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Introduction

One widely renowned technique in Mathematical Analysis for enhancing regularity of so-
lutions is ε-regularity. Its applications encompass various fields and problems but can be
divided into two main groups: Partial Differential Equations and Minimal Surface The-
ory. An ε-regularity argument involves proving the existence of a global constant ε > 0
such that, if the energy of the selected solution of our PDE is smaller than this constant
then the solution is bounded. In the field of Minimal Surfaces, this technique translates
into Allard’s type regularity argument. In this case, this energy is also known as ”ex-
cess” and measures the difference in norm between the approximate tangent plane of the
rectifiable set and a fixed plane (see [ACM14], [De 17] for the theory of Minimal Surfaces).

In this thesis, we focus on the application of ε-regularity results in the context of Partial
Differential Equations. One of the significant applications of this technique, marking its
very birth, is undoubtedly the solution to Hilbert’s XIX problem by Ennio De Giorgi.
In his article ”Sulla differenziabilità e analiticità delle estremali degli integrali multipli
regolari” [De 57], he showed that, if u is a Sobolev function belonging in H1 that solves
a classical elliptic equation of type

div(A∇u) = 0, (1)

(with suitable ellipticity assumptions, see Theorem 1.1) then there exists a constant ε
such that, if the energy U = ∥u∥L2(B(1)) is smaller than ε, then ∥u∥L∞(B(1/2)) is finite. In
other words, he was able to reverse the classical Hölder’s inequality, obtaining

∥u∥L∞(B(1/2)) ≲ ∥u∥L2(B(1)).

In the first chapter, we show how to obtain such an inequality. To do this, we follow a
more modern approach than the original one by De Giorgi, using instead some ideas from
the works of L. Caffarelli and A. Vasseur, published between 2005 and 2015 (in particular
[CV10], [Vas14]). For the proof a specific setting is necessary and we postpone the details
to the body of this thesis. For the sake of this introduction, we just sketch the main idea:
a decay estimate which is also a recurring theme throughout this thesis. Let us introduce
the solution truncations and the related truncated energies:

uk = [u− (1− 2−k)]+ and Uk =

ˆ
Bk

u2k.



where with Bk we indicate a ball centred at the origin with radius 1/2(1 + 2−k).
The core of the proof is to show the decay of the sequence of the truncated energies. In
particular we show that there exists β strictly greater than 1 such that:

0 ≤ Uk+1 ≤ CUβ
k ∀k ∈ N. (2)

To prove such a decay we follow the original idea of Ennio De Giorgi: we employ a com-
bination of Sobolev embeddings, Chebyshev’s inequality, and energy inequality to derive
the energy decay described in Equation (2).

Once it is shown that the truncated energy decays geometrically with an exponent
greater than one, we can conclude that if the initial energy term is sufficiently small, i.e.
U0 ≤ ε, then the sequence will tend to zero, i.e. U∞ = 0. In this way, using the definition
of Uk, we obtain that

U0 = ∥u+∥L2(B(1)) ≤ ε ⇒ U∞ = 0, i.e. u ≤ 1 a.e in B(1/2).

If Chebyshev’s inequality and Sobolev’s embeddings are valid for general functions
the energy inequality is strongly related to our PDE and is the point where the main
difficulties arise. In the literature it takes different names depending on the context in
which it is used: in the case of the elliptic equation, for example, it is called Caccioppoli-
Leray while, for Minimal Surfaces, it is called Tilt-Excess inequality. The common feature
of the various energy inequalities we will see is the idea of how to obtain them: we will
test the weak formulation of our PDE with a function that itself depends on the solution.

We briefly sketch here the plan of this thesis.

• In Chapter I, we present a modern proof of XIX Hilbert’s problem’s solution using
an ε-regularity argument. We show that if u ∈ H1

loc solves (1), then u is locally α-
Hölder continuous. In particular, we use the Caccioppoli-Leray inequality to prove
the decay

Uk+1 ≤ C24kU
1+ 2

n
k .

Then, since 1+ 2
n
is larger than the critical value 1, we can reverse Hölder’s inequality.

To conclude the proof, we establish an oscillation decay estimate of the form

oscB1/2
u ≤ λ oscB1 u,

with λ≪ 1. Once we have this oscillation estimate, we can easily conclude that u is
Hölder continuous. This last part is ultimately based on the isoperimetric inequality.

• In Chapter II, we show the solution a counterpart of XIX Hilbert’s problem in the
parabolic setting. If u ∈ L∞((0, T );L2(Ω))∩L2((0, T );H1(Ω)) is a weak solution to

∂tu− div
(
A(t, x)∇xu

)
= 0 ∀(t, x) ∈ (0, T )× Ω (3)



then it is Hölder continuous. We proceed in a similar way as we did in Chapter I.
The main difference is the Energy inequality: the different geometry of the problem
and the different initial regularity of the solution suggest us the new choice of energy
and allow us to prove a Parabolic energy inequality which works in the same way as
the Caccioppoli-Leray’s inequality. Indeed it reverses the Sobolev embedding and
controls the gradient of the solution with the solution itself.

• In Chapters III and IV, we deal with the Navier-Stokes equations:

∂tu+ (u · ∇)u+∇p = ∆u (t, x) ∈ (0, T )× R3

div u = 0
(4)

where u : Ω ⊂ R3 → R3 is the velocity field of an incompressible fluid and p : Ω ⊂
R3 → R is its pressure. One among the Millennium problems of the Clay Institute
([Fef00]) asks for a proof of the existence of a smooth solution (u, p) to the system
(4).

Up to now, the most important result in this direction is the Caffarelli-Kohn-
Nirenberg theorem [CKN82], which states that the singularities of a particular class
of solutions, called suitable solutions, of the Navier-Stokes equations cannot persist
along a space-time curve. To prove it, we follow the work of Vasseur, who proposed
a new proof based on an ε-regularity argument [Vas07].

Even though the problem is highly nonlinear, we can adapt the previous scheme to
our new setting. With a particular choice of energy and a clever use of the suitability
condition, we are able to prove the following energy decay:

Uk ≤ Ck(1 + ∥p∥Lp,1([−1,1] ×B(1)))U
β
k−1,

which guarantees our thesis. For the sake of readability, we do not report here
the choice of Energy and the energy inequality, but there are many similarities
with the parabolic case. Besides the energy inequality, a new problem arises in the
Navier-Stokes system: the non-locality of the pressure conflicts with our choice of
shrinking cylinders (the parabolic counterparts of the previous shrinking balls Bk).
However, an intelligent pressure decomposition between a local part and a harmonic
one guarantees the applicability of the Calderón-Zygmund theory to obtain the
necessary estimates.

• In Chapter V, we add a generalized Wiener process to the equation from Chapter
II and demonstrate how, under reasonable assumptions, Hölder continuity can be
achieved (main reference [HWW20]). The stochastic partial differential equation we
consider is given by:

∂tu = div (A∇u) + f(t, x, u) +
∑
i≥1

gi(t, x, u)ẇ
i
t.

In this case the energy inequality is derived using the Itô formula for stochastic
processes in Hilbert spaces. and energy decay takes the form:



Uk,a ≤
Ck

a2/(n+1)
(Uk−1,a +X∗

k−1,a)U
1/(n+1)
k−1,a ,

where the term X∗
k−1,a collects the non-deterministic part of the problem. By em-

ploying martingale tail control of the stochastic integral, we establish a relationship
between the energy Uk−a,a and the stochastic term X∗

k−1,a. Once we establish the
connection between these two terms, we can demonstrate the stochastic counterpart
of the reverse Hölder inequality:

P
{
∥u+∥L∞([T,2T ]×Rn) > a,M∥u+∥L4,2([0,2T ]×Rn) ≤ a

}
≤ e−M1/(n+1)

,

which allows us to conclude the Hölder continuity of the solution.

In conclusion, studying the detailed proof of Hilbert’s XIX problem allows us to under-
stand that the depth of ideas required for its resolution goes beyond the usual techniques
used for elliptic regularity. In fact, ε-regularity, although originally used in the context of
linear PDEs, can be adapted to heavily nonlinear contexts such as the Navier-Stokes equa-
tions or even in the presence of non-deterministic components as in the case of stochastic
PDEs. Therefore, we can confidently state that De Giorgi’s ideas are still fundamental
today in various problems in analysis.



Chapter 1

De Giorgi’s scheme for XIX
Hilbert’s problem

De Giorgi’s solution to Hilbert’s XIX problem is a significant achievement in the theory
of regularity for partial differential equations. In this chapter, we delve into his solution,
highlighting the key steps. While the original article [De 57] is highly precise, grasping
the brilliant ideas behind the solution can be challenging.

In more recent years (around 2000), a modern approach to De Giorgi’s theory was
developed by L. Caffarelli and A. Vasseur. They approached the problem from a unique
perspective, enabling them to identify precisely where the ellipticity of the problem was
utilized. This allowed them to isolate the underlying framework of the original solution
and extend it to a more general context. The main references for this modern approach
are [Vas14] and [CV10]. The solution we present follows their works, and we also outline
the general ideas behind De Giorgi’s scheme.

Theorem 1.1 (De Giorgi). Fix A : Ω ⊂ R → Rn×n a Borel function. Suppose
λI ≤ A(x) ≤ ΛI (I is the identity matrix) almost everywhere on Ω for λ,Λ ∈ R. If
u ∈ H1

loc(Ω;R) solves in the sense of distribution

Lu = − div(A∇u) = 0 (1.1)

then there exists a constant α = α(λ,Λ, n) such that for every Ω′ ⋐ Ω, u is α-Hölder
continuous in Ω′.
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CHAPTER 1. DE GIORGI’S SCHEME FOR XIX HILBERT’S PROBLEM

The work is organized in two steps:

1. The Height estimate (also called L∞ − L2 estimate). Thanks to the study of the
behaviour of the energy between the super level sets of the solution u we prove the
estimate

∥u∥L∞(B(1)) ≲A ∥u∥L2(B(2)).

2. Oscillation decay. With a more geometric approach we obtain

∥u∥Cα(B(1/2)) ≲A ∥u∥L∞(B(1))

where the balls are centred in the origin.

Before going into the details we spend some words about the procedure of zooming/scaling.
This is a very general approach when dealing with PDE’s and it will be also useful in the
next chapters.

Zooming

We start with some considerations about the matrix A and the choice of the domains
Ω,Ω′. When we speak about the ellipticity condition of the matrix A we refer to the
bounds

λI ≤ A(x) ≤ ΛI

which hold x-almost everywhere.

Consider L a constant n × n matrix with real coefficients and c ∈ Rn. Then the
function v(x) = u(L(x) + c) solves

− div(A′∇v) = 0

with A′ = A(L(x) + c). The interesting fact is that A′ and A satisfy the same ellipticity
condition (since the condition is uniform). This implies that both, u and v, have the same
Holder constant α.

With this observation, we can notice that is not restrictive to take Ω = B(2) and
Ω′ = B(1/2). Indeed suppose we have proved the theorem for such domains and consider
now general Ω and Ω′. Set d = dist(Ω′,Ωc) and for every x0 ∈ Ω′ set

u′(x) = u

(
x0 +

d

2
x

)
, x ∈ B(2).

By previous considerations, note that u′ solves (1.1) with matrix A′(x) = A (x+ dy) which
verifies the same uniform elliptic estimates. By hypothesis u′ is Cα in B(1/2) and u is

2



1.1. THE HEIGHT ESTIMATE

Cα in Ω′. To be precise this conclusion is correct because α does not depend on d since,
in the theorem, α does not depend on the choice of Ω′ or Ω.

Remark. An important remark, applicable to the entire thesis, is that we are consider-
ing uniform conditions, such as the ellipticity condition. This ensures that our problem
behaves consistently under translations, as suggested in the Zooming section. Thanks to
this assumption, going forward, we will assume that all the balls are centered at the origin
unless explicitly stated otherwise.

1.1 The Height estimate

The goal of the first part of the proof is to verify the following ε-regularity statement:

Proposition 1.1. If u solves (1.1) there exists a constant ε = ε(n,A) such that
if ||u+||2L2(B1)

< ε, then

∥u+∥L∞(B(1/2)) := (ess) supB(1/2) u ≤ 1 (1.2)

where u+ = max(u, 0).

The Height estimate is a consequence of this proposition and it provides a relationship
between the L∞ norm and the L2 norm of a function. Specifically, it states that if a
function satisfies certain conditions and its L2 norm is bounded on a certain set, then its
L∞ norm is also bounded on a smaller set:

Corollary 1.1 (Height Estimate). If u solves (1.1) there exists a constant ε = ε(n,A)
such that

∥u∥L∞(B(1)) ≤
1

ε
∥u∥L2(B(2)) .

Proof. For any x ∈ B(1/2), consider

ũ(y) =
ε

∥u∥L2(B(2))

u(x+ y),

which is still a solution for the considerations of the Zooming section. Notice also that
∥ũ∥L2(B(1)) < ε and so, by Proposition 1.1,

ũ(y) ≤ 1 for y ∈ B(1/2).

We get the bound from below by applying the same result to −ũ. Collecting the two
estimates we write

∥ũ∥L∞(B(1/2)) ≤ 1.

Now using the arbitrariness of x in B(1/2) we have the thesis.

3



CHAPTER 1. DE GIORGI’S SCHEME FOR XIX HILBERT’S PROBLEM

Notice that the thesis of Corollary 1.1 holds immediately if u is a harmonic function:
it is trivially implied by the mean value property. Even if we are starting from the weaker
hypothesis of u just solving the elliptic equation (1.1) instead of being harmonic, we are
going to prove that we have the same property. To put it differently, even without the
general mean value property, if Lu = 0 (for an elliptic operator L), we can still establish
the reverse Hölder’s inequality stated in Corollary 1.1. This highlights the power of the
constraints in compensating for the absence of the mean value property and enabling the
derivation of such inequalities..

We underline that we are using the constraints Lu = 0 to find an inequality that com-
petes with a universally applicable inequality (such as Hölder’s inequality). This parallel
brings to mind the Caccioppoli-Leray where the ellipticity assumptions allow us to find an
inequality which rivals with Sobolev embeddings (that holds for every general function).
In both cases, the prize we must pay to get the reverse inequalities is the restriction of
the domain of the left-hand side.

The settings

To prove Proposition 1.1 the idea is to study the decay of the energy between super-level
sets of u. For this purpose, we introduce the truncation uk

uk = [u− (1− 2−k)]+ (1.3)

and a sequence of decreasing balls defined as

Bk = B

(
1

2
(1 + 2−k)

)
.

The importance of this choice is that B0 = B(1) and the sequence of radii is decreasing
up to B∞ = B(1/2). With these two, we can define the energy Uk as

Uk =

ˆ
Bk

u2k = ∥uk∥2L2(Bk)
.

Truncation, shrinking domains, and the choice of energy are the key components in
setting up De Giorgi’s scheme. As we delve into the subsequent chapters, these quantities
will undergo transformations influenced by the geometry of the problem, while preserving
their original purpose.

The strategy now is to apply the following crucial Lemma to the energy Uk:

4



1.1. THE HEIGHT ESTIMATE

Lemma 1.1 (Geometric decay). Suppose that a sequence satisfies

0 ≤ Uk+1 ≤ α CkUβ
k (1.4)

for C > 1, α > 0 and β > 1 then there exists a constant ε such that if 0 < U0 < ε
then

lim
k→+∞

Uk = 0.

Supposing that we are able to prove that Uk has such a decay, then if U0 = ∥u+∥L2(B(1) <
ε we have Uk → 0, which implies

ˆ
B(1/2)

[u− 1]2+ = 0 =⇒ ess supB(1/2) u ≤ 1.

Hence, to prove the Proposition 1.1, we have to verify that Uk satisfies (1.4). Before
proving this fact we spend some comments on the Lemma 1.1 since it will be useful also
in other applications.

Geometric decay

The Lemma 1.1 says that if our sequence decays faster than a geometric sequence we
can choose a first term U0 small enough in such a way that the sequence Uk goes to 0 at
infinity. It is a consequence of the trivial fact that xn → 0 if x < 1.
Proving that β is strictly greater than 1 is what guarantees us the convergence of the
sequence Uk. Now we give an elementary proof of the Geometry decay Lemma:

Proof. Let us denote

Vk = C
k

β−1C
1

(β−1)2Uk.

By hypothesis we have

0 ≤ Vk+1 ≤ C
k+1
β−1C

1
(β−1)2αCkUβ

k = α C
kβ
β−1C

β

(β−1)2Uβ
k = α V β

k

and, in particular

Vk ≤ αt(V0)
βk.

Developing the computation in U instead of V we get

C
k

β−1C
1

(β−1)2Uk ≤ αt(C
1

(β−1)2U0)
βk =⇒ Uk ≲

(
α C

1
β−1C

β

(β−1)2Uβ
0

)k
.

Hence, for a small enough U0, we have that
(
α C

1
β−1C

β

(β−1)2Uβ
0

)
< 1 and so Uk → 0.

5



CHAPTER 1. DE GIORGI’S SCHEME FOR XIX HILBERT’S PROBLEM

Energy decay estimate

We are left to prove that our Uk decays faster than a geometric sequence. Overcoming the
gap between 1 and β > 1 is where difficulties arise (notice that the inequality Uk+1 ≤ Uk

is trivial). To this aim, truncation plays the leading role: we are going to see that taking
only the positive part allows us to use a combination of Hölder and Chebychev’s inequality
to put our exponent β over the value 1.

In particular, we are going to verify the decay for these exponents

Uk+1 ≤ C24kU
1+ 2

n
k . (1.5)

To obtain this result, we need to combine three theorems: Sobolev embeddings, Energy
inequality, and Chebyshev’s inequality. We would like to note in advance that when we
refer to Sobolev embeddings, we also tacitly include the use of the Poincaré inequality
when the function is compactly supported. We present here the Energy inequality that
we will use, but its proof is postponed.

Theorem. (Elliptic Energy inequality) Suppose u ≥ 0 is a weak subsolution to (1.1)
in Ω ⊂ Rn (Lu ≤ 0). Then for every φ ∈ C∞

c (Ω) we have

ˆ
Ω

(∇ (φu+))
2 dx ≤ C

ˆ
Ω ∩ spt φ

u2+|∇φ|2dx

with C depending only on the matrix A.

We begin considering the following family of test functions:

φk ≡ 1 in Bk,
φk ≡ 0 in Bc

k−1,

|∇φk| ≤ C2k.

Noticing that φk ≡ 1 in Bk and that {φkuk > 0} = {φkuk ̸= 0} (the functions φk and
uk are positive) we have

Uk+1 ≤
ˆ

(φk+1uk+1)
2 =

ˆ
(φk+1uk+1)

2 1{φk+1uk+1>0}.

Since
1

p∗/2
+

1

n/2
=

2(n− 2)

2n
+

2

n
= 1

we can use Hölder’s inequality on the right-hand side with exponents p∗/2 and n/2:

Uk+1 ≤
[ˆ

(φk+1uk+1)
p∗
]2/p∗

· |{φk+1uk+1 > 0}|
2
n . (1.6)

6



1.1. THE HEIGHT ESTIMATE

This inequality is the starting point to prove that our energy decays faster than a
sequence with exponent 1. We stress that without taking the positive part in the trun-
cation we would not have the second term on the right-hand side of (1.6). Now we work
separately with the two terms on the right-hand side. The reader is encouraged to pay
close attention to both of them.

To get the estimate on the first term we use the Sobolev embeddings (for a proof of
uk ∈ H1 see [ACM10]):[ˆ

(φk+1uk+1)
p∗
]2/p∗

≤ C

ˆ
(∇ (φk+1uk+1))

2 .

The truncation uk+1 is positive and Luk+1 = 0, hence we can use the Energy inequality
to get

C

ˆ
(∇ (φk+1uk+1))

2 ≤ C

ˆ
sptφk+1

u2k+1|∇φk+1|2 ≤ C22k
ˆ
sptφk+1

u2k+1.

Since uk+1 ≤ uk and spt(φk+1) ⊂ Bk (by definition of φk+1) we obtain[ˆ
(φk+1uk+1)

p∗
]2/p∗

≤ C22k
ˆ
Bk

u2k ≤ C22kUk. (1.7)

The opposite action of the Sobolev embeddings and the Energy inequality manages to
get the desired estimate. As we can see, we have not increased the exponent of Uk yet,
but the second term of (1.6) plays an important role to this aim. Notice that

φk+1(x) > 0 ⇒ x ∈ Bk ⇒ φk(x) = 1,

uk+1 > 0 ⇒ u > 1− 2−(k+1) ⇒ u > 1− 2−k + 2−(k+1) ⇒ uk > 2−(k+1)

and so we have

{φk+1vk+1 > 0} ⊂
{
φkvk > 2−(k+1)

}
.

Hence, by Chebychev, we conclude

| {φk+1uk+1 > 0} |
2
n ≤

∣∣{φkuk > 2−(k+1)
}
|
2
n ≤ C2

4k
n

(ˆ
(φkuk)

2

) 2
n

= C2
4k
n U

2
n
k . (1.8)

By combining the two estimates (1.7) and (1.8) with (1.6), we obtain the thesis:

Uk+1 ≤ C24kU
1+ 2

n
k .

7



CHAPTER 1. DE GIORGI’S SCHEME FOR XIX HILBERT’S PROBLEM

Energy inequality

As we have seen Energy inequality competes with the Sobolev Embeddings, namely it
has to control the norm of the gradient with the norm of the solution. We have already
explained how Corollary 1.1 is the reverse of Hölder inequality. In other words, to find
the reverse Hölder we need to reverse first the Sobolev embeddings and the information
of this inversion is contained in the Energy inequality.

Notice also that we have not used any hypothesis about u being a solution to the
elliptic problem. The fact that u solves (1.1) is used only to obtain the Energy inequality.
The proof we present uses the same arguments of the Caccioppoli-Leray inequality, in
particular, we test the weak solution to Lu = 0 with a function depending on the solution
itself.

Theorem 1.2. (Elliptic Energy inequality) Suppose u ≥ 0 is a weak subsolution to (1.1)
in Ω ⊂ Rn (Lu ≤ 0). Then for every φ ∈ C∞

0 (Ω) we have

ˆ
Ω

(∇ (φu))2 dx ≤ C

ˆ
Ω ∩ spt φ

u2|∇φ|2dx

with C depending only on the matrix A.

Proof. We multiply Lu = − div(A∇u) by φ2u > 0 and we integarte by parts:

ˆ
Ω

A∇u · ∇(φ2u) ≤ 0.

Now we use ∇(φ2u) = φ∇(φu) + φu∇φ and we re-write the left hand side as

ˆ
Ω

A∇u · ∇(φ2u) =

ˆ
Ω

A(φ∇u) · ∇(φu) +

ˆ
Ω

φuA∇u · ∇φ

and developing the first term of the right-hand side we get

ˆ
Ω

A∇u · ∇(φ2u) =

ˆ
Ω

A∇(φu) · ∇(φu)−
ˆ
Ω

uA∇φ · ∇(φu) +

ˆ
Ω

φuA∇u · ∇φ ≤ 0

or, equivalently,

ˆ
Ω

A∇(φu) · ∇(φu) ≤
ˆ
Ω

uA∇φ · ∇(φu)−
ˆ
Ω

φuA∇u · ∇φ. (1.9)

The right-hand side is equal to

ˆ
Ω

uφA∇φ · ∇u+
ˆ
Ω

u2A∇φ · ∇φ−
ˆ
Ω

φuA∇u · ∇φ.

8



1.1. THE HEIGHT ESTIMATE

The second term can be bound using the ellipticity condition. For the other two, we
notice ˆ

Ω

uφA∇φ · ∇u−
ˆ
Ω

φuA∇u · ∇φ =

ˆ
Ω

u∇(φu) · A∇φ−
ˆ
Ω

uA∇(φu) · ∇φ

and using, again the ellipticity of A:∣∣∣∣ˆ
Ω

u∇(φu) · A∇φ− uA∇(φu) · ∇φ
∣∣∣∣ ≤ 2Λ ∥∇ (φu)∥L2 ∥u∇φ∥L2 .

Since λI ≤ A(x) we can estimate with

2Λ

λ

(ˆ
∇ (φu) · A∇ (φu)

)1/2

∥u∇φ∥L2 . (1.10)

The key idea is to use the Young’s inequality (which holds for every ε):

ab ≤ εap

p
+
bq

εq
(with 1/p+ 1/q = 1).

Then (1.10) is less or equal then

1

2ε2

ˆ
∇ (φu) · A∇ (φu) + 2

Λ2ε2

λ2

ˆ
Ω

u2(∇φ)2.

Summarizing, we can re-write (1.9) in the form:

ˆ
Ω

A∇(φu) · ∇(φu) ≤
ˆ
Ω

u2A∇φ · ∇φ+
1

2ε2

ˆ
∇ (φu) · A∇ (φu) + 2

Λ2ε2

δ2

ˆ
Ω

u2(∇φ)2.

(1.11)
With an appropriate choice of ε (ε =

√
2), we can absorb the second term on the left-hand

side and we conclude

λ

4

ˆ
Ω

A∇(φu) · ∇(φu) ≤
(
Λ + 2

Λ2ε2

λ2

) ˆ
Ω

u2(∇φ)2.

We conclude the section with a consequence of the previous result.

Corollary 1.2 (Caccioppoli-Leray). If we consider Ω′′ ⋐ Ω′ ⋐ Ω then there exists a
constant C = C(A,Ω′′,Ω′) such that

ˆ
Ω′′

(∇u)2 dx ≤ C

ˆ
Ω′
u2dx

Proof. Consider 0 ≤ φ ≤ 1 in Ω such that φ ∈ C∞
c (Ω′) and φ ≡ 1 in Ω′′. Since ∥∇φ∥Ω′ is

bounded we concludeˆ
Ω′′
(∇u)2 ≤

ˆ
Ω

(∇(φu))2 ≤ C

ˆ
Ω′
u2|∇φ|2 ≤ C

ˆ
Ω′
u2

9



CHAPTER 1. DE GIORGI’S SCHEME FOR XIX HILBERT’S PROBLEM

1.2 Oscillation decay

Once we have obtained the estimate of Corollary 1.1 we can study the behaviour of the
oscillations of the solution. As a definition of oscillation of u in a set B, we take

oscB u = (ess) supB u− (ess) infB u.

In particular, we are going to prove the following estimate:

Lemma 1.2. If u solves (1.1) in B(2) then there exists δ = δ(n,A) < 1 such that

oscB1/2
u ≤ λ oscB1 u.

We start showing that this lemma implies the α-Hölder continuity of u. Consider
x0 ∈ B1/2 and set the following sequence of functions:

u1(x) = u(x0 + x/4) un(x) = un−1(x/4).

Since δ depends only on (A, n) the functions un satisfy the same decay estimate of u (see
Zooming).

Now we proceed using recursively the oscillation decay:

sup
|x−x0|≤4−n

|u(x0)− u(x)| = sup
x∈B1/2

|u(x0)− u(x0 + x/4n−1)| = sup
x∈B1/2

|u(x0)− un−1(x)| ≤

≤ oscB1/2
un−1 ≤ δ oscB2 un−1 ≤ · · · ≤ δn−1 oscB2 u1 =

= δn−1 oscx∈B2 u(x0 + x/4) ≤ 2δn−1∥u∥L∞(B1).

The right-hand side does not depend on the choice of x0, hence we have

sup
|x−y|≤4−n

|u(y)− u(x)| ≤ 2δn−1∥u∥L∞(B1)

Now take x, y ∈ B1/2 then 4−n ≤ |x − y| ≤ 4−(n−1) for a particular n. Combining the
previous estimates we obtain

|u(y)− u(x)|
|x− y|α

≤ 4nαδn−2∥u∥L∞(B1).

