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Abstract

Haloscope’s sensitivity is limited by the quantum features of microwave radiation employed to detect
axion cold dark matter signals. So far, many experiments have approached the edge called standard
quantum limit (SQL). An article published lately on Nature [1] discusses how the HAYSTAC exper-
iment (Haloscope at Yale Sensitive to Axion Cold dark matter) managed to overcome the SQL by
using quantum states of electromagnetic radiation, the so-called squeezed states.
In the present thesis the aforementioned experiment will be studied. The reasons for searching for the
QCD axion and other axion-like particles (ALPs) will be introduced, as well as the mode of operation
of the main axion detectors. Then, it will be studied the SQL of classical signal amplifiers and how
it can be overcome by using the phase-sensitive amplification of the Josephson Parametric Amplifiers
to produce microwave squeezing. Finally, the HAYSTAC experimental setup will be discussed as well
as its up-to-date results and how the detector can be enhanced further in future.

La sensibilità dei rivelatori haloscopici di materia oscura assionica è limitata dalle proprietà quan-
tistiche della radiazione a microonde usata per la rivelazione. Attualmente molti rivelatori operano
vicino a questo limite quantistico standard (SQL). In un recente articolo apparso sulla rivista Nature
[1] è stato riportato come impiegando stati non classici della radiazione elettromagnetica chiamati
stati squeezed è stato possibile superare lo SQL presso l’esperimento HAYSTAC (Haloscope at Yale
Sensitive to Axion Cold dark matter).
Il presente lavoro di tesi consiste nell’analisi dell’esperimento citato. Inizialmente verranno introdotte
le motivazioni per la ricerca di assioni QCD e di altre particelle di tipo assionico (ALPs), oltre al prin-
cipio di funzionamento dei principali rivelatori assionici. Successivamente si analizzerà la natura dello
SQL legata all’amplificazione dei segnali, si vedrà come gli attuali limiti possono essere superati uti-
lizzando stati squeezed e si mostrerà come tali stati siano realizzabili tramite un’amplificazione phase-
sensitive ottenuta mediante l’impiego dei Josephson Parametric Amplifiers. Infine, saranno illustrati
il setup sperimentale di HAYSTAC e i risultati ottenuti, nonché le sue potenzialità future.
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Chapter 1

Introduction to light dark matter

The Standard Model of Particle Physics (SM) is a quantum field theory describing quarks and leptons
constituting matter as well as their interactions (electromagnetic, weak and strong). Despite the
great accuracy of its predictions and the experimental verification of many of them, the SM has some
unresolved issues. Among them, the so-called strong CP problem and the nature of cold dark matter
entail the introduction of a new hypothetical particle beyond the SM: the Quantum Chromodynamics
(QCD) axion.

The CP symmetry is the combination of charge conjugation (C) with parity reversal (P); violations
of this symmetry have been observed in laboratories for processes generated by the weak interaction
which is responsible for radioactive decays. As regards the strong interaction, a neutron electric dipole
moment (nEDM) would violate the CP symmetry: the neutron is the subatomic particle made up
of two quarks down and one quark up with electrical charges −1/3 e and +2/3 e respectively, bound
together by the strong force. If present, a nEDM would receive a contribution from the strong and
weak interactions and it would be proportional to the total CP-violating angle θ [2]:

|d| ≃ 3.6× 10−16 θ e · cm. (1.1)

The latest searches have put an upper limit for the neutron EDM, |d| < 1.8× 10−26 e · cm [3], hence

θ < 5× 10−11. (1.2)

Such a small value for the total CP-violating angle may be the consequence of a very precise cancella-
tion between the unrelated CP-violating parameters of two fundamental interactions, suggesting some
missing fundamental physics underlying the strong force.

In order to explain this limit for θ, in 1977 Roberto Peccei and Helen Quinn [4] proposed a model in
which they promoted it to a dynamical quantity proportional to the new field, θ ∝ a(t,x), a pseudo-
scalar (it changes its sign under a P transformation) bosonic field permeating all space and to which
is associated, according to quantum mechanics, a new particle beyond the SM: the QCD axion. This
field would oscillate around the minimum of the potential which would be energetically favorable,
hence setting the total nEDM close to zero.
To add the QCD axion to the SM, the Peccei-Quinn global chiral U(1) symmetry was introduced
(the symmetry transformation Φ → Φ′ = e−iαΦ is constant in space and time and acts differently on
left-handed and right-handed particles). The U(1)PQ symmetry would have undergone a spontaneous
symmetry breaking at a certain temperature TPQ before or after the hot Big Bang phase when the
temperature of the early universe was at its maximum, Thot. In both scenarios, as the universe slowed
down to an an expansion rate below the natural frequency νa (such that E = hνa = mac

2 where ma is
the rest mass of the axion), the axion field begun to oscillate and the number of axion particles grew.
The QCD axion’s mass can be estimated considering its analogies with the neutral pion, which leads
to the relation mafa ≃ mπfπ where fa is a parameter proportional to the energy of the spontaneous
U(1)PQ symmetry breaking. Knowing the experimental measurement for the pion’s mass mπ and
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the value of the constant fπ from the pion’s rate of decay (generated by the weak interaction), it is
possible to estimate [5]:

ma = 5.691(51) µeV

(

1012GeV

fa

)

. (1.3)

Some cosmological scenarios suggest that the QCD axion or other suitable axion like particles (ALPs)
are good candidates for providing cold dark matter. It is worth noticing that ALPs can be described
by two independent parameters (ma,fa) of a pseudoscalar boson emerging from spontaneously broken
global chiral symmetry [6].
The presence of dark matter was first proposed by Fritz Zwicky in 1930’s to explain the cluster of
galaxies: these are structures of thousands of galaxies bound together by gravity. Studying the Coma
Cluster, Zwicky [7] found that in order to keep the cluster together, it was required a much higher mass
than that of the observed galaxies and theorised the presence of a big amount of dark matter. Many
astronomical observations of clustering of galaxies and of their gravitational lensing effects gathered
further evidence of the presence of dark matter. Furthermore, the dark matter could explain the
observations of the angular spectrum of the cosmic microwave background, the faint electromagnetic
radiation filling all space with tiny anisotropies, that was accidentally discovered in 1965 by Arno
Penzias and Robert Wilson [8].
Another astronomical observation which may suggest the presence of dark matter is the rotation curve
of galaxies. In a spiral galaxy most of the mass is stored in a bulge region at the center, hence the
gravitational potential can be approximated to that of an extended, spherical mass M of radius R
and density ρ:

φ(r) =

{

4
3πGρr

2 for r < R;
GM
r for r ≥ R.

(1.4)

Reminding the virial theorem, 2K +U = 0 where K and U are the mean kinetic and potential energy
respectively, the mean velocity is: < v >=

√

φ(r). Therefore, the plot of the velocity with respect to
the distance from the center of the bulge is expected to grow linearly for r < R and to decrease as
the inverse of the distance for r ≥ R. In 1970 the astronomers Vera Rubin and Kent Ford [9] studied
the rotation velocity of the Andromeda (M31) spiral galaxy and found that it is almost constant for
r ≥ R, so they hypothesized that the galaxy was surrounded by a dark matter halo contributing to
the gravitational potential. After this observation, many other galaxies were studied and each showed
the same rotation curve trend.
From these astronomical observations it has become clear that the luminous matter described by the
Standard Model cannot account for the total density of the universe and that it is necessary to include
the much grater contribution of invisible dark matter, formed by very weakly interacting particles.
Dark matter is supposed to make up about 26% of the universe (compared to 68% of dark energy
and 6% of ordinary matter) and it is expected to be cold (slowly moving with respect to the speed of
light).

As QCD axion and ALPs could constitute dark matter, in the last forty years they have drawn the at-
tention of many particle physicists and several experiments were proposed and carried out to search for
these new particles. Since there was no new particle discovered with mass ≃ 100 keV (corresponding
to the electroweak scale few ≃ 250GeV ), the interest was focused on invisible axions, e.g. the Dine-
Fischler-Srednicki-Zhitnitskii (DFSZ) ([10], [11]) and the Kim-Shifman-Vainstein-Zakharov(KSVZ)
([12], [13]) model classes for QCD axions. Other ALPs models were theorized in String theory, Super-
gravity, Supersymmetry and Grand Unified Theory.
The invisible axion is much lighter and couples very weakly with SM particles (ma < eV , fa >> few).
Being bosons, many axions can occupy the same state. Thus, to account for local density of dark
matter at the Milky Way Galactic halo ρDM ≃ 0.3 ÷ 0.4GeV cm−3, the axion occupation number
should be very high [6]:

na ≃ 3× 1014
(

10−6 eV

ma

)

axions · cm−3 (1.5)
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resulting in a macroscopic wave-like behaviour that can be described using classical field theory:

a(t, x) =

∫

d3k ei{ω(k)t+kx} a(k) (1.6)

〈a(k)〉 = 0; 〈a(k)a(k′)∗〉 = fMB(|k|)δ3(k − k′), (1.7)

where a(k) is the field mode of wave vector k.
A dark matter axion field would have a local Maxwell-Boltzmann fMB(|k|) velocity distribution with
dispersion σv ≃ 270 km/s in the galactic frame of reference. Thus, from the axion dispersion relations:

E = ~ω = mac
2 +mav

2
a/2; p = ~k = mava (1.8)

it is possible to estimate the frequency dispersion of the galactic halo axion field in the galactic frame:

∆ωa

ωa
≃ 5× 10−7 (1.9)

hence a dark matter axion signal would be extremely narrow. For an experiment on Earth, due to its
orbital motion around the Sun and the rotational motion of the detector about its axis, the value in
equation (1.9) is doubled so that the quality factor is Qa,E = (∆ωa/ωa)

−1
E ≃ 106 [14].

