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Abstract

The thesis investigates the feasibility of introducing anomaly detection in the con-
text of heat pump units. This research work has been proposed by Swegon Opera-
tions Srl. with the ultimate goal of creating an anomaly detection system that helps
experts predict anomalies in heat pump units before they occur. The effect of this
new system would be fewer machines breaking down due to unreported anomalies,
resulting in increased overall reliability. Consequently, the benefits would include
reduced maintenance costs and higher customer satisfaction.

To evaluate the feasibility of using anomaly detection in heat pump units, we
followed a data-centric approach: rather than focusing on finding the most suitable
anomaly detection technique, we concentrated on creating a high-quality dataset.
We then experimented with two machine learning techniques — principal compo-
nent analysis (PCA) and clustering — to find useful insights about the data and
to design an algorithm for detecting outliers.

To test the performance of the models, we needed to manually introduce an
anomaly into the machine. We reduced the gas in the refrigeration circuit, thus
simulating a gas leak. We called this experiment the “Gas leakage experiment”.

Using PCA, which is a dimensionality reduction technique, we transformed the
dataset from 8 to 2 dimensions. The 2D plots did not reveal any well-defined
patterns that could aid in the anomaly detection task. On the other hand, PCA
allowed us to derive useful information about the dataset and refine the data pre-
processing step. Furthermore, we noticed that already in 2 dimensions, the points
related to the gas leakage anomaly were significantly separated from the points
associated to the normal operating conditions of the machine.

The results obtained with clustering showed that applying machine learning tech-
niques that work on the original dimensional space, thus considering all the features
present in the dataset, is an effective approach to this use case. Based on clustering,
we created the Outlier Detection Algorithm, which is designed to classify safe and
anomaly points in the dataset. With an F1 score of 0.97, the latter methodology
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strongly suggests that anomaly detection has the potential to be used in heat pump
units.
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Abstract (Italian)

La tesi studia la fattibilità di introdurre il rilevamento delle anomalie nel contesto
delle unità a pompa di calore. Questo lavoro di ricerca è stato proposto da Swegon
Operations Srl. con l’obiettivo finale di creare un sistema di rilevamento delle
anomalie che aiuti gli esperti a prevedere le anomalie nelle unità a pompa di calore
prima che si verifichino effettivamente. L’effetto di questo nuovo sistema sarebbe
una riduzione delle macchine che si guastano a causa di anomalie non segnalate, con
un conseguente aumento della affidabilità complessiva. I vantaggi includerebbero
una riduzione dei costi di manutenzione e una maggiore soddisfazione dei clienti.

Per valutare la fattibilità dell’uso del rilevamento delle anomalie nelle unità a
pompa di calore abbiamo seguito un approccio incentrato sui dati: piuttosto che
concentrarci sulla ricerca della tecnica di rilevamento delle anomalie più adatta,
ci siamo concentrati sulla creazione di un dataset di alta qualità. Abbiamo poi
sperimentato l’utilizzo di due tecniche di apprendimento automatico — l’analisi
delle componenti principali (PCA) e il clustering — per trovare informazioni utili
sui dati e per progettare un algoritmo per il rilevamento degli outlier.

Per testare le prestazioni dei modelli, è stato necessario introdurre manualmente
un’anomalia nella macchina, riducendo il gas nel circuito frigorifero e simulando
così una perdita di gas. Abbiamo chiamato questo esperimento “spillamento del
gas”.

Utilizzando la PCA, che è una tecnica di riduzione della dimensionalità, abbiamo
trasformato il dataset da 8 a 2 dimensioni. Dai grafici 2D non abbiamo rivelato
pattern ben definiti che potessero aiutare nel processo di rilevamento delle anomalie.
D’altra parte, la PCA ci ha permesso di derivare informazioni utili sul dataset e di
affinare lo step di preprocessamento dei dati. Inoltre, abbiamo notato che già in 2
dimensioni i punti relativi allo spillamento del gas si separavano significativamente
dai punti relativi al corretto funzionamento della macchina.

I risultati ottenuti con il clustering hanno mostrato che l’applicazione di tecniche
di apprendimento automatico che lavorano sullo spazio dimensionale originale, con-
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siderando quindi tutte le variabili presenti nel dataset, è un approccio efficace per
questo caso d’uso. Basandoci sul clustering, abbiamo creato l’Outlier Detection
Algorithm, che è progettato per classificare i dati nel dataset come anomalie o dati
“safe”. Con un F1 score di 0.97, quest’ultima metodologia suggerisce fortemente
che il rilevamento delle anomalie ha il potenziale per essere usato nelle unità a
pompa di calore.
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Chapter 1

Introduction

1.1 Motivation

Anomaly detection refers to the problem of finding patterns in data that do not
conform to expected behavior [1]. Anomaly detection is critical in the smart in-
dustry for preventing equipment failure, reducing downtime, and improving safety
[2]. In this thesis, “anomaly detection” is intended as an “intelligent” anomaly
detection, which uses artificial intelligence techniques to identify complex patterns
or outliers in data that traditional approaches cannot detect.

Heat pump units not equipped with an intelligent anomaly detection system
usually rely solely on traditional alarms, which only take into account a few sen-
sors, and they typically operate with rule-based methods. For this reason, they
may struggle to detect complex anomalies that are indeed associated with complex
patterns in the data.

Equipping heat pump units with an intelligent anomaly detection system would
lead to many advantages:

• Powered by artificial intelligence, the system can identify anomalies that
traditional methods may miss. This leads to more accurate and consistent
detection of anomalies;

• By analyzing data in real-time, the system can predict potential equipment
failures before they actually happen. This prevents minor issues from esca-
lating into major problems, thereby reducing the risk of costly incidents;

• The system can scale with the growth of industrial operations: as the volume
and complexity of data increase, it can adapt and continue to provide effective
capabilities;
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CHAPTER 1. INTRODUCTION

• AI systems continuously learn and adapt from new data, improving their
detection accuracy over time. This results in a system that is easily updatable
and increasingly powerful as time passes;

• Implementing cutting-edge technology can provide a competitive advantage
by optimizing operations, reducing costs, and improving product quality.

1.2 Research scope

The main objective of this study is to investigate the feasibility of using anomaly
detection in heat pump units. The research first focuses on collecting and analyzing
data generated by the sensors installed on a heat pump machine, and then on
experimenting with two machine learning techniques.

1.3 State of the art

Industrial units suffer damage due to continuous usage and normal wear and tear.
Such damage needs to be detected early to prevent further escalation and losses.
The data in this domain is usually referred to as sensor data because it is recorded
using different sensors and collected for analysis. Anomaly detection techniques
have been extensively applied in this domain to detect such damage [3].

However, this thesis does not aim to research the most suitable anomaly de-
tection technique for our task or to optimize existing methodologies. Instead, it
addresses a gap in the current literature by examining the feasibility of applying
anomaly detection specifically to industrial machines which implement the heat
pump technology.

1.4 Thesis overview

The thesis is organized as follows:

Chapter 2. Provides essential theoretical background. It begins with an intro-
duction to heat pumps, followed by a theoretical description of the anomaly
detection task. It further covers the two machine learning techniques used
in the experiments (principal component analysis and clustering) and defines
the performance metrics we used for model evaluation.
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CHAPTER 1. INTRODUCTION

Chapter 3. Details the methodologies used in this research work. First, it
presents the core strategy we followed. Then, it describes each step of the
dataset preparation stage and the designed training and validation sets.
In the end, it provides the specifications of the machine learning models
employed.

Chapter 4. Shows and analyzes the results obtained from the experiments with
PCA and clustering. It also presents the Outlier Detection Algorithm, which
we developed in order to perform the binary classification task.

Chapter 5. Concludes the thesis with a summary of the research results, and with
considerations on the use of anomaly detection in the world of heat pumps.

The realization of this thesis was possible thanks to a three-month internship at
Swegon Operations Srl. Their involvement was pivotal in acquiring the essential
knowledge about heat pumps, needed for conducting this research. Having access
to on-site machinery data was nevertheless of highly importance; it enabled us to
prepare the datasets, validate the models, and consequently yield tangible results.
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Chapter 2

Background and Fundamental
Concepts

2.1 Heat pumps

Heat pumps are devices designed to transfer thermal energy from one location to
another thanks to thermodynamic processes. What we call “heat pump units” are
HVAC (Heating, Ventilation, and Air Conditioning) systems that implement the
heat pump technology. They are commonly used for space heating and cooling in
residential, commercial, and industrial applications. Heat pump units are generally
costlier to install than other heating systems such as furnaces working with coal,
natural gas, fuel oil, and so on and electrical heaters. However, when the long-term
use period is considered, they can provide a huge amount of savings. They can also
play a critical role in the electrification of heating purposes. When the electricity
is met by renewables, the heating demand can be met in a more sustainable way
[4].

