Dietz’s model experiments have been performed in a free-field environment, without
reverberation effects, using the same room simulator as in the previous May’s experiment,
but setting reverberation parameters in order to obtain the most possible anechoic room.
This was achieved by making the room very large and room’s walls totally absorbing.
Simulations have been done with three different scenarios: one, two and three competing
talkers respectively at -30°, 0° and 30° inside a speech-shaped noise modeled from -90°
to 90° such that the resulting SNRs were 0 dB and -6 dB and the source-receiver distance
of 3 m. As for May’s experiments, each scenario has been replicated for each model and
number of concurrent voices 10 times.

Used azimuth estimation procedures have been the same of the previous experiment,
but in this case it was not necessary to find the best-matching azimuth. The whole set
of voices is from the TIMIT database, resampled to 44.1 kHz and normalized to 0 dB.

Results of May’s model have been also calculated and compared to the Dietz’s ones.

3.3 New experiments

In this section, an extension of the previous models will be described and will be the
object of an additional performance analysis.
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Figure 28: MCT single step for a voice at azimuth 0°

3.3.1 Models’ extension

Models’ extension has been made because previous models can actually estimate DOA
from -90° to 90°. This modification allows to evaluate models’ performances also for az-
imuths behind the listener and to understand how much front-back confusion determines
ambiguity in DOA estimation.

It was necessary to adapt the May’s 2011 model in order to extend their azimuth
range through re-training, while the Dietz’s model training with GMMs has been written
from scratch using the same process flow of the May’s one.

3.3.2 May’s and Dietz’s models re-training

Re-train has been made using MCT (Multi-Condition Training), inspired by [36]. Three
different SNR values have been used (20, 10 and 0 dB), with round corner coverage
from -180° to 175°, spaced by 5°. For every spaced azimuth and every SNR, 30 different
voices from TIMIT database, normalized to 0 dB and resampled to 44.1 kHz, have been
used, with a total number of 6480 combinations. Every single binaural voice sample is
then resampled to 16 kHz in order to speed up computations. MCT works by putting a
single voice source to a specified azimuth and White Gaussian Noise (WGN) to the other
trained azimuths maintaining the desired SNR. A more-explaining picture of a single step
of MCT is shown in Fig. 28.

The so-generated training set is given to two different training procedures called
may2011ttrain and dietz2011train. The first function uses GMM as in the paper
to train the azimuth estimation model, which works identically to the one included in
the toolbox [37] used in this document. dietz2011train, instead, changes the ending
behaviour of the relative model because it now does not rely anymore on a 9-degree
polynomial for azimuth estimation, but on GMM as the May’s one. This choice derived
from the need to compare the models with the same identical ML procedures. For the
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first model, the features used are ITD and ILD for each Gammatone filter (and azimuth
for training) and, for the second one, unwrapped ITD and ILD for each Gammatone (and
also azimuth for training). In order to choose the number of Gaussians for GMMs which
fits better data with less effort, a model-selection procedure has been implemented using
the same dataset for both models.

May’s paper in [38] reported that the number of Gaussians in GMMs for best per-
formances is variable between 5 and 25, but the authors used the average value of 15
Gaussians as a sort of compromise between accuracy and computational costs. In addi-
tion, it was stated that increasing the number of Gaussians from a value of 11 did not
improve significantly model’s performances. Model selection has been introduced also
to verify these facts.

For the model selection procedure, it was decided to train GMMs using 80% of voices
inside the "TRAIN" folder of the TIMIT database, while the remaining voices have been
used as the validation dataset, used to test performances of the trained models. The
test set will be used only to verify performances of the best-selected model during final
evaluations and not to choose the best number of Gaussians. Each training procedure
has been done using the NETLAB library for MATLAB [44].

The SOFA dataset of MIT KEMAR with compact pinna for HRTFs has been used
for dataset generation in all experiments.

It is important to notice that the maximum number of iterations of EM used to
train both models was set to 100 because of long training times imposed by the Dietz’s
model, while the May’s model in [38] has been trained with maximum 300 iterations of
EM [38].

3.3.3 Ma’s 2017 model training

The third model analyzed in this document does not have an implementation inside the
Auditory Modeling Toolbox [37]. So, it was necessary to re-create it from scratch. To
achieve this, a set of 32+32 Neural Networks (NNs) was created, trying to agree as
much as possible to the specifications described into [36] considering also what can be
done with MATLAB in training custom NNs. The NNs structure is the one shown in
the Fig. 29. Training for each one of the 32 Gammatone filters used in [36] has been
made using two NNs: first, the network called "NN1" was trained and, in the second
step, weights of the only hidden layer of trained "NN1" have been used as the first
hidden layer of "NN2" before training. The resulting NN for every Gammatone filter is
then the trained "NN2" network. Every NN receives in input a set of 34 features (see
Section 2 for details), while every set is about a single frame of every binaural audio
file, obtained from the MCT procedure as in previous experiments. MATLAB has some
limitations for training a custom NN. Therefore, the following values have been used for
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Figure 29: NNs structures used for [36]

each of the paramters described hereby: vanilla Gradient Descent with Momentum =
0.5 and Adaptive Learning rate have been used instead of Stochastic Gradient Descent
with Momentum = 0.5 and mini-batch size of 128 samples. This could have made
training longer and less accurate than the original. Despite this, in order to speed up
the training, it has been done with the parallelization of the computation. To maintain
the same training set size as in other two models analyzed while having a validation
set, the complete dataset has been created in a such way that the number of voices for
each azimuth was 36 for each one of the 3 SNRs, the 80% of features’ data (randomly
selected) has been used for training and the remaining 20% for validation. The training
procedure for each NN was stopped after 20 iterations without a performance increase.

