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Abstract

Piano rolls are long strips of paper with perforations used in mechanical player
pianos to produce music, but the frailty of the paper in which the rolls are stored
and the need for expensive tools to reproduce them are limiting access to inter-
ested parties. There are two kinds of rolls: metronomic rolls which simply encode
the timing and duration of notes, similar to sheet music, and reproducing rolls
which also capture the subtle nuances of a pianist’s performance.
In this thesis, we use high-quality scans of metronomic rolls provided by the lab-
oratory of the Italian Mechanical Music Association, AMMILAB, and the source
code of a similar project to develop in C# a software capable of converting those
scans into MIDI files.
While at this point the software presented here is still in the early stages of devel-
opment and should be quite similar to the one employed by AMMILAB in scope,
a streamlined management of the code should make adding functionalities and
updating the source code in the future significantly easier.
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Chapter 1

Introduction: understanding piano
rolls

1.1 Piano rolls and player pianos

In his doctorate thesis[13], Peter Phillips simply defines piano rolls as a

paper medium containing a recording, in which a roll is a single entity.

In more detail, piano rolls are a kind of symbolic musical storage medium con-
sisting of a scroll of paper rolled onto a metallic cylinder, punched with holes
representing musical notes, and designed to be played autonomously, with little
human intervention. In conjunction with a piece of specialized equipment for re-
production, they were an early example of “Automatophonic”[7], a mechanism
that was meant to replace the need of a musician but not the instrument itself.

As a means of bringing music to a broader audience, piano rolls were intro-
duced in the late 19th century thanks to the invention of the pneumatic mecha-
nism and gradually replaced earlier contraptions such as the perforated discs or
the wood and metal barrels mostly used with music boxes or barrel organs. At a
time when few people could actually play the piano or any kind of music, these
early recordings could provide entertainment in the home of the upper middle
class of the period.
To read and play these rolls one had to use a player piano, a self-playing acous-
tic piano whose keys could be moved mechanically. These instruments were not
simply devices on which to listen to music, but fully functioning pianos as well.
During playback though, the instrument reproduced the music as the roll was
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2 1.1. Piano rolls and player pianos

Figure 1.1: A reproducing piano and a player piano

unfolded. Where the holes appear in the paper dictates the notes the player pi-
ano would procuce. When air passes through the holes, it generates a pneumatic
force that mechanically pushes the piano keys or the pedals according to the po-
sition of the holes themselves.

A human operator was only needed to manually power the pneumatic pump,
at least until the introduction of electric motors completely eliminated the need
for human intervention.
The earliest kind of piano rolls, called metronomic piano rolls, while relatively
inexpensive to produce presented the significant shortcoming of not being able
to contain expressive dynamics and sported a limited musical range; all notes
played with the same volume, severely limiting the expressiveness and pleasant-
ness of the reproduced music. These rolls were often just metronomic transcrip-
tion of the score and were intended to be played on foot-pumped pianos by a
so-called pianolist, whose job was to transform the mechanical performance into
music. They were also generally crafted meticulously by hand to give the piano-
list the chance to bring their own interpretation to the piece without compromis-
ing its accuracy. A convention, attended by representatives of the roll-making
industry and by player piano manufacturers, was held December 10, 1908, in
Buffalo, New York, at the Iroquois Hotel where it was decided the standards for
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Figure 1.2: Close up of a piano roll

88-note piano roll hole spacing[5]. After that date, two standards remained into
use, the aforementioned 88-note, and a cheaper 65-note. In both cases, the width
of the roll was set at 286 millimeters, making it possible for either kind of roll to
be played on any player or reproducing piano.

1.2 The historical relevance of the rolls

In truth, the piano rolls reached widespread popularity from the early 20th cen-
tury to the 1930s mainly due to the introduction of reproducing rolls that could
reproduce notes and the pedals and dynamic variations, narrowing the gap be-
tween reproduced music and live performance and generally employing an elec-
tric pump so that they could be played completely autonomously.
Generally speaking, a piano roll is divided into three groups of holes with a broad
central area controlling the pitches and duration of the notes, a left edge activat-
ing the bass notes and the sustain pedal, and a right edge in charge of the treble
notes’ expression. In the roll’s central area, pitches increase from left to right,
similar to a piano keyboard. A note’s duration depends on the length of its chain
of holes, which may be continuous or with a minimum distance between subse-
quent holes usually set at 1mm. These bridges leave such thin paper between
subsequent holes that they never block the passage of air during reproduction
and so are invisible to the tracker bar. The first hole in a vertical chain matches a
key-down event and the end of the chain is a key-up event. We can conveniently
visualize a piano roll with a Cartesian plane or a matrix, with notes and other
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functions on the x-axis and the performance progression on the y-axis. Each mo-
ment in time can thus be summarized just by reading the corresponding row on
the roll.
Some reproducing rolls also had three columns on both edges of the piano roll
that managed an ingenious volume-level regulation mechanism. These ports
could generate eight different volume levels independently at each side of the
roll, and it was also possible to increase and decrease the volume step by step.
During playback, the roll moves at a certain speed printed at the beginning of the
roll in units of feet per ten minutes and it is important to note that this measure
of tempo might not match the more usual beats per minute.
More so, while the paper is being pulled through the piano, as the roll builds mo-
mentum the speed increases and needs to be compensated. Thus, before repro-
ducing the roll a device was needed to adjust the speed according to the specific
roll, with a technician manually adjusting a lever in order to do so.