They operate by utilizing mechanical work to move heat against its natural flow,
extracting it from a source (surrounding air, the ground, or nearby water sources)
and delivering it to a target area. The thermodynamic cycle of heat pumps can be
reversed, therefore they can be used for both cooling and heating purposes.

Heat pump technologies are widely used for upgrading ambient heat from sus-
tainable sources, such as air, water, the ground, and waste heat, to heating temper-
atures [5]. Due to this variety of heat sources, we can find many typologies of heat
pump units. Among the most common ones are Air Source Heat Pumps (ASHP),
Ground Source Heat Pumps (GSHP) and Water Source Heat Pumps (WSHP).

The unit employed for experiments in this work is an ASHP, more precisely an
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CHAPTER 2. BACKGROUND AND FUNDAMENTAL CONCEPTS

Figure 2.1: Heat pump unit by Swegon Operations Srl. used for experiments

Air-to-Water Heat Pump (Figure 2.1). This typology of machine, in heating mode,
extracts heat from the outside air and uses it to heats water, which then circulates
within the indoor environment. In chiller (or cooling) mode, it does the opposite:
the unit absorbs heat from the indoor water-system and releases it to the outside
as heated air.

2.2 Anomaly detection

2.2.1 Definition

An outlier is an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism [6]. The
goal of the anomaly detection task is to find unusual patterns or outliers in data.
By establishing a baseline of normal behavior through training on historical data,
anomaly detection algorithms can then be used for identifying patterns or outliers
that do not conform to the expected behavior.

Anomaly detection is a crucial area engaging the attention of many researchers.
It is useful in many real time applications such as industry damage detection, de-
tection of fraudulent usage of credit card, detection of failures in sensor nodes,
detection of abnormal health and network intrusion detection [7]. It plays a crucial
role in enhancing system reliability, security, and efficiency by identifying irregu-
larities that may go unnoticed through traditional monitoring methods.
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2.2.2 Challenges

At an abstract level, an anomaly is defined as a pattern that does not conform to ex-
pected normal behavior. A straightforward anomaly detection approach, therefore,
is to define a region representing normal behavior and declare any observation in
the data that does not belong to this normal region as an anomaly [3]. But several
factors make this apparently simple approach very challenging:

• Defining a normal region that encompasses every possible normal behavior
is very difficult. In addition, the boundary between normal and anomalous
behavior is often not precise. Thus, an anomalous observation that lies close
to the boundary can actually be normal, and vice versa;

• In many domains, normal behavior keeps evolving and a current notion of
normal behavior might not be sufficiently representative in the future;

• Availability of labeled data for training/validation of models used by anomaly
detection techniques is usually a major issue;

• Often the data contains noise that tends to be similar to the actual anomalies
and hence is difficult to distinguish and remove.

Due to these challenges, the anomaly detection problem, in its most general form,
is not easy to solve. In fact, most of the existing anomaly detection techniques solve
a specific formulation of the problem. The formulation is induced by various factors
such as the nature of the data, availability of labeled data, type of anomalies to
be detected, and so on. Often, these factors are determined by the application
domain in which the anomalies need to be detected. Researchers have adopted
concepts from diverse disciplines such as statistics, machine learning, data mining,
information theory, spectral theory, and have applied them to specific problem
formulations.

2.2.3 Example: anomaly detection in 2 dimensions

This example is intended just to give a visual understanding of what is meant by an
anomaly in the data. Let’s imagine to have a (dummy) machine with two sensors,
sensor_1 and sensor_2, which respectively produce periodically and synchronously
temperature and pressure values. So, for each instant in time in which the machine
is operating, we have a pair of temperature-pressure values. When the machine
is running properly, sensor_1 generates values in the range of -10 to 10 C◦ while
sensor_2 generates values in the range of -5 to 5 bar.
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Experiment 1. Let’s get the machine running and in the meantime collect some
data. After a while, the machine is switched off and all the data is plotted.
What is obtained is the plot in Figure 2.2. As can be seen, the machine
worked as expected. All points are within the nominal ranges. Some are
slightly outside, but in this case we decide that this is acceptable. It is possible
to interpret this “cloud” of points as a safe zone: every point that lies inside
this cloud is a “safe” point.

Figure 2.2: Example: safe data points from experiment 1

Experiment 2. Now let’s repeat the experiment, but before starting the machine,
let’s introduce an anomaly in it. Suppose the sensors now produce higher
temperature and pressure values because of this anomaly. Let’s get the ma-
chine running for a while and collect data. Finally, we obtain the plot in
Figure 2.3. The new points (in red) are all outside the safe zone. These new
points are anomaly points because they are far away from the safe cloud.

The anomaly points in this example can be identified using a simple rule-based
method. However, our goal was to emphasize that anomalies can also be detected
visually. This is because they may exhibit patterns different from expected ones, or
data points could be situated far outside the normal operational zone. Moreover,
this example is intended to give a hint of how anomaly detection works in a high-
dimensional spaces, where there are more safe clouds and outliers are harder to
detect.
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Figure 2.3: Example: safe and anomaly data points respectively from experiment
1 and experiment 2

We will resume this example in the subsequent chapters. Specifically, we will
apply the same machine learning techniques we used for the real experiments to
this example.

2.3 Machine learning methods

2.3.1 Principal component analysis

Introduction

Principal Component Analysis (PCA) [8] is a dimensionality reduction technique
commonly used to transform a high-dimensional dataset into a lower-dimensional
representation while retaining as much of the original variability as possible. The
fundamental idea behind PCA is to identify the principal components of the data,
which are a new set of uncorrelated variables that result from a linear transfor-
mation of the original variables. These components are found in such a way as to
capture the maximum variance in the original data.

There are several reasons to reduce the dimensionality of data. One of the main
reasons for using PCA is that high-dimensional data imposes computational chal-
lenges. Moreover, PCA can enhance data interpretability, reveal meaningful struc-
tures, and aid in illustration. Given our high-dimensional datasets, we decided to
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apply this technique to better understand the data.
In the context of anomaly detection, PCA is also used along with spectral

anomaly detection techniques, which try to find an approximation of the data
using a combination of attributes that capture the bulk of the variability in the
data. The general approach adopted by spectral anomaly detection techniques is to
determine such subspaces (embeddings, projections, etc.) in which the anomalous
instances can be easily identified [3].

Formal definition

The following definition of PCA is taken from the book “Understanding Machine
Learning” by Di Shai Shalev-Shwartz, Shai Ben-David (2014) [9]. Let x1, ...,xm be
m vectors in Rd. We would like to reduce the dimensionality of these vectors using
a linear transformation. A matrix W ∈ Rn,d, where n < d, induces a mapping
x 7→ Wx, where Wx ∈ Rn is the lower dimensionality representation of x. Then,
a second matrix U ∈ Rd,n can be used to (approximately) recover each original
vector x from its compressed version. That is, for a compressed vector y = Wx,
where y is in the low dimensional space Rn, we can construct x̃ = Uy, so that x̃
is the recovered version of x and resides in the original high dimensional space Rd.
In PCA, we find the compression matrix W and the recovering matrix U so that
the total squared distance between the original and recovered vectors is minimal;
namely, we aim at solving the problem

arg min
W∈Rn,d,U∈Rd,n

m∑
i=1

‖xi − UWxi‖22 (2.3.1)

Back to the example of Section 2.2.3

To better visualize what PCA consists of and how it can be used for anomaly
detection, the example presented in the Section 2.2.3 is resumed. PCA is applied
to the whole dataset to reduce its dimensionality from 2 to 1 dimension. The
Python library scikit-learn [10] is used, which provides a powerful API to perform
various machine learning tasks.

After applying PCA and plotting the transformed data points, what is obtained
is the plot in Figure 2.4. The blue data points represent the original dataset pro-
jected into one dimension. In other words, they represent the principal component
obtained by linearly combining the two original variables. The most interesting
observation is that, even in one dimension, we have two separate dense regions of

19



CHAPTER 2. BACKGROUND AND FUNDAMENTAL CONCEPTS

points: the one on the left is the safe zone and the one on the right is associated
to the anomaly event.

Figure 2.4: Example: safe and anomaly data points, and their corresponding
PCA-transformed representations

2.3.2 Clustering

Introduction

Clustering [11] is a machine learning technique that aims to organize data points
into groups, where each group contains data points that are more similar to each
other than to those in other groups. It is commonly used in unsupervised learn-
ing frameworks because it aims to find patterns and structure in data without
predefined labels.

