UNIVERSITA DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

MasTER THESIS IN ELECTRONIC ENGINEERING

RoAD SCENE UNDERSTANDING USING DEPTH

DATA FROM STEREO VISION

SUPERVISOR
PiETRO ZANUTTIGH

UNIVERSITA DI PADOVA

CoO-SUPERVISOR
FrRaANCESCO BARBATO

UNIVERSITA DI PADOVA

MASTER CANDIDATE

LEONARDO RIGHETTO

ACADEMIC YEAR 2021-2022

SEPTEMBER 771 2022

if

Abstract

Multimodal Semantic Segmentation aims at obtaining an accurate pixel level understanding
of the scene by jointly exploiting multiple information sources, e.g., standard images and
depth maps or 3D data. This thesis tackles the problem via a multi-step process: first we
search for the best candidate estimated depths (EDs) through stereo vision and feed them
to a pre-trained neural network in order to compute segmentation maps. Then, a neural
network is trained from scratch using EDs instead of ground truth depths together with
improvements of the results by denoising or filtering the images.

The first step (stereo vision) is performed through well-established methods implemented
usign the OpenCV library. The second step (semantic segmentation) is based on a deep learn-
ing framework of the encoder-decoder type. A common choice for encoder is ResNet1o1,
while one for decoder is DeepLabv2, still other structures can be considered too, whenever
high performance or fast computation is required. The overall work has been evaluated in a
virtual environment (synthetic dataset) ensuring the availability of a huge number of images
for training, validation, and test. The thesis then analyse Unsupervised Domain Adaptation,
with the final purpose to solve the domain shift issue between synthetic data and real-world
data.

In conclusion, the combination between visual and 3D information promises optimal
results, as shown by the analysis performed during this thesis: the neural network reaches
satisfying segmentation ability even in its simplest implementation (e.g., without Domain
Adaptation techniques).

vi

Sommario

La Segmentazione Semantica multimodale punta ad ottenere un’accurata comprensione della
scenaa livello pixel, usando I'unione di rappresentazioni multiple, ad esempio immagini stan-
dard con mappe di profondita o dati 3D. La tesi affronta questo problema partendo dalla
ricerca delle migliori profondita stimate usando la stereo visione, fornendo queste profon-
dita come input ad una rete neurale pre-allenata che ha il compito di produrre mappe di
segmentazione. Dopodiché, una nuova rete viene allenata da zero usando le profondita sti-
mate e vengono applicate tecniche di miglioramento delle immagini, come il filtraggio, con
‘obiettivo di rimuovere il rumore.

La prima parte (stereo visione) ¢ sviluppata utilizzando metodi ben consolidati, ottenuti
dalibrerie open-source come OpenCV. La seconda parte (segmentazione semantica) ¢ basata
suunastruttura di deep learning del tipo codificatore/decodificatore. Una possibile scelta per
il codificatore ¢ ResNet1o1, mentre una per il decodificatore ¢ DeepLabv2, ma altre strutture
vengono considerate in base all'obiettivo finale, quindi che si richieda un alto rendimento
o dei calcoli veloci. Complessivamente il lavoro ¢ svolto in un ambiente virtuale (dataset
sintetici) cosi da avere facilmente accesso ad un grande numero di immagini per I'allenamento,
lavalidazione eil test della rete. Inoltre, la tesi affronta il problema di risolvere lo spostamento
di dominio che avviene tra i dati sintetici e quelli del mondo reale, studiando tecniche di
adattamento di dominio non supervisionato.

In conclusione, I'utilizzo combinato di informazione visiva e 3D promette ottimi risultati,
come mostrato dalle analisi effettuate in questa tesi: la rete neurale raggiunge capacita di seg-
mentazione soddisfacenti anche nella sua versione pit semplice (per esempio, senza utilizzare
tecniche di adattamento di dominio).

vii

viii

ABSTRACT

L1ST OF FIGURES

LIST OF TABLES

Contents

1 INTRODUCTION

2 STEREO VISION

2.1 Pinholecamera
2.1.1 Intrinsic parameters
2.1.2 Extrinsic parameters
2.2 Triangulationo o Lo
2.3 Epipolargeometry oL oo
2.4 Matching o L
3 SEMANTIC SEGMENTATION
3.1 Evaluationmetrics
3.2 Datasets e e
3.2.1 PASCAL VOC (Visual Object Classes)
3.2.2 MS-COCO (Microsoft Common Objects in Context)
3.2.3 KITTT ... 0o
3.2.4 SYNTHIA (SYNTHetic collection of Imagery and Annotations) .
3.2.5 Cityscapes
3.2.6 SELMA e
3.3 Popular deep learning architectures o000
3.3.1 AlexNet
332 VGG
3.3.3 GoogleNet.
3.3.4 ResNet
3.3.5 Deeplab o oo
3.4 Transfer learning and data augmentation

4 UNSUPERVISED DOMAIN ADAPTATION
4.1 Adaptationspaces

ix

xi

xiii

13
14
IS
IS
16
16
17
17
17
17
18
18
19
20
20
21

23

4.2 Mathematical formulation,
4.3 UDAinroad scenescenarios

s PROPOSED SOLUTION
5.1 Depth-map generation
s.2 Deeplearningstructure L L L L
s.2.1 Source codedescription
5.2.2 Source code modification L.