Choosing α = − ln4 δ we have that u ∈ Cα(B1/2).

Proof of Lemma 1.2

To prove Lemma (1.2) we need an intermediate step. To do this we are going to use that
that an H1 function can not have a jump discontinuity:

10



1.2. OSCILLATION DECAY

Proposition 1.2 (Isoperimetric Inequality for H1). Consider u such that´
B1

|∇u+|2 dx ≤ C and set

|N | = |{u ≤ 0} ∩B1|,

|B| = |{u ≥ 1/2} ∩B1|,

|M | = |{0 < u < 1/2} ∩B1|.

Then we have

C|M | ≥ 1

4

(
|B||N |1−

1
n

)2
.

Proof and remarks of this Proposition, which relies on the isoperimetric inequality, are
postponed to the last section of this Chapter.

What we are going to prove now, indeed, is that if v is a solution of (1.1), smaller than
one in B1, and is ”far from 1 ” in a set of non-trivial measure, it cannot get too close to
1 in B1/2.

Proposition. Let v a solution to (1.1) in B(2). Assume v ≤ 1 and |B1 ∩ {v ≤ 0}| ≥ µ >
0. Then supB1/2

v ≤ 1− λ, where λ depends only on µ,A, and n.

Proof. The strategy now is to utilize the Height Estimate. We aim to derive a contra-
diction by constructing a sequence of solutions in which the L2 norm decreases while the
supremum does not. This contradicts the essence of the Height Estimate, which states
that if the L2 norm is controlled within a certain region, then the function cannot exhibit
excessive growth, and its supremum value remains bounded.

Consider the map S(x) = 2x− 1 and set the following sequence of functions:

v0 = v vk+1 = S(vk) or, alternatively vk = 2kv − 2k + 1.

By construction we have

1. v(x) = 1 if and only if vk(x) = 1 for at least one k;

2. At every step we decrease the L2 norm of (vk)+.

Since vk remains a solution and the L2 norm of its positive part is decreasing, ac-
cording to Corollary 1.1, we expect the supremum of vk over B(1/2) to decrease as well.
Consequently, we can ensure that vk < 1. As 1 is a fixed point of S (refer to Figure), we

11



CHAPTER 1. DE GIORGI’S SCHEME FOR XIX HILBERT’S PROBLEM

Figure 1.1: The first iterations of our construction (for a continuous map) when the
function v reaches the value 1.

can conclude that v < 1 as well.

In particular, if we can write vk0 ≤ η (for some k0) in B1/2, for 0 < η < 1, then

v < 1− 2−k0(1− η)

which implies the thesis. To this aim consider a small η > 0, if we can prove that there
exists k0 such that ˆ

B1

(vk0)
2
+ dx ≤ η ε.

then, by Corollary 1.1, vk ≤ η.

To achieve this, it is important to note that for any k, we have vk ≤ 1. Thus,
by applying the Corollary 1.2 of with domains B(1) and B(2), we obtain the following
inequality: ˆ

B1

∣∣∇ (vk)+
∣∣2 dx ≤ C

By hypothesis we have also |{vk ≤ 0} ∩B1| ≥ |{v ≤ 0} ∩B1| ≥ µ. As long as 2vk satisfiesˆ
B1

(vk+1)
2
+ dx ≥ ηε

we get, by definition of vk,

|{2vk ≥ 1} ∩B1| = |{vk+1 ≥ 0} ∩B1| ≥
ˆ
B1

(vk+1)
2
+ dx ≥ ηε.

Summarizing we have

1. |{vk ≤ 0} ∩B1| ≥ µ > 0

2. |{vk ≥ 1/2} ∩B1| ≥ ηε > 0

12



1.2. OSCILLATION DECAY

So, from Proposition 1.2, there exists a positive constant α, which does not depend on k,
such that

|{0 < vk < 1/2} ∩B1| ≥ α.

Then
|{vk ≤ 0} ∩B1| ≥ |{vk−1 ≤ 0} ∩B1|+ α ≥ µ+ kα.

This fails after a finite number of k. At this k0 we have for sure thatˆ
B1

(vk0+1)
2
+ dx ≤ ηε.

We can prove that the previous proposition implies the oscillation decay (1.2), which
concludes Hilbert’s 19th problem. Take u to be a solution of (1.1) and consider the
function:

v(x) =
2

oscB2 u

(
u(x)−

supB2
u+ infB2 u

2

)
.

Notice that −1 ≤ v ≤ 1 and

oscB1/2
v =

2oscB1/2
u

oscB2 u
.

Assume that |B1 ∩ {v ≤ 0}| ≤ µ (or use −v instead of v). Then we can apply the
proposition on v which gives that supB1/2

≤ 1 − λ and so oscB1/2
v ≤ 2 − λ. Hence

oscB1/2
u ≤ (1− λ/2) oscuB2 .

Conclusion by means of the isoperimetric inequality

In this last part, we prove the Proposition 1.2 that we report:

Proposition. Consider u such that
´
B1

|∇u+|2 dx ≤ C and set

|N | = |{u ≤ 0} ∩B1|,

|B| = |{u ≥ 1/2} ∩B1|,

|M | = |{0 < u < 1/2} ∩B1|.

Then we have

C|M | ≥ 1

4

(
|B||N |1−

1
n

)2
.

As reported in [ACM10] this result is the reason why De Giorgi’s regularity argument,
even if so analytic, is deeply geometric in spirit. Indeed we are going to see how it is
ultimately based on the isoperimetric inequality. The following proof, which is particularly
elegant, is taken from [Vas14].

13



CHAPTER 1. DE GIORGI’S SCHEME FOR XIX HILBERT’S PROBLEM

Proof. We set ū = sup(0, inf(u, 1/2)) which implies ∇ū = (∇u+)1{0≤u≤1/2}. For x in N
and y in B, we have

1/2 = ū(y)− ū(x) =

ˆ 1

0

(y − x) · ∇ū(x+ t(y − x))dt ≤
ˆ |y−x|

0

|∇ū|
(
x+ s

y − x

|y − x|

)
ds.

Assigning the value 0 to ∇ū outside of B1, we get

1/2 ≤
ˆ ∞

0

|∇ū|
(
x+ s

y − x

|y − x|

)
ds

integrating this inequality for all y ∈ B, we get

|B|
2

≤
ˆ
B

(ˆ ∞

0

|∇ū|
(
x+ s

y − x

|y − x|

)
ds

)
dy ≤

ˆ
B1

(ˆ ∞

0

|∇ū|
(
x+ s

y − x

|y − x|

)
ds

)
dy.

Writing the first integral in polar coordinates for y−x = rσ, and noticing that the function
does not depend on r we get

|B|
2

≤
ˆ 2

0

rn−1

ˆ
S1

(ˆ ∞

0

|∇ū| (x+ sσ) ds

)
dσdr ≤

ˆ
S1

ˆ ∞

0

|∇ū| (x+ sσ) dsdσ

=

ˆ
S1

ˆ ∞

0

sn−1 |∇ū| (x+ sσ)

sn−1
dsdσ =

ˆ
B(1)

|∇ū|(y)
|x− y|n−1

dy.

Now integrating the variable x ∈ N we get

|N ||B|
2

≤
ˆ
B(1)

|∇ū|(y)
(ˆ

N

1

|x− y|n−1
dx

)
dy

By the isoperimetric inequality, the integral in dx is maximized by the ball of radius |N |1/n
centred in y. In particular

|N ||B|
2

≤ |N |1/n
ˆ
B(1)

|∇ū|(y)dy.

Now we use Hölder’s inequality to obtain

ˆ
B(1)

|∇ū|(y)dy ≤
(ˆ

M

|∇u+|2
)1/2

|M |1/2.
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Chapter 2

Parabolic case

We will now show how to establish the Hölder regularity of the solution in the parabolic
setting. This analysis builds upon the same ideas presented in the previous chapter. The
objective is to become acquainted with the methodology before delving into more intricate
problems such as the Navier-Stokes equations or the stochastic heat equation.

The equation we are going to consider is the following

Lu = ∂tu− div
(
A(t, x)∇xu

)
= 0 ∀(t, x) ∈ (0, T )× Ω (2.1)

where A : (0, T )× Ω → Rn×n is a Borel function that satisfies

λI ≤ A(t, x) ≤ ΛI ∀(t, x) ∈ (0, T )× Ω. (2.2)

A weak solution of (2.1) is a function u ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)) sat-
isfing (2.1) in a distributional sense. For simplicity, when we speak about weak solutions
we implicitly assume that A satisfies (2.2).

The regularity result we are going to prove is:

Theorem 2.1. If u is a weak solution of (2.1) in (0, T ) × Ω then there exists a
constant 0 < α < 1 such that, for every 0 < s < T and Ω′ ⋐ Ω, u is α-Holder
continous in (s, T )× Ω′.

According to Remark 1 and using the Zooming technique of the previous Chapter
one can check that the thesis is equivalent to proving that if u is a solution of (2.1) in
(−2, 1)×B(2) then u ∈ Cα((−1/2, 1)×B(1/2))1.

1Dealing with negative times is just a mathematical choice to simplify the readability of the proof
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CHAPTER 2. PARABOLIC CASE

2.1 De Giorgi’s scheme for parabolic equation

The proof follows the pattern introduced for the elliptic case. The main goal of this
section is the parabolic counterpart of Proposition 1.1:

Theorem 2.2. If u is a weak solution of (2.1) and A satisfies (2.2) then there exists
ε > 0 such that if ∥u+∥2L2(Q1)

≤ ε then

u+ ≤ 1/2 in Q′
1/2

The setting

Since we are in a parabolic context it is more natural to consider cylinders instead of
balls:

Qk = (Tk, 1)×Bk

where Bk = B(1
2
(1 + 2−k)) and

Tk = −1

2
(1 + 2−k).

This time we have Q0 = (−1, 1)×B(1) and Q∞ = (−1/2, 1)×B(1/2).
As in the elliptic case we set the energy

Uk =

ˆ
Qk

|uk|2+dxdt

with uk the truncation

uk = [u− (1− 2−k)]+.

Parabolic Energy inequality

We remind the importance of this equation. As we have already said we need to control
the norm of the gradient with the norm of the solution. In the parabolic case, we have
the following result.

Theorem 2.3. (Parabolic Energy inequality) Suppose u ≥ 0 is a weak subsolution to (2.1)
in Ω ⊂ Rn (Lu ≤ 0). Then for every φ ∈ C∞

0 (Ω) and every s ≤ t we have(ˆ
Ω

φ2u2
)
(t) +

ˆ t

s

ˆ
Ω

(∇ (φu))2 ≤
(ˆ

Ω

φ2u2
)
(s) + C

ˆ t

s

ˆ
Ω

u2|∇φ|2 (2.3)

with C depending only on the matrix A.
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2.1. DE GIORGI’S SCHEME FOR PARABOLIC EQUATION

Proof. We multiply (2.1) by φ2u and we use the divergence theorem in space. In this way
we get (ˆ

Ω

φ2u2
)
(t) +

ˆ t

s

ˆ
Ω

∇
(
φ2u

)
· A∇xu ≤

(ˆ
Ω

φ2u2
)
(s).

For the second term of the left inside, we proceed (fixing the time) in the same way as
the Elliptic Energy Inequality.

With some extra work, we can prove this Corollary, whose importance will be clear in
the next part. A very similar collection of ideas will be used also for the Navier-Stokes
equations.

Corollary 2.1. With the same hypothesis of the previous theorem we have

sup
Tk+1≤t≤1

(ˆ
Ω

φ2u2
)
(t) +

ˆ 1

Tk+1

ˆ
Ω

(∇ (φu))2 ≤ 2k+2

ˆ Tk+1

Tk

ˆ
Ω

φ2u2 + C

ˆ 1

Tk

ˆ
Ω

u2|∇φ|2

where Tk is defined as before and φ ∈ C∞
0 (Ω).

Proof. The idea is to restrict to the case Tk ≤ s ≤ Tk+1 ≤ t ≤ 1. Using this range we can
write (2.3) in the form(ˆ

Ω

φ2u2
)
(t) +

ˆ t

Tk+1

ˆ
Ω

(∇ (φu))2 ≤
(ˆ

Ω

φ2u2
)
(s) + C

ˆ 1

Tk

ˆ
Ω

u2|∇φ|2.

Now we average between Tk and Tk+1 in the variable s and we obtain(ˆ
Ω

φ2u2
)
(t) +

ˆ t

Tk+1

ˆ
Ω

(∇ (φu))2 ≤ 2k+2

ˆ Tk+1

Tk

ˆ
Ω

φ2u2 + C

ˆ 1

Tk

ˆ
Ω

u2|∇φ|2.

Since the estimate is true for every t ∈ [Tk+1, 1] we can find the maximum for the left-hand
side and conclude

sup
Tk+1≤t≤1

(ˆ
Ω

φ2u2
)
(t)+

ˆ 1

Tk+1

ˆ
Ω

(∇ (φu))2 ≤ 2k+2

ˆ Tk+1

Tk

ˆ
Ω

φ2u2 +C

ˆ 1

Tk

ˆ
Ω

u2|∇φ|2.

Notice that the left-hand side is simply

Wk+1(φ, u) := ∥φu∥L∞,2(Qk+1) + ∥∇(uφ)∥L2,2(Qk+1).

It is immediate to see that this quantity is a localisation of the assumption on u belonging
to L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)).
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CHAPTER 2. PARABOLIC CASE

Energy decay

To conclude De Giorgi’s scheme we have to prove that

Uk+1 ≤ CkU
1+ 2

2+n

k (2.4)

which, as in the elliptic case, implies (2.2).

We define the test functions 0 ≤ φk ≤ 1 as

φk ≡ 1 in Bk

φk ≡ 0 in Bc
k−1

|∇φk| ≤ C2k,

and we apply Corollary 2.1 with φk+1 and uk+1 as subsolution. In this way we have

Wk+1 := Wk+1(uk+1, φk+1) ≤ 2k+2

ˆ Tk+1

Tk

ˆ
Ω

φ2
k+1u

2
k+1 + C

ˆ 1

Tk

ˆ
Ω

u2k+1|∇φk+1|2. (2.5)

Since φk+1 is compactly supported in Bk and uk+1 ≤ uk, the right hand side is bounded
by

2k+1

ˆ 1

Tk

ˆ
Bk

u2k + C24k
ˆ 1

Tk

ˆ
Bk

u2k ≤ CkUk with C > 1.

For the left-hand side of (2.5), we introduce a new concept. Typically, when working
with functions that depend on both time and space, it is beneficial to obtain a uniform
bound for both variables. This estimate is obtained through an interpolation argument
and is closely tied to the initial regularity assumptions of the weak solution of the partial
differential equation. We state it now and we will continue to use it in the next chapters.

Lemma 2.1 (Time-Space Interpolation). Let f ∈ Lp,q ∩ Lp′,q′ with 1 ≤ p, q, p′, q′ ≤
+∞. For any λ ∈ [0, 1] let pλ, qλ be so that

1

pλ
=
λ

p
+

1− λ

p′
and

1

qλ
=
λ

q
+

1− λ

q′

Then
∥f∥pλ,qλ ≤ ∥f∥λp,q∥f∥1−λ

p′,q′

In our scenario, we have the following result:

Lemma 2.2. There exists a constant C > 0 such that

∥φk+1uk+1∥
L

2(2+n)
n (Qk+1)

≤ CWk+1
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Proof. The bound
∥φk+1uk+1∥L∞,2(Qk+1) ≤ Wk+1

is trivial and, by Sobolev Embeddings, we have also

∥φk+1uk+1∥
L
2, 2n
n−2 (Qk+1)

≤ Wk+1.

Now we interpolate between the two estimates and we get

∥φk+1uk+1∥Lpλ,qλ (Qk+1) ≤ Wk+1

for any pλ, qλ satisfing (for λ ∈ [0, 1])

1

pλ
=

1− λ

2
and

1

qλ
=
λ

2
+

1− λ

2n/(n− 2)
.

Imposing pλ = qλ we find pλ = qλ = 2(2 + n)/n which implies the thesis.

Collecting the results we have proved, we obtain

∥φk+1uk+1∥
L

2(2+n)
n (Qk+1)

≤ Wk+1 ≤ CkUk (2.6)

and therefore,

Uk+1 =

ˆ
Qk+1

|uk+1|2 =
ˆ
Qk+1

|uk+1|2 1{uk+1>0} ≤
ˆ
Qk+1

φ2
k+1 |uk+1|2 1{uk+1>0}

where the first inequality is given by the definition of φk+1. Using Hölder and Chebyshev
inequalities, we can derive the following conclusion:

Uk+1 ≤ ∥φk+1uk+1∥
L

2(2+n)
n (Qk+1)

· |{x ∈ Qk+1 : uk+1 > 0}|
2

2+n

≤ CkUk|{x ∈ Qk+1 : uk > 2−(k+1)}|
2

2+n

≤ CkUk

(
22(k+1)

ˆ
Qk+1

|uk|2
) 2

2+n

≤ CkU
1+ 2

2+n

k .

2.2 The Hölder regularity of the heat equation

We follow De Giorgi’s idea from the previous chapter. We need to introduce

Q̃ = [−3/2, 0]×B(1).

The key point is the counterpart of the elliptic case
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CHAPTER 2. PARABOLIC CASE

Proposition 2.1. Let v be a solution of (2.1) in Q′
2. Assume v ≤ 1 and

|{u ≤ 0} ∩ Q̃| ≥ |Q̃|
2
.

Then supQ′
1/2
u ≤ 1− λ, where 0 < λ≪ 1 depends only on µ,A and n.

Once we have this result we apply it to the following function

v(x) =
2

oscQ′
2
u

(
u(x)−

supQ′
2
u+ infQ′

2
u

2

)
,

which implies the oscillation decay estimate

oscQ′(1/2) u ≤ λ oscQ′(2) u.

Proceeding (exactly) as we did in the previous Chapter we get the Hölder regularity.

Proof of Proposition (2.1)

In De Giorgi’s proof we worked with the domains B(1/2) ⊂ B(1) ⊂ B(2) and so we
are expected to use Q′(1/2) ⊂ Q′(1) ⊂ Q′(2). The introduction of Q̃ does not modify
deeply the proof of the Proposition 2.1 but we need the following inequality (whose proof
is postponed).

Proposition 2.2. There exists α > 0 such that: if u is a solution to (2.1) in Q′
2 the

following holds. If we denote,

|B| = |{u ≥ 1/2} ∩Q1|
|N | = |{u ≤ 0} ∩ Q̃|

|M | =
∣∣∣{0 < u < 1/2} ∩

(
Q1 ∪ Q̃

)∣∣∣
and |B| ≥ δ, |N | ≥ |Q̃|/2 then

|M | ≥ α

We sketch the proof of Proposition 2.1

Proof. We set
v0 = v vk+1 = 2vk − 1.

Since we have (2.2), as in the elliptic case, we have just to prove that, up to choosing a
big k, we can make ∥vk∥L2(Q1) small as we want.
By contradiction, suppose that for every kˆ

Q′
1

(vk)
2
+ ≥ δ
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for some δ > 0. Then we have

|{vk ≥ 1/2} ∩Q′
1| = |{vk+1 ≥ 0} ∩Q′

1| ≥
ˆ
Q′

1

(vk+1)
2 ≥ δ.

Moreover, by definition of vk,

|{vk ≤ 0} ∩ Q̃| ≥ |{v ≤ 0} ∩ Q̃| ≥ |Q̃|
2
.

Then, by the Proposition 2.2, we get

|{0 < vk < 1/2} ∩ (Q′
1 ∪ Q̃)| ≥ α.

We conclude

|{vk ≤ 0}∩(Q′
1∪Q̃)| ≥ |{vk−1 ≤ 0}∩(Q′

1∪Q̃)|+ |{0 ≤ vk−1 ≤ 1/2}∩(Q′
1∪Q̃)| ≥

|Q̃|
2

+kα

and passing to the limit k → +∞ we have the contradiction.

2.3 Isoperimetric inequality for parabolic equation

The proof of Proposition 2.2 is technical but deeply related to the geometry of the
parabolic equation.
Suppose, by contradiction, that we can find a sequence uk of solutions to (2.1) in Q′

2 such
that

|{uk ≥ 1/2} ∩Q′
1| ≥ δ

|uk ≤ 0| ∩ Q̃| ≥ |Q̃|/2∣∣∣{0 < uk < 1/2} ∩ (Q′
1 ∪ Q̃)

∣∣∣ ≤ 1/k.

Step 1

In this step we prove that vk = (uk)+ is uniformly bounded in L2([−2, 1];H1(B(1))) and
also in L2([−2, 1];L2(B(1))). To help the readability we use the notation L2 + L2 to
indicate the space L2([−2, 1];L2(B(1))) and similarly for other functional spaces.
Since vk ≥ 0 is still a solution to (2.1) we can use the Energy inequality (2.3) that we
report: (ˆ

Ω

φ2u2
)
(t) +

ˆ t

s

ˆ
Ω

|∇ (φu)|2 ≤
(ˆ

Ω

φ2u2
)
(s) + C

ˆ t

s

ˆ
Ω

u2|∇φ|2

Setting φ ≡ 1 in B(1) and compactly supported in B(2) the inequality becomes(ˆ
B(1)

v2k

)
(t) +

ˆ t

s

ˆ
B(1)

(∇vk)2 ≤
(ˆ

B(2)

v2k

)
(s) + C

ˆ t

s

ˆ
B(2)

v2k
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where we have used that also ∇φ is bounded. Since vk ≤ 1 we conclude(ˆ
B(1)

v2k

)
(t) +

ˆ t

s

ˆ
B(1)

(∇vk)2 ≤ |B(2)|+ C(t− s).

Choosing s = −2 and t = 1 we have that vk is uniformly bounded in L2 + L2 while if we
integrate both sides in t between [−2, 1] we get the uniform bound for vk in L2 +L2. We
conclude that vk is uniformly bounded in L2 +H1.
We claim that ∂tvk is uniformly bounded in L2 +H−1. Indeed

∥∂tvk∥L2+H−1 =

ˆ 1

−2

∥∂vk(t, ·)∥2H−1(B(1)) dt =

ˆ 1

−2

 sup
ψ∈H1

0(B(1))

∥ψ∥
H1=1

ˆ
B(1)

∂tvk ψ


2

dt.

Since vk is a solution, the last term is equal to

ˆ 1

−2

 sup
ψ∈H1

0(B(1))

∥ψ∥
H1=1

ˆ
B(1)

div(A∇vk) ψ


2

dt ≤ Λ

ˆ 1

−2

 sup
ψ∈H1

0(B(1))

∥ψ∥
H1=1

ˆ
B(1)

div(∇vk) ψ


2

dt

where we have used the ellipticity of A.
We integrate by parts (remember that ψ ≡ 0 on ∂Ω and we do not care about signs)

Λ

ˆ 1

−2

 sup
ψ∈H1

0(B(1))

∥ψ∥
H1=1

ˆ
B(1)

∇vk · ∇ψ


2

dt ≲
ˆ 1

−2

 sup
ψ∈H1

0(B(1))

∥ψ∥
H1=1

∥∇vk∥L2(B(1))∥∇ψ∥L2(B(1))


2

dt.

Since the right-hand side is controlled by ∥∇vk∥L2+L2 we have proved the claim.

Step 2

We want to prove that, up to a subsequence, vk is converging in L2([−2, 1];L2(B(1))). To
this aim, we need Aubin Lion Lemma (see [BPB13] Theorem II.5.16):

Lemma (Aubin Lion Lemma). Let X0, X and X1 be three Banach spaces with X0 ⊂
X ⊂ X1. Suppose that X0 is compactly embedded in X and that X is continuously
embedded in X1. Suppose that 1 < p, q <∞ and

W = {u ∈ Lp ([0, T ];X0) : ∂tu ∈ Lq ([0, T ];X1)}

Then W is compactly embedded into Lp([0, T ];X).
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Our sequence
H1 ⊂ L2 ⊂ H−1

satisfies the hypothesis and so we have that{
u ∈ L2 +H1 : ∂tu ∈ L2 +H−1

}
is compactly embedded into L2+L2. This implies that vk, up to extracting a subsequence,
is converging to some v in L2 + L2.
Since the convergence in L2 implies the convergence in probability (using Chebychev) we
have, for any ε > 0,

lim
k→+∞

|{|vk − v| ≥ ε} ∩ [−2, 1]×B(1)| = 0. (2.7)

Step 3

Notice that all the properties of uk are inherited by vk, moreover we have that |{vk =
0} ∩ Q̃| ≥ |Q̃|/2 because vk is positive. Also, v behaves well, indeed we have this lemma:

Lemma 2.3. In the previous assumptions and setting the followings facts hold for v

1. |{v ≥ 1/2} ∩Q′
1| ≥ δ,

2. |{v = 0} ∩ Q̃| ≥ |Q̃|/2,

3. |{0 < v < 1/2} ∩ (Q1 ∪ Q̃)| = 0.

Proof. We prove separately the three points

1. If vk ≥ 1/2, then either |v − vk| ≥ ε or v ≥ 1/2− ε. Hence

δ ≤ |{vk ≥ 1/2} ∩Q′
1| ≤ |{|v − vk| ≥ ε} ∩Q′

1|+ |{v ≥ 1/2− ε} ∩Q′
1|.

Using (2.7) and the arbitrariness of ε we conclude the point 1.

2. In the same way, if vk ≤ 0, then either |v − vk| ≥ ε or v ≤ ε. So

|Q̃|
2

≤ |{vk ≤ 0} ∩ Q̃| ≤ |{|v − vk| ≥ ε} ∩ Q̃|+ |{v ≤ ε} ∩ Q̃|

and we conclude again by (2.7).

3. For the third time we have that if ε ≤ v ≤ 1/2 − ε then either |v − vk| ≥ ε or
0 < vk < 1/2. So

|{ε ≤ v ≤ 1/2−ε}∩(Q′
1∪Q̃)| ≤ |{|v−vk| ≥ ε}∩(Q′

1∪Q̃)|+|{0 < vk < 1/2}∩(Q′
1∪Q̃)|.

Using (2.7) we have that the right-hand side goes to zero. Since it is true for every
ε we get the thesis.
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Step 4

The previous Lemma leads to a contradiction with the isoperimetric inequality for the
elliptic case. Indeed, the function v jumps between sets where it is bigger than 1/2 and
sets smaller than 0. If we can formalize this concept we have the contradiction we need.
The third point of the previous Lemma implies that for almost every t ∈ [−3/2, 1] we
have

|{0 < v(t, ·) < 1/2} ∩B(1))| = 0.

For almost every t ∈ [−2, 1], ∇v(t, ·) ∈ L2(B(1)) we can apply De Giorgi’s isoperimetric
inequality (Proposition 1.2), to get that, for almost every t ∈ [−3/2, 1], we have either

v(t, ·) = 0 in B(1) or v(t, ·) ≥ 1/2 in B(1). (2.8)

Now, by point 2 of Lemma 2.3, there are some times −3/2 < s < −1 such that v(t, ·) ≤ 0
in B(1). Choose one of such s and set a cutoff function compactly supported in B(1). By
the energy inequality we obtain, for t > s:(ˆ

Ω

φ2v2k

)
(t) ≤

(ˆ
Ω

φ2v2k

)
(s) + C(t− s) (2.9)

and letting k → +∞ (with v(·, s) = 0 in B(1)) it implies(ˆ
B(1)

φ2v2
)
(t) ≤ C(t− s). (2.10)

Consider the quantity M = ∥φ∥22/4 and notice that by (2.10) for every t ∈ (s, s+M/C)
we have (ˆ

B(1)

φ2v2
)
(t) < M =

1

4

ˆ
B(1)

φ2

If v(t, ·) ≥ 1/2 we have a contradiction then, by (2.8), v(·, t) ≡ 0 in B(1) for t ∈ (s, s+M/
C). Bootstrapping the argument we conclude

v = 0 in Q′
1

which is a contradiction with point 1 of Lemma 2.3.