3.3.4 HMM model training

The HMM model has been trained using the same setup as in the GMMs models: 30
voices for each azimuth and SNR picked from the TIMIT database and auralized with
MIT’s KEMAR compact HRTFs given by a SOFA file with WGN (MCT procedure). The
details on how features extracted using the May’s auditory model are used in this model
are in the previous Section 2.2.4.

3.3.5 Extended models evaluation

In order to evaluate extended models’ performances, two different experiments have been
set up. In the first one, the environment is anechoic while in the second one sources and
receivers are inside a reverberant room simulated with [34] with the following parameters:

• Size (x, y, z): 5.1× 7.1× 3m;

• Materials: as in Table 2

• Temperature: 20° C;



48

Figure 30: Configuration for sources and receivers in the reverberant room described
above

• Humidity: 30%;

• Receivers’ positions (x, y, z): (1.5, 1.5, 1.75) m, (3.55, 1.5, 1.75) m, (4.05, 3.05,
1.75) m;

Reverb small medium high
Frequency [Hz] 125 250 500 1000 2000 4000 Diffusion Room1 Room2 Room3
Ceramic Tiles 0.01 0.01 0.01 0.02 0.02 0.02 0.3 floor
Wood panel 0.15 0.10 0.06 0.08 0.10 0.05 0.1 floor walls

Carpet on concrete 0.02 0.06 0.14 0.37 0.60 0.65 0.1 walls walls
Seating people 0.55 0.86 0.83 0.87 0.90 0.87 0.5 floor

RT60 0.37s 0.98s 1.88s

Table 2: Absorption coefficients and room configurations deployed for the experiment.
RT60 was computed with the Sabine formula.

The absorption and scattering coefficients used for these simulations can also be
found in [60]. The main motivation on using these coefficients was to make simulations
with realistic materials and environments. The sources-receivers configurations for re-
verberant rooms can be found in Fig. 30 In these experiments, the execution will be
similar: a number of one, two, three concurrent speakers at a certain distance (1.4m)
for each azimuth will be proposed (one DOA every 5° to cover a round corner) to each
receiver. Metrics used to compare results and the results of these experiments will be
explained and shown in Section 4.
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SECTION4
RESULTS
4.1 Reproducibility of experiments

In this subsection, results obtained from replication of some experiments reported in [38]
and [13] will be presented. Each experiment has been evaluated with the two original
May’s and Dietz’s models.

4.1.1 May 2011 experiments

In Fig. 31, accuracy related to a single-maximum azimuth peak for each room position is
shown for the two auditory models described in sections 2.2.1 and 2.2.2. The results are
compared with those presented in [38]. Error bars report the standard deviation for each
bar in three different runs. Each model uses a Gaussian fit in the last step to perform a
more accurate prediction of the Direction of Arrival.

4.1.2 Dietz 2011 experiments

Fig. 32 shows the frequency of detected DOA for every azimuth spaced by 5° from -90°
to 90° using both Dietz’s 2011 with IVS mask and May’s 2011 models. In addition, the
results of the paper are reported to make a comparison with obtained data.

Note that Dietz and May’s obtained results were normalized because of the different
metric (and number of frames) used in histograms to show the probability of each
azimuth.

4.2 Additional Experiments

In this section results about model’s extension, training and evaluation will be presented.

4.2.1 Model selection

In Figs. 33 and 34 results about the model-selection for the GMM extended models are
presented. The training for this task has been performed with a reduced dataset ten
times smaller than the original one, and we used a number of Gaussian functions from
1 to 25. Plots indicate the trends of training and validation errors.

To extract the two best GMM fittings for each model from plots in Figs. 33 and
34, a compromise between computational cost and validation error has been considered.
This compromise lead to choose 11 and 15 Gaussian functions for the May’s model
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and 9 and 13 for the Dietz’s model. These GMM models were then trained with the
full training dataset and their training errors were used to choose the best number of
Gaussian functions for each auditory model. The minimum training error was obtained
for May’s model with 11 Gaussians and the Dietz’s with 9 Gaussians.

4.2.2 Models’ extension experiments

The first part of the results will be about the free-field evaluation. The plots in Fig. 35
show a direct comparison between the various models in all scenarios, with a decreasing
noise starting from a SNR of 0 dB until 20 dB.

Plots in Figs. 36 and 37 have been generated for the evaluations in reverberant
rooms, showing a direct comparison of all models discussed in this manuscript considering
different reverberation times and receivers’ positions.

All plots have been reported only with relevant metrics cited in the section 3. The
discussion of other metrics not used will be done in the next section 5.