6 REsuULTS
7 CONCLUSION
REFERENCES

A APPENDIX A

29
30
34
35
37

39

45

47

53

Listing of figures

Pinhole cameramodel 4
Simplified pinholemodel. o o oo 5
Simplified triangulation. L oo oo 8
Epipolargeometry Lo 10
Disparity-map I1
Forbiddenregion 12
Segmentation-map 14
ToU . . e Is
AlexNetscheme 18
VGGscheme 19
GoogLeNetblock L o 19
ResNetblock 20
DeepLabprocedureo Lo 21
Adaptationspaces 25
DAcategories L 27
Boxplos MAE 33
Softmax e 36
Disparityexample 1 oo oo 39
Disparityexample2 o o o 40
Disparityexample 3 L oo 40
Disparityexample 4 L L Lo 40
Gaussiancolourcode 41
Additional estimation example r Lo Lo L0 57
Additional estimation example2o Lo L0 58
Segmentationexample L Lo Lo 59

xi

xii

5.1
5.2

6.1
6.2
6.3

Listing of tables

Feasible parameterso 31
Minimum required disparity Lo 34
Trainingscore 41
TEStSCOTE T . v v v v e e e e e e e e e 42
Testscorea e e e 43
Additionalscores 44

Xiii

Xiv

Introduction

One of the main tasks in Computer Vision is scene understanding. The target of the thesis
is to tackle this problem using both colour and 3D information. Through the years, many
techniques have been used to extract visual information: Image Classification (IC), Object
Detection, Semantic Segmentation (SS) and Instance Segmentation. While Image Classifica-
tion gives just a single description for the whole image, the detail of information that can be
obtained grows for each technique. Semantic Segmentation is the most challenging, where

a label is assigned to each pixel, thus each single pixel of the image is assigned to a class.

The introduction of Deep Learning (DL) strategies revolutionized this field. Fundamen-
tal was the introduction of Deep Convolutional Neural Networks (DCNNG) architectures,
first successfully applied to this task in the seminal paper by Longetal. [1]. Here the authors
devised a way to adapt high-performance classification networks for Semantic Segmentation.
These methods have been then perfectioned and extended, obtaining new highly performing
models such as: DeepLab [2] and PSPNet [3]. A common problem to many DL approaches
is called “domain shift”: even if the model is trained on a very large dataset, it is not able to
generalize well to distributions which differ, even slightly, from the training one. The issue
is tackled with Domain Adaptation strategies; in particular in the Unsupervised Domain
Adaptation (UDA) [4, 5] setting a source dataset contains labelled data, but the target one
does not. In this thesis, we consider this setting and adapt a model, trained on synthetic data,

to compute segmentation maps eventually on real-world images.

When working with DCNNS for SS the amount of required data is massive. Each image
is labelled pixel-by-pixel. The production cost of new datasets would be enormous; for this
reason, existing open-source datasets are available for different applications (e.g., Cityscapes
[6], KITTI [7]). However, these datasets applied to specific tasks with different settings than
the dataset ones would lead to poor results. To tackle thisissue, itis possible to use a simulator
capable of generating synthetic datasets in a wide range of different settings and conditions.
One candidate dataset, for urban scenes as example, is SELMA [8]: a synthetic dataset ob-
tained by a modified version of the open-source simulator CARLA [9] by the LI'TM and
SIGNET groups at the University of Padova.

Challenges have been proposed during the years in order to find the best ongoing strategies,
e.g., the KITTI vision benchmark [r0] in an Autonomous Driving context. Nevertheless,
SS has still a lot to offer in terms of novel approaches. The combination between visual in-
formation and 3D or other sensor-based (e.g., thermal cameras [11]) information is named

multimodal fusion [12] and promises optimal results in the near future.

The thesis is organized as follows: Chapter 2 is a summary on formulation and derivation
of stereo vision model. This analysis requires overall a large mathematical background; here
only fundamental concepts are presented, assuming true others which are less relevant for
this specific project. Chapter 3 is a review of semantic segmentation. It includes the most
popular deep learning architectures developed in the past years, a list of publicly available
datasets thought for the segmentation task, and the analysis of data management techniques
for improving performances of neural networks. Chapter 4 is a brief presentation of the
domain adaptation problem, specifically in an unsupervised setting. Chapter s is a descrip-
tion of the methodology adopted while working on the thesis: code development, numerical
strategies, study and adaptation of a neural network. The solution is divided mainly in two
parts: estimation of disparity-maps and training of the network. Chapter 6 contains the ob-
tained results: example of disparity-maps with difference parameter configurations, tables of
scores for training and test of the network. Chapter 7 makes some considerations about the

final results and possible future developments of the topics tackled in this project.