Remark. The limit k → +∞ is well defined. Indeed ∥φvk∥L∞+L2 is uniformly bounded
by the estimate (2.9) and by the fact that φvk ≤ 1 with φ compactly supported in B(1).

Remark. Each step of the lemma relies on the equation (2.7), which holds in the in-
terval [−2, 1] × B(1). This interval contains both Q′

1 and Q̃. The reason we can obtain
such a precise estimate is closely connected to the Energy Inequality in the parabolic case.
This inequality allows us to have significant flexibility in the time variable, as the test
function is defined only in the spatial variable. Consequently, we can exert control over
future events based on our knowledge of the past. The inequality (2.9) provides us with
information about Q′

1 by utilizing the information we have about Q̃.
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In a sense, the parabolic isoperimetric inequality is more powerful than its elliptic
counterpart. While the assumptions control the values of u separately in Q′

1 and Q̃, the
conclusion still holds for the union of the two regions. This is due to the fact that Q̃ =
[−3/2,−1] × B(1) represents the past of Q̃ = [−1, 1] × B(1), and we can exert control
over the latter using the former.
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Chapter 3

Regularity for Navier-Stokes
equations

The objective of this transitional chapter is to motivate the reader regarding the signif-
icance of the Caffarelli-Kohn-Nirenberg theorem. To accomplish this, we will provide a
brief overview of the Navier-Stokes equations problem, aiming to give an intuitive under-
standing of the regularity assumptions that we will be imposing.

The issue of existence and smoothness of the Navier-Stokes equations is regarded as
one of the most challenging problems in contemporary mathematics. It is one of the ”Mil-
lennium Prize Problems.” The current formulation of the problem was given by Charles
Fefferman in 2000 [Fef00] and can be accessed on the official website.

The incompressible Navier-Stokes equations in dimension three are1

∂tu+ (u · ∇)u+∇p− ν∆u = f (t, x) ∈ (0,∞)× R3

div = 0
(3.1)

where u : (0,+∞) × R3 → R3 is the velocity vector field of the fluid and and p :
(0,+∞) × R → R is the pressure. The term f is a given, applied external force and
ν > 0 is the viscosity constant. The problem is endowed with the initial condition:

u(0, ·) = u0 (3.2)

where u0 is a divergence-free vector field.

Since we are working with an unbounded domain we have to control the behaviour of

1The gradient and the Laplacian are taken on on the spacial variables
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CHAPTER 3. REGULARITY FOR NAVIER-STOKES EQUATIONS

the solution when |x| → ∞. Hence we will require

|∂αxu0(x)| ≤ C(α,K)(1 + |x|)−K for any α and K

|∂αx∂mt f(x)| ≤ C(α,m,K)(1 + |x|+ t)−K for any α,m,K.
(3.3)

For physical reasons, we consider accetable only smooth solutions with bounded energy
(at every time), namely

p, u ∈ C∞ ((0,∞)× R3
)

ˆ
R3

|u(t, x)|2dx ≤ C for any t.
(3.4)

The Clay Mathematics Institute of Cambridge ask for a proof of

First formulation of the Millenium Problem

Take ν > 0 and u0 any smooth divergence-free vector field verifying (3.3) (only the
first equation). Take f identically zero. Then there exist u, p functions on (0,∞)×R3

solving (3.1), (3.2) and (3.4).

We will work in this direction. We suppose ν = 1 and instead of R3 we consider a bounded
and regular region Ω ⊂ R3. Then the condition (3.3) is substituted by

u(t, x) = 0 in (0,∞)× ∂Ω.

From now on when we speak about (u, p) solving the Navier-Stokes equations in (0, T )×Ω
with T > 0 we mean:

∂tu+ (u · ∇)u+∇p = ∆u (t, x) ∈ (0, T )× R3

div u = 0
(3.5)

with boundary conditions:

u(0, ·) = u0 in Ω

u(t, x) = 0 in (0, T )× ∂Ω
(3.6)

with u0 divergence-free.

3.1 Weak solutions

In this section, we present a constructive definition of suitable weak solutions. We aim to
provide an intuitive understanding of the hypotheses we impose.
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When analyzing solutions of the Navier-Stokes equations, it is advantageous to con-
sider spaces of divergence-free functions. We begin by defining the space of the solution
as follows:

V(Ω) := {u ∈ C∞
c (Ω) : div(u) = 0},

Next, we consider the closures of this space in L2 and H1, respectively:

H(Ω) := V(Ω)
∥·∥2

and V (Ω) := V(Ω)
∥·∥1,2

.

These subspaces are closed and thus remain Hilbert spaces when equipped with the L2

and H1 norms, respectively.

Now, we present the most general definition of a weak solution:

Definition 3.1. Given u0 ∈ V(Ω) we say that (u, p) is a global weak solution of (3.5) in
(0, T )× Ω if:

1. u ∈ L2 ((0, T );V (Ω)) ∩ L∞ ((0, T );H(Ω)) ;

2. (u, p) solves the first equation of (3.5) in a distributional sense;

3. u(0, ·) = u0 a.e. in Ω.

In the literature, it is common for simplicity to only require the following condition
instead of point 1 of Definition 3.1.

u ∈ L2((0, T );H1
0 (Ω)) ∩ L∞((0, T );L2(Ω)).

Moreover, the condition div = 0 is imposed in a weak sense, meaning that (u, p) satisfies
the two points of equation (3.5) in a distributional sense.
Let’s delve further into the two key points:

1. Up until this point, we have not imposed any restrictions on the regularity of the
pressure term in the Navier-Stokes equations;

2. We have not discussed the uniqueness of the solution:sS far, we have not addressed
the issue of the uniqueness of the solution to the Navier-Stokes equations.

Let us begin with the first of these two points, which concerns the pressure. We want
to emphasize that the issues regarding its regularity are not trivial but rather necessary
to address in order to tackle the Caffarelli-Kohn-Nirenberg theorem. Before doing so, we
state an intermediate but crucial result:
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Proposition 3.1. Under the previous assumptions on the regularity of u, we have

u ∈ L2
(
(0, T );L6(Ω)

)
∩ L10/3 ((0, T )× Ω)) . (3.7)

Moreover, (u · ∇)u ∈ L2((0, T );L3/2).

Proof. By Sobolev Embeddings, since in dimension 3 we have 2∗ = 6, we get u ∈
L2 ((0, T );L6(Ω)). By space-time interpolation between L2,6 and L∞,2 we get also u ∈
L10/3,10/3.
For the last implication, notice that [(u · ∇)u]i =

∑
j uj∂jui. Then, using Holder with

exponents 4 and 4/3 (fixing t) we get

∥uj∂jui∥L3/2(Ω) ≤ ∥uj∥αL6(Ω)∥∂jui∥
β
L2(Ω) < +∞

for some positive α, β.

A strong result of pressure regularity is the following:

Proposition 3.2. If (u, p) is a weak solution of the Navier-Stokes then

p ∈ L2
loc((0, T )× Ω) and p ∈ L5/3((0, T )× Ω).

Proof. Using a regularity result concerning the Stokes equation one can prove that, pro-
viding u0 is regular enough, we get

∥∇p∥Lt((0,T );Ls(Ω)) ≤ C(∥(u · ∇)u∥)Lt((0,T );Ls(Ω))

with 2
t
+ 3

s
≤ 4 and 1 < s < 3/2 2.

By previous proposition we have that the norm ∥∇p∥Ltloc((0,T );Ls(Ω)) is bounded if

2

t
+

3

s
≤ 4 with 1 < s < 3/2 and t ≤ 2.

Using the Sobolev embeddings 3 (s∗ = 3s/(3−s)) we get that ∥p∥Ltloc((0,T );Ls∗ (Ω)) is bounded
if

2

t
+

3

s∗
≤ 3 with 3/2 < s∗ < 3 and t ≤ 2.

By choosing T = s∗ = 2 we have the best (space-time homogeneous) bound possible.

2A discussion of this kind of regularity can be found in the lecture notes of Milan Pokorny, starting
from [Pok].

3We are using, implicitly the Poincare inequality. The compactness of the support of p is given by
(3.8) in combination with (A.3)
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For global regularity, we use weak divergence on the first equation of (3.5) and we get

−∆p = div ((u · ∇)u) . (3.8)

Fixing t and computing the right-hand side we have that, for almost every t, the function
p(t) solves

−∆p(t) =
∑
ij

∂2ijuj(t)ui(t)

where we have used div(u) = 0. We can apply Calderón-Zygmund theory (see (A.3)) to
get

∥p(t)∥5/3
L5/3(Ω)

≤ C∥uj(t)ui(t)∥5/3L5/3(Ω)
.

Integrating in the time variable we finally get

∥p∥5/3
L5/3((0,T )×Ω)

≤ C∥ujui∥5/3L5/3((0,T )×Ω)
.

Since u ∈ L10/3((0, T )× Ω), we have reached the desired conclusion.

We conclude by mentioning two well-known regularity results regarding u, which will
be useful in the next subsection. The proofs of these results are omitted here but can be
found in the references [Cau01] and [Gal00].

Proposition 3.3. If (u, p) is a weak solution of the Navier-Stokes equation we have

1. u ∈ C0
w ([0, T );H1(Ω));

2. ∂tu ∈ L4/3 ((0, T );H−1(Ω)).

Having u ∈ C0
w([0, T ];H

1(Ω)) is a weak way to satisfy the boundary condition. In
fact, for every f ∈ H1(Ω), the map

t 7→
ˆ
Ω

u(x, t)f(x)dx

is continuous.

The fact that ∂tu ∈ L4/3((0, T );H−1(Ω)) is non-trivial but guarantees us that ∂t is a
distribution representable by an L1

loc function.

3.1.1 Suitable weak solution

In the Caffarelli-Kohn-Nirenberg theorem, a particular class of weak solutions is used:
suitable weak solutions or simply suitable solutions.
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Definition 3.2. We say that (u, p) is a suitable weak solution in (0, T )×Ω if it satisfies
points 1 and 2 of Definition 3.1 and, in a distributional sense, we have the following
energy inequality

∂t
|u|2

2
+ div

(
u

(
|u|2

2
+ p

))
+ |Du|2 −∆

|u|2

2
≤ 0 ∀t ∈ (0, T ), x ∈ Ω. (3.9)

Theorem 3.1. Suppose u0 ∈ V(Ω). Then there exists at least one suitable weak solution
of Navier-Stokes equations in (0, T )× Ω satisfying

1. u(t) → u0 weakly in H1 as t→ 0.

2. For all functions φ ∈ C∞
c ([0, T ] × Ω) with φ ≥ 0 and φ = 0 near (0, T ) × ∂Ω, we

have
ˆ
Ω

|u|2

2
(x, t)φ(x, t)dx+

ˆ t

0

ˆ
Ω

|Du|2φ ≤
ˆ
Ω

|u0|2

2
(x)φ(x, 0)dx

+

ˆ t

0

ˆ
Ω

|u|2

2
(φt +∆φ) +

(
|u|2

2
+ p

)
u · ∇φ (3.10)

For the proof see [FM00]. Notice also that the hypothesis on the regularity of the
initial data u0 can be weakned.
Similarly one can prove that, under the same hypothesis, the following holds

Corollary 3.1 (see [Gal00]). For every φ ∈ C∞
c (Ω) with φ ≥ 0 and every 0 < s < t we

have:
ˆ
Ω

|u|2

2
(x, t)φ(x)dx+

ˆ t

s

ˆ
Ω

|Du|2φ

≤
ˆ
Ω

|u|2

2
(x, s)φ(x)dx+

ˆ t

s

ˆ
Ω

|u|2

2
∆φ+

(
|u|2

2
+ p

)
u · ∇φ

(3.11)

Now, let us discuss the regularity problem. To address this, we introduce the following
definition:

Definition 3.3. Let (u, p) be a weak solution (or suitable weak solution) of the Navier-
Stokes equations. Let (t0, x0) ∈ ((0,+∞) × Ω). It will be said that (t0, x0) is a singular
point if u is not L∞ in any neighborhood of (t0, x0). The remaining points, those where u
is locally bounded, will be called regular points. The standard notation is:

Reg(u) := {(x, t) : u ∈ L∞(U) for some neighborhood (x, t) ∈ U}
Sing(u) := (Reg(u))c

To gain insight into the significance of obtaining a description of the set Sing(u), we
turn to the work of Serrin (see [Ser62]). He proved that in order for u to belong to the
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class C∞ in a neighbourhood of (t0, x0), it suffices to have certain estimates, specifically
Lr in time and Ls in space, with sufficiently large values of r and s. Subsequently, there
have been several improvements in this line of research, and we present here the theorem
from [Gal00] (in particular Theorem 5.2):

Theorem 3.2. Let u a weak solution (or suitable) to the Navier-Stokes equation in (0, T )×
Ω. Suppose Ω is regular and

u ∈ Lr((0, T );Ls(Ω)), for some r, s such that
3

s
+

2

t
= 1, s ∈ (3,+∞],

then
u ∈ C∞((0, T ]× Ω).

The Theorem 3.2 guarantees us that if we prove the solution’s boundness (in space-
time), we also have smoothness. In particular, the Caffarelli-Kohn-Nirenberg theorem
estimates how big the set of singularities of the suitable weak solution u is.

33



CHAPTER 3. REGULARITY FOR NAVIER-STOKES EQUATIONS

3.2 Caffarelli-Kohn-Nirenberg

Theorem 3.3 (Caffarelli-Kohn-Nirenberg). If u is a suitable weak solution of the
Navier-Stokes equations, then P1(Sing(u)) = 0. With P we mean the Parabolic
Hasudorff measure.

As we have mentioned earlier, studying the set where u is unbounded provides crucial
information about the regularity of the Navier-Stokes equations. With this theorem,
we establish that this set cannot be contained within a curve, specifically, the set of
singularities of u cannot include a space-time curve of the form {(t, x) : x = ϕ(t)}.
Currently, this result is undoubtedly considered the most significant achievement in the
study of the Navier-Stokes equations. The proof relies completely on the following ε-
regularity statement:

Theorem 3.4. The exists a positive constant ε such that if u is a weak solution of the
Navier-Stokes equations in (0,∞)× Ω and for some pair (t, x) ∈ (0,∞)× Ω we have

lim sup
r→0

1

r

ˆ
Cr(x,t)

|Du|2 < ε, (3.12)

then (x, t) ∈ Reg(u). With Cr(x, t) ⊂ R × R3 we have denoted the cylinder (t − r2, t +
r2)×Br(x).

Before showing the details we anticipate that we are going to deal with negative times
which is just a mathematical choice: shifting from (0, T ) to (−1, T ) does not change any
result that we have already obtained.

We begin by demonstrating how Theorem 3.4 implies Theorem 3.3, and then we prove
Theorem 3.4 itself. The proof of the latter theorem is divided into two major steps: we
first establish an intermediate result (Theorem 3.5), and then we conclude the proof. Both
the intermediate result and the conclusion rely on two propositions: Proposition 3.4 and
Proposition 3.5. These propositions will be proven in the subsequent chapter.
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Figure 3.1: Scheme of the proof: the numbers indicate the order of the proofs.

From Theorem 3.4 to Theorem 3.3

To state the theorem we need to introduce the Parabolic Hausdorff measure.

Definition 3.4. Given E ∈ R3 × R and two parameters α ≥ 0 and δ > 0, we define

Pα
δ (E) := inf

{∑
i

ωαr
α
i : E ⊂

⋃
i

Bri(xi)× (ti − r2i , ti + r2i ) and 2ri

√
1 + r2i < δ ∀i

}
where ωα = πα/2/Γ(1+α

2
) (with Γ we mean the Gamma function). The parabolic Hausdorff

measure of the set E is then

Pα(E) := lim
δ→0

Pα
δ (E) = sup

δ>0
Pα

δ (E).

Notice that it is very similar to the classical Hausdorff measure but we consider cylin-
ders instead of balls. Moreover, 2ri

√
1 + r2i is the diameter of the cylinder Bri(xi)× (ti −

r2i , ti + r2i ).
Going from the Theorem 3.4 to the Theorem 3.3 is a classical covering argument. To do
so we have to remind the Besicovitch property of the cylinders:

Lemma. There exists a number N with the following property: if F = {C̄r(x, t)} is
a family of cylinders then there exists N subfamilies of F , each consisting of pairwise
disjoint cylinders, which cover the set {(x, t) : ∃C̄r(x, t) ∈ F}.

Similarly to the Balls case, N depends only on the dimension of the ambient space, in our
setting n = 3.

Proof of Theorem 3.3

Fix δ > 0 and set

Fδ :=

{
C̄r(x, t) ∈ (0,∞)× Ω : 2r

√
1 + r2 < δ and

ˆ
Cr(x,t)

|Du|2 ≥ εr

}
.
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By Theorem 3.4 the set of centers of Fδ contains Sing(u). Now we use the Besicovitch
property and we consider the N subfamilies F1

δ , . . . ,FN
δ of the previous Lemma. Then,

by definition of the Parabolic Hausdorff measure, we have

P1
δ (Sing(u)) ≤

∑
C̄r(x,t)∈

⋃N
i=n F iδ

ω1r ≤
N∑
i=1

∑
C̄r(x,t)∈Fiδ

ω1

ε

ˆ
C̄r(x,t)

|Du|2.

Defining Ri
δ :=

⋃
C̄r(x,t)∈Fiδ

Cr(x, t), we rewrite

P1
δ (Sing(u)) ≤

N∑
i=1

ω1

ε

ˆ
Riδ

|Du|2.

If we manage to prove that limδ→0 |Ri
δ| = 0 then we have the thesis. Notice that

L4(Cr) ≈ r5.

Now, using the definition of Fδ, we get that that r4 ≤ δ2 and εr ≤ ∥|Du|∥2L2(Cr)
, we

get

|Ri
δ| ≤ C

∑
C̄r(x,t)∈Fiδ

r4 · r ≤ CN
δ2

ε

ˆ
(0,∞)×Ω

|Du|2.

Since Du ∈ L2 (by assumption on weak solutions) we conclude that the limit for δ → 0
of the Parabolic Hausdorff measure is zero.

From Proposition 3.4 to Theorem 3.5

The intermediate result is:

Theorem 3.5. For any p > 1, there exists a constant C, such that any suitable weak
solution in Q0 = [−1, 1]×B(1) verifying

∥u∥2L∞,2(Q0)
+ ∥Du∥2L2,2(Q0)

+ ∥p∥2Lp,1(Q0)
≤ C

is bounded by 1 almost everywhere in [−1/2, 1]×B(1/2).

The main difference between the work of Vasseur and the original one by Caffarelli-
Kohn-Nirenberg relies on this part. The first great idea is to put ourselves in De Giorgi’s
setting: we introduce a sequence of decreasing balls shrinking at B(1/2) (always centred
at the origin as anticipated in Remark 1)

Bk = B(1/2(1 + 2−3k).
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The choice of the exponent −3k (instead of just −k) will be clear much later (see
pressure decomposition), for the moment just notice that B0 = B(1) and B∞ = B(1/2).
As in the parabolic case, we also introduce a sequence of time

Tk =
1

2
(−1− 2−k)

and a sequence of specific cylinders

Qk = [Tk, 1]×Bk,

where Q0 = [−1, 1]×B(1) and Q∞ = [−1/2, 1]×B(1/2). The truncation is defined as

vk = [|u| − (1− 2−k)]+,

and the energy is given by

Uk = ∥vk∥2L∞,2(Qk)
+ ∥dk∥2L2(Qk)

,

where

d2k =
(1− 2−k)1|u|≥(1−2−k)

|u|
|∇|u||2 + vk

|u|
|Du|2 = (1− 2−k)

|u|
|∇vk|2 +

vk
|u|

|Du|2.

The introduction of the term dk is the first significant difference compared to the
parabolic settings. Without delving into technical details, it should be noted that the
term dk depends on the derivatives of vk and, consequently, on the derivatives of u. This
is in line with the formulation of Theorem 3.5. In this case, the universal constant C needs
to control not only u but also Du, unlike in the elliptic-parabolic context. One might
wonder why we do not simply take dk = |∇vk|. The reason is that when we substitute
vk into the first set of Navier-Stokes equations, the nonlinearity causes the term dk to
emerge. However, all the computations will be presented in the next chapter.

The strategy is to prove that Uk → 0, in that case we would have ∥v∞∥L∞,2(Q∞) = 0
which is equivalent to

sup
t∈[−1/2,1]

(ˆ
B(1/2)

[|u| − 1]2+dx

)
= 0 =⇒ |u| ≤ 1 a.e ∈ [−1/2, 1]×B(1/2). (3.13)

The key for proving such a result is the following fact:

Proposition 3.4. Let p > 1. Then there exist constants C, β > 1 depending only on
p such that for any suitable weak solution in [−1, 1]× B(1), if U0 ≤ 1, then we have
for every k > 0

Uk ≤ Ck(1 + ∥p∥Lp,1([−1,1],B(1)))U
β
k−1.

37



CHAPTER 3. REGULARITY FOR NAVIER-STOKES EQUATIONS

For this decay estimate we use a combination of De Giorgi’s scheme and a pressure
decomposition suggested by Vasseur. The proof is postponed to the next chapter.

To prove how Proposition 3.4 implies Theorem 3.5, we begin by noting that

U0 = ∥u∥2L∞,2(Q0)
+ ∥Du∥2L2(Q0)

.

Assuming the hypotheses of Theorem 3.5, we have the existence of a constant C that
bounds both U0 and ∥p∥Lp,1(Q0). Let us set a new constant, also denoted as C:

C = inf{C, 1}.

Then we have U0 ≤ 1 and ∥p∥Lp,1(Q0) ≤ 1. By applying Proposition 3.4 (Note that the
constant Ck is different from the previous one), we obtain:

Uk ≤ 2CkUβ
k−1.

Using Lemma 1.1, we can find a constant ε0 > 0 such that, if U0 ≤ ε0, we have

Uk −→ 0.

By redefining the constant as C = inf{C, ε0} (refer to (3.13)), we have completed the
proof.

Conclusion

Consider a pair (t0, x0) in (0,∞)× Ω and define the rescaled solutions for a fixed λ < 1

uk(t, x) = λku(λ2kt+ t0, λ
kx+ x0),

pk(t, x) = λ2kp(λ2kt+ t0, λ
kx+ x0).

It is easy to verify that if (u, p) is a suitable weak solution to the Navier-Stokes equa-
tions, then (uk, pk) is also a suitable weak solution. The advantage of this construction is
that for every (t0, x0) in the interior of (0,∞)×Ω, there exists a sufficiently large k such
that (uk, pk) is a suitable weak solution in Q0. This property allows us to focus on the
behaviour of the solutions in the reference cylinder Q0 and analyze their regularity and
properties in a controlled setting.

Now, for 1 < p ≤ 4/3, we define a sequence

Vk = ∥uk∥2L∞,2(Q0)
+

1

λ8
∥pk − p̄k∥2Lp,2(Q0)

where p̄k(t) =

 
B0

pk(t, x)dx.

Since ∇pk = ∇(pk − p̄k) the pair (uk, pk − p̄k) is still a suitable weak solution.

38



3.2. CAFFARELLI-KOHN-NIRENBERG

Proposition 3.5. For 1 < p < 2 there exists λ < 1 and ε0 ≤ C/2 (where C is
the constant of Theorem 3.5) such that for every suitable weak solution and every
(t0, x0) ∈ (0,∞)× Ω the following holds. If

lim sup
r→0

1

r

ˆ
Cr(x0,t0)

|Du|2 < ε0

there exists k0 > 0 such that, for any k ≥ k0,

Vk+1 ≤
Vk
4

+
C

4
. (3.14)

We remind that we have to prove that Theorem 3.5 and Proposition 3.5 imply Theorem
3.4. To this aim, assume that Proposition 3.5 holds. Since in Proposition 3.2 we have
proved that p ∈ L2

loc((0,∞)× Ω) we have that V1 is finite. Setting M = max{C, V1}, by
(3.14), Vk ≤ M for every k, it follows that lim supk Vk is finite. In particular, again by
(3.14),

lim sup
k→+∞

Vk ≤ C/3.

Moreover

∥Duk∥2L2(Q0)
=

1

λk

ˆ t0+λ2k

t0−λ2k

ˆ
x0+B(λk)

|Du|2. (3.15)

Since λ < 1 we have that λk → 0 and so

lim sup
k→+∞

∥Duk∥2L2(Q0)
≤ lim sup

r→0

1

r

ˆ
Cr(x0,t0)

|Du|2 < ε0 ≤
C

2
.

Then, for a big enough k1, we conclude

Vk1 + ∥Duk1∥2L2(Q0)
≤ C

2
+
C

3
< C,

which implies, using ∥pk − p̄k1∥2Lp,1(Q0)
≤ λ−8∥pk − p̄k1∥2Lp,2(Q0)

, that

∥uk1∥2L2(Q0)
+ ∥pk − p̄k1∥2Lp,1(Q0)

+ ∥Duk1∥2L2(Q0)
< 1

and by Theorem 3.5 uk1 is bounded almost everywhere in [−1/2, 1]×B(1/2). This implies
that there exists a neighbourhood of (t0, x0) where u is essentially bounded.
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Chapter 4

Proof of Caffarelli-Kohn-Nirenberg
in De Giorgi’s style

As we have already discussed the Caffarelli-Kohn-Nirenberg theorem can be reduced to
the Propositions 3.4 and 3.5. The heart of the work is the first one, which we remind:

Proposition. Let p > 1. Then there exist constants C, β > 1 depending only on p such
that for any suitable weak solution in [−1, 1] × B(1), if U0 ≤ 1, then we have for every
k > 0

Uk ≤ Ck(1 + ∥p∥Lp,1([−1,1],B(1)))U
β
k−1.

The proof is organised in two steps: the first is an application of De Giorgi’s scheme
in the Navier-Stokes setting and the second is Vasseur’s idea to decompose the pressure.
We conclude the chapter by proving also the second Proposition. Of course, the main
reference is [Vas07].

4.1 De Giorgi’s scheme for Navier Stokes

The first part of the proof will follow the De Giorgi’s scheme. The objective is to prove
that the energy decreases with an exponent greater than 1. In this first part, we will not
yet address the decrease of the pressure, for which an additional important observation
will be necessary (the technique will be developed in the next section).

The key elements of the method include the Chebyshev inequality, Sobolev Embedding,
and Energy Inequality. However, in our specific context, we must adapt these principles
and make technical observations regarding our truncations beforehand.
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The truncation

We start fixing some notation

1. If A,B are n× n matrix we denote A : B the scalar

A : B =
∑
i,j

AijBij

2. Consider u, ū : R3 → R3 then u⊗ ū is a n× n matrix such that

[u⊗ ū]ij = uiūj

3. With the previous u we denote D(u) the matrix with components

[D(u)]ij = ∂jui

Now we compute some useful identities.

Proposition 4.1. Consider u, ū : R3 → R3 and v : R3 → R. Suppose u, ū, v are regular
enough. Then

1. D(uv) = u⊗∇v + vD(u)

2. u · (uTD(u)) = u · [(u · ∇)u]

3. div
(
ūTD(u)

)
= ū ·∆(u) +D(ū) : D(u)

4. (u⊗∇v) : D(u) = (uTD(u)) · ∇v

5. D(uv) : D(u) = (uTD(u)) · ∇v + v|D(u)|2

6. uTD(u) = |u|∇|u|

Proof. We proceed proving each point.

