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1
Introduction

Del Pezzo surfaces are rational surfaces over a ground field k whose anticanonical divisor −K is ample. The are
classified according to their degree which is the self-intersection number of−K. Moreover, they are obtained in
general by blowing up at most 8 points in general position in the projective plane, except for the product of the
projective line with itself. The question that this essay addresses is the well-known classification of Del Pezzo sur-
faces of any degree. In fact not only do we want to classify them but we want to parametrize isomorphism classes
of Del Pezzo surfaces. Indeed the question becomes, what is the description of the coarse moduli space of the Del
Pezzo surfaces of any degree if they exist ?

To answer that question we need a prerequisite which is the theory of divisors over algebraic variety. We look
at itmostly from the scheme-theoretic point of view inspired byHartshorne’s book ([6]). This is largely addressed
in chapter 2.
In fact the concept of divisor is an important tool to study the geometric nature of a variety or scheme. Chapter
2 provides an introduction to divisors, linear equivalence and divisor class group (an abelian group which is a
fundamental invariant of varieties). We will start with the Weil divisors (Section 2.1.5) which are more palpable
to grasp geometrically speaking but unfortunately are solely defined on noetherian integral and separated regular
schemes of codimension one. We go on and extend that notion to a more general concept of divisors, namely the
Cartier divisors (Section 2.1.40), which are in connectionwith theWeil group and the notion of invertible sheaves
(Section 2.1.51) (Picard group). Moreover wewill see that divisors are also important to studymaps from a variety
to a projective spaces .
Later on, being familiar with the study of divisors, we give an introduction to the study of algebraic surfaces
as in the development of intersection theory, the Riemann-Roch theorem, Künneth formula and the Nakai-
Moishezon criterion in section (2.1.102). In fact these notions will be relevant for the study of ampleness of a
divisor on Del Pezzo surface in Chapter 5.
In Chapter 3, following the book ([9]) we give a close account on the theory of moduli spaces that arise in con-
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nection with the classification of Del Pezzo surfaces in algebraic geometry. Indeed we try to give an idea of what
constitutes a moduli problem and to describe the possible solutions we are looking for.

Amongst other things two solutions emerge so far as in the finemoduli spacewhich is pretty rare, and the coarse
moduli space which occurs quite often. We proceed by giving examples of coarse moduli spaces as in the moduli
space of isomorphism class of n-pointed stable Riemann surfaces of genus g denotedMg,n. In fact when g = 0,
proposition (5.1.24) states that M0,n is single point when n = 3. All of this because every smooth projective
curve of genus 0 is isomorphic to P1(C). Moreover the latter is a coarse moduli space. In generalM0,n is a fine
moduli space for all n ≥ 3.

However will see in Chapter 5 that the coarse moduli space of Del Pezzo surfaces of degree d ≤ 8 does exist
(3.1.15) and it is related to the Weyl orbit of a space associated to a projective points set Pm

n for somem integers.

In chapter 4 armed with an n-projective plane, an invertible sheaf L and a reductive algebraic group G =

GL(n+ 1), we cook up a projective scheme Pm
n from a graded k algebra of a G-invariant section ofL. Moreover

we give a preciseway to compute it using standardmonomials andwe go on to show thatP4
1 is in fact the projective

line. In the section that follows one of the above, using methods from Geometry Invariant theory [? ] we show
that the space Pm

n for some integersm can be described as the quotient of the subset of semi-stable points of the
product of projective n-planes. From that observationwe prove thatPm

n is a rational variety of a certain dimension
depending of some condition onm.
Amongst other things we introduce a birational variety to themth product of the n-projective plane and define
its blowing up variety which is obtained from a point set and others points that we call infinitely near point. Fur-
thermore we study the stability of such a variety.

Chapter 5 introduces Del Pezzo surfaces and the generalized Del Pezzo variety (gDP) of type (n,m) which is
the blowing up variety of the n-projective space in one point set in ”general position”. In fact proposition (5.3.12)
states that any Del Pezzo surface is isomorphic to a gDP variety of type (2,m). Moreover the similarity between
these two does not end there. By looking at theWeyl groupW2,m associated to a gDP variety of type (2,m) that
act on its set of geometricmarking, Theorem (5.3.12) gives the description of the coarsemoduli space ofDel Pezzo
surfacesMDP(m) to which we provide a proof.
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2
Divisors

2.1 A brief Overview
We start by recalling some definitions and basic results about the theory of divisors, following mainly [6].

Definition 2.1.1. Let A be a noetherian local ring withmaximal idealm and residue field k = A/m. A is regular
local ring if dimkm/m2 = dimA.

Lemma 2.1.2. Let A be a noetherian local ring with maximal idealm and residue field k = A/m. The number
dimkm/m2 is the minimum number of generators of the idealm.

Proof. A being noetherian, the idealm is finitely generated. Let n be the minimum number of generators form.
Letm = (a1, ..., an). Then a1̄, ..., an̄ generatem/m2 as an A/m-vector space. Hence dimkm/m2 ≤ n. More-

over, if a1̄, ..., an̄ were linearly dependent then after re-indexing a1̄, ..., ān−1 would still generatem/m2. However
because of Nakayama’s lemma consequence as in ([4]) Exercise (6.16) implies that a1, ..., an−1 generate m as an
A-module, in contradiction to the minimality of n. Hence dimkm/m2 = n.

Definition 2.1.3. We say a scheme X is a regular or non-singular in codimension one if every local ringOx of X of
dimension one is regular.

Example 2.1.4. • Non singular varieties over a field are examples of schemes regular in codimension one. In
fact on a singular variety the local ring of every closed point is regular, hence all the local rings are regular,
since they are the localization of the local rings of closed points.

• Noetherian normal schemes are regular in codimension one, since any local ring of dimension one is an inte-
grally closed domain, hence regular ([4], proposition 12.14).
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Throughout the scope of this presentation we will always assume unless state otherwise that :

∼ X is a noetherian, (finiteness condition) ,integral (i.e. irreducible and reduced) and separated (a scheme
theoretic analogue of the Hausdorff condition) scheme which is regular in codimension one.

2.1.5 Weil Divisors
Definition 2.1.6. Let X be scheme as stated above. A prime divisor on X is a closed integral subscheme Y of codimen-
sion one. A Weil divisor is an element of the free abelian group DivX generated by the prime divisors. A divisor is
D =

∑
ni Yi, where the Yi are prime divisors, the ni are integers, and only finitely many ni are different from zero.

If all the ni ≥ 0, we say that D is effective.

Example 2.1.7 (Divisors in P2). Let k be a field and X = P2
k the 2−projective space. Let Y ⊆ X a hypersurface.

We define degY to be the degree of the polynomial defining Y.

Remark 2.1.8. If Y is a prime divisor on X, let η ∈ Y be its generic point i.e. {η} = Y. AsOη,X is a local ring whose
maximal ideal is generated by one element, then it is easy to see thatOη,X is a discrete valuation ring with quotient
field K. We call its corresponding discrete valuation vY : K → Z ∪∞, the valuation of Y. Since X is separated, Y is
uniquely determined by its valuation ([5]).

Definition 2.1.9. Now let f ∈ K∗ be a any non-zero rational function on X. Then vY(f) ∈ Z. If it is positive, we
say f has a zero along Y, of that order; if it is negative, we say f has a pole along Y, of order−vY(f).

Lemma 2.1.10. Let X satisfy (*), and let f ∈ K∗ be a nonzero function on X. Then vY(f) = 0 for all except finitely
many divisors Y.

Proof. See ([6]) lemma 6.1, chapter 2.

Definition 2.1.11. Let X satisfy (*) and let f ∈ K∗. We define the divisor of f, denoted (f), by

(f) =
∑

vY(f).Y,

where the sum is taken over all prime divisors of X. By the lemma (2.1.10), this is a finite sum, hence it is a divisor.
Any divisor which is equal to the divisor of a function is called a principal divisor.

Example 2.1.12. Let X = P1. And take any rational function f(x) := p(x)/q(x); where p, q ∈ C[x].
Then the zeroes of f(x) are exactly the zeroes of the polynomial p and the poles are exactly at the zeroes of q.
For a particular example then one can take f(x) = x

1−x . This has a zero at x = 0 and a pole at x = 1. This is a
degree 0 rational function whose divisor is (f) = 1 · [0]− 1 · [1], which is also of degree 0.

Remark 2.1.13. If f, g ∈ K∗, then (f/g) = (f)− (g) because of the properties of valuations. Therefore the map:

ψ : K∗ → DivX

f 7→ (f)

is a group homomorphism and its image consists of the principal divisors of X.
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Definition 2.1.14. Two divisors D and D′ on X are said to be linearly equivalent, written D ∼ D′, if D − D′ is
a principal divisor. The quotient group DivX

Im(ψ) := CLX is called the divisor class group of X.

The divisor class group of a scheme is a very interesting invariant. However, it is not easy to calculate it. Nev-
ertheless in the following propositions and examples, we will determine it in a number of special cases.

Proposition 2.1.15. LetAnoetherian domain. ThenA is a unique factorisation domain if and only if X = SpecA
is normal andCLX = 0.

Proof. See ([6]) proposition 6.2, Chapter 2.

Example 2.1.16. If X is affine n− spaceAn
k over a field k, thenCLX = 0. In fact, X = Spec k[x1, ..., xn], and the

polynomial ring is a unique factorization domain.

Example 2.1.17. If A is a Dedekind domain, then CL(SpecA) is just the ideal class group of A, as defined in
commutative algebra ([? ]). Thus proposition (2.1.15) generalizes the fact that A is a unique factorization domain
(UFD) if and only if its ideal class group is 0.

Proposition 2.1.18. Let X be a the projective spacePn
k over a field k. For any divisorD =

∑
ni Yi, define the degree

of D by degD =
∑

nidegYi, where degYi is the degree of hypersurface Yi. Let H be the hyperplane x0 = 0. Then if
D is any divisor of degree d, then D ∼ dH.

Proof. Let S = k[x1, ..., xn] be the homogeneous coordinate ring of X. If g is a homogeneous element of degree
d, we can factor it into irreducible polynomials g = gn11 . . . gnrr . Then gi defines a hypersurface Yi of degree di =
deg gi, and we can define the divisor of g to be (g) =

∑
niYi. Then deg(g) = d.

If D is any divisor of degree d, we can write it as a difference D1 − D2 of effective divisors of degree d1, d2
with d1 − d2 = d. Let D1 = (g1) and D2 = (g2). This is possible, because an irreducible hypersurface in Pn

corresponds to a homogeneous prime ideal of height 1 in S, which is principal. Taking products of powers we can
write any effective divisor as (g) for some homogeneous g. NowD−dH = D1−D2−dH = (g1)−(g2)−(xd0) =
(f)where f = g1/xd0g2 is a rational function on X.

Lemma 2.1.19. Let k be a field andK be the function field ofPn
k . Then, if f ∈ K∗, the degree of the principal divisor

(f) is zero.

Proof. A rational function f on X is a quotient g/h of homogeneous polynomials of the same degree. Clearly
(f) = (g)− (h), so one sees that deg(f) = 0.

Proposition 2.1.20. Let k be a field and K be the function field of Pn
k . The degree function gives an isomorphism

deg : CLX → Z.

Proof. This follows from (2.1.18), (2.1.19), and the fact that degH = 1.

Proposition 2.1.21. Let X as stated above. Let Z be a proper closed subset of X, and let U = X− Z. Then :
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(a) there is a surjective homomorphismCLX → CLU defined by D =
∑

niYi 7→
∑

ni(Yi ∩ U), where we
ignore those Yi ∩ U which are empty;

(b) if codim(Z,X) ≥ 2 thenCLX → CLU is an isomorphism;

(c) If Z is an irreducible subset of codimension 1, then there is an exact sequence

Z → CLX → CLU → 0,

where the first map is defined by 1 7→ 1.Z.

Proof. (a) if Y is a prime divisor on X, then Y ∩ U is either empty or a prime divisor on U. If f ∈ K∗, and
(f) =

∑
niYi, then considering f as a rational function onU, we have (f)U =

∑
ni(Yi∩U), so indeedwe

have a homomorphism CLX → CLU. It is surjective because every prime divisor ofU is the restriction
of its closure in X.

(b) the groups DivX and CLX depend only on subsets of codimension 1, so removing a closed subset Z of
codimension≥ 2 does not change anything.

(c) The kernel of CLX → CLU consists of divisors whose support is contained in Z. If Z is irreducible, the
kernel is just the subgroup of CLX generated by 1.Z.

Example 2.1.22. Let Y be an irreducible curve of degree d in P2
k . Then CL(P2 − Y) = Z/dZ. This follows

immediately from (2.1.18), (2.1.21).

Proposition 2.1.23. Let X satisfies (*). Then X×A1 i.e X×SpecZ SpecZ[t] also satisfies (*), andCLX ∼= CL(X×
A1).

Proof. See ([6]) Proposition 6.6, chapter 2.

Remark 2.1.24. LetQ be a quadratic surface inP3, andYany irreducible hypersurface ofP3 which does not contain
Q. Then we can assign multiplicities to the irreducible components of Y ∩Q so as to obtain a divisor Y.Q onQ.

Indeed, on each standard open set Ui ofP3, Y is defined by a single function f; we can take the value of this function
(restricted toQ) for each valuation of a prime divisor ofQ to define the divisor Y.Q.

By linearity we extend this map to define a divisor D.Q onQ, for each divisor D =
∑

niYi on P3, such that no
Yi containsQ.

2.1.25 Divisors on curves
In this section we will pay attention further to the divisor class group of divisors on curves. We will define the
degree of a divisor on a curve, and we will show that on a complete non-singular curve, the degree is stable under
linear equivalence.

As written above, we use terminologies that look unfamiliar as in ”curves” and ”complete non-singular curves”.
Therefore we must present a good dictionary as what those words mean.
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Definition 2.1.26. A morphism f : X → Y of algebraic varieties or (schemes) is separated if the diagonal of X
denotedΔ(X), is closed in the fiber product X×Y X of X over Y where the latter is a variety (scheme) that satisfies the
universal property and makes the following diagram commutative:

X×Y X X

X X
f

f

.

Definition 2.1.27. Amorphism f : X → Y of algebraic varieties or (schemes) is called universally closed if its fiber
product morphisms f× Id : X×k Z → Y×k Z are closed maps of the underlying topological space for any algebraic
variety (scheme) Z.

Definition 2.1.28. A morphism f : X → Y of algebraic varieties or (schemes) that is universally closed, separated
and of finite type is proper over Y.

Definition 2.1.29. Let k be an algebraic closed field. A curve over k is an integral separated scheme X of finite type
over k, of dimension one. If X is proper over k, we say that X is complete. If all the local rings X are regular local rings,
we say that X is nonsingular, or regular

Proposition 2.1.30. Let X be a nonsingular curve over k with function field K. Then the following conditions are
equivalent:

(a) X is projective;

(b) X is complete;

(a) X ∼= t(CK), where CK is the abstract nonsingular curve of (see 6), and t is a functor from varieties to schemes.

Proof. See ([6]), Proposition 6.7.

Proposition 2.1.31. Let X be a complete nonsingular curve over k, let Y be any curve over k, and let f : X → Y be
a morphism. then

(a) either f(X) = a point,

(b) or f(X) = Y. In case (b), K(X) is a finite extension field of K(Y), f is a finite morphism, and Y is also
complete.
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Proof. Since X is complete, f(X) must be closed in Y, and proper over Speck. On the other hand, f(X) is irre-
ducible. Thus either (a) f(X) = a point, or (b) f(X) = Y, and in case (b), Y is also complete.

In case (b), f is dominant, so it induces an inclusion K(Y) ⊆ K(X) of functions fields. Since both fields are
finitely generated extension fields of transcendence degree 1 of k, K(X) must be a finite algebraic extension of
K(Y). To show that f is a finite morphism, Let V = SpecB in K(X) be any open affine subset of Y. Let A be
the integral closure of B in K(X). the A is a finite Bmodule, and SpecA is isomorphic to an open subset Uof X.
ClearlyU = f−1V, so this shows that f is a finite morphism.

Definition 2.1.32. If f : X → Y is a finite morphism of curves, we define the degree of f to be the degree of the field
extension [K(X : K(Y))].

Remark 2.1.33. If X is a nonsingular curve, thenX satisfies the condition (*) used above, so we can talk about divisors
on X. In this case, the prime divisor is just a closed point, so an arbitrary divisor can be written D =

∑
niPi, where

the Pi are closed points, and ni ∈ Z. We define the degree of D to be
∑

ni.

Definition 2.1.34. If f : X → Y is a finite morphism of nonsingular curves, we define a homomorphism

f∗ : DivY → DivX

Q 7→
∑

f(P)=Q

vP(f∗t).P,

where t ∈ OQ is a local parameter at Q i.e, t is an element of K(Y) with vQ(t) = 1 and vP is the valuation corre-
sponding to the discrete valuation ringOP.

Remark 2.1.35. Themap f∗ is well defined: f is a finitemorphism, thus the pre-image of Qwill be finite. Moreover,
f∗(Q) is independent of the choice of the local parameter t. Indeed, if t′ is another parameter at Q, then t′ = ut where
u is a unit inOQ. For any point P ∈ X with f(P) = Q, f∗u will be a unit inOP, therefore vP(f∗t) = vP(f∗t′).

Corollary 2.1.36. The map f∗ can be extended by linearity to all divisors on Y. Hence, one sees easily it preserves
linear equivalence. Thus it induces a morphism f∗ : CLY → CLX.

Proposition 2.1.37. Let f : X → Y be a finite morphism of nonsingular curves. Then for any divisor D on Y we
have degf∗D = degf.degD

Proof. See ([6]), proposition 6.9, chapter 2.

Corollary 2.1.38. A principal divisor on a complete nonsingular curve X has degree 0. Consequently the degree
function induces a surjective homomorphism deg : CLX → Z.

Proof. See ([6]), corollary 6.10, chapter 2.

Remark 2.1.39. (a) Let X be the nonsingular cubic curve y2z = x3− xz2 inP2
k with char k 6= 2. We setCL0 X

to be the kernel of the degree mapCLX → Z. Indeed there is a natural 1 : 1 correspondence between the set
of closed points of X and the elements of the groupCL0 X.

(b) If X is any complete nonsingular curve, then the groupCL0 X is isomorphic to the group of closed points of an
abelian variety called the Jacobian variety of X. The dimension of the latter variety is the genus of the curve.
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(c) Let X be a nonsingular projective variety of dimension ≥ 2 then CLX/CL0 X is the so-called the Néron-
Severi group of X and it is finitely generated. Moreover CL0 X is isomorphic to the group of closed points of
an abelian variety called the Picard variety.