Stereo vision

Stereo vision is one of the most studied task in computer vision applications. The basic con-
cept, namely stereopsis (from stereo = “solid” and opsis = “sight”), is the procedure that
allows to compute three-dimensional information through binocular vision, that is, using
two cameras, each one taking a picture of the same scene from a different perspective. The
calculation of 3D data can be split in two sub-tasks: matching and triangulation.

Matching is about finding the points (or pixels), in the two images, which are projection
of the same point in the scene; these two points are called matched. The hypothesis for the
matching part is that the content of the two images is similar, but simple algorithms lead to
the presence of many wrongly-matched points in the result. Itis required to introduce other
constraints to increase the robustness of the procedure. The most important of them is the
epipolar constraint, which states that, taken one of two matched points in the first image,
the other must lie on a line, called epipolar line, of the second image.

If the matches between the points of the two images are available, it is possible to build a
representation of the scene, which takes name of depth-map, containing 3D information of
the points that are projected on the two images. In order to properly compute a depth-map,
it is required to know also the relative position and orientation of the two cameras (extrin-
sic parameters), as well as to have technical knowledge of each camera (intrinsic parameters).
The calculation of intrinsic and extrinsic parameters is handled by a procedure called camera
calibration (its analysis is beyond the purpose of this work), while the geometrical computa-

tion of the depth-map is the above mentioned triangulation.

2.1 PINHOLE CAMERA

In order to better understand the topic of this chapter, it is presented the simplest model
of a camera and its basic concepts: the pinhole camera. We require the introduction of a
reference frame, and a simple structure, to place the points of a scene in a 3D space and their
projection on the image. The model includes two planes, the image plane R and the focal
plane F, and a point, the optical center C, placed on the focal plane. The two planes are
parallel and the distance between them is the focal distance f. The line orthogonal to the
planes and passing through C is called optical axis, and its intersection with the image plane

is the principal point. The model is represented in Figure 2.1.

u R X F
f

V.~ Y.~
f

Figure 2.1: Pinhole camera model containing focal and image planes, the two reference systems, focal distance, optical

center and an example of projection.

Two reference frames are created: (X, Y, Z) is the frame for the focal plane and is built
placing the origin in the same position as the optical center, and pointing ~ in the same direc-
tion of the optical axis; (u, v) is the frame for the image plane and is built placing the origin
on the principal point, and pointing v and v in the same direction of X and Y, respectively.

A general point in the 3D space is called M and its coordinate are M = [x,y,z|T; the
projection of M on the image is m and its coordinate are m = [u, v]T. The projection m
is the intersection between the image plane and the line that pass through M and C. From

Figure 2.2, we can derive the following equations:

z T
u:_—fx (2.1)
z
_—f
V= —""Y
z

where the minus sign is used to keep track of the changing of sign of the coordinates.

Figure 2.2: Simplified two-dimensional view of the pinhole camera model. Minus sign on f is used to keep track of the
changing of sign of the coordinates.

The problem with the coordinates defined above is that the operation becomes non-linear
because of the division by 2. Instead, using homogeneous coordinates the operation is linear:

M = [x,y,2,1]T and m = [u, v, 1]T. We can write the final equation as:

u —fa —f 0 ool
zlv| = |—=fyl=10 —f 0 0 Y (2.2)

z

1 z 0 0O 10 |

where the z multiplied at the beginning can be seen as a scale factor. In fact, all the points
M, My, and so on, that lie on the same line passing through the point M and C, have the
same projection on the image as point M, i.e., point m. The scale factor z is the distance
of these points from the camera. The matrix which is pre-multiplied in the final term is the

projection matrix P. In matrix form, the equation becomes:
m x zm = PM (2.3)

where the symbol oc means the left-handed term is a scaled version of the right-handed one.
Up to now, we considered an ideal case. In order to generalize this model, we mustinclude
the knowledge about the position of the camera (extrinsic parameters) and its internal non-

idealities (intrinsic parameters).