Figure 1.3: A Haines Brothers Ampico reproducing piano

A reproducing roll could be obtained with a recording piano operated in tandem
with the pianist by a technician that could capture in real-time the performance
of the artist down to the finest details and with a high degree of fidelity.
It is this capacity to reproduce the performance of the pianist that attracted the
interest of some of the most famous composers and pianists of their time who de-
cided to record their own work. Thanks to the reproducing rolls we have record-
ings of Debussy, Ravel, Mahler, Richard Strauss, Rachmaninoff, Josef Lhévinne,
and Moritz Rosenthal among others making them the oldest generation of pi-
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anists ever recorded.[14]
Even so, there is a certain mistrust from researchers and enthusiasts alike to-
ward piano rolls, especially when used to research piano practices of famous
pianists[8]. The reason for this is that piano rolls are often heard through record-
ings made on poorly adjusted instruments or not perfectly reconditioned player
pianos. At the time though, competing early acoustic recordings could not match
the high quality of a live piano for playback as they were crippled by poor sound
quality, high noise, and limited recording length. Due to the limitations of the
audio recording technology of the time, a number of artists didn’t record their
work this way, further elevating the piano rolls importance to historians and mu-
sicologists alike.
These advantages of reproducing piano rolls over acoustic recordings ensured
significant commercial success in the first decades of the 20th century with com-
peting companies producing their own reproducing roll systems. The most im-
portant of these include Welte-Mignon, Hupfeld, Ampico, Duo-Art and Philips
Duca but due to variations in the size of the roll, configuration of holes, etc.,
each system is incompatible with the others. Playing any reproducing roll re-
quires a suitable player piano specifically manufactured for that format of roll.
Even worse, the formats further evolved over time so that later rolls by the same
manufacturer simply do not work on older reproducing pianos further crippling
potential interest in researching their importance and value both as an historical
medium and as a musical record.





Chapter 2

A brief history of the digitization of
piano rolls

2.1 Reasons for digitizing piano rolls

Museums and enthusiasts alike keep large collections of piano rolls, in varying
degrees of conservation. In Europe, the two largest collections are the one hosted
at the Musée Mécanique in Paris and the one displayed in the Historisches Mu-
seum of Basel. Despite their historical significance and the relative availability of
large collections of piano rolls, there are two main difficulties preventing scholars
from accessing and studying them.
First of all, piano rolls are made of paper. The frailty of the material is often a
problem for historians and there is a very real possibility of tearing the roll by
mistake even with the utmost care. Worse, many of the rolls are already brittle
and damaged, at risk of quite literally disintegrating. It is no surprise then that
curators of larger collections or in possession of certain uncommon piano rolls
are often hesitant to allow further study.
The second issue is more practical. Unfortunately, having a piano roll and a re-
producing piano is not enough to assure good audio quality, let alone a standard
piano: a reproducing piano in very good condition is needed, which is possible
only with a restored or reconditioned instrument. It is not cheap nor easy to find
one, which is a hard sell for prospective scholars, and the number of restored
player pianos is also decreasing over time.
Digitizing piano rolls may help in solving both issues and at the time of writ-
ing, the process can be summarised as follows: the roll is first spooled through a
scanning device to produce a picture that can be digitally restored or enhanced.
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8 2.2. From early efforts to modern optical scanners

The roll as it spools triggers the scanning device, building up a two-dimensional
image one row at a time that may be full color or greyscale. Various methods
have been tried with optical scanning through a repurposed CIS module being
the most straightforward[17]. For most purposes, a greyscale image is more than
enough, both to contain costs and file size. As we shall see in the next part of the
thesis, for the conversion of the piano roll scan to MIDI format it is enough to have
a greyscale image as it is better recognized by computer vision algorithms[11].
A light source may be placed behind the roll so that the holes appear white if it
benefits the scanning process. The apparatus developed by AMMILAB can work
both ways, even though the process bears better results with a light source in
place.
This certainly serves the purpose of archival preservation but does not allow pi-
ano rolls to be heard as the musical documents they were intended to be. After
the scan, the roll can be digitally repaired and printed anew or, as it shall be dis-
cussed in this thesis, it may be further processed into a MIDI file.
Scanning a piano roll is by itself a gentler process than playing it and the obtained
scans can then be used to create brand new rolls or they can be further processed
into MIDI files to reach a wider audience (as discussed earlier) with the clear ad-
vantage of not having to worry about compatibility between brands and models.
As long as the holes are not obscured or torn apart, it is possible to scan the pi-
ano roll without expensive repair work. In the case of reproducing rolls, the note
dynamics are controlled by the tracks down the sides and an emulator is neces-
sary to mimic the physical process that controls the suction levels and the velocity
with which the hammers hit the strings[19].

2.2 From early efforts to modern optical scanners

Enthusiasts of piano roll technology have been trying to digitize and convert pi-
ano rolls since the 70s, at first only to obtain functional libraries for their Ampico
or Duo-Art reproducing pianos.

Early experiments with fiber optics were immediately recognized as a dead
end but the development of the MIDI protocol and the commercial success of the
Yamaha Disklavier introducing another form of reproducing piano in the mar-
ket revitalized research and interest in the matter. In 1976, Wayne Stahnke man-
aged to successfully digitize piano rolls with a pneumatic-electric roll reader to
be stored on cassettes and launched this system, called the Anpico CC-3, on the
market. In the same years, three pneumatic roll readers were used to convert 2500
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Figure 2.1: A Duo-Art Weber reproducing piano

reproducing and player rolls for the Pianocorder library, one of the first solenoid-
operated pianos. Despite the technical achievement, however, that conversion
had a low sampling rate, meaning the converted data lost expressiveness.
The MIDI protocol introduction in late 1983 helped bring new interest in the pi-
ano roll scene. When Yamaha bought and shut down the company marketing the
Pianocorder and started refusing to sell Disklavier player pianos to third parties,
an American company called PianoDisc developed their retrofit system for acous-
tic pianos by the same name. Unlike the Disklavier, it could fit any piano, not just
Yamaha’s, and it was cheaper. The PianoDisc needed a library of high-quality
music to showcase the capabilities of this retrofit system and for sale. Thanks
to a specific device called ProRecord, a MIDI record strip under the keys of an
Ampico reproducing piano, the company digitized their piano rolls and started
selling this so-called Masterpiece Collection on floppy disks. These are still on
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sale today.