1.

[D(uv)]ij = ∂j(uiv) = ui∂jv + v∂jui = [u⊗∇v]ij + v[D(u)]ij.

2. We compute the left and the right-hand side:

u · (uTD(u)) =
∑

i ui(u
TD(u))i =

∑
i ui
∑

j uj∂iuj =
∑

ij uiuj∂iuj,

u · [(u · ∇)u] =
∑

i ui[(u · ∇)ui] =
∑

i ui
∑

j uj∂jui =
∑

ij uiuj∂jui.
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3.

div
(
ūTD(u)

)
=
∑
i

∂i[ū
TD(u)]i =

∑
i

∂i

(∑
j

ūj∂iuj

)
=
∑
ij

∂i(ūj∂iuj) =

=
∑
ij

ūj∂
2
i,iuj + ∂iūj∂iuj = ū ·∆(u) +D(ū) : D(u).

4.

(u⊗∇v) : D(u) =(uTD(u)) =
∑
ij

ui∂jv∂jui =

=
∑
j

(∑
i

ui∂jui

)
∂jv = (uTD(u)) · ∇v

5. Combining point 1 and 4 we get

D(uv) : D(u) = (u⊗∇v + vD(u)) : D(u) = (uTD(u)) · ∇v + v|D(u)|2.

6. We compute separately the two quantities

[uTD(u)]i =
∑

j uj∂iuj,

[∇|u|]i = ∂i

(∑
j u

2
j

)1/2

=
2
∑
j uj∂iuj

2|u| .

We remind the choice of truncation

vk = [|u| − (1− 2−k)]+

and

d2k =
(1− 2−k)1|u|≥{1−2−k)}

|u|
|∇|u||2 + vk

|u|
|Du|2.

Lemma 4.1. The function u can be split in the following way:

u = u
vk
|u|

+ u

(
1− vk

|u|

)
where ∣∣∣∣u(1− vk

|u|

)∣∣∣∣ ≤ 1− 2−k

Moreover, we have the following bounds:

vk
|u|

|Du| ≤ dk, 1{|u|≥1−2−k}|∇|u|| ≤ dk, |∇vk| ≤ dk,

∣∣∣∣Duvk|u|

∣∣∣∣ ≤ 3dk.
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Proof. Notice that

vk = 0 if |u| ≤ 1− 2−k

vk = |u| − (1− 2−k) if |u| ≥ 1− 2−k

which implies ∣∣∣∣u(1− vk
|u|

)∣∣∣∣ ≤ 1− 2−k.

Notice also that dk = 0 when |u| < 1− 2−k, so the only interesting case is when |u| ≥ 1−
2−k, as otherwise all terms vanish. Let us suppose |u| ≥ 1−2−k and so vk = |u|−(1−2−k).

1. Since vk ≤ |u| we have

d2k ≥
vk
|u|

|Du|2 ≥
(
vk
|u|

|Du|
)2

.

2. We use |∇|u|| ≤ |Du| to get

d2k ≥
(1− 2−k) + vk

|u|
|∇|u||2 = |∇|u||2.

3. Notice that ∇vk = ∇|u| and we conclude as before.

4. Compute the left-hand side using twice Proposition 4.1 and

∇(|u|−1) = −|u|−2∇|u|.

Thus

D
uvk
|u|

=
u

|u|
⊗ ∇vk + vkD

(
u

|u|

)
=

u

|u|
⊗ ∇vk +

vk
|u|
Du− vku

|u|2
⊗∇|u|

and every summand can be bound by dk.

Sobolev Emeddings

Now we want to obtain a counterpart of the estimate (2.6) (obtained in the parabolic
case) but adapted to the Navier-Stokes context. Proceeding with the same technique,
we utilize a combination of Sobolev Embeddings and space-time interpolation. Although
we exploit the initial regularity of the weak solution, it is important to highlight that no
properties related to the geometry of the Navier-Stokes equations or the suitable weak
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solution condition are involved.

The result is contained in the following lemma, where, unlike in the parabolic case, we
do not yet use a test function. Therefore, we need to pay attention because our function
does not have compact support, and thus we cannot use the Poincaré inequality (which
we implicitly used in previous chapters).

Lemma 4.2. There exists a constant C such that for every k, and every function f ∈
L∞(Qk) with ∇f ∈ L2(Qk)

∥f∥L10/3(Qk)
≤ C

(
∥f∥L∞,2(Qk) + ∥f∥2/5L∞,2(Qk)

∥∇f∥3/5L2(Qk)

)
Proof. We use Sobolev embedding with p = 2 and p∗ = 6 on the space variables to get

∥f∥L2,6(Qk) ≤ C∥f∥H1(Qk) ≤ C
(
∥f∥L∞,2(Qk) + ∥∇f∥L2(Qk)

)
.

We underline that the constant does not depend on the domain (and so on k) because the
domains are controlled: [−1/2, 1]×B(1/2) ⊂ Qk ⊂ [−1, 1]×B(1). Now we use space-time
interpolation (2.1) with coefficients with p = ∞, q = 2, p′ = 2, q′ = 6 and λ = 2/5 to
obtain the estimate

∥f∥L10/3 ≤ ∥f∥2/5L∞,2 + ∥f∥3/5L2,6 ,

which implies the thesis.

With a combination of Lemma 4.1 (point 3) and Lemma 4.2, we obtain the following
result (where every norm is considered in Qk):

∥vk∥L10/3 ≤C
(
∥vk∥L∞,2 + ∥vk∥2/5L∞,2 ∥∇vk∥3/5L2

)
≤C
(
∥vk∥L∞,2 + ∥vk∥2/5L∞,2 ∥dk∥3/5L2

)
.

(4.1)

Since Uk = ∥vk∥2L∞,2 + ∥dk∥2L2 we have ∥vk∥L∞,2(Qk) ≤ U
1/2
k ∥dk∥L2(Qk) ≤ U

1/2
k .

Hence, using (4.1), we get the counterpart of (2.6):

∥vk∥L10/3(Qk)
≤ CU

1/2
k (4.2)

where the constant C does not depend on k.

Chebyshev’s inequality

Continuing to work without directly using the Navier-Stokes equations but only the regu-
larity of its solution, we can prove ”our Chebyshev”. In particular, there exists a universal
constant C (independent from k) such that for all k ≥ 1 and q > 1 we have:
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∥1{vk>0}∥Lq(Qk−1) ≤ C2
10k
3q U

5
3q

k−1

∥1{vk>0}∥L∞,q(Qk−1) ≤ C2
2k
q U

1
q

k−1

(4.3)

Proof. By definition if vk > 0 then vk−1 > 2−k. Using Chebyshev and the estimate (4.2)
we find

∥1{vk>0}∥qLq(Qk−1)
=

ˆ
Qk−1

1{vk>0} ≤ |{vk−1 > 2−k} ∩Qk−1|

≤ 210k/3
ˆ
Qk−1

|vk−1|10/3 ≤ C210k/3U
5/3
k−1.

Indeed for every t ∈ [Tk−1; 1]:

∥1{vk(t,·)>0}∥qLq(Bk−1)
≤ |{vk−1(t, ·) > 2−k} ∩Bk−1| ≤ 22k

ˆ
Bk−1

|vk−1(t, x)|2dx

≤ 22k sup
s∈[Tk−1,1]

ˆ
Bk−1

|vk−1(t, x)|2dx ≤ 22kUk−1

and taking the q-th root we obtained the desired conclusion.

Energy inequality

The third ingredient of De Giorgi’s scheme is an Energy inequality. In this case, the
geometry of the problem comes into play and guarantees the existence of an inequality to
counterbalance Sobolev Embeddings. As expected, we will proceed with the Caccioppoli-
Leray technique.

Before attempting this, we need to make use of a technical result whose difficulty is
due to the strong nonlinearity of the Navier-Stokes equations. Special attention should
be paid to the need for the assumption of a suitable weak solution in order to handle the
truncation term vk, which, unlike in previous chapters, is no longer a solution itself. It is
observed how, in order to handle the nonlinearity, the term dk emerges, demonstrating its
usefulness. This is an example of why the De Giorgi (and Nash) solutions, despite being
used to solve a linear problem, can be adapted to other non linear contexts.

Lemma 4.3. Let (u, p) be a suitable weak solution in Q = (0,∞) × Ω. Then vk verifies
in the sense of the distribution

∂t
v2k
2

+ div

(
u
v2k
2

)
+ d2k −∆

v2k
2

+ div(up) +

(
vk
|u|

− 1

)
u · ∇p ≤ 0 (4.4)
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Proof. Recall that the pair (u, p), assuming suitability, satisfies:

∂t
|u|2

2
+ div

(
u
|u|2

2

)
−∆

|u|2

2
+ div(up) + |Du|2 ≤ 0. (4.5)

At first, we write v2k as
v2k
2

=
|u|2

2
+
v2k − |u|2

2
.

We can use (4.5) for the first term while, for the second, notice that

∂α

(
v2k − |u|2

2

)
= vk∂αvk − u · ∂αu

= vk∂α|u| − u · ∂αu

= vk
u

|u|
· ∂αu− u · ∂αu

= u

(
vk
|u|

− 1

)
· ∂αu.

Since
∣∣u( vk|u| − 1

)∣∣ is bounded by 1 we have a uniform bound on the space-time derivatives

of
(v2k−|u|2

2

)
and we are allowed to compute what follows.

We have

div

(
u
v2k − |u|2

2

)
=u · ∇

(
v2k − |u|2

2

)
= u · uT

(
vk
|u|

− 1

)
D(u)

= [(u · ∇)u] ·
[
u

(
vk
|u|

− 1

)] (4.6)

where for the first equality we have used that div(u) = 0, for the second the previous
computation and for the third Proposition 4.1 point 2. Trivially we get also

∂t
v2k − |u|2

2
= ∂tu ·

[
u

(
vk
|u|

− 1

)]
. (4.7)

Then consider the Navier-Stokes equation

∂tu+ (u · ∇)u+∇p−∆u = 0

and multiply it by u
(
vk
|u| − 1

)
. Using (4.6) and (4.7) we obtain

∂t
v2k − |u|2

2
+ div(u

v2k − |u|2

2
) +

[
u

(
vk
|u|

− 1

)]
· ∇p−

[
u

(
vk
|u|

− 1

)]
·∆u = 0 (4.8)

Adding up (4.5) and (4.8) we get

∂t
v2k
2
+div

(
u
v2k
2

)
+

[
u

(
vk
|u|

− 1

)]
·∇p+div(up)−

[
u

(
vk
|u|

− 1

)]
·∆u−∆

|u|2

2
+|∇u|2 ≤ 0.

47



CHAPTER 4. PROOF OF CAFFARELLI-KOHN-NIRENBERG IN DE GIORGI’S
STYLE

We are left to prove that

−
[
u

(
vk
|u|

− 1

)]
·∆u−∆

|u|2

2
+ |∇u|2 = d2k −∆

v2k
2
. (4.9)

We use Proposition 4.1 point 3 with ū = u
(
vk
|u| − 1

)
and we write

div

(
uT
(
vk
|u|

− 1

)
D(u)

)
=

[
u

(
vk
|u|

− 1

)]
·∆u+D

(
u

(
vk
|u|

− 1

))
: D(u).

For the second term of the right-hand side, we use point 5 of Proposition 4.1:

D

(
u

(
vk
|u|

− 1

))
: D(u) = (uTD(u)) · ∇

(
vk
|u|

)
+

(
vk
|u|

− 1

)
|D(u)|2

while for the left-hand side, we get

div

(
uT
(
vk
|u|

− 1

)
D(u)

)
= div

(
∇
(
v2k − |u|2

2

))
= ∆

v2k − |u|2

2
.

Combining the last three equations we have that

−[u

(
vk
|u|

− 1

)
] ·∆u = −∆

v2k − |u|2

2
+ (uTD(u)) · ∇

(
vk
|u|

)
+

(
vk
|u|

− 1

)
|D(u)|2. (4.10)

Putting (4.10) into (4.9) we have that:

(uTD(u)) · ∇
(
vk
|u|

)
+

(
vk
|u|

− 1

)
|D(u)|2 = d2k − |D(u)|2.

We claim that

(uTD(u)) · ∇
(
vk
|u|

)
=

(1− 2−k)1{|u|≥{1−2−k)}

|u|
|∇|u||2. (4.11)

As always, if |u| ≤ 1−2−k everything is trivial, so suppose |u| ≥ 1−2−k and the equation
(4.11) becomes

(uTD(u)) · ∇
(
|u| − (1− 2−k)

|u|

)
=

(1− 2−k)

|u|
|∇|u||2.

The left-hand side is equal to

(uTD(u)) · ∇
(
1− (1− 2−k)

|u|

)
=− (1− 2−k)(uTD(u)) · ∇

(
1

|u|

)
=
(1− 2−k)

|u|2
(uTD(u)) · ∇|u|

=
(1− 2−k)

|u|2
(|u|∇|u|) · ∇|u|

=
(1− 2−k)

|u|
|∇|u||2

where the third equality is given by Proposition 4.1.
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We are ready to formulate the Energy Inequality for the Navier-Stokes equation. We
multiply Equation (4.4) by a positive test function φ defined in x, and integrate it over
the entire space and time interval s < t.( ˆ

φ
|vk|2

2
dx

)
(t) +

ˆ t

s

ˆ
φ d2k dxdτ ≤

( ˆ
φ
|vk|2

2
dx

)
(s)

+

ˆ t

s

ˆ
∇φ · u |vk|

2

2
dxdτ +

ˆ t

s

ˆ
∆φ

|vk|2

2
dxdτ−

−
ˆ t

s

ˆ
φ

[
div(up) +

(
vk
|u|

− 1

)
u · ∇p

]
dxdτ.

(4.12)

To be truly precise, we cannot, a priori, work in this manner, as the test function must
have compact support in the space-time domain. To formalize everything, we proceed as
in Corollary 3.1, following the idea of [Gal00].

As in the parabolic case, we need to carefully choose the test function in order to refine
the previous result.

Corollary 4.1. We have the following estimate

sup
t∈[Tk,1]

(ˆ
Bk

|vk|2

2
dx

)
(t) +

ˆ t

Tk

ˆ
Bk

d2k dxdτ

)
≤ 2k+1

ˆ
Qk−1

|vk|2

2
dxdτ

+ C23k
ˆ
Qk−1

u
|vk|2

2
dxdτ + C26k

ˆ
Qk−1

|vk|2

2
dxdτ+

+

ˆ 1

Tk−1

∣∣∣∣ ˆ ηk div(up) +

(
vk
|u|

− 1

)
u · ∇pdx

∣∣∣∣dτ.
(4.13)

where ηk is defined above.

Proof. In (4.12) we choose φ = ηk ∈ C∞(R3;R) such that

ηk(x) = 1 in Bk

ηk(x) = 0 in BC
k−1

0 ≤ η(x) ≤ 1

|∇ηk| ≤ C23k

|∆ηk| ≤ C26k

A very important observation for the upcoming sections (in particular pressure de-
composition) is that the result continues to hold even if ηk is compactly supported in sets
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smaller than Bk−1. The only hypothesis we need is that such sets are between Bk and
Bk−1. After using the estimates on ∇ηk and ∆ηk we get:(ˆ

ηk
|vk|2

2
dx

)
(t) +

ˆ t

s

ˆ
ηk d

2
k dxdτ ≤

( ˆ
ηk

|vk|2

2
dx

)
(s)

+ C23k
ˆ t

s

ˆ
spt(ηk)

u
|vk|2

2
dxdτ + C26k

ˆ t

s

ˆ
spt(ηk)

|vk|2

2
dxdτ

−
ˆ t

s

ˆ
ηk

[
div(up) +

(
vk
|u|

− 1

)
u · ∇p

]
dxdτ.

Playing with the range of s and t, we obtain the following inequality for Tk−1 ≤ s ≤
Tk ≤ 1: ( ˆ

ηk
|vk|2

2
dx

)
(t) +

ˆ t

Tk

ˆ
ηk d

2
k dxdτ ≤

( ˆ
ηk

|vk|2

2
dx

)
(s)

+ C23k
ˆ 1

Tk−1

ˆ
spt(ηk)

u
|vk|2

2
dxdτ + C26k

ˆ 1

Tk−1

ˆ
spt(ηk)

|vk|2

2
dxdτ

+

ˆ 1

Tk−1

∣∣∣∣ ˆ ηk

∣∣∣∣ div(up) + ( vk|u| − 1

)
u · ∇pdx

∣∣∣∣dτ.
Using the properties of the test function and the fact that t is only on the left-hand

side we get that, for Tk−1 ≤ s ≤ Tk,

sup
t∈[Tk,1]

( ˆ
Bk

|vk|2

2
dx

)
(t) +

ˆ t

Tk

ˆ
Bk

d2k dxdτ

)
≤
( ˆ

Bk−1

|vk|2

2
dx

)
(s)

+ C23k
ˆ
Qk−1

u
|vk|2

2
dxdτ + C26k

ˆ
Qk−1

|vk|2

2
dxdτ+

+

ˆ 1

Tk−1

∣∣∣∣ˆ ηk div(up) +

(
vk
|u|

− 1

)
u · ∇pdx

∣∣∣∣dτ.
We want to eliminate the dependence from s of the right-hand side. The idea is to apply
the averaging operator  Tk

Tk−1

ds

to each term of the previous inequality. This operator does not act as the identity only
on the first term of the right-hand side, resulting in the following expression:

sup
t∈[Tk,1]

( ˆ
Bk

|vk|2

2
dx

)
(t) +

ˆ t

Tk

ˆ
Bk

d2k dxdτ

)
≤ 2k+1

ˆ
Qk−1

|vk|2

2
dxds

+ C23k
ˆ
Qk−1

u
|vk|2

2
dxdτ + C26k

ˆ
Qk−1

|vk|2

2
dxdτ

+

ˆ 1

Tk−1

∣∣∣∣ ˆ ηk

[
div(up) +

(
vk
|u|

− 1

)
u · ∇p

]
dx

∣∣∣∣dτ.
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The energy decay

We are now ready to merge the results above and derive (3.4). Once again, the Energy
inequality competes with Sobolev embeddings and the Chebyshev’s inequality enables us
to surpass the critical exponent of 1.

In particular, the left-hand side of Corollary 4.1 satisfies

Uk ≤ 4 supt∈[Tk;1]

( ˆ
Bk

|vk(t, x)|2

2
dx+

ˆ t

Tk

ˆ
Bk

d2k(τ, x)dxdτ

)
,

and so, up to a multiplicative constant,

Uk ≤2k+1

ˆ
Qk−1

|vk(τ, x)|2dxdτ + C23k
ˆ
Qk−1

u|vk(τ, x)|2dxdτ

+ C26k
ˆ
Qk−1

|vk(τ, x)|2dxdτ

+ 2

ˆ 1

Tk−1

∣∣∣∣ˆ
R3

ηk(x)

[
div(up) +

(
vk
|u|

− 1

)
u · ∇p

]
dx

∣∣∣∣dτ.
(4.14)

Now we focus on the second term of the right-hand side. We begin by employing the
following decomposition:

uv2k =

[
u

(
1− vk

|u|

)
+
uvk
|u|

]
v2k

and using Lemma 4.1 we get∣∣∣∣u(1− vk
|u|

)
v2k

∣∣∣∣ ≤ v2k

∣∣∣∣ u|u|vkv2k
∣∣∣∣ = v3k.

This allows us to bound uv2k ≤ v2k + v
3
k. By substituting this inequality into (4.14) and

rearranging the terms (while also replacing τ with s for simplicity), we obtain:

Uk ≤C26k
ˆ
Qk−1

|vk(s, x)|2dxds+ C23k
ˆ
Qk−1

|vk(s, x)|3dxds

+ 2

ˆ 1

Tk−1

∣∣∣∣ ˆ
R3

ηk(x)

[
div(up) +

(
vk
|u|

− 1

)
u · ∇p

]
dx

∣∣∣∣ds (4.15)

Now let us consider the first two terms on the right-hand side, and applying Hölder’s
inequality, we can write:

C26k
ˆ
Qk−1

|vk(s, x)|2 + C23k
ˆ
Qk−1

|vk(s, x)|3

≤ C6k∥v2k∥L5/3(Qk−1)
∥1{vk>0}∥L5/2(Qk−1)

+ C3k∥|vk|3∥L10/9(Qk−1)
∥1{vk>0}∥L10(Qk−1)
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Then, we can continue bounding the right-hand side. In fact,

∥v2k∥L5/3(Qk−1)
= ∥vk∥2L10/3(Qk−1)

≤ ∥vk−1∥2L10/3(Qk−1)
≤ CUk−1

∥v3k∥L10/9(Qk−1)
= ∥vk∥3L10/3(Qk−1)

≤ CU
3/2
k−1.

Finally, thanks to the estimates (4.3) in combination with Hölder’s inequality, we can
continue the calculation as follows:

C26k
ˆ
Qk−1

|vk(s, x)|2 + C23k
ˆ
Qk−1

|vk(s, x)|3

≤C26kUk−12
4k/3U

2/3
k−1 + C23kU

3/2
k−12

k/3U
1/6
k−1

=C26k+4k/3U
5/3
k−1.

Summarizing, we have proved:

Uk ≤ C 26k+4k/3 U
5/3
k−1 + 2

ˆ 1

Tk−1

∣∣∣∣ˆ ηk(x)

[
div(up) +

(
vk
|u|

− 1

)
u · ∇p

]
dx

∣∣∣∣ds. (4.16)

We are left with the pressure term.

4.2 Pressure Estimate

We need an estimate forˆ 1

Tk−1

∣∣∣∣ˆ ηk

[
div(up) +

(
vk
|u|

− 1

)
u · ∇p

]
dx

∣∣∣∣ ds.
We have previously observed (see (3.8)) that our pressure p satisfies

−∆p =
∑
ij

∂2ij(uiuj). (4.17)

A promising approach to gain regularity for p is to utilize the Calderón–Zygmund
theory applied to (4.17). However, there is a crucial issue: even if we are interested in the
values of p only in a smaller set than Ω (such as the support of ηk), the Calderón–Zygmund
theory only guarantees an estimate of the form

∥p∥Lp(Ω) ≤ ∥u∥Lp(Ω),

without providing a good bound for ∥p∥Lp(Qk−1). The brilliant idea of Vasseur is to de-
compose the pressure into two components, denoted as p1 and p2 with p = p1 + p2. One
of them, referred to as the local component, solves

−∆p2 =
∑
ij

φ∂2ij(uiuj),
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where φ is a test function compactly supported in Qk−1. This decomposition allows us to
obtain the useful bound:

∥p2∥Lp(Qk−1) ≤ ∥u∥Lp(Qk−1).

as seen in (A.3) for a compactly supported right-hand side.

Regarding the other component, p1, it is harmonic when φ ≡ 1. The harmonicity
provides us with additional regularity for this term.

To be precise we have to fix the set where φ assumes the value 1. To this aim, we
need to introduce some intermediate balls:

Bk−1/3 := B(1/2(1 + 2 · 2−3k))

Bk−2/3 := B(1/2(1 + 4 · 2−3k))

One can check that we have this inclusion

Bk ⊂ Bk−1/3 ⊂ Bk−2/3 ⊂ Bk−1.

For the sake of readability, we use the following notation:

Qk−1/3 = [Tk−1, 1]×Bk−1/3

Qk−2/3 = [Tk−1, 1]×Bk−2/3.

From now on ηk is compactly supported in Bk−1/3 (instead of Bk−1). Notice that we
are allowed to proceed in this way thanks to the remark contained in Corollary 4.1.

Pressure decomposition

For the sake of completeness, we present the following proposition that captures the tech-
nical details of the pressure decomposition, which we are going to prove.

Prior to stating it, we underline the structure of our localization test function φk ∈
C∞

c (Bk−1), which will be equal to 1 in Bk−2/3. In this way, our non-local part (which will
be called pk1) will be harmonic in Bk−2/3. To obtain our estimate, we also impose the
conditions |∇φk| ≤ C23k and |∆φk| ≤ C26k.

Proposition 4.2. Suppose p > 1, 1 ≤ i, j ≤ 3 and let p a solution in Qk−1 to

−∆p =
∑
ij

∂2ijGij.

Then we can decompose p|Bk−2/3
into two parts p|Bk−2/3

= pk1|Bk−2/3
+ pk2|Bk−2/3

, where:
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• pk2 solves

−∆pk2 =
∑
ij

∂2ij(φkGij) in [Tk−1, 1]× R3

with φk defined as above.

• For every (t, x) ∈ Qk−1/3 we have the following estimate:

|pk1(t, x)|+|∇pk1(t, x)| ≤ C212k

(ˆ
Bk−1

|p(t, y)|dy +
ˆ
Bk−1

∑
ij

|Gij(t, y)|dy

)
(4.18)

Proof. We start using the definition of p and pk2 and do the following computation (Ein-
stein’s notation):

−∆(φkp) = φk∆p+∆φkp+∇φk · ∇p.
−∆pk2 = ∂iφk∂jGij + ∂jφk∂iGij + ∂2ijφkGij + φk∂

2
ijGij.

Combining the two equations we obtain:

−∆(pk2 − φkp) = ∂iφk∂jGij + ∂jφk∂iGij + ∂2ijφkGij −∆φkp−∇φk · ∇p.

Remembering that 1
4π|x| is the fundamental solution of the Laplacian in R3 for a Dirac

delta in the origin we set

p10 =
1

4π|x|
∗ (∂iφk∂jGij),

p20 =
1

4π|x|
∗ (∂jφk∂iGij),

p30 =
1

4π|x|
∗ (∂2ijφkGij),

p40 = − 1

4π|x|
∗ (∆φk p),

p50 = − 1

4π|x|
∗ (∇φk · ∇p).

Finally, we set p0 = p10 + p20 + p30 + p40 + p50. With this notation we have

pk2 = φkp− p0;

pk1 = (1− φk)p+ p0.

The first three terms of p0 can be bounded in the same way. We show only the first one:

p10 = ∂j
1

4π|x|
∗ (∂iφkGij)−

1

4π|x|
∗ (∂2ijφkGij).
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Hence we have (we are not writing the sum and the constants):

p10(t, x) =

ˆ
Bk−1\Bk−2/3

−1

|x− y|2
∂iφk(y)Gij(t, y)dy −

ˆ
Bk−1\Bk−2/3

1

|x− y|
∂2ijφk(y)Gij(t, y)dy

where we have used that ∇φk ≡ 0 in Bk−2/3 ∪Bc
k−1. If x ∈ Bk−1/3 we have that |x− y| ≥

2−3k and so:

|p10(t, x)| ≤ 26k∥φk∥C1(Bk−1)

ˆ
Bk−1

|Gij(t, y)|dy + 23k∥φk∥C2(Bk−1)

ˆ
Bk−1

|Gij(t, y)|dy

≤ 29k
ˆ
Bk−1

|Gij(t, y)|dy.

Similarly, for the last two terms (again x ∈ Bk−1/3), we get

|p40(t, x)| ≤ 29k
ˆ
Bk−1

|p(t, y)|dy

and so we conclude

|p0(t, x)| ≤ 29k

(ˆ
Bk−1

|p(t, y)|dy +
ˆ
Bk−1

|Gij(t, y)|dy

)
.

Since 1− φk is null in Qk−2/3 we have the same estimate for pk1.