2.1.1 INTRINSIC PARAMETERS

It must be considered that the internal representation of the image is made of pixels, thus it
is a discrete quantity. The origin of the frame (u, v) can be shifted w.r.t. its ideal position,

and each axis can present a different scaling factor:

u = k:u_—fa: + ug
_Zf (2.4)
v = kv7y -+ Vg

where (ug, vo) are the real coordinates of the principal point, &k, , = ¢, Land ¢, is the

dimension of a pixel along the direction u, v. The new form for the projection matrix is:

—fk?u 0 Ug 0
P = 0 —fky, vy O (2.5)
0 0 1 0

It can also be possible that the two axes « and v are not perfectly orthogonal, but they present

a generic angle 6 between them. This way, the equation of the projection matrix is updated

as follows:
—fk, fkycot@® uy O
P = 0 —fk,/sin@ vy 0 (2.6)
0 0 1 0

2.1.2 EXTRINSIC PARAMETERS

Usually, there is a fundamental reference frame, called world frame, which is different from
the camera reference frame. Itis necessary to define the affine transform that binds these two
frames. What is required are a rotation matrix /X and a translation vector t. Afterward, we
can call M the homogeneous coordinates of a point expressed in the camera frame, and M

the same coordinates expressed in the world frame. The relation is:

M, = T.M (2.7)

where 7 is the transformation matrix from world to camera frame, and its expression is:

ri1 ri2 i3 b

R t To1 T2 Toz 1o
c = = (2"8)
0 1 T31 T3z T3z I3
0O 0 0 1
From Equation 2.6 we can extract the sub-matrix K so that:
—fky fkycotf g
K = 0 —fk,/sinf vy| = P=K]II|0] (2.9)
0 0 1
where I is the identity matrix. Then, from Equation 2.3 we derive:
mx K [I|0)]M. = K[I|0)]TM — P =K][I|0]|T, (2.10)

this is the most general form of the projection matrix P; T, contains information about the

extrinsic parameters, K about the intrinsic ones.

2.2 TRIANGULATION

Triangulation is way simplified if the two cameras are aligned so to have coincident planes
(focal and image planes). In this situation, the distance (in pixel units) between two matched
points, which is called disparity, is purely horizontal. Using as reference frame a coordinate

system placed on the left camera, Figure 2.3 and following equations hold true:

[—u
; xu' (2.11)
2 - z—0b
from which can be derived:
J-b
r= (2.12)

From Equation 2.12 itis possible to extract the information about depth (2) by just knowing
a simplified version of the camera system (f is the focal length, b is the baseline) and the

disparity (u' — u). It b or f are unknown, it is possible to reconstruct a scaled version of the

X
Ue.. ¢ Zl
............. @ M
b
"(”” Z
,"””’r: C |
ue”
f

Figure 2.3: Triangulation geometry in the simplified case.

depth-map.
In general, the two coordinates (u, v) can be computed as follows, starting from equation

2.3:

™
u o U= plT—M
m=PM — |v| = |pl|M = p;M (2.13)
P2
1 T v =
Ps piM

where p!, pl and pl are the rows of matrix P. Note that the projection matrix has 11
degrees of freedom: s from intrinsic parameters, 3 from rotation matrix (camera orientation)
and 3 from translation vector (camera position); moreover, remember it is defined up to a
scale factor z. Developing Equation 2.10 it’s possible to express the third dimension, namely

depth, in the image space, which is the distance from the focal plane:
Z = [Tgl 32 T33 t3 M = I'?;M + t3 (2.14)

where r3T is the third row of rotation matrix 2. Also in this case a second projection m’ and

its projection matrix P’ are required to find a single solution.

2.3 EPIPOLAR GEOMETRY

Epipolar geometry [13] studies how to define two matched points and their characteristics.

Let’s first introduce two elements that are required for the next analysis:

* Optical center C: it is defined as the origin of the (X, Y, Z) frame, or the origin of

(u,v) frame projection over the focal plane (see Figure 2.1). Algebraically, it is the
kernel of P:

piC=0
PC=0 = piC=0 (2.15)
p3TC:O

Dividing the projection matrix P in its rotation R and translation t parts, and substi-
tuting in Equation 2.1, we obtain:

P = [R|t]
C_ﬂ — C=RC+t=0 = C=-R't (2.16)
|1

* Optical ray M : given a point m, it is defined as the locus of world points of which
m is projection. Two relevant points belong to the optical ray: the optical center and
the point at infinity, defined as:

~1 -1
{R Om] — P {R Om] =RR 'm=m (2.17)

We can write its parametric equation as follows, where A € R U {o0}:

1
M,\ZC—i—/\[R m]

0 (2.18)

Looking at Figure 2.4 we can define the following elements:

* Epipolar line: given a point m, it is the line where its matched m’ must lie on the
second image.

* Epipolar plane: given a point m and its matched m’, it is the plane where their two
epipolar lines lie on.

* Epipole e: it is the intersection point, on the image plane, of all the epipolar lines of
one image.

* Baseline: it is the line passing through C and C’, which defines a sheaf of planes
containing all possible epipolar planes. When speaking of baseline length, it refers to
the length of segment CC'.

" Epipolar Plane

Figure 2.4: Representation of epipolar geometry between two non-parallel planes.

The epipolar line of m is the projection of M over the second camera, thus projected
through P'. Its equation is:
m) ~ \R'R'm + ¢ (2.19)

Managing last equation, we can extract the fundamental matrix F* which contains all the

required information for a correct evaluation of epipolar geometry:
F=FERR! (2.20)
where E’ is an asymmetric matrix so that £ x €' = 0.