Figure 2.2: The modern successor of ProRecord

It is highly likely that both PianoDisc recordings and those of yet another new
competitor trying to insert itself into this niche but growing market, the QRS
Pianomation player System, were recorded by someone pedalling a push-up pi-
anola sitting before a MIDI piano. Unfortunately, these records were still under-
whelming quality-wise in part due to how quickly QRS and Burgett Inc needed a
library to support their efforts against Yamaha: the problem was yet again achiev-
ing the same quality of the reproducing rolls on the new MIDI instruments as they
would be heard on reconditioned pneumatic instruments.
Even though the MIDI conversions of piano rolls throughout the 80s were still
low quality, there was finally a serious alternative to pneumatic reproducing pi-
anos, lowering the barrier to further studies from interested parties that didn’t
have access to an original reproducing piano. An original restored reproducing
piano was no longer mandatory, one had merely to adapt a retrofit system such
as the Pianomation and the PianoDisc player system to a standard acoustic piano.
In 1993, a project led by Artis Wodehouse involving the conversion to MIDI files
of a handful of Gershwin’s piano rolls took place, thanks to the interest of the
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University of Michigan, the Gershwin family, and Nonesuch Records. The pro-
cess involved restoring and digitizing rolls recorded by Gershwin in the 1910s,
subject to wear due to repeated use. Researchers took high-res photos of each
roll before digitally enhancing their quality and accuracy and converting them
into MIDI data which was in turn used to recreate the original performance on
a modern player piano. Even though the rolls were still serviceable and thus it
would have been possible to merely insert them into a reproducing piano sys-
tem replicating key and pedal movements, this approach aimed to overcome the
limitations of the medium while maintaining the musical content and nuances of
Gershwin’s original performance achieving the highest level of audio quality and
fidelity.
It is of note that American software developer Richard Brandle specifically wrote
software to create the dynamics of each playing note and this process in the con-
test of digitalizing piano rolls is now commonly referred to as emulation. An
emulator’s task is to mimic this process to produce comparable note velocities
in the MIDI files. Brandle then started to sell this software called WindPlay, in-
corporating emulators for Ampico, Duo-Art, and Welte rolls. The software was
somehow inconvenient to users as it required the purchase of a companion pro-
gram called Wind that had to be used to convert MIDI files into the proprietary
bar/ann standard.
In 1996, the first optical roll scanner based on a Logitech handheld paper scanner
was developed by Stahnke and Richard Tonneson. These scans were used to gen-
erate punch-for-punch replica rolls of the digitized rolls. This is especially of note
because, in the following years, the standard approach to digitizing piano rolls
would include optical roll scanners, even though the punch matrix computer files
and the bar/ann standard fell out of fashion.
In 2001, Richard Stibbons founded the International Association of Mechanical
Music Preservationists (IAMMP), promoting the use of flatbed scanners to con-
vert and digitize piano rolls to MIDI standard files, an approach that has been fol-
lowed since with the Italian Mechanical Musical Association and the University
of Pavia supporting a research group that eventually developed the first optical
scanner to use a digital camera called the SISAR project. This scanner was used
to digitize the roll collection of the University of Pavia and its blueprints were
the basis for a similar project by Anthony Robinson and Stanford University in
2014. Both projects are notable because previous attempts commonly used ob-
solete repurposed Mustek A3 flatbeds, nothing more than rows of sensors, a rod
len, and a strip light. The main limitation of this kind of scanner is the depth of
focus, very narrow. Unfortunately, one needs a large enough flatbed scanner to
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repurpose, which is starting to get hard to find. AMMI lab decided instead to
use a conventional camera, with the piano roll placed at some distance from the
camera. The distance at which the camera is placed can be adjusted, so wider
rolls can be processed if the needs manifest.

Figure 2.3: The apparatus built by AMMILAB

Regardless of the approach used to obtain the scanned image, the process
of conversion is straightforward. The first step is detecting all the punches and
recording their position one column at a time. Since the columns are relatively
well spread this is not hard to do and the results are the so-called Raw files. If
one only needs to copy the original rolls, these Raw files are usually more than
enough even though the new punched roll might inherit some inaccuracies and
they are not suited to be played electronically. The harder part is to assign each
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punch to its row, a step commonly referred to as Punch Matrix Recovery. This is
considerably more challenging because in the original roll, holes might overlap
with one another, the rows may be skewed or the row spacing may be uneven.
Interestingly enough, if this step is performed with care the obtained files known
as Punch files can be used to create copies of the original roll with perfectly accu-
rate rows and columns. There are currently two software used for Punch Matrix
Recovery, one by Warren Trachtman and the other by Wayne Stahnke. The for-
mer, while easier to use is also inaccurate and thus completely unusable so there
is no choice unless one decides to do it from scratch. Stahnke’s software is also
prone to making mistakes and there is often the need for a visual inspection for
manual correction. At this point, the next step involves offsetting events in the
scanned image to correspond with the periods when they pass over the tracker
bar ports to generate Bar files. These Bar files can be played by retrofitted player
pianos as a cheaper alternative to original rolls and emulated MIDI files may be
played on digital synthesized pianos or modern solenoid-operated pianos such
as the aforementioned Yamaha Disklavier.





Chapter 3

Choice of instruments

3.1 C# and AvaloniaUI

At the time of writing, there are various digital archives of piano rolls[22] and a
handful of projects similar to the one presented on these pages, at various degrees
of usability.
Why then start a new project from scratch instead of working on the software still
employed by AMMILAB? The main reason is that the original code is very hard
to maintain and change, let alone build upon. Instead, we aim to offer a strong
foundation for future releases and even though we are going to ship the software
with far fewer functionalities than the AMMILAB software at first, it should be
considerably easier to add more along the line. How exactly we are going to
achieve just that will be explained in the next section.
Going back to the language of choice, for this specific project, we feel that C#
has its own set of advantages over Python, the programming language AMMI-
LAB software is written with. Being a compiled language means faster execution
time and better performance, making C# a solid choice in spite of Python’s ever-
growing pool of useful libraries that make writing passable code easier. Python is
usually favored for its concise syntax, versatility, ready-to-use libraries and cross
platform compatibility but in switching to C#, we aim to avoid incurring in de-
pendencies issues that are common in working with small-scale Python projects
or having to rely on third-party libraries that may or may not be maintained in
the future.
It is of note that this issue is inherent to the black box programming approach
and that every developer has to deal with it to some degree. As software de-
velopers, we are used to exploiting someone else’s code at our heart’s content,

15



16 3.1. C# and AvaloniaUI

C# Python
Developed by Microsoft. Comes
with the license.

Open-source development and
distribution.

Based on OOP concepts. Supports multi-paradigm pro-
gramming (OOP, procedural).

Supports work on .NET frame-
work.

Can be integrated with Java
(JVM), .NET, C and JavaScript.

Dependency injection is easy
out of the box.

No concept of DI.

Because of the Common Lan-
guage Infrastructure (CLI)
framework, C# is faster and
offers better performance.