Clustering for anomaly detection is widely used in various fields, including net-
work intrusion detection [12], credit card fraud detection [13], image processing
domain [14], and anomalous topic detection in text data [15].

Some clustering algorithms used for anomaly detection, like DBSCAN [16], are
based on the assumption that normal data instances belong to a cluster in the data,
while anomalies do not belong to any cluster. The latter approach is the one we
adopted in the experiments with clustering presented in Chapter 4.2, although we
did not use DBSCAN but the K-means algorithm.
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Formal definition

As for the PCA definition, the following formal definition of clustering is taken from
the same book [9]. Clustering tasks can vary in terms of both the type of input they
have and the type of outcome they are expected to compute. For concreteness, we
shall focus on the following common setup:

Input - a set of elements, X, and a distance function over it. That is, a function
d : X×X 7→ R+ that is symmetric, satisfies d(x, x) = 0 for all x ∈ X and
often also satisfies the triangle inequality. Alternatively, the function could
be a similarity function s : X×X 7→ [0, 1] that is symmetric and satisfies
s(x, x) = 1 for all x ∈ X. Additionally, some clustering algorithms also
require an input parameter k (determining the number of required clusters).

Output - a partition of the domain set X into subsets. That is, C = (C1, ..., Ck)

where ∪ki=1Ci = X and for all i 6= j, Ci ∩ Cj = ∅. In some situations the
clustering is “soft”, namely, the partition of X into the different clusters is
probabilistic where the output is a function assigning to each domain point,
x ∈ X, a vector (p1(x), ..., pk(x)), where pi(x) = P[x ∈ Ci] is the probability
that x belongs to the cluster Ci. Another possible output is a clustering den-
drogram, which is a hierarchical tree of domain subsets, having the singleton
sets as its leaves, and the full domain as its root.

Back to the example of Section 2.2.3

To conclude the example, we apply clustering using the K-means algorithm. Again,
we use scikit-learn to fit a model on the whole dataset, which includes both safe
and anomaly points. We decide to run the algorithm with k = 2 in order to try to
separate the safe from the anomaly points in two distinct clusters. What we get is
the plot in Figure 2.5 and, as can be seen, the safe and anomaly points are indeed
grouped separately.

2.3.3 Performance metrics

In the context of machine learning, performance metrics serve as quantitative mea-
sures that allow the assessment of the quality and accuracy of machine learning
models. The evaluation of model performance is essential for understanding the
model effectiveness in solving a particular task. Performance metrics play a pivotal
role in guiding the development and selection of models based on their ability to
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Figure 2.5: Example: safe and anomaly data points split in two groups with
clustering

make accurate predictions. Since we used them in the experiments, we will provide
their definitions to make them clear to the reader.

In this project, we are working with models that perform a binary classification
task: a sample can be considered a safe point or an anomaly point. For this
reason, the definitions of the performance metrics are given in the context of binary
classification. Note that, in our case, we chose the anomaly points as to be the
positive instances, and the safe points the negative instances. We followed this
reasoning: since the model goal is to identify anomaly points, whenever it identifies
one, it is a positive instance.

Accuracy - proportion of correctly classified instances out of the total instances.

accuracy =
TP + TN

TP + TN + FP + FN
(2.3.2)

where TP = True Positive, TN = True Negative, FP = False Positive,
FN = False Negative. It answers the question: “Of all the instances the
model attempted to predict, how many did it get right?”. In an intuitive
sense, accuracy gives a quick overall score of how well the model is doing.
However, it is essential to note that accuracy might not be the best metric in
all situations, especially when dealing with imbalanced datasets (where one
class is significantly more prevalent than the other). Suppose the anomaly
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event is rare and therefore not as often seen in the dataset: if the model
always classifies a point as negative, it will achieve high accuracy even if it
cannot detect the anomaly event at all.

Precision - ratio of true positive predictions to the total positive predictions.

precision =
TP

TP + FP
(2.3.3)

It answers the question: “Of all the instances that the model predicted as pos-
itive, how many were actually positive?”. Precision focuses on the accuracy
of the positive predictions.

Recall - ratio of true positive predictions to the total actual positive instances.

recall =
TP

TP + FN
(2.3.4)

It answers the question: “Of all the instances that were actually positive, how
many were identified by the model?”. Recall focuses on the model’s ability
to capture and correctly predict all the positive instances in the dataset. If
the model always classifies a point as positive and there is a rare anomaly
event in the dataset, the recall will be 100% but the precision will be very
low, that is why, with unbalanced datasets, we should consider bot recall and
precision.

F1 score - harmonic mean of precision and recall.

F1 score =
2 ∗ precision ∗ recall
precision+ recall

(2.3.5)

It ranges from 0 to 1, with higher values indicating better performance.
F1 score is a useful metric for measuring the performance of classification
models in the presence of imbalanced datasets because it takes into account
both the recall and the precision. A high F1 score generally indicates a well-
balanced performance, demonstrating that the model can concurrently attain
high precision and high recall.
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2.4 Thermodynamics concepts

2.4.1 Refrigeration cycle

Thermodynamic cycles are thermodynamic transformations in which the initial and
final states of the system are coincident. They are used in thermodynamic machines
to transform heat into work or vice versa. If during the cycle the machine produces
work, W > 0, the machine is called a thermal machine; if, on the other hand, the net
work of the cycle is negative, W < 0, the machine is called a refrigeration machine.
A thermodynamic machine consists of a substance, that is the thermodynamic
system that performs the transformations, and the environment with which the
substance exchanges energy in the form of heat and work [17].

Heat pumps operate as refrigeration machines. A visual representation illustrat-
ing a refrigeration machine and its heat exchanges with the environment is depicted
in Figure 2.6. It operates by extracting heat QC from a cold source (e.g., the in-
side of a refrigerator) by cooling it further, using external work W , and releasing
heat QH into the environment (e.g., the outside of the refrigerator). In order to
do so, heat pumps come with a refrigeration cycle, which enables the exchange of
heat by changing the thermodynamic states of a substance. The refrigeration cycle
implemented by heat pumps generally involves the use of a refrigerant, that is, the
substance that undergoes phase changes (from liquid to vapor and back) to permit
the absorption and release of the heat.

It is worth mentioning that the most efficient type of refrigeration cycle when
operating between two temperature reservoirs is the Carnot refrigeration cycle.
Essentially, it represents the most efficient way a machine can work between two
different temperatures. However, since this cycle sets a theoretical benchmark for
maximum efficiency, real-world refrigeration systems employ practical cycles based
on different thermodynamic principles. Among these, the most commonly used is
the vapor compression cycle, which includes an evaporator, compressor, condenser,
and expansion valve.

2.4.2 Mechanical vapor compression refrigeration circuit

The majority of cooling systems are based on the vapor compression refrigeration
cycle [18]. Indeed, the heat pump unit studied in this work implements the me-
chanical vapor compression refrigeration circuit. A general representation of this
circuit is shown in Figure 2.7. It serves as the backbone of traditional cooling
systems, controlling the process of thermodynamic reactions in order to regulate
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Figure 2.6: Symbolic representation of a refrigeration machine and its
thermodynamic exchanges

temperatures effectively. Through the interplay of key components, including the
evaporator, compressor, condenser, and expansion valve, the system achieves the
extraction and transfer of heat, facilitating the creation of controlled and comfort-
able environments. At its core, the circuit employs a refrigerant which undergo
controlled phase changes, altering its thermodynamic state between liquid and
vapor. The refrigerant has suitable thermodynamic properties that enable it to
circulate through the pipelines that connect the system components [19].

Explained in the following is the “journey” the refrigerant makes in the circuit
to allow the heat exchange. The refrigerant entering the evaporator is a cold,
partial liquid-vapor mixture. It is brought into indirect contact with the fluid to
be cooled, it absorbs heat QL and gradually changes to a saturated vapor state. In
the pressure-hentalphy diagram (Figure 2.8) the refrigerant moved from point A to
point B. The vapor then enters the compressor which compresses it using work W ,
bringing it to a high temperature and pressure (B → C). After the compression,
the refrigerant has absorbed heat QC . Note that it is because of the work W that
the refrigerant is driven through all the various components and thus change state
continuously. The super-heated vapor is then sent to the condenser, where it is first
cooled and then the change of state to liquid takes place. This process results in
the transfer of the heat QH = QL +QC to a colder external fluid. This is followed
by a subcooling of the saturated liquid, in which the refrigerant further reduces
its temperature (C → D). The liquid, still at high pressure, passes through the
expansion valve, dropping the pressure to a value close to that of evaporation (D
→ A). In this way, it changes from a subcooled liquid to a moist vapor with a high
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Figure 2.7: Symbolic representation of a mechanical vapor compression
refrigeration circuit

liquid density. The refrigerant is ready to re-enter the evaporator, continuing the
refrigeration cycle.
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Figure 2.8: Vapor compression refrigeration cycle on the p-h diagram
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Chapter 3

Methodology

3.1 Core strategy

The raw data available to us is not labelled, in the sense that we do not know at
prior if a certain data point corresponds to an anomaly. However, we are confident
that all the data collected refer to instances where the heat pump unit was working
properly. Therefore, the strategy we followed was to train a model exclusively on
the normal operating conditions of the machine, so that it raises an alarm whenever
the sensor measurements deviate from its learned standards.