2.4 MATCHING

The core problem in stereo vision is finding the value of disparity of two matched points. Dis-
parity can be seen as the difference (in vector space) of the two points when the images are
superimposed (coincident reference frame). The output of disparity computation is called
“disparity-map” which corresponds to an image of same resolution as the input ones, but
where each element contains the value of disparity of the associated pixel in the reference im-
age (one between left and right is chosen). The search for disparity is further simplified if the
two images are rectified and aligned, making the problem one-dimensional. This way, the
distance between two matched points is just an horizontal shift in pixel units. Camera recti-
fication is not addressed in this work, we will assume the two images to be already rectified.

An example of disparity-map is shown in Figure 2.s.

I0

Figure 2.5: Left and right pictures of the scene (on the left and central). Ground truth representation of a disparity-map
(on the right).

The matching operation of two images has to overcome a few complicated problems and
to observe some constraints. In principle, in order to have similar appearances, the images
have to contain similar content. Many strategies have been developed to address this task,
which can be classified in local methods and global methods.

Problems in disparity calculation come from various phenomena, and one of them is the
principle of similarity which is also the basis of the procedure: false matches — because the
two images must be similar, one point could be matched with many other of the other image;
occlusions — due to surfaces discontinuity or shape of objects, some regions of the scene ap-
pear only in one image, implying some points are automatically not matchable; radiometric
distortion — due to physical characteristics of surfaces, radiance coming from them is seen
differently by the two cameras; perspective distortion — due to perspective projection, ob-
jects have different shapes in the two images; baseline trade-off — the baseline in stereo vision
can be seen as the distance between the two cameras. If the baseline is big, all the previous
problems are worsen, but if it is small then the disparity is less significant (intuitively, if the
baseline is zero it’s like to use one single camera).

Some constraints can be exploited to partially solve these issues: similarity — one particular
of the scene is similar in the two images; epipolar geometry — the matched of one point lies
on the epipolar line of the second; smoothness — far from edges, a surface is homogeneous,
limiting the disparity’s gradient; uniqueness — a point of the left image can be matched with
one and only one point of the right image, unless transparent surfaces appear in the scene;
monotone order — if a point is placed on the right of another point in the first image, then
the two points must be placed in the same position in the second image too. This is not true
if the points are in the forbidden region of a point (Figure 2.6).

Studied methods to solve the matching task are divided in local and global. Both types
try to apply the above constraints. The first ones work on a small number of pixels in a
neighborhood of the central pixel, while the second work on the horizontal line that passes

through the pixel of interest, named “scan-line”, or on the whole image.

II1

FORBIDDEN REGION

Q Q

Figure 2.6: Forbidden region w.r.t. point M.

For what concerns local methods, the main strategies analyse a small region (window) in
the first image, and compare it with regions of equal dimension in the other image, looking
for the most similar one. The comparison is done using the gray level or a function of colour
intensity. The procedure is applied to each single pixel of the first image, searching for its
matched in the second one. The window on the second image is shifted along the epipolar
line, which in the rectified case is just horizontal. The value of disparity is equal to the shiftin
pixel unit. In addition to the window-based methods, there are other types based on gradient,
segmentation, and features.

Global methods instead try to bypass local problems such as uniformity of regions and oc-
clusions. The optimization of these strategies implies a greater computational cost. Global
methods exploit the use of Disparity Space Image (DSI), which is a 3D image V), where
V(u, v, d) is the value of the matching metric between p = (u,v) and p’ = (u + d,v).
The disparity-map is a surface inside the DSI, which is the best w.r.t. a cost function and the

constraints presented in the previous section.

I2

Semantic segmentation

Semantic segmentation is an ongoing task in recent computer vision applications, which con-
sists in classifying an image on a pixel level, thus each pixel is assigned to a specific class (see
Figure 3.1). Itis a very dense and precise way to describe the scene contained in an image, and
many research fields need a so well detailed description: autonomous driving, indoor naviga-
tion, visual servoing, virtual or augmented reality and many others. Semantic segmentation
is a high-level task and one of the final steps to reach complete scene understanding [14].
The task was originally tackled using traditional computer vision and machine learning solu-
tions, but the turning point was reached with the introduction of deep learning frameworks.
Deep learning, in particular Convolutional Neural Networks (CNNs) [1], revolutionized
the computer vision field, surpassing older methods and defining a new edge in terms of ac-
curacy. Just to mention, stereo vision and depth estimation have been also studied through
deep learning, but this is beyond the scope of this work. Despite deep learning has been stud-
ied for many years and outstanding results have been achieved, it has still a lot to offer and
to be improved, especially when it comes to computation demand, real-time operations and
the use of multimodal data. In order to understand which are the results obtained by deep
learning in this field, in the following sections are presented the most relevant structures and

the evaluation methods developed in the past years.