2.1.40 Cartier Divisors
In this section we want to extend the notion of divisor to an arbitrary scheme. It turns out that using the irre-
ducible subvarieties of codimension one doesn’t work very well. So instead, we take as our point of departure the
idea that a divisor should be something which locally looks like the divisor of a rational function. However one
should know that this is in no way a generalization of the Weil divisors, but it provides a good notion to use on
arbitrary schemes [([6])].

Definition 2.1.41. Let X be a scheme. For each open affine subset U = SpecA, Let S the set of elements of A which
are not zero divisors, and let K(U) := S−1A be the localization of A by themultiplicative subset S. We call K(U) the
total quotient ring ofA. For each open set U, let S(U)denote the set of elements ofΓ(U,OX)which are not zero divisors
in each localOx for x ∈ U. Then the rings S(U)−1Γ(U,OX) form a presheaf, whose associated sheaf (sheafification)
of ringsK we call the sheaf of total quotient rings ofO. On an arbitrary scheme, the sheafK replaces the concept of
function field of an integral scheme. We denote byK∗ the sheaf (of multiplicative groups) of invertible elements in
the sheaf of ringsK. SimilarlyO∗ is the sheaf of invertible elements inO.

Definition 2.1.42. A Cartier divisor on a scheme X is a global section of the sheafK∗/O∗.

Proposition 2.1.43. ([6]) A Cartier divisor on X can be described by {(Ui, fi)}i , where {Ui}i is an open cover of
X, and fi ∈ Γ(Ui,K

∗) such that for each i, j , fi/fj ∈ Γ(Ui ∩ Uj,O
∗).

Proof. See ([6]), Chapter 2.

Definition 2.1.44. A Cartier divisor is principal if it is in the image of the natural map φ : Γ(X,K∗) →
Γ(X,K∗/O∗), and two Cartier divisors are linearly equivalent if their difference is principal.

Remark 2.1.45. Although the group operation onK∗/O∗ is multiplication, we will use the language of additive
groups when speaking of Cartier divisors, so as to preserve the analogy withWeil divisors.

Remark 2.1.46. Let D = {(Ui, fi)}i and D′ = {(Ui, f′i)}i be two Cartier divisors. In the following, one will
illustrate the additive group operation between the latter:

• D+D′ = {(Ui, fi.f′i)}i ;

• −D = {(Ui, 1/fi)}i ;

• D+ (−D) = {(Ui, 1)}i which is the zero Cartier divisor.

Definition 2.1.47. A Cartier divisor D = {(Ui, fi)}i is effective if fi ∈ Γ(Ui,OX).
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Proposition 2.1.48. Let X be an integral, separated noetherian scheme, all of whose local rings are unique factoriza-
tion domains (in which case we say X is locally factorial ). Then the groupDivX ofWeil divisors on X is isomorphic to
the group of Cartier divisors Γ(X,K∗/O∗), and furthermore, the principalWeil divisors correspond to the principal
Cartier divisors under this isomorphism.

Proof. First note that X is normal, hence satisfies (*), since a UFD is integrally closed. Thus it makes sense to talk
about Weil divisors. Since X is integral, the sheafK is just the constant sheaf corresponding to the function field
K ofX. Now let a Cartier divisor be given by {(Ui, fi)}i where {Ui}i is an open cover ofX, and fi ∈ Γ(Ui,K

∗) =

K∗. We define the associatedWeil divisor as follows. For each prime divisorY, take the coefficient ofY to be vY(fi),
where i is an index forwhichY∩Ui 6=. If j is another such index, then fi/fj is invertible onUi∩Uj, so vY(fi/fj) = 0
and vY(fi) = vY(fj). Thus we obtain a well-definedWeil divisorD =

∑
vY(fi)Y on X ( the sum is finite because

X is noetherian).
Conversely, if D is Weil divisor on X, let x ∈ X be any point. Then D induces a Weil divisor Dx on the local

scheme SpecOx, sinceOx is aUFD,Dx is a principal divisor, by (2.1.15), so letDx = (fx) for some fx ∈ K. Now
the principal divisor (fx) on X has the same restriction to SpecOx as D, hence they differ only at prime divisors
which do not pass through x. There are only finitely many of these which have a non-zero coefficient inD or (fx),
so there is an open neighborhood Ux of x such thatD and (fx) have the same restriction to Ux. Covering X with
such open sets Ux, the functions fx give a Cartier divisor on X. Note that if f, f′ give the same Weil divisor on an
open setU, then f/f′ ∈ Γ(U,O∗), since X is normal (cf. proof of (2.1.15)). Thus we have a well-defined Cartier
divisor.

The two constructions are inverse to each other, so we see that the groups ofWeil divisors and Cartier divisors
are isomorphic. Furthermore it is clear from the construction that the principal divisors correspond to each other.

Remark 2.1.49. Since a local ring is UFD (Matsumura [7][ Th.48, p.142] ), this proposition applies in particular
to any regular integral separated noetherian scheme. A scheme is regular if all of its local rings are regular local rings.

Example 2.1.50. Let X be the cuspidal cubic curve y2z = x3 in P2
k , with chark 6= 0. In this case X does not satisfy

(*), so we cannot talk about Weil divisors on X. However we can talk about CaCLX := Γ(X,K∗/O∗)/ Imφ, the
Cartier divisor classes modulo principal divisors.

2.1.51 Invertible sheaves
Definition 2.1.52. An invertible sheaf on a ringed space X is a locally freeOX- module of rank 1.

Proposition 2.1.53. IfL andM are invertible sheaves on a ringed space X, so isL ⊗M. IfL is any invertible
sheaf on X, then exists an invertible sheafL−1 on X such thatL ⊗L−1 ∼= OX.

Proof. The first statement is clear, sinceL andM are both locally free of rank 1, andOX ⊗ OX ∼= OX. For the
second statement, let L be any invertible sheaf, and take L−1 to be the dual sheaf Ľ = Hom(L,OX). Then
Ľ ⊗L ∼= Hom(L,L) = OX.

Definition 2.1.54. For any ringed space X, we define the Picard group of X, Pic X, to be the group of isomorphism
classes of invertible sheaves on X, under the operation⊗. Proposition (2.1.53) shows that in fact it is a group.
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Remark 2.1.55. Hartshorne ([6]) shows PicX∼=H1(X,O∗
X).

Definition 2.1.56. Let D be a Cartier divisor on a scheme X, represented by {(Ui, fi)}i as above. We define a
subsheafL(D) of the sheaf of total quotient ringsK by taking the latter as being the sub-OX-module ofK generated
by f−1

i on Ui.
This is well-defined, since fi/fj is invertible on Ui ∩ Uj, so f−1

i and f−1
j generate the same OX-module. We call

L(D) the sheaf associated to D.

Proposition 2.1.57. Let X be a scheme. Then:

(a) for any Cartier divisor D,L(D) is an invertible sheaf on X. The map D 7→ L(D) gives a 1− 1 correspon-
dence between Cartier divisors on X and invertible subsheaves ofK;

(b) L(D1 −D2) ∼= L(D1)⊗L(D2)
−1;

(c) D1 ∼ D2 if and only ifL(D1) ∼= L(D2).

Proof. See ([6]), chapter 2, proposition 6.13.

Corollary 2.1.58. On any scheme X, the mapD 7→ L(D) gives an invertible homomorphism of the group CaCLX
of Cartier divisors modulo linear equivalence to PicX.

Remark 2.1.59. The map CaCLX → PicX may not be surjective, because there may be invertible sheaves on X
which are not isomorphic to any invertible subsheaf ofK. However the following proposition states that it holds true
when X satisfies one condition.

Proposition 2.1.60. If X is an integral scheme, the homomorphism CaCLX → PicX of (2.1.58) is an isomor-
phism.

Proof. See ([6]) chapter 2, proposition 6.15.

Corollary 2.1.61. If X is a noetherian, integral, separated locally factorial scheme, then there is a natural isomor-
phismCLX ∼= PicX.

Proof. this follows from (2.1.58) and (2.1.60) above.

Definition 2.1.62. Let Y and X be smooth variety and let f : X → Y be a morphism. By taking the inverse image
of invertible sheaves we get a homomorphism of groups

f∗ : PicY → PicX.

If f is surjective we can also define the inverse image of a divisor D on Y. Meaning, that operation satisfies:
f∗(L(D)) = L(f∗D)

Corollary 2.1.63. If X = Pn
k for some field k, then every invertible sheaf on X is isomorphic to OPn

k
(l) for some

l ∈ Z.
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2.1.64 ProjectiveMorphisms
In this section of we discuss morphisms of a given scheme to projective space. We will prove how the latter mor-
phism is determined by giving an invertible sheafL on X and a set of global sections. We will give some criteria
for this morphism to be an immersion.

Remark 2.1.65. Let A be a fixed ring, and consider the projective space Pn
A = ProjA[x0, ..., xn] over A. On Pn

A we
have the invertible sheafO(1), and the homogeneous coordinates x0, ...., xn give rise to global sections x0, ...., xn ∈
Γ(Pn

A,O(1)). One sees easily that that O(1) is generated by the global sections x0, ...., xn, i.e. the images of these
sections generate the stalkO(1)P of the sheafO(1) as a module over the local ringOP, for each point P ∈ Pn

A.
Now let X be any scheme over A, and let φ : X → Pn

A be an A-morphism of X to Pn
A. ThenL = φ∗(O(1)) is an

invertible sheaf on X, and the global sections s0, ..., sn, where si = φ∗(xi), si ∈ Γ(X,L), generated the sheafL.
Conversely, the theorem below shows thatL and the sections si determine φ.

Theorem 2.1.66. Let A be a ring, and let X be a scheme over A.

(a) if φ : X → Pn
A is A-morphism, then φ∗(O(1)) is an invertible sheaf on X, which is generated by the global

sections si = φ∗(xi), i = 0, 1, ..., n.

(b) Conversely, ifL is an invertible sheaf on X, and if s0, ..., sn ∈ Γ(X,L) are global sections which generate
L, such that n there exists a unique A-morphism φ : X → Pn

A such thatL ∼= φ∗(O(1)) and si = φ∗(xi)
under this isomorphism.

Proof. See ([6]) chapter 2, page 150.

Example 2.1.67. If X is a scheme over A,L an invertible sheaf, and s0, ..., sn any set of global sections, which do not
necessarily generateL, we can always consider the open set U ⊆ X (possibly empty) over which the si do generateL.
ThenL|U and si|U give a morphism U → Pn

A. Such is the the case for example, if we take X = Pn+1
k ,L = O(1),

and si = xi, i = 0, ..., n (omitting xn+1). These sections generate everywhere except at the point (0, 0, ...., 0, 1) = P0.
Thus U = Pn+1 − P0, and the corresponding morphismU → Pn is nothing other than the projection from the point
P0 to Pn.

We give some criteria for a morphism to a projective space to be a closed immersion.

Proposition 2.1.68. Let φ : X → Pn
A be a morphism of schemes over A, corresponding to an invertible sheafL on

X and sections s0, ..., sn ∈ Γ(X,L) as above. Then φ is a closed immersion if and only if

(a) each open set Xi = Xsi is affine, and

(b) for each i, the map of rings A[y0, ..., yn] → Γ(Xi,OXi) defined by yi 7→ sj/si is surjective.

With more hypotheses, we can give a more local criterion.
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Proposition 2.1.69. Let k be an algebraically closed field, let X be a projective scheme over k, and let φ : X → Pn
k

be a morphism (over k) corresponding toL and s0, ..., sn ∈ Γ(X,L) as above. Let V ⊆ Γ(X,L) be the subspace
spanned by the si. Then φ is a closed immersion if and only if

(a) elements of V separate points, i.e., for any two distinct closed points P,Q ∈ X, there is an s ∈ V such that
s ∈ mPLP but s /∈ mQLQ, or vice versa, and

(b) elements of V separate tangent vectors, i.e., for each closed point P ∈ X, the set {s ∈ V|sP ∈ mPLP} spans the
k-vector spacemPLP/m

2
PLP.

Proof. See ([6]), chapter 2, page 152.

Now that we have seen that a morphism from a scheme X to a projective space can be characterized by giving
an invertible sheaf on X and a suitable set of its global sections, we can reduce the study of varieties in projective
space to the study of schemes with certain invertible sheaves and given global sections.

2.1.70 Ample and invertible sheaves
Definition 2.1.71. A sheafL on X is very ample relative to Y (where X is a scheme over Y) if there is an immersion
i : X → Pn

Y, where Pn
Y is a the fiber product Pn

Z ×SpecZ Y for some n such thatL ∼= i∗O(1).

Remark 2.1.72 (([6]), page 153). In case Y = SpecA, this is the same thing as saying thatL admits a set of global
section s0, ..., sn such that the corresponding morphism X → Pn

A is an immersion.

Proposition 2.1.73. IfL is a very ample invertible sheaf on a projective scheme X over a noetherian ring A, then
for any coherent sheafF on X, there is an integer n0 > 0 such that for all n0 ≥ n0,F ⊗Ln is generated by global
sections (Ln := L⊗n.)

Wewill used this last property of being generated by global sections to define the notion of an ample invertible
sheaf.

Definition 2.1.74. An invertible sheafL on a noetherian scheme X is said to be ample if for every coherent sheafF
on X, there is an integer n0 > 0 (depending onF ) such that for every n ≥ n0, the sheafF ⊗Ln is generated by its
global sections.

Remark 2.1.75. The notion of ”ample ” is an absolute notion, i.e., it depends only on the scheme X, whereas ” very
ample”is a relative notion, depending on a morphism X → Y.

Example 2.1.76. If X is affine, then any invertible sheaf is ample, because every coherent sheaf on an affine scheme
is generated by its global sections.

Theorem 2.1.77. Let A be a noetherian ring and let X be a proper scheme over SpecA. LetL be an invertible sheaf
on X then the following conditions are equivalent:

(a) L is ample.
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(b) for each coherent sheaf F on X, there is an integer n0, depending on F, such that i > 0, and n ≥ n0,
Hi(X,F ⊗Ln) = 0.

Proof. See ([6]), Chapter 3.

Proposition 2.1.78. Let L be an invertible sheaf on a noetherian scheme X. Then the following conditions are
equivalent:

(a) L is ample;

(b) Ln is ample for all n > 0;

(c) Ln is ample for some n > 0.

Proof. (a) =⇒ (b) is immediate from the definition of ample; (b) =⇒ (c) is trivial. To prove (c) =⇒
(a), assume thatLn is ample. Given a coherent sheaf F on X, there exists an n0 > 0 such that F ⊗ (Ln)m is
generated by global sections for allm ≥ n0. Considering the coherent sheafF ⊗L, there exists an n1 > 0 such
that F ⊗ L ⊗ (Ln)m is generated by global sections for all m ≥ n1. Similarly, for each k = 1, 2, ..., n − 1,
there is an nk > 0 such thatF ⊗ Lk ⊗ (Ln)m is generated by global sections for allm ≥ nk. Now if we take
N = {nmaxni|i = 0, 1, ..., n − 1}, thenF ⊗ (Lm) is generated by global sections for allm ≥ N. HenceL is
ample.

Theorem 2.1.79. Let X be a scheme of finite type over a noetherian ring A, and letL be an invertible sheaf on X.
ThenL is ample if and only ifLn is very ample over SpecA for some n > 0.

Proof. See ([6]), Chapter 2, page 154.

Example 2.1.80. Let X = Pn
k , where k is a field. ThenO(1) is very ample by definition. For any d > 0,O(d) is

also very ample. HenceO(d) is ample for all d > 0. On the other hand, since the sheafO(l) has no global sections
for l < 0, one sees easily that the sheavesO(l) for l ≤ 0 cannot be ample. So on Pn

k , we haveO(l) is ample⇔ very
ample⇔ l > 0.

2.1.81 Linear Systems
We will see in the following sections how global sections of an invertible sheaf correspond to effective divisors on
a variety. Thus giving an invertible sheaf and and a set of its global sections is the same as giving a certain set of
effective divisors, all linearly equivalent to eachother. This leads to thenotionof linear system,which is historically
an older notion.

For simplicity, we will use this terminology only when dealing with nonsingular projective varieties over an
algebraically closed field. Over more general schemes the geometrical intuition associated with the concept of
linear systemmay lead one astray, so it is safer to deal with invertible sheaves and their global sections in that case.
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Remark 2.1.82. Let X be a nonsingular projective variety over an algebraically closed field k. In this case the no-
tions ofWeil divisor and Cartier divisor are equivalent (2.1.48). Furthermore, we have a one-to-one correspondence
between linear equivalent classes of divisors and isomorphism classes of invertible sheaves (2.1.60). Another useful
fact in this situation is that for any invertible sheafL on X, the global sections Γ(X,L) form a finite-dimensional
k−vector space.

Definition 2.1.83. LetL be an invertible sheaf on X, and let s ∈ Γ(X,L) be a non zero section ofL. We define
an effective divisor D = (s)0, the divisor of zeros of s as follows. Over any open set U ⊆ X whereL is trivial, let
φ : L|U → OU be an isomorphism. Thenφ(s) ∈ Γ(U,OU). AsU ranges over a covering ofX, the collection (U,φ(s))
determines an effective Cartier divisor D on X.

Remark 2.1.84. Indeed, φ is determined up to multiplication by an element of Γ(U,O∗
U), so we get a well-defined

Cartier divisor.

Proposition 2.1.85. Let X be a nonsingular projective variety over the algebraically closed field k. Let D0 be a
divisor on X and letL ∼= L(D0) be the corresponding invertible sheaf. Then:

(a) for each non zero s ∈ Γ(X,L), the divisor of zeros (s)0 is an effective divisor linearly equivalent to D0;

(b) every effective divisor linearly equivalent to D0 is (s)0 for some s ∈ Γ(X,L) ;

(c) two sections s, s′ ∈ Γ(X,L) have the same divisor zeros if and only if there is a λ ∈ k∗ such that s′ = λs.

Proof. See ([6]),Proposition 7.7, page 157.

Definition 2.1.86. A complete linear system on a nonsingular projective variety is defined as the set (may be empty)
of all effective divisors linearly equivalent to some given divisor D0. It is denoted by |D0|.

Remark 2.1.87. We see from the proposition above that the set |D0| is in one to one correspondence with the set
(Γ(X,L)− 0)/k∗. This gives |D0| a structure of the set of closed points of projective space over k.

Definition 2.1.88. A linear system d on X is a subset of a complete linear system |D0| which is linear subspace
for the projective space structure of |D0|. Thus d corresponds to a sub-vector space V ⊆ Γ(X,L), where V =

s ∈ Γ(X,L)|(s)0 ∈ d ∪ 0.

Remark 2.1.89. The dimension of the linear system d is its dimension as a linear projective variety. Hence dim d =

dimV− 1.

Definition 2.1.90. A point P ∈ X is a base point of a linear system d if P ∈ SuppD for all D ∈ d. Here SuppD
means the union of the prime divisors of D.