The main issue about searching for the QCD axion is the determination of its mass ma ∝ 1/fa: since
it cannot be predicted by the theory, experiments need to scan a wide energy range depending on
the source of the axion searched and on its interactions with ordinary matter. The QCD axion’s
interactions with SM fields and particles could be of three types: i) with the electromagnetic field
(gaγγ), resulting in a feeble electric signal when an axion in a strong magnetic field is converted into
a photon with frequency νa = mac

2/h; ii) with fermion spins (gaff ); iii) with nuclear electric dipole
moments (gEDM ). These three interactions are proportional respectively to [4]:

gaγγ aE ·B; gaff ∇a · Ŝ; gEDM aŜ ·E, (1.10)

where E and B are the electric and magnetic field respectively, Ŝ is the spin vector of the particle
interacting with the QCD axion. Experimental searches mainly focus on detecting the interaction
with the EM field: an oscillating axion field a(x,t) would modify Maxwell’s equations as [15]:

∇ ·E = ρ− gaγγ ∇a ·B; ∇×B− Ė = j + gaγγ(ȧB+∇a×E). (1.11)

Since the de Broglie wavelength of the QCD axion field would be large for a mass range ≃ 1µeV , ∇a
is approximately zero, thus only the time-dependent current density term gaγγ ȧB can be detected in
experiments.

The first detection principle to be proposed in 1983 by Pierre Sikivie [16] aimed at looking for axions
that may have been converted to photons in a strong magnetic field. Since then, many experimental
techniques have been developed to search for axions at different mass ranges [15].
Dark matter axions are expected to have masses in the µeV range and they may originate photons in
the microwave frequency region. The signals from our galactic halo are looked for with the haloscope
technique, which uses different kinds of resonators.
A first type of haloscope employs a microwave resonant cavity immersed in a strong magnetic field.
If the frequency of an axion-induced photon is close to the resonant frequency of the cavity, its signal
emerges as a tiny excess in the variance of the electric field in the cavity. Since the mass of the axion
cannot be known a priori, cavities are built so that their resonant frequency can be tuned and at each
tuning step the noise is mediated for a time sufficient to detect a potential excess in the variance of
power fluctuations. Therefore haloscopes need much time to scan wide frequency ranges, depending
on the detector’s scan rate, which in turn is determined by the visibility (the ratio of the expected
signal power spectral density to the total noise power spectral density) and by the visibility bandwidth
(the characteristic bandwidth over which the haloscope is sensitive).
The first experiments with microwave cavities were carried out in 1987 by the Rochester-Brookhaven-
Fermilab Collaboration. The sensitivity was too limited by the high system noise temperature (about
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16K) to reach the predictions of KSVZ and DFSZ models of QCD axion. An experiment at the Uni-
versity of Florida improved the sensibility bringing the system noise temperature to 3K.
The ADMX (Axion Dark Matter eXperiment) was established in 1990 and was the first large-scale
experiment sensitive to low-mass QCD axion regions (1−10µeV ). The experiment was later enhanced
deploying the SQUID (Superconductive Quantum Interference Device) technology and a dilution re-
frigerator in order to operate at sub-kelvin temperatures and to reduce the noise almost to the quantum
limit. However, the searching for low-frequency axions (below 1 GHz) was limited by the large dimen-
sion of the cavity.
The HAYSTAC experiment (Haloscope at Yale Sensitive to Axion Cold dark matter) aimes at detecting
dark matter axions with masses above 20 µeV. It is the first haloscope experiment with a high-quality-
factor microwave resonant cavity (Q ≃ 47000, volume V=1.5 l, at temperature T=61mK) to squeeze
the vacuum states through a pair of Josephson Parametric Amplifiers (JPAs) to reduce the noise
beyond the fundamental quantum limit, increasing the scan rate of the detector and consequently its
sensitivity bandwidth [1].

For high-frequency axions, dielectric haloscopes are used: periodic structures of dielectric walls with
constant ǫr serve as open resonators, where it is possible to reach the 10-100 GHz frequency range
(40-400 µeV mass region). This strategy was proposed by the MADMAX Collaboration (Magnetized
Disc and Mirror Axion eXperiment) at DESY.

The aim of QUAX (QUest for AXions) haloscopes at INFN-LNL is to detect dark matter axions
through their couplings to photons (QUAX-aγ) and electrons (QUAX-ae). QUAX-aγ uses a resonant
cavity immersed in a strong magnetic field to detect DM axions converted into radio-frequency photons
(ma = 30−50 µeV ). QUAX-ae would be sensitive to the photons produced by the magnetic transitions
excited by the effective rf magnetic field on electron spin in a magnetized sample, due to the motion
of the solar system in the galaxy (ma ≃ 30− 80 µeV ).

Another possible source of axions are stars, from which the new particles would emerge after the
conversion of photons in the stellar plasma via Primakoff effect, in the X-rays region (the total axion
energy would reflect the Sun’s interior temperature of a few keV , no matter what its mass is). These
axions could be searched for through helioscopes, detectors sensitive to high-mass regions which use
dipole magnets directed towards the Sun to look for X-rays signal excesses due to the axion-photon
conversion in the magnetic field. Helioscopes experiments were held at the Brookhaven National Lab-
oratories, then at the Tokyo University and lastly at the CERN Axion Solar Telescope (CAST) setting
the most restrictive limit 1/fa < 10−10GeV −1 for ma < 0.02 eV, resulting competitive with astro-
physical limits. An enhanced helioscope, IAXO (International Axion Experiment), aims at improving
CAST’s sensibility.

Finally, if existing, the QCD axion and ALPs may be produced in the laboratory with the Light
Shining through a Wall (LSW ) technique: a strong light source emits photons which are converted
into axions in a strong superconductive dipole magnet; these, being very weakly interacting particles,
propagates through a wall opaque for photons and are again converted into photons with the same
energy as the original by a similar magnet apparatus placed beyond the wall.
LSW experiments were first carried out by the Brookhaven-Fermilab-Rochester-Trieste Collaboration.
The most stringent laboratory limit (ma < 0.3 meV) was achieved by the OSQAR experiment (Optical
Search for QED vacuum bifringence, axions and photon Regeneration) which deployed the LHC dipole
magnets at CERN. A similar result was obtained by the ALPS Collaboration at DESY.



Chapter 2

Amplification of MW signals

Haloscopes provide the most sensitive technique to look for axion signals in the microwave range:
the axion-photon conversion is enhanced in a tunable, high-Q microwave cavity immersed in a strong
magnetic field at the resonant condition hν = mac

2. The expected axion signal power [15]:

Pa = 5.0× 10−23 W
( gγ
0.75

)2 ( ρa
0.45 GeV cm−3

)( νa
1 GHz

)

(

B0

10 T

)2( V

30 L

)(

G

0.5

)(

Q

105

)

(2.1)

is proportional to the coupling parameter gγ (1.92 and 0.75 for the KSVZ and DFSZ models respec-
tively), the DM local mass density ρa, the Compton frequency of the axion νa, the applied external
magnetic field B0, the volume V of the cavity and its geometrical factor G and quality factor Q.
Since the frequency νa is not known a priori, the cavity is tuned in small steps and at each one the
signal is acquired for a sufficient time to detect, if present, an excess of power over the noise due to
the axion. The signal-to-noise ratio is given by the Dicke radiometer equation [17]:

S

N
=

Pa

kBTN
·
√

τ

∆νs
, (2.2)

in which TN is the noise temperature (see equation (2.3)), τ is the integration time at each step and
∆νs is the frequency bandwidth of the axion signal (see equation (2.33)). This equation points out
the main shortcomings of the haloscope technique: first of all, since the axion signal is expected to
be narrow-band and very feeble (Pa ≃ 10−23 W), very tiny tuning steps are needed and each step
requires a long integration time in order to maximize the signal-to-noise ratio; furthermore, even in
the lowest-noise linear amplifiers the so-called standard quantum limit (SQL) prevails over other noise
sources and cannot be overcome classically.
To the SQL is associated a temperature such that, at each frequency, kBTSQL = ~ω. It emerges at
zero temperature from the expression of the total system noise temperature TN , which is the sum of
two terms:

kB TN = ~ω

(

1

e~ω/kBT − 1
+

1

2

)

+ kB TA . (2.3)