The strategy explained above is a semi-supervised approach: it assumes that
the training data has labeled instances only for the normal class. Since semi-
supervised techniques do not require labels for the anomaly class, they are more
widely applicable than supervised techniques. For example, in spacecraft fault
detection [20], an anomaly scenario would signify an accident, which is not easy to
model. The typical approach used in such techniques is to build a model for the
class corresponding to normal behavior, and use the model to identify anomalies
in the test data [3].

In order to obtain samples of sensor measurements related to anomalies and
thereby evaluate the models, we manually introduced an anomaly event into the
heat pump unit. We referred to this as the “Gas leakage experiment” which we
will discuss in Chapter 3.2.4. Data labeling was performed based on our confidence
that the machine was malfunctioning exclusively during the time of the introduced
anomaly.
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3.2 Dataset preparation

All the datasets have the data stored in chronological order. Samples are stored
following the ascending order. Hence, in the first row we have the oldest data
point in time and in the last row the most recent one. It is worth mentioning
that the datasets contain time series data, and we exploited this property in some
experiments, in particular the ones presented in Chapter 4.2.2 and Chapter 4.2.3.

3.2.1 Data collection

In any machine learning research project, the process of data collection stands
as a fundamental task, especially when the objective is to detect anomalies from
the data itself. Anomalies, as already stated in Chapter 2.2.1, represent deviations
from expected behaviors; thus, in order to increase the chances of identifying them,
we need to have a good-quality dataset representing the correct state of operation
of the heat pump unit. The machine learning models are trained on this dataset
to understand the functioning of the heat pump unit and so to identify unusual
patterns or outliers. In order to create a good-quality dataset, we decided to focus
on three main aspects: the quantity, reliability, and variability of the data.

Quantity, reliability, and variability

We are going to see that the training dataset contains samples from 8 different
variables. Therefore, due to its high-dimensional shape, we need to deal with the
curse of dimensionality problem. In data analysis, the term refers to the difficulty
of finding hidden structure when the number of variables is large [21]. The key
point to be aware of is that when the dimensionality increases, the volume of the
space increases so fast that the available data become sparse. Hence, in our case,
in order to obtain reliable results it is essential to have a sufficiently large amount
of data available.

By the term “reliability” of the data, we refer to the fact that we want to have
a clean and consistent dataset. For example, we want to discard all those sam-
ples that correspond to incorrect sensor readings, or measurements that we are not
interested in and that would just “confuse” the model. Thus, filters and other op-
erations are applied to prepare a dataset that is as much as possible representative
of the correct state of operation of the heat pump unit. In Chapter 3.2.2 we will
discuss in detail all the preprocessing steps we applied.

Through an initial analysis with domain experts, we found that the heat pump
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unit under study can vary significantly its working state. For instance, when the
external air temperature changes, the machine adapts, changing significantly the
sensor measurements. Therefore, a good model should be trained using samples
collected across various configurations of the external environment to ensure its
effectiveness and adaptability to different real-world conditions. Due to the limited
amount of data available, we decided to focus the research on studying the heat
pump unit during a specific season of the year. We will explain this in more detail
in Chapter 3.2.2.

Data source

The data used for this research comes from the different sensors installed on the heat
pump unit by Swegon Operations Srl. (Figure 2.1). The unit has several sensors:
the exact number is not given, but it is possible to define more than 40 variables.
Some of them represents a single sensor reading, others represent a combination
of different sensor readings. All sensors generate numeric values that represent
different types of measures, comprising pressure, temperature, percentage, and
binary values.

Data is pulled from a cloud storage through the use of an API. Each sensor
automatically registers its measurements on the cloud every time the new measured
value differs from the previous one by a specific threshold. As a result, raw_dataset,
that is the initial version of the dataset (see Table 3.1), is characterized by a
significant presence of missing values, accounting for 82.07% of the entire dataset.
For instance, it is common that, at a certain time t, we can extract measurements
from just few sensors, because the other sensor measurements are almost identical
to the ones registered at time t−1, t−2, and so on. However, given this mechanism
of how data is registered on the cloud, we can easily estimate the missing values.
In Chapter 3.2.2 we will discuss more in detail the filling method we exploited.

After pulling the data, we proceeded to store it in both CSV and Parquet file
formats. We extensively used the Python library Pandas to manage the datasets
[22].

At this point, raw_dataset contains time-series data obtained from measurements
of 12 variables, which are called “features” in the context of machine learning. It
contains data from an entire year, for a total of 4 369 673 samples. We only have
one year of data because of how the cloud storage is set up. At this stage, the
dataset is composed by purely raw data, which means we still need to process it
before using it to train models.
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3.2.2 Data preprocessing

Data preprocessing is a common step that involves preparing and cleaning data
before it is fed into a machine learning model for training. The quality of the
data and how well it is preprocessed can significantly impact the performance and
accuracy of the model.

The data preprocessing step can comprise many methods. Those that we found
necessary to apply are the data filling, data cleaning, feature selection and feature
scaling methods. So now, given raw_dataset, we are going to apply them to build
a reliable dataset.

Data filling

Data filling is an important task to perform when dealing with missing values.
Models trained on datasets with lots of missing values will most likely exhibit
reduced performance than expected due to the incomplete nature of the input
data. Undefined values may be misinterpreted by the model, because it is unable
to estimate the missing data in the best way possible, or more simply, because it
does not have the ability to estimate them.

Knowing how the data is registered on the cloud, the best strategy to follow is
to fill a missing value, for a given feature, with the most recent previous value
available. We also imposed the condition to avoid having missing values in the
dataset. Therefore, in order to properly fill raw_dataset, it is necessary at first to
identify the row from which to start the filling method. We cannot start to fill the
dataset from the first row, unless it does not contain any missing values. Suppose
that, in the first row, we have one feature that has a missing value: it is easy to
conclude that is impossible to fill consistently that value if there are no previous
values (in time) available for that feature. Thus, we decided to cut raw_dataset,
removing all the rows that cannot be filled, starting from the first row. Then, the
filling method is applied. In order to practically accomplish this: for the cutting
part we created an algorithm, and for filling the missing values we used the function
fillna by Pandas with the method “ffill”.

After the filling process step, we obtained dataset_v1 (see Table 3.1) that contains
4 369 317 rows of values. It has 356 fewer samples than raw_dataset, because we
cut some not fillable rows. After implementing the filling strategy described earlier,
the dataset now contains no missing values. The subsequent step involves cleaning
the dataset.
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Data cleaning

Data cleaning refers to the process of identifying and correcting errors, inconsisten-
cies, and inaccuracies in the dataset. In our case, we decided to remove from the
dataset all sensor measurements that we assumed referred to moments in which
the heat pump unit was stabilizing. For example, when the heat pump unit is
starting up, we get completely different measurements to those obtained a few
minutes later; this is because, before reaching its state of mechanical equilibrium,
the machine goes through a start-up phase. Together with the domain experts, we
identified and reported all these type of events and subsequently removed all the
related points from the dataset.

We defined a set of rules, each corresponding to such an event, and applied them
to filter the values in the dataset that match these rules. We created three main
rules: the 1st rule is used to remove points related to the starting phase of the
heat pump unit, in particular all the data points n seconds after the compressor is
switched on. The 2nd rule is related to shutdowns of the machine: all the data points
n seconds before a shutdown happen (compressor is switched off) are removed. The
3rd rule is related to the change of the status of the heat pump unit. The unit used
for experiments can be configured on several statuses. The most common ones are
the “chiller” and the “heater” status. When the setting is on “chiller”, the machine
cools indoor spaces, while “heater” keeps them warm. Every time the unit changes
its status, it undergoes a stabilization phase, that can lead to the production of
noisy measurements. Accordingly, the 3rd rule removes all points n seconds after a
status change.