For ∇pk1, we can utilize the fact that the gradient of a harmonic function stays har-
monic. We can follow a similar procedure as before. By distributing the new derivative to
the term 1

|x−y| , we increase its exponent by one, resulting in the estimate being multiplied

by a factor of 23k. Indeed we get

|∇pk1(t, x)| ≤ 212k

(ˆ
Bk−1

|p(t, y)|dy +
ˆ
Bk−1

|Gij(t, y)|dy

)
.

The pressure decomposition is essentially an adaptation of the previous proposition
to our specific context. We have just to choose our Gij to be uiuj as suggested by (3.8).

Theorem (Pressure Decomposition). If (u, p) is a suitable weak solution in Qk−1 then
we can decompose p|Bk−2/3

into two parts

p|Bk−2/3
= pk1|Bk−2/3

+ pk2|Bk−2/3

where:

• pk2 solves

−∆pk2 =
∑
i,j

∂2ij(φkujui) in [Tk−1, 1]× R3

with φk as before.
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• Moreover, for every p > 1, we have the following bound

∥∇pk1∥Lp,∞(Qk−1/3) + ∥pk1∥Lp,1(Qk−1/3) ≤ C212k
(
∥p∥Lp,1(Qk−1) + 1

)
(4.19)

Proof. We fix the quantity Gij = uiuj such that

−∆p =
∑
i,j

∂i∂jGij.

Integrating (4.18) for p > 1, we obtain

∥∇pk1∥Lp,∞(Qk−1/3) + ∥pk1∥Lp,∞(Qk−1/3) ≤ C212k

(
∥p∥Lp,1(Qk−1) +

∑
i,j

∥Gij∥Lp,1(Qk−1)

)
.

By applying Holder’s inequality, we have∑
i,j

∥Gij∥Lp,1(Qk−1) ≲
∑
i,j

∥Gij∥L∞,1(Qk−1) ≲ ∥u∥2L∞,2(Qk−1)
≤ 1,

where the last inequality follows from ∥u∥2L∞,2(Qk−1)
≤ ∥u∥2L∞,2([−1,1]×B(1)) ≤ U0 ≤ 1, which

is our starting assumption in Proposition 3.4.

We conclude the section on Pressure Decomposition with a straightforward Corollary
that will be used at the end of the chapter to prove Proposition 3.5.

Corollary 4.2. Consider (u, p) a a suitable weak solution in Q0 and define for every t

u(t) =

 
B(1)

u(t, x)dx and p(t) =

 
B(1)

p(t, x)dx

Then we can decompose (p− p)[−1/2,1/2]×B(1/2) into two parts: p1 and p2, where

1. p2 is solution to

−∆p2 =
∑
ij

∂i∂j[φ1(uj − uj)(ui − ui)]

with φ1 a test function compactly supported in B0 and equal to 1 in B1−2/3. We
require also |∇φ1| ≤ C23 and |∇2φ1| ≤ C26.

2. p1 is harmonic in [−1, 1] × B1−2/3 (and in particular in [−1/2, 1/2] × B(1/2)).
Moreover, we have the estimate for p > 1:

∥p1∥Lp,∞((−1/2,1/2]×B(1/2)) ≤ C
(
∥p− p∥Lp,1(Q0) + ∥u− u∥2Lp,2(Q0)

)
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Proof. We have

−∆(p− p) =
∑
i,j

∂i∂j[(uj − uj)(ui − ui)].

Setting Gij = (uj − uj)(ui − ui) and integrating in time (4.18) we get, for p > 1,

∥pk1∥Lp,∞(B1−1/3) ≤ C
(
∥p− p∥Lp,1(Q0) +

∑
i,j

∥Gij∥Lp,1(Q0)

)
≤ C

(
∥p− p∥Lp,1(Q0) + ∥u− u∥Lp,2(Q0)

)
where we have used k = 1 and ∥ui − ui∥ ≤ ∥u− u∥. Noticing that

B(1/2) ⊂ B1−1/3

we have done.

Non-local term

Once we have the pressure decomposition we can estimate the pressure with the sum of
two components:

ˆ 1

Tk−1

∣∣∣∣ ˆ
Bk−1/3

ηk

[
div(upk1) +

(
vk
|u|

− 1

)
u · ∇pk1

]
dx

∣∣∣∣dt+
ˆ 1

Tk−1

∣∣∣∣ ˆ
Bk−1/3

ηk

[
div(upk2) +

(
vk
|u|

− 1

)
u · ∇pk2

]
dx

∣∣∣∣dt.
By (4.18) we have that ∇pk1 ∈ Lp,∞(Qk−1/3) and, since u ∈ L∞,2, we have

div(upk1) = u · ∇pk1 ∈ Lp,2(Qk−1/3).

Then we can expand the non-local term and obtain:

ˆ 1

Tk−1

∣∣∣∣ˆ
Bk−1/3

ηk
vku

|u|
∇pk1dx

∣∣∣∣dt ≤ ˆ
Qk−1/3

|vk∇pk1| . (4.20)

To obtain an estimate for (4.20), we need to consider three different cases based on the
values of p. In all cases, we utilize a combination of Hölder’s inequality, the estimate for
vk (4.2), and Chebyshev’s estimate (4.3), which we include here for the sake of readability:

∥vk∥L10/3(Qk)
≤ CU

1/2
k

∥1{vk>0}∥Lq(Qk−1) ≤ C2
10k
3q U

5
3q

k−1

∥1{vk>0}∥L∞,q(Qk−1) ≤ C2
2k
q U

1
q

k−1.

(4.21)
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Case p > 10

In this case, we estimate (4.20) using the following bound:

C∥vk∥L10/3(Qk−1)
∥∇pk1∥Lp,∞(Qk−1/3)∥1{vk>0}∥Lq,10/7(Qk−1/3)

, (4.22)

where q satisfies (p > 1)

3

10
+

1

q
+

1

p
= 1 =⇒ 1

q
=

7

10
− 1

p
=⇒ q >

10

7
.

Since q > 10/7, we can bound (4.22) with

C∥vk∥L10/3(Qk−1)
∥∇pk1∥Lp,∞(Qk−1/3)∥1{vk>0}∥Lq(Qk−1).

Using the estimates from (4.21), we have

∥vk∥L10/3(Qk−1)
∥1{vk>0}∥Lq(Qk−1) ≤ CU

1/2
k−12

10k/(3q)U
5/(3q)
k−1 = C2(7k/3−10k/3p)U

5/3(1−1/p)
k−1 .

Then, using the estimate from Pressure Decomposition, in particular, (4.19) we con-
clude that for p > 10 we can control the non-local part with:

ˆ
Qk−1/3

|vk∇pk1| ≤ C(1 + ∥p∥Lp,1(Qk−1))2
7k
3
− 10k

3p U
5
3
(1− 1

p
)

k−1

which is compatible with the thesis of Proposition 3.4.

Case 2 ≤ p ≤ 10

We bound (4.20) by

C∥vk∥L∞,2(Qk−1/3)∥∇pk1∥Lp,∞(Qk−1/3)∥1{vk>0}∥Lp′,2(Qk−1/3)
. (4.23)

Since p′ ≤ 2, we can control (4.23) with

C∥vk∥L∞,2(Qk−1/3)∥∇pk1∥Lp,∞(Qk−1/3)∥1{vk>0}∥L2(Qk−1).

By (4.21), we have

∥vk∥L∞,2(Qk−1/3)∥1{vk>0}∥L2(Qk−1) ≤ C25k/3U
4/3
k−1,

and we conclude as before.
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Case p ≤ 2

Again, we bound (4.20) by

C∥vk∥L∞,2(Qk−1/3)∥∇pk1∥Lp,∞(Qk−1/3)∥1{vk>0}∥Lp′,2(Qk−1/3)

and this time with

C∥vk∥L∞,2(Qk−1/3)∥∇pk1∥Lp,∞(Qk−1/3)∥1{vk>0}∥Lp′ (Qk−1)
∥1{vk>0}∥

L
∞,

2p
2−p (Qk−1)

where we have used the fact that

1 =
1

2
+

1

p′
+

2− p

2p
.

By applying all three points of (4.21), we obtain

∥vk∥L∞,2(Qk−1/3)∥1{vk>0}∥Lp′ (Qk−1)
∥1{vk>0}∥

L
∞,

2p
2−p (Qk−1)

≤ C2
7k
3
− 4k

3pU
5
3
− 2

3p

k−1 .

Summarizing we have that the non-local pressure term is bounded by

C2kαpU
βp
k−1

(
∥p∥Lp,1(Qk−1) + 1

)
(4.24)

where:

1. For p > 10 we have αp = 12 + 7
3
− 10

3p
and βp =

5
3

(
1− 1

p

)
.

2. For 2 ≤ p ≤ 10 we have αp = 12 + 5
3
and βp =

4
3
.

3. For p < 2 we have αp = 12 + 7
3
− 4

3p
and βp =

5
3
− 2

3p
.

Notice that βp is greater than 1 for very p > 1. Moreover if p > 10 the exponent βp is
greater then 3/2.

Local term

We have to find an estimate for

ˆ 1

Tk−1

∣∣∣∣ ˆ
Bk−1/3

ηk

[
div(upk2) +

(
vk
|u|

− 1

)
u · ∇pk2

]
dx

∣∣∣∣ds. (4.25)
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As we anticipated, dealing with a local term allows us to apply Calderón-Zygmund
theory to gain regularity of pk2. We start splitting once again pk2 into three components:
pk21, pk22, and pk23, where for 1 ≤ h ≤ 3,

−∆pk2h =
∑
ij

∂2ijf
h
ij.

and

f 1
ij = φkuj

(
1− vk

|u|

)
ui

(
1− vk

|u|

)
,

f 2
ij = 2φkuj

(
1− vk

|u|

)
ui
vk
|u|
,

f 3
ij = φkuj

vk
|u|
ui
vk
|u|
.

Then we split the local term (4.25) in three parts

PT1 =

ˆ 1

Tk−1

∣∣∣∣ ˆ
Bk−1/3

ηk(x)

[
div(upk21) +

(
vk
|u|

− 1

)
u · ∇pk21

]
dx

∣∣∣∣ds,
PT2 =

ˆ 1

Tk−1

∣∣∣∣ ˆ
Bk−1/3

ηk(x)

[
div(upk22) +

(
vk
|u|

− 1

)
u · ∇pk22

]
dx

∣∣∣∣ds,
PT3 =

ˆ 1

Tk−1

∣∣∣∣ ˆ
Bk−1/3

ηk(x)

[
div(upk23) +

(
vk
|u|

− 1

)
u · ∇pk23

]
dx

∣∣∣∣ds.
The idea is that f 1

ij is bounded by Lemma 4.1 and, using Calderón–Zygmund theory,
this gives us enough regularity on pk21 to find the estimate for PT1. For f 2

ij and f
3
ij we do

not have the L∞ property but we can restrict the study to {u > 1− 2−k}. Otherwise, if
vk = 0 we have that pk22 and pk23 are harmonics and so smooth. This allows us to expand
the divergence term and trivially we get PT2 = PT3 = 0.
Before going into the details, let us introduce some basic facts about the Calderón–Zygmund
theory.

PT1 Estimate

By Lemma 4.1, we have
∣∣∣u(1− vk

|u|

)∣∣∣ ≤ 1, which implies that φkuj

(
1− vk

|u|

)
∈ Lq for

every 1 < q <∞.

Applying Calderón-Zygmund theory (specifically, the Calderón-Zygmund estimate
(A.3)), we obtain ∥pk21∥Lq(Qk−1) ≤ Cq for every 1 < q <∞.
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Furthermore, by Calderón-Zygmund theory, we know that∇pk21 has the same summa-
bility as

∇
(
φkuj

(
1− vk

|u|

)
ui

(
1− vk

|u|

))
=∇φkuj

(
1− vk

|u|

)
ui

(
1− vk

|u|

)
+φk∇

(
uj

(
1− vk

|u|

))
ui

(
1− vk

|u|

)
+φkuj

(
1− vk

|u|

)
∇
(
ui

(
1− vk

|u|

))
.

The first term of the right-hand side belongs to L∞. The second and third terms are
in L2 because, thanks to Lemma 4.1

D

(
u

(
1− vk

|u|

))
= Du−D

(
u
vk
|u|

)
∈ L2.

Then we conclude ∇pk21 belongs to L2 and so we can compute:

div(upk21) +

(
vk
|u|

− 1

)
u · ∇pk21 = u

vk
|u|

· ∇pk21 = div

(
vku

|u|
pk21

)
− pk21 div

(
uvk
|u|

)
and estimate

PT1 ≤
ˆ 1

Tk−1

∣∣∣∣ ˆ pk21vk
u

|u|
· ∇ηkdx

∣∣∣∣ds+ ˆ 1

Tk−1

∣∣∣∣ ˆ pk21 div

(
uvk
|u|

)
ηkdx

∣∣∣∣ds
≤C23k

ˆ
Qk−1

vk|pk21|dxds+
ˆ
Qk−1

|pk21|
∣∣∣∣Duvk|u|

∣∣∣∣dxds
≤C23k

ˆ
Qk−1

vk|pk21|dxds+ C

ˆ
Qk−1

|pk21|dk dxds.

It is easy to check that dk ≤
√
2dk−1 and so ∥dk∥L2(Qk−1) ≤

√
2U

1/2
k−1. In particular, for

q ≥ 10/3, we get

PT1 ≤C23k∥vk∥L10/3∥pk21∥Lq∥1{vk>0}∥
L

10q
7q−10

+ C∥dk∥L2∥pk21∥Lq∥1{vk>0}∥
L

2q
q−2

≤C
(
U

5
3
(1− 1

q
)

k−1 + U
4
3
+ 5

3q

k−1

)
where for the first bound we have used Hölder with exponents

3

10
+

1

q
+

7q − 10

10q
= 1

1

2
+

1

q
+
q − 2

2q
= 1.

Hence, for q large enough, we have

PT1 ≤ CkU
5
4
k−1. (4.26)
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Estimate PT2 and PT3

By Calderón–Zygmund we have

∥pk22∥L10/3 ≤ C
∑
i,j

∥uj(1− vk/|u|)∥L∞∥vkui/|u|∥L10/3

≤ C∥vk∥L10/3 ≤ U
1/2
k−1 and

∥pk23∥L5/3 ≤ C
∑
i,j

∥ujvk/|u|)∥L10/3∥vkui/|u|∥L10/3

≤ C∥vk∥2L10/3 ≤ Uk−1.

(4.27)

This time we need to control their gradients too.

Lemma 4.4. Writing

∇pk22 =G221 +G222 +G223

∇pk23 =G231 +G232

we have

1. |G221∥L 10
3 (Qk−1/3)

≤ C23k∥vk∥L10/3(Qk−1)
≤ C23kU1/2.

2. ∥G222∥L2(Qk−1/3) ≤ C∥dk∥L2(Qk−1) ≤ CU1/2.

3. ∥G223∥L 5
4 (Qk−1/3)

≤ C∥vk∥L10/3(Qk−1)
∥dk∥L2(Qk−1) ≤ CU .

4. ∥G231∥L 5
3 (Qk−1/3)

≤ C23k∥vk∥2L10/3(Qk−1)
≤ C23kU .

5. ∥G232∥L 5
4 (Qk−1/3)

≤ C∥vk∥L10/3(Qk−1)
∥dk∥L2(Qk−1) ≤ CU .

Before proving the lemma let us see how we can conclude. As we have already discussed
we can consider the integrals only where {|u| ≥ 1− 2−k}:

PT2 + PT3 =

ˆ 1

Tk−1

∣∣∣∣ˆ
Bk−1/3

ηk(x)

[
div(u(pk22 + pk23) +

(
vk
|u|

− 1

)
u · ∇(pk22 + pk23

]
dx

∣∣∣∣ds
≤
ˆ 1

Tk−1

ˆ
Bk−1/3

|∇ηk||u||pk22 + pk23|dxdt+
ˆ 1

Tk−1

ˆ
Bk−1/3

(|∇pk22|+ |∇pk23|)dxdt

≤C23k
ˆ 1

Tk−1

ˆ
Bk−1/3

(1 + vk)|pk22 + pk23|dxdt+
ˆ 1

Tk−1

ˆ
Bk−1/3

(|∇pk22|+ |∇pk23|)dxdt

For the first term on the right-hand side, we use Hölder’s inequality to get, up to a
multiplicative constant,

23k
(
∥1{|u|≥1−2−3k}∥L10/7(Qk−1)

∥pk22∥L10/3(Qk−1/3)
+ ∥1{|u|≥1−2−3k}∥L5/2(Qk−1)

∥pk23∥L5/3(Qk−1/3)

)
+

23k
(
∥vk∥L10/3(Qk−1)

∥1{|u|≥1−2−3k}∥L5/2(Qk−1)
∥pk22∥L10/3(Qk−1/3)

)
+

23k
(
∥vk∥L10/3(Qk−1)

∥1{|u|≥1−2−3k}∥L10(Qk−1)∥pk23∥L5/3(Qk−1/3)

)
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and using (4.27), (4.3) and (4.2) we obtain the estimate

C2αk
(
U

7/6
k−1U

1/2
k−1 +U

2/3
k−1Uk−1 +U

1/2
k−1U

2/3
k−1U

1/2
k−1 +U

2/3
k−1Uk−1 +U

1/2
k−1U

1/6
k−1Uk−1

)
= C2αkU

5/3
k−1.

(4.28)
For the second term, we decompose the gradients of the pressure and, by Hölder’s in-
equality, we get the estimate, up to a multiplicative constant,:(
∥1{|u|≥1−2−3k}∥L10/7(Qk−1)

∥G221∥L10/3(Qk−1/3)
+ ∥1{|u|≥1−2−3k}∥L5/2(Qk−1)

∥G231∥L5/3(Qk−1/3)

)
+

∥1{|u|≥1−2−3k}∥L5(Qk−1)

(
∥G223∥L5/4(Qk−1/3)

+ ∥G232∥L5/3(Qk−1/3)

)
+(

∥1{|u|≥1−2−3k}∥L2(Qk−1)∥G222∥L2(Qk−1/3)

)
.

Using Lemma 4.4 with (4.3) we can keep bound with:

C2αk
(
U

7/6
k−1U

1/2
k−1 + U

2/3
k−1Uk−1

)
+C

(
U

1/3
k−1Uk−1 + U

1/3
k−1Uk−1 + U

5/6
k−1U

1/2
k−1

)
= C2αkU

5/3
k−1+CU

4/3
k−1.

(4.29)
Collecting (4.28) and (4.29) we conclude

PT2 + PT3 ≤ C2αkU
5/3
k−1 + CU

4/3
k−1

We are left to prove Lemma 4.4:

Proof. Recall that pk23 is a solution of

−∆pk23 =
∑
i,j

∂ijφkuj
vk
|u|
ui
vk
|u|

=
∑
i,j

∂ijf
3
ij.

We decompose ∇f 3
ij =: g31ij + g32ij where

g31ij = ∇φk
ujvk
|u|

uivk
|u|

g32ij = φk∇
(
ujvk
|u|

)
uivk
|u|

+ φk∇
(
uivk
|u|

)
ujvk
|u|

and so ∇pk23 in G231 and G232 with

−∆G231 =
∑
i,j

∂i∂jg
31
ij

−∆G232 =
∑
i,j

∂i∂jg
32
ij .

Using, as always, Lemma 4.1 we obtain

|g31ij | ≤ C23kv2k

|g32ij | ≤ Cdkvk
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and, by Calderón-Zygmund theory and Hölder’s inequality, we conclude

∥G231∥L5/3(Qk−1/3)
≤ C23k∥vk∥2L10/3(Qk−1)

∥G232∥L5/4(Qk−1/3)
≤ C∥vk∥L10/3(Qk−1)

∥dk∥L2(Qk−1).

For pk22 we proceed in the same way: since

−∆pk22 =
∑
i,j

∂ij2φkuj

(
1− vk

|u|

)
ui
vk
|u|

=
∑
i,j

∂ijf
2
ij.

we decompose ∇f 2
ij =: g21ij + g22ij + g23ij (up to a multiplicative factor 2) where

g21ij = ∇φkuj

(
1− vk

|u|

)
uivk
|u|

g22ij = φkuj

(
1− vk

|u|

)
∇
(
uivk
|u|

)
+ φkui

(
1− vk

|u|

)
∇uj

vk
|u|

g23ij = −φkuj∇
(
vk
|u|

)
uivk
|u|

.

By means of Lemma 4.1 and by noticing that

uj∇
(
vk
|u|

)
=
uj
|u|

∇vk −
vjuj
|u|2

∇|u|

we can prove

|gij|21 ≤ C23kvk,

|gij|22 ≤ C3dk + Cdk = Cdk,

|gij|23 ≤ Cdkvk

and we conclude as before.

4.3 Proof of Proposition 3.5

We conclude the Caffarelli-Kohn-Nirenberg’s Theorem with the proof of Proposition 3.5.
As we have mentioned earlier, there is nothing new in this proof, but we include it here
for completeness. Proposition 3.5 states:

Proposition. For 1 < p ≤ 4/3 there exists λ < 1 and ε0 ≤ C/2 (where C is the constant
of Theorem 3.5) such that for every suitable weak solution and every (t0, x0) ∈ (0,∞)×Ω
the following holds. If

lim sup
r→0

1

r

ˆ
Cr(x0,t0)

|Du|2 < ε0

there exists k0 > 0 such that, for any k ≥ k0,

Vk+1 ≤
Vk
4

+
C

4
.
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We remind that

uk(t, x) = λku(λ2kt+ t0, λ
kx+ x0),

pk(t, x) = λ2kp(λ2kt+ t0, λ
kx+ x0),

and

Vk = ∥uk∥2L∞,2(Q0)
+

1

λ8
∥pk − p̄k∥2Lp,2(Q0)

where p̄k(t) =

 
B0

pk(t, x)dx.

For the moment we choose λ < 2−3. Notice that for (t, x) ∈ Q0:

uk+1(t, x) = λuk(λ
2t, λx).

For −1 ≤ t ≤ λ2 and x ∈ B0 we introduce the backward heat kernel

ψλ(t, x) =
1

(2λ2 − t)3/2
e
− |x|2

4(2λ2−t) ,

which verifies

|ψλ| ≤ 1 for t = −1

|ψλ| ≥
C

λ3
for |x| ≤ λ, −λ2 ≤ t ≤ λ2

|∆ψλ + |∇ψλ| ≤ C for x ∈ Bc
1
8
, −1 ≤ t ≤ λ2

|∇ψλ| ≤
C

λ4
for x ∈ R3, −1 ≤ t ≤ λ2.

(4.30)

We also define η1 ∈ C∞
0 (B1) to be a standard cutoff function with η1 ≡ 1 in B(1/2) (and

so η1 ≡ 1 in B(λ)). We set also

uk(t) :=

 
B(1)

uk(x, t)dx,

|uk|2(t) :=
 
B(1)

|uk(x, t)|2dx.

Since (uk, pk) is a suitable weak solution, following Corollary 3.1, we multiply the
suitable condition (3.9) by ψλη1 and we integrate in [−1, s]× R3 for −1 ≤ s ≤ λ2. Using
that space derivatives of |uk|2 and pk are null we obtain

ˆ s

−1

ˆ
∂t
|uk|2

2
ψλη1 ≤

ˆ s

−1

ˆ (
|uk|2 − |uk|2

2

)
uk · ∇(η1ψλ)

+

ˆ s

−1

ˆ
(ψλ∆η1 + 2∇η1 · ∇ψλ + η1 ∆ψk)

|uk|2

2

+

ˆ s

−1

ˆ
∇(η1ψλ) · uk(pk − pk).
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Notice that the right-hand side is equal to

ˆ
|uk(x, s)|2

2
ψλ(x, s)η1(x)−

ˆ
|uk(x,−1)|2

2
ψλ(x,−1)η1(x)−

ˆ s

−1

ˆ
|uk|2

2
∂t(ψλ)η1

and, since ψλ is the backward heat kernel,

ˆ s

−1

ˆ
η1∆ψk

|uk|2

2
= −

ˆ s

−1

ˆ
η1∂tψk

|uk|2

2
.

Hence we can delete the common terms and we get

ˆ
|uk(x, s)2|

2
ψλ(x, s)η1(x) dx ≤

ˆ
|uk(x,−1)|2

2
ψλ(x,−1)η1(x) dx

+

ˆ λ2

−1

ˆ ∣∣∣∣∣
(
|uk|2 − |uk|2

2

)
uk · ∇(η1ψλ)dx

∣∣∣∣∣ dt
+

ˆ λ2

−1

∣∣∣∣ˆ (ψλ∆η1 + 2∇η1 · ∇ψλ)
|uk|2

2
dx

∣∣∣∣ dt
+

ˆ λ2

−1

∣∣∣∣ˆ ∇(η1ψλ) · uk(pk − pk)dx

∣∣∣∣ dt.
(4.31)

The left-hand-side is controlled from below by

C

λ3

ˆ
B(λ)

|uk(s, x)|2

2
dx ≥ C

λ2

ˆ
B(1)

|uk+1|2
( s
λ2
, x
)
dx ≥ C

λ2
Vk+1,

The first summand of the right-hand side is bounded by:

ˆ
|uk(x,−1)|2

2
ψλ(x,−1)η1(x) dx ≤ Vk.

Collecting the results:

Vk+1 ≤Cλ2Vk +
1

λ8
∥pk+1 − pk+1∥2L2,p(Q) + Cλ2

(ˆ λ2

−1

ˆ ∣∣∣∣∣
(
|uk|2 − |uk|2

2

)
uk · ∇(η1ψλ)dx

∣∣∣∣∣ dt
)

+ Cλ2

(ˆ λ2

−1

∣∣∣∣ˆ (ψλ∆η1 + 2∇η1 · ∇ψλ)
|uk|2

2
dx

∣∣∣∣ dt+ ˆ λ2

−1

∣∣∣∣ˆ ∇(η1ψλ) · uk(pk − pk)dx

∣∣∣∣ dt
)
.

For the second term notice that∥∥∥∥∥uk
(
|uk|2

2
− |uk|2

2

)∥∥∥∥∥
L1(Q0)

≤ ∥uk∥L∞,2(Q0)

∥∥∥∥∥ |uk|22
− |uk|2

2

∥∥∥∥∥
L1,2(Q0)
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and ∥∥∥∥∥ |uk|22
− |uk|2

2

∥∥∥∥∥
L1,2(Q0)

≤

∥∥∥∥∥ |uk|22
− |uk|2

2

∥∥∥∥∥
L1,3(Q0)

≤C
∥∥∥∥D |uk|2

2

∥∥∥∥
L1,3/2(Q0)

≤C∥uk∥L2,6(Q0)∥∇uk∥L2,2(Q0)

≤C∥Duk∥L2,2(Q0)

(
∥uk∥L∞,2(Q0) + ∥∇uk∥L2,2(Q0)

)
where we have used Sobolev embeddings for the second inequality, Hölder’s inequality
with exponents 4 and 4/3 for the third inequality, and interpolation along with Sobolev
embeddings for the last inequality.
Now using (4.30) we conclude

ˆ λ2

−1

ˆ ∣∣∣∣∣
(
|uk|2 − |uk|2

2

)
uk · ∇(η1ψλ)

∣∣∣∣∣ ≤ ∥∇ψ∥L∞(Q0)∥uk∥L∞,2(Q0)

∥∥∥∥∥ |uk|22
− |uk|2

2

∥∥∥∥∥
L1,2(Q0)

≤ C

λ4
∥Duk∥L2,2(Q0)Vk +

C

λ4
∥Duk∥2L2,2(Q0)

√
Vk

For the third term notice that ∇u = 0 in B1/8 and so we can restrict the domain to
B(1) ∩Bc

1/8 where both ψλ and ∇ψλ are bounded (see (4.30)). Hence we have

ˆ λ2

−1

∣∣∣∣ˆ (ψλ∆η1 + 2∇η1 · ∇ψλ)
|uk|2

2
dx

∣∣∣∣ dt ≤ C∥uk∥L∞,2(Q0) ≤ CVk.