The first term accounts for the fluctuations in the cavity at a given temperature T (see equation (2.18)).
At zero temperature, it contributes to half of the SQL, the other half arising from the minimum noise
energy provided by a linear amplifier, i.e. kBTA,min = ~ω/2 (see equation (2.30)).
The first haloscope experiments tried to reduce TN by lowering the system temperature T : amplifiers
with TN = 5 ÷ 20 K were used at the Rochester-Brookhaven-Fermilab Collaboration and at the
University of Florida, approximately 200 times the TSQL over the range ν ≃ 1− 3 GHz. The ADMX
experiment in the mid 1990s used amplifiers based on High-Electron-Mobility Transistors (HEMT )
improving the noise temperature to ≃ 200 TSQL at ν < GHz. In 1998 Clarke and collaborators
invented an amplifier based on microstrip-coupled SQUID amplifier (MSA) at ADMX and were able
to bring the system’s TN to about 15 TSQL. It was the HAYSTAC experiment to first employ the
JPAs to lower the temperature noise to around 2 TSQL with a cavity smaller than the one at ADMX.
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2.1. STOCHASTIC PROCESSES 7

2.1 Stochastic processes

The single execution of physics experiments can be regarded as a statistical ensemble: due to the
sources of random noise, the output at a fixed time can be described as a random variable. After the
execution, each possible outcome evolves in a deterministic way and therefore it is a function of time
u(t). Thanks to the ergodicity of the system [18], its time average tends to the ensemble average value
(2.4). The set of all the functions u(t) whose values at a given time t is a random variable is called
stochastic process.
For stochastic processes with statistical properties given by the probability distribution function f(u,t)
it is possible to define the average value, the auto-correlation function and the auto-covariance:

η(t) = E[u(t)] =

∫ ∞

−∞
u f(u, t) du; (2.4)

R(t, t′) = E[u(t)u(t′)] =

∫ ∞

−∞

∫ ∞

−∞
uu′f(u, u′, t, t′) du du′; (2.5)

C(t1, t2) = R(t1, t2)− η(t1)η(t2). (2.6)

It is worth noticing that R(t, t) = E[u2(t)] and that C(t, t) is the variance of the random variable u(t).
A stochastic process is said to be stationary if it is invariant under time translations: u(t+ t′) = u(t).
It follows that the auto-correlation function of a stationary process only depends on time intervals,
R(t, t′) = R(t − t′) ≡ R(τ). The power spectrum for stationary processes is defined as the Fourier
transform 1 of R(τ):

S(ω) =

∫ ∞

−∞
R(τ) e−iωτ dτ. (2.7)

In particular, at τ = 0 the integral of the power spectrum is proportional to the mean power of the
process:

R(0) = E[u2] =
1

2π

∫ ∞

−∞
S(ω) dω. (2.8)

During an experiment, incoming signals are stochastic processes i(t) which are transformed by the
detection chain T [·] into other stochastic processes with the same statistical properties: u(t) = T [i(t)].
If the fluctuations of the incoming signals are small, it is possible to linearize the system:

u(t) =

∫ ∞

−∞
h(t, τ) i(τ) dτ, (2.9)

where h(t, τ) is a function of time.
In a linear system, if the input is stationary and also the transfer function is stationary, so that
h(t, t′) = h(t− t′), then the output is stationary as well and the simple expressions below follow:

E[u] = E[i]

∫ ∞

−∞
h(τ) dτ ; (2.10)

Ruu(τ) =

∫ ∞

−∞

∫ ∞

−∞
h(τ ′)h(τ ′′)Rii(τ − τ ′ + τ ′′) dτ ′ dτ ′′. (2.11)

Therefore, it is possible to easily find the useful relation:

Su(ω) = |h(ω)|2Si(ω), (2.12)

where h(ω) in the Fourier transform of the transfer function h(t).

1Here and in the following, g(t) = (1/2π)
∫

∞

−∞
ĝ(ω)eiωtdω and ĝ(ω) =

∫
∞

−∞
g(t)e−iωtdt
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2.2 Johnson–Nyquist noise

An intrinsic source of noise in real electric systems is the thermal noise due to the ohmic dissipation
arising from the scattering of the charge carriers from the other degrees of freedom of the system. It is
possible to describe this phenomenon by adding to the mean current I0 through a resistor a white noise
current In: a stochastic normal process with zero mean value and auto-correlation RInIn(τ) = Pδ(τ)
where P =const. If the system is short-circuited by an inductor (figure 2.1 (c)), the power spectrum
of the noise current is SII(ω) = P/(1 + ω2τ̂2) with τ̂ = L/R. Then, from the equipartition theorem,
E[I2]L/2 = kBT/2 and E[I2] = 1/(2π)

∫

SII(ω)dω = P/2τ̂ hence P = 2kBT/R. Therefore the
thermal noise can be modelled as an ideal resistor with a stochastic normal, zero mean value current
generator in parallel or equivalently with a voltage generator in series, with power spectrum given by
the Nyquist relation (figure 2.1 (a-b)) [18]:

SInIn(ω) = 2kBT/R or SVnVn
(ω) = 2kBTR. (2.13)

In

R

(a)

Vn

R

(b)

In

LR

(c)

Figure 2.1: a-b)Equivalent models of a real resistor; c)resistor and inductor in parallel.

In general, a port of impedance Z(ω) short-circuited by a resistor dissipates a mean power

PR = E

[
∫ ∞

−∞
I(t)V (t)dt

]

=

∫ ∞

−∞
RIV (τ)dτ, (2.14)

where I(t) and V (t) are the current and voltage through the port. In the frequency domain, In(ω) =
Vn(ω)/[Z(ω) +R] where Vn(ω) is the voltage of the noise generator. Using Parseval’s theorem,

PR =
1

2π

∫ ∞

−∞

Z(ω)2kBTR

|Z(ω) +R|2 dω =
1

2π

∫ ∞

−∞

Re{Z(ω)}2kBTR
|Z(ω) +R|2 dω, (2.15)

where the imaginary part is an odd function and does not contribute to the integral (since the
impedance is real quantity, Z(ω) = Z∗(−ω)). If a noise generator of power spectrum SZ(ω) is associ-
ated to the impedance Z(ω) then the power dissipated in R is:

PZ =
1

2π

∫ ∞

−∞

SZ(ω)R

|Z(ω) +R|2dω (2.16)

and since at equilibrium PR = PZ , it follows that

SZ(ω) = 2kBTRe{Z(ω)}. (2.17)

In an article published in 1951 [19] H.B. Callen and T.A. Welton used the formalism of quantum
perturbation theory to extended the Nyquist relation, founding that the power spectrum arising from
the thermal excitation at temperature T of electrons in an oscillating system of frequency ω has the
correct expression:

SZ = 2~ω coth

(

~ω

2kBT

)

Re(Z(ω)) (2.18)

so that, at the standard quantum limit, this source of noise contributes to the total noise energy as
half of the irreducible single quantum of noise.
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2.3 Noise in linear amplifiers

A linear amplifier multiplies a very feeble input signal by a high-modulus linear transfer function.
As a consequence, the output signal is usually great enough to make the noise sources after the
amplifier negligible, in particular the perturbations predicted by the Heisenberg principle can be
ignored. It follows that the output signal can be measured classically and it carries information about
the input signal that is to be described quantum mechanically. Therefore, a real linear amplifier
must be associated to voltage (SVnVn

) and current (SInIn) noise generators that disturb the physical
quantity complementary to the one being measured in order to restore the uncertainty principle. As
a consequence, it is possible to define an amplifier’s noise temperature kBTA =

√

SVnVn
SInIn and a

noise resistance Rn =
√

SVnVn
/SInIn .

Around its resonance frequency ω0, the microwave cavity behaves like a RLC circuit with characteristic
impedance:

Z(ω) =
iω

C

1

ω2
0 − ω2 + iωω0/Q

, (2.19)

where Q = ω0RC = R/(ω0L) is the quality factor. The equivalent circuit of the cavity and the
amplifier around ω0 is shown in figure 2.2, where the Johnson-Nyquist noise associated to the resistor
R has been included in the amplifier’s noise current generator SInIn .

C L R

SInIn

SVnVn

Figure 2.2: Equivalent circuit of a cavity and an amplifier.

The noise voltage at the amplifier’s input is a zero mean value, normal stochastic process with power
spectrum:

SV V = SVnVn
+ |Z(ω)|2SInIn + αReZ(ω), (2.20)

where α = 2kBT at high temperatures and α = 2~ω coth ~ω
kBT at low ones (see equations (2.17) and

(2.18)). At the resonance frequency ω = ω0, the minimum of SV V is found for Rn = Q/(Cω0), so
that:

SV V =
ω0ω

2

QC

1

(ω2
0 − ω2)2 + ω2ω2

0/Q
2
2kBTeq (2.21)

hence the presence of the amplifier increases the equivalent temperature of the system Teq = α/(2kB)+
TA. The variance of the voltage is:

σ2V =
1

2π

∫

SV V (ω)dω =
1

2π
2kBTeq

ω0

QC

∫

ω2

(ω2
0 − ω2)2 + ω2

0ω
2/Q2

dω =
kBTeq
C

. (2.22)

Since the process has zero mean value, σ2V is proportional to the mean value of the noise energy
〈En〉 = C〈V 2〉/2 = Cσ2V /2 and equation (2.22) is in agreement with the equipartition theorem for
T = Teq: Cσ

2
V = kBTeq.

Neglecting the generators and the resistor, the system including the charge Q on the capacitor and
the flux ϕ through the inductor is described by the Hamiltonian:

H =
Q2

2C
+
ϕ2

2L
(2.23)

which is the Hamiltonian of the harmonic oscillator withQ and ϕ replacing the position and momentum
(in the real circuit, the resistor would couple this oscillator to the whole system) and, according to
the Heisenberg principle, in a state of minimum uncertainty σQσϕ = ~/2.