Example 2.1.91. If X = Pn, then the set of all effective divisors of degree d > 0 is a complete linear system of
dimension

(n+d
n
)
− 1. Indeed, it corresponds to the invertible sheaf O(d), whose global sections consist exactly of

the space of all homogeneous polynomials in x0, ..., xn of degree d. This is a vector space of dimension
(n+d

n
)
, so the

dimension of the complete linear system is one less.

Before starting the following section, one assumes that notions such as cotangent sheaf ΩX, canonical sheaf
ωX, tangent sheaf TX and cohomology of sheaf are well known.
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2.1.92 Riemann-Roch Theorem
In this section, we will use the word curve tomean a complete, nonsingular curve over an algebraically closed field
k. In other word, a curve is an integral scheme of dimension 1, proper over k, all of whose local rings are regular.
Such a curve is necessarily projective ([6], chapter 2). In case we want to consider a more general kind of curve, we
will use the word ”scheme,” appropriately qualified, e.g, ” an integral scheme of dimension 1 of finite type over
k”. We will use the word point to mean a closed point, unless we specify the generic point.

We begin by reviewing some concepts which will be used for the study of curves.

Definition 2.1.93. Let X be curve in a projective space, we define its arithmetic genus PA(X) as the k- dimension of
H1(X,OX). Whereas its geometric genus PG(X) is the k- dimension of H0(X,ωX)

Proposition 2.1.94. If X is a curve, then its arithmetic genus and geometric genus are the same, i.e, Pa(X) = PG(X)

Proof. See ([6]), page 294, chapter 3

Remark 2.1.95. A (Weil) divisor on the curve X is an element of the free abelian group generated by the set of points
of X (2.1.33). We write a divisor as D =

∑
niPi with ni ∈ Z. Its degree is

∑
ni. Two divisors are linearly

equivalent if their difference is the divisor of a rational function. We have seen that the degree of a divisor depends
only on its linear equivalence class. Since X is nonsingular, for every divisor D we have an associated invertible sheaf
L(D), and the correspondence

π : CaCLX → PicX

D 7→ L(D),

gives an isomorphism of the group (CLX) of divisors modulo linear equivalence with the group PicX of invertible
sheaves modulo isomorphism (2.1.60).

A divisor D =
∑

niPi on X is effective if all ni ≥ 0. the set of all effective divisors linearly equivalent to a given
divisor D is called complete linear system and is denoted by |D|. The elements of |D| are in one to one correspondence
with the space

(H0(X,L(D))/k∗,

so |D| carries the structure of the set of closed points of projective space. We denote dimkH0(X,L(D)) by l(D), so that
dimension of |D| is l(D)− 1. The number l(D) is finite becauseL is an invertible sheaf.

As a consequences of this correspondence we have the following elementary, but useful, result.

Lemma 2.1.96. Let D be a divisor on a curve X. Then if l(D) 6= 0, we must have degD ≥ 0. Furthermore, if
l(D) 6= 0 and degD = 0, we must have D ∼ 0, i.e.,L(D) ∼= OX.

Proof. if l(D) 6= 0,then the complete linear system |D| is nonempty. Hence D is linearly equivalent to some
effective divisor. Since the degree depends only on the linear equivalence class, and the degree of an effective
divisor is nonnegative, we find degD ≥ 0. If deg D = 0, then D is linearly equivalent to an effective divisor of
degree 0. But there is only one such, namely the zero divisor.
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Definition 2.1.97. Let X be a projective variety of dimension 1, we call any divisor in the corresponding linear
equivalence class a canonical divisor and denote it by KX i.e., π(KX) = ωX (2.1.95).

Theorem 2.1.98 (Riemann-Roch.). Let D be a divisor on a curve X of genus g. Then

l(D)− l(KX −D) = degD+ 1− g

Proof. See ([6]), page 295, chapter 3.

Example 2.1.99. On a curve X of genus g, the canonical divisor KX has degree 2g− 2. Indeed, we apply Riemann-
Roch theorem with D = KX. Since l(KX) = dimH0(X,L(KX)) = dimH0(X,ωX) = g and l(0) = 1, we
have

g− 1 = degKX + 1− g,

hence degKX = 2g− 2.

Lemma 2.1.100. Let X be a smooth normal variety and ω be a rational n-form. Then the zeros minus the poles of
ω determine the divisor, KX.

Proposition 2.1.101 ((Adjunction formula.)). Let X be a smooth variety and let S be a smooth divisor. Then
(KX + S)|S = KS

2.1.102 On the Geometry of a surface
Throughout this section, by surface we mean a nonsingular projective surface over an algebraic closed field k.
We will assume our surfaces are projective since according to ([6],chapter 2) any complete nonsingular surface is
projective over an algebraically closed field k. Moreover, a curve on a surface will simplymean any effective divisor
on the surface and by point we will mean a closed point, unless otherwise specified.

Definition 2.1.103. Let X be a surface. Let C,D be two divisors on X, if P ∈ C ∩ D is a point of intersection of C
andD, then we say that C andDmeet transversally at P if the local equations f, g of C,Dat P generate themaximal
idealmP ofOP,X.

Definition 2.1.104. Let C and D two nonsingular curves which meet transversally at a finite number of points
P1, ...,Pr. We define C.D to be the intersection number r of C and D.

The following theorem sheds light on the properties of commutativity, associativity and linear equivalence that
the intersection between nonsingular curve has.

Theorem 2.1.105. Let X be a surface, the map:

Φ : DivX×DivX → Z

(C,D) 7→ C.D,

such that if C,D are nonsingular curves meeting transversally, then Φ(C,D) = ♯(C ∩ D) (which is the number of
points of C ∩D and can also be denoted i(C,D)).
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Remark 2.1.106. LetC1,C2 two nonsingular curvesmeeting transversallywith another nonsingular curveD. Then
the mapΦ is symmetric (Φ(C,D) = Φ(D,C)), additive (Φ(C1+C2,D) = Φ(C1,D)+Φ(C1,D)) and depends
only on the linear equivalence classes i.e. if C1 ∼ C2 thereforeΦ(C1,D) = Φ(C2,D).

Proof. See [[6], page 358].

Lemma 2.1.107. Let C be an irreducible nonsingular curve on X, and let D be any curve meeting C transversally.
Then

♯(C ∩D) = degC(L(D)⊗OC),

where the degree of the invertible sheafL(D)⊗OC is the degree of its associate divisor.

Proof. See [[6], page 358].

Definition 2.1.108. Let C and D be curves with no common irreducible component, and if P ∈ C ∩ D, then we
define the intersection multiplicity (C.D)P of C and D to be the dimension of the k−vector spaceOP,X/(f, g) where
f, g are local equations of C,D at P.

Proposition 2.1.109. Let C and D two curves on X with no common irreducible component, then

C.D =
∑

P∈C∩D

(C.D)P.

Proof. See [[6], page 360].

Remark 2.1.110. Let D be a divisor on the surface X, we can define the self-intersection number D.D which we
denote D2. In fact the self-intersection of D2 cannot be calculated by the direct method of the intersectionmultiplicity
(2.1.109). One uses instead lemma (2.1.107) which is D2 = degC((L(D)⊗OD)).

Example 2.1.111. If X = P2, one knows that PicX ∼= Z. We take the class l of a line as generator because any two
lines are linearly equivalent. Moreover, as they meet in one point, we have l2 = 1. This determines the intersection
pairing mapΦ on P2 by linearity.

Example 2.1.112. Let X = P2 and C,D two curves of respective degree n,m. because PicX ∼= Z therefore we will
have C ∼ nl and D ∼= mh. Hence C.D = nm.

Example 2.1.113. Let X be the nonsingular quadric surface in P3. Then PicX ∼= Z ⊕ Z ([[6],chapter 2]). One
takes as generators lines l of type (1, 0) and h of type (0, 1), one from each family. Then l2 = 0 : the quadric surface
being isomorphic toP1×P1 (using the Segree embedding), two distinct lines l, l′ of same type will automatically imply
that that their intersection is empty. Moreover , as they are linearly equivalent will have l.l′ = l2 = 0. Whereas,
two line l,m of different type will always meet in one point. Hence l.m = 1, this determines the intersection pairing
on X. So, if C has type (a, b) and D has type (c, d), then C.D = ad+ cb.

Example 2.1.114. The self-intersections, allows us to define a new invariant of a surface. LetΩX/k be the cotangent
sheaf of X/k, and ωX =

∧2 ΩX/k be the canonical sheaf. The canonical divisor KX is a divisor in the linear equiva-
lence class corresponding to ωX. For instance, if X = P2, KX = −3h, so K2

X = 9. In case of X being a quadric surface,
then KX has type (−2,−2), hence K2

X = 8.
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Proposition 2.1.115 (Adjunction formula for surfaces). . If C is a nonsingular curve of genus g on the surface X,
and if KX is the canonical divisor on X, then

2g− 2 = C.(C+ KX).

Proof. See [([6]), page 361].

Remark 2.1.116. The proposition above provide an expeditious method for computing the genus of a curve on a
surface. Let us take the curve C of degree d ∈ P2, then one has

2g− 2 = C.(C+ KP2)

= C.C+ C.KP2

= d2 − 3d. (because C ∼ dh and KP2 ∼ −(2+ 1)h)

which implies that g = 1
2 (d− 1)(d− 2).

Example 2.1.117. Let C a curve of type (a, b) on the quadric surface, then it is easy to see that C + KX has type
(a− 2, b− 2), so

2g− 2 = a(b− 2) + (a− 2)b,

Hence g = ab− a− b+ 1.

In the next section will be interested in the Riemann-Roch theorem version for surfaces, which plays an im-
portant role to prove the Hodge index theorem and the Nakai’s criterion for an ample divisor.

One recalls that for any divisorD on a surfaceX, we set l(D) being the dimk H0(X,L(D)), which is also equal
to dim |D|+ 1 where, |D| is in fact the complete linear system ofD. We also recall that the arithmetic genus Pa(X)
of X is defined by Pa = χ(OX)− 1 ([4], page 131).

Theorem 2.1.118. Let D a divisor on the surface X, then

l(D)− s(D) + l(KX −D) =
1
2
D.(D− KX) + Pa(X) + 1,

where s(D) is the dimension of H1(X,L(D)) and is called the superabundance of D.

Proof. See, [[6], page 362]

Definition 2.1.119. Let S be a surface. The intersection form on Cl(S) is the symmetric bilinear form

i : Cl(S) → Cl(S)

(C,D) 7→ i(C,D) = χ(OS)− χ(L(−C))− χ(L(−D)) + χ(L(−C−D)).

where χ(OS) :=
∑∞

i=0 dimHi(S,OS) the Euler characteristic of S.
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Corollary 2.1.120 (The Rieman-Roch theorem for surfaces.). Let X be a surface and D be a divisor on X. Then

χ(L(D)) = χ(OX) +
1
2
i(D,D− KX).

Proof. We start by computing i(−D,D− KX). By definition we have

i(−D,D− KX) = χ(OX)− χ(L(D))− χ(ωX ⊗L(−D)) + χ(ωX).

By Serre duality we have χ(ωX ⊗L(−D)) = χ(L(D)) and χ(ωX) = χ(OX).

From this we see that

i(−D,D− KX) = 2(χ(OX)− χ(L(D))).

On the other hand we have

i(−D,D− KX) = −i(D,D) + i(D,KX)

it now remains to rearrange the terms in the equation.

Proposition 2.1.121 (The genus formula.). Let C be an irreducible curve on a surface X. Then

Pa(C) = 1+
1
2
i(C,C+ KX).

Proof. Recall that

ga(C) = dimH1(C,OC) = 1− χ(OC) we use that C is connected so H0(C,OC) = 1.

We consider the ideal sheafL(−C) of C and short exact sequence

0 → L(−C) → OX → OC → 0.

By taking Euler characteristics we get

χ(OC) = χ(OX)− χ(L(−C)).

It follows that
1− gC = χ(OX)− χ(L(−C)).

On the other hand, the Rieamann-Roch theorem gives that

χ(L(−C)) = χ(OX) +
1
2
i(−C,−C− KX).

Substituting this into the above relation gives

1− gC = χ(OX)− (χ(OX) +
1
2
i(−C,−C− KX)) = − 1

2
i(C,C+ KX).
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Theorem 2.1.122 (The Künneth formula). . Let X and Y be compact and separated schemes over a field k andF
be a sheaf on X andC a sheaf on Y. There is an isomorphism

Hr(X×k Y, p∗XF ⊗ p∗YC) ∼=
⊕
i+j=r

Hi(X,F)⊗k Hj(Y,C).

Proof. See ([6]).

Theorem 2.1.123 (TheNakai-Moishezon criterion.). AdivisorD on a surface X is ample if and only if i(D,D) >

0 and i(D,C) > 0 for every irreducible curve C on X.

Proof. See ([6])

Definition 2.1.124. A divisor D on a surface X is numerically equivalent to zero, written

D ≡ 0,

if i(D,E) = 0 for all divisors E.

Remark 2.1.125. We say D and E are numerically equivalent, written D ≡ E, if

D− E ≡ 0.
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3
Moduli problems

Moduli arise in connection with classification problems in algebraic geometry. The main ingredients of a classifi-
cation problem are a collection of objectsM and an equivalence relation∼ onM. The problem is the following:
describe the set of equivalence classesM/ ∼. One can often find some discrete invariants which partitionM/ ∼
into a countable number of subsets, but in algebraic geometry this rarely gives a complete solution of the problem.
Almost always there exist continuous families of objects ofM, and we would like to giveM/ ∼ some algebro-
geometric structure to reflect this fact. This is the aim of the theory of moduli.

Our main purpose in this chapter is to try to give some idea of what constitutes a moduli problem and to
describe the sort of solution for which one should look for.Moreover, throughout this chapter we will follow the
book of P.E. Newstead ([9]). However, before getting to the main definitions and propositions of what a moduli
problem is we will start by recalling some important concepts that will be relevant for this section. Concept such
as vector bundle which are equivalent to quasi-coherent sheaves of finite rank as we will see in 3.0.9.

Definition 3.0.1. A vector bundle of rank n over X consists of a variety E, a morphism p : E → X, and a structure
of n-dimensional vector space of each fibre Ex = p−1(x) such that, for all x ∈ X,

(i) the vector space structure on Ex is compatible with the structure of variety induced from that of E;

(ii) there exists a neighbourhood U of x and an isomorphism

ψ : U× kn → p−1(U)

of p over U such that p ◦ ψ = pU with pU the restriction of p to p−1(U) besides, the map

τ : kn → Ey

v 7→ ψ(y, v),

should be linear for all y ∈ U.
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Remark 3.0.2 ([9], page 18). A vector bundle of rank 1 is called a line bundle. Moreover if X is a variety and E is
a vector bundle over X then E is necessary a variety.

Definition 3.0.3. Let E π−→ X and F
χ−→ X be vector bundles over X. A homomorphism from E to F is a morphism

h : E → F such that:

(i) the diagram

E

F X
h

π

χ

is commutative, and

(ii) for each x ∈ X the restricted map hx : Ex → Fx is linear.

Remark 3.0.4. In addition, h : E → F is an isomorphism of vector bundles if it is bijective and and its inverse is a
homomorphism from F to E.

Definition 3.0.5. A section of vector bundle E over X is a morphism s : X → E such that p ◦ s = 1X.

Remark 3.0.6. There is an obvious structure of vector space on the set of all sections of E. There is a bijective corre-
spondence between sections of E and homomorphisms from E × k to E, with the homomorphism corresponding to a
section s being given by

(x, λ) 7→ λ.s(x) for all x ∈ X, λ ∈ k.

Definition 3.0.7. Let φ : Y → X bemorphism of varieties and E a vector bundle over X, one can define an induced
vector bundle φ⋆E over Y by :

φ⋆E = {(y, v) : y ∈ Y, v ∈ E, φ(y) = p(v)} ⊂ Y× E.

Definition 3.0.8. Let s a section of E, we can define an induced section φ⋆s of φ⋆E by the formula :

φ⋆s(y) =
(
y, s
(
φ(y)

))
for all y ∈ Y.

similarly, for any homomorphism h : E1 → E2 of vector bundles over X, we have a homomorphism

φ⋆h : φ⋆E1 → φ⋆E2

(y, v) 7→ (y, h(v)).

Remark 3.0.9. Let X be a variety.The set of sections of a vector bundle E will be writtenL(E). Moreover, the set
L(E) is a module over the ringOX(X) and we associate with any open set U ⊂ X the setL(E,U) of sections of the
bundle E restricted to U. Hence from ([11]), we obtain a sheaf that we denoteLE which is a sheaf of modules over the
structure sheafOX.
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The following theorem establishes a correspondence between vector bundles and locally free sheaves.

Theorem 3.0.10 ([11]). The correspondence E → LE establishes a one-to-one correspondence between vector bundles
and locally free sheaves of finite rank.

Proof. See ([11], page 58)

To have an insight of what a moduli problem is we begin with a basic example

Example 3.0.11. Let X be a fixed variety, let A consist of all vector bundles over X, and let∼ be given by isomorphism
of bundles. A family of objects of A parameterised by S is a vector bundle E over S × X. The object Es corresponding
to a point s of S is the vector bundle over X obtained by restricting E to {s} × X.

For any morphism φ : S → S′, the induced family is simply (φ× 1X)⋆E.

According to example(3.0.11), the basic ingredients for a moduli problem are then the collectionA, the equiv-
alence relation∼ and the concept of family. As is suggested by the example above, the precise definition of family
depends on the particular problem.

However, in all cases, we require families to satisfy the following properties:

Definition 3.0.12 (Properties of moduli problem). (a) A family parameterised by the variety {pt} is a single
object of A.

(b) There is a notion of equivalence of families parameterised by any given variety S, which reduces to the given
equivalence relation on A when S = {pt}; We shall denote this relation by∼.

(c) For any morphism φ : S′ → S and any family X parameterised by S, there is an induced family φ⋆X
parameterised by S′. Moreover this operation satisfies the functorial properties

(φ ◦ φ′)⋆ = φ
′⋆ ◦ φ⋆, 1⋆S = identity,

and is compatible with∼, i.e.,
X ∼ X =⇒ φ⋆X ∼ φ⋆X′.

Remark 3.0.13. Let X be a family parameterised by a variety S. For any point s of S, we denote by Xs the object of A
induced by the inclusion morphism is : {s} → S, meaning Xs := i⋆s X.

The conditions above complete the description of amoduli problem. In the next sectionwewill consider what
sort of solution it is reasonable to expect.