Lackluster performance.

Multi-threading is quite easy us-
ing the .NET framework.

Because of the Global Inter-
preter Lock (GIL), multithread-
ing requires multiple processes.

Table 3.1: C# versus Python.

thinking of their classes and methods as nothing more than a box with precondi-
tions and postconditions. But what if that code gets deprecated and we suddenly
need to do the heavy lifting ourselves? We may or may not be able to fix new
issues as they arise. That’s why it is imperative when starting a new project to
be very wary of importing libraries and packages to our code in order to keep
dependencies to a minimum.

The only library we really need is OpenCV[12], which does not support C#
out of the box. To tackle this issue, we are going to make extensive use of an
open-source wrapper, EmguCV[6], to make it work with our C# code. At first
glance, the need to use a wrapper may seem a significant downside, but OpenCV
was originally written in C and C++ and only works with Python code out of the
box thanks to its own officially supported wrapper. While not official, EmguCV is
both open source and well-maintained since its first release in 2008 and it’s thank-
fully not overly hard to set up the first time. The community is also quite active
and fast to solve issues on Github making EmguCV a safe choice to get the best of
both worlds: a fast compiled language and a powerful library to take advantage
of without having to worry too much about it getting deprecated quickly.
The second reason for switching to C# is portability. Thanks to the .NET frame-
work and ecosystem it is quite easy to port code from different architectures with
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minimal modifications to the source code and we have been extensively using
containers paired with a simple CI/CD pipeline to ensure painless debugging,
especially in the early stages of development. While this is by no means a novel
concept and not unique to C#, far from it[9], it is nonetheless a useful best prac-
tice that can ease the burden of adding more functionalities on top of preexisting
work.
Regarding portability in particular, another limitation of the AMMILAB software
is the use of Qt for its UI module. Qt is primarily a C++ framework and while
it can work with Python thanks to its PyQt binding, it is far from ideal and rele-
gates the project to the Microsoft Windows ecosystem. Since we are switching to
C# it has been decided to make use of the common ground provided by the .NET
framework and change UI technology to Avalonia.
Avalonia is open source, lightweight, and easy to set up and run and it’s also an
UI tool that has a strong focus on building cross-platform desktop applications. It
also supports the MVVM pattern design approach thanks to the powerful Reac-
tiveUI framework which we favored over CommunityToolkit.Mvvm for its focus
on easy multithreading and concurrent programming which can be crucial for
building a responsive application, something that Python is amazing at despite
GIL preventing true parallelism and that we felt the need to somehow replace.

The common ground in choosing Avalonia and C# is that both have a strong
emphasis on performance and in trying to trim anything that might encumber
the software the hope is to pave the way for a modular approach to development
and support future releases down the line while favoring a platform-agnostic
development experience.

3.2 The MVVM design pattern

In this section, we aim to provide some context to our claim that in choosing
Avalonia/ReactiveUI we would be able to improve the software capabilities of
getting more functionalities down the line. The need to properly separate UI
and underlying code logically and semantically for testing and maintaining pur-
poses is indeed significant and properly addressing them can be a monumental
task[20].
Developers often structure their code without a specific design pattern in mind,
writing out line after line of code, and eventually their project reaches a critical
point where the complexity and intricacies of classes and methods overwhelm
them and they need to refactor their work, if possible. Structuring the project
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Strengths of Qt Strengths of Avalonia
C++ framework with a wide
range of features and tools for
GUI applications.

Open-source framework for
building cross-platform desktop
applications in C#.

Strong integration with C++ and
support for a wide variety of
platforms, including Windows,
Linux, macOS, mobile, and em-
bedded systems.

Designed specifically for C# de-
velopers bused upon a XAML-
based markup language.

Wide selection of customizable
UI elements and themes.

Supports MVVM (Model-View-
ViewModel) architecture.

Qt Creator IDE provides its own
development environment

Supports Visual Studio and
other C# development en-
vironments, making it more
accessible

Well-documented with a large
and active community

Open-source and community-
driven with growing support
and an expanding ecosystem.

QML provides a powerful way
to create fluid and responsive
user interfaces using a declara-
tive language.

Offers a similar approach with
XAML for building cross-
platform UIs with a focus on
flexibility and performance.

Extensive capabilities for appli-
cation deployment and distribu-
tion.

Cross-platform support for Win-
dows, Linux, and macOS

Table 3.2: Qt versus Avalonia.
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with a specific design pattern in mind form the very beginning can ease this issue
to the point of never feeling it at all.
In the case of UI-creation technologies, the mistake to avoid is letting the UI han-
dle more than it should, without a clear separation of responsibilities from the
code-behind layer. This is especially bad since code referenced in the UI layer
of an application is very hard to test and debug without running the applica-
tion or launching scripts to automate the task. It also makes it more difficult to
refactor the code, as the logic to perform a business function may be copied or
cross-referenced anywhere in the code [4].
Between 2004 and 2006, Jean-Paul Boodhoo, John Gossman and Martin Fowler
each presented their own version of something quite similar, a design pattern to
promote a clear separation of scope between these two layers, the View Layer and
the View-Model layer that is between the UI and the code-behind. The gist of it is
that the code-behind does not need to see the view to be effective. The view binds
to properties on a ViewModel, which, in turn, exposes data contained in model
objects and other state-specific to the view. It is of paramount importance that the
model and the view-model are unaware of the UI layer. By binding properties of
a view to a ViewModel, you get loose coupling between the two and entirely re-
move the need for writing code in a ViewModel that directly updates a view. It
should be noted that this is no mere incapsulation: separating the business logic
from the UI overhead let us test and debug our code without even being aware
of our prospect users which in turn helps reducing the effort of mantaining and
upgrading our code.