10 CHAPTER 2. AMPLIFICATION OF MW SIGNALS

Let suppose that the oscillator has initial condition ϕ = 0 at t = 0. At t > 0 a measure of the voltage
at the output of the linear amplifier begins and the output signal is mediated over a time interval
T << 1/ω0 << τ , where ω0 = (LC)−1/2 is the natural frequency of the oscillator and τ = RC is the
damping parameter. This is equivalent to a measure of the charge:

Q =
1

T

∫ T

0
CV (t)dt (2.24)

so that the charge is itself a stochastic process of variance:

σ2Q =
1

T 2

∫ T

0

∫ T

0
CQ(t− t′)dtdt′ =

1

T

∫ T

−T
CQ(τ)

(

1− |τ |
T

)

dτ, (2.25)

where CQ(τ) is the auto-covariance of the process Q(t) = CV (t) and V is the voltage at the input of the
amplifier. If the voltage process is white until ω >> 1/T , so that SV (ω0) = SV and RV (t) = SV δ(t),
and if it has zero mean value then also the charge process has zero mean value and auto-covariance
function CQ(t) = C2SV δ(t), so that:

σ2Q = C2SV /T. (2.26)

The magnetic flux power spectrum is Sϕ(ω) = SI |Z(ω)|2/ω2 and, assuming that SI(ω) = SI(ω0) = SI ,
its auto-correlation is:

Rϕ = (SIτ/2ω
2
0C

2)e−t/2τ [cos(ω1t)− (1/2ω1τ) sin(ω1τ)]), (2.27)

where ω2
1 = ω2

0 − 1/4τ2 ≃ ω2
0. Finally, expanding to the first order in 1/2τ :

σϕ = E{[ϕ(T )− ϕ(0)]2} = 2Rϕ(0)− 2Rϕ(T ) = SIτ/C
2ω2

0. (2.28)

In conclusion:
σϕσQ = (SISV )

1/2/ω0 =W (ω0)/ω0 = ~/2 (2.29)

hence the minimum noise energy from a linear amplifier is equal to the zero-point energy of the
harmonic oscillator:

W (ω0) =
1

2
~ω0 ≡ kBTA,min. (2.30)

2.4 Radiometer equation

With reference to figure 2.2, if an external voltage signal is present, it contributes to the power
spectrum as SV V (ω) = |Z(ω)|2Ss(ω). When the signal bandwidth is ∆ωs << ∆ωRLC = ω0/Q, as it
is expected from an axion signal, the variance can be approximated as:

σ2s =
1

2π

∫

|Z(ω)|2Ss(ω)dω ≃ 1

2π
∆ωsSV V (ω = ω0). (2.31)

Therefore, the signal increases the noise mean value up to kBTeq/C + σ2s/C.
In order to detect the signal, the fluctuation σV 2 =

√
2σ2V [18] of the noise around the mean value

should be smaller. If a sample of N measures of V 2 is acquired in a time interval τ , the mean value has
variance σ2V /

√
N provided that the measures are statistically-independent, therefore τ must be greater

or equal to the correlation time of the signal. From the Nyquist sampling theorem, a sampling interval
of τ/N corresponds to a bandwidth ∆ν = N/(2τ), so that N = 2∆ντ and τ ≃ 1/∆ν. Therefore, the
measures can be considered statistically independent if τ ≥ 1/∆νs and consequently N = 2∆νsτ and
the variance of the mean value of the noise is:

σ2N =
√
2
σ2V√
N

=
σ2V√
∆νsτ

. (2.32)

The Dicke radiometer equation follows straightforward:

S

N
=
σ2s
σ2N

≃ Pa/∆νs

σ2V /(
√

∆νsτ)
=

Pa

kBTN

√

τ

∆νs
. (2.33)



Chapter 3

Microwave squeezing

3.1 Squeezed states of electromagnetic radiation

The general solution of the classical wave equation for an electromagnetic field propagating in vacuum,

∇2E(r, t)− 1

c2
∂2

∂t2
E(r, t) = 0 (3.1)

is the electric field vector of complex amplitude α(r, t) = α0(r, t)e
iφ(r,t) (α0 being the real amplitude

and φ the total phase), oscillating at frequency ν = ω/2π with polarization p(r, t):

E(r, t) = E0[α(r, t)e
iωt + α∗(r, t)e−iωt]p(r, t). (3.2)

Such solution can be expressed equivalently in terms of the so-called amplitude quadrature X1 =
α∗(r, t) + α(r, t) and phase quadrature X2 = i[α(r, t)− α∗(r, t)] as:

E(r, t) = E0[X1 cos(ωt) +X2 sin(ωt)]p(r, t). (3.3)

The classical energy of the electromagnetic wave passing through the infinitesimal surface dx · dy
around the point (x, y) in the time interval dt around t is

ǫ(x, y, t) = E2
0 2αα

∗ dt dx dy or ǫ(x, y, t) = E2
0 (X

2
1 +X2

2 ) dt dx dy, (3.4)

where E2
0 = ~ω/4 [20]. Consequently, the classical Hamiltonian for a radiation made up of different

frequency modes ωk is:

H = Σk
~ωk

4
(X2

1 +X2
2 ) (3.5)

which is the Hamiltonian of multiple independent harmonic oscillators with canonical variables qk =
√

~ωk/2X1,k and pk = −
√

~/(2ωk)X2,k.

It is possible to apply the canonical quantization to the Hamiltonian (3.5) by introducing the operators
q̂k and p̂k which satisfy the commutation rule [q̂k, p̂l] = i~δkl. In the quantum description of electro-
magnetic waves, the complex amplitude αk is replaced by the operator âk defined in frequency space.
This operator together with its adjoint â†k raise and lower respectively the excitation of a mode by one

photon and they satisfy the Boson commutation rules: [âν , â
†
ν′ ] = δν,ν′ and [âν , âν′ ] = [â†ν , â

†
ν′ ] = 0. By

analogy with the classical description, X̂1 = â + â† and X̂2 = i(â† − â) so that in the representation
of the quadrature operators:

Ĥ = Σk
~ω

4
(X̂2

1,k + X̂2
2,k); [X̂1,k, X̂2,l] = 2iδkl, (3.6)

where each quantum oscillator in the sum has energy ǫk = (n + 1/2)~ωk in the eingenstate |n> of
the number operator N̂ = â†â of eigenvalue n representing the number of photons of energy ~ωk that

11
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make up the field.
Because of the non-zero commutation relation in (3.6), the two quadrature operators do not have
simultaneous eigenstates and from the uncertinty principle it follows that:

<∆X̂2
1><∆X̂

2
2> ≥ 1 (3.7)

The coherent states |α> are minimum uncertainty states defined as the eigenstates of the lowering
operator, â|α> = α|α>, such that the intensity of the state is αα∗ = |α|2. They can be obtained from
the vacuum state as: |α> = D̂(α)|0> in which D̂(α) = exp(αâ† − α∗â) is the unitary displacement
operator. For these states, the uncertainty is equally split between the two quadratures:

<∆X̂2
1>α = <∆X̂2

2>α = 1 (3.8)

Every state of an electromagnetic wave can be represented in a so-called phasor diagram of the quadra-
ture operators, that is a plot of X̂2 versus X̂1 (see figure 3.1, [21]). Each coherent state is equivalent to
a circular area of radius <∆X̂2

1> = 1 centered around the value of coordinates (<X̂1>,<X̂2>) which
describes the extent of the uncertainty distribution. In particular, the uncertainty area is symmetric
and independent on the intensity |α|2 of the state. Such uncertainty does not depend on the technical
imperfections of the instrumental apparatus, but rather it emerges as an intrinsic source of quantum
noise.