13

Figure 3.1: Image rgb from SELMA (on the left) and relative ground truth semantic segmentation-map (on the right), where
each colour identifies a different class (e.g., pedestrians are red, cars are blue).

3.1 EVALUATION METRICS

One of the fundamental aspects of the research environment is the possibility to have a com-
mon reference, in order to make a reasonable comparison between new solutions and al-
ready existing ones. For this reason, during the years challenges have been proposed with
the purpose of finding the best ongoing model. Challenges differ for task to be tackled and
metric used for assigning a score. For image classification the most popular task has been
ILSVRC (ImageNet Large Scale Visual Recognition Challenge) which refers to the Ima-
geNet [15, 16, 17] dataset. For semantic segmentation, and in general for more recent ar-
chitectures, there are several competitions related to different datasets, e.g., PASCAL VOC
[18], MS-COCO [19], LVIS [20], KITTI [7, 10]. As said before, there must be a common
way to compare various proposed solutions, so to choose the one that reaches the highest
score as winner of the challenge. The three most common metrics for semantic segmenta-

tion are:

* Precision: itintuitively measures the precision of the model, and can be seen as a qual-
ity metric, butitleads to meaningless results when there is not enough data. Moreover,
even if there is a sufficient amount of samples, if the dataset is class-unbalanced the

model is likely to learn simple classes, leading to predictions containing only them.
. . _ TP
Its equation is P = 755 TP

* Recall: it is used to strengthen the meaning of the precision measure by giving a mea-

sure of how many true labels have been found, it can be seen as a quantity metric. Its
TP

equation isR = TPIFN"

* Intersection over Union: it is the more relevant among the three metrics. Taking A
as the ground truth region and B as the predicted region, the metric is evaluated as

IoU = Eﬁggg = +\(§\q@m B Ideally, A = B which means the two regions are
superimposed.

14

Each metric is applied separately over each class. In order to have a single score summarizing
all the classes, the average is taken obtaining, for example, the mIoU (mean Intersection over

Union). Using the same letters as in Section 3.3:

M
- ToU,,

Ground truth box

__Area of Intersection _ Estimated box

[oU =

Area of Union

Figure 3.2: Graphical description of loU. The more the two boxes are superimposed, the better the score is (visually,
intersection is more or less 25% of union, which is not good).

3.2 DATASETS

In this section are presented some of the most common datasets (some of them already men-
tioned above) with a brief description for each one. In the following list mainly datasets
containing 2D images are described, although many others exist for 2.5D and 3D data repre-

sentation [14].

3.2.1 PASCAL VOC (VisuaL OBJECT CLASSES)

The dataset and the associated challenge address five possible tasks: classification, detection,
segmentation, action classification and person layout. The basic version of the dataset al-
lows the description of 21 classes: aeroplane, bicycle, boat, bus, car, motorbike, train, bottle,
chair, dining table, potted plant, sofa, T'V/monitor, bird, cat, cow, dog, horse, sheep, person
and background. The dataset has almost 3000 available images (1464 for training, 1449 for
validation), plus a test set kept private for the challenge. As understandable from the list of

classes, this dataset is thought for general purpose, it’s not good when the application is ver
g g purp g PP Y

15

specific. However, this is downright the most popular dataset for semantic segmentation, so

every remarkable architecture has been tested on it.

The basic version of PASCAL VOC has then been extended in the PASCAL Context [21]
dataset. This second version contains the original 21 classes, plus another 519, for a total of
540 classes, which are divided in three macro-categories: objects, stuff, and hybrids. Actually,
only 59 of the classes are really relevant for almost every cases.

Another version developed starting from the basic dataset is the PASCAL Part [22]. This
time, only the original classes are kept, but they are divided in their sub-parts, creating a lot

of new sub-classes. For example, bicycle is divided in back wheel, chain wheel, front wheel,

handlebar, headlight, and saddle.

3.2.2 MS-COCO (M1crosofFT CoMMON OBJECTS IN CONTEXT)

The dataset and the associated challenge address different tasks, focused on detection and
segmentation, for which it includes 8o classes, 82783 samples for training, 40504 for vali-
dation and more than 8oooo for test. An interesting feature oftered by this dataset is that
the test set is split in four sub-sets, used separately for additional validation, standard test,
test performed during the challenge and an additional set called “reserve”. The last one is
used to further inspect some particular cases. The dataset gained reputation and importance
thanks to its large scale, starting to be annually used in official competitions together with

ImageNet.

3.2.3 KITTI

The dataset, and its KITTI vision benchmark suite, is very popular in autonomous driv-
ing applications. It is made capturing real traffic scenarios using various methods, such as
RGB images at high resolution, grayscale stereo cameras and 3D laser scanners. The prob-
lem with KITTT s that it does not contain ground truth samples for semantic segmentation.

For this reason, researchers have manually labelled some data necessary for their situation

[23, 24, 25, 26].