Figure 3.1: The logic behind the MVVM design pattern
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In addition, the app UI can also be redesigned without touching the view
model and model code, provided that the view is implemented entirely in XAML
or C#. Therefore, a new version of the view should always work with the existing
view model without even touching a single line of code behind it. While this is
not our case study, it is also of note that when tackling a bigger project, designers
and developers can theoretically work independently and concurrently on their
components during development. Designers can focus on the view, while devel-
opers can work on the view model and model components.
The MVVM pattern is well established in .NET, and the community has created
many frameworks that help ease this development. While it is not necessary to
use these frameworks, they can speed up and standardize mantaining the code,
even though they do slow initial releases. Let us focus on each of the three com-
ponents of the MVVM design pattern, then. For a more in-depth coverage of this
topic please refer to the excellent [23].
The view is responsible for defining the structure, layout, and appearance of what
the user sees on screen. Ideally, each view is defined in XAML (or in the case of
Avalonia, AXAML) with a limited code-behind that does not contain business
logic. There are several options for executing code on the view model in response
to interactions on the view, such as a button click or item selection. If a control
supports commands, the control’s Command property can be data-bound to an
ICommand property on the view model and we shall see that this will actually
be the case with Avalonia. Behaviors can be attached to an object in the view and
can listen for either a command to be invoked or the event to be raised.
The view model implements properties and commands to which the view can
data bind to and notifies the view of any state changes through change notifica-
tion events. The properties and commands that the view model provides define
the functionality to be offered by the UI, but the view determines how that func-
tionality is to be displayed. Multithreading happens here, with frameworks and
languages capable of parallelism using asynchronous functions to improve per-
formance.
Model classes are non-visual classes that encapsulate the app’s data. Therefore,
the model can be thought of as representing the app’s domain model, which usu-
ally includes a data model along with business and validation logic.
Once we do have the UI up and running though we need it to react to users’
input, and to help mantaining the code in the future we want to avoid hardcod-
ing where possible. ReactiveUI[16] is right tool for the job. It is a composable,
cross-platform model-view-view model framework for all .NET platforms, that
is inspired by functional reactive programming, which is a way of coding with
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asynchronous data streams[21]. Buses or click events are really an asynchronous
event stream on which you can observe and do some side effects. In this case,
loading the configuration files and then processing the image with the user inter-
vention before the conversion into MIDI files. We capture these emitted events
only asynchronously, by defining a function that will execute when a value is
emitted, another function when an error is emitted, and another function when
’completed’ is emitted. Reactive Programming raises the level of abstraction of
the code so we can focus on the interdependence of events that define the busi-
ness logic, rather than having to constantly fiddle with a large amount of im-
plementation details. In truth, the benefit is more evident in modern webapps
and mobile apps that are highly interactive with a multitude of UI events related
to data events. Implementing ReactiveUI in this particular project should help in
maintaining the code if and when the software grows in functionalities and needs
to handle interaction with the users better. At this point in time it has been added
to the code only in minimal part at the Model View layer.
Clearly, this approach needs to merge view and models at runtime if it wants
to succeed. There are two ways in which to tackle the challenge: a view first
composition or a model first composition. For this project, we decided to follow
a view first composition where we follow the visual structure of the app since
we deemed it easier than the alternative which was to follow code at runtime
to better understand its inner workings. By following the principles outlined
here, view models can be tested in isolation, therefore reducing the likelihood of
software defects by limiting scope. Similarly, view models can be created declar-
atively or programmatically. We decided to build them declaratively, as it feels
natural to instantiate a view model object when the corresponding view gets con-
structed.





Chapter 4

Discussion of the code

The majority of the work done here is just reaping rewards from the careful plan-
ning done in the previous sections. At this point, the software can and should
be developed in watertight compartments, ideally with team members tackling
different parts of the project according to their strengths. Thankfully, the MVVM
design pattern let us do just that. We can now work on the Model layer where we
started tackling the computer vision part of the project and the Util layer where
we developed a useful Logger that should prove beneficial when it is time to add
more functionalities.
The structure of our project looks like this:

C:.

| App.axaml //Avalonia XAML

| App.axaml.cs

| app.manifest

| PianoRollMIDIConverter.csproj //config files for dependencies

| Program.cs

| README.md //check it out on GitHub

| tree.txt //this file

| ViewLocator.cs

|

+---.vscode

| launch.json

| tasks.json

| //cache, user-specific settings

|

+---Assets

23
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| //... assets for UI

|

+---bin //binaries

+---Models

| ConfigHandler.cs

| ImageHandler.cs

| //...

|

+---obj

+---Tests //a scripting folder for debugging

| | main.csx

| | omnisharp.json

| | Sandbox.cs

| |

| \---.vscode //do not commit this folder, a .gitignore file should be added

| launch.json

|

+---ViewModels

| MainWindowViewModel.cs

| ViewModelBase.cs

| // ...

|

\---Views

MainWindow.axaml

MainWindow.axaml.cs

// ...

4.1 Handling .rcf configuration files

The MIDI conversion software developed by AMMILAB uses .rcf files to handle
configuration. Before attempting a conversion, the user has to manually select
the correct configuration. If the conversion is not successful, the software will
crash. There are several such files, each tailored for a specific brand of perforated
piano rolls. For specific rolls, there are even custom configurations. Inside these
files, there are a number of parameters ranging from the holes ratio to the roll
velocity. While the number of parameters does vary, to our knowledge the .rcf
file will always start with the string ”[ROLL CONFIG]”. In order to streamline
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this part of the software, it was decided to move from RCF/SHC files to simple
JSON objects that can be manipulated later on. We proceeded to write a simple
C# class to convert those .rcf files to the JSON object this software will use to han-
dle configuration. For the serialization/deserialization of the JSON objects we
decided to use Json.NET, a third-party library often employed for its highly effi-
cient algorithms that should help in trimming any overhead. The code presented
here only considers relevant code that needs commenting, for a better look at the
whole project please refer to the repository on GitHub.

//... environment ...

namespace PianoRollMIDIConverter.Models

{

public class ConfigHandler

{

private readonly string filepath;

public ConfigHandler(string filepath)

{

this.filepath = filepath;

}

protected async Task<Dictionary<string, string>> ConfigParser(

string filepath

)

{

var config = new Dictionary<string, object>();

string fileDump = "42"; //magic number for csc

try

{

fileDump = await File.ReadAllTextAsync(this.filepath);

}

catch (Exception e)

{

// ...