3.1 Moduli Spaces
Given a moduli problem as described above, we would like to define on the setA/ ∼ a structure of variety which
reflects the structure of families of objects ofA. Themain purpose of this section is to suggest someways inwhich
this idea can be made precise.
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Suppose then thatM is a variety whose underlying set is A/ ∼. For any family X parameterised by S, we have
a map

νX : S → M

s 7→ νX(s) = [Xs],

where [Xs] denotes the equivalence class of the object Xs. It seems reasonable to ask that this map be a morphism;
and the best we could hope for would be that ν should define a bijective correspondence between equivalence
classes of families parameterised by S and morphisms S → M.

This idea can conveniently be expressed in categorical terms. For this, we writeF(S) for the set of equivalence
classes of families parameterised by S. By the conditions stated aboveF is a contravariant functor from the cat-
egory of algebraic varieties to the category of sets. Moreover, if we denote by Hom(S,M) the set of morphisms
from S toM, we have natural maps

ϕ(S) : F(S) → Hom(S,M)

[X] 7→ ϕ(S)([X]) = νX,

and these maps determine a natural transformation

ϕ : F → Hom(−,M).

What we are asking is that ϕ should be an isomorphism of functors, or in the usual language of categories thatF
should be represented by (M, ϕ). From this the definition of fine moduli space results.

Definition 3.1.1. A fine moduli space for a given moduli problem is a pair (M, ϕ) which represents the functorF.

Remark 3.1.2. Note that in this definition we did not insist a priori thatM = A/ ∼. For if (M, ϕ) representsF,
we have a natural bijection

ϕ(pt) : A/ ∼= F(pt) → Hom(pt,M) = M.

Moreover, for any variety S and any s in S, the inclusion of {s} in S induces a commutative diagram

F(S) Hom(S,M)

F(pt) M

ϕ(S)

X 7→Xs ϕ 7→ϕ(s)
ϕ(pt)

Unfortunately there are very few problems in which one can hope for a a fine moduli space. It is therefore
necessary to find some weaker condition which nevertheless determines a unique structure of variety onM. The
solution is to drop the requirement thatM satisfy a universal property for families, and ask instead that ϕ should
have a universal property for natural transformationF → Hom(−,N).
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Definition 3.1.3. A coarce moduli space for a given moduli problem is a variety M together with a natural trans-
formation

ϕ : F → Hom(−,M)

such that

(a) ϕ(pt) is bijective;

(b) for any variety N and any natural transformation ψ : F → Hom(−,N), there exists a unique natural
transformation

Ω : Hom(−,M) → Hom(−,N)

such that ψ = Ω ◦ ϕ.

Proposition 3.1.4. A coarse moduli space (M, ϕ) is fine moduli space if and only if and only if

(a) there exists a family U parameterised by M such that, for all m ∈ M, Um belongs to the equivalence class
ϕ(pt)−1(m), and

(b) for any families X, X′ parameterised by a variety S,

νX = νX′ ⇔ X ∼ X′.

Proof. This follows easily fromDefinitions (3.0.11) and (3.1.1.) In fact

• (i)⇔ ϕ is surjective,

• (ii)⇔ ϕ is injective.

3.1.5 Examples ofModuli spaces
In this section we are interested in a very simple moduli problem, namely that of classifying the endomorphisms
of finite dimensional vector spaces following ([9]). The question that we are asking is whether it is possible to put
a natural structure of algebraic variety on the set of all endomorphisms of finite dimensional vectors spaces.

Definition 3.1.6. One considers the pair (V,T), where V is an n-dimensional vector space over k and T is an en-
domorphism of V. An isomorphism from (V,T) to (V′,T′) is an isomorphism of vector spaces f : V → V′ such
that

f ◦ T = f ◦ T′.
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Remark 3.1.7. Weare particularly interested in the classification of the pairs (V,T)up to isomorphism. By the basis
theorem of linear algebra (two basis of the same vector space have the same cardinal), this amounts to the classification
of n× n matrices up to similarity.

Definition 3.1.8. A family of endomorphisms of n−dimensional vector spaces parameterised by a variety S is a
pair (B,T), where B is a vector bundle of rank n over S and T is an endomorphism of E.

Remark 3.1.9. Let two families (B,T) and (B′,T′) parameterised by S. Then an isomorphism from (B,T) to
(B′,T′) is an isomorphism h : B → B′ such that h ◦T = T′ ◦ h. Moreover, for any family (B,T) parameterised by
S and any morphism ϕ : S′ → S, we have an induced family ϕ⋆(B,T) = (ϕ⋆B, ϕ⋆T) parameterised by S′.

It is easy to see that these remarks and definition satisfy conditions (3.0.12). Therefore we have the appropriate
setting for a moduli problem, which we denote by (Endn). As in the previous section above we writeF(S) for
the set of isomorphism classes of families parameterised by S.

Proposition 3.1.10. There is no fine moduli space for (Endn).

Proof. We take any complete variety S such that there exists a non-trivial line bundle L over S (for example S =

P1, L = H). Then, for any endomorphismT of the trivial bundle In := X×kn, we have non-isomorphic families
(In,T) and (In ⊗ L,T⊗ 1L), which would determine the same morphism from S to any moduli space (See claim
below )

Claim. LetX be a complete variety, and L a line bundle overX such that In⊗L is trivial for some n ≥ 1. Then
L is trivial.

Proof. See [[9],page 12]

Proposition 3.1.11. For n > 1, there is no coarse moduli space for (Endn).

In fact, ifM is a variety andF → Hom(−,M) a natural transformation, then any two endomorphisms with
the same characteristic polynomial are represented by the same point ofM.

Proof. Suppose that n = 2, let λ ∈ k, and consider the morphism

η : k → M2×2

t 7→ Bt =

(
λ t
0 λ

)
.

The morphism defines an element of F(k) and hence determines a morphism ϕ : k → M. If t 6= 0, the
matrix Bt is similar to B1. It follows that ϕ(t) = ϕ(1) for all t 6= 0 and hence also for t = 0. Thus B0 and B1

are represented by the same point ofM (although, of course these two matrices are not similar). For n > 2 the
general proof unfolds the same.
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Definition 3.1.12. Let g andnbe two integers. A stable n-pointedRiemann surface of genus g is a compactRiemann
surface C of genus g with n distinct points x1, ..., xn ∈ C, such that set of automorphisms of C which fix all xi, is finite,
the only singularity of C are simple nodes and the marked points are distinct and do not coincide with the nodes.

Definition 3.1.13. (C, x1, ..., xn) and (D, y1, ..., yn) be two stables n-pointed Riemann surfaces are equivalents, if
there is exist an isomorphism of Riemann surface f : C → D such that f(xi) = yi for all 1 ≤ i <≤ n.

Remark 3.1.14. Let 2g − 2 + n > 0. We denote byMg,n the set of isomorphism classes of Riemann surfaces of
genus g with n-marked points.

Proposition 3.1.15. If g = 0, n = 3, a single point is a coarse moduli space ofM0,3.

Proof. If g = 0, n = 3. Every rational curve (C, x1, x2, x3) with three marked points can be identified with
(P1(C), 0, 1,∞) in a unique way. ThusM0,3 = point.

Proposition 3.1.16.
{z ∈ C, Im(z) > 0}/SL(Z, 2) ∼= M1,1

with SL(Z, 2) the set of 2× 2matrices of determinant equal to 1 and entries inZ.

Proof. Every elliptic curve E is isomorphic to the quotient of C by a rank 2 lattice L. The image of 0 ∈ C is a
natural marked point on E. Thus

M1,1 = {Lattices}/C∗.

Consider a direct basis (z1, z2) of a lattice L. Multiplying L by 1/z1 we obtain a lattice with basis (1, τ), where
τ ∈ {z ∈ C, Im(z) > 0} := H the upper half-plane. Choosing another basis of the same lattice we obtain
another point τ′ ∈ H. Thus the group SL(Z, 2) of direct base changes in a lattice acts onH. This action is given
by (

a b
c d

)
τ =

aτ+ b
cτ+ d

.

We have
M1,1 = H/SL(Z, 2).
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4
Points sets in projective space

The purpose of this section is to construct a projective scheme induced by the subalgebra ofG-invariant elements
of a graded algebra. Later on, using tools from Geometry invariant theory we will see how the point of the latter
projective scheme can be interpreted as isomorphism classes of Del Pezzo surface. This Chapter is based from
chapter 1 and 2 of the book ([3])

Before we dive into that, it is important to bear in mind the following notation we will use throughout this
section :

Notation 4.0.1. k: an algebraically closed field of characteristic p ≥ 0;
Pn : the n−dimensional projective space over k;
Pm
n = (Pn)

m = Pn × · · · × Pn, m times;
πi : Pm

n → Pn = the i−th projection;
G = Aut(Pn);

σ : G× Pm
n → Pm

n : the morphism of diagonal action:

σ(g, (x1, ..., xm)) = (g(x1), . . . , g(xm)), g ∈ G, , (x1, ..., xm) ∈ Pm
n ;

p1 : G× Pm
n → G, p2 : G× Pm

n → Pm
n = the projections;

L =
⊗m

i=1 π
⋆
i (OPn(l)), where l is the smallest positive integer satisfying the equality

lm = w(n+ 1)

for some integer w.
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Definition 4.0.2. A linear algebraic group H over a field k is a smooth closed subgroup scheme of GL(n+ 1) over k,
for some positive integer n.

Definition 4.0.3. A connected linear algebraic groupH over an algebraically closed field k is called reductive if every
smooth connected solvable normal subgroup of H is trivial.

Example 4.0.4. The group G = Aut(Pn) is a reductive algebraic group.

Except stated otherwise, Throughout this section we fix the integers n andm and the invertible sheafL of Pm
n

andG as described above.

Definition 4.0.5. A G-linearization ofF a sheaf on an algebraic variety X with an action σ : G × X → X is an
isomorphism:

σ⋆(F) ' p⋆2(F),

where p2 : G× X → X is the second projection.

Proposition 4.0.6. L admits a unique G-linearization.

Proof. According to ([8],chapter 1, proposition 1.4) G does not admits non-trivial characters, therefore it is
enough to construct one G−linearization of L. Moreover, one can view G as an open subset of Pn2+2n, the
complement of which is the determinantal hypersurface of degree n+ 1. This will imply that

OG(1)⊗n+1 ' OG(n+ 1) ' OG.

SinceG acts linearly on each factor Pn of Pm
n , we have a natural isomorphism

(πi ◦ σ)⋆(OPn(l)) ' p⋆1OG(l)⊗ (πi ◦ p2)⋆OPn(l).

Thus

σ∗(L) = σ∗(⊗m
i=1π∗i (OPn(l))) = ⊗m

i=1(πi ◦ σ)∗(OPn(l)))

' ⊗m
i=1p∗1OG(l)⊗ (πi ◦ p2)∗(OPn(l))

' p∗1OG(ml)⊗ p∗2L = p∗1OG(w(n+ 1))⊗ p∗2L

' p∗1OG ⊗ p∗2L ' p∗2L.

Remark 4.0.7. For every G-linearized sheafF on a G-variety X there is a natural linear representation of G in the
space Γ(X,F). In fact it comes from the fact that we have the following composition:

Γ(X,F)
σ∗−→ Γ(G× X, σ∗F) −→ Γ(G× X, p∗2F) −→ Γ(G,OG)⊗ Γ(X,F),
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In fact the second arrow is defined by the linearization ofF and the last arrow is defined by the Künneth formula
(2.1.122). Moreover we can regard g ∈ G as a homomorphism of k-algebras

g : Γ(G,OG) → k

t 7→ g(t) := t(g).

and we set the action of G on Γ(X,F) to be as follow : For g ∈ G we have

ρ(g) : Γ(X,F) → Γ(X,F)

s 7→ ρ(g)(s) := (g⊗ 1)(σ∗(s)).

As a matter of fact for every g ∈ G and s ∈ Γ(X,F) we have :

ρ(g)(s) = (g⊗ 1)(σ∗(s)),

= (g⊗ 1)(sG ⊗ sX) (where σ∗(s) = sG ⊗ sX ∈ Γ(G,OG)⊗ Γ(X,F), )

= g(sG)⊗ 1(sX),

= sG(g)⊗ sX ∈ Γ(X,F) with sG(g) ∈ k .

Definition 4.0.8. We will denote the subspace of G-invariant sections Γ(X,F)G i.e the subspace of Γ(X,F) whose
element s are such that ρ(g)(s) = s for every g ∈ G.

Coming back to our situation, by setting X = Pm
n andF = L, the following proposition holds

Proposition 4.0.9. The graded k-algebra Rm
n =

⊕∞
k=0 Γ(Pm

n ,L
⊗k)G is of finite type, where L⊗k is also a G-

linearization that is the k−th tensor product of the G-linearization ofL.

Proof. SinceL is an ample invertible sheaf on Pm
n , the graded k-algebra

∞⊕
k=0

Γ(Pm
n ,L

⊗k)

is of finite type. Furthermore the group G acts on this algebra by automorphisms of graded algebras, and Rm
n

is the subalgebra ofG-invariant elements graded by

(Rm
n )k = Γ(Pm

n ,L
⊗k)G.

However, sinceG a is reductive algebraic group,Rm
n is of finite type over k according to ([? ]).

Remark 4.0.10. One can set
Pm
n = Proj(Rm

n )

to obtain a projective algebraic variety over k. This projective variety will be precisely the object of our study.

The following section will give us some tools in order to be able to compute Rm
n as a space of graded homoge-

neous polynomials.
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4.1 StandardMonomials
Let Pn = P(V) the projectivization of a n+ 1-dimensional spaceV over k. One has the following isomorphism

Γ(Pn,OPn(k)) ∼= Symk(V∗),

where

Sym(V∗) =

∞⊕
k=0

Symk(V∗).

is the graded symmetric algebra of the dual vector spaceV∗. Furthermore, by the Künneth formula,

(Rm
n )k = Γ(Pm

n ,L
⊗k)G = Γ(Pm

n ,⊗m
i=1π∗i OPn(kl))

G ∼= ((Symkl(V∗))⊗m)G.

Remark 4.1.1. The linear representation ofG inΓ(Pm
n ,L

⊗k) is them-th tensor product of its natural representation
in the space of homogeneous polynomial function on V of degree kl.

Proposition 4.1.2. Consider an element of Rm
n as a function μ(v1, ..., vm) on Vm which is a homogeneous polyno-

mial of degree kl in each variable. Then the functions

μτ(v
1, ..., vm) =

∏
1≤wk

det(vτi1 , . . . , vτin+1)

span (Rm
n )k, where τij ∈ {1, ...,m} and each of the value in {1, ...,m} occurs exactly kl times.

Definition 4.1.3. A wk× (n+ 1)matrix

τ =


τ11 · · · τ1n+1
...

. . .
...

τwk1 · · · τwkn+1


is said to be tableau if

(i) all its entries belongs in {1, ...,m},

(ii) the set
{(i, j) : τij = a}

has cardinality kl for all a ∈ {1, ...,m}

(iii)
wk∑
j=1

τij = wk

.

and the corresponding function μτ is said to be the monomial that belong to τ. The number wk is weight of τ or μτ
and the number kl is its degree.
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Remark 4.1.4. We assume that τij 6= τij′ for j 6= j′ and each i. Otherwise the corresponding monomial is zero.

Definition 4.1.5. A tableau τ is said to be standard if

τij < τij+1 for each i = 1, ...,wk, j = 1, ..., n,

τij ≤ τi+1j for each i = 1, ...,wk− 1, j = 1, ..., n+ 1.

Definition 4.1.6. A standard monomial is a monomial that belongs to a standard tableau.

Theorem 4.1.7. The standard monomials of degree kl and weight wk form a basis of (Rm
n )k.

Proof. To prove the linear independence of the set that spans the space (Rm
n )k we refer to ([2]) for its proof. We

will prove instead that anymononial is a linear combination of standard ones. We present the following algorithm
for the proof which is iterative:

• We suppose that μτ is not standard. We then permute the entries of each row of τ so that in the new
tableau τ′ all rows are in strictly increasing order. Then we will have :

μτ = ±μτ′ .

Next we permute the rows of τ′ so that in the obtained tableau τ′′

τ′′i1 ≤ τ′′i+11 for each i = 1, ...,wk.

Continue permuting the rows so that if τij = τi+11 then τij+1 ≤ τi+1j+1. Note that these permutations
do not change the monomial. We call the monomial obtained so far semi-standard.

• The rest of the algorithm proceeds by induction on the lexicographic order of tableaux defined by the
setting τ < τ′ if

(τ11, . . . , τwkn+1) < (τ′11, . . . , τ′wkn+1)

with respect to the lexicographic order.
Furthermore we suppose that μτ is not yet standard and let i0 be such that

τi0j0 > τi0+1j0

for some j0. Consider the increasing sequences:

S1 = (s1, ..., sj0), S2 = (sj0+1, ..., sn+2), S = (S1, S2),

Where

sk = τi0+1k if k ≤ j0,
= τi0k−1 if k > j0.

LetA ⊂
∑

n+2 be the subset of thepermutationgroup
∑

n+2 such that σ ∈ A if andonly if (sσ(1), ..., sσ(j0))
and (sσ(j0+1), ..., sσ(n+2)) are increasing subsequences of S. One set for every σ ∈ A
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τσ′ = (τi0,1, ..., τi0,j0−1, sσ(j0+1), ..., sσ(n+2)),

τσ′′ = (sσ(1), ..., sσ(j0), τi0+1,J0+1, ..., τi0+1,n+1).

On the other hand for every sequence γ = (i1, ..., in+1) of numbers from {1, ...,m} one will consider the
determinant

(γ) = (i1, ..., in+1) = det(vi1 , ..., vin+1) ∈ (V∗)⊗n+1

as a section of π∗i1OPn(1)⊗ ...π∗in+1
OPn(1). For example,

μτ =
wk∏
i=1

(τi),

where τi is the i-th row of τ. Then we have

∑
σ∈A

sgn(σ)(τ′στ′′σ ) ∈ Γ(Pm
n , πs∗1 (OPn(1))⊗ ...⊗ πs∗n+2

(OPn(1))) ∼= (V∗)⊗n+2

is skew-symmetric and dimV = n+ 1 hence the above sum is identically zero.
therefore we can write

(τi0)(τi0+1) = −
∑
σ∈A′

sgn(σ)(τ′στ′′σ )

where A′ = A− {id}.
Let τ(σ)′ denote the tableau that is obtained from τ by replacing τi0 with τσ, and replacing τi0+1 with τ′′σ .
Let τ(σ) be obtained from τ(σ)′ by rearranging the rows in increasing order. then

μτ = −
∑
σ∈A′

sgn(σ)sgn(τ′(σ))μτ(σ)

Where μτ(σ) = sgn(τ′(σ))μτ(σ)′ . It is obvious that

τ(σ) < τ

for every σ ∈ A′. Thus we can continue our algorithm until we express μτ as a linear combination of
standard monomials.