4.2.3 Confusion matrices

In this section, the most relevant confusion matrices will be presented.
The first set of plots in Fig. 38 shows how well models analyzed in this manuscript

perform in very noisy free-field environments, with a SNR of 0 dB.
The set of plots in Fig. 39 shows detailed performances of the models with a more

attenuated noise at SNR of 20 dB. Fig. 40, instead, shows in detail the performances
of every model in a central position (the third of ones indicated in section 3.3.5) with
small reverberation times.
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Figure 32: Histograms for Dietz 2011 experiments - SNR: 0 and -6 dB
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Figure 33: Model selection for May2011 model
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Figure 34: Model selection for Dietz2011 model
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Figure 35: Average results for each model tested in the free-field scenario. Error bars
report the standard deviation of results with different number of voices.
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Figure 36: Average results for each model tested in the reverberant room scenario
considering different reverberation times. Error bars report the standard deviation of
results with different number of voices and positions.
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Figure 37: Average results for each model tested in the reverberant room scenario
considering different receivers’ positions. Error bars report the standard deviation of
results with different number of voices and reverberation times.
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Figure 38: Confusion Matrices for all models in the free-field scenario at 0 dB of SNR
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Figure 39: Confusion Matrices for all models in the free-field scenario at 20 dB of SNR
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SECTION5
DISCUSSION
In this section, results in section 4 will be analyzed and discussed.

5.1 Reproduction of papers’ experiments

5.1.1 May’s 2011 model paper’s reproduction

The plot in Figure 31 denotes an important performance difference between the May’s
and the Dietz’s models. May’s model reported an accuracy of 100% for all the ex-
periments. This means that the May’s model can detect sources’ azimuths with more
precision and less errors, even considering more concurrent voices. The fact that the
Dietz’s model performs worse could depend on a bad fitting or on intrinsic problems of
the auditory model not forseen by its authors, because evaluations in [13] has been done
only with a small dataset of HRTFs in a free-field environment.

5.1.2 Dietz’s 2011 model paper’s reproduction

The results of the reproduced experiment in Fig. 32 were aligned with the ones reported
in the Dietz’s paper [13], both for 0 dB and -6 dB scenarios. The plot shows, for each
source-receiver configuration as in section 3.2.2, the rate of detection of each azimuth in
the range [-180 °, +175 °], where higher bars represent more frequent azimuth detection
in audio’s frames. Both Dietz’s and May’s models succeeded in the detection of the
main sound sources. The presence of the IVS mask introduced by the Dietz’s model
allowed to filter the overall noise with respect to the May’s model. In addition to the
noise difference, peaks’ shapes showed different characteristics: May’s model ones were
more defined and aligned to the real azimuth, while the Dietz’s model ones were larger
and less centered to the target azimuth. In this case, the comparison was qualitative
rather than quantitative and it showed that May’s model operates better if the number
of simultaneous voices or the noise increases.

5.2 Additional Experiments

Overall models’ comparison A deeper analysis on the results shows again that the
May’s 2011 auditory model performs significantly better than the Dietz’s one: the per-
centage of correctly detected azimuths for the first model in the worst case was very high,
while, for the second model, a large quantity of test data was predicted wrong. Ma’s
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model seemed to perform better than May’s one in noisy environments, while the HMM
model performed better than the Dietz’s model in free-field environments. F-measure
and Recall seem to follow the Correctness metric, where the others, as Precision, Speci-
ficity and Accuracy gave very high results even if the previous "best" metrics showed
low values. Recalling metrics’ formulas in section 3, it can be noticed that Precision is
a division between the number of correctly-classified samples for a class and the total
number of predictions for that class. This can be misleading because, for example, in
Dietz’s model experiments where detected azimuths are compressed in a restricted in-
terval, there are many cases where true and false positives are zero. For the definition
of Precision, if the number of false positives is zero, the metric value is 100% because
there aren’t cases predicted wrong. Similar facts can be derived for Specificity: there are
many cases where false negatives are zero as true negatives, bringing to the same exact
condition seen in Precision. Accuracy also can be affected by these problems if false
negatives and positives are zero. Recall, instead, tends to be more informative for the
needs of the evaluation, since it measures the number of correct detection on the total
number of samples with the same DOA. F-measure also demonstrated trends similar
to the ones of the other two reasonably-good measures, but its behaviour depends on
Recall and Precision. This last metric, however, gave controversial results. F-measure,
however, if reported with other metrics which can explain the trend of data, can be also
informative.

Effect of noise in azimuth estimation The noise, in this case speech-shaped with
different SNRs of 20, 10 and 0 dB, influences the perceived azimuth correctness. The
more is the noise, the more is the localization error and the front-back confusion in all
models analyzed. The Ma’s DNN is the more robust again when noise increases, while
the HMM model has the highest ratio between front-back confusion and correctness
values. This could depend on the better generalization given by the DNNs learning
model using the full cross-correlation function compared to the GMMs and HMMs with
only ITD and ILD.

Effect of reverberation in azimuth estimation Reverberation acts as the noise in
the previous experiments, making the sound localization more difficult. As expected,
when the reverberation time increases, the front-back confusion and the correctness
return worse trends. This effect is particularly noticeable in the high reverberation room
scenario, where all models decrease their performances significantly. An exception is
represented by the Ma’s model, whose performances decrease, but not as much as other
models.
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Figure 41: GMMs computation times for May’s and Dietz’s 2011 models trained on full
dataset.

Effect of receivers’ positions in azimuth estimation Performances related to re-
ceivers’ position were also investigated: a position nearer to the walls makes the local-
ization more complicated. This makes sense because a wall can make appearing a ghost
sound source which can have the same or more relevance than the real sound source.
In a more central position, as position 3 reported in Fig. 27, these effects are reduced,
the reverberation is better distributed and it is easier for the model to find the correct
azimuth. This effect is less noticeable in Ma’s and HMM models since the number of
correct-evaluated audio samples in percent remains more or less the same.