}

string[] lines = fileDump.Split(’\n’);

lines = lines.Select(line => line.Trim()).ToArray();

JObject jsonObject = new JObject();
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foreach (string line in lines)

{

// ignore empty lines or lines starting with ’[’

if (line.StartsWith("[") || string.IsNullOrWhiteSpace(line))

continue;

// split key/value pair

string[] parts = line.Split(’=’);

if (parts.Length == 2)

{

string key = parts[0].Trim();

string value = parts[1].Trim();

// add pair to JSON

jsonObject[key] = JToken.FromObject(value);

}

}

// optional: from JSON to Dictionary

config = jsonObject.ToObject<Dictionary<string, object>>();

return config;

}

}

}

While the code itself is very easy to follow, there are still a couple of points that
would benefit from a brief explanation. First of all, the filepath string has the key-
word readonly attached to it not for security purposes but only to strengthen the
code by enforcing constraints on variable mutability. Following the same logic,
ConfigParser is a protected method.
We defined ConfigParser as an async method and we shall use it for every part of
the code that might be called from the UI. The reason for that is to guarantee that
the UI stays responsive and to better utilize resources. While this is by no means
a problem right now, the software employed by AMMILAB is a bit slow, and
computer vision algorithms are especially resource-intensive. The most impor-
tant feature of asynchronous programming is that it supports cancellation tokens
and they should be used to end stuck tasks gracefully when incurring into a sus-
piciously long runtime. Also, if in the future part of the features of this software
get delegated to API calls, asynchronous programming is very useful.



Chapter 4. Discussion of the code 27

4.2 Why is it necessary to write a Logger

One of the best ways to ensure painless debugging is to create a log service to
register anything that might go wrong in our code. One could argue that we do
not need this, that the stack trace is more than enough to assist developers in
debugging code, and while with the right IDE it is somewhat possible to do so,
redundancy when debugging is very welcome. This is especially important since
this project will probably be continued with the assistance of other people, and
we may need to work on each other’s code. A log goes a long way in helping
set up the right workspace. It is also the industry standard to have such things
in any decent medium-sized project. To create the Logger, we decided to use a
Singleton class. In object oriented programming, a singleton class is a class that
can have only one instance of the class at a time. After the first time, if we try to
instantiate the Singleton classes, the new variable also points to the first instance
created. So whatever modifications we do to any variable inside the class through
any instance, affects the variable of the single instance created and is visible if we
access that variable through any variable of that class type defined. After that,
we only need to reference the singleton class instance in our Model layer classes.

//... environment ...

namespace PianoRollMIDIConverter.Models.Utils

{

public sealed class LoggerSingleton

{

//this is the only instance of our Logger

private static LoggerSingleton _instance = null;

//a block to guarantee one single instance made available

private static readonly object lockObject = new();

//Serilog instance, it will access the Console and the Sink for us

private ILogger _logger;

//please note the private constructor

private LoggerSingleton()

{

//desired configurations, rollingInterval is up to debate

_logger = new LoggerConfiguration()

.MinimumLevel.Debug()
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.WriteTo.Console()

.WriteTo.File("log.txt", rollingInterval: RollingInterval.Day)

.CreateLogger();

}

public static LoggerSingleton Instance

{

get

{

//it guarantess that just one thread creates the instance

lock (lockObject)

{

_instance ??= new LoggerSingleton();

return _instance;

}

}

}

//gives us the Serilog instance

public ILogger Logger => _logger;

}

}

Serilog is an open-source .NET library for structured logging in applications
and what it actually does here is to access Console for us. The code is again
very easy to follow, now that we have a logging service it’s very easy to call the
logging instance and to dump message on a log file. If and when trouble arises,
we can just first of all access the file and check what went wrong. This is especially
useful when we do not actually know what went wrong in the first place. Now,
whenever we do something in our code that might throw an exception or even
better that can silently fail we just need to dump the result in our shared logger:

public class ConfigHandler

{

private readonly string filepath;

private readonly ILogger _logger;

public ConfigHandler(string filepath)

{

this.filepath = filepath;
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_logger = LoggerSingleton.Instance.Logger;

}

...

protected async Task<Dictionary<string, object>> ConfigParser

(

string filepath

)

{

...

try

{

fileDump = await File.ReadAllTextAsync(this.filepath);

_logger.Information

(

"File di configurazione caricato correttamente."

);

}

...

4.3 Contour detection using EmguCV

In order to convert into MIDI files the perforated piano roll scans, we need to
be able to recognize two different patterns in our images: the dynamic line and
the holes representing musical notes. As long as we focus on perforated piano
roll scans taken with the optical scanner lights on, we can do both with OpenCV
findContours algorithms.
Let us focus on the recognition of the dynamic line. While at this point the soft-
ware does not recognize the holes yet, a very similar routine should prove suffi-
cient to detect them in the future.
The strategy is as follows: first of all if the scan is full color, we convert it into
greyscale. The reason is that findContours algorithms work better at pattern
recognition if the image is greyscale. Then we employ a mix of blur filters to
reduce noise and smooth the edges of prospect contours. Since we are inter-
ested in detecting prominent shapes, blurring helps in making our processing
routine more robust to small variations in light or color. The last part of the pre-
processing routine is contrast enhancement with a negative shift.

At this point, launching EmguCV shape detection algorithm will not yield
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Figure 4.1: A section of perforated piano roll before processing

acceptable results. As we can see in the next image, there are spurious contours
detected all around the scan. The paper is old and likely to have stains or tears
so it’s not surprising. What’s more worrying is that findContours will detect
comments, for instance about musical tempo such as ”Allegretto” in this section.
It’s clear that we need to filter out spurious contours and we did just that in
two passages. First of all, we can filter out shapes that are not akin to circles.
Please note that in the case of holes, we would merely filter out shapes not akin
to pseudo ellipsis so yet again the strategy stays the same. The second filter is by
distance. Contours too far from other contours are clearly spurious. Now that we
managed to filtered out all the spurious contours, a simple linear interpolation
will return the processed dynamic line. Please refer to the next images to see the
results of the various passages.

The relevant code is too long to discuss here in its entirety but there are still
two passages that we’d like to highlight:

...