It is possible to generate minimum uncertainty states affected by less noise in one quadrature than
in the standard quantum limit. As a consequence the noise in the orthogonal quadrature increases in
order to restore the Heisenberg principle and the distribution function is no longer symmetric. These
states are called squeezed states of light and in the phasor diagram are represented by an ellipse with
the semi-minor axis aligned to the squeezing direction (figure 3.1 (c)).
Squeezed states are represented by kets in the form |α, ξ> with ξ = rse

i2θs where α2 is the intensity
of the state, θs and rs are the orientation and degree of squeezing respectively. Given a generic
quadrature X̂(θ) = e−iθâ+ eiθâ†, the variance in a squeezed state is:

V ar(X̂(θ)) = cosh(2rs)− sinh(2rs) cos(2(θ − θs)) (3.9)

and it has a minimum when θ = −θs and a maximum in the orthogonal direction θ = −θs + π/2. In
the frame of reference rotated by the angle θs with regard to the quadrature amplitudes X̂1, X̂2, so
that Ŷ1 + iŶ2 = (X̂1 + iX̂2)e

−iθs , the variances take the simple expressions:

<∆Ŷ 2
1 > = e−2rs ; <∆Ŷ 2

2 > = e2rs (3.10)

thus the minor and major semi-axes of the ellipse in the phasor diagram are respectively of the size
σX1

= ers and σX2
= e−rs . The squeezing is then defined as the ratio between the variances of the

vacuum state σvac = 1 and the squeezed quadrature:

S = σ2X2
/σ2vac = e−2rs or equivalently − 10 log10(S) = −10 log10(e

−2rs) [dB] (3.11)

Figure 3.1: Quantum phasor diagram representations of various quantum light states [21].
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3.2 Benefits from squeezing

In a haloscope experiment, the microwave cavity modes can be described as single quantum harmonic
oscillators, the electric field being the oscillating quantity described by its slow varying cosine and
sine components as in equation (3.3). The axion field is supposed to couple to one of this modes and
alter its state in the (X1, X2) phase space, leading to a displacement which on average yields a small
excess power above the quantum fluctuations, isotropic in quadrature space.
Even though the cavity is immersed in a dilution refrigerator and therefore continuously prepared in
its ground state of minimum uncertainty, the zero-points fluctuations (equation (3.8)) preclude the
localization of the state beyond the Heisenberg uncertainty and measurements of the two quadrature
amplitudes generate noise sources such that the apparent average energy of the oscillator is at least
the standard quantum limit value of ~ω, as follows from equation (2.3).
The HAYSTAC experiment overcomes this standard quantum limit by coupling the cavity to a
Squeezed State Receiver (SSR) comprising a pair of JPA’s [22] (see equation (4.40)). The first JPA,
the Squeezer (SQ), squeezes the input Johnson-Nyquist fluctuations arising from a 50Ω termination
along one quadrature; as a consequence, the corresponding variance is reduced below the vacuum level
and the variance of its conjugate observable is amplified, thus preserving the uncertainty principle:

σ2X1
> 1 ; σ2X2

< 1. (3.12)

This squeezed input field enters the cavity and, if an axion field is present, it is displaced in the phasor
diagram. Finally, the displaced output field reaches the second JPA called Amplifier (AMP) where
only the X2 quadrature is noiselessly amplified with sufficient gain to overwhelm the noise added by
the following amplification and mixing.

Figure 3.2: Phasor diagram of a coherent state (e-f-g) compared to a squeezed state (b-c-d) displaced by the
axion field and amplified by the AMP [22].

In closing, the expression for the scan rate, i.e. the range of frequencies which the detector can scan
during the time interval τ , follows from plugging equation (2.1) into equation (2.33) [15]:

R =
dν

dτ
=

12GHz

yr

(

5

SNR

)2( V

30 L

)2( B0

10 T

)4( G

0.5

)2
( gγ
0.75

)4 ( ρa
0.45 GeV cm−3

)2

·
(

20mK

TN

)2
( νa
1 GHz

)2
(

105

Q

)2

.

(3.13)

By squeezing one quadrature of the vacuum, the noise fluctuations σ2N decrease by a factor S (see
equation (5.4)) and, keeping S/N constant, from the radiometer equation (2.33)

√

∆νs/τ increases by
the same amount S, so that the scan rate R is improved. Finally, from a deliverable squeezing of 4
dB, R is roughly doubled [1].



Chapter 4

Josephson Parametric Amplifier (JPA)

4.1 Superconductivity

In 1911 Onnes was the first to observe in metals, which appear to lose their electrical resistance if held
below a characteristic temperature Tc, the flow of a supercurrent, with a decay time experimentally
estimated to be at least 106 years. However, superconductivity cannot be explained as a result of
the infinite conductivity of a normal metal, since this model does not explain its magnetic properties.
Among these, the Meissner effect : when a superconductor is cooled through Tc in a weak magnetic
field (less than the critical field Hc, above which SC properties are destroyed), the magnetic flux is
expelled from the SC metal, whereas Faraday’s and Ohm’s laws ( ∇×E = −∂B/∂t; j = σE) applied
to a metal with conductivity σ = ∞ would predict that the flux is frozen in the bulk of the material.
In particular, the Meissner effect requires that inside the superconductor B = µ0H + µ0χH = 0, so
that it achieves perfect diamagnetism (χ = −1) and screens out completely the external applied field.
Almost 50 years later (1957) Bardeen, Cooper and Schrieffer formulated a microscopic theory (BCS,
[23]). Their hypothesis was that superconductivity in metals is represented by an ordered state of the
conduction electrons: a first electron interacts with the lattice and deforms it so that a second one sees
the deformation and takes advantage of it to lower its energy hence leading to an effective attraction
between electron pairs, called Cooper pairs, via the lattice. Specifically, the BCS theory shows that
in presence of an effective attraction the ground state of the metal is superconducting and separated
by the closest excited state by a finite energy gap Eg.
Another theory that can account for the Meissner effect and other superconductivity features is the
Ginzburg-Landau (GL) theory, which lays emphasis on the macroscopic quantum nature of this phe-
nomenon [24]. In fact, it associates to the SC state a complex order parameter

ψ(r) = ψ0 e
iφ(r) (4.1)

that can be considered as a macroscopic quantum wave function such that |ψ(r)|2 = n(r) is the fraction
of SC electron, which is zero at Tc and unity at T=0 The GL theory addresses the temperature range
near Tc where it is possible to expand the Gibbs free energy density f in a Taylor expansion in |ψ|2
(or equivalently in n(r)):

f = f0 + α|ψ|2 + (β/2)|ψ|4 + (1/2m)|(−i~∇− 2eA)ψ|2, (4.2)

where α and β are temperature-dependent and the last term in the expansion is the generalized
kinetic energy quantum operator in the presence of an external magnetic field. Ginzburg and Landau
demonstrated that near Tc, retaining the first order terms in (T − Tc), the parameters could be
written as α = α0(T − Tc) and β =const., consequently the minimum of f with respect to ψ satisfies
a Schrödinger equation plus a nonlinear term:

(1/2m)(−i~∇+ 2eA)2ψ + αψ + β|ψ|2ψ = 0 (4.3)

14



4.1. SUPERCONDUCTIVITY 15

and it is possible to define a characteristic length over which the order parameter changes significantly:
ξ(T ) = (~2/2mα)1/2.
As known from quantum mechanics, the presence of an external magnetic field B = ∇×A modifies
the wave function of a single particle of mass m and charge q by adding the phase:

δφ =
q

~

∫

A · dl. (4.4)

Since the order parameter can be considered as a wave function and it must be single-valued, the
phase variation over a closed path must be an integer multiple of 2π and applying Stokes’ theorem to
the line integral leads to:

δφ =
2e

~

∫

∇×A · dS =
2e

~

∫

B · dS =
2e

~
Φ = 2nπ, (4.5)

where the current carriers are supposed to have charge 2e (as predicted by the BCS theory). The
resulting flux is quantised:

Φ =
nh

2e
= nΦ0. (4.6)

If the bulk of superconductor is not simply connected, the sum of the flux generated by the supercurrent
is flowing on the surfaces and the external applied flux is quantised:

Φ = Φext + Lis = nΦ0, (4.7)

where L = Vs(dis/dt)
−1 is the supercontuctor inductance.

Other SC effects important for electronics are the Josephson effects, which arise in the so called
Josephson junction: when two pieces of superconductor in an external magnetic field (below the critical
field Hc) are separated by a small region of weakened superconductivity, by quantum tunnelling the
electrons in the first SC have non-zero probability to disrupt their pairing to other electrons and to
cross the barrier, giving rise to a current density j. As a result, in the junction there is an additional
phase factor to the SC wave function:

∇φ′ = mj

2e~|ψ|2 +
2eA

~
hence φ′ =

m
∫ 2
1 j · dl

e~|ψ|2 , (4.8)

where the integral is over a path across the weak-link region in which the magnetic flux is negligible.
Considering a SC ring interrupted by a Josephson junction, this phase contribution modifies the
single-valued condition of the wave function:

φ′ +
2e

~

∫ 2

1
B · dS = φ′ + 2π(Φext + Lis)/Φ0 = 2nπ, (4.9)

where the integral is to be taken from one side of the junction to the other. Josephson showed that,
in the limit of very weakly coupling, the supercurrent in the junction is periodic in Φ/Φ0:

is = ic sin[2π(n− Φ/Φ0)] = ic sin(φ
′), (4.10)

where the critical current ic is the maximum supercurrent which can flow through the junction.
The second Josephson effect emerges when a time-varying external flux is applied to a SC ring with
Josephson junction. By the Faraday’s law, if the flux is linearly varied a constant voltage drop appears
across the junction: V = −dΦext/dt =const. From the first Josephson relation,

is = ic sin[2π(V t+ Lis)/Φ0] = ic sin(φ) (4.11)

hence a constant voltage generates a linear increase of the phase in time:

dφ

dt
=

2eV

~
=

Φ0

2π
V, (4.12)



16 CHAPTER 4. JOSEPHSON PARAMETRIC AMPLIFIER (JPA)

where the constant of proportionality is the inverse of the quantum of magnetic flux. Moreover,
recalling the relation among current and voltage, dis/dt = V/LJ , the definition of the Josephson
inductance follows:

LJ =
Φ0

2πic cos(φ)
. (4.13)

It is possible to approximate the dynamics of a Josephson junction via the Resistively and Capacitively
Shunted Junction (RCSJ) model, which includes an ohmic resistance R and a capacity C arising from
the geometry of the junctions itself:

i = i1 sin(φ) + V/R+ CdV/dt, (4.14)

where i is the bias current circulating in the RCSJ circuit.

i

i

R i1 C

Figure 4.1: Diagram of RCSJ model.