5.3 General Discussion

Complexity-related issues during training Some complexity problems have been
found during the training of the Dietz’s model with GMMs. This model, indeed, does
not evaluate segments of the incoming signal but each sample: this resulted in a number
of features for each incoming audio file which was about 150 times the number of
features of the May’s model. This leads to very long training times for GMMs using EM.
Training on full dataset has been done for both models using the "Blade" cluster at the
Department of Information Engineering (DEI) with 32 dedicated cores of Intel® Xeon
Gold® 5518 processors and 1.5 TB of RAM shared by all logged users. To overcome this
issue, it was decided to run the model-selection with a dataset 10 times smaller than
the original one (72 DOAs with 3 SNRs of 20, 10 and 0 dB and 3 voices for each SNR,
resulting in 9 voices for each azimuth). With this configuration, the model-selection for
the Dietz’s model took about one week with the cluster machines in the department,
while the same procedure for the May’s model took some hours.

An investigation on GMMs’ covariance matrix type has also been done. It has been
found that the best types were diagonal and full, with a very small difference between
these two types (less than 2%). This leads to prefer diagonal covariance matrix for less
computational costs.
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At the end, it has been decided to pick 11 components for the May’s model and
9 components for the Dietz’s one. Features’ extraction and training times for the best
model chosen can be seen in Fig. 41.

Dietz’s 2011 extended GMM model results The Dietz’s model showed very low
results with the GMM training. A further investigation shows that, in the free-field case,
the model is not capable to detect correctly any azimuth with SNR of 0 dB, as shown
in Fig. 38. The May’s model, instead, is very reliable even in this noisy situation.

When SNR increases, another unexpected effect appears: the range of azimuth
detected tends to remain constrained to central values, as shown in Fig. 39.

The situation changes in the second simulation with reverberant rooms: the model
becomes more precise, as can be seen in Fig. 40.

The last Confusion Matrix shows an high tax of front-back confusion, starting from
-90° to -180° and from 90° to 180° .

In addition to what has been stated before, ITD and ILD from the Dietz’s model have
not been processed with the IVS mask, because the mask is used after the computation
of the IVS in a following step after binaural features’ calculation.

GMM Binaural Feature Space comparison The difference in performances between
May’s and Dietz’s GMM extended models can lead to considerations about the models’
feature space: while in the May’s model points are distributed according to regular
patterns, in the Dietz’s model the feature space seems to be more affected by outliers.
Examples of binaural feature spaces for an audio sample of the training set and different
filters can be seen in Fig. 42 The localization of these ITD-ILD points is very important
to permit to GMMs to adequately fit the problem. The feature space provided by the
Dietz’s model does not show regular patterns as in the May’s model and this makes very
difficult for the GMM training procedure to find the position and the shape of clusters
of points.

Ma’s 2017 model implementation and analysis The Ma’s model, as reported in
the Section 2, has been trained in a slightly different manner with respect to the original
work. For convenience, MATLAB has been used and a custom Neural Network has been
developed to fulfill as much as possible the training characteristics described in [36].
Differences are about the training method, training epochs and validation-stop criterion.
A maximum number of 1000 iterations for each NN and a 20 epochs validation-stop
criterion have been used. Training has been done with CPUs because of lack of support
for the mapstd function with GPUs. The entire training of 64 NNs requested more than
two days to complete with the same machines used to train GMM models.

Sample Confusion Matrices for this model can be seen in Figs. 38, 39 and 40
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Figure 42: Binaural Feature Spaces for May’s and Dietz’s models. Audio sample from
the training set, SNR: 20 dB and DoA: 60°.

The results presented in [36] are better than ones obtained in all simulations done in
this manuscript; nevertheless, our results show a good generalization even if there is some
front-back confusion. It seems that, with a Deep Learning framework which supports all
parameters as in the original work and with the addition of the head rotation, the results
in [36] can be reached.

HMM model analysis As stated in Section 2, the HMM model uses the same feature
space of the May’s 2011 model in [38]. Despite this, its performances are not so good.
This can depend on several things:

• ITD-ILD median filtering : using median to extract characteristic values of binaural
features for each azimuth can lead to an excessive approximation of real features’
values and consequently to misleading detections. This problem can be overcomed
by using a framework which lets to implement HMMs with continuous values.

• ITD-ILD closeness for front-back angles: For each angle of azimuth, there’s an-
other one (complementary) which have a very similar ITD and ILD for what has
been stated in Section 1. Median filtering and discretization can determine two
values for the correct and the front-back angle which are very near each other and
can lead to incorrect azimuth detection. This is confirmed by the fact that there
is a high ratio between correctness and front-back confusion.

• Bad Transition/Emission matrices initialization: this is not a simple task because
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the error function to be optimized is very complex and making a initial guess on
these matrices is challenging.

The generalization on data, however, is satisfactory and better than Dietz’s model
looking at confusion matrices, as in Figs. 38, 39 and 40. As in the Dietz’s 2011 extended
model, in a very noisy environment as the free-field simulation at 0 dB, the confusion
matrix showed a compression of all predictions to the 0° and 180° positions.
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SECTION6
CONCLUSION
In this work, two auditory models, the May’s and Dietz’s 2011 as in [38] and [13], have
been reproduced and compared. In addition, two other Machine Learning techniques
have been evaluated and compared with the results ot the extended GMM models. Re-
garding the model’s comparison, it seems that the best model analyzed for localization
is the May’s extended GMM model, which performs better than all other models on av-
erage. This model can generalize well from the given training set and its performances
are good due to the robust binaural features extracted from the data for each filter and
DOA trained. The Ma’s 2017 model is another valid model for azimuth estimation and
its performances, compared to results in [36], have been partially proven by previous
simulations and results in section 4. In addition, this last model has more stable per-
formances than the May’s model ones, especially in environments with a lot of noise.
The Dietz’s 2011 model with GMMs and the HMM one resulted very inaccurate and not
suitable for reliable DoA estimation in the extended experiments, but the second model
can be improved to obtain better performances because of the quality of the binaural
feature space that is used by the model.