In this preprocessing step, we also removed two features from the dataset, named
“Compressor 1/1” and “Status”. The feature “Compressor 1/1” indicates whether
the heat pump unit has the compressor switched to on or off. This variable basically
tells us whether the machine is running or not. We decided to keep only the
dataset rows with “Compressor 1/1” equals to 1 (compressor on) because when it
is inactive, the machine does not produce any relevant measurement. The feature
“Status” was removed because we decided to focus the training of the model on
one specific status. The chiller and heater statuses greatly change the behavior
of the machine, and therefore also the sensor measurements. In order to decrease
the complexity, we decided to focus the research exclusively on the chiller status.
Thus, we filtered the dataset in such a way as to keep only the points associated
with it.

In the Table 3.1 the resulting dataset after this preprocessing step is dataset_v2.
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There is a greatly reduced number of samples (4 369 317 → 1 485 720) due to both
the filtering rules and features removal. Additionally, now we have just 10 features;
a number that we tried to reduce even more with the next step.

Feature selection

Feature selection is a common task in machine learning applications that eliminates
irrelevant and redundant features and improves learning performance [23]. As we
said previously, we have 40 or more variables available from which to extract data.
This high number of variables certainly poses the need to perform a feature selection
analysis. Many features may not be relevant for the anomaly detection task, and
others may be redundant, resulting in very inefficient model training if used all
of them. In order to carry out the feature selection task, we first consulted the
domain expert knowledge and subsequently applied an algorithm for finding highly
correlated features.

To get to the initial 12 features included in raw_dataset, the domain experts
were assessed to exclude from the set of available variables those they thought did
not provide useful information for the identification of anomalies. After all the
preprocessing steps described above, a feature selection algorithm from Pandas,
named corr, was applied to identify and discard highly-correlated features. This
method computes the pairwise correlation of columns. We specifically chose to
utilize the Pearson correlation coefficient, which measures the degree of the linear
dependency between two features.

The resulting dataset, that is dataset_v3 (see Table 3.1), comprises 8 features,
on which the machine learning experiments detailed in Chapter 4 were conducted.
But before using this dataset for training the models, we need to perform one last
preprocessing step, that is feature scaling.

Feature scaling

Feature scaling is a preprocessing step in machine learning where the features of
the dataset are scaled or normalized to a specific range. This is done to ensure
that the features contribute equally to the learning process and that no particular
feature dominates because of its larger magnitude. In the experiments, we used
the standard scaler and the min-max scaler from scikit-learn. Thus, we created two
different datasets: dataset_v4_norm and dataset_v4_stand obtained respectively
by applying the standard scaler and the min-max scaler with interval [0, 1] on
dataset_v3. We conducted the experiments on both datasets.
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The standard scaler operates independently on each feature in the dataset. It
removes the mean and scales to unit variance. The “standardized” value z of x is
calculated as:

z =
x− u

s
(3.2.1)

where u is the mean of the values in the dataset, and s is the standard deviation.
The min-max scaler scales each feature in the dataset individually such that all

its values are transformed to a specified range, e.g., between zero and one. The
transformation of a given value x is calculated as:

xnorm =
x−Xmin

Xmax −Xmin

(3.2.2)

where min and max represent the scaling range (e.g., [0, 1]) and Xmin and Xmax

are respectively the smallest and the largest values in the dataset, for a specific
feature.

This is the last step of the data preprocessing task. At this point, we can consider
the dataset cleaned and prepared to be used for training machine learning models.
As can be seen from Table 3.1, only the file size changed with respect to the
previous preprocessing step. It is bigger because we have lots more numbers inside
the dataset. The exploited scikit-learn scalers transform the dataset values into
values with a precision up to 16 digits, whereas before, each feature had a maximum
precision of 2.

Name # Features # Samples % NaN MBs

raw_dataset 12 4 369 673 82.07 212.26

dataset_v1 12 4 369 317 0.0 378.43

dataset_v2 10 1 485 720 0.0 116.96

dataset_v3 8 1 485 720 0.0 101.95

dataset_v4_norm 8 1 485 720 0.0 260.15

dataset_v4_stand 8 1 485 720 0.0 271.79

Table 3.1: Datasets specifications
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3.2.3 Data pipeline

In this research work, data play a key part. Moreover, there are several stages of
preprocessing in which it is easy to have to make minor changes. That is why we
thought it was necessary to define a framework in which we could manage data
efficiently. Thus, we decided to take advantage of DVC (Data Version Control)
[24], which is an open-source version control system specifically designed for han-
dling large files and datasets alongside traditional version control systems like Git
[25]. It provides a way to manage and version control data files, guaranteeing full
automation and reproducibility.

Thanks to DVC, we were able to define the stages shown in Figure 3.1 and
described in the previous sections, each with a set of parameters associated. With
just one command, that is dvc repro, the data pipeline is executed and DVC will
take care of creating the datasets and tracking their versions.

data_load

data_filling

 raw_dataset

data_cleaning

 dataset_v1

feature_selection

 dataset_v2

feature_scaling

 dataset_v3

dataset_v4_norm /
dataset_v4_stand

Figure 3.1: Data pipeline stages
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3.2.4 Training and validation sets

Introduction

Data splitting is a technique used in machine learning to partition a dataset into
multiple subsets, with the main goal of training a model and evaluating its perfor-
mance. A typical simple workflow, that is the one we followed, is that a model is
trained on one subset (typically the training set) and then is assessed on another
subset (validation or test set) to estimate its performance.

After the data preparation step, we split the last version of the dataset it in
two subsets (training and validation set) in such a way as to follow the strategy
explained in Chapter 3.1. The training set contains data generated when the heat
pump unit was working properly. It is used to train the machine learning model in
recognizing the normal operating conditions of the heat pump unit. On the other
hand, the validation set contains both safe and anomaly points. The validation set
is used to evaluate the trained model by assessing how accurately it can recognize
the anomalies in the data.

Gas leakage experiment

As already stated in Chapter 3.1, in order to evaluate the models’ performance, it
was necessary to have a well known anomaly event alongside with the associated
data samples in the dataset. That is why we introduced an anomaly in the dataset
by manually tampering with the heat pump unit. What we did was to reduce the
gas (that is, the refrigerant) in the refrigeration circuit of the machine.

We let the machine run for some days with this lack of gas, and we collected the
data generated by sensors. Basically, we simulated a gas leak in the heat pump unit.
The anomaly data points of this time period were all included into the validation
set.

Training and validation sets

The training datasets dataset_v4_norm and dataset_v4_stand contains a total of
1 485 720 samples. More specifically: 116 880 (7.87% of the dataset) samples corre-
spond to the gas leakage anomaly, and the remaining 1 368 840 (92.13%) samples
are all safe points. It is important to point out that, most likely, there is a small
subset of points among the 1 368 840 safe points that are not safe points, but we are
pretty confident that this subset is irrelevant. Hence, we are also pretty confident
that the model is going to effectively learn the correct state of operation of the
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heat pump unit.
As already stated in Chapter 3.2.2, we filtered the dataset in order to have only

samples relative to the chiller status. Thus, since the heat pump unit is used in
chiller mode during the warm season, the dataset comprises values from the 23rd

of May 2023 until the 2nd of November 2023. The anomaly was introduced in
the machine on the 20th of June and taken out on the 26th, six days later. The
“timeline” represented in Figure 3.2 shows the proportions of the dataset that
are related to safe and anomaly points. The number of safe points before the
introduction of the anomaly is 157 206 (10.58%) while the number of safe points
after is 1 211 634 (81.55%). These statistics can also be seen in Table 3.3.

Before creating the split types, given the strategy explained in Chapter 3.1, we
asked ourselves what a model would see after being sent into production. It would
most likely see data it has never seen before, but ideally, the new safe points would
follow the same distribution as the one on which the model was trained, while the
eventual anomaly points would be expected to be considered outliers. Thus, in
order to simulate this scenario and test the models, we created a training set that
contains only safe points, and a validation set that contains all the anomaly points
plus some safe points.

We decided to use 80% of the dataset to build the training set, and the remaining
20% to build the validation set. We then came up with two split types:

Split type 1. After putting all the anomaly points in the validation set, we filled
it with samples taken in the moments just before and after the period of time
relative to the anomaly, until reaching a size of 20% of the whole dataset.
The training set contains all the remaining samples, that are all safe points.

Split type 2. After putting all the anomaly points in the validation set, we filled
it with random safe points until reaching a size of 20% of the whole dataset.
The training set contains all the remaining samples, that are all safe points.