From Josephson’s voltage-phase relationship, it is possible to rewrite:

1

ω2
J

d2φ

dt2
+

1

ωc

dφ

dt
= j − sin(φ), (4.15)

where j = i/i1 is the normalized supercurrent, ωc = 2eR/~ is a characteristic frequency and ωJ =
(2e/~C)1/2 is the Josephson frequency. This is the equation of a damped nonlinear LC oscillator,
therefore ωJ can be interpreted as the frequency of the oscillator in the small-amplitude limit while
ωc accounts for the energy dissipation due to the finite resistance R.

4.2 SQUID

A superconducting ring interrupted by two Josephson junctions constitutes the device called DC-
SQUID (Superconducting Quantum Interference Device, [24]): a time-averaged direct voltage which
is a periodic function of the flux is established across the two weak links by a direct bias current.
Assuming that the two junctions are equal (R1 = R2; C1 = C2) and in particular that the two critical
currents are the same ic ≡ ic1 = ic2, the current circulating around the loop is:

j =
i1 − i2

2
= ic cos

(

φ1 + φ2
2

)

sin

(

φ1 − φ2
2

)

= −ic cos(φ+) sin(φ−) (4.16)

and the total transport current through the DC-SQUID is:

I = i1 + i2 = 2ic cos(φ−) sin(φ+), (4.17)

where the flux quantisation condition now reads φ− = π(Φ/Φ0) + nπ.
The self-inductance Lr of the SC ring generates a contribution to the total flux: Φ = Φext + Lrj.
Defining the screening parameter as β = (2Lrj)/(Φ0) it is possible to rewrite the flux relation as:

Φ

Φ0
=

Φext

Φ0
− β

2
cos(φ+) sin(φ−) (4.18)

so that when Lr ≃ 0, β ≃ 0 and Φ ≃ Φext, therefore the maximum transport current of the device is:

Imax(Φext) = 2Ic| cos(πΦext/Φ0)| (4.19)
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and the DC-SQUID can be considered as a single Josephson Junction with critical current periodic in
Φext and therefore with tunable minimum self-inductance:

Ls,min(Φext) =
Φ0

2πImax
=

Φ0

4πic| cos(πΦext/Φ0)|
. (4.20)

4.3 Flux-driven JPA

A Josephson Parametric Amplifier (JPA) consists of a coplanar waveguide (CPW ) short-circuited to
ground by a dc-SQUID, which is driven by an external time-dependent magnetic flux. The CPW
is made of superconducting materials and it acts like a quasi one-dimensional, lossless transmission
line with characteristic impedance Z =

√

L0/C0, L0 and C0 being the inductance and capacitance
per unit length respectively. Since the lateral dimension should be of the order of the wavelength
corresponding to the frequency range of the waves propagating in it, to the GHz regime corresponds
a lateral dimension of a few millimeters and the CPW can be properly described with a distributed
element model (a string of superconducting, infinitesimally small LC resonators) as shown in figure
4.2. The boundary conditions, a line break to the left and a short-circuit to ground to the right,
make the CPW to behave like a quarter-wavelength (λ/4-) resonator whose fundamental frequency is
f = c · (4d√εeff )−1 = (4d

√
L0C0)

−1, where d is the length of the resonator and c is the speed of light
in vacuum. The SQUID at the right end of the line contributes to the total resonance frequency of
the JPA behaving like a flux-tunable, nonlinear inductor.

x = 0

φ1
C

L

φj φN

EJ,s(f)

x = d

Cs

Lext

2fext

Figure 4.2: Equivalent circuit for the JPA.

For simplicity, the SQUID is modelled as symmetric, i.e. the two Josephson junctions are identical and
have the same capacity C1 = C2 = CJ and energy E1 = E2 = EJ and the geometric inductance LSQ

can be considered as if separated in two equal parts LSQ/2 with phase drop f(t) over each one, driven
through the mutual inductance M by an inductor Lext of total phase 2fext. Let the superconducting
phases of the two Josephson junctions be φJ,i = φd ± f where φd = φ(d, t) is the phase of the CPW
at x = d, so that the total phase drop over the SQUID is (φ1 − φ2)/2 = πΦ2e/h = f (where flux
quantization condition has been applied) and the magnetic flux through it is Φ = 2f~/(2e). Then,
the Lagrangian of the SQUID can be written with respect to the capacitive energy of a Josephson

junction EC,J = (2e)2

2CJ
and the inductive energy of the SQUID loop EL,SQ =

(

~

2e

)2 1
2LSQ

as [25]:

LSQ =
~
2

2EC,J
φ̇d

2
+ 2EJ cos(φd) cos(f) +

~
2

2EC,J
ḟ2 − EL,SQ

(

4f2 + 8
M

Lext
ffext

)

. (4.21)

The Lagrangian for the superconducting phase field φ = φ(x, t) across the bare λ/4-resonator , in the
continuous limit, is [26]:

Lr =
dEL,r

2v2

∫ d

0
dx(φ̇2 − v2φ′2), (4.22)

where EL,r = ~
2/(L0d(2e)

2) is the inductive energy of the CPW and v = d/
√
LC = 1/

√
L0C0 is the

speed of the electromagnetic waves propagating in it.
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The Euler-Lagrange equations of motion for φd(t) and f(t) are obtained from the total Lagrangian of
the system L = LSQ + Lr :

{

~
2

Ec
φ̈d + 2EJ cos(f) sin(φd) + EL,rdφ

′
d = 0 (I);

~
2

2Ec
f̈ + EJ sin(f) cos(φd) + 4EL,SQ(f +Mfext/Lext) = 0 (II).

(4.23)

If the condition φd << 1 is fulfilled, then cos(φd) ≃ 1 and the equation for f decouples from that for
φd. When the external force is in the form of a constant equilibrium shift plus a small time-dependent
oscillation, fext(t) = Fext + δfext cos(ωpt) with δfext << 1, the SQUID response can be expressed as
well in the form f(t) = F + δf(t) with δf(t) << 1 and substituting in equation (4.23, II) leads to the
equation of an harmonic oscillator driven by the external force δfext(t):

~
2

2Ec
δ ¨f(t) + (EJ cos(F ) + 4EL,SQ)δf(t) = −4EL,SQM

Lext
δfext(t). (4.24)

Therefore, the stationary response to the small external oscillation is itself an harmonic oscillation,
δf(t) = δf cos(ωpt), with the same frequency as the external pump and amplitude:

δf = −8EL,SQMEc/~
2Lext

ω2
f − ω2

p

δfext, (4.25)

where ωf = ωJ

√

cos(F ) + 4EL,SQ/EJ is the frequency of the f-oscillator, ωJ =
√

2EJEC,J/~ is the

Josephson plasma frequency. The solutions of the equation of motion for the bare CPW oscillator, φ̈2−
v2φ′′ = 0, together with the boundary condition φ′0 = 0 at its open end, are the eigen-modes φn(x, t) =
φ1e

±iknt cos(knx) of eigen-frequencies ωn = vkn. By substituting such solutions into equation (4.23,
I):

(knd) tan(knd) =
2EJ cos(F + δf(t))

EL,r
− 2CJ

C0d
(knd)

2. (4.26)

When δf(t) = 0, since usually CJ << C0 the second term on the right side of equation (4.26) can be
omitted and solutions can be found graphically (figure 4.3, γ = EL,r/(2EJ cos(F )) = 1/25, CJ = 0 in
solid line and C = 2CJ/(C0d) = 0.05 in dashed line in (a) and cavity spectrum knd vs 1/γ in (b)).

Figure 4.3: Graphic solution to equation (4.26), [26].

In particular, the fundamental mode is such that k0d ≃ π/2, hence ω0/ωr ≃ 1, where ω0 = vk0 and
ωr is the fundamental frequency of the λ/4-resonator, and the tangent can be approximated by the
first term in its Laurent series around π/2:

tan(z) =
1− 1/2(z − π/2)2 + o((z − π/2)2)

−(z − π/2) + o(z − π/2)
= − 1

z − π/2
+ o

(

z − π

2

)2
. (4.27)

When a small modulation is present, δf(t) << 1, it is still possible to consider ω0/ωr ≃ 1 at first
order in δf and hence a simple relation follows:

ω0 = ωr
2EJ cos(F + δf(t))

2EJ cos(F + δf(t)) + EL,r
. (4.28)
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Since typically the inductive energy of the CPW is much smaller than the Josephson energy of the
two junctions, EL,r << EJ , it can be ignored. Finally, at first order in δf , 2EJ cos(F + δf(t)) ≃
2EJ cos(F )− 2EJ sin(F )δf cos(ωpt) ≃ 2EJcos(F ) and to the first order in ε/2 = − tan(F )δf << 1:

ω0 = ωr[1 + ε/2 cos(ωpt)] =⇒ ω2
0 = ω2

r [1 + ε cos(ωpt)]. (4.29)

In the end, close to resonance the JPA behaves like a LC-oscillator with nonlinear, flux-tunable
Lr(Φ) = L0 + LSQ and resonance frequency ω0 modulated by the external ac-flux (figure 4.4 (a)).