The last term is controlled by

C

λ4
∥uk∥L∞,2(Q0)∥pk − pk∥Lp,2(Q0) ≤ C

(
∥uk∥2L∞,2(Q0)

+
∥pk − pk∥2Lp,2(Q0)

λ8

)
≤ CVk

where we have used Young’s inequality.
Summarizing we have proved:

Vk+1 ≤ Cλ2Vk +
1

λ8
∥pk+1 − pk+1∥2L2,p(Q) +

C

λ2
∥Duk∥L2,2Vk +

C

λ2
∥Duk∥2L2,2

√
Vk (4.32)

and we are left with the pressure term.

Using the Corollary 4.2 we decompose pk − pk = p1k + p2k. Since [−λ2, λ2] × B(λ)
is contained in [−1/2, 1/2] × B(1/2) the part p1k is harmonic in this latter set and so
smooth. Hence, for every t ∈ [−λ2, λ2], we use Poincaré–Wirtinger inequality to get

1

|Bλ|

ˆ
Bλ

∣∣∣∣p1k(x, t)−  
p1k(y, t)dy

∣∣∣∣2 dx ≤ C
λ2

λ3
∥∇p1k(t, ·)∥2L2(Bλ)

≤ C
λ2λ3

λ3
∥∇p1k(t, ·)∥2L∞(Bλ)
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and, in particular,

1

|Bλ|

ˆ
Bλ

∣∣∣∣p1k(x, t)−  
p1k(y, t)dy

∣∣∣∣2 dx ≤ Cλ2∥∇p1k(t, ·)∥2L∞(B(1/8).

Now, we use Theorem 2.10 of [GT83]:

Theorem. Let u harmonic in Ω and Ω′ any compact subset in Ω. Then, for any
multi-index α, we have

sup
Ω′

|Dαu| ≤
(
n|α|
d

)|α|

sup
Ω

|u|

where d = dist(Ω′, ∂Ω).

In our case we get

∥∇pk1(t, ·)∥2L∞(B(1/8)) ≤ C∥pk1(t, ·)∥2L∞(B(1/4) ≤ C∥pk1(t, ·)∥2L2(B(1/2)

where the last inequality is a consequence of the mean value property for the harmonic
function. Combining the previous results we conclude

1

|Bλ|

ˆ
Bλ

∣∣∣∣p1k(x, t)−  
p1k(y, t)dy

∣∣∣∣2 dx ≤ Cλ2
ˆ
B(1/2)

|pk1(t, x)|2dx. (4.33)

For p2k notice that, since p ≤ 4/3, then 4/(2− p) ≤ 6 and so, by Sobolev embeddings,

∥uk − uk∥2/p
L
2, 4

2−p
≤ ∥uk∥2/pL2,2 .

Then Calderon-Zygmund theory, together with Hölder’s inequality, gives for p < 4/3 that

∥p2k∥Lp,2 ≤ C∥|uk − uk|2(1−1/p)∥
L
∞,

p
p−1

∥|uk − uk|2/p∥
L
p,

2p
2−p

≤ C|uk − uk∥2(1−1/p)

L∞,2 ∥uk − uk∥2/p
L
p, 4

2−p

≤ C|uk − uk∥2(1−1/p)

L∞,2 ∥Duk∥2/pL2,2

≤ CV
1−1/p
k ∥Duk∥2/pL2,2 .

Using pk+1(t, x) = λ2pk(λ
2t, λx) = λ2 (p1k(λ

2t, λx) + p2k(λ
2t, λx)) and a change of vari-

ables we get for very t ∈ [−1, 1]:

∥pk+1 − pk+1∥2L2(B(1))

≤ 2λ4
1

|B(λ)|

ˆ
B(λ)

∣∣∣∣p1k(λ2t, x)− 1

|B(λ)|

ˆ
B(λ)

p1k(λ
2t, y)dy

∣∣∣∣2 dx+
+ 2λ4

1

|B(λ)|

ˆ
B(λ)

∣∣∣∣p2k(λ2t, x)− 1

|B(λ)|

ˆ
B(λ)

p2k(λ
2t, y)dy

∣∣∣∣2 dx
≤ Cλ6

ˆ
B(1/2)

|pk1(λ2t, x)|2dx+ 4λ4
1

|B(λ)|

ˆ
B(λ)

|p2k(λ2t, x)|2dx

≤ Cλ6
ˆ
B(1/2)

|pk1(λ2t, x)|2dx+ Cλ

ˆ
B(λ)

|p2k(λ2t, x)|2dx.
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where we have used (4.33). Therefore

∥pk+1 − pk+1∥2Lp,2(Q0)
≤ Cλ6−

4
p∥p1k∥2Lp,2([−λ2,λ2]×B(1/2)) + Cλ1−

4
p∥p2k∥2Lp,2([−λ2,λ2]×B(λ))

and, in particular,

∥pk+1 − pk+1∥2Lp,2(Q0)
≤ Cλ6−

4
p∥p1k∥2Lp,2([−1/2,1/2]×B(1/2)) + Cλ1−

4
p∥p2k∥2Lp,2([−1/2,1/2]×B(1/2)).

The Corollary 4.2 gives the bound:

∥pk1∥Lp,∞([−1/2,1/2]×B(1/2) ≤ C
(
∥pk − pk∥Lp,1(Q0) + ∥uk − uk∥2Lp,2(Q0)

)
≤ C

(
∥pk − pk∥Lp,1(Q0) + ∥Duk∥2L2(Q0)

)
where in the last inequality we have used p < 2 and Poincarè inequality.
Finally, collecting the previous estimates we obtain

∥pk+1 − pk+1∥2Lp,2(Q0)
≤ Cλ6−

4
p∥p1k∥2Lp,2([−1/2,1/2]×B(1/2)) + Cλ1−

4
p∥p2k∥2Lp,2([−1/2,1/2]×B(1/2))

≤ Cλ6−
4
p

(
∥pk − pk∥2Lp,1(Q0)

+ ∥Duk∥4L2(Q0)

)
+ Cλ1−

4
pV

2−2/p
k ∥Duk∥4/pL2,2(Q0)

.

Finally, using (4.32), we have

Vk+1 ≤Cλ2Vk +
1

λ8
Cλ6−

4
p
(
∥pk − pk∥2Lp,1 + ∥Duk∥4L2

)
+Cλ1−

4
pV

2−2/p
k ∥Duk∥4/pL2,2 +

C

λ2
∥Duk∥L2,2Vk +

C

λ2
∥Duk∥2L2,2

√
Vk

=
C

λ2+
4
p

∥Duk∥4L2 + C(λ2 + λ6−
4
p )Vk +

C

λ2
∥Duk∥L2,2Vk

+
C

λ2
∥Duk∥2L2,2

√
Vk +

C

λ7+
4
p

∥Duk∥4/pL2 V
2−2/p
k .

Now we use that V q
k ≤ 1 + Vk for 0 ≤ q ≤ 1. Moreover we fix λ in such a way that

C(λ2 + λ6−
4
p ) < 1/8. In this way, we get

Vk+1 ≤Cλ∥Duk∥4L2 +
1

8
Vk + Cλ∥Duk∥L2,2Vk

+Cλ∥Duk∥2L2,2(Vk + 1) + Cλ∥Duk∥4/pL2 (Vk + 1)

=
1

8
Vk + A+BVk,

where Cλ depends on λ and

A =
(
Cλ∥Duk∥4L2,2 + Cλ∥Duk∥2L2 + Cλ∥Duk∥4/pL2,2

)
B =

(
Cλ∥Duk∥L2,2 + Cλ∥Duk∥2L2 + Cλ∥Duk∥4/pL2,2

)
.
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Now we choose ε0 in such a way that if ∥Duk∥L2 ≤ 2ε0 we have

max {A,B} ≤ min

{
1

8
,
C

4

}
where C is the constant of the Theorem 3.5. Thanks to (3.15) we have reached the desired
conclusion.
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Chapter 5

Hölder regularity for Stochastic Heat
equation

The regularity theory of De Giorgi, with the assumption of measurability and ellipticity
of the diffusion matrix, can be extended successfully to the case of random matrices. The
introduction of White Noise does not pose a problem either, as long as its behaviour is
assumed to be sufficiently regular. In this chapter, we will follow the article [HWW20] to
prove the stochastic counterpart of what we did in Chapter II. For readers who are not
familiar with stochastic analysis in infinite dimensions, a brief introduction to the subject
can be found in the appendix.

The equation we are dealing with is the stochastic heat equation. Fix a filtered proba-
bility space (Ω,F , (Ft)t,P) and consider the following stochastic partial differential equa-
tion

dut = Ã(t, ω, ut)dt+ B̃(t, ut)dWt (5.1)

where t ∈ [0,∞). Notice that Ã and B̃ depend also on the time variable. Furthermore Ã
has also a random part described by ω ∈ Ω.

The generalised Wiener process we are going to consider is the so-called white noise
or cylindrical Wiener process:

W =
∑
i≥1

wizi (5.2)

where (zi)i is an orthonormal basis of ℓ2(R) and (wi)i is a family of i.i.d., standard, real
Brownian motions. This process is actually an ℓ2(R)-valued generalised Wiener process
with covariance operator Q = Idℓ2 .

The Gelfand Triple we are considering is the classical

H1
0 (Rn) ⊂ L2(Rn) ⊂ H−1(Rn).

71
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Nothing change if we consider, for example, a bounded domain instead of all Rn.

Since the covariance operator is the identity map on ℓ2(R), the operator B̃ is defined
in the following spaces (we are implicitly using the fact that we do not need a Hilbert-
Schmidt extension of l2 since our covariance matrix is an identity):

B̃ : [0,∞)×H1
0 (Rn) −→ L2

(
l2(R), L2(Rn)

)
.

Its action on z ∈ l2(R) is defined as follows

B̃(t, v)(z) =
∑
i

gi(t, ·, v( · ))zi ∈ L2(Rn)

where g = (gi)i is defined in the spaces g : [0,∞)×Rn ×R → l2(R). Regularity assump-
tions on g are postponed.

The interesting part of the problem relies on the non-deterministic part of the operator
Ã which is defined in

Ã : [0,∞)×H1
0 (Rn) −→ H−1(Rn)

where we have omitted the dependence of Ω. Its action on an element of w ∈ H1
0 (Rn) is

defined as

Ã(t, v)(w) =

ˆ
Rn

div (A(t, x)∇v(x))w(x) + f(t, x, v(x))w(x)dx

= −
ˆ
Rn

(A(t, x)∇v(x)) · ∇w(x) + f(t, x, v(x))w(x)dx

(5.3)

with A = A(t, x, ω) is an n× n matrix depending also on ω ∈ Ω and f is a real function
defined on [0,∞)× Rn × R.

An alternative and more intuitive way to see our SPDE is:

∂tu = div (A∇u) + f(t, x, u) +
∑
i≥1

gi(t, x, u)ẇ
i
t

where the diffusion coefficients of A are random. The symbol ẇi
t is very common in the

literature and can be seen as a sort of derivative of the Brownian motion (even though,
formally, it is not differentiable).

The hypotheses we require on A, f, g are of two types: one is about measurability and
the other one is about regularity. Since we will primarily focus on the regularity aspects,
the reader is encouraged to pay closer attention to them. As for the measurability, we
assume standard hypotheses:

72



M1 the diffusion coefficients of A are (Ft)t progressive measurable (for fixed x and t);

M2 for fixed x and progressively measurable process h, the process (g(t, x, ht))t is also
progressively measurable with respect to (Ft)t.

For regularity, we ask:

R1 Uniform ellipticity: there is a positive constant λ such that

λI ≤ A(t, x, ω) ≤ λ−1I for all (t, x, ω) ∈ [0,∞)× Rn × Ω;

R2 Linear growth: there exists a non-negative function K ∈ L2(Rn) ∩ L∞(Rn) and a
positive constant Λ such that

|f(t, x, v)|+ |g(t, x, v)|l2 ≤ K(x) + Λ|v| for all (t, x, v) ∈ [0,∞)× Rn × R.

We will now proceed to demonstrate that our initial hypotheses are sufficiently strong
to ensure the well-definition of our stochastic partial differential equation.

Recalling property 3 of the definition of stochastic PDE (B.7), we observe that equa-
tion (5.1) is well-defined if the process B̃(t, ut) is stochastically integrable. However, it is
important to note that our definition of stochastic integrability only applies to processes
defined on intervals of the form [0, T ]. When the time domain is [0,∞), we say that a
process is stochastically integrable in [0,∞) if it is stochastically integrable in [0, T ] for
every T > 0. It is important to be careful in this case since we are not allowed to integrate
over the entire interval [0,∞).

Proposition. Under the previous hypotheses we have that if [0,∞) ∋ t 7→ ut ∈ H1
0 (Rn)

is a square-integrable and progressive measurable process then (B̃(t, ut))t is stochastically
integrable in [0,∞).

Proof. For simplicity set φt = B̃(t, ut) and consider an arbitrary T > 0. We have to prove
that

1. φ is predictable with respect to (Ft)t;

2. ∥φ∥H2
T
<∞.

The first thesis is given by M2 (progressive measurable implies predictable) while for the
second we have to verify that

E
[ˆ T

0

Tr[(φtQ
1/2)((φtQ

1/2)∗]dt

]
<∞.
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Since in our case Q = Idl2 we have to check that

E

[ˆ T

0

∑
k≥1

⟨φtφ
∗
t ek, ek⟩L2(Rn) dt

]
= E

[ˆ T

0

∑
k≥1

∥φ∗
t ek∥2l2(R) dt

]
<∞. (5.4)

We start looking for the adjoint of φt ∈ L2(ℓ
2(R);L2(Rn)). To this aim consider z ∈ ℓ2

and f ∈ L2 (the following computations are allowed by R2):

⟨φtz, f⟩L2 = ⟨B(t, ut)z, f⟩L2 =

ˆ
Rn

∑
i

gi(t, x, ut(x))zif(x) dx

= ⟨z,
ˆ
Rn
g(t, x, ut(x))f(x) dx⟩l2 .

Hence the adjoint of φt is, for f ∈ L2(Rn),

φ∗
t (f) =

(ˆ
Rn
gi(t, x, ut(x))f(x) dx

)
i

∈ l2(R).

Hence we have∑
k≥1

∥φ∗
t ek∥2l2(R) =

∑
k≥1

∣∣∣∣ˆ
Rn
g(t, x, ut(x))ek(x) dx

∣∣∣∣2
l2
≤
∑
k≥1

(ˆ
Rn

|g(t, x, ut(x))|l2ek(x) dx
)2

≤

(∑
k≥1

ˆ
Rn

|g(t, x, ut(x))|l2ek(x) dx

)2

≤

(∑
k≥1

ˆ
Rn

(K(x) + Λ|ut(x)|) ek(x) dx

)2

=

(∑
k≥1

⟨K, ek⟩L2 + Λ⟨ut, ek⟩L2

)2

= (∥K∥L2 + Λ∥ut∥L2)2

Finally the term (5.4) is controlled by

E
[ˆ T

0

2∥K∥2L2 + 2Λ∥ut∥2L2dt

]
= 2T ∥K∥2L2 + 2ΛE

[ˆ T

0

∥ut∥2L2dt

]
where the last term is finite since (ut)t is square-integrable.

Finally, we have proved that equation (5.1) makes sense and we can define, according
to (B.8), the notion of weak solution.

Definition 5.1. A weak solution to (5.1) is an (Ft)t∈[0,∞)-adapted process [0,∞) × Ω ∋
(t, ω) 7→ ut(ω) ∈ H1

0 (Rn) if (up to a modification 1)

u ∈ L2(Ω× [0,∞);H1
0 (Rn)),

1 The process v is a modification of u if ∀t P (vt = ut) = 1.
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and for every φ ∈ C∞
c (Rn) and t ∈ [0,∞), P-a.s.

⟨ut(·), φ(·)⟩ = ⟨u0, φ⟩ −
ˆ t

0

⟨A(s, ·)∇us(·),∇φ(·)⟩ds+
ˆ t

0

⟨f(s, ·, us(·)), φ(·)⟩ds

+
∑
i≥1

ˆ t

0

⟨gi(s, ·, us(·)), φ(·)⟩dwi
s.

where every inner product is in L2(Rn) and we have explicated the variable with respect
to which we are doing such product (with the notation (·)). The dependence of ut and A
from ω ∈ Ω are omitted.

Remark. One may ask why the last term of the previous definition has that form. We do
not show a formal proof but we give a precise idea of why we have the following equality:

ˆ t

0

⟨B̃(s, us(·))dWs, φ(·)⟩ =
∑
i≥1

ˆ t

0

⟨gi(s, ·, us(·)), φ(·)⟩dwi
s.

We start reminding our white noise (5.2)

W =
∑
i≥1

wizi

where wi are Brownian motions and (zi)i is a basis for l2. Since W does not depend on
the space variable and formally we have dW =

∑
i dw

izi we write

ˆ t

0

⟨B̃(s, us(·))dWs, φ(·)⟩ =
∑
i≥1

ˆ t

0

⟨B̃(s, us(·))zi, φ(·)⟩dwi
s.

Using the definition of B̃ the last term is equal to

∑
i≥1

ˆ t

0

⟨
∑
j

gj(t, ·, v( · ))(zi)j, φ(·)⟩dwi
s =

∑
i≥1

ˆ t

0

⟨
∑
j

gj(t, ·, v( · ))δij, φ(·)⟩dwi
s

where the last equality holds because (zi)i is a basis.

We conclude by emphasizing that we do not have sufficient hypotheses to establish the
existence of such a weak solution. However, we will show that if a solution exists, then it
possesses α-Hölder continuity.

5.1 De Giorgi’s scheme for a Stochastic PDE

The main result of the work is the following estimate.
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Theorem 5.1. Let u be a weak solution (according to definition (5.1)) solution of the
SPDE (5.1) with deterministic initial data u0 ∈ C∞(Rn). Then there exists a constant
C = C(n, λ,Λ, T, p) such that

E
[
∥u∥pLp([0,2T ];L2(Rn))

]
+ E

[
∥u∥pL∞([T,2T ]×Rn)

]
≤ C

(
∥u0∥L2(Rn) + ∥K∥L2(Rn) + ∥K∥L∞(Rn)

)p
This result will imply the α-Hölder continuity of the solution.

Before going into the proof we spend some words on the theorem.

Remark. As always the choice of the time interval is arbitrary: during the previous
chapters, we have taken [−1, 1] shrinking to [−1/2, 1] according to Vasseur’s work. In
the stochastic case, it is convenient to use [0, 2T ] and [T, 2T ]. The reason is contained in
the classical approach to Martingales and Brownian motions: since the starting points of
these particular stochastic processes are t = 0 we work with [0, 2T ] and [T, 2T ]. It should
be clear that this change is completely irrelevant (since we can scale).

We conclude by noticing that since we are dealing with an initial data value we have to
require also that our weak solution u is a P-almost surely continuous process with respect
to the time variable.

The setting

We are going to deal with cylinders because the equation is parabolic. Since the spatial
domain is not bounded we set

Qk = [Tk, 2T ]× Rn.

with Tk = (1 − 2−k)T . In this way, we have Q0 = [0, 2T ] × Rn and Q∞ = [T, 2T ] × Rn.
As a truncation we consider, for a > 1,

uk,a = [u− a(1− 2−k)]+

and the energy is:

Uk,a := ∥uk,a∥2L4,2(Qk)
=

√ˆ 2T

Tk

(ˆ
Rn

|uk,a(x, t)|2dx
)2

dt.

Another crucial quantity that will control the stochastic contribution is

X∗
k−1,a := sup

Tk≤s≤t≤2T

ˆ t

s

∑
i

⟨g(τ, ·, uτ (·)), uk,a(τ)(·)⟩L2dwi
τ
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Energy Inequality

We need to use the Itô formula in infinite dimensions to obtain the desired inequality. For
simplicity, we will state only the formula in the case of a function that does not depend
on the time variable. However, a slightly more general version and its proof can be found
in [DZ14] (section 4.4).

Given a Hilbert space H and a functional F ∈ L(H;R) we write D1
xF ∈ L(H;L(H;R),

D2
xxF ∈ L(H ⊗ H;L(H;R) for the first and second Fréchet derivatives respectively.

C2(H;R) is the space of the functional twice continuous, Fréchet differentiable in H.

Theorem (Itô formula). Let T > 0, U , H be Hilbert spaces, (Ω,F , (Ft)t≥0,P) be a
filtered probability space, carrying a generalised Wiener process (Wt)t≥0 defined on U
with covariance operator Q and assume

1. ψ ∈ L2(Ω× [0,∞);H);

2. φ is a L2(U0;H) valued stochastically integrable process;

and X0 ∈ H. Then given F ∈ C2(H;R) and a stochastic process, (Xt)t≥0, satisfying,

Xt = X0 +

ˆ t

0

ψsds+

ˆ t

0

φsdWs

it holds that,

F (Xt) = F (X0) +

ˆ t

0

D1
xF (Xs)(ψs)ds+

ˆ t

0

D1
xF (Xs)(φsdWs)

+
1

2

ˆ t

0

Tr[D2
xxF (Xs)(φsQ

1/2)(φsQ
1/2)∗]ds.

Proof. The proof can be found in [DZ14]

Now we show how to use the formula in our context.

Step 1

The idea is to apply the formula on ut with decomposition

ut = u0 +

ˆ t

0

Ã(s, us)ds+

ˆ t

0

B̃(s, us)dWs (5.5)
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where U = l2(R), H = L2(Rn) and Q = Idl2 . As ψs, φs we are considering Ã(s, us) and
B̃(s, us), respectively.

The assumptions on B̃ guarantees us that φ is a L2(l
2
0;L

2(Rn)) valued stochastically
integrable process. The regularity on ψ is given by R1 and R2. The only problem is that,
a priori, Ã(s, us) = ψs is H

−1(Rn)-valued and not L2(Rn)-valued. To solve this we remind
that we are assuming the existence of a weak solution in

u ∈ L2(Ω× [0,∞);H1
0 (Rn)),

which implies that us is L2(Rn)-valued process. Since both ut and B̃(s, us)(Ws) are
L2(Rn)-valued process, by (5.5), we conclude that Ã(s, us) is an L

2(Rn)-valued process.

Since we have checked the hypotheses we can consider as function the following F :
L2(Rn) → R defined as

F (f) := ∥fk,a∥2L2(Rn) =

ˆ
Rn

|f(x)− a(1− 2−k)|2+dx.

Formally the Fréchet derivatives are

D1
xF (f)(g) = 2

ˆ
Rn
fk,a(x)g(x)dx,

D2
xxF (f)(g)(h) = 2

ˆ
Rn

1{fk,a>0}g(x)h(x)dx.

Notice that F does not belong to C2(L2(Rn);R) and thus we are not allowed to use the
Itô formula. To fully justify this, refer to [Kry10] or [HWW20].

Step 2

We analyse separately every term of our Itô formula.

1. F (Xt) = ∥uk,a(t)∥2L2(Rn) and F (X0) = ∥uk,a(0)∥2L2(Rn)

2. Using (5.3)

ˆ t

0

D1
xF (Xs)(ψs)ds = 2

ˆ t

0

⟨uk,a(s), Ã(s, us)⟩L2(Rn)ds

= −2

ˆ t

0

ˆ
Rn

(A(s, x)∇us(x)) · ∇uk,a(s)(x)dxds+ 2

ˆ t

0

ˆ
Rn
f(t, x, us(x))uk,a(s)(x)dxds

= −2

ˆ t

0

⟨A(s, ·)∇uk,a(s)(·),∇uk,a(s)(·)⟩L2ds+ 2

ˆ t

0

ˆ
Rn
f(t, x, us(x))uk,a(s)(x)dxds.
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3. By the definition of B̃ we have

ˆ t

0

D1
xF (s,Xs)(φsdWs) = 2

ˆ t

0

⟨uk,a(s)(·), B̃(s, us(·))dWs⟩

= 2

ˆ t

0

ˆ
Rn

∑
i

gi(t, x, us(x))uk,a(s)(x)dxdw
i
s

4. For the last term we have to spend some words on the notation. The expression

D2
xxF (Xs)(φsQ

1/2)(φsQ
1/2)∗ = D2

xxF (us)(B̃(s, us))(B̃(s, us))
∗

should be seen as an operator from l2(R) to R. It follows that the trace acts on a
basis (zi)i of l

2(R) as follows∑
i

[D2
xxF (us)(B̃(s, us))(B̃(s, us))

∗]zi = 2

ˆ
Rn

∑
i

[
B̃(s, us)(zi)(x)

]2
1{uk,a(s)>0}dx

= 2

ˆ
Rn

∑
i

[gi(s, x, us)]
2 1{uk,a(s)>0}dx

= 2

ˆ
Rn

|g(s, x, us)|2l21{uk,a(s)>0}dx.

By collecting all the results and writing everything in stochastic notation we get

d∥uk,a(t)∥2L2 = −2⟨A(t, ·)∇uk,a(t)(·),∇uk,a(t)(·)⟩L2dt+ 2
∑
i

⟨gi(t, ·, ut(·)), uk,a(t)(·)⟩L2dwi
s

+

[ˆ
Rn

{
|g(t, x, ut)|2l2 + 2uk,a(t)(x)f(t, x, ut(x))

}
1{uk,a(t)>0}dx

]
dt.

(5.6)

Step 3

We need some extra work on the equation (5.6) to get our inequality. The reader is invited
to note the similarity of the techniques with the Navier-Stokes case.

First, we use the elliptic assumptions on A and integrate between t0 and t, where
Tk ≤ t0 ≤ Tk−1 ≤ t ≤ 2T :

∥uk,a(t)∥2L2 + 2λ

ˆ t

t0

∥∇uk,a(s)∥L2ds ≤ ∥uk,a(t0)∥2L2 +

ˆ t

t0

2
∑
i

⟨gi(us), uk,a(s)⟩L2dwi
s

+

ˆ t

t0

[ˆ
Rn

{
|g(us)|2l2 + 2uk,a(s)f(us

}
1{uk,a(s)>0}dx

]
ds,

(5.7)

79
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where we have denoted f(us) = f((s, x, us(x)) and g(us) = g((s, x, us(x)). Additionally,
we have omitted the spatial dependence, which is evident from the preceding computa-
tions.

Now, we work on the last term of the previous inequality. If uk,a > 0 then

0 < u ≤ (1 + 2k)uk−1,a. (5.8)

By Chebychev we have also

|{uk,a(t) > 0}| = |{uk−1,a(t) > 2−ka}| ≤
(
2k

a

)2

∥uk−1,a(t)∥22.

These facts, together with the regularity assumptions on g, give us the following estimate

ˆ t

t0

[ˆ
Rn

|g(us)|2l21{uk,a(s)>0}dx

]
ds ≤ 2

ˆ t

t0

[ˆ
Rn
(K(x)2 + Λ2|us(x)|2)1{uk,a(s)>0}dx

]
ds

≤ 2∥K∥2L∞

ˆ t

t0

| {x : uk,a(s)(x) > 0} | ds+ 2Λ2

ˆ t

t0

ˆ
Rn

|us(x)|2dxds

≤ ∥K∥2∞Ck

ˆ t

t0

∥uk−1,a(s)∥22ds+ Ck

ˆ t

t0

ˆ
Rn

|uk−1,a(s)(x)|2dxds

= Ck(1 + ∥K∥2∞)

ˆ t

t0

∥uk−1,a(s)∥22ds

≤ Ck(1 + ∥K∥2∞)Uk−1,a

where the last inequality is given by Jensen’s inequality and the constant C depends on
Λ. For the term involving f , we proceed in the same way (using also Hölder’s inequality)
and we get

ˆ t

t0

ˆ
Rn

2uk,a(s)f(us)1{uk,a(s)>0}dxds ≤ Ck(1 + ∥K∥2∞)Uk−1,a.