Set # Samples % Safe points % Anomaly points

Training set 1 186 762 100.00 0.00

Validation set 296 690 60.60 39.40

Table 3.2: Specifications of training and validation sets of split type 1

It would be ideal to insert in the validation set safe points taken in the exact
same conditions (like external air temperature, target indoor temperature, etc.) as
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the one when the gas leakage anomaly event was introduced, because in this way
we would see if the model effectively can discern between the anomaly and the
safe points. Since accomplishing this is not simple, especially with just one year of
data, we indeed supposed that the samples taken in the moments right before and
after the anomaly event could meet this condition, that is how we created the 1st

split type.
With the 2nd split type, we wanted to observe the outcome of filling the validation

set with safe points taken from a very similar distribution as the one on which
the model was trained. We expect to have better performance metric scores, but
results which are not reliable. Populating the validation set with samples closely
resembling those in the training set would be inappropriate. The model might
perform well simply because it recognizes the safe points as to be familiar, rather
than using its generalization ability.

May 23 Nov 02Jun 20 Jun 26

157 206 1 211 634116 880

Figure 3.2: Proportions of safe points (in blue) and anomaly points (in red) in the
dataset

Data type # Samples % Dataset

Safe points 1 368 840 92.13

Anomaly points 116 880 7.87

Safe points before anomaly 157 206 10.58

Safe points after anomaly 1 211 634 81.55

Table 3.3: Occurrences of safe and anomaly points in the dataset

3.3 Models specifications

3.3.1 PCA model parameters

We exploited the probabilistic PCA model [26] provided by scikit-learn. The pa-
rameters we used are listed in Table 3.4.

37



CHAPTER 3. METHODOLOGY

Parameter Value

n_components 2

copy True

whiten False

svd_solver auto

tol 0.0

iterated_power auto

n_oversamples 10

power_iteration_normalizer auto

random_state 1

Table 3.4: Parameters of the PCA model (by scikit-learn) used for experiments

3.3.2 Clustering model parameters

We exploited the clustering model provided by scikit-learn which implements the
K-means clustering technique. This technique is based on the Lloyd’s algorithm
[27]. The parameters of the model we used are listed in Table 3.5.

Parameter Value

n_clusters k

init k-means++

n_init 20

max_iter 300

tol 1e− 4

random_state 1

copy_x True

algorithm lloyd

Table 3.5: Parameters of the K-means model (by scikit-learn) used for
experiments

We did experiments with several values of k, that is, the number of clusters as
well as the number of centroids that the K-means clustering generates. We chose
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to select initial cluster centroids using the k-means++ algorithm.
In the K-means clustering, each cluster is represented by its center, called “cen-

troid”, which corresponds to the arithmetic mean of data points assigned to the
cluster. The k-means++ algorithm selects the initial cluster centroids using sam-
pling based on an empirical probability distribution of the points’ contribution to
the overall inertia.
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Experiments and Results

4.1 PCA experiments

In this chapter, we will describe all the experiments we conducted with PCA.
For each experiment, we followed the same workflow: first, we trained a PCA
model on the training set, then, we used it to transform the data points of both
the training and validation sets, and finally, we analyzed the plots to extrapolate
useful information about the data.

What differs from the single experiments is the split type used to train and
evaluate the models (see Chapter 3.2.4) and the feature scaling technique (see
Chapter 3.2.2) applied to the datasets.

A positive outcome of these experiments would be to see, in the validation set
2D plot, that the samples corresponding to the gas leakage anomaly are visibly
separated from the points we consider safe. If we are able to achieve this with the
PCA already, it means that with more complex AI methods we could easily obtain
promising results. Besides, a positive outcome would also be to discover any useful
information about the datasets.

Three figures will be shown in each experiment: Figure (a) and Figure (b) shows
respectively the samples of the training and the validation set transformed in 2D
with the trained PCA model, and Figure (c) highlights the safe and anomaly points
on the same plot of (b).

4.1.1 Split type 1 and standardization

With the split type 1 and using standardization as the feature scaling technique,
we obtain the results in Figure 4.1.
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Figure 4.1a. Some points deviate far from the densest area on the left side, caus-
ing the densest area of data points to be squeezed. This behavior may be
because we are using standardization, which does not bring all features to the
same scale. It is clear that these few data points are related to an unusual
state of the machine: they most likely represent sensor measurements errors
that we were not able to filter out in the data cleaning stage.

Figure 4.1b. Similar points to the unusual ones noted in (a) are not present in
this plot; most likely is because the validation set comprises samples from
different time intervals than those in the training set. This time, we can
see in more detail the densest area of the points, which looks similar to the
one that was squeezed to the left in (a). It is peculiarly composed by two
well-separated “clouds”. At first, one can imagine that one of the two clouds
corresponds to the gas leakage anomaly, but this is expected to be false since
they seem to be present also in (a).

Figure 4.1c. The anomaly points (in red) do not deviate much from the safe zone
(in green). There are in fact many overlaps between the anomaly and safe
points. The anomaly points create a denser zone above the safe points, but
they do not form a distinct group.

4.1.2 Split type 2 and standardization

With the split type 2 and using standardization as the feature scaling technique,
we obtain the results in Figure 4.2.

Figure 4.2b. This plot is almost identical to 4.1a, as the training sets of the two
split types share nearly identical distributions. Thus, the same reasoning can
be applied here.

Figure 4.2b. The unusual points noted in Figure 4.1a are also present in this
PCA plot. This is because the validation set is composed by random safe
points.

Figure 4.2c. Given the presence of these outliers, the cloud of anomaly points
is significantly even more hidden. We can say that the outliers we did not
manage to filter out, significantly disturb the model. At this point, we could
assume that for our case study, standardization is not a suitable feature
scaling technique.
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(a) Training set PCA plot (b) Validation set PCA plot

(c) Safe and anomaly points of the
validation set PCA plot

Figure 4.1: PCA experiment with split type 1 and standardization

4.1.3 Split type 1 and normalization

With the split type 1 and using normalization as the feature scaling technique, we
obtain the results in Figure 4.3.

Figure 4.3a. After scaling the features with the min-max scaler, we no longer
see the outliers that are present in Figure 4.1a and in Figures 4.2. They are
indeed scaled between 0 and 1, and apparently now they get mixed up among
the safe points. At first glance, this may be a negative effect, because we lose
outliers that should be identified by the model. But since there are few of
these outliers, we prefer to mix them with the safe points to minimize their
impact on the PCA, rather than having them disturb the PCA as much as
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(a) Training set PCA plot (b) Validation set PCA plot

(c) Safe and anomaly points in the
validation set PCA plot

Figure 4.2: PCA experiment with split type 2 and standardization

they do with standardization.

Figure 4.3b. The PCA plot of the validation set (b) is significantly different from
(a). This is because with the split type 1, the validation set is composed
by samples taken from a different distribution than the one of the training
set. An interesting pattern resembling a “spike” can be seen in four different
areas of this plot. It would be interesting to investigate (but maybe it is not
worth it) what changes in the working state of the machine cause having this
pattern to shift in the 2D plot.

Figure 4.3c. The anomaly points are grouped in a distinct area in the plot. They
are significantly far away from the safe points. It is interesting to note that
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one of the four spikes is completely composed by anomaly points. This result
is very promising, also because we got it with split type 1, which we consider
to be the best for testing the models.

(a) Training set PCA plot (b) Validation set PCA plot

(c) Safe and anomaly points in the
validation set PCA plot

Figure 4.3: PCA experiment with split type 1 and normalization

4.1.4 Split type 2 and normalization

With the split type 2 and using normalization as the feature scaling technique, we
obtain the results in Figure 4.4.

Figure 4.4a. This plot is almost identical to 4.3a, as the training sets of the two
split types share nearly identical distributions. Thus, the same reasoning can
be applied here.
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Figure 4.4b. The PCA plot of the validation set (b) is now similar to (a). This
is because the safe points of the validation set were taken randomly, and so
they share the same distribution of the training set data points.

Figure 4.4c. In the cloud of anomaly points, there are also some safe points.
This means that in some cases, during the correct state of operation of the
heat pump unit, the machine behaves as there is some gas missing in the
circuit. It could also be that what we considered safe points might actually
be anomalies. To be certain, one would have to investigate those instances
to determine, for example, if there was indeed a lack of gas in the circuit. It
could also be the opposite, in the sense that not all the gas leakage anomaly
points are not actually anomalies.

4.2 Clustering Experiments

In this chapter, we will report all the experiments conducted using the clustering
technique. For each experiment, we followed the same workflow: first, we trained
a model on the training set. Then, we ran the Outlier Detection Algorithm, that
will be presented in Chapter 4.2.1, which is designed to binary classify the samples
in the validation set, and in the end, we computed the performance metric scores
(see Chapter 2.3.3).