All the four models seen in this manuscript can be certainly improved. The May’s ex-
tended GMM model can be trained with a superior number of iterations and give better
performance. As stated in section 3, the original model has been trained with maximum
300 iterations instead of 100 of the current model. An internally-tested version of the
model trained with maximum 600 iterations has given slightly better performances, but
it has not been reported in this manuscript because the main focus was to compare the
two GMM models with the same training configuration. The Dietz’s extended model
with GMM, instead, can be surely improved with other refinements in the auditory part:
the theory behind the non-cross-correlation approach based on rate code theory proposed
is relatively young and didn’t enjoy the perfectioning of cross-correlation auditory models
based on place theory, as stated by the same author of the model in [11]. In addition, the
effect of more iterations of EM algorithm on the Dietz’s extended model during GMM
training has not been investigated for matters of time, but could improve performances
even dramatically. The Ma’s tested DNN model can be obviously improved by imple-
menting the full pipeline for front-back confusion detection with head rotation and the
complete training setup, but performances, even in this phase, are good and reliable for
azimuth estimation. The HMM model, finally, demonstrates the difficulty of setting up a
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similar ML approach for DOA estimation. This also can be seen on academic literature:
there are very few attempts of pursuing this task with HMMs, which are very suitable
for speech recognition instead, as demonstrated by the Rabiner’s work in [51].
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APPENDIXA
CODE DOCUMENTATION
This Appendix has been written as documentation for the code used in this document.
The source code of this thesis can be found in the repository azim-doa in the private
GitLab of the DEI department, accessible at the URL https://gitlab.dei.unipd.

it/SMCrepos-auditory/azim_doa.

A.1 Main structure

The contents of the repo have been arranged according to the following folder structure:

root

experiments

modelselection

replicas

may2011

dietz2011

new

freefield

room

models

may2011

dietz2011

ma2017

hmm

libraries

ltfat

netlab

roomsim

SOFA

datasets

TIMIT

HRTF

results

scripts

dietz2011_replica

may2011_replica

new_exps

https://gitlab.dei.unipd.it/SMCrepos-auditory/azim_doa
https://gitlab.dei.unipd.it/SMCrepos-auditory/azim_doa
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A.1.1 Experiments

This folder contains the code used to replicate some experiments inside the Dietz’s and
the May’s papers and the experiments for the evaluation of the extended models inside
the thesis. The may2011 folder contains the code for the replica of the experiment
of Fig. 4 inside the model’s paper, while the dietz2011 folder contains the code for
the replica of the Fig. 5 of the related paper. Both replicas can be simply launched
using the scripts launch_may2011_replica and launch_dietz2011_replica. New
experiments are inside the folder new and subdivided into the freefield and room

evaluations, as documented in the thesis. These evaluations can be launched by using
launch_freefield and launch_room MATLAB scripts. Model selection procedures
are inside the modelselection folder, where the scripts may2011_modelselection

and dietz2011_modelselection can be adjusted for training with the reduced or the
full dataset using the MCT training as in the Ma’s 2017 IEEE paper with the script
generateMCTDataset.

A.1.2 Models

Here models’ implementations are hosted. For the May’s and the Dietz’s models, both
orginal and extended implementation have been inserted. The original implementations
did not have a training procedure, which has been created for the extended versions of
the model, but the code can be also used to retrain the GMM models using the preferred
azimuth range. May’s and Dietz’s models code have been extracted from the Auditory
Modeling Toolbox. Each model contains a function for the evaluation (with simply the
name of the model) and the training function (followed by the train suffix). Details
about the implementation of each training or evaluation procedure are inside the folder
misc for every model analyzed into the thesis.

A.1.3 Libraries

Libraries used for the work are the Auditory Modeling Toolbox, from where Dietz, May’s
auditory models and the SOFA and LTFAT libraries have been extracted, and the NET-
LAB library for GMM training. The SOFA library allowed to process HRTFs while
the LTFAT library was used for filters’ implementations inside the Dietz’s model. The
roomsim folder contains the Schimmel’s roomsim MEX executables for Windows and
Linux platforms, with also the source code in C for further compilations. This folder
also contains the functions RIR_generation and other utilities (pointPolarToXYZ and
estimateRT60), used to interface every reverberant room simulation with the room sim-
ulator’s code and to verify the RT60 obtained with the simulator.
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A.1.4 Datasets

Datasets used for simulations are HRTFs from MIT’s KEMAR in the compact version and
the full TIMIT database. HRTFs are in the SOFA file format, while the TIMIT database
is subdivided into two folders, TRAIN and TEST, used respectively as training/validation
and test sets. The roomsim simulator uses the same HRTFs inside the used SOFA file.