The following datasets better fit the topic of this thesis, being they thought for urban scene
understanding and including synthetically generated datasets. In particular, SELMA is the

one available for this project.

16

3.2.4 SYNTHIA (SYNTHETIC COLLECTION OF IMAGERY AND ANNOTATIONS)

SYNTHIA [27] is a synthetic dataset, generated in a virtual environment, and contains a set
of photorealistic renderings (13407 samples for training), specifically labelled for semantic
segmentation, in a driving and urban context. It includes 11 classes (void, sky, building,
road, sidewalk, fence, vegetation, pole, car, sign, pedestrian, and cyclist) and allows diversity

of scenes (towns, cities, highways, dynamic objects, seasons, and weather).

3.2.5 CITYSCAPES

Similarly to SYNTHIA, Cityscapes [6] aims to urban scene understanding through semantic
segmentation, butit’s not a synthetic dataset. In fact, it contains almost sooo well annotated
samples and 20000 coarse annotated ones. It was created capturing images in so different

cities in different periods, weather, and daytime.

3.2.6 SELMA

SELMA [8] is the dataset used for developing this whole project. It is a synthetic dataset
obtained by a modified version of the open-source simulator CARLA [9]. The authors ex-
plain how many synthetic datasets for road scene understanding lack of multi-sensor data
and variety of scenes (different daytime, weather, etc.), and how they tried to fix this issue.
SELMA potentially includes more than 20M samples, acquired combining more than 30000
waypoints, 24 different sensors, e.g., RGB cameras, depth cameras, semantic cameras and Li-

DAR sensors [28], and 27 different weather and daytime conditions.

3.3 POPULAR DEEP LEARNING ARCHITECTURES

The evolution of image understanding is identifiable in 3 macro-steps. The original task
was image classification, where it was sufficient to describe the whole image depending on
which objects were contained in it. The next step was object localization, drawing some
geometrical regions (bounding boxes) where the classified objects are placed in the image.
The final step would be semantic segmentation (and, possibly, instance segmentation as its
extension), a comprehensive knowledge of the whole image, where each pixel belongs to a
specific class defined a priori. In this case, the addressed problem is semantic segmentation,
which can be formulated in the following way: C = {ci, ..., car } is the set of classes, P =

{p1,...,pn} is the set of pixels. The classes are extended to M+1 because the “void” class is

17

added, to describe the background/uncertain pixels. This additional class is not interested
while training a model, thus, after a prediction is compared with its ground truth reference,
no back-propagation is operated on pixels belonging to the void class. P is a 2D image of

resolution W x H = N, but in general it can have any dimension (such as 3D data).

3.3.1 ALEXNET

AlexNet [15] was the first neural network that won the ILSVRC in 2012 with a test accu-
racy of 84.6%, beating its strongest competitor, which used traditional methods, achieving
an accuracy of 73.8%. Compared to most recent network, the architecture of AlexNet was
relatively simple. It has five convolutional, max-pooling, ReLU, three fully-connected and

dropout layers.

204¢ J0ag \dense

dense dense)

1000

128 Max L
pooling 204 2048

pooling pooling

Figure 3.3: AlexNet architecture (image taken from [15]).

3.3.2 VGG

VGG (Visual Geometry Group) [29] is a CNN that won the ILSVRC in 2013 with an ac-
curacy of 92.7%. The model used in the challenge is specifically the VGG-16 which uses 16
weight layers. The main difference introduced by VGG is the use of many convolution lay-
ers with small receptive field. This way, the amount of model’s parameters is reduced while
more non-linearities are introduced, obtaining a more discriminative decision function and

reducing the effort required for training.

18

fc4096]%[fc4096ch1000]9{ SoftMax]

[input image]—%[convlg]i
; [contl_z]

c4096 |—>{fca096 |>{fc1000]—{ softmax |

E [convd_Z]E

E [conv4_3]§

; [conv3_2]§

g [conv3_3]§

; [conv5_3]§

; [pool3

Figure 3.4: Comparison between AlexNet (top) and VGG (bottom) architectures (image taken from [30]).

3.3.3 GOOGLENET

GoogLeNet [31] won the ILSVRC in 2014 with an accuracy of 93.3%. With respect to
its predecessors, the complexity of the model is increased, including 2.2 layers and the intro-
duction of a new building block named “inception” module. The standard way to build a
network is to put one layer after another, in a sequence. This new block changed thisidea, cre-
ating a NiN (Network in Network), where pooling and convolutional layers are computed
in parallel and are followed by a 1x1 convolution operation. This way, model’s parameters

are reduced, thus decreasing memory usage and computational cost.

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions [}) 4
1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

Figure 3.5: GooglLeNet fundamental block called: Inception module (image taken from [31]).