What differs from the single experiments is the split type we used to train and
evaluate the models and the feature scaling technique applied to the datasets.

A positive outcome of these experiments would be to achieve high performance
metric scores. This would indicate that the Outlier Detection Algorithm is highly
effective in precisely classifying safe points and points associated to the gas leakage
anomaly.

In each experiment, we will show and analyze the performance metric scores
obtained by running the Outlier Detection Algorithm on the validation set. For
each experiment, the scores will be reported within a table, together with the
algorithm parameters and the number of clusters used.

Only the top 10 best scores are shown, because we tried many combinations of
parameters. We consider a score better than another if it has a higher F1 score.
The chose of using the F1 score as the baseline metric is because the validation set
is unbalanced (39.4% of anomaly points and 60.6% of safe points, see Table 3.2),
hence, as already explained in Chapter 2.3.3, we need to take into account both
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(a) Training set PCA plot (b) Validation set PCA plot

(c) Safe and anomaly points in the
validation set PCA plot

Figure 4.4: PCA experiment with split type 2 and normalization

precision and recall. The accuracy is not a reliable metric in our case, but still we
decided to show it.

4.2.1 The Outlier Detection Algorithm

Underlying idea

The clustering performed on the training set generates k centroids. Given the fact
that the training set is entirely composed by safe points, the computed centroids
correspond to safe clusters. This means that every point close enough to a centroid,
it is a safe point, otherwise it is an anomaly point. The latter statement is the key
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idea on which the Outlier Detection Algorithm is based to perform the classification
task.

Our objective is to use the generated centroids to determine which points in the
validation set are close enough to be classified as safe, and which are not. If a point
is too far from every centroid, it cannot be considered included in any safe cluster
and so, it is classified as an anomaly point.

In order to accomplish this, we created Algorithm 1 and also a simpler version
of it, which is Algorithm 2. The general idea that both algorithms follow is to take
the centroids computed in the training phase and compute, for each point in the
validation set, its closest distance to a centroid. If this distance is too high, the
point is classified as an anomaly point, otherwise as a safe point.

Since the datasets have the data sorted in chronological order, with Algorithm
1 we decided to take into account the time: if a point cannot be considered safe,
but neither is too far from every centroid, we consider it a “warning” point. If the
algorithm continues to detect warning points, after some time, it considers them
anomaly points, because the heat pump unit is outside its normal state of operation
for too long. This approach is used only with the 1st split type, because the 2nd

split type takes random safe points from the dataset to build the validation set,
hence the dataset loses its property of being composed by time-series data. The
simple version of the algorithm is used with the 2nd split type.

Outlier Detection Algorithm description

Input - V is the validation set, C is the set of centroids computed in the training
phase, min_dist is the distance (represented as a float number) under which
a point is classified as a safe point, warn_time is the time (expressed in
seconds) after which the warning state is turned into an anomaly state, and
anomaly_dist is the distance after which a point is classified as an anomaly.
anomaly_dist must be greater than min_dist.

Output - safe_samples, warning_samples, anomaly_samples are three lists
that contain respectively the safe points, the warning points (if any), and the
anomaly points identified in the validation set. The list warning_samples

is not empty if the algorithm is reading warning points and returns without
being able to classify them as safe or anomaly points.

Rows 2:4 - before the main for loop, the algorithm initializes some variables: the
three output lists, two flag variables (w_trigger and a_trigger) set to False
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Algorithm 1 The Outlier Detection Algorithm
1: function OutlierDetection(V , C, min_dist, warn_time, anomaly_dist)
2: safe_samples, warning_samples, anomaly_samples← empty list
3: w_trigger, a_trigger ← False
4: start_time← None
5: for xi in V do
6: closest_distxi

← ComputeClosestDistance(xi, C)
7: if closest_distxi

≥ anomaly_dist then
8: add xi to anomaly_samples
9: a_trigger ← True

10: move warning_samples to anomaly_samples
11: else if closest_distxi

< min_dist then
12: add xi to safe_samples
13: a_trigger ← False
14: move warning_samples to safe_samples
15: w_trigger ← False
16: else if min_dist ≤ closest_distxi

< anomaly_dist then
17: if a_trigger then
18: add xi to anomaly_samples
19: else if w_trigger is False then
20: add xi to warning_samples
21: start_time← GetCurrentTime()
22: w_trigger ← True
23: else
24: add xi to warning_samples
25: if GetCurrentTime()− start_time > warning_time then
26: a_trigger ← True
27: move warning_samples to anomaly_samples
28: return safe_samples, warning_samples, anomaly_samples
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and used for triggering respectively the warning and the anomaly state, and
start_time set to None used for saving the timestamp of the first reading of
a warning point in a sequence of warning points.

Rows 5:6 - the for loop iterates through the validation set. Given the sample xi,
the algorithm computes its the closest distance to a centroid, given the set
of centroids C. The distance used is the Euclidean distance.

Rows 7:10 - if the closest distance (closest_distxi
) is greater than the anomaly

distance (anomaly_dist), the point is inserted into the anomaly point list
(anomaly_samples). Here, after seeing an anomaly point, the algorithm set
the flag a_trigger to True because we are in an anomaly situation: if the
next point is a warning point, it is classified as an anomaly point. If we were
in a warning situation, so the list warning_samples contains some points,
all those points are then moved in the list anomaly_samples.

Rows 11:15 - if closest_distxi
is smaller than min_dist, the point is safe, so it

is inserted in the list safe_samples. Here, we set the flags w_trigger and
a_trigger to False because we are no more in any warning or anomaly situa-
tion. If we were in a warning situation, so the list warning_samples contains
some points, all those points are then moved in the list safe_samples.

Rows 16:27 - if closest_distxi
is not smaller than min_dist but not bigger than

anomaly_dist, the point is a warning point. Three cases can happen here: 1)
if we are in an anomaly situation, because either we encountered an anomaly
point before and the streak of anomaly/warning points is continuing, either
we are reading warning points for too long, xi is classified as an anomaly
point so it is inserted in anomaly_samples. 2) If the previous point was
a safe point, and now we are reading a warning point, we insert this point
into warning_samples, we trigger the warning situation, and we set the
variable start_time to the current time. 3) If the previous value was not
a safe point, and we are not in an anomaly situation, we insert xi into
warning_samples and we evaluate if the starting time of this warning points
streak is long enough to consider all the warning points of this streak an
anomaly event; if this is the case, then we move all the warning points in the
list anomaly_samples, otherwise we insert xi into warning_samples.
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Algorithm 2 The Outlier Detection Algorithm - Simple version
1: function SimpleOutlierDetection(V , C, safe_dist)
2: safe_samples, anomaly_samples← empty list
3: for xi in V do
4: closest_distxi

← ComputeClosestDistance(xi, C)
5: if closest_distxi

≥ safe_dist then
6: add xi to anomaly_samples
7: else
8: add xi to safe_samples
9: return safe_samples, anomaly_samples

Outlier Detection Algorithm (simple version) description

Input - V is the validation set, C is the set of centroids computed in the training
phase, safe_dist is the distance (represented as a float number) under which
a point is classified as a safe point and above which it is classified as an
anomaly point.

Output - safe_samples, anomaly_samples are two lists that contain respec-
tively the safe and the anomaly points identified in the validation set.

Row 2 - before the main for loop, the algorithm initializes only the two output
lists.

Rows 3:4 - the for loop iterates through the validation set. Given the point xi,
the algorithm computes its the closest distance to a centroid, given the set
of centroids C.

Rows 5:6 - if closest_distxi
is greater than safe_dist, the point is inserted into

anomaly_samples.

Rows 7:8 - if closest_distxi
is smaller than safe_dist, the point is safe, so it is

inserted in the list safe_samples.

4.2.2 Split type 1 and normalization

In this experiment, we run the Outlier Detection Algorithm with all
the combinations of the following parameter values: k = {3, 4, 10, 50},
min_dist = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}, warn_time = {10, 60, 300, 900, 3600},
and anomaly_dist = {0.1, 0.2, 0.3, 0.4, 0.5}. The combinations where
anomaly_dist is greater than min_dist are discarded. The parameter values were
selected based on initial test experiments and following a heuristic approach. For
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this reason, the scores obtained are not the highest possible the Outlier Detection
Algorithm can obtain. With a proper parameters tuning process, it is most likely
possible to achieve better scores. The results of this experiment are reported in
Table 4.1.