Remark 4.1.8. Since all standard monomials are equal to zero if m ≤ n, we see that for such m and n, all the
spaces Pm

n are empty. Similarly, if m = n + 1 then all standard monomials are powers of μ1,...,n+1. Hence Pm
n is a

one-point set.
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Example 4.1.9 (n = 1,m = 4). We take w = 2, l = 1. A standard tableau τ of degree k must look like

τ =

a11 a22
a12 a23
a13 a24


where aji is a column vector that consists entirely of the integer i in the j−th column of τ. Let us denote by |aji| the height
of aji, meaning the number of times that the integer i is realized in the j-th column of the matrix τ. It follows from
the definition of standard tableau that we have the following equalities:

|a11| = |a24| = k, |a12|+ |a22| = |a13|+ |a23| = k

|a11|+ |a12|+ |a13| = |a22|+ |a23|+ |a24| = 2k.

This shows that (R4
1 )k is completely determined by standard tableau τ with |a12| = a that satisfies

0 ≤ a ≤ k.

Therefore we will have

dim((R4
1 )k) = k+ 1.

Moreover if we set the following standard tableau

t0 = μ1 2
3 4


, t1 = μ1 3

2 4



Then by rearranging the determinants in the factorization of ti0 and t
k−i
1 we will have :

ti0t
k−i
1 = μ

a11 a22
a12 a23
a13 a24



where a = |a12| = k− i.

This implies that
R4
1
∼= k[t0, t1]

Thus P4
1
∼= P1
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4.2 Points sets in projective space from aGeometric
Invariant Theory point of view

In this section we will show that the spaces Pm
n from the previous section are quotients of some open subset of

Pm
n by the action of PGL(n + 1). This approach is quite palpable as the set Pm

n is directly linked to the set of
semi-stable points of n-projective space modulo out by a reductive algebraic group.

Before getting into that let us revisit some useful notions.

Definition 4.2.1. Let G be a reductive algebraic group that acts regularly on an algebraic variety X and L be a
G-linearized ample invertible sheaf on X. A point x ∈ X is semi-stable with respect toL if there exists a G-invariant
section s ∈ Γ(X,L⊗k) for some positive k such that

s(x) 6= 0

Definition 4.2.2. A semi-stable point x ∈ X is said to be stable if there exists a G-invariant sections s ∈ Γ(X,L⊗k)

with s(x) 6= 0 , such that G acts with closed orbits in the set

{y ∈ X |s(y) 6= 0}

and the stabilizer group
Gx = {g ∈ G |g.x = x}

is finite.

Definition 4.2.3. We denote respectively by Xss(L) and Xs(L) the subsets of semi-stable and stable points of X.

Remark 4.2.4. Both of the above subsets are open G-invariant subsets of X.

Definition 4.2.5. A categorical quotient X/G is an algebraic variety together with a surjective morphism π : X →
X/G which is G-equivariant, where G acts identically on X/G, and is universal with respect to this property.

Definition 4.2.6. A geometric quotient is a categorical quotient the fibres of which are the orbits of G in X

Theorem4.2.7. Assume thatX is proper. Then the categorical quotientXss(L)/Gexists and there is an isomorphism

Xss(L)/G ∼= Proj(
∞⊕
k=0

Γ(X,L⊗k)G).

Moreover, the open subset Xs(L)/G of Xss(L)/G is a geometric quotient of Xs(L).

Proof. We first recall that

X ∼= Proj(
∞⊕
k=0

Γ(X,L⊗k))
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because X is proper andL is ample. Let

AX =

∞⊕
k=0

Γ(X,L⊗k), CX = Spec AX.

The groupG acts on AX and on CX and therefore according to ([8], Theorem 1.1) the space

(SpecAX)
G ∼= CX/G.

Letm ∈ CX/G be the point defined by the maximal ideal
⊕∞

k>0 Γ(X,L
⊗k) of (AX)

G. Then its pre-image in
CX is the set of all points which define non-semi-stable points in X. Thus the projection CX → CX/G induces a
morphism

Xss(L) → Proj((AX)
G).

It will be easy to check that it is indeed a categorical quotient of Xss(L) byG.

We denote by

Φ : (Pm
n )

ss → Pm
n

the canonical projection of the categorial quotient. We set

D = (Pm
n )

ss − (Pm
n )

s, D′ = Φ(D).

The projection

Φ : (Pm
n )

s → Pm
n −D′

is the geometric quotient.

Corollary 4.2.8.
Pm
n
∼= (Pm

n )
ss(L)/G.

4.2.9 Semi-stability criterion
The Hilbert-Mumford numerical criterion allows us to describe the set of semi-stable point sets.

Definition 4.2.10. A one-parameter subgroup of G, λ : k∗ → G is a group homomorphism.

Proposition 4.2.11. Let x be a closed point of X and λ : k∗ → G the one-parameter subgroup, we define the map:

μx : k
∗ → X

α 7→ λ(α).x.
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Then μx extends uniquely to a morphism:
μ′x : A1 → X

and defines the point

μ′x(0) := limα→oλ(α).x

Remark 4.2.12. μ′x(0) is fixed under the action of the image of k∗ by λ and the restriction of L to it defines a
k∗-linearized invertible sheaf on it. It is therefore completely determined by a character

χ(λ, x) : k∗ → k∗

α 7→ αr(λ,x) where r(λ, x) is an integer.

Proposition 4.2.13. Let X a proper algebraic variety. Then we have

x ∈ Xss(L) iff r(λ, x) ≤ 0 for all λ : k∗ → G

x ∈ Xs(L) iff r(λ, x) < 0 for all λ : k∗ → G

Theorem 4.2.14. Let x = (x1, ..., xm) ∈ Pm
n . Then x ∈ (Pm

n )
ss(L) if and only if for any proper subset {i1, ..., ik}

of {1, ...,m}

dim span(xi1 , ..., xik) + 1 ≥ k(n+ 1)
m

.

Moreover, x is stable if and only if the strict inequalities hold.

Proof. Let λ : k∗ → G be a one parameter subgroup of G. We then choose homogeneous coordinates in Pn in
such a way that the action of λ(k∗) is diagonalized. this means that

λ(α)(t0, ..., t1) = (αr0 t0, ..., αrn tn)

for some integers ri.Wemay also assume that:

r0 ≥ r1 ≥ ... ≥ rn,
n∑

i=1

ri = 0 r0 > 0

Let

X =

t
(1)
0 . . . t(m)

0

. . . . . . . . .

t(1)n . . . t(m)
n


be the matrix whose columns are the homogeneous coordinates of the points x1, ..., xm. For every orderedm-

tuple I = (i1, ..., im), ij ∈ {0, ..., n}we denote by XI the monomial t(1)i1 . . . t(m)
im .
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ThemonomialsXI are coordinates of points ofPm
n in the Segre embedding given by the sheaf⊗m

i=1OPn(1). For
every ordered l-tuple L = (L(1), ...,L(l)) the products

XL =

l∏
i=1

XL(i)

are the coordinates of points of Pm
n in the Segre-Veronese embedding given by the sheaf ⊗m

i=1OPn(1). A one
parameter subgroup λ : k∗ → G acts on these coordinates via :

λ(α)(XL) = αN(L)XL,

where

N(L) =
n∑

i=0

niri,

and where ni is the number of times that i appears in L(1), ...,L(l). By proposition (4.2.13) we have to look
for the points (x1, ..., xm) such that

minL{N(L) : XL 6= 0} ≤ 0 (resp.<0). (4.0)

Permuting the points x1, ..., xm we may assume that the matrix X of their coordinates has the following form:


∗ . . . ∗ ∗ . . . ∗ . . . ∗ . . .

0 . . . 0 ∗ . . . ∗ . . . ∗ . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . . 0 . . . ∗ . . .

 ,

︸︷︷︸
K0

︸︷︷︸
K1

︸︷︷︸
Kn

where the bottom most entry in each column that is indicated by a ′′∗′′ is non-zero. Obviously the minimum
N(L) occurs when

L(i) = {0, ..., 0︸ ︷︷ ︸
K0

, 1, ..., 1︸ ︷︷ ︸
K1

, . . . , n, ..., n︸ ︷︷ ︸
Kn

}

ordered sequence for all i = 1, ..., l, and it is equal to l
∑n

i=0. Nownote that every vector r = (r0, ..., rn) satisfying
(4.2.9) can be written as a linear combination of the vectors

rd = (rd,0, ..., rd,n) = (n− d, ..., n− d︸ ︷︷ ︸
d+1

,−(d+ 1), ...,−(d+ 1)︸ ︷︷ ︸
n−d

)

d = 0, ..., n− 1, with positive coefficients. This shows that it is enough to check (4.2.9) for each λ defined by
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r = rd for some d < n. We find that :

N(L)/l =
n∑

i=0

rd,iKi = (n− d)
d∑

i=0

Ki − (d+ 1)
n∑

i=d+1

Ki

= (n− d)
d∑

i=0

Ki − (d+ 1)(m−
d∑

i=0

Ki)

= (n+ 1)
d∑

i=0

Ki −m(d+ 1).

Therefore (4.2.9) holds if and only if

d∑
i=0

Ki ≤
m(d+ 1)
(n+ 1)

for d = 0, ..., n− 1.

Having said that, we observe that the maximal number of points among the xi’s which span a projective subspace
of dimension at most d is equal to

∑d
i=0 Ki. Thus (4.2.9) holds if and only if the condition of the theorem is

satisfied.

Corollary 4.2.15.
(Pm

n )
ss = (Pm

n )
s ⇔ m and n+ 1 are coprime

In particular, Pm
n is nonsingular in this case.

Corollary 4.2.16. Let m ≤ n, then
(Pm

n )
s = ∅.

Proof.

dim < x1, ...xm−1 > +1 ≤ m− 1 <
(m− 1)(m+ 1)

m
≤ (m− 1)(n+ 1)

m
< n+ 1.

Remark 4.2.17. Similarly, we see that if m = n+ 1

(Pm
n )

ss = ∅.

Definition 4.2.18. Let d = (d1, . . . , dj) be a partition of n + 1. A partition d with respect to m is admissible if
ki = dim

(n+1) is an integer for each i = 1, ..., j.

Remark 4.2.19. The partition d = (n+ 1) is admissible and is called trivial.

Definition 4.2.20. Let d be an admissible partition of n + 1 with respect to m and L1, ...,Lj be disjoint subspaces
of Pn of dimension d1 − 1, ..., dj − 1 respectively. We consider the natural map :

Θ : (LK1
1 )s × ...× (LKj

j )s → Pm
n
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We set Ud(L1, ...,Lj) = Im(Θ) in Pm
n and Ud the union of the subsets of Ud(L1, ...,Lj) for all possible choices of

disjoint subspaces L1, ...,Lj and their images under permutation of factors.

Proposition 4.2.21. U(n+1) = (Pm
n )

s, D = ∪d 6=(n+1)Ud and

dimΦ(Ud) =

j∑
i=1

(di − 1)(Ki − di − 1).

Proof. The proof goes as follow:

dimΦ(Ud) =

j∑
i=1

dim((LKi
i )s/PGL(di))

=

j∑
i=1

(di − 1)(Ki − di − 1).

Theorem 4.2.22. Pm
n is a normal rational variety of dimension n(m− n− 2) if m ≥ n+ 2 and dimension zero

if m = n+ 1. Its singular locus is contained inD′.

Proof. The ring
⊕∞

k=0 Γ(X,L
⊗k) being normal follow from the fact that the Segre and Veronese varieties are

projectively normal. Hence, this implies thatRm
n is normal and therefore

Pm
n = Proj(Rm

n )

is normal. We know that, ifm ≥ n+ 2,

dimPm
n = dimΦ((Pm

n )
ss) = dimΦ(Un+1) = n(m− n− 2),

and Pm
n is a point ifm = n+ 1. Moreover, the singularities of Pm

n and its rationality will follow from themuch
stronger result that Pm

n −D′ is covered by open subsets each of which is isomorphic to an openU ⊂ An(m−n−2).
In order to see that we remark that a point set (x1, ..., xm) ∈ (Pm

n )
scannot be separated by two disjoint linear

subspaces. Indeed, there do not exist disjoint linear projective subspaces L′ and L′′ of Pn such that every xi lies in
either L′ or L′′. In fact, if this happens, after a permutation of the points, the coordinate matrix of x look like(

X1 0
0 X2

)
.

This will imply that dimGx > 0, and hence x is not stable. Thus we can choose n+1 point xi which are not in one
hyperplane, say x1, ..., xn+1. Without loss of generality we may assume that the coordinate matrix of x1, ..., xn+1

is equal to the identity matrix In+1.

Moreover, for eachkbetween2andm−nwe letS′k be the set of integers i such that thepoints x1, ..., x̂
i, ..., xn+1, xk+n

span Pn. In other words,
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S′k = {i ∈ {0, ..., n} |xn+k
i 6= 0},

Where xn+k = (xn+k
0 , ..., xn+k

n ). However, as the set {0, ..., n} cannot be separated into two disjoint subsets
l′ and l′′ such that every S′k is contained in l′ or l′′. Thus there exits a suitable set of subsets Sk ⊂ S′k such that

(i) ∪Sk = {0, ..., n};

(ii) Si ∪ (Si−1 ∪ ... ∪ S2) consists of one integer, for 3 ≤ i ≤ m− n.

LetU be the open subset of Pm
n defined by

Pn = Span(x1, ..., x̂i, ..., xn+1, xn+k) for all i ∈ Si, k = 2, ...,m− n,

Pn = Span(x1, ..., xn+1).

There exists a unique g ∈ G such that for every x ∈ U the coordinate matrix of g.x has the following form:

[In+1 X],

where for eachK, theK-th column of X has 1 as the entries in he rows whose indices are from SK.

For example, if {S2, ..., Sm−n} = {{0, ..., n}, {n}, ..., {n}}, the coordinate matrix of g.xmust look like
1 0 0 . . . 0 1 ∗ . . . ∗
0 1 0 . . . 0 1 ∗ . . . ∗
. . . . . . . . . . . . . . . . . . ∗ . . . . . .

0 0 . . . 0 1 1 1 . . . 1


To see this, we observe that after reducing the points x1, ..., xn+1 to the points (1, 0, ..., 0), ..., (0, ..., 0, 1) by a

suitable g ∈ G, there are still non-trivial transformations left inGwhich fix x1, ..., xn+1. They are the homotheties

(t0, ..., tn) → (λ0t0, ..., λntn), λ0...λn = 1.

Thus wemay use them to normalize the j-th coordinate of xn+2, j ∈ S2. Thenwe normalize the j-th coordinate of
xn+3 for j ∈ S2 ∩ S3 by a projective factor. Next one uses again the homotheties to normalize the remaining i-th
coordinate of xn+3 for i ∈ S3, and so on. Clearly this defines g uniquely and defines aG-equivariant isomorphism

G× An(m−n−2) ∼= U,

whereG acts onG by left multiplication and identically on the affine space. However, the affine spaceAn(m−n−2)

is the space of all non-normalized coordinates of the points from g.x. This shows that (Pm
n )

s is covered by the in-
variant open subsetsU∩ (Pm

n )
s whose quotients are open inAn(m−n−2). And this will prove the above statement.

Besides, it also shows that the projection
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Φ : (Pm
n )

s → Pm
n −D′

is a principal fibre bundle ofG over Pm
n −D′ in the sense of ([? ]), Definition 0.10.

Example 4.2.23. If n = 1 and m is odd then we have

(Pm
1 )

s = (Pm
1 )

ss,

moreover Pm
1 is a nonsingular rational variety of dimension m− 3. Besides that, when m = 5, P5

1 is isomorphic to a
Del Pezzo surface of degree 5 which will be studied in chapter 5.

The above example amplifies the connection that point sets and and Del Pezzo surfaces have in common. The
following section will provide us with concepts and notions that will enable us to see those connection in more
details. However before we get into that it is important to recall the following definition :

Definition 4.2.24. A point set x ∈ Pm
n is said to be general if any subset of K ≤ n + 1 points spans a K − 1-

dimensional linear projective space. The set of all general points will be denoted

(Pm
n )

gen

Remark 4.2.25. Moreover Theorem (4.2.14) implies:

(Pm
n )

gen ⊂ (Pm
n )

s

4.3 Blowing-ups of point sets
We will see that there is a natural variety associated to each projective point set x in Pm

n . Among other things we
will introduce an important notion namely,the blowing-up varietyV(x)which is defined by a general point set x
and by other point sets that will be called infinitely near point sets. In this section we will provide a dictionary for
some of the concepts mentionned above and lay out the blueprint for the most important notion of this chapter:
the Generalized Del Pezzo varieties (GDP).

Definition 4.3.1. Let Z be a smooth algebraic variety of dimension n > 1, z ∈ Z be a closed point. A variety
Z′ = Z(z) is the the blow-up of Z at z if it satisfies the following properties:

(i) there exists a proper birational morphism π : Z(z) → Z that is an isomorphism over Z− {z};

(ii) there is a natural isomorphism
π−1(z) ∼= P(T(Z)z) ∼= Pn−1,

where T(Z)z is tangent space of Z at z.

Remark 4.3.2. The blow-up of Z at z is defined uniquely up to isomorphism.
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Definition 4.3.3. Let Z be a smooth algebraic variety of dimension n > 1, and zin ∈ Z. An infinitely near point
of order 1 to Z is a closed point z′ ∈ Z(z) lying in E = π−1(z). It will be denoted by

z′ → z

Remark 4.3.4. An infinitely near point of order k to z is defined by induction as an infinitely near point of order 1
to an infinitely near point of order k− 1 to z. It is denoted

z(k) → ... → z(1) → z.