A.1.5 Results

This folder contains both results obtained by running the scripts inside the experiments

folder and the scripts to generate the plots inside the thesis using results’ data. The
plot_bars function can be used to plot bar charts inside the Results section of the
thesis, while the plot_CM function can be used to plot confusion matrices as in the last
figures of the same thesis’ section. The plots used inside the paper can be generated with
the functions plot_paper_may2011_replica, plot_paper_dietz2011_replica,
plot_paper_feature_spaces, plot_paper_freefield and plot_paper_room.

A.1.6 Usage

The first step to use the script set of this repository is to run the script initialize_all,
which will add all paths of the scripts inside the toolbox. Using the script help will show
direct commands to launch the fundamental experiments, both replicas and new simu-
lations. Results for new simulations have been already uploaded inside the toolbox, so
scripts to plot data and confusion matrices can be already used without other opera-
tions.
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APPENDIXB
ICA 2019 PUBLICATION
The abstract of the submitted publication for the International Congress of Acoustics
in Aachen (Germany) from 9 to 13 September 2019 can be seen at the address https://

www.researchgate.net/publication/333603759_Auditory_models_comparison_

for_horizontal_localization_of_concurrent_speakers_in_adverse_acoustic_

scenarios. The paper in [3] is a synthesis of what has been discovered about the May’s
and Dietz’s 2011 models extended to the full horizontal plane and working with the GMM
Machine Learning approach.

Many thanks to Roberto Barumerli, Michele Geronazzo, Profs. Giorgio Maria Di
Nunzio and Federico Avanzini for the great tips and suggestions given for all the work!

https://www.researchgate.net/publication/333603759_Auditory_models_comparison_for_horizontal_localization_of_concurrent_speakers_in_adverse_acoustic_scenarios
https://www.researchgate.net/publication/333603759_Auditory_models_comparison_for_horizontal_localization_of_concurrent_speakers_in_adverse_acoustic_scenarios
https://www.researchgate.net/publication/333603759_Auditory_models_comparison_for_horizontal_localization_of_concurrent_speakers_in_adverse_acoustic_scenarios
https://www.researchgate.net/publication/333603759_Auditory_models_comparison_for_horizontal_localization_of_concurrent_speakers_in_adverse_acoustic_scenarios




REFERENCES 71

REFERENCES
[1] Glossary of Terms, volume 30. Kluwer Academic Publishers, February 1998.

[2] R. Barumerli, M. Geronazzo, and F. Avanzini. Round robin comparison of inter-
laboratory hrtf measurements – assessment with an auditory model for elevation.
In 2018 IEEE 4th VR Workshop on Sonic Interactions for Virtual Environments
(SIVE), pages 1–5, March 2018.

[3] Roberto Barumerli, Andrea Almenari, Michele Geronazzo, Giorgio Maria Di Nunzio,
and Federico Avanzini. Auditory models comparison for horizontal localization of
concurrent speakers in adverse acoustic scenarios. September 2019.

[4] Robert Baumgartner, Piotr Majdak, and Bernhard Laback. Assessment of Sagittal-
Plane Sound Localization Performance in Spatial-Audio Applications. In The Tech-
nology of Binaural Listening, Modern Acoustics and Signal Processing, pages 93–
119. January 2013.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[6] Jens Blauert. Spatial Hearing, Revised Edition. The MIT Press, 1996.

[7] Douglas R Campbell, Kalle J Palomäki, and Guy J Brown. A MATLAB simulation
of “shoebox” room acoustics for use in research and teaching. page 4.

[8] David Fitzpatrick Lawrence C Katz Anthony-Samuel LaMantia James O McNamara
Dale Purves, George J Augustine and S Mark Williams. Neuroscience. Sinauer
Associates, 2nd edition, 2001.

[9] Mitchell L Day, Kanthaiah Koka, and Bertrand Delgutte. Neural encoding of sound
source location in the presence of a concurrent, spatially separated source. Journal
of neurophysiology, 108(9):2612–2628, November 2012.

[10] Prof. Fabio Vandin – Università di Padova. Neural networks slides for the machine
learning course, not publicly available.

[11] M. Dietz, J.-H. Lestang, P. Majdak, R. M. Stern, T. Marquardt, S. D. Ewert,
W. M. Hartmann, and D. F. M. Goodman. A framework for testing and comparing
binaural models. 106, November 2017.

[12] Mathias Dietz, Stephan D Ewert, and Volker Hohmann. Lateralization of stim-
uli with independent fine-structure and envelope-based temporal disparities. The
Journal of the Acoustical Society of America, 125:1622–35, April 2009.



72

[13] Mathias Dietz, Stephan D. Ewert, and Volker Hohmann. Auditory model based
direction estimation of concurrent speakers from binaural signals. 53(5):592–605.

[14] Mathias Dietz, Stephan D. Ewert, Volker Hohmann, and Birger Kollmeier. Coding
of temporally fluctuating interaural timing disparities in a binaural processing model
based on phase differences. Brain research, 1220:234–245, July 2008.

[15] J. F. Feuerstein. Monaural versus binaural hearing: ease of listening, word recog-
nition, and attentional effort. Ear and hearing, 13(2):80–86, April 1992.

[16] J. L. Flanagan. Models for Approximating Basilar Membrane Displacement. Bell
System Technical Journal, 39(5):1163–1191, 1960.

[17] William G Gardner and Keith D Martin. Hrtf measurements of a kemar. The Journal
of the Acoustical Society of America, 97(6):3907–3908, 1995.

[18] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett. DARPA
TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-
1.1. 93.