// Area and shape filter

double areaThreshold = 0.8;

double shapeThreshold = 0.9;

List<List<Point>> filteredContours = new List<List<Point>>();

foreach (var contour in contours)

{
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Figure 4.2: Greyscale and blurred section of a perforeted piano roll

double contourArea = CvInvoke.ContourArea

(

new VectorOfPoint(contour.ToArray())

);

double perimeter = CvInvoke.ArcLength

(

new VectorOfPoint(contour.ToArray()),

true

);

double expectedCircleArea = (perimeter * perimeter) / (4 * Math.PI);

VectorOfPoint contourVector = new VectorOfPoint(contour.ToArray());

RotatedRect boundingBox = CvInvoke.MinAreaRect(contourVector);

double width = boundingBox.Size.Width;

double height = boundingBox.Size.Height;

double aspectRatio = Math.Max(width / height, height / width);

if

(

(contourArea / expectedCircleArea) > areaThreshold

&& aspectRatio > shapeThreshold

)
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Figure 4.3: The result of the findContour algorithm

{

filteredContours.Add(contour);

}

}

...

In this part of the code, we try to detect which contours are good candidates
for actually being part of the dynamic line. The parameters chosen to make such
a distinction are completely heuristic. We found that a bigger areaThreshold had
too big a chance of deleting non-spurious contours. In the next code snippet, we
calculate the center of the centroids of the surviving candidates to further filter
based on relative distance. It is of note that we decided not to filter based on
Euclidean distance: a sudden shift on the x-axis is more likely to be a sign of a
spurious contour while a jump on the y-axis might just be caused by a blotch on
the paper or a hole covering a single point of the dynamic line. In other words, the
distance doesn’t have the same weight on both axes and so needs to be processed
separately.

List<PointF> centroids = new List<PointF>();

foreach (var contour in filteredContours)

{
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Figure 4.4: findContour with a filter based on shape

float centerX = 0;

float centerY = 0;

foreach (var point in contour)

{

centerX += point.X;

centerY += point.Y;

}

if (contour.Count > 0)

{

centerX /= contour.Count;

centerY /= contour.Count;

}

centroids.Add(new PointF(centerX, centerY));

}
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Figure 4.5: findContour with a filter based on shape and distance

Figure 4.6: The filtered contours interpolated to follow the dynamic line



Conclusions

Perforated piano rolls are a curious oddity that, in spite of their historical sig-
nificance, has been set aside solely due to the inherent difficulties in finding a
refurbished player piano and the degrading conditions of the rolls themselves.
In recent years, great efforts have been made to at least digitize the available pa-
per rolls, in constant danger of tears. The scans can then be employed to print
new rolls or to convert them into MIDI files with the aid of computer vision soft-
ware.
In these pages we outlined the tools used to start the development of one such
software, similar in scope to the one realized by AMMILAB but easier to upgrade
and maintain.
We set up EmguCV, AvaloniaUI, and Reactive UI and managed to realize the pre-
processing routine and the computer vision tools to correctly detect the dynamic
line of perforated piano rolls. While at this point the software is not yet able to
detect holes, a tweaked similar strategy should theoretically be able to detect the
holes’ contours.
The configuration files employed by AMMILAB are also correctly recognized and
processed by the new software thus assuring painless switching to the new soft-
ware as soon as it gets released.
At this point, the main limit in our approach is the assumption about the optical
scans being realized with lights on since the contour detection routine needs a
significant difference in color between holes and dynamic line.
The next step in the development involves tackling the holes recognition and the
actual conversion into MIDI files while setting up the UI for user intervention.
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Appendix A

A brief overview of the MIDI
protocol

A.1 A bridge between music and computers

Visually, there is not much difference between a modern piano roll MIDI data
visualization and the scan of the perforated piano roll itself, both represent mu-
sical data that can be interpreted by a musical instrument, be it a player piano
or a personal computer. Clearly, we are being purposefully lax with the term
”musical instrument” but the parallelism should be evident. What was lacking
during the emergence of computer technology was a bridge between music and
computers, a standardized means of communication between electronic musical
instruments, computers, and related equipment.

Several attempts were made between the 50s and the early 1980s, both regard-
ing electronically generated music and communication between electronic de-
vices meant to produce music. In 1957, the Columbia-Princeton Electronic Music
Center produced the first electronically programmable synthesizer, Herbert Be-
lar’s so-called Mark II[3]. At the same time, Max Mathews, an engineer working
at Bell Laboratories, created the first computer program that was able to synthe-
size a sequence of tones into a short song lasting only 17 seconds. While initially
the software only employed one single waveform and had no control over the
dynamics of the generated sound it was later refined into GROOVE (Generated
Realtime Output Operations on Voltage-Controlled Equipment) which was able
to store musical information played by a musician on an external synthesizer[10]
Later on, with the growing availability of home computers, enterprising engi-
neers managed to put into musicians’ hands the research efforts to widespread
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Figure A.1: A perforated piano roll and a DAW digital workstation

popularity. A particularly interesting product from this point of view is the Min-
imoog, a monophonic analog synthesizer introduced to the market in 1970 by
Moog Music, headed by Robert Moog[15].
Composers and musicians could then begin to explore the timbral possibilities of
synthesizers. A milestone in this regard is the album ”Switched-On Bach,” cre-
ated in the studio by the American composer Wendy Carlos and released in 1968.
It contains some of Johann Sebastian Bach’s most famous pieces, including the
entire Brandenburg Concerto No. 3, performed using a Moog modular system.
It is at this point in time, with the growing availability of different synthesizers
and software that the need for a unified protocol starts to arise. Market leaders
start to worry that the lack of compatibility between brands and models might
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cripple the synthesizer technology altogether. Sure, both Yamaha and Roland
made great efforts to make their own products compatible with one another but
it wasn’t enough. So, the equivalent of the Buffalo Convention for perforated pi-
ano rolls was needed, one that hopefully could do more than define, for instance,
the data for pitch and note duration.
Some progress was made during the AES Convention held in 1981. On this oc-
casion, Dave Smith and Chet Wood defined a standardized industrial-level in-
terface to provide synthesizers, sequencers, and personal computers with. This
communication protocol involves the use of standard 1/4-inch jacks and a trans-
mission speed of 19.2 kbps.
The project, further developed in cooperation between different companies, made
its debut at the NAMM trade show in Los Angeles in 1983. During the event,
an analog synthesizer, the Prophet-600 by Sequential Circuits, demonstrated its
ability to communicate with a Roland Jupiter 6 keyboard through a 5-pin cable.
The initial specifications of the protocol were published under the title ”MIDI 1.0
Specification”[2] in August 1983 by the International MIDI Association (IMA),
also known as MIDI Users Group (MUG) or International MIDI User Group
(IMUG) to widespread acclaim.
In the next decades, the MIDI protocol gets recognized as the standard for man-
aging music in digital form, receives changes and improvements, and more docu-
mentation is made available. In 2020, MMA presented the MIDI 2.0 specification
project, a leap toward bidirectional communication between devices without los-
ing retrocompatibility with MIDI 1.0.