LetZm denote the Cartesian product ofm copies ofZ. For every subset L of {1, ...,m}with |L| ≥ 2 andwith
0 ≤ k ≤ m, we denote

Δ(m)L = {(z1, ..., zm) ∈ Zm : : zi = zj for all i, j ∈ L},

Δ(m)k = ∪|L|=kΔ(m)L, Δ(m) = Δ(m)2,

U(m)k = Zm − Δ(m)k. U(m) = U(m)2,

πi : Zm → Z, i-th projection,

πm = π1 × ...× πm−1 : Zm → Zm−1

Theorem 4.3.5. For every m ≥ 1 there exists a proper birational morphism of smooth varieties

bm : Ẑ
m → Zm

satisfying the following properties:

(a) the restriction of bm over U(m) is an isomorphism;

(b) bm is a composition of blowing-ups with smooth centers,

(c) If m ≥ 2 there exists a smooth proper morphism

π̂m : Ẑ
m → Ẑ

m−1

such that the fibre (π̂m)−1(z) over z ∈ Ẑ
m−1

is isomorphic to the blowing-up of z considered as a closed point
on the fibre (π̂m−1)−1(π̂m−1)(z));

(d) the diagram :
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Ẑ
m

Zm

Ẑ
m−1

Zm−1

π̂m

bm

bm−1

πm

commutes;

(e) If m = 1

Ẑ
1
= Z1 = Z,

(π̂2)−1(z) = Z(z) = blowing-up of z ∈ Z

Proof. Let Ẑ
0
be a single point, Ẑ

1
= Z, π̂1 : Ẑ

1 → Ẑ
0
. Then for each i > 1 define inductively a Y = Ẑ

i−1
-

variety π̂i : Ẑ
i → Ẑ

i−1
as follows. By assumption, Ẑ

i−1
is aV = Ẑ

i−2
-variety. Define Ẑ

i
as the blowing-up of the

diagonal of Y×V Y, and the morphism
π̂i : Ẑ

i → Ẑ
i−1

as the composition of the blowing-up morphism with the projection of the fibred product to he first factor.
Define the projections bi : Ẑ

i → Zi by induction as follows. Let b1 be the identity. Assume that bi−1 : Ẑ
i−1 →

Zi−1 is defined. The composition of the two projections

Y×V Y → Y = Ẑ
i−1

with bi−1 define two projections toZi−1, hence 2i−2 projections pK and qK toZ,K = 1, ..., i−1. Since pK = qK
forK = 1, ..., i− 2, we obtain i projections p1, ..., pi−1, qi−1 to Z. Let b1 be the composition of the blowing-up
morphism Ẑ

i → Y×V Ywith the product Y×V Y → Zi of the these projections. Since we only blow up smooth
projective varieties along smooth centers, all the varieties Ẑ

i
are smooth and themorphisms π̂i are proper and bira-

tional. Proporties (a),(d),(e) follows immediately from the construction. Meanwhile to (c) we use the definition
of the tangent space of a variety Z at a point z ∈ Z as the fibre of the inverse transform of the normal sheaf of the
diagonal of Z × Z under the diagonal map Z → Z × Z. On the other hand to see (b) we use induction onm.
By construction b2 : Ẑ

2 → Z2 is the blowing-up of Δ12. Assume bm−1 : Ẑ
m−1 → Zm−1 is the composition of

blowing-ups with smooth centers.

The morphism

φ0 = π̂m−1 × 1 : X0 = Ẑ
m−1 × Z → Zm = Zm−1 × Z

is a composition of blowing-ups with smooth centers. Thus, one easily checks that themorphism bm : Ẑ
m → Zm

is equal to the composition:

Ẑ
m
= Xm

φm−→ Xm−1 → · · · → X1
φ1−→ X0

φ0−→ Zm,
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whereφ1 : X1 → X0 is the blowing-upofφm−1
0 (Δ1m(m)),φ2 : X2 → X1 is the blowing-up (φ0◦φ1)

−1(Δ2m(m)),

and so on. It is easy to see that

Xm−1 ∼= Ẑ
m−1 ×Ẑm−2 Ẑ

m−1
,

and φm is the blowing-up to the diagonal isomorphic to (φ0 ◦ ... ◦ φm−1)
−1((Δ)m−1m(m)).

Remark 4.3.6. It is convenient to see every closed point of Ẑm
as an m-tuple ẑ = (ẑ1, ..., ẑm), where each point ẑi is

either a point of Z or an infinitely near point to some ẑj with j < i. We will drop the hat over a point from Z. In this
notation the morphism bm : Ẑ

m → Zm sends ẑ = (ẑ1, ..., ẑm) to z = (z1, ..., zm), where zi ∈ Z and ẑi is either
equal to zi or is infinitely near some to some zj, j < i. Moreover the projection π̂m is the map

(ẑ1, ..., ẑm) → (ẑ1, ..., ẑm−1)

Definition 4.3.7. The blowing-up variety Z(ẑ) of ẑ = (ẑ1, ..., ẑm) ∈ Ẑ
m
is defined by:

Z(ẑ) = (π̂m+1)−1(ẑ) ⊂ Ẑ
m+1

.

Remark 4.3.8. The blowing-up variety Z(ẑ) comes with a natural birational morphism

σ(ẑ) : Z(ẑ) → Z.

Moreover, it is the composition of the morphisms

Z((ẑ1, ..., ẑm)) σ(ẑ)m−−−→ Z((ẑ1, ..., ẑm−1))
σ(ẑ)m−1−−−−→ . . .

σ(ẑ)2−−−→ Z(ẑ1) σ(ẑ)1−−→ Z

Where

σ(ẑ)i = Z((ẑ1, ..., ẑi)) → Z((ẑ1, ..., ẑi−1))

is the blowing up of the point (ẑ1, ..., ẑi) ∈ Z((ẑ1, ..., ẑi−1)) ⊂ Ẑ
i
.

Coming back to our situation where Z = Pn, we define the space

Ẑ
m
= P̂

m
n ,

The birational morphism

bm : P̂
m
n → Pm

n ,

and the projection

π̂m : P̂
m
n → P̂

m−1
n ,

satisfying the properties stated in the above theorem (4.3.5).
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4.4 Stability in Ẑm

Let Z be a smooth algebraic variety and G an algebraic group that acts on Z. Hence G acts on Zm for every pos-
itive integerm. In this section we will see a way to extend the action of G to Ẑ

m
. However, we will see that, this

can be done in an iterative manner by using the fact that each Ẑ
i+1

is obtained from Ẑ
i
by blowing up the diago-

nal of Ẑ
i×Ẑi−1 Ẑ

i
and that the extension of the action ofG in Ẑ

i
to the fibred product leaves the diagonal invariant.

Definition 4.4.1. Let i : X → Y be a morphism of schemes such that all its fibers are smooth. The relative tangent
bundle of i is the dual of the relative cotangent sheaf ΩX/Y = i⋆(J/J2), where J is the ideal sheaf of the fiber
product X×Y X.

Remark 4.4.2. Let μ : G × Z → Z be an action of an algebraic group on Z, and for all m ≥ 0 let us denote by
μm : G× Zm → Zm be the induced diagonal action of G on Zm. We want to extend this action to an action

μ̂m : G× Ẑ
m → Ẑ

m

such that
μ̂m−1 ◦ (1× π̂m) = π̂m ◦ μ̂m−1,

and μm ◦ (1× bm) = bm ◦ μ̂m.

To do so, let us denote by Tm the relative tangent bundle of the morphism

π̂m : Ẑ
m → Ẑ

m−1

(ẑ1, ..., ẑm) 7→ (ẑ1, ..., ẑm−1).

If ẑm is infinitely near of order 1 to some ẑi, then it belongs to some fibre of

P(Tm|(π̂m)−1((ẑ1, ..., ẑm−1))) ∼= P(T(Z((ẑ1, ..., ẑm−1))))

and it suffices to set

μ̂m(g, ((ẑ1, ..., ẑm))) = (μ̂m−1(g, ((ẑ1, ..., ẑm−1))), dg(ẑm))

where dg is the differential of the map

μ̂m(g) : (π̂m)−1(((ẑ1, ..., ẑm−1))) → (π̂m)−1(μ̂m−1(g, ((ẑ1, ..., ẑm−1)))).

Moreover if ẑm = zm ∈ Z then we have :

μ̂m(g, (z1, ..., zm)) = (μ̂m−1(g, (z1, ..., zm−1)), g(zm)).

Remark 4.4.3. Finding the stable points in Ẑ
m
requires to study the functorial behavior of stability under G-

equivariant maps. The followings definitions and propositions are one step towards that problem.

49



Definition 4.4.4. The scheme X is quasicompact if it has a Zariski cover by finitely many open affine subscheme.

Example 4.4.5. Any affine scheme is a quasicompact.

Definition 4.4.6. Let f : X → Y be a morphism of schemes. We say that f is quasicompact morphism if the inverse
image of any quasicompact Zariski open subset of Y is quasicompact.

Definition 4.4.7. Let f : X → Y be a morphism of schemes. LetL be an invertibleOX module. We say thatL is
f-ample if f : X → Y is quasicompact and if for every affine open V ⊂ Y the restriction ofL to the open subscheme
f−1(V) of X is ample.

Proposition 4.4.8. let G be a reductive group acting on algebraic varieties X and Y, and f : X → Y be a G-
equivariant morphism. Let L (resp. m) be a G-linearized invertible sheaf on Y (resp. on X). Assume that L is
ample andm is f-ample. Then for sufficiently large n the sheaf f∗(L⊗n)⊗ m is ample, and

f−1(Ys(L)) ⊂ Xs(f∗(L⊗n)⊗ m).

Proof. See ( [8], Proposition 2.18).

We now state the result obtains by Z.Reichstein ([10]).

Proposition 4.4.9. Following the notation from the previous proposition we have

f−1(Yss(L)) ⊂ Xss(f∗(L⊗n)⊗ m),

for sufficiently large n.

Proof. See ([10]

Lemma4.4.10. Let f : X → Ybe the blowingup of aG-invariant closed subschemeC ofY. Wedenote the exceptional
divisor of f by E. We fix a very ample G-linearized invertible sheafL on Y, and set

LK̂ = f∗(L⊗K)⊗OX(−E).

Then LK̂ is very ample G-linearized sheaf on X if K is sufficiently large. Moreover The action of G on Y extends
naturally to an action on X.

Remark 4.4.11. Let p : Yss → Yss/G be the quotien map and let

C̃ = p−1(p(C ∩ Yss)).

For every subvariety Z of Ywe denote byZ′ its proper inverse transformunder f, that is, the closure of f−1(Z−(C∩Z))
in X.

Proposition 4.4.12. AssumeXandCare smooth. then, for sufficiently largeK, the open subsetX(LK̂)
ss andX(LK̂)

s

are independent of K and
X(LK̂)

ss = f−1(Y(L)ss)− C̃′
,

X(LK̂)
s = X(LK̂)

ss − (Y(L)ss − Y(L)s)′.
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Remark 4.4.13. In fact we want to apply these result to the case where f : X → Y is the map

bm : Ẑ
m → Zm.

By Theorem (4.3.5), the morphism bm is a composition

YK = Ẑ
m fk−→ Yk−1 → · · · → Y2

f2−→ Y1
f1−→ Y0 = Zm

of blowing-ups with smooth centers.
The following algorithm help us to determine a sequence of G-linearized ample invertible sheavesLi at each Yi.

It goes as follow:

(i) Each blowing-up above is G-equivariant, and its center is isomorphic to a certain proper inverse transform of
some Δ(m)ij. We choose a G-linearized ample invertible sheafL0 on Y0 = Zm.

(ii) Then fromLemma (4.4.10) define a similar sheafL1 = f∗1 (L
⊗n
0 )⊗OY1(−E1), where n is sufficiently large

and E1 is the exceptional divisor of f1.

(iii) Proceed this way until we obtain a sequence of G-linearized ample invertible sheavesLi at each Yi. Moreover
each of theLi defines the subset Yss

i (resp. Ys
i) of semi-stable (resp. stable) points.

Corollary 4.4.14. LetΦi : Yss
i → Yss

i /G be the corresponding quotient projection. We set

Di = Yss
i − Ys

i,

C̃i = Φ−1
i (Φi(Ci ∩ Yss

i )),

where Ci is the center of the blowing-up fi+1. Then we have

Yss
i+1 = f−1

i (Yss
i )− C̃′

i,

Ys
i+1 = Yss

i+1 −D′
i ,

where the ”prime ” means proper inverse transform.

Proof. Applying Proposition (4.4.9) and (4.4.12) to each fi.

Remark 4.4.15. From that observation we have

Yss
i+1 ⊂ f−1

i (Yss
i ),

f−1
i (Ys

i) ⊂ Yss
i+1.

Moreover, since

C̃i+1 ∩ C̃′
i = ∅,
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we have

Yss
i+2 = f−1

i+1(f
−1
i (Yss

i ))− (C̃′
i+1 − C̃′′

i ),

where C̃′′
i is the proper inverse transform of C̃i under fi ◦ fi+1.

Starting with i = 0 up to i = K,we use the above Remark to obtain the following Theorem.

Theorem 4.4.16. Let C̃′ (resp. D′
0) be the proper inverse transform of C̃ = Φ−1

0 (Φ0(δ(m))) (resp. ofD0) under
bm. There exist a G-linearized ampple invertible sheafL0̂ on Ẑ

m
such that

Ẑ
m
(L0̂)

ss = b−1
m (Zm(L0)

ss)− C̃′
,

Ẑ
m
(L0̂)

s = Ẑ
m
(L0̂)

ss −D′
0.

Remark 4.4.17. In particular we have

Ẑ
m
(L0̂)

ss ⊂ b−1
m (Zm(L0)

ss),

b−1
m (Zm(L0)

s) ⊂ Ẑ
m
(L0̂)

s

Definition 4.4.18. Let Z = Pnand G = PGL(n + 1), we take for L0 our standard sheaf L and obtain a G-
linearized ample invertible sheaf L̂. We can define the open subsets of Pm

n
ˆ :

(Pm
n
ˆ )ss, (Pm

n
ˆ )s,

and the quotient

P̂
m
n = (Pm

n
ˆ )ss/G,

the projection

Φ̂ : (Pm
n
ˆ )ss → P̂

m
n ,

and the morphism
b̄m : P̂

m
n → Pm

n

such that the following diagram is commutative:

(Pm
n
ˆ )ss (Pm

n )
ss

P̂
m
n Pm

n

Φ̂

bm

b̄m

Φ
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Proposition 4.4.19. Δ̂(m) is a hypersurface in Ẑ
m
. Its irreducible components are the hypersurfaces Δ̂(m)l, with

|l| = 2.

Proof. See ([3]) page 56.
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5
Del Pezzo surfaces and Generalized Del

Pezzo varieties

5.1 Introduction toDel Pezzo surfaces
In this section we will introduce Del Pezzo surfaces and provide notions and concepts that will be useful for the
final part of this essay. We follow closely the note of ”Commutative algebra and algebraic geometry ” by Olof
Bergvall (here) [1].

Definition 5.1.1 (Rational Maps). Let X and Y be varieties. A rational map f : X 99K Y is a morphism

f : U → Y,

with U a non-empty open subset of X.

Remark 5.1.2. We say that g : U → Y and h : V → Y with U,V open subsets of X are equivalent if

gU∩V = hU∩V.

Definition 5.1.3. A rational map f : U ⊂ X 99K Y is dominant if f(U) contains a dense open subset of Y.

Definition 5.1.4. A birational map is a rational map f : X 99K Y with rational inverse, meaning that f is
dominant and there exists a rational map

g : Y 99K X

such that
g ◦ f = idX and f ◦ g = idY.
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Remark 5.1.5. We say that two varieties X and Y are birationally equivalent if there is a birational map

f : X 99K Y.

Definition 5.1.6. A variety X which is birationally equivalent to Pn for some n is called rational.

5.1.7 Blow-ups
Blow-ups are a class of especially simple birational maps. However, in the following we will only need the special
case of blowing up a surface in a finite set of points.

Definition 5.1.8. Let us consider a surface S and ε : Ŝ → S its blow-up at a regular point P (See 4.2.9 ).

Remark 5.1.9. Let C be an irreducible curve in S which passes through P with multiplicity m, then the closure Ĉ of
ε−1(S−{P}) is an irreducible curve on Ŝ called the strict transform of C. The curve ε∗C is called the total transform
of C.

Lemma 5.1.10. Let S be a surface and let C be an irreducible curve on S passing through the point P ∈ S with
multiplicity m. Then

ε∗C = Ĉ+mE.

Proof. This is a local calculation. In fact, where E = ε−1(P) is the class of exceptional curve of the blow-up.
It is clear that ε∗C = Ĉ + kE for some non-negative integer k so what we want to show is that k = m. As in the
construction of the blow-up, we choose local coordinates x and y so that y = 0 is not tangent to C at P. Then

f = fm(x, y) + fm+1(x, y) + ...

where fk(x, y) is the homogeneous part of degree k of f. Since m is the multiplicity of C at P, we have that
fm(x, y) is not identically zero. We construct Û as above and choose the coordinates x and t = y/x around (P, [1 :
0]). Then

ε∗f = f(x, tx) = xm(fm(1, t) + xfm+1(1, t) + ...),

from which we conclude that k = m.

Proposition 5.1.11. Let S be a surface, let ε : Ŝ → S be the blow-up of a regular point P ∈ S and let E ⊂ Ŝ be the
exceptional curve. Then

(i) there is an isomorphism Cl(S)
⊕

Z → Cl(Ŝ) defined by

(D, n) 7→ ε∗D+ nE.

(ii) Let D1 and D2 be divisors on S. Then

i(ε∗D1, ε∗D2) = i(D1,D2),
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i(ε∗D1,E) = 0,

i(E,E) = −1

(iii) the canonical class of Ŝ is
KŜ = ε∗KS + E.

Lemma 5.1.12. Let S be a surface, let C be an irreducible curve in S, let P ∈ C be a point of multiplicity m and let
ε : Ŝ → S be the blow-up of S at P. Then the arithmetic genus of Ĉ is

Pa(Ĉ) = Pa(C)−
1
2
m(m− 1)

Proof. Let E be the exceptional divisor of the blow-up. By lemma (5.1.10) we have

Ĉ = ε∗C−mE.

By the genus formula we have

Pa(Ĉ) = 1+
1
2
i(Ĉ, Ĉ+ KŜ)

= 1+
1
2
i(ε∗C−mE, ε∗C−mE+ KŜ).

By Proposition (5.1.11) we have
KŜ = ε∗KS + E

so,
Pa(Ĉ) = 1+

1
2
i(ε∗C−mE, ε∗(C+ KS)− (m− 1)E)

By Proposition (5.1.11) we have

i(ε∗C, ε∗(C+ KS)) = i(C,C+ KS),

i(ε∗C,E) = i(ε∗(C+ KS),E) = 0

i(E,E) = −1.

We now see that

Pa(Ĉ) = 1+
1
2
i(C,C+ KS)−

1
2
m(m− 1) = Pa(C)−

1
2
m(m− 1).

Remark 5.1.13. If P is a multiple point of C, then

Pa(Ĉ) < Pa(C)
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Theorem 5.1.14 (Resolution of singularities of curves in surfaces.). Let S be a surface and let C be an irreducible
curve in S. Then there is a finite sequence of blow-ups

Ŝ = Sn → Sn−1 → ... → S0 = S

such that if f : Ŝ → S is their composition, then the strict transform Ĉ is smooth.

Proof. If C is nonsingular we have nothing to prove. Otherwise we let P ∈ C be a point of multiplicitym ≥ 2
and let

ε1 : S1 → S

be the blow-up of S in P. If C1 is the strict transform of C, then Pa(C1) < Pa(C). If C1 is smooth we stop,
otherwise we repeat the above and thus obtain a sequence S1, S2, ... of surfaces containing curves C1,C2, ... such
that

Pa(Ci+1) < Pa(Ci).