[19] Theodoros Giannakopoulos and Aggelos Pikrakis. Audio Alignment and Temporal
Modeling, pages 185–207. 12 2014.

[20] Brian R. Glasberg and Brian C. J. Moore. Derivation of auditory filter shapes from
notched-noise data. Hearing Research, 47(1):103 – 138, 1990.

[21] Dan FM Goodman, Victor Benichoux, and Romain Brette. Decoding neural re-
sponses to temporal cues for sound localization. eLife, 2:e01312, December 2013.

[22] Simon Haykin and Zhe Chen. The cocktail party problem. Neural computation,
17:1875–902, 10 2005.

[23] Gregory Hickok and David Poeppel. The cortical organization of speech processing.
Nature Reviews Neuroscience, 8:393, April 2007.

[24] A J Hudspeth. Making an effort to listen: mechanical amplification in the ear.
Neuron, 59(4):530–545, August 2008.

[25] Lloyd A. Jeffress. A place theory of sound localization. Journal of Comparative and
Physiological Psychology, 41(1):35–39, 1948.

[26] Philip Joris and Tom Yin. Joris, p. & yin, t.c. a matter of time: internal delays in
binaural processing. trends neurosci. 30, 70-78. Trends in neurosciences, 30:70–8,
03 2007.



REFERENCES 73

[27] Eric R. Kandel, Thomas M. Jessell, James H. Schwartz, Steven A. Siegelbaum,
and A. J. Hudspeth. Principles of Neural Science, Fifth Edition. McGraw Hill
Professional, 2013.

[28] Saurabh Kataria, Clement Gaultier, and Antoine Deleforge. Hearing in a shoe-box:
Binaural source position and wall absorption estimation using virtually supervised
learning. In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 226–230, New Orleans, LA, March 2017. IEEE.

[29] Takuji Koike, Hiroshi Wada, and Toshimitsu Kobayashi. Modeling of the human
middle ear using the finite-element method. Acoustical Society of America Journal,
111(3):1306–1317, Mar 2002.

[30] Pat Langley. The changing science of machine learning, volume 82. March 2011.

[31] S. E. Levinson and Danfeng Li. A Bayes-rule based hierarchical system for binaural
sound source localization. In 2003 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., volume 5, pages
V–521, April 2003.

[32] W. Lindemann. Extension of a binaural cross-correlation model by contralateral
inhibition. I. Simulation of lateralization for stationary signals. The Journal of the
Acoustical Society of America, 80(6):1608–1622, December 1986.

[33] R. F. Lyon and C. Mead. An analog electronic cochlea. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 36(7):1119–1134, July 1988.

[34] Steven M. Schimmel, Martin F. Muller, and Norbert Dillier. A fast and accurate
“shoebox” room acoustics simulator. pages 241–244.

[35] Ning Ma, Jose A. Gonzalez, and Guy J. Brown. Robust binaural localization of a
target sound source by combining spectral source models and deep neural networks.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26:1–1, 07
2018.

[36] Ning Ma, Tobias May, and Guy J. Brown. Exploiting deep neural networks and
head movements for robust binaural localization of multiple sources in reverberant
environments. 25(12):2444–2453.

[37] Piotr Majdak, Yukio Iwaya, Thibaut Carpentier, Rozenn Nicol, Matthieu Parmen-
tier, Agnieszka Roginska, Yôiti Suzuki, Kankji Watanabe, Hagen Wierstorf, Harald
Ziegelwanger, et al. Spatially oriented format for acoustics: A data exchange for-
mat representing head-related transfer functions. In Audio Engineering Society
Convention 134. Audio Engineering Society, 2013.



74

[38] T. May, S. van de Par, and A. Kohlrausch. A probabilistic model for robust local-
ization based on a binaural auditory front-end. 19(1):1–13.

[39] D. McAlpine, D. Jiang, and A. R. Palmer. A neural code for low-frequency sound
localization in mammals. Nature neuroscience, 4(4):396–401, April 2001.

[40] R. Meddis. Simulation of mechanical to neural transduction in the auditory receptor.
The Journal of the Acoustical Society of America, 79(3):702–711, March 1986.

[41] John E. Mendoza. Trapezoid Body. In Jeffrey S. Kreutzer, John DeLuca, and
Bruce Caplan, editors, Encyclopedia of Clinical Neuropsychology, pages 2549–2549.
Springer New York, New York, NY, 2011.

[42] B. C. Moore and B. R. Glasberg. Suggested formulae for calculating auditory-
filter bandwidths and excitation patterns. The Journal of the Acoustical Society of
America, 74(3):750–753, September 1983.

[43] Jean K. Moore. Organization of the human superior olivary complex. Microscopy
Research and Technique, 51(4):403–412, 2000.

[44] Ian Nabney. NETLAB: Algorithms for Pattern Recognition. Springer Science &
Business Media, 2002.

[45] Stuart Russell; Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edi-
tion). Pearson, 2016.

[46] Douglas L. Oliver. Ascending efferent projections of the superior olivary complex.
Microscopy Research and Technique, 51(4):355–363, 2000.

[47] J P Demanez and L Demanez. Anatomophysiology of the central auditory nervous
system: Basic concepts. Acta oto-rhino-laryngologica Belgica, 57:227–36, 02 2003.

[48] DN Pandya. Anatomy of the auditory cortex. Revue neurologique, 151(8-
9):486—494, 1995.