The F1 score is surprisingly high. A score of 0.970 means that the algorithm
can reliably distinguish a safe point from a point corresponding to the gas leakage
anomaly. A recall of 95.93% means that the algorithm can correctly identify almost
all the 116 880 anomaly points present in the validation set. A precision of 98.09%
means that the algorithm is almost never confused with identifying a safe point as
an anomaly. We decided to use these results as the baseline on which to compare
the results of the other experiments.

Parameters Scores

k min_dist warn_time anomaly_dist Accuracy Precision Recall F1 score

4 0.3 3600 0.5 97.66 98.09 95.93 0.970

4 0.3 3600 0.4 97.59 97.90 95.93 0.969

4 0.3 900 0.5 96.57 95.40 95.93 0.956

4 0.3 900 0.4 96.55 95.34 95.93 0.956

4 0.3 300 0.5 96.01 93.74 96.32 0.950

4 0.3 300 0.4 96.00 93.71 96.32 0.950

3 0.3 3600 0.5 95.81 92.97 96.66 0.947

3 0.3 3600 0.4 95.77 92.89 96.67 0.947

4 0.3 60 0.4 95.71 92.86 96.53 0.946

4 0.3 60 0.5 95.71 92.86 96.53 0.946

Table 4.1: Outlier Detection Algorithm results with split type 1 and normalization

4.2.3 Split type 1 and standardization

In this experiment, we run the Outlier Detection Algorithm with all the com-
binations of the following parameter values: k = {3, 4, 10, 50}, min_dist =

{0.01, 0.05, 1, 2, 4}, warn_time = {10, 60, 300, 900, 3600}, and anomaly_dist =

{5, 10, 15, 20, 40}.
The F1 score is not that high in this case, at least comparing it with the 0.97

obtained with the previous experiment. A score of 0.717 means that the algorithm
cannot reliably distinguish a safe point from an anomaly point. We could increase
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this score by improving the parameter values combinations, but since we followed
the same heuristic, we are confident that Algorithm 1 cannot reach the performance
metric scores as the one obtained in the baseline experiment.

With these results, we can strengthen the hypothesis that standardization is not a
suitable feature scaling technique for our case study, as PCA was already suggesting
us with Experiment 4.1.1 and Experiment 4.1.2.

Parameters Scores

k min_dist warn_time anomaly_dist Accuracy Precision Recall F1 score

4 2 10 5 76.89 69.28 74.29 0.717

4 2 10 10 76.89 69.28 74.29 0.717

4 2 10 15 76.89 69.28 74.29 0.717

4 2 10 20 76.89 69.28 74.29 0.717

4 2 10 40 76.89 69.28 74.29 0.717

4 2 60 5 76.72 70.39 70.60 0.705

4 2 60 10 76.68 70.36 70.49 0.704

4 2 60 15 76.68 70.36 70.49 0.704

4 2 60 20 76.68 70.36 70.49 0.704

4 2 60 40 76.68 70.36 70.49 0.704

Table 4.2: Outlier Detection Algorithm results with split type 1 and
standardization

4.2.4 Split type 2 and normalization

In this experiment, we run the simple version of the Outlier Detection Al-
gorithm with all the combinations of the following parameter values: k =

{3, 4, 5, 7, 10, 20, 50, 100} and safe_dist = {0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4}.
We obtained a high F1 score by running the simple version of the Outlier Detec-

tion Algorithm. A score of 0.928 means that the algorithm can reliably distinguish
a safe point from an anomaly point. A recall of 96.62%, that is higher than the
95.93% of the baseline, means that the algorithm performs even better in identi-
fying the 116 880 anomaly points present in the validation set. But with a lower
precision of 89.28%, compared to the 98.09% of the baseline, we can see that the
algorithm, in order to try to catch all the anomaly samples, misclassify more safe
points. This loss in precision is most likely due to the fact that Algorithm 2, since
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does not take into account the time, struggles in identifying complex anomaly and
safe patterns.

Parameters Scores

k safe_dist Accuracy Precision Recall F1 score

4 0.3 94.10 89.28 96.62 0.928

3 0.3 92.95 86.71 96.97 0.915

4 0.2 84.77 72.55 98.67 0.836

5 0.3 87.21 90.76 75.19 0.822

5 0.2 82.94 74.85 85.37 0.797

3 0.2 76.58 63.05 97.97 0.767

3 0.4 81.36 92.48 57.35 0.708

20 0.1 71.89 60.40 83.21 0.699

10 0.1 61.23 50.45 88.93 0.643

100 0.05 63.32 52.14 83.82 0.642

Table 4.3: Outlier Detection Algorithm (simple version) results with split type 2
and normalization

4.2.5 Split type 2 and standardization

In this experiment, we run the simple version of the Outlier Detection Al-
gorithm with all the combinations of the following parameter values: k =

{3, 4, 5, 7, 10, 20, 50, 100} and safe_dist = {0.05, 0.01, 0.05, 1, 2, 5}.
We obtain an F1 score of 0.741, which is slightly lower than the one obtained

running Algorithm 1 with split 1 (using standardization), that is 0.717. This means
that the original version of the algorithm does not perform better than the trivial
approach in the case of standardization.
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Parameters Scores

k safe_dist Accuracy Precision Recall F1 score

4 2 80.02 75.63 72.73 0.741

3 2 77.53 69.35 76.97 0.729

5 2 77.68 75.80 63.65 0.692

20 1 71.17 59.92 81.00 0.688

10 1 64.69 53.04 90.39 0.668

5 1 57.16 47.90 99.95 0.647

4 1 54.33 46.28 99.26 0.631

7 1 57.30 47.78 90.18 0.624

50 1 73.04 69.8 55.66 0.619

Table 4.4: Outlier Detection Algorithm (simple version) results with split type 2
and standardization
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Chapter 5

Conclusions

5.1 Dataset and models

In this research, we adopted a data-centric approach, with the dataset preparation
step being a crucial component. We developed a versatile data pipeline that can be
easily adapted and reused for future developments. By following the steps outlined
in Chapter 3.2, similar datasets can be constructed, allowing others to work under
the same conditions as we did.

The data preprocessing step is the main component of the pipeline. It is composed
by several stages that can be adapted based on the typology of the heat pump
unit and the strategy for anomaly detection. For instance, the feature selection
stage highly depends on the machine under consideration. On the other hand, the
structure of the training and validation sets is highly based on the strategy used
to train the machine learning models.

Since this is a feasibility study, the machine learning techniques used for the
experiments (PCA and clustering) were chosen for their easy-to-use. According to
[3], several well known techniques are used when dealing with anomaly detection in
mechanical units, which comprises neural networks and also statistical approaches.

In future phases of this work, it would be essential to do a research work to define
which anomaly detection technique suits the best for the domain of heat pump
units. Regarding the dataset, the one used in this work contains only one year of
data from a single heat pump unit; in future developments, it will be essential to
expand it with samples collected over several years and from multiple machines.
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5.2 Experiments summary and feasibility consid-
erations

PCA shows that the heat pump unit under study exhibits complex behavior, indeed
we were not able to find any well-defined pattern after scaling down the dataset to 2
dimensions. However, the analysis was useful for gaining a better understanding of
the data and refining the data preparation step. For example, it helped extrapolate
clues about the best type of feature scaling technique to use, and highlighted the
challenges involved in the data cleaning stage.

Clustering, in particular the Outlier Detection Algorithm, shows that with a
proper anomaly detection technique it is possible to obtain promising results. The
algorithm is able to classify with high precision the safe and anomaly points given
the strategy presented in Chapter 3.1 and the training and validation sets defined in
Chapter 3.2.4. This is most likely because clustering does not perform any type of
approximation to the dataset, indeed it operates in the original dimensional space.
In all the experiments, the best scores are obtained with a low number of clusters;
this may indicate that the context under study is not that complex, and highlights
the feasibility of creating a reliable intelligent anomaly detection system.

Although an F1 score of 0.97 obtained with Experiment 4.2.2 seems to be an
outstanding result, it is important to consider that the Outlier Detection Algorithm
has been tested on just one possible anomaly event (manually introduced with the
gas leakage experiment). Moreover, the models have been trained to recognize a
tiny portion of the normal operating conditions of the heat pump unit, since the
training set is composed by samples taken only from the 23rd of May 2023 until
the 2nd of November 2023.

Despite this confined environment under which the research was carried out, we
can still state with high confidence that it is feasible to use anomaly detection in
heat pump units. With a more consistent dataset, strategy and anomaly detection
technique, it is likely possible to engineer a reliable system capable of detecting
anomaly events before they actually occur, hence building a solution that can be
deployed into production.
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