We need to show that the procedure stops. To see this, It is enough to show that the arithmetic genus are
bounded from below. But this is clear: since the curve Ci are connected we have

dimH0(Ci,OCi) = 1

so
Pa(Ci) = (−1)(H0(Ci,OCi)−H1(Ci,OCi))− 1 = dimH1(Ci,OCi) ≥ 0.

Definition 5.1.15 (Minimal surfaces.). Let S be a surface and let B(S) denote the set of isomorphism classes of
surfaces which are birationally equivalent to S. Recall that a surface S′ dominates S if there is a birationalmorphism

S′ → S.

Remark 5.1.16. The set B(S) is partially ordered by domination.

Definition 5.1.17. A surface S is minimal if its isomorphism class in B(S) is minimal.

Remark 5.1.18. Furthermore, S is minimal if and only if every birational morphism f : S → Y to a surface Y is
an isomorphism.

Proposition 5.1.19. Let S be surface. The group Cl(S) contains a subgroup Cl0(S) consisting of divisor classes of
degree 0. the quotient group

NS(S) = Cl(S)/Cl0(S)

is called the Néron-Severi group of S. The Néron-Severi group is a finitely generated abelian group an its rank ρ(S)
is called the Picard number of S. If f : S → Y is a birational morphism, then

ρ(S) ≥ ρ(Y)
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with equality if and only if f is an isomorphism.

Proposition 5.1.20. Every surface dominates a minimal surface.

Proof. Let S be a surface. If S is not minimal, there is f1 : S → S1 such which is not an isomorphism. Then
ρ(S) > ρ(S1). If S1 is not minimal we repeat the above. Continuing in this way we get a sequence of birational
morphisms

fi : Si−1 → Si

which are not isomorphisms and thePicard ranks are thus strictly decreasing. Since thePicard rank is non-negative,
this must terminate eventually.

We recall that S is a surface, P is a point of S and ε : Ŝ → S is the blow-up of S in P, then the exceptional curve
E is siomorphic to P1 and satisfies

i(E,E) = −1.

However the Following theorem of castelnuovo states that the converse is also true. Meaning that any curve E on
a surface which is isomorphic to P1 and satisfies i(E,E) = −1 is the exceptional curve of a blow-up.

Theorem 5.1.21 (Castelnuovo’s contractibility criterion). Let S be a surface and let C be a curve on S which is
isomorphic to P1 and such that i(C,C) = −1. Then there is a surface Y and a point P on Y such that there is an
isomorphism φ from S to the blow-up ε : Ŷ → Y such that C is identified with E under φ.

Remark 5.1.22. Castelnuovo’s criterion is useful to detect exceptional curves because a surface is minimal if and
only if it contains no exceptional curves.

Example 5.1.23. By the Bezout’s theoremwe have i(C,C) > 0 for all curves C onP2 so Castelnuovo’s contractibility
criterion tell us that P2 is minimal. Furthermore the surfaces

Σn := Proj(OP1

⊕
OP1(−n)) for n ≥ 0 ,

called the Hirzebruch surfaces are also minimal with

Σ0 ∼= P1 × P1.

Proposition 5.1.24. Any rational surface canbe obtained fromaprojective plane or aHirzebruch surface by blowing
up a finite number of points.

Definition 5.1.25. A rational surface S with degree d such that −KS is ample and i(KS,KS) = d is called Del
Pezzo surface.

Remark 5.1.26. As stated in proposition (5.1.24), Del Pezzo surfaces can be obtained from a projective plane or
Hizerbruch surface by blowing up a finite number of points. However, we must assume for minimality reasons that
these operations are carried out in the projective plane and that we blow up points outside the exceptional locus in each
step.
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For instance let P1 and P2 be points in P2 and let L be the line through the two points. Let X be the blow-up of P2

at P1 and P2 and let E1 and E2 be the corresponding exceptional curves. Then lemma (5.1.10) implies

L̂ = ε∗L− E1 − E2,

so
i(L̂, L̂) = i(ε∗L, ε∗L) + i(E1,E1) + i(E2,E2) = 1− 1− 1 = −1.

Moreover, since KP2 = −3L it follows from proposition (5.1.11) that

KS = −3ε∗L+ E1 + E2

so, i(L̂,KS) = −3+ 1+ 1 = −1. Thus by the genus formula we have

Pa(L̂) = 1+
1
2
i(L̂,KX + L̂) = 1+

1
2
(−1− 1) = 0.

Which means that L̂ ∼= P1 and by the Castelnuovo’s contractibility criterion we conclude that L̂ is exceptional.
Thus if we blow up further, we want to choose a point outside L to comply with our previous assumptions.

Definition 5.1.27. A set of points P1, ...,Pn with n ≤ 8 in the projective plane P2 are said to be in general position
if:

(i) No three points should lie on a line,

(ii) No six points should lie on a conic,

(iii) and no eight points should lie on a nodal cubic such that the nodes is one of the points.

Proposition 5.1.28. Let S be a Del Pezzo surface. Its degree d is equal to 9 − n with n ≤ 8 the numbers of points
in general position in P2 that we blow up.

Proof. The proof is rather simple in fact, from proposition (5.1.11) we have that

−KS = 3ε∗L− E1 − E2 − ...− En

which implies that:

i(−KS,−KS) = i(3ε∗L, 3ε∗L)− i(E1,E1)− ...− i(En,En)

= 9− n.

Remark 5.1.29. It turns out that the only Del Pezzo surface not obtained as a blow-up of P2 is P1 × P1. Its degree
is 8.
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5.2 Generalized Del Pezzo Varieties

In this section we study the rational varieties obtained by blowing up a point set x̂ ∈ P̂
m
n .

Definition 5.2.1. A generalized Del Pezzo (gDP-variety) of type (n,m) is an algebraic variety V isomorphic to a
blowing up V(x̂) of some point set x̂ ∈ P̂

m
n .

Definition 5.2.2. A blowing-down structure of type (n,m) is a pair (V, σ) where V is a gDP-variety of type (n,m)

and σ is a sequence of birational morphisms

V = Vm
σm−→ Vm−1

σm−1−−→ Vm−2 . . .
σ2−→ V1

σ1−→ V0 = Pn

where σi : Vi → Vi−1 is a blowing up of a closed point.

Remark 5.2.3. Let (V, σ) and (V′, σ′) be two blowing-down structures. They are isomorphic if there exist isomor-
phisms

φi : Vi → V′
i

such that
σ′ ◦ φi = φi−1 ◦ σi, i = 0, ...,m.

Proposition 5.2.4. Let Σm the permutation group action on Pm
n
ˆ , and if n > 2 the blowing-down structure of gDP-

variety is defined uniquely up to isomorphism and up to Σm-action.

Proof. See ([3]) page 64.

Definition 5.2.5. Let X and Y be two smooth algebraic varieties. The morphism

f : X 99K Y

is said to be a pseudo-isomorphism if it induces an isomorphism in codimension 1, meaning it is an isomorphism of
open subset whose complements have codimension≥ 2.

Remark 5.2.6. Any pseudo-isomorphism of surface is an isomorphism.

Definition 5.2.7. Let X be a smooth algebraic variety of dimension n. A cycle Y of codimension r on X is an element
of the free abelian group generated by the closed irreducible subvarieties of X of codimension r i.e

Y =
∑

niYi,

where the Yi are subvarieties, and ni ∈ Z.

Remark 5.2.8. We set Ar(X) the group of algebraic cycles of codimension r modulo algebraic equivalence on X.
Moreover

A(X) =
n⊕

i=0

Ai(X)
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is its Chow ring. Hence we set
N1(X) = A1(X)/ ≡,

N1(X) = An−1(X)/ ≡,

where≡ denotes numerical equivalence as in (2.1.124). If dimX = 2, then we have N1(X) ∼= N1(X).

Definition/Proposition 5.2.9 (Neron-Severi bilattice). Let V be a gDP-variety of type (n,m) and

V = Vm
σm−→ Vm−1

σm−1−−→ Vm−2 . . .
σ2−→ V1

σ1−→ V0 = Pn

be a blowing-down structure. The Neron-Severi bilattice is a pair:

N(V) = (N1(V),N1(V))

with the pairing

i : N1(V)×N1(V) → Z

(D, γ) 7→ i(D, γ)

N1(V) = Zh0 + Zh1 + ...+ Zhm, N1(V) = Zl0 + Zl1 + ...+ Zlm

where

h0 = (σ1 ◦ .. ◦ σm)−1(H), H is a hyperplane in Pn

hi = (σi ◦ .. ◦ σm)−1(xi), i = 1, ...,m,

l0 = (σ1 ◦ .. ◦ σm)−1(l), l is a line in Pn,

h0 = (σi+1 ◦ .. ◦ σm)−1(li), li is a line in σ−1
i

∼= Pn−1, i = 1, ...,m.

such that

i(h0, l0) = 1, i(hi, li) = −1, i 6= 0, i(hi, hj) = 0, i 6= j.

The gDP variety of type (2,m) plays an important role in the study of Del Pezzo surfaces as will see in the
following proposition.

Definition 5.2.10. A point set x̂ ∈ Pm
n
ˆ is in general position if

(i) x̂ does not contain infinitely near points,
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(ii) no 3 points from x̂ are collinear,

(iii) no 6 points from x̂ lie on a conic,

(iv) if m = 8, x̂ does not lie on a cubic with a singular point at one points from x̂.

Proposition 5.2.11. Any Del Pezzo surface is isomorphic to a gDP variety of type (2,m) with m ≤ 8 obtained by
blowing up a point set x̂ ∈ Pm

n
ˆ in general position.

Proof. Theproof follow immediately from the definitionofDel Pezzo surfaces and the fact that these are obtained
by blowing point P2 in general position and that Pm

2
ˆ and P2 are birationally equivalent.

5.2.12 geometric marking of gDP-varieties
Definition 5.2.13 (Lattice). A lattice L is a free abelian group of finite rank equipped with symmetric bilinear
form

m : L× L → Z

(v, v′) 7→ v ◦ v′.

Remark 5.2.14. Tensoring L byR defines a quadratic form on the real vector space LR and therefore we can speak
about signature, rank etc. However we need a more general concept namely bilattice.

Definition 5.2.15. A bilattice is a pair (L1,L2) of lattices equipped with a bilinear form

L1 × L2 : → Z

(v1, v2) 7→ v1 ◦ v2

Remark 5.2.16. A lattice L is considered as a bilattice (L,L).

Definition 5.2.17. Amorphism of bilattices is

φ := (φ1,φ2) : (L1,L2) : → (L′
1,L′

2)

(v1, v2) 7→ (φ1(v1),φ2(v2))

with
φi : Li → L′

i a homomorphism of lattices

satisfying
φ1(v1) ◦ φ2(v2) = v1 ◦ v2, for any v1 ∈ L1, v2 ∈ L2.
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Remark 5.2.18. Every bilattice (L1,L2) admits natural morphisms to the bilattice (Li,L∗
i ), for i = 1, 2 where

L∗
i = HomZ(Li,Z),

is the dual abelian group, and

x.x∗ = x∗(x), for every x ∈ Li and x∗ ∈ L∗
i for i = 1, 2

. Morever a bilattice is said to be unimodular if these morphisms are isomorphisms.

Example 5.2.19. Our main example of lattice is the standard hyperbolic lattice of rank m+ 1

Hm = Ze0 + Ze1 + · · ·+ Zem,

Where
e0.e0 = 1, ei.ei = −1, i 6= 0, ei.ej = 0, i 6= j.

Remark 5.2.20. Another example of bilattice is the Neron-Severi bilattice N(V) of a smooth complete variety.

In particular the Neron-Severi bilatitice is intrinsically related to the standard hyperbolic lattice when V is a
gDP-variety.

Proposition 5.2.21. Let V be gDP variety. Then following the notation of definition (5.2.9) we have that the
following group morphism :

φ1 : Hm → N1(V),

ei 7→ hi,

φ1 : Hm → N1(V),

ei 7→ li,

define an isomorphism of bilattices.

φ = (φ1,φ1) : Hm → N(V).

As a consequence, N(V) is unimodular.

Definition 5.2.22. Let L = (L1,L2) be a bilattice. An L-marking of smooth complete variety V is an isomorphism
of bilattices:

φ : L → N(V).

And L-marked variety V is a pair (V,φ) where φ is a L-marking.
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Lemma 5.2.23. Let f : X 99K X′ be a pseudo-isomorphism of smooth complete varieties. Assume that the Neron-
Severi bilattices of X and X′ are unimodular. Then there exists a natural isomorphism of these bilattices:

f∗ : N(X′) → N(X).

Proof. See ([3]) page 69.

Here we state our main definition

Definition 5.2.24 (A strict geometric marking.). A strict geometric marking of gDP- variety V of type (n,m) is
an Hm-marking

φ := (φ1,φ1) : (Hm,Hm) : → (N1(V),N1(V))

(ei, ei) 7→ (φ1(ei),φ1(ei))

where φ1(ei) = hi, φ1(ei) = li, i = 0, 1, ...,m.

5.2.25 TheWeyl groups

In this section we are looking for a group that acts on the G-orbits in Pm
n
ˆ by acting on the geometric markings.

The natural candidate is the group of ”isometries” of the latticeHm that we denoteO(Hm). It is clear that it acts
onHm-markings

φ : Hm → N(V)

by composing them with isometries
σ : Hm → Hm.

However since this action is not stable under any subset of geometric markings, we have to look for a ”nice” sub-
group ofO(Hm)which consists of isometries ofHm preserving the set of geometricmarkings.It turns out that the
right candidate is the Weyl group of a certain natural root basis inHm.

Definition 5.2.26. Let L be a lattice (5.2.13). An isometry morphism of L is a bijection

σ : L → L,

such that
m(v, v′) = m(σ(v), σ(v′)), for all v, v′ ∈ L.

Remark 5.2.27. We denote by O(L) the set of all isometries of L. Moreover, it is obviously a group.

Definition 5.2.28 (Root Basis.). A root basis in a bilattice L = (L1,L2) is a pair (B, B̂) of subsets of L1 and L2,
respectively, together with a bijection

65



T : B → B̂

α 7→ α̂

satisfying :

(i) α.α̂ = −2 ;

(ii) α.β̂ ≥ 0 for any α, β ∈ B, α 6= β.

Remark 5.2.29. A root basis is symmetric if the following additional property holds:

(iii) α.β̂ = β.α̂ for any α, β ∈ B.

Definition 5.2.30 (Simple reflections). Let L = (L1,L2) be a bilattice and (B, B̂) be a root basis. Let α ∈ B and
α̂ ∈ B̂. Then the a simple reflections

Sα : L1 → L1

x1 7→ x1 + (x1.α̂)α,

and

Sα̂ : L2 → L2

x2 7→ x2 + (x2.α)α̂

are linear involutions of L1 and L2.

Definition 5.2.31. The subgroup of GL(L1) ( resp. of GL(L2) ) generated by Sα ( resp. Sα̂ ) are calledWeyl group
of the root basis (B, B̂) and are denotedWB (resp. WB̂).

Proposition 5.2.32. The following map :

ψ : WB → WB̂

w 7→ ŵ

is an isomorphism.
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Proof. For all α ∈ B, the morphism which associates Sα to Sα̂ extends to an isomorphism

ψ : WB → WB̂

w 7→ ŵ.

Proposition 5.2.33. TheWeyl groupWB is isomorphic to a subgroup of the isometry group O(L).

Proof. Let us prove thatWB is a subgroup of the isometry group O(L). Let x1, x2 be respectively in L1 and L2

then we have

m(w(x1), ŵ(x2)) = m(x1, x2).

Definition 5.2.34. An element of aWB-orbit of B in L1 ( resp. of B̂ in L2) is called a B-root (resp. B̂-root). The
set of such elements is denoted by RB (resp. RB̂).

In fact

RB = {w(α), with α ∈ B, w ∈ WB},

and
RB̂ = {ŵ(α̂), with α̂ ∈ B̂.}

Remark 5.2.35. An element of B ( resp. of B̂) is called a simple B- root (resp. B̂- root.)

Proposition 5.2.36. There is a natural bijection between the set of B- roots RB and the set of B̂- roots RB̂ i.e.

RB ∼= RB̂.

Proof. The bijection between simple B-roots and simple B̂-roots

T : B ∼= B̂

α 7→ α̂

can be extended naturally to a bijection betweenRB andRB̂ i.e

Q : RB → RB̂

w(α) 7→ ŵ(α̂).
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Definition 5.2.37. A B-root w(α) with α ∈ B is called positive (resp. negative) if it can be written as a linear
combination of simple B-roots with integral non-negative (resp.non positive) coefficients, i.e

w(α) =
∑
i∈Z

niβi, with ni ∈ Z≥0 and βi a simple B-root.

And α be a negative B-root of course if all integers ni are negative.

Remark 5.2.38. Let

R+
B = {w(α) =

∑
i∈Z

niβi, with ni ∈ Z≥0 and βi a simple B-root. }

be the set of positive B-roots and

R−
B = −R+

B

the set of negative B-roots.

Example 5.2.39 (The Weyl group of Hyperbolic lattice Hm). Coming back to our situation when L = Hm and
m ≥ n+ 1 ≥ 3, we set the canonical root basis of type n > 1 in Hm by posing:

Bn = {α0, ..., αm−1}

Bm̂ = {α0̂, ..., αm−1ˆ , }

where
α0 = e0 − e1 − ...− en+1, αi = ei − ei+1, i = 1, ...,m− 1,

α0̂ = (n− 1)e0 − e1 − ...− en+1, αî = ei − ei+1, i = 1, ...,m− 1.

It is a symmetric root basis. Moreover we denote byWn,m its correspondingWeyl group.

5.2.40 Discriminant conditions

Definition 5.2.41. Let φ : Hm → N(V) be a geometric marking of a gDP-variety V of type (n,m) and (B.B̂) be
a canonical root basis of type n in Hm. A B-roots α ( resp. B̂-roots α̂) is effective or nodal with respect to the geometric
marking φ if φ1(α) is effective (resp. φ1(α̂) is effective).

Remark 5.2.42. We set :
RB(φ)+ = {α ∈ RB : φ1(α) is effective}

the set of all effective B-roots with respect to the geometric marking φ. And

RB̂(φ)
+ = {α̂ ∈ RB̂ : φ1(α̂) is effective}

the set of all effective B̂-roots with respect to the geometric marking φ
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Definition 5.2.43. Let x ∈ Pm
n
ˆ and φx : Hm → N(V(x)) the corresponding strict geometric marking we set

RB(x)+ = RB(φx)
+

RB̂(x)
+ = RB̂(φx)

+

the set of discriminant conditions on the point set x.