4.4 Phase-sensitive gain

Cc

Cr Lr

(a)

ωs

Z0 Φc

Cc

Φr

Cr Lr ωp

(b)

Figure 4.4: Circuit diagrams of a non-linear LC oscillator (a) and a phase sensitive parametric amplifier (b).

When the system is driven by an ac-flux in the regime of small pump amplitude at frequency ωp ≃ 2ω0,
small probe signal at the resonator frequency are amplified. In the case of degenerate pumping
ωp = 2ω0, it operates as a phase sensitive parametric amplifier [27]. With reference to figure 4.4 (b),
the system is made up of a JPA resonator capacitively coupled (Cc) to a probe line of impedance Z0

and can be described in terms of the canonical flux at each node Φi =
∫ t
−∞ Vidt

′, where Vi denotes
the i-th node voltage with respect to ground. Due to the small dimension of the CPW, the canonical
fluxes can be considered one-dimensional. At node r, Kirchoff’s law yields:

Cc

(

d2Φr

dt2
− d2Φc

dt2

)

= −Cr
d2Φr

dt2
− 1

Lr
Φr =⇒

d2Φr

dt2
+

1

Lr(Cc + Cr)
Φr =

Cc

Cc + Cr

d2Φc

dt2
(4.30)

and, being ωr = 1/
√

Lr(Cc + Cr) the resonant frequency and k = Cc/(Cc+Cr) the coupling parameter,
the equation can be rewritten as:

d2Φr

dt2
+ ω2

rΦr = k
d2Φc

dt2
. (4.31)

Including the parametric ac-pumping of strength ε and frequency ωp (equation (4.29)) and assuming
that k is kept constant, the equation for the r-node becomes:

d2Φr

dt2
+ ω2

r [1 + ε cos(ωpt+ φ)]Φr = k
d2Φc

dt2
. (4.32)

Such non-linear differential equation can be solved by making the following ansatz (for i = {c, r}):

Φi = qi,1 cos(ωpt/2t)− qi,2 sin(ωpt/2) or equivalently Φi =
ui
2
cos

(ωp

2
t
)

+
u∗i
2

sin
(ωp

2
t
)

, (4.33)

where the complex quadrature is defined as u = q1 + iq2. Substituting this ansatz in equation (4.32)
and keeping only the slow-varying terms, i.e. the terms proportional to exp(iωpt/2), yields to:

[

ω2
r −

(ωp

2

)2
]

ur + k
(ωp

2

)2
uc +

ε

2
u∗re

iφ = 0. (4.34)

At node c, the field takes the form:

Φc(t) = Φin(x/vph + t) + Φout(−x/vph + t), (4.35)
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with vph = 1/
√
LC the speed of the electromagnetic radiation in the line. Applying again Kirchoff’s

law:

Cc

(

d2Φc

dt2
− d2Φr

dt2

)

= − 1

Z0

dΦc

dt
+

2

Z0

dΦin

dt
, (4.36)

where Z0 =
√

L/C is the characteristic impedance of the transmission line. It is possible to substitute
the ansatz (4.33) in equation (4.36) and again keeping only the slow-varying terms:

−Cc

(ωp

2

)2
(uc − ur) +

i

Z0

ωp

2
(uc − 2uin) = 0. (4.37)

Finally, deriving with respect to position x and time t equation (4.35) it is possible to obtain the
boundary condition:

− 1

L

∂Φc

∂x

∣

∣

∣

x=0
=

1

Z0

(

∂Φc

∂t
− 2

∂Φin

∂t

)

∣

∣

∣

x=0
(4.38)

and again substituting the ansatz (4.33):

1

Lvph
(uin − uout)−

1

Z0
(uc − 2uin) = 0. (4.39)

Using the expression for the output complex quadrature, uout = Z0/(ZL − Z0)ur + (ZL − Z0)/(ZL +
Z0)uin, equations (4.34), (4.36), (4.39) can be solved with respect to uout with appropriate approxi-
mations: first of all, let assume that at resonance Z0 << ZL. Then, being Q = (Cc + Cr)/(Z0C

2
cωr),

in the limit for kQ = |ZL(ωr)|/Z0 = 1/(Z0Ccωr) >> 1 the gain in the degenerate mode ωp = 2ωr is:

g =
q1,out + iq2,out

Φin
= 1− 2

1 + γ′ sin(∆θ)− iγ′ cos(∆θ)

1− γ′2
, (4.40)

where ∆θ = 2φ− θp, θp is the phase of the pump and γ′ = εQ/(ωpωr) = ε/(2Γωp), Γ = ωr/(2Q)

Figure 4.5: Voltage gain 20log|g| of equation 4.40 in dB, for three different values of γ′.

In figure 4.5 it is plotted the voltage gain (in dB) with respect to the phase φ, when the pump phase is
θp = 0. It shows clearly that the flux-driven JPA has a phase sensitive gain: the signal is de-amplified
for φ = π/2 and amplified by about the same amount for φ = π. Because of this feature, the JPA’s
are used at the HAYSTAC experiment in order to generate squeezed states of light (see section 3.2).

4.5 The pumpistor model

A qualitative description of the parametric effects of a flux-pumped SQUID is given, under suit-
ably small-signal limits, by a linearized model: the system is reduced to a parallel combination of
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a Josephson inductance and an additional circuit element, the pumpistor ([28], [29]), i.e. a complex
frequency-dependent inductance which can periodically act as a negative resistance and provide para-
metric gain in the circuit.
As already seen in equation (4.16), the SQUID current can be expressed as the multiplication of a
flux term and a phase term:

j(t) = 2Ic cos(πΦext/Φ0)× sin(φ) (4.41)

the SQUID phase being φ = (φ1−φ2)/2. Assuming that the external flux is Φext = Φdc+Φac cos(ωpt+
θp), Φac <<, it is possible to expand the current term with respect to the normalized flux amplitudes
F = πΦdc/Φ0 and δf = πΦac/Φ0:

2Ic cos(πΦext/Φ0) ≃ 2Ic[cos(F )− sin(F )δf cos(ωpt+ θp)]. (4.42)

Regarding the phase, in the linear limit it can be expressed as a linear combination of the signal
frequency, the pump frequency and an idler tone ωi = ωs−ωp arising from the frequency mixing caused
by the non-linear behaviour of the whole system. In the three-wave degenerate case, ωs = ωi = ωp/2;
retaining only the terms proportional to the signal frequency, the phase term in equation (4.42) can
be simplified to:

sin[φ(t)] ≃ φ(t) = φ̃s cos(ωst+ θs) = (φ̃s/2)e
−iωste−iθs + (φ̃s

∗
/2)eiωsteiθs . (4.43)

After substituting equation (4.43) into equation (4.16) and confronting it with the expression for a
general oscillating current, j = Ice

iωst+T ∗
c e

−iωst = j+(t)+ j−(t), the component proportional to eiωst

is:
j(t)+ = Icφ̃s[e

−iθs cos(F )− sin(F )(δf/2)ei(θp−θs)]eiωst. (4.44)

Analogously, the signal voltage term proportional to eiωst is:

Vs(t)+ =
1

2
Vse

iωst =
Φ0

2π

d

dt

[

1

2
φ̃se

iωsθseiθs
]

=
1

2

[

Φ0

2π
φ̃sωs(ie

iθs)

]

eiωst. (4.45)

Therefore, it is possible to define a signal admittance:

Y (ωs) = js(t)+/Vs(t)+ = (iωsLJ)
−1 + (iωsLp)

−1, (4.46)

where LJ is the inductance of a single Josephson junction (equation (4.13)) and Lp is the phase-
dependent inductance of the pumpistor:

L1 = −LJ
2

tan(F )

1

δf
ei∆θ. (4.47)

In particular, when ∆θ = 2θs − θp = 0 or ∆θ = π the pumpistor acts as a negative or a positive
inductance respectively. At ∆θ = π/2 the inductance Lp becomes imaginary, hence contributes to
the impendance as a positive resistance dissipating energy, whereas at ∆θ = 3π/2 it contributes as a
negative resistance. In this last state, the pumpistor extracts power from the pump and injects it into
the circuit at the signal frequency, providing gain. This behaviour is illustrated in figure 4.6.