Collecting all the results we transform (5.7) in

∥uk,a(t)∥2L2 + 2λ

ˆ t

t0

∥∇uk,a(s)∥2L2ds

≤ ∥uk,a(t0)∥2L2 +

ˆ t

t0

2
∑
i

⟨gi(us), uk,a(s)⟩L2dwi
s + Ck(1 + ∥K∥2∞)Uk−1,a.

Taking the supremum over t in [Tk, 2T ], we have that
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sup
t∈[Tk,2T ]

∥uk,a(t)∥2L2 +

ˆ 2T

t0

∥∇uk,a(s)∥2L2ds

≤ C∥uk,a(t0)∥2L2 + CX∗
k−1,a + Ck(1 + ∥K∥2∞)Uk−1,a.

(5.9)

for some constant C depending only on n, λ and Λ.

Energy decay estimate

Since we have our Energy Inequality, we can proceed to prove the geometric decay of the
Energy. Our objective is to be able in a position to use Lemma 1.1.

Following the previous chapters, we compute our space-time interpolation. The choice
of the exponents will become clear later on.

Lemma 5.1. We have the following estimate for general functions:

∥f∥ 4(n+1)
n

,
2(n+1)
n

≤ ∥f∥2∞,2 + ∥f∥2
2, 2n
n−2

. (5.10)

Proof. We start using use time-space interpolation (see Lemma (2.1)) with pλ = 4(n+1)
n

,

p = ∞, p′ = 2 and qλ = 2(n+1)
n

, q = 2, q′ = 2n
n−2

. This gives us

∥f∥ 4(n+1)
n

,
2(n+1)
n

≤ ∥f∥
n+2

2(n+1)

∞,2 ∥f∥
n

2(n+1)

2, 2n
n−2

.

Now, using Young’s inequality

ab ≤ ap + bq

with p = 2(n+ 1)/(n+ 2) and q = 2(n+ l)/n we conclude.

We are now prepared to prove that the Energy decay is geometric. This result will
conclude the first and main part of our proof. Notice that it is precisely the Chebyshev
inequality that generates the exponent −1

2
(n + 1), thus pushing the decay index beyond

the critical value of 1.

Theorem 5.2. Assume that the function K satisfies ∥K∥L∞ ≤ 1. Then for a constant
C = C(n, λ,Λ, T ) we have

Uk,a ≤
Ck

a2/n+1
(Uk−1,a +X∗

k−1,a)U
1/(n+1)
k−1,a .
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Proof. Using Hölder’s inequality with exponents (n+ 1)/n and n+ 1 we obtain

∥uk,a(t)∥22 ≤ ∥uk,a(t)∥22(n+1)/n · |{uk,a(t) > 0}|1/(n+1) (5.11)

where we have denoted by ∥ · ∥2 the norm ∥ · ∥L2(Rn). By Chebychev’s ineuqality we have:

|{uk,a(t) > 0}| = |{uk−1,a(t) > 2−ka}| ≤
(
2k

a

)2

∥uk−1,a(t)∥22.

Squaring (5.11) and integrating on [Tk, 2T ] we have

U2
k,a ≤

(
2k

a

)4/(n+1) ˆ 2T

Tk

∥uk,a(t)∥42(n+1)/n∥uk−1,a(t)∥4/(n+1)
2 dt.

Again, for Hölder exponents with the same values:

Uk,a ≤
(
2k

a

)2/(n+1)(ˆ 2T

Tk

∥uk,a(t)∥4(n+1)/n
2(n+1)/ndt

)n/2(n+1)(ˆ 2T

Tk

∥uk−1,a(t)∥42dt
)1/2(n+1)

=

(
2k

a

)2/(n+1)

∥uk,a∥2L4(n+1)/n,2(n+1)/n(Qk)
U

1/(n+1)
k−1,a .

(5.12)

Applying (5.10) on uk,a we obtain

∥uk,a∥2L4(n+1)/n,2(n+1)/n(Qk)
≤ sup

t∈[Tk,2T ]

∥uk,a(t)∥22 +
ˆ 1

Tk

∥uk,a(t)∥22n/(n−2)dt.

Applying Sobolev’s Embeddings to the last term we obtain

∥uk,a∥2L4(n+1)/n,2(n+1)/n(Qk)
≤ sup

t∈[Tk,2T ]

∥uk,a(t)∥22 +
ˆ 2T

Tk

∥∇uk,a(t)∥22dt.

which is controlled, using Energy inequality, by

C∥uk,a(t0)∥2L2 + CkX∗
k−1,a + Ck(1 + ∥K∥2∞)Uk−1,a,

The inequality (5.12) becomes

Uk,a ≤
Ck

a2/(n+1)

(
∥uk,a(t0)∥2L2 +X∗

k−1,a + Uk−1,a

)
U

1/(n+1)
k−1,a

where we have used ∥K∥L∞ ≤ 1. Since t0 is free to move in the interval [Tk−1, Tk] we can
use the mean value theorem to select a value of t0 in such interval such that

∥uk,a(t0)∥2L2 =

 Tk

Tk−1

∥uk,a(t)∥2L2dt ≤ 2kT−1Uk−1,a.
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5.2 Height Estimate

The objective of this section is to derive an estimate of the L∞ − L2 type, commonly
referred to as the Height estimate. The techniques we will employ in this section differ
from those used in the previous chapters and they ultimately rely on the tail property of
martingales.

For now, we have proved that, if ∥K∥L∞ ≤ 1, then there exists C = C(n, λ,Λ, T ) such
that

Uk,a ≤
Ck

a2/n+1
(Uk−1,a +X∗

k−1,a)U
1/(n+1)
k−1,a

where

X∗
k−1,a = sup

Tk≤s≤t≤2T

ˆ t

s

∑
i

⟨gi(τ, ·, uτ (·)), uk,a(τ)(·)⟩L2dwi
τ .

As one might expect, the presence of the stochastic term X∗
k−1,a requires some additional

considerations. The final part of the proof contains elements from classical literature on
stochastic analysis. We closely follow the approach outlined in [HWW20].

To prove the α-Hölder regularity of the solution, we begin with the following basic
fact:

Lemma. Suppose (Mt)t is a continuous local martingale. Then we have

P
{

sup
l≤s≤t≤S

(Mt −Ms) ≥ a, ⟨M⟩S − ⟨M⟩l ≤ b

}
≤ 2e−a2/4b

Proof. By the Theorem of Dambis, Dubins-Schwarz (see [RY99] Chapter V, Section 1,
Theorem 1.6) there exists a Brownian motion B such that

Mt −M0 = B⟨M⟩t .

Hence we have the following sequence of contained events:

P
{

sup
l≤s≤t≤S

(Mt −Ms) ≥ a,⟨M⟩S − ⟨M⟩l ≤ b

}
= P

{
sup

l≤s≤t≤S
(B⟨M⟩t −B⟨M⟩s) ≥ a, ⟨M⟩S − ⟨M⟩l ≤ b

}
≤ P

{
sup

0≤s≤t≤b
(Bt −Bs) ≥ a

}
≤ P

{
2 sup
0≤t≤b

Bt ≥ a

}
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where we have used that the quadratic variation is an increasing process.
By the symmetries of the Brownian motion we obtain

P
{

sup
0≤t≤b

2Bt ≥ a

}
≤ 2P {Bb ≥ a/2} ≤ 2e−a2/4b

where the last inequality holds for the Gaussian variable Bb ∼ N (0,
√
b).

This basic lemma contains the idea to find an estimate for our X∗
k,a. Indeed consider

Xt :=

ˆ t

0

∑
i

⟨gi(τ, ·, uτ (·)), uk+1,a(τ)(·)⟩L2dwi
τ

which implies X∗
k,a = supTk+1≤s≤t≤2T (Xt − Xs). By the standard theory of stochastic

integration, Xt is a continuous martingale (see the appendix) and so we can use the
previous lemma.

Proposition. Assume ∥K∥∞ ≤ 1. Then there exists a constant C = C(n, λ,Λ) such that
for all positive α, β it holds

P
{
X∗

k,a ≥ αβ, Uk,a ≤ β
}
≤ Ce−α2/Ck .

Proof. If we can show
⟨X⟩2T − ⟨X⟩Tk+1

≤ CkU2
k,a (5.13)

then we have

{
X∗

k,a ≥ αβ, Uk,a ≤ β
}
⊂

{
sup

Tk+1≤s≤t≤2T
(Xt −Xs) ≥ αβ, ⟨X⟩2T − ⟨X⟩Tk+1

≤ Ckβ2

}

and by previous Lemma, we have done. To prove (5.13) we start with

⟨X⟩2T − ⟨X⟩Tk+1
=

ˆ 2T

Tk+1

∑
i

⟨gi(τ, ·, uτ (·)), uk+1,a(τ)(·)⟩2L2dτ.

Now we proceed similarly as we have already done in the energy inequality. We start
using Minkovsky inequality∑

i

(ˆ
Rn
gi(τ, x, uτ (x))uk+1(τ)(x)dx

)2

≤
(ˆ

Rn
|g(τ, x, uτ (x))|l2 uk+1(τ)(x)dx

)2

.

Using R2 we can control the right-hand side with(ˆ
Rn

[K(x) + Λuτ (x)]uk+1,a(τ)(x)dx

)2

≤
(ˆ

Rn
K(x)uk+1,a(τ)(x) + Λuτ (x)uk+1,a(τ)(x)dx

)2

≤
(ˆ

Rn
uk+1,a(τ)(x)dx+ Ck

ˆ
Rn
u2k,a(τ)(x)dx

)2
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where we have used (5.8). For the first term we use Hölder’s inequality with exponent 2
and Chebychev we conclude∑

i

(ˆ
Rn
gi(τ, x, uτ (x))uk+1(τ)(x)dx

)2

≤ Ck

(ˆ
Rn
u2k,a(τ)(x)dx

)2

.

Finally, integrating in [Tk+1, 2T ] we have reached our conclusion.

We are ready to present the stochastic counterpart of the Height estimate. Notice that
we have not used the classical Lemma 1.1, but we have relied on the tail property of the
martingales, instead. Therefore, we introduce the so-called tail estimate for T = 1.

Proposition 5.1. Assume K∞ ≤ 1. Then there exists a constant M0 =M0(n, λ,Λ) such
that for all a ≥ 1 and M > M0,

P
{
∥u+∥L∞(Q∞) > a,M∥u+∥L4,2(Q0) ≤ a

}
≤ e−M

1
n+1

Proof. The first trivial observation is that {∥u+∥L∞(Q∞) > a} ⊂ Gc
a whereGa = {limk→∞ Uk,a =

0}. Now consider the family of events

Ek =
{
Uk,a ≤

( a
M

)2
γk
}

where M and γ < 1 will be determined later. These events satisfy:

1. By definition of Uk,a we have {M∥u+∥L4,2(Q0) ≤ a} = E0;

2. Gc
a ⊂

⋃
k≥0 Ec

k because γ∞ = 0. Decomposing

⋃
k≥0

Ec
k = Ec

0 ∪

[⋃
k≥1

(Ec
k ∩ Ek−1)

]

We have that

P
{
∥u+∥L∞(Q∞) > a,M∥u+∥L4,2(Q0) ≤ a

}
≤ P{Gc

a ∩ E0} ≤
∑
k≥1

P{Ec
k ∩ Ek−1}.

Now we want to estimate P{Ec
k ∩ Ek−1}. To this aim, we use a combination of Theorem

(5.2) and the previous estimate. The goal is to prove that

{Ec
k ∩ Ek−1} ⊂ {X∗

k−1,a > αβ,Uk−1,a ≤ β} (5.14)

for α = (2C)k/2M
1

n+1 with C the constant of the previous proposition and β = a2γk−1

M2 .
Notice immediately that {Uk−1,a ≤ β} = Ek−1 from the choice of β. Now (5.14) is
equivalent to assuming that the event Ek−1 is true (has probability one) and proving that

{X∗
k−1,a > αβ}c ⊂ Ek or, equivalently X∗

k−1,a ≤ αβ ⇒ Uk,a ≤
( a
M

)2
γk = γβ.
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By Theorem 5.2 we have

Uk,a ≤
Ck

1

a1/2δ
(β + αβ)βδ =

(C1γ
δ)k(1 + (2C)k/2M δ)

γ1+δM2δ
γβ

where C1 is a constant different from C and δ = 1/(n + 1). Now if γ small enough and
M is big enough we have

Uk,a ≤ γβ.

Now using the previous Proposition on (5.14) we find

P{Ec
k ∩ Ek−1} ≤ Ce−α2/Ck = Ce−2kM2δ

.

Hence, for a large M ,

P
{
∥u+∥L∞(Q∞) > a,M∥u+∥L4,2(Q0) ≤ a

}
≤ P{Gc

a ∩ E0} ≤ C
∑
k≥1

e−2kM2δ ≤ e−Mδ.

5.3 Holder continuity

We are ready to prove Theorem 5.1. By scaling we can assume T = 1, ∥K∥2+ ∥K∥∞ ≤ 1
and ∥u0∥2 ≤ 1. For readability, we report the scaled version of Theorem 5.1:

Theorem. Let u be a weak solution (according to definition (5.1)) of the SPDE (5.1)
with deterministic initial data u0 ∈ C∞(Rn). Assume ∥K∥2 + ∥K∥∞ ≤ 1 and ∥u0∥2 ≤ 1.
Then there exists a constant C = C(n, λ,Λ, p) such that

E
[
∥u∥pLp([0,2];L2(Rn))

]
+ E

[
∥u∥pL∞([1,2]×Rn)

]
≤ C.

Proof. We show that there exists a constant C = C(n, λ,Λ, p) such that

E
[ˆ 2

0

∥u(t)∥pL2dt

]
≤ C and E

[
∥u∥pL∞([1,2]×Rn)

]
≤ C. (5.15)

We can assume that p ≥ 4. Indeed suppose that we have proved the theorem for p ≥ 4
and consider the case p < 4:

E
[ˆ 2

0

∥u(t)∥pL2dt

]
= E

[ˆ 2

0

(ˆ
Rn

|ut(x)|2dx
)p/2

dt

]
≤ E

[ˆ 2

0

(
1 +

ˆ
Rn

|ut(x)|2dx
)p/2

dt

]

≤ E

[ˆ 2

0

(
1 +

ˆ
Rn

|ut(x)|2dx
) p

2
4
p

dt

]
≤ E

[ˆ 2

0

2 + 2

(ˆ
Rn

|ut(x)|2dx
)2

dt

]

≤ 4 + 2E
[ˆ 2

0

∥ut∥4L2dt

]
≤ C.
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Step 1

For the first bound the idea is to use the Itô formula with the function F (f) = ∥f∥L2 +1.
With the same work that we have already done for the Energy inequality, we can check
that

dφ(t) = φ(t) (H(t)dt+ dGt) (5.16)

where φ(t) := ∥ut(·)∥2L2 + 1 and

H(t) :=
−⟨A(t, ·)∇ut(·),∇ut(·)⟩L2 + ⟨f(t, ·, ut(·)), ut(·)⟩L2 + ∥|g(t, ·, ut(·))|l2∥2L2

∥ut(·)∥2L2 + 1

G(t) :=

ˆ t

0

∑
i

⟨gi(s, ·, us(·), us(·)⟩L2

∥us(·)∥2L2 + 1
dwi

s.

The solution of (5.16) is well known and given by

φ(t) = φ(0) exp

[ˆ t

0

H(s)ds+Gt −
1

2
⟨G⟩t

]
.

Since our stochastic integral is a square-integrable martingale we have that, for 0 ≤ t ≤ 2,

⟨G⟩t ≤
ˆ 2

0

(´
Rn |g(s, x, us(x)|l2us(x)dx

∥us(·)∥2L2 + 1

)2

ds ≤
ˆ 2

0

(´
Rn (K(x) + Λ|us(x)|)us(x)dx

∥us(·)∥2L2 + 1

)2

ds

≤
ˆ 2

0

(´
Rn K(x)us(x) + Λu2s(x)dx

∥us(·)∥2L2 + 1

)2

ds ≤
ˆ 2

0

(
∥K∥2∥us∥2 + Λ∥us∥22

∥us∥22 + 1

)2

ds

where the last inequality is given by Hölder’s inequality.
Using the assumption on K we get

⟨G⟩t ≤
ˆ 2

0

(
∥us∥2 + Λ∥us∥22

∥us∥22 + 1

)2

ds ≤ 2(Λ + 1)2, (5.17)

where we have used

∥us∥2 + Λ∥us∥22 ≤ (∥us∥22 + 1)(Λ + 1)

(which can be proved by considering separately the cases ∥us∥2 < 1 and ∥us∥2 ≥ 1). By
Novikov’s condition (see [Nov72]) the estimate (5.17) guarantees that

exp

[
Gt −

1

2
⟨G⟩t

]
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is a martingale for 0 ≤ t ≤ 2. In a similar way, one can check that H(t) ≤ 4(Λ + 1)2 (
starting by noticing that −⟨A∇u,∇u⟩ is always negative by the ellipticity assumptions
on A). Since everything is uniformly bounded in time we obtain

E[φ(t)p] = φ(0)pE
{
exp

[
p

(ˆ t

0

F (s)ds+Gt −
1

2
⟨G⟩t

)]}
≤ Cφ(0)p.

In particular,

E
[ˆ 2

0

∥ut∥2L2dt

]
≤ 2Cφ(0)p = 2C(∥u0∥2L2 + 1)p ≤ C.

Step 2

For the second bound, we consider the quantities

X = ∥u∥L∞([1,2]×Rn) and Y =

( ˆ 2

0

∥ut(·)∥4L2dt

) 1
4

.

By considering u and −u we have, using Proposition 5.1, that

P
{
X > a, Y ≤ a

M

}
≤ 2e−M1/(n+1)

for every a ≥ 1 and M > M0. Set I = max{1,M0} and use the previous inequality with
a > I2 and fix M =

√
a > I ≥M0:

P
{
X > a, Y ≤

√
a
}
≤ 2e−a1/2(n+1)

.

By the first inequality in (5.15) and Jensen’s inequality we have

E[Y 2p] ≤ C.

Hence,

E
[
∥u∥pL∞([1,2]×Rn

]
= ∥X∥pLp(Ω,P) = p

ˆ ∞

0

P(X > a)ap−1da

≤M2p
0 + p

ˆ ∞

M2
0

P(Y >
√
a)ap−1da+ p

ˆ ∞

M2
0

P(X > a, Y ≤
√
a)ap−1da

≤M2p
0 + p

ˆ ∞

0

P(Y 2 > a)ap−1da+ p

ˆ ∞

M2
0

P(X > a, Y ≤
√
a)ap−1da

≤M2p
0 + E[Y 2p] + 2p

ˆ ∞

M2
0

e−a
1

2(n+1)
ap−1da ≤ C.

Now that we have proved Theorem 5.1 we have all the elements to conclude the work
and prove the α-Hölder continuity of the solution.
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5.3. HOLDER CONTINUITY

Theorem 5.3. Let u be a solution of (5.1). Then there exists a positive α = α(n, λ,Λ)
such that u ∈ Cα([T, 2T ] × Rn) for every T > 0. Furthermore, we have a quantitative
estimate: indeed there exists a constant C = C(n, λ,Λ, p) such that

E
[
∥u∥pCα([T,2T ]×Rn)

]
≤ C

(
∥u0∥L2(Rn) + ∥K∥L2(Rn) ++∥K∥L∞(Rn)

)p
Remark. By assuming T = 1 and scaling up to ∥u0∥L2(Rn) ≤ 1 and ∥K∥L2(Rn)+∥K∥L∞(Rn) ≤
1 we re-write the thesis as

E
[
∥u∥pCα([1,2]×Rn)

]
≤ C. (5.18)

We provide a brief overview of the proof since it involves elements of stochastic analysis
that go beyond the scope of this thesis. However, all the details can be found in [HWW20].

Proof. The crucial idea to conclude is contained in [DDH14] and consists in considering
the solution v to the same SPDE with constant coefficients.

dv = ∆vdt+
∑
i

gi(u)dw
i
t v(1/2) = 0.

For this simpler equation, Kyrlov’s theory applies and v ∈ Cα1((1/2, 2]× Rn).
The function φ = u− v solves,

∂tφ = div(A∇u) + div(A∇v)−∆v + f(φ+ v) in [1/2, 2]× Rn. (5.19)

Since (5.19) does not have a stochastic perturbation, the usual regularity theory of Chapter
II (with small modifications) applies and we have ϕ ∈ Cα2 ([1, 2]× Rn) for some exponent
α2 ∈ (0, 1).

Now that we have established the Hölder continuity of both φ and v, we can proceed
to prove the Hölder continuity of u for α = min(α1, α2). However, to prove (5.18), we
need to exert additional effort to control the p-power of the solution. For this purpose,
we rely on quantitative estimates provided in works such as [Kry96].
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Appendix A

Calderon-Zygmund theory

Let us denote Λ as the fundamental solution of Laplace’s equation for the Dirac delta in
the origin (∆Λ = δ0). Then, for an integrable function f on a general bounded domain
Ω, we define the Newtonian potential of f as the function N (f) defined on Rn:

N (f)(x) = (Λ ⋆ f)(x) =

ˆ
Ω

Λ(x− y)f(y) dy.

The main regularity theorem (for the proof, see [GT83] Theorem 9.9) of the Newtonian
potential states:

Theorem A.1. Let f ∈ Lp(Ω), 1 < p <∞. Then, N (f) ∈ W 2,p(Ω), ∆N (f) = f a.e. in
Ω, and

∥D2N (f)∥Lp(Ω) ≤ C∥f∥Lp(Ω), (A.1)

where C = C(n, p).

In other words, the theorem states that the Lp norm of the second derivatives of the
solution to the Poisson equation can be bounded by the Lp norm of the Laplacian of the
solution. It is important to note that even if f has compact support in Ω, the Newtonian
potential N (f) is not necessarily compactly supported in Ω.

Since we would like N (f) to have compact support, we will proceed with a local con-
struction of the Newton potential, denoted as N (f). To this aim, consider f with compact
support in Ω and denote d = dist (spt f, ∂Ω).

• Consider the following covering of Ω:

F = {Bx(d/2)}x∈Ω.

By Besicovitch’s covering theorem, there exists a number N = N(n), depending
only on the dimension n, and subfamilies F1, . . . ,FN of F such that:
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APPENDIX A. CALDERON-ZYGMUND THEORY

1. Ω ⊂
⋃N

i=1 Fi;

2. for every i the elements of Fi are pairwise disjoint.

Since the balls are disjoint, there is a finite number of them and we indicate with
y1, . . . , yM their centres.

• We construct our operator in the following recursive way:

If x ∈ By1(d/2), then

N (f)(x) :=

ˆ
By1 (d/2)∩Ω

Λ(x− y)f(y) dy.

If x ∈ Byi(d/2) and x /∈
⋃i−1

j=1Byj(d/2), then

N (f)(x) :=

ˆ
Byi (d/2)∩Ω

Λ(x− y)f(y) dy.

It is easy to see that, this time, N (f) is compactly supported in Ω. A reasonable
question is if there is an analogous of Theorem (A.1) for N (f). Luckily, we have

Theorem. Let f compactly supported in Ω, 1 < p <∞, then N (f) ∈ W 2,p(Ω), ∆N (f) =
f in Ω and

∥D2N (f)∥Lp(Ω) ≤ C∥f∥Lp(Ω). (A.2)

where C = C(n, p)

Proof. By Theorem (A.1), we know that ∆N (f)(x) = f(x) holds, up to a set of null
measure S1 in By1 . Similarly, this equation holds in By2 \By1 , up to a set of null measure
S2. Continuing this process, we find that ∆N (f)(x) = f(x) holds almost everywhere in
Ω, up to the set S1 ∪ · · · ∪ SM . Since M is finite, we conclude:

∆N (f) = f a.e. in Ω.

Similarly, we can prove that N (f) ∈ W 2,p(Ω). However, in order to establish the
bound, we rely on the Besicovitch property of our covering. 1

∥D2N (f)∥pLp(Ω) =

ˆ
⋃N
i=1 Fi

|D2N (f)|p ≤
N∑
i=1

∑
By(d/2)∈Fi

ˆ
By(d/2)

|D2N (f)|p.

Without loss of generality assume that for every i:∑
By(d/2)∈F1

ˆ
By(d/2)

|D2N (f)|p ≥
∑

By(d/2)∈Fi

ˆ
By(d/2)

|D2N (f)|p.

1Without utilizing this property, we could encounter overlapping of the balls, and the number of
overlapping would depend on the number of balls, which in turn depends on the domain Ω. Consequently,
the constant C in the bound would also depend on the domain.
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Now we use (A.1) together with the fact that the constant C in Theorem A.1 does not
depend on the choice of the domain:

∥D2N (f)∥pLp(Ω) ≤ N
∑

By(d/2)∈F1

ˆ
By(d/2)

|D2N (f)|p ≤ CpN
∑

By(d/2)∈F1

ˆ
By(d/2)

|f |p

= C

ˆ
⋃

F1
By(d/2)

|f |p ≤ C∥f∥pLp(Ω)

where in the last inequality if
⋃

F1
By(d/2) ⊃ Ω we use that f ≡ 0 outside Ω.

We can now present a crucial result concerning regularity in elliptic equations.

Lemma. Suppose that u solves in the distributional sense in Ω

−∆u =
∑
i,j

∂2ijf

Then, for every 1 < p <∞, there exists a constant C = C(n, p) such that

∥u∥Lp(Ω) ≤ C∥f∥Lp(Ω).

Moreover, if f is compactly supported in Ω also u can be assumed to be compactly supported
in Ω.

Proof. We use the dual definition of the Lp norm and the regularity of the Newtonian
potential:

∥u∥Lp(Ω) = sup
∥w∥

Lp
′=1

ˆ
Ω

uw = sup
∥w∥

Lp
′=1

ˆ
Ω

u∆N (w) = sup
∥w∥

Lp
′=1

ˆ
Ω

∇u∇N (w),

where for the third equality we have used that, by density, we can assume w ∈ C∞
c (Ω)

and in this case N (w) is compactly supported. Using the definition of distributional
derivatives (again by the compactness of the support of N (w)) and the estimate (A.2) we
get

∥u∥Lp(Ω) = sup
∥w∥

Lp
′=1

ˆ
Ω

∑
i,j

∂2ijf N (w) = sup
∥w∥

Lp
′=1

ˆ
Ω

∑
i,j

f ∂2ijN (w)

≤C sup
∥w∥

Lp
′=1

∑
i,j

∥f∥Lp(Ω)∥w∥Lp′ (Ω) = C∥f∥Lp(Ω).

To prove the last point notice that if f is compactly supported in Ω also
∑

i,j ∂
2
ijf is

compactly supported. Then, using the operator N we can conclude.