Definition 5.2.44. A point set x (resp. a geometric marking φ) is said to be unnodal if

RB(x)+ = ∅ (resp. RB(φ) = ∅).

Moreover a gDP-variety V is unnodal if all of its geometric markings are unnodal.

Proposition 5.2.45. Assume that gDP-surface V admits an unnodal geometric marking. Then V is unnodal.

Proof. As we will see in the next section, for every geometric marking

φ : Hm → N(V)

ψ : Hm → N(V)

there exists w ∈ W2,m such that

ψ = φ ◦ w

Thus :

α ∈ RB(ψ)+ ⇔ w(α) ∈ RB(φ)+

Corollary 5.2.46. Let V be a gDP-surface. Assume m ≤ 8. The following properties are equivalent:

(i) V is unnodal for some geometric marking φ : Hm → N(V),

(ii) V is a Del Pezzo surface.

Proof. See ([3]) page 80.

5.3 Cremona Action
Let Σm be the permutation group onm letters. It naturally acts on the varieties Pm

n via its natural action on Pm
n .

In this section we will see that this action can be extended to a birational action of the Weyl groupWn,m. In fact,
this action occurs by applying to the point sets certains types of Cremona transformations of Pn.
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Definition 5.3.1. The standard Cremona tranformation T0 in Pn is the birational transformation of Pn defined
by the formula:

T0 : Pn → Pn

(t0, . . . , tn) 7→ (t1...tn, . . . , t0...tî...tn, . . . , t0...tn−1)

where tî means we omit ti in the product.

Remark 5.3.2. The linear system of hypersurfaces defining T0 consists of hypersurfaces of degree n that pass through
the points xi = (0, ..., 1, ..., 0) with multiplicity n− 1. The choice of the basis in this linear system is determined by
the fact that:

T2
0 = IdPn .

Moreover, T0 is defined everywhere except at the points xi which are transformed to the hypersurfaces:

Hi = {(t0, ..., tn) ∈ Pn : ti = 0.}

Lemma 5.3.3. There exists a commutative diagram of birational maps:

Y Y

Pn Pn

f

g

T0

f

where g is an isomorphism, and f is the composition

Y = Ym−1
fm−1−−→ Yn−2

fm−2−−→ Ym−3 . . .
f2−→ V1

f1−→ Y0 = Pn,

where
fk : Yk → Yk−1is a blowing up for the proper transforms of the subspaces

Hi1 ∩ ... ∩Hin+1−k , 0 ≤ i1 < ... < in+1−k ≤ n+ 1, under fk−1 (f0 = id),

and
(f ◦ g)(f−1(Hi1 ∩ ... ∩Hin+1−k)) = Hi1 ∩ ... ∩Hjn+1−k ,

where {i1, ..., ik} and {j1, ..., jn+1−k} are complementary subsets of {1, ..., n+ 1}.
Moreover, under some identification of f−1(Hi1 ∩ ... ∩Hin) and Hj1 with Pn−1, the rational map

f ◦ g ◦ f−1
n−1 : Pn−1 99K Pn−1

is a standard Cremona transformation.
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Corollary 5.3.4. Let σ : V(x) → Pn be the blowing-up of the point set x = (x1, ..., xn+1), φx : Hn+1 → N(V(x))
be the corresponding strict geometric marking. Then there exist a pseudo-isomorphism

h : V(x) 99K V(x)

and commutative diagrams:
V(x) V(x)

Pn Pn

h

σ σ

T0

Hn+1 N(V(x))

Hn+1 N(V(x))

φx

Sα0 h∗

φx

with φx an isomorphism.

Proof. From the lemma above, T0 induces a rational map

h = (fn−1 ◦ ... ◦ f2) ◦ g ◦ (fn−1 ◦ ... ◦ f2)−1 : Y1 = V(x) 99K Y1

which is a pseudo-isomorphism that sends the strict geometric marking

φx : Hn+1 → N(Y1)

of Y1 to the geometric marking ψ = h∗ ◦ φx : Hn+1 → N(Y1) defined by

ψ1(e0) = nφ1(e0)− (n− 1)(φ1(e1) + · · ·+ φ1(en+1)),

ψ1(ei) = φ1(e0)− φ1(e1) + ...+ φ1(en+1) + φ1(ei), i = 1, ..., n+ 1,

ψ1(e0) = nφ1(e0)− (φ1(e1) + · · ·+ φ1(en+1)),

ψ1(ei) = (n− 1)φ1(e0)− (φ1(e1) + · · ·+ φ1(en+1)) + φ1(ei), i = 1, ..., n+ 1.

From the action of the simple reflection Sα0 , we have :

ψ = φx ◦ Sα0 .

Hence in its natural action on the set of markings φ : Hn+1 → N(V), the reflection Sα0 transforms a strict
geometric marking φ = φx of V defined by a point set x = (x1, ..., xn+1) into a geometric marking ψ = h∗ ◦ φ.
Similarly, a simple reflection Sαi transforms φx into φy, where
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y = (x1, ..., xi−1, xi+1, xi, xi+2, ..., xn+1).

Remark 5.3.5. Theproof of the corollaryabove suggests that thewhole groupWn,m acts on the set of pseudo-isomorphism
classes of geometric markings of any gDP-variety V of type (n,m).

Proposition 5.3.6. Let x = (x1, ..., xm) ∈ Pm
n and assume that all point xi are distinct and the first n + 1 points

span Pn. Then for every i = 0, ...,m − 1, there exist a point set y = (y1, ..., ym) ∈ Pm
n , a pseudo-isomorphism

f : V(x) 99K V(Y), a birational transformation

Ti : Pn 99K Pn,

and commutative diagrams:

V(x) V(y)

Pn Pn

f

σ σ′

Ti

Hn+1 N(V(y))

Hn+1 N(V(x))

φy

Sαi f∗

φx

with φx and φy two isomorphism.

Proof. Let
σ : V(x) = Vm → Vm−1 → ... → V1 → Pn

be the corresponding blowing-down structure onV(x). Assume first that i 6= 0. We choose a projective transfor-
mation Ti of Pn which permutes the points xi and xi+1 and sends the remaining points xj to some points yj. The
define the point set y by

y = (y1, ..., yi−1, xi, xi+1, yi+2, ..., ym).

The composition Ti ◦ σmaps the exceptional divisors E1, ...,Em of σ to the points y1, ..., ym of y respectively.
Let (v(y), σ′) be the blowing-down structure corresponding to y. The composition

Ti ◦ σ : V(x) → Pn

blows up the same set y. By the uniqueness of the blowing-up, there exists an isomorphism f : V(x) → V(y)
defining the first diagram in the statement. It is clear that

f∗([σ′−1(yj)]) = [σ−1(xj)] j 6= i, i+ 1,
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f∗([σ′−1(yi)]) = [σ−1(xi+1)],

f∗([σ′−1(yi)]) = [σ−1(xi)].

This implies that

φx ◦ Sαi = f∗ ◦ φy,

which proves our statement. Moreover, let i = 0, since x1, ..., xn+1 span Pn, we may substitute x by a projec-
tively equivalent set to assume that xi = (0, ..., 1, ..., 0), i = 1, ..., n+ 1. Let

f′ : Vn+1 99K Vn+1

be the pseudo-isomorphism defined in the previous corollary. It extends to a pseudo-isomorphism

f : V(x) 99K V(y),

where

y = T0(x) = (x1, ..., xn+1,T0(xn+2), ...,T0(xm)).

It is immediately verified, using the corollary, that φx ◦ Si = f∗ ◦ φy.

Remark 5.3.7. From the previous proposition we can apply any product of simple reflections to a geometric marking
to obtain another geometric marking, provided that at every step the resulting point set x = (x1, ..., xm) satisfies:

(i) x does not contain infinitely near points;

(ii) < x1, ..., xn+1 >= Pn

This can be stated in terms of the strict geometric marking

φx : Hm → N(V(x)),

by saying that all simple B-roots αi are not effective.
Observe that

w(RB(φ)+) = RB(φ ◦ w−1)+, for any w ∈ WB.

This shows that we can apply every w ∈ WB = Wn,m to x if

RB(x)+ = ∅,

meaning that if x is unnodal in the sense of the previous section.
Therefore we have led to study the orbits in the set

(Pm
n
ˆ )un := Pm

n
ˆ − Z
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where

Z = ∪α∈RBZ(α),

Z(α) = {x ∈ Pm
n
ˆ : α ∈ RB(x)+}

Moreover, for i > j > 0, α = ej − ei = αi + ...+ αj−1 ∈ RB, and

Z(α) = Δ̂ij(m).

This shows that

(Pm
n
ˆ )un ⊂ Pm

n
ˆ − Δ̂(m) ∼= Pm

n − Δ(m),

Thus it allows us to use

(Pm
n
ˆ )un, (Pm

n )
un

To denote the same set. Taking α = e0 − ei1 − ...− ein+1 , we obtain that

Z(α) = {x ∈ Pm
n
ˆ : no n+ 1 points lie in a hyperplane}

It follows from the criterion of stability of point sets that

(Pm
n
ˆ )un ⊂ (Pm

n − Δ(m))s.

Set

(Pm
n )

un = ϕ((Pm
n
ˆ )un) ⊂ Pm

n − D̂.

Let us see first that (Pm
n )

un is not empty.

Theorem 5.3.8. For every B-root α the subset

Z(α) = {x ∈ Pm
n
ˆ : α ∈ RB(x)+}

is a closed subset of Pm
n
ˆ . Furthermore, its restriction to (Pm

n
ˆ − Δ̂(m))s is an irreducible hypersurface.

Proof. Let
α = a0e0 − a1e1 − ...− amem ∈ RB.

Assume φx(α) ≥ 0. Since h0 = φx(e0) is numerically effective,

φx(α)h0 = (a0h0 − a1h1 − ...− amhm)h0 = a0 ≥ 0,

If a0 = 0, α = ei − ej for some i, j > 0 (Proposition 4 [3] of chapter 5). Hence
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φx(α) = hi − hj ≥ 0iff xj is infinitely near to xi ,

and Z(α) = Δ̂ij(m) in this case. By proposition(5.3.8), it is a hypersurface.
Assume a0 > 0. By proposition 4 from [3] page 74 we have :

ai ≥ 0, i = 1, ...,m.

Assume that x does not contain infinitely near points. Then

φx(α) = a0h0 − a1h1 − ...− amhm

is the class of effective divisorD if and only if there exists a hypersurface inPn of degree a0 that passes through the
point xi with multiplicity≥ ai. In this case

D = D′ + K1E1 + ...+ KmEm,

where D′ is the proper inverse transform of the hypersurface. The existence of a hypersurface is expressed by
algebraic equations in the coordinates of the points xi. This proves that Z(α) ∩ (Pm

n
ˆ − Δ̂(m)) is a closed subset

of (Pm
n
ˆ − Δ̂(m)).

Now assume x ∈ Δ̂(m). For simplicitywe also assume that x /∈ Δ̂l(m)with |l| > 2. Without loss of generality
we may take x in Δ̂12(m). If K = sup{−a1 + a2, 0}, any effective divisor with class φx(α) contains K(E1 − E2),
where φx(ei) = Ei. Thus φx(α) ≥ 0 if and only if there exists a hypersurface in Pn of degree a0 passing through
x1 with multiplicity ≥ a1 + K, passing through the infinitely near point x2 → x1 with multiplicity ≥ a2, and
passing through the remaining points withmultiplicity≥ ai, i > 2. This expressed by algebraic condition on the
coordinates of the xi’s. And this proves that Z(α) is a closed subset Pm

n
ˆ .

Corollary 5.3.9. Assume that the canonical root system of type n inHm is of finite type. Then (Pm
n )

un (resp. (Pm
n )

un)
is an open zariski subset of Pm

n ) (resp. Pm
n ).

Remark 5.3.10. If (B, B̂) is of finite type, RB andWn,m are finite andWn,m acts biregularly on the open set (Pm
n )

un.
In general,Wn,m does not act regularly on any open subset of Pm

n .

However, the next theorem shows, that at least in the csae n = 2, that the Weyl group acts transitively on the
set of unnodal geometric markings of the same gDP-variety.

Theorem 5.3.11. Let φ : Hm → N(V) and ψ : Hm → N(V) be two geometric markings of a gDP-surface. Then
there exists w ∈ W2,m that

ψ = φ ◦ w.

Proof. Let
φ(ei) = hi, i = 0, ...,m,

ψ(e0) = a0h0 − a1h1 − ...− amhm = φ(a0e0 − a1e1 − ...− amem).
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Since ψ(e0) is numerically effective,

a0 = ψ(e0).h0 > 0, ai = ψ(e0).hi ≥ 0, i > 0.

Set

v = a0e0 − a1e1 − ...− amem,

so that

φ(v) = ψ(e0).

Suppose we show that there exists an element w ∈ W2,m such that

w(v) = e0.

Then

w−1 ◦ φ−1 ◦ ψ(e0) = e0

thus

w−1 ◦ φ−1 ◦ ψ(ei) = eσ(i), i = 1, ...,m,

for some permutation σ of {1, ...,m}. Replacing w by w ◦ σ, we may assume that

w−1 ◦ φ−1 ◦ ψ(ei) = ei, i = 1, ...,m.

This certainly implies that

ψ = φ ◦ w.

To show that such a w exists we assume first that φ is unnodal. By assumption,

RB(φ)+ = ∅.

Then
RB(φ ◦ w)+ = ∅, for any w ∈ W2,n.

thus for every w ∈ W2,n the composition φ ◦ w is unnodal geometric marking. Obviously, φ(v) = ψ(e0) is
represented by an irreducible curve. Thus there exixts an irreducible plane curve of degree a0 with ai-multiple
points at the xi’s. Applying an element of Σm we may assume that

a1 ≥ a2 ≥ .... ≥ am ≥ 0.

This implies that ψ(e0) satisfies the assumptions of Noether’s inequality ([3]), and

76



a = a0 − a1 − a2 − a3 < 0

unless v = e0, in which case we are done. If v 6= e0 we apply Sα0 to v to obtain

w(v) = v′ = (a0 + a)e0 − (a1 + a)e1 − (a2 + a)e2 − (a3 + a)e3 − a4e4 − ...− amem.

Since φ ◦ Sα0 is a geometric marking, φ(Sα0(v)) is the class of a numerically effective divisor. Thus

0 < a0 + a < a0, ai + a ≥ 0, i = 1, 2, 3.

Proceeding in this way, we decrease the coefficient at e0 until we reach the case

w(v) = e0

for some w ∈ W2,m.
Now assuming that φ is any geometric marking and let x be a generic point set, that is the generic point of Pm

2 .
Let

D ∈ Pic(V(x))

represent the class φx(v). We know that

D2 = 1, D.KV(x) = −3.

Since

(KV(x) −D).φx(e0) = −3− a0 < 0,

It follows that h0(KV(x) −D) = 0. By Rieman-Roch

h0(D) ≥ 3

and we may assume that D ≥ 0. Specializing x to the point set x̄ representing the geometric marking φ we
obtain that D specializes to an element of the irreducible linear system |φ(v)| = |ψ(e0)| on V(x̄). Thus we can
chooseD to be irreducible. This easily implies that the linear system |D| is of dimension 2 and defines a birational
morphism

V(x) → P2.

Thus there exists a geometric marking ψ’ ofV(x) such that

D = ψ′(e0).

By theorem (5.3.8), x is unnodal. hence we are in the previous situation and can find w ∈ W2,m for which
w(v) = f0.
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Theorem 5.3.12. Assume m ≤ 8 and char(k) = 0. Then the quotient space

(Pm
2 )

un/W2,m ∼= MDP(m)

whereMDP(m) is the coarse moduli space of Del Pezzo surface of degree 9−m

Proof. First let us recall a constructionof the latter space. Ifm = 4,MDP(4) is a one-point set. Since any set points
of fourpoints in general position is projectively equivalent to the set of referencepoints [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1],
we obtain that all nonsingular Del Pezzo surfaces of degree 5 are isomorphic.

If m = 5 the anticanonical linear system | − KV| maps the surface V isomorphically onto the intersection
of two quadrics in P4. In this caseMDP(5) can be realized as an appropriate quotient of an open subset in the
Grassmann variety of pencils of quadrics in P4. If m = 6, | − KV| maps V isomorphically onto a nonsingular
cubic surface in P3. In this case MDP(6) is constructed by standard methods of geometric invariant theory. If
m = 7, −KV defines a double cover of degree 2 onto P2 branched along a nonsingular quadric curve. Thus
MDP(7) is isomorphic to a certain quotient of an open subset of space quadric curves. Finally, ifm = 8, |−2KV|
defines a double cover onto a singular quadratic coneQ in P3 and ramifies along a curve of degree 6 cut out onQ
by a cubic. the construction ofMDP(8) in this case is similar to the previous case.

Let

(Pm
2 )

un → MDP(m)

be the map defined by forgetting the blowing-down structure. It follows from theorem (5.3.11) Proposition
(5.2.45) that this map factors through the quotient by the finite groupW2,m and defines a bijective map

(Pm
2 )

un/W2,m → MDP(m).

Since both spaces are normal algebraic varieties, the assertion follows from Zariski’s main theorem ([6], page
410).

Remark 5.3.13 ([3], page 94). It is believed that the birational action of the finiteWeyl groupsWn,m on Pm
n can be

extended by a biregular action on P̂
m
n . The quotient P̂

m
2 /W2,m (m ≤ 8) would be a certain compactification of the

moduli spaceMDP(m).
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6
Appendix

Let k be an algebraically closed field. This section treats of the notion of nonsingular projective curve CK with
function field equal toK, whereK is a finitely generated extension field of kwith transcendence degree 1 (function
field of dimension 1).

Remark 6.0.1. Before we define what is a nonsingular projective curve CK, it is important to recall some definitions
and properties that will enable us to have a better understanding of what the latter are. One knows, that for any
given non singular curve Y and a point P ∈ Y, the local ringOP of Y at P will be a regular local ring of dimension
one ([6], chapter 1). Thus by ([4], chapter 12)OP is a discrete valuation ring whose quotient field is the function field
K of Y, and since k ⊆ OP, hence it is a valuation ring of K/k.

Definition 6.0.2. Let Y be a nonsingular curve Y and P ∈ Y, we define the set CK as the set of all discrete valuation
rings of K/k.

Remark 6.0.3. Thus set of the local rings of Y is a subset of CK. the set CK is a topological space by taking its closed
sets the finite subsets and the whole space itself.

Definition 6.0.4. Anabstract nonsingular curve is an open subset U ⊆ CK, where K is a function field of dimension
over k.

Theorem 6.0.5 ([6], page 44). Let K be a function field of dimension 1 over k. Then the abstract nonsingular curve
CK defined above is isomorphic to a nonsingular projective curve.

Proof. See [[6], page 42]
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