A.2 The fundamentals of MIDI protocol

The MIDI protocol defines how control messages between devices interact with
one another and it assures both compatibility between brands as long as they con-
form to the protocol and expandability, meaning that messages sent by devices
using older versions of the protocol should be correctly interpreted by newer
models.
Not every MIDI device can answer every MIDI possible MIDI message, and it
wouldn’t make sense for the protocol to require so. For instance, controllers and
digital synthesizers don’t need to answer a TUNE REQUEST message, usually
reserved for recalibrating the oscillators of analogical syntethizers. The MIDI
specifications contain messages that encode functions or commands to which a
compatible device may or may not respond. This behavior is perfectly acceptable,
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Figure A.2: A Minimoog, in its 2016 rerelease

provided that the device is designed to ignore commands it doesn’t understand
and doesn’t attempt to interpret them. The protocol also reserves undefined bit
messages, foreseeing future releases. When defined, older releases would merely
discard such messages[1].
Commands are typically sent in the form of messages, which are usually quite
short and consist of a variable number of bytes, typically ranging from 1 to 3
bytes. The language’s structure is simple, and the variety of messages needed to
encode a performance and control MIDI devices is relatively small.
One of the reasons for which the MIDI protocol was readily accepted and in time
became the industry standard is that adopting it was quite cheap. Adding the
MIDI protocol to a digital synthesizer only cost 5$ per device, a small price to
pay to assure compatibility between brands and future releases. Quite clearly,
some compromises had to be made to contain cost, for example, the use of 5-pin
DIN connectors and the limited data transmission speed allowed for the transfer
of MIDI data[18]
According to the original specifications, the transmission of MIDI messages from
sender to receiver so that it may parse them happens at a capped 31.25 Kbit/s
speed which at the time seemed reasonable. When the original MIDI specifica-
tion’s data rate of 31.25 Kbit/s became insufficient for certain applications, var-
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ious solutions were developed to accommodate higher data throughput. One
common approach is the use of multiple MIDI ports or channels to transmit par-
allel streams of MIDI data. Some newish MIDI protocols, such as MIDI over USB
or Ethernet (e.g., RTP-MIDI), can achieve higher data rates and offer more flexi-
bility than the original 5-pin DIN MIDI protocol.
Since MIDI was designed to transmit data about musical performance, it must
provide sufficiently accurate timing to preserve its rhythmic integrity: one seri-
ous limitation is that it is not possible to send or receive multiple MIDI messages
simultaneously, for example, messages generated by the simultaneous pressing
of multiple keys forming a chord would be sent over the transmission channel
one after the other. Many MIDI devices include a ”MIDI Thru” port, which al-
lows you to daisy-chain multiple MIDI devices together. This way, the MIDI data
received by one device can be passed through to others, allowing them to respond
to different aspects of the data, including simultaneous note events. Anyway,
most modern MIDI instruments, especially synthesizers and digital keyboards,
are designed to be polyphonic. This means they can play multiple notes simul-
taneously. Each note being played generates its own MIDI note-on and note-off
messages, which are sent over the MIDI channel. This allows for the representa-
tion of chords and complex musical passages.

Figure A.3: A Minimoog, in its 2016 rerelease

A MIDI port is made up of three components for the exchange of data that en-
able communication between MIDI-compatible devices, facilitating the creation
and control of music. MIDI IN is where a device receives incoming MIDI data.
It serves as the entry point for MIDI messages, allowing external controllers like
keyboards to send musical commands, such as NOTE ON/OFF, modulation, and
more, to the receiving device. Unsurprisingly, MIDI OUT is responsible for send-
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ing out musical information generated by the device, making it possible to control
and synchronize other MIDI instruments or route the generated sound to external
sound modules or computers for further processing. MIDI THRU acts as a par-
allel output to MIDI IN, replicating the incoming MIDI data without altering it.
This feature allows for daisy-chaining multiple MIDI devices, ensuring that the
same MIDI data can be sent to several devices in the chain, simplifying complex
MIDI networks and setups. There are also multi-port MIDI devices, for instance,
the Yamaha YME-8 expander, equipped with 2 MIDI IN and 8 MIDI OUT/THRU.

A.3 MIDI messages

MIDI is a music description language in binary form. It was designed for use
with keyboard-based musical instruments, so the message structure is oriented to
performance events, such as picking a note and then striking it, or setting typical
parameters available on electronic keyboards. Every message is made up of one
or more bytes, with two extra bits for flagging the start and end of the message.
The first byte is called status byte and it serves the purpose of identifying the kind
of sent message to the receiver. The rest of the message is made of one or more
data bytes, and they function as the payload of the communication.
MIDI files also have a header chunk at the beginning that contains information
about the MIDI file itself, such as the file format, the number of tracks, and the
division (timing) format. This header chunk is not part of the individual MIDI
messages contained within the file.
Meta events are how the MIDI files convey this layer of information that MIDI
devices need to be able to understand in order to reconstruct the piece of music
correctly like tempo changes or time signature changes.

Figure A.4: Format of a NOTE ON message

The most common MIDI messages are quite clearly the NOTE ON and NOTE
OFF messages. In a NOTE-ON message, the status byte appears in the form
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1001nnnn, with the first bit set to 1 representing the byte as a status byte and
the three bits 001 identifying a NOTE ON message. After this status byte, the
payload is made of two bytes, respectively for pitch and velocity of the note. For
both data bytes, the most significant bit is set to 0, therefore, the pitch and velocity
values occupy the remaining 7 bits. This allows for a total of 128 values or levels
in the range [0, 127]. The NOTE OFF message has the same format, albeit with
code 000. Interstingly enough, there are two ways to switch off a note. The first
one is with a NOTE OFF message targeting a note with a set pitch and value. The
second is with a NOTE ON message targeting a note with set pitch and value 0.
This second alternative does not allow specifying a release velocity, though.
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