With a slight modification to the previous proof, we can obtain the following result,
to which we refer when we talk about the Calderón-Zygmund theory.
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If u is a solution, in Ω, to

−∆u =
∑
i,j

∂2ijfij

then
∥u∥Lp(Ω) ≤ C

∑
i,j

∥fij∥Lp(Ω) (A.3)

where {fij}ij is a finite family of functions.
Moreover, if every fij is compactly supported in Ω also u is compactly supported in
Ω.
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Appendix B

Stochastic Analysis in Infinite
dimension

We present a self-contained introduction to Stochastic Analysis in Hilbert spaces, with a
focus on Stochastic Partial Differential Equations (SPDEs). We underline that our aim in
this introduction is not on the existence and uniqueness of solutions to SPDEs. Instead,
we aim to provide a basic overview of the ingredients of a Stochastic Partial Differential
Equation. Our main reference for this topic is the book by Da Prato and Zabczyk [DZ14].

B.1 Introduction to probability theory in Infinite di-

mension

Operator in Infinite Dimensional Spaces

Given Banach spaces E,F we denote L(E;F ) the set of bounded, linear operators be-
tween E and F . This space is also a Banach Space (with operator norm) and we denote
by L(E) the space L(E;E).

Consider two Hilbert spaces U and H and consider a bounded, linear operator between
them O ∈ L(U ;H).

• We denote with O∗ ∈ L(H;U) its adjoint operator which satisfies

⟨Ox, h⟩H = ⟨x,O∗h⟩U for all x ∈ U, h ∈ H.

• We say that an operator O ∈ L(H) is positive if

⟨Oh, h⟩H ≥ 0 for all h ∈ H.
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APPENDIX B. STOCHASTIC ANALYSIS IN INFINITE DIMENSION

Now we proceed by introducing two important functional operator spaces that play
a crucial role in the study of Stochastic Analysis in infinite dimensions: the Trace Class
operators (or simply Trace operators) and the Hilbert-Schmidt operators.

Definition B.1. Let U be an Hilbert space. We say that a symmetric 1 and non-negative
operator T ∈ L(U) is a trace class if there exists a basis (when we say basis we mean
orthonormal basis) (ek)k for U such that

TrT :=
∞∑
k=1

⟨Tek, ek⟩U <∞.

2 In such case, we say T ∈ L1(U).

One can prove that the space L1(U) equipped with the natural norm ∥T∥L1 = |TrT|
is a Banach space.

Definition B.2. Let U,H be Hilbert spaces with basis (ek)k, (fk)k respectively. Then
T ∈ L(U ;H) is said to be a Hilbert-Schmidt operator if

∥T∥2L2
:=

∞∑
k,l=1

⟨Tek, fl⟩2H <∞.

In such case, we say T ∈ L2(U).

The space L2(U) of these operators is a separable Hilbert space with the natural scalar
product

⟨T, S⟩ =
∞∑
k=1

⟨Tek, Sek⟩H for T, S ∈ L2(U ;H).

The standard regularity theory for Hilbert spaces guarantees us that if Q ∈ L1(U) is
symmetric and non-negative then Q1/2 ∈ L2(U) and, in particular, there exists a basis
(ek)k ⊂ U and a summable real sequence (λk)k such that we have the following represen-
tation

Q1/2x =
∑
k≥1

√
λk⟨x, ek⟩U ek. (B.1)

Random variables

Let (Ω,F ,P) be a probability space and (E,B(E)) a measurable, separable, Banach space,
with B(E) the Borel sigma algebra induced by the norm ∥ · ∥E.

1A symmetric operator T ∈ L(U) is an operator T such that ⟨Tx, y⟩ = ⟨x, Ty⟩ for every x, y ∈ U
2It can be proved that if the series converges for a basis then it converges for any basis
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B.1. INTRODUCTION TO PROBABILITY THEORY IN INFINITE DIMENSION

A measurable map X : Ω → E is called a random variable and L(X) = X∗P is its
law (which is a probability measure on E). A well-known fact is that X is an E-valued
random variable if and only if φ(X) is a real random variable for every φ ∈ E∗. This
implies that if X is an E valued random variable, then Ω ∋ ω 7→ ∥X(ω)∥E is a real
random variable (see [DZ14] Proposition 1.2).

Now, we aim to integrate a random variable with respect to the measure P. We fol-
low a similar approach as in the real case: we begin by integrating only simple random
variables, and then expand the construction using a density argument.

A simple E-valued random variable is a random variable which can be written as:

X(ω) =
N∑
k=1

xk1Ak(ω)

where N > 0 is an integer, xk ∈ E and Ak ∈ F for very k. The natural integration is
given by

E[X] :=

ˆ
Ω

X(ω)dP(ω) =
N∑
k=1

xkP(Ak) ∈ E

and we say that X is integrable if ∥X(·)∥E is integrable.

The density argument is the following (for proof see [May21]):

Proposition. Let X be an E-valued random variable with (E, ∥ · ∥E) a Banach space.
Then there exists a sequence of simple random variables (Xn)n≥1 such that ∥X(ω) −
Xn(ω)∥E → 0 almost everywhere.

The integral ofX is defined as the limit of the integral along an approximating sequence
of simple random variables. For p ∈ [1,∞] we define naturally the spaces Lp(Ω;E) as the
completion of the simple random variables under the norms

∥X∥p :=

E [∥X∥pE]
1
p , if p ∈ [1,∞),

ess sup
ω∈Ω

∥X(ω)∥E, if p = ∞.

Gaussian variables

Just as in the real case, Gaussian variables play a fundamental role in the study of non-
deterministic phenomena in the context of Hilbert spaces. In what follows, we identify
the Hilbert space U with its dual space U∗, and we denote the action of g on h as ⟨h, g⟩.
Before proceeding, let us recall the definition of the characteristic function.
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For a measure µ defined on a Hilbert space U , the characteristic function of µ is defined
as follows:

µ̂(h) =

ˆ
U

ei⟨h,g⟩dµ(g) for all h ∈ U.

Definition B.3. Let X be a U-valued random variable. Then we say that X is Gaussian
if and only if ⟨X, g⟩ is a real Gaussian random variable, for every g ∈ U . We say that a
measure µ ∈ P(U) is Gaussian if µ = L(X) for a Gaussian random variable X.

The following theorem presents a strong characterization of Gaussian random variables
in the context of Hilbert spaces. It bears similarities with the characterization in the real
case.

Theorem. Let U be a Hilbert space. A measure µ ∈ P(U) is Gaussian if and only if
there exist m ∈ U and Q ∈ L1(U) symmetric and non-negative such that

µ̂(h) = ei⟨m,h⟩− 1
2
⟨Qh,h⟩, for all h ∈ U.

Furthermore one has the identity,

ˆ
U

∥h∥2U dµ(h) = TrQ.

Finally, if µ = L(X) then we say that X ∼ N (m,Q).

Proof. Suppose µ is Gaussian then, by definition, can be written as µ = X∗P for a
Gaussian random variable X. By Riesz representation theorem (every continuous linear
functional on a Hilbert space can be uniquely represented as the inner product between a
fixed vector in the Hilbert space and a variable vector) there exist m ∈ U and Q ∈ L(U)
symmetric and non-negative, such that for all h, g ∈ U ,

E[⟨X, h⟩] =
ˆ
U

⟨x, h⟩dµ(x) = ⟨m,h⟩

E[⟨X, h⟩⟨X, g⟩] =
ˆ
U

⟨x, h⟩⟨x, g⟩dµ(x) = ⟨Qh, g⟩.

Assume without loss of generality that m = 0 (centred Gaussian variable). By definition
of push forward, we have

µ̂(h) =

ˆ
H

ei⟨h,g⟩dµ(g) =

ˆ
Ω

ei⟨h,X(ω)⟩dP(ω) = E[eiY ]

where Y = ⟨X, h⟩ is a real Gaussian variable. Then, by the characterization of the
characteristic function of real centred Gaussian variables, we have

E[eiY ] = e−
1
2
σ2
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B.1. INTRODUCTION TO PROBABILITY THEORY IN INFINITE DIMENSION

where σ2 = E[Y 2] = E[⟨X, h⟩⟨X, h⟩] = ⟨Qh, h⟩. We are left to prove that Q is Trace class.
By Fernique’s Theorem (see [May21] Theorem 1.4.11), a Gaussian measure has a finite
moment of all orders, in particularˆ

U

∥h∥2U dµ(h) <∞.

Now let (en)n≥1 ⊂ U be a basis, so that we are allowed to apply Lebesgue’s dominated
convergence in the first step, we have,
ˆ
U

∥h∥2U dµ(h) =
∞∑
k=1

ˆ
U

⟨h, ek⟩2 dµ(h) =
∞∑
k=1

E[⟨X, ek⟩⟨X, ek⟩] =
∞∑
k=1

⟨Qek, ek⟩ = TrQ.

For the converse implication, we consider Q ∈ L1(U) symmetric and non-negative. Then
there exist a summable sequence (λk)k ⊂ R and a basis (ek)k for U such that

Qek = λkek.

Now take a sequence of i.i.d real standard Gaussian variables (βk)k and set

X :=
∞∑
k=1

√
λkekβk. (B.2)

We claim that X defines an U -valued Gaussian variable. To prove that B.2 is well defined
consider the partial sums

Xm =
m∑
k=1

√
λkekβk

and notice that (Xm)m is a Cauchy sequence with respect to the ∥·∥2 norm defined above.
Indeed for n > m we have

∥Xn −Xm∥22 = E[∥Xn −Xm∥2U ] = E

( n∑
k=m

√
λkβk

)2
 ≤

n∑
k=m

λk

and since λk is summable it is also a Cauchy sequence (which implies (Xm)m is a Cauchy
sequence as well). Since the space L2(Ω, U) is complete we have that (Xm)m is converging
in ∥ · ∥2, then there exists a subsequence of partial sums converging P-almost everywhere
in U .

From now on Q will be called the covariance operator of X.

Generalised Gaussian variables

Following the idea presented in (B.2) we have that X is a Gaussian variable if and only
if it can be written as

X =
∞∑
k=1

βkQ
1/2ek =

∞∑
k=1

βk
√
λkek (B.3)
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APPENDIX B. STOCHASTIC ANALYSIS IN INFINITE DIMENSION

where (λk)k is a summable sequence and Q ∈ L1(U) is the covariance operator of X. We
stress that the last identity is possible because Q is a Trace class operator. The leading
idea behind the definition of the Generalised Gaussian variable is to consider Q ∈ L(U)
symmetric and non-negative only. In this way the formula

X =
∞∑
k=1

βkQ
1/2ek (B.4)

is not well defined but the strategy is to extend the space U to a bigger space Uex in a
way that

∞∑
k=1

E[β2
k ]⟨Q1/2ek, Q

1/2ek⟩Uex <∞, (B.5)

which implies that the partial sums of (B.4) are converging almost everywhere. Once we
have the convergence we can define the action of X on h ∈ U as

h 7→ Xh :=
∑
k=1

βk
〈
Q1/2ek, ek

〉
Uex

⟨h, ek⟩Uex

which is also linear. We start with a very important example.

Example. Consider the so-called White Noise

W :=
∞∑
k=1

βkek

which corresponds to Q = IdU , which is not a Trace class operator. Notice that if h ∈ U
the real random variable ⟨W,h⟩U is not well defined (the variable W does not converge
to any element in U). Now we consider the extension Uex defined as the completion of U
under the norm

∥h∥2Uex =
∞∑
k=1

1

k2
⟨h, ek⟩2

where (ek)k is an orthonormal basis for U . Notice that the map

h 7→ Wh = ⟨W,h⟩Uex :=
∞∑
k=1

βk⟨h, ek⟩Uex

is well-defined. Indeed we have

∞∑
k=1

⟨h, ek⟩Uex ≤
∞∑
k=1

∥h∥2Uex∥ek∥
2
Uex = ∥h∥2Uex

∞∑
k=1

1

k2
<∞.

Moreover we have also, for h, g ∈ U ,

E[⟨W,h⟩Uex ] = 0, E[⟨W,h⟩Uex⟨W, g⟩Uex ] = ⟨h, g⟩U .
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In the example it was easy to find the suitable extension of the space U under which
W converges. For a more general X we have to understand which properties we need
on these extensions to make everything work. For the moment we present the definition
of the generalised Gaussian variable and after we show how it is related to the previous
construction.

Definition B.4. Given a Hilbert space U , we say that a linear map h 7→ Xh defines a
generalised Gaussian random variabl, if Xh is a real Gaussian random variable for every
h ∈ U and if

E
[
|Xh −Xhn|

2]→ 0 as hn → h ∈ U

Notice that the previous map

h 7→ Wh := ⟨W,h⟩Uex

defines a generalised Gaussian variable. The extension idea we have presented is closely
connected to generalized Gaussian variables through this powerful result (for a complete
proof see [May21]):

Theorem. Let U,Uex be Hilbert spaces and Q ∈ L(U) (symmetric and non-negative) be
such that Q1/2(U) =: U0 ⊆ Uex with Hilbert-Schmidt embedding iQ1/2 : U → Uex. Then
(B.4) defines a generalised Gaussian random variable on U . Moreover it can be proved
that the definition of X as a generalised Gaussian random variable on U is independent
of the choice of Uex and i.

Hence the property that we require on our extension is that the map

iQ1/2 : U → Uex

is a Hilbert-Schmidt operator. Indeed in the example with Q = IdU one can easily prove
that i : U → Uex is Hilbert-Schmidt.

Proof. Our aim is to prove that X as in (B.4) is converging in Uex. This is equivalent to
check (B.5):

∞∑
k=1

E[β2
k ]⟨Q1/2ek, Q

1/2ek⟩Uex =
∞∑
k=1

⟨iQ1/2ek, iQ
1/2ek⟩Uex =

∞∑
k=1

⟨
(
iQ1/2

)∗
iQ1/2ek, ek⟩U

= Tr
((
iQ1/2

)∗
iQ1/2

)
<∞

where we have used that if iQ1/2 is Hilbert-Schmidt then
(
iQ1/2

)∗
iQ1/2 is Trace class.
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Martingales

The results concerning the Martingales in an infinite dimensional space are very similar
to the real case. Every proof of this subsection can be found in [DZ14].

Theorem. Let X be a E valued random variable which is Bochner integrable and G ⊆ F
be a sub-sigma-algebra of F . Then there exists a P-unique random variable Z such that

1. Z is integrable;

2. Z is G-measurable;

3. ˆ
Ω

X(Ω)1AdP(ω) =
ˆ
Ω

Z(ω)1AdP(ω), for all A ∈ G

In this case we write Z = E[X | G].

Once we have this construction we can define the Martingales.

Definition B.5. Let (Mt)t≥0 be an E-valued stochastic process and (F)t≥0 a filtration on
(Ω,F ,P). Then we say that (Mt)t≥0 is an (F)t-martingale if

1. for every t ≥ 0 the random variable Mt is integrable;

2. Mt is Ft measurable;

3. E [Mt | Fs] =Ms P-a.s. for all 0 ≤ s ≤ t <∞.

We are particularly interested in continuous, square integrable martingales, i.e., E-valued,
continuous, (Ft)t-martingales such that

∥M∥M2
T
:= sup

t∈[0,T ]

E[∥Mt∥2E] <∞.

It is possible to prove that M2
T (E) is a closed subspace of L2(Ω;C([0, T ];E)) and so it is

itself a Banach space.

Wiener Processes and Generalised Wiener Processes

Definition B.6. Given a Hilbert space U and a trace class operator Q ∈ L1(U), we say
that (Wt)t≥0 is a standard Q-Wiener process with respect to (Ft)t≥0 if,

1. W0=0;
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2. Wt≥0 is Ft≥0 measurable for every t ≥ 0;

3. the map t 7→ Wt ∈ U is P-a.s. continuous;

4. Wt −Ws ∼ N (0, (t− s)Q) for any 0 ≤ s < t <∞;

5. Wt −Ws is indipendent from Fs for any 0 ≤ s < t <∞.

If we do not explicitly write the filtration we are assuming that (Ft)t is the normal filtration
induced by the process (Wt)t.
Let Q ∈ L1(U) and suppose that Qek = λkek for an orthonormal basis (ek)k for U with
(λk)k ⊂ R. One can prove that (Wt)t≥0 is a Q-Wiener process if and only if

Wt =
∑
k

√
λkβ

k
t ek

where (βk)k are independent, real, Brownian motions.
Suppose (Wt)t≥0 and consider again the orthonormal basis generated by Q. Then we have

sup
t∈[0,T ]

E[∥Wt∥2U ] = sup
t∈[0,T ]

E

[
∞∑
k=1

|⟨Wt, ek⟩|2
]
≤ sup

t∈[0,T ]

∞∑
k=1

⟨tQek, ek⟩ = sup
t∈[0,T ]

t T r(Q) <∞

which implies that the Wiener process belongs to M2
T (E).

We define the generalised Wiener process using the same extension argument that brings
from a Gaussian variable to the Generalised Gaussian variable.

Definition B.7. Given a Hilbert space U , we say that a family of linear maps [0, T ]×U ∋
(t, h) 7→ Wh;t ∈ R defines a generalised Wiener process if for each h ∈ U the map t 7→ Wh,t

defines a real Wiener process and for any subsequence (hn)n converging to h ∈ U we have

E[|Wh,t −Whn,t|2] → 0 for all t ≥ 0.

Employing the same ideas used for the Gaussian variables we can understand a generalised
Wiener process as a Wiener process taking values in a space slightly larger than U . In
particular, we can write Wt as a formal sum

Wt =
∑
k≥1

βk
tQ

1/2ek

where (βk)k is a family of i.i.d, standard, real Brownian motions. We may consider the
Wiener process (Wh,t)t,h as a Uex valued Q-Wiener process on U provided that

iQ1/2 : U → Uex

is Hilbert-Schmidt. This brings to the fact that the generalised Wiener process is an
element of M2

T (Uex).
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B.2 Stochastic integration

We conclude by giving meaning to integrals of the form

[0, T ] ∋ t 7→
ˆ t

0

φsdWS

where (φt)t is a suitable operator valued process. The strategy is similar to the one for
the finite-dimensional case, the work is organised as follows

1. Define the stochastic integration for a class of simple L(U ;H)-valued processes called
ET (U ;H);

2. We notice that the integration is an isometry between (ET (U ;H), ∥ · ∥H2
T
) and the

space of square-integrable martingales (M2
T (H), ∥ · ∥M2

T
), where the norm H2

T has
to be carefully defined;

3. With a density argument we extend the definition of stochastic integration to every
predictable process (φt)t such that ∥φ∥H2

T
is finite.

Simple processes

We say that a process [0, T ] ∋ t 7→ φt ∈ L(U ;H) is simple if there exists a sequence of
times 0 = t0 < t1 < · · · < tn−1 = T , and a set of L(U ;H) valued, (Ftm)

n−1
m=0 measurable,

random variables (φm)
n−1
m=1, taking only finitely many values, such that

φt = φ010(t) +
n−1∑
m=0

φm1(tm,tm+1](t).

We write Et(U ;H) for the set of L(U ;H) valued simple processes on [0, T ].
For a simple process φ one defines the stochastic integral by the formula

ˆ t

0

φsdWs =
n−1∑
m=0

φm(Wtm+1∧t −Wtm∧t)

and denoted by φ ·W (t).

The norm H2
T

We start introducing the subspace U0 = Q1/2(U) of U which is a Hilbert space with the
inner product

⟨u, v⟩U0 = ⟨Q−1/2u,Q−1/2v⟩U
for u, v ∈ U0 and Q−1/2 =

(
Q1/2

)∗
.
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Proposition. We have the inclusion L(U ;H) ⊂ L0
2(U ;H) also denoted as L2(U0;H).

Proof. Let φ ∈ L(U ;H) and we prove that φ ∈ L2(U0;H) or, equivalently, φ∗φ ∈
L1(U0;H). Indeed consider (uk)k a basis for U0∑

k

⟨φ∗φuk, uk⟩U0 =
∑
k

⟨Q−1/2φ∗φuk, Q
−1/2uk⟩U =

∑
k

⟨Q1/2Q−1/2φ∗φuk, uk⟩U0 <∞.

The last series is finite because Q1/2Q−1/2φ∗φ is trace class. Indeed Q1/2Q−1/2 is trace
class and φ∗φ ∈ L(U). Since the composition of a trace class operator with a bounded
linear operator is still a trace class we have done.

This inclusion guarantees that simple processes are measurable, L2(U0;H)-valued pro-
cesses. The advantage is that L2(U0;H) is also a separable Hilbert space, equipped with
the norm

∥φ∥2L0
2
:= Tr

[
(Q1/2φ)(Q1/2φ)∗

]
.

This allows us to define the set of square integrable processes with respect to a Q-Wiener
process. For a measurable process, [0, T ] ∋ t 7→ φt ∈ L0

2(U0;H), we set

∥φ∥H2
T
:= E

[ˆ T

0

∥φs∥2L0
2

]
.

With respect to this norm, we have the isometry we need. Indeed the map

ET (U ;H) −→ M2
T (H)

φ −→ φ ·W

is an isometry between (ET (U ;H), ∥ · ∥H2
T
) and the space of square-integrable martingales

(M2
T (H), ∥ · ∥M2

T
). These results are collected in the following proposition.

Proposition. Let φ ∈ ET (U ;H). Then (φ ·Wt)t, defined as before, is a continuous,
square-integrable, H-valued martingale, adapted to the natural filtration of (Wt)t. Fur-
thermore, one has

∥φ ·W∥M2
T
= sup

t∈[0,T ]

E[∥φ ·Wt∥2H ] = ∥φ∥H2
T

For the proof see [May21].

Density extension

We wish to extend the definition of integration to every L0
2(U ;H)-valued process such

that ∥φ∥H2
T
< ∞. Since we want our stochastic integration to preserve the martingale

property we have to restrict to predictable processes.
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Definition B.8. Given (Ft)t∈[0,T ] a filtration, then we define PT as

PT := σ ({(s, t]× F : 0 ≤ s < t ≤ T, F ∈ Fs} ∪ {{0} × F : F ∈ F0}) .

Given a Hilbert space H, we say that a process φ : [0, T ] × Ω → H is predictable if it is
PT -measurable.

We say that a process [0, T ] × Ω ∋ (t, ω) 7→ L0
2(U ;H) is stochastically integrable

with respect to a Wiener process W if

1. it is predictable with respect to the natural filtration of W ;

2. ∥φ∥H2
T
<∞.

This space is denoted by H2
T (W ) and observe that it is a Hilbert space with inner product

⟨φ, ψ⟩H2
T
=
´ T

0
⟨φt, ψt⟩L0

2
dt.

Theorem. If φ ∈ H2
T (W ) then there exists a sequence of simple processes (φn)n ⊂

ET (U ;H) such that ∥φ − φn∥H2
T
= 0. This allows us to define, by density, the stochastic

integral indicated as

[0, T ] ∋ t 7→
ˆ t

0

φsdWs := φ ·Wt

which is a continuous, square-integrable, H-valued martingale.

With some extra work but with the same ingredients one can define the integration with
respect to a generalised Q-Wiener processes (Wt)t. Since the embedding i : U0 7→ Uex is
Hilbert-Schmidt by definition one can seeW as a Wiener process with values in Uex. Hence
we can define the integrals for predictable processes taking values in L2(Q

1/2(Uex);H),
where we have replaced U with Uex. However, this is unsatisfactory, since we know that
definition of a generalised Wiener process does not depend on the choice of the extension
Uex and so it would be natural for the integration to retain this property. It turns out
that we can retain the same space of integrands as in the previous theorem.

Theorem. Let (Wt)t∈[0,T ] be a generalsied Wiener process on φ ∈ H2
T (W ). Then, letting

i : U0 → Uex be an Hilbert-Schmidt extension then the integral

[0, T ] ∈ t 7→ φ ·Wt :=

ˆ t

0

(φs ◦ i−1)dWs

is a continuous, H-valued square-integrable, martingale.
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B.3 Stochastic PDE’s

Before introducing Stochastic Partial Differential Equations (SPDEs), it is helpful to
review some basic concepts from Functional Analysis that are commonly used in the study
of time-dependent partial differential equations (PDEs) in infinite-dimensional spaces.
These concepts provide a foundation for understanding the behaviour and properties of
solutions to such equations. We begin by recalling the notion of unbounded operators on
Banach spaces.

Definition B.9. Given Banach spaces E,F , an unbounded linear operator A from E to
F is a pair (A,D(A)) where D(A) ⊂ E is a linear dense subspace and A : D(A) → F is
a linear map.

If A is densely defined from E to F and continuous on its domain then there exists a
unique, continuous extension of A defined on all E.
Another important concept in the study of PDEs is the Gelfand triple. We recall the
definition:

Definition B.10. A Gelfand triple consists of three spaces: a separable, reflexive Banach
space denoted by V , a separable Hilbert space denoted by H, and the dual space of V
denoted by V ∗. The triple is defined as follows:

V ⊂ H ∼= H∗ ⊂ V ∗.

Here, H∗ represents the dual space of H, which is isomorphic to H itself due to the Hilbert
space duality.

Let A : D(A) ⊂ V → V ∗ be an unbounded linear operator, T > 0 and B ∈
L2([0, T ];H) be a square-integrable map. Then we consider the deterministic, linear
PDE {

∂tu− A(u) = Bt

u|t=0 = u0.
(B.6)

We leave any specification of spatial domain and any boundary conditions to the definition
of the spaces V and H.
For example, consider the homogeneous heat equation, which corresponds to B = 0 and
A = ∆. The Gelfand triple we have to consider is

H1
0 (Rn) ⊂ L2(Rn) ⊂

(
H1

0 (Rn)
)∗

= H−1(Rn).

The unbounded operator ∆ : C2
c (R3) ⊂ H1

0 (Rn) → H−1(Rn) is a continous map from
C2

c (R3) to H−1(Rn). Since C2
c (R3) is dense in H1

0 (Rn) the operator ∆ can be uniquely
extended to H1

0 (R3).
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We are ready to add stochastic rumour to the equation (B.6). Fix T > 0 and a filtered
probability space (Ω,F , (Ft)t,P). Consider also a Gelfand triple (V,H, V ∗) of Hilbert
spaces and the stochastic partial differential equation{

dut = A(ut)dt+B(ut)dWt,

u|t=0 = u0,
(B.7)

where

1. (Wt)t∈[0,T ] is a U -valued generalised Wiener process with respect to the filtration
(Ft)t, with covariant operator Q and U is a fourth Hilbert space.

2. A : D(A) ⊂ V → V ∗ is an unbounded operator;

3. B : V → L2(U0, H) and for every square integrable process [0, T ] ∋ t 7→ ut ∈ V we
have (B(ut))t∈[0,T ] ∈ H2

t (W ).

A weak solution to (B.7) is an (Ft)t∈[0,T ]-adapted process [0, T ]×Ω ∋ (t, ω) 7→ ut(ω) ∈ V
if

u ∈ L2(Ω× [0, T ];V ), (B.8)

and for every v ∈ V and t ∈ [0, T ], P-a.s.

⟨ut, v⟩ = ⟨u0, v⟩+
ˆ t

0

⟨A(us), v⟩ds+
ˆ t

0

⟨v,B(us)dWs⟩.

Notice that we have given the definition only in the case when the operators A and B do
not depend on (t, ω). As we are going to see this does not modify the definition of a weak
solution.
The hypotheses are very similar to the one we ask for a deterministic PDE, the only
difference is represented by the ones on B. To understand them we remind that H2

t (W )
represent the space of stochastically integrable processes, namely φ ∈ H2

t (W ) if it is a
process [0, T ]× Ω ∋ (t, ω) 7→ L0

2(U ;H) such that

1. it is predictable with respect to the natural filtration of W ;

2. ∥φ∥H2
T
<∞.

Hence the hypothesis of (B(ut))t∈[0,T ] ∈ H2
t (W ) for every square-integrable process [0, T ] ∋

t 7→ ut ∈ V is exactly what we need for a good definition of (B.7).
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