[49] Marvin Papert, Seymour; Minsky. Perceptrons. The MIT Press, 1969.

[50] Prof. Davide Maltoni – Università di Bologna. Clustering slides, available at
http://bias.csr.unibo.it/maltoni/ml/dispensepdf/6_ml_clustering.pdf.

[51] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[52] Patterson RD. Time-domain modeling of peripheral auditory processing: a modular
architecture and a software platform. - PubMed - NCBI.



REFERENCES 75

[53] Michele Rucci and Jonathan Wray. Binaural cross-correlation and auditory local-
ization in the barn owl: a theoretical study. Neural networks : the official journal
of the International Neural Network Society, 12(1):31–42, January 1999.

[54] Filip Munch Rønne, Torsten Dau, James Harte, and Claus Elberling. Modeling audi-
tory evoked brainstem responses to transient stimuli. The Journal of the Acoustical
Society of America, 131(5):3903–3913, May 2012.

[55] Jan Schnupp, Israel Nelken, and Andrew King. Auditory neuroscience: Making sense
of sound. Auditory neuroscience: Making sense of sound. MIT Press, Cambridge,
MA, US, 2011.

[56] Christopher Schymura, Thomas Walther, Dorothea Kolossa, Ning Ma, and Guy
Brown. Binaural Sound Source Localisation using a Bayesian-network-based Black-
board System and Hypothesis-driven Feedback. September 2014.

[57] Alex Southern, D Murphy, Guilherme Campos, and Paulo Dias. Finite difference
room acoustic modelling on a general purpose graphics processing unit. 128th Audio
Engineering Society Convention 2010, 3:1393–1403, 01 2010.

[58] Richard Stern and H. Steven Colburn. Theory of binaural interaction based on
auditory-nerve data. iv. a model for subjective lateral position. The Journal of the
Acoustical Society of America, 64:127–40, 08 1978.

[59] Peter Søndergaard and Piotr Majdak. The auditory modeling toolbox. In Jens
Blauert, editor, The Technology of Binaural Listening, pages 33–56. Springer.

[60] Zühre Sü and Semiha Yilmazer. The acoustical characteristics of the kocatepe
mosque in ankara, turkey. Architectural Science Review, 51:21–30, 03 2008.

[61] Sonia Tabibi, Andrea Kegel, Wai Kong Lai, and Norbert Dillier. Investigating the
use of a Gammatone filterbank for a cochlear implant coding strategy. Journal of
Neuroscience Methods, 277:63 – 74, 2017.

[62] Georg v. Békésy. Zur theorie des hörens bei der schallaufnahme durch knochen-
leitung. Annalen der Physik, 405(1):111–136, 1932.

[63] Sarah Verhulst, Torsten Dau, and Christopher A. Shera. Nonlinear time-domain
cochlear model for transient stimulation and human otoacoustic emission. The
Journal of the Acoustical Society of America, 132(6):3842–3848, December 2012.

[64] Eric Verschooten, Shihab Shamma, Andrew J. Oxenham, Brian C.J. Moore,
Philip X. Joris, Michael G. Heinz, and Christopher J. Plack. The upper frequency
limit for the use of phase locking to code temporal fine structure in humans: A
compilation of viewpoints. Hearing Research, 377:109–121, June 2019.



76

[65] D. Wang and G.J. Brown. Computational Auditory Scene Analysis: Principles,
Algorithms, and Applications (Wang, D. and Brown, G.J., Eds.; 2006).

[66] Xiaoqin Wang. The harmonic organization of auditory cortex. Frontiers in systems
neuroscience, 7:114–114, December 2013.

[67] Jeremy M Wolfe. Sensation and perception. Sunderland, MA : Sinauer Associates,
2006.

[68] Muhammad S. A. Zilany and Ian C. Bruce. Representation of the vowel /epsilon/ in
normal and impaired auditory nerve fibers: model predictions of responses in cats.
The Journal of the Acoustical Society of America, 122(1):402–417, July 2007.


	Introduction
	Research Questions
	Fundamentals of Auditory Processing
	The human auditory system
	Binaural audio
	Computational Auditory Scene Analysis
	Binaural features
	Open questions on human brain's binaural processing
	The front-back confusion and frequency-related problems
	Head Related Transfer Functions
	Binaural audio synthesis using HRIRs
	Room Acoustic Simulation
	The Sabine formula

	Computational tools
	Machine Learning: a brief introduction
	Datasets in ML
	Used Machine Learning techniques


	Materials
	Software, libraries and databases
	Software
	Libraries
	Datasets

	Auditory Models
	May's 2011 auditory model
	Dietz's 2011 auditory model
	Ma's 2017 auditory model
	A simple HMM for DOA estimation


	Simulations
	Metrics
	Papers' models replica
	May's 2011 model experiments
	Dietz 2011 Experiments

	New experiments
	Models' extension
	May's and Dietz's models re-training
	Ma's 2017 model training
	HMM model training
	Extended models evaluation


	Results
	Reproducibility of experiments
	May 2011 experiments
	Dietz 2011 experiments

	Additional Experiments
	Model selection
	Models' extension experiments
	Confusion matrices


	Discussion
	Reproduction of papers' experiments
	May's 2011 model paper's reproduction
	Dietz's 2011 model paper's reproduction

	Additional Experiments
	General Discussion

	Conclusion
	Code Documentation
	Main structure
	Experiments
	Models
	Libraries
	Datasets
	Results
	Usage


	ICA 2019 Publication