(a) (b)

Figure 4.6: a)SQUID equivalent to an inductance+pumpistor system; b)phase-dependence of L1, [28].
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The HAYSTAC experiment

The Haloscope at Yale Sensitive to Axion Cold dark matter (HAYSTAC) experiment [22] is designed to
probe the ma > 10 µeV/c2 mass range for QCD axions, assuming that they saturate the cosmological
dark matter density. The previous haloscope has been enhanced by introducing a squeezed-state
receiver (SSR) in order to squeeze under the quantum limit one quadrature of the vacuum noise
incident on the cavity. This quantum system improves the maximum QCD axion visibility bandwidth
and as a consequence it increases the scan rate R (see equation (3.13)).

5.1 SSR experimental setup

The SSR experimental setup is shown in figure 5.1. The SQ, the cavity and the AMP sit in a dilution
refrigerator with base temperature of 20 mK. The cavity has volume Vc=1.5 liters, unloaded quality
factor Q0 = 47000 ± 5000 and it is embedded in a region of high static magnetic field generated by
an 8-T solenoid magnet. The cavity is tuned by a rotating off-axis tuning rod. The two JPAs are
held above the cavity in a shielding can to reduce the magnetic flux through each of the SQUID loops
to much less than one magnetic flux quantum. The pump tone is delivered to each JPA through
directional couplers, passive devices which couple 10-dB of power flowing in one direction in the
transmission line to the JPA’s pump port. Each JPA is connected via superconducting cables that
minimize transmission losses to an ensamble of four microwave circulators that route signals non-
reciprocally in order to create insulation between the SSR’s elements and realize the time sequence
of operations (vacuum state squeezing in the SQ, possible displacement by a QCD axion field in the
cavity, unsqueezing in the AMP, further amplification and detection). On the SQ pump’s input line
a voltage-controlled variable attenuator and a phase shifter allow to control both the amplitude and
phase of the SQ pump.
At the chain input, a switch allows to inject either a probe tone from a Vector Network Analyzer or
Johnson-Nyquist vacuum noise sourced from a 50 Ω at 300 K. At the output, other two double-junction
circulators insulate the AMP from signals reflected from a High Electron Mobility Transistor (HEMT)
amplifier which follows held at 4K.
At the output of the HEMT a 6-dB directional coupler extracts a portion of the output signal and
leads it to to the VNA, which is used to measure the coupling rates km and kl+ka. The other portion
of the signal is injected in the IQ mixer’s rf port.
The QCD axion signal is modelled as a microwave generator (AWG) at room temperature coupled to
the cavity at rate ka. The frequency of the axion-induced oscillating field E is expected to fall within
the bandwidth of a transverse magnetic TM0n0-like mode of the cavity. A second microwave generator
drives both JPAs and serves as a local oscillator (LO) for the in-phase and quadrature (IQ) mixer.
The signal has amplitude A and frequency ω0:

A sin(ω0t+ φ) = A sin(ω0t) cos(φ) +A cos(ω0t) sin(φ) = I(φ) cos(ω0t) +Q(φ) sin(ω0t) (5.1)

22
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where I(φ) = A sin(φ) and Q(φ) = A cos(φ) are the two quadrature amplitudes. It is mixed together
with a local oscillator (LO) cos(ω0t+φLO) with the same frequency as the signal (homodyne detection)
and phases φLO = 0 at the I input and φLO = −π/2 at the Q input; the mixed signal is then low-pass
filtered to cut the high-frequency terms and to extract the two quadratures:

A sin(ω0t+ φ) sin(ω0t) =
A

2
[1− cos(2ω0t)] cos(φ) +

A

2
sin(2ω0t) sin(φ) −→

Q(φ)

2
; (5.2)

A sin(ω0t+ φ) cos(ω0t) =
A

2
[cos(2ω0t)− 1] sin(φ) +

A

2
sin(2ω0t) cos(φ) −→ −I(φ)

2
. (5.3)

A frequency divider converts the pump frequency ωp to the resonance frequency of both JPAs, ω0 at
the input of the IQ mixer.
The in-phase and quadrature signals, previously mixed down, are amplified and reache an analogue-
to-digital converter where they are digitized.

Figure 5.1: Schematic of the SSR. [22]
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5.2 Experimental results

The HAYSTAC experiment was able to measure an off-resonance vacuum squeezing, defined as the
ratio between the SQ-on and the SQ-off variance of the squeezed quadrature at the system output, of

S =
σ2on
σ2off

= 0.4 or equivalently − 10log10S = 4 dB (5.4)

yielding a scan rate enhancement of a factor 1.9. In figure 5.2, the experimental voltage fluctuation
VX histogram of the squeezed quadrature X1 with respect to the angle θ between the squeezer and
the amplifier, with the SQ off (a) and with the SQ on (b) are compared [1].

Figure 5.2: Experimental voltage fluctuations of the squeezed quadrature X1, [1].

Despite the theoretical prevision of a deliverable squeezing up to 30 dB (see equation (4.40) and figure
4.5), in practice squeezing is limited by the transmissivity η ≃ 0.63 of the cables and microwave
components in the SSR system. Such losses can be described quantitatively with a beam splitter
model as shown in figure 5.3 [20]: the input squeezed state is transmitted with coefficient η while the
input at the vacuum port is transmitted with coefficient ǫ = 1− η.

Figure 5.3: Beam splitter model of system losses and squeezed state degradation.

As a result, recalling that the vacuum state is a coherent state with variance σ2vac = 1 (see equation
(3.8)), the deliverable squeezing at the output of the SSR has the following expression [1] (see figure
5.4):

σ2out = ησ2in + (1− η)σ2vac =⇒ Sout = ηSin + (1− η) (5.5)

To sum up, in consequence of the losses the squeezed state and the vacuum state add and the output
is still a squeezed state with a reduced degree of squeezing.
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Figure 5.4: Plot of Sout with respect to the input Sin, with η = 0.63 (equation (5.5)).

The SSR system has been used to probe over 70 MHz of the parameter space in the 4.100-4.178
GHz window (skipping the 4.140-4.145 GHz range corresponding to a transverse electric mode which
does not couple to the axion) in half the time that would have been required without squeezing. No
evidence of dark matter has been found within the QCD axion mass ranges 16.96-17.12 µeV/c2 and
17.14-17.28 µeV/c2. Finally, the HAYSTAC experiment excludes QCD axions with coupling constant
gγ ≥ gKSV Z

γ at the 90% level.

Figure 5.5: Exclusion results from ADMX, UF, CAPP (Center for Axion and Precision Physics research) and
RBF collaboration, together with the HAYSTAC previous (2017-2018) and current results. The yellow band
represents the most natural KSVZ and DFSZ models for QCD axion, the specific KSVZ and DFSZ model lines
are shown as black dashed lines, [1].



Chapter 6

Conclusions

The QCD axion may provide a solution to the strong-CP problem of quantum chromodynamics and
the unknown nature of dark matter, therefore explaining why the interest in carrying out experiments
in order to search for it increased in recent years. The haloscope technique, based on the interaction
of the axion field with the electromagnetic radiation in a resonant cavity, has provided the most
sensitive experimental approach so far, but it happens to be sorely limited, even at sub-Kelvin system’s
temperatures, by the SQL prevailing over an expected signal of roughly Pa ≃ 20−23 W. Furthermore,
the time scale over which the cavity haloscopes are able to sweep out appreciable fractions of parameter
space of the axion Compton frequency is unreasonably long.
These major experimental shortcomings can be circumvented by partially replacing the vacuum noise
in the cavity with squeezed vacuum, in so doing enabling high sensitivity over a broader bandwidth
and a more rapid search. Squeezed vacuum can be generated by a flux-driven JPA, basically a non-
linear LC-resonator whose parametric behaviour comes from the two Josephson junctions comprising
its inductance. Working in the degenerate mode, ω0 ≃ ωp, the JPA produces a phase-sensitive gain
and squeezes one vacuum quadrature while amplifying the other one by the same amount and reaches
in theory even more than 30 dB of deliverable squeezing (4.40).
In practice, the squeezed state in the cavity is contaminated by noise vacuum arising from the losses of
cables and microwave components. The HAYSTAC experiment enhanced its detector by including a
squeezed-state receiver system and reached an off-resonance vacuum squeezing of 4 dB with microwave
transmission efficiency η ≃ 0.63. It managed to reduce the scan rate by a factor two with respect to
a classical haloscope and put further limits on the QCD axion mass, excluding the ranges 16.96-17.12
µeV/c2 and 17.14-17.28 µeV/c2.
If microwave losses are reduced, a subquantum limited haloscope will reap larger benefits. For example,
coupling the cavity to an auxiliary resonant circuit through simultaneous two-mode squeezing and
state-swapping interactions should boost transmission efficiency above 90 % and increase scan rate up
to 15-fold enhancement beyond the quantum limit [30].
To conclude, the interest in phase-sensitive amplification and JPAs extends to the field of quantum
information processing: the quantum state of a superconducting bit can be encoded onto the strong
output field of a frequency-tunable resonator, rendering a signal-to-noise ratio sufficient for single-shot
state detection, a fundamental task for realizing a quantum computer [27]. Moreover, gravitational
waves kilometer-size detectors use laser light to detect tiny lenght changes and are so sensitive that
they are limited by quantum noise which overlaps gravitational-wave signals. Through squeezing, it
is possible to change the noise properties and lower the quantum mechanical fluctuations to improve
the sensitivity [31].
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