19

3.3.4 RESNET

ResNet [32] is a CNN developed by Microsoft which won the ILSVRC in 2016 with an
accuracy of 96.4%. There are various versions of the network, which differ for the overall
number of layers (e.g., 18, 34, 50, 101, 152). In addition, it introduces a new building block
named “residual”. The residual blocks help in training very deep network by coping the
input of a layer to the next one without modifying the data. This operation is called “iden-
tity skip connection”. This strategy ensures that the next layer obtains more and different

knowledge, but also it helps overcoming the vanishing gradient problem.

X

Y
weight layer
F(x) [rele .
weight layer identity

Figure 3.6: ResNet fundamental block called: Residual learning (image taken from [32]).

3.3.5 DEEPLAB

DeepLab [2] is a CNN developed aiming to obtain high performances in the semantic seg-

mentation and dense prediction tasks. It includes three major features:

* Atrous convolution [33], which is used to control the resolution of features inside
the network and to increase the field of view filters, enabling a larger comprehension
of the context without increasing the number of parameters, thus keeping the same
computation effort.

* Atrous spatial pyramid pooling (ASPP), that allows efficient segmentation of ob-
jects at multiple scales. The ASPP action concerns giving convoluted features as input
to many filters at different sampling rates and field of views, achieving good knowledge
of both objects and the whole image at multiple scales.

20

¢ Conditional Random Field (CRF) [34], which is an already existing structure ex-
ploited by the first versions of DeepLab but removed in the latters. It is a fully con-
nected layer placed after the final layer of the DCNN and is used to improve the lo-
calization of objects. The CRF is then used in combination with max-pooling and
down-sampling properties of classical DCNNGs, which reach good invariance but have
problems in localization.

DCNN Aeroplane Coarse

Atrous Convolution

A

Final Output Fully Connected CRF Bi-linear Interpolation
‘

Figure 3.7: DeeplLab model procedure. First, a DCNN is implemented in a fully convolutional way. Then, using atrous

convolution is possible to reduce the required downsampling (from 32x down 8x). A bilinear interpolation stage enlarges
the feature maps to the original image resolution. A fully connected CRF is then applied to refine the segmentation result
and better capture the object boundaries (image taken from [2]).

3.4 TRANSFER LEARNING AND DATA AUGMENTATION

Usually, the training of a deep neural network from scratch is a hard task because of the
huge amount of data which is required, especially for semantic segmentation where each
pixel must be labelled (intuitively, millions of pixels for thousands of images). Furthermore,
the convergence of the model can take a very long time, and because of pixel-wise prediction,
which implies contrasting gradients in neighboring pixels, convergence can never happen. In
general, it is a good procedure to start the new training with already trained weights, instead
of randomized ones. This scenario takes name of transfer learning. It has been demonstrated
that transferring features between two different tasks can be better than starting from ran-
dom initialization, but it must be considered that the transferability is more efficient when
the two tasks are similar each other [3 5]. Transfer learning is not straightforwardly applicable

because there are constraints imposed by the network’s architecture. On the other hand, itis

21

very common to use already existing architectures instead of creating a new one, thus easing
the use of transfer learning. Moreover, the training of a network is different when it is com-
puted from a pre-trained network: only some specific layers have to be fine-tuned and a new
policy for the learning rate has to be chosen, usually making it smaller considering that the
pre-trained weights are expected to be relatively good. Due to the overwhelming amount of
labelled data used by semantic segmentation, only small datasets are available, and the prob-
lem get worse when the data becomes three-dimensional. For this reason, transfer learning
and the use of pre-trained network has become very common in semantic neural networks.
Data augmentation is a strategy used to improve machine learning models, especially deep
learning frameworks. It can increase the model’s efficiency, decreasing the convergence time,
improving robustness against overfitting and making it more capable of generalization[36].
It consists in performing some transformation, usually in the data space, sometimes in the
feature space too. The target is to generate new data from the already existing ones, applying
transformations such as: translation, rotation, scaling, warping, crops, shifts in the colour
space. The increase in the number of samples, in particular for training, is useful to avoid
some issues like overfitting. Data augmentation is helpful specifically for small datasets, like
the ones for semantic segmentation. As shown in [37], the use of augmentation allowed
to increase the dataset’s dimension from 1500 to 19000 samples, obtaining a IoU score of

94.2%, instead of the 73.09% obtained with the non-augmented dataset.

22

Unsupervised Domain Adaptation

Domain Adaptation (DA) is a group of strategies studied to handle the so called “domain
shift issue”. Usually, machine learning algorithms are built with the idea that training and
test datasets are homogeneous, thus their data are similar. In practical cases, especially in
computer vision applications where pictures of various environments can be involved, this is
not true. The way the training dataset is created and its content can differ from the test one,
however keeping some similarities. The dissimilarity is managed at the domain level, where
data are defined, calling source domain the one for training samples, and target domain the
one over which good performances are expected. The role of domain adaptation is trying to
fill the gap between the two domains, helping a model, trained on source data, to work in an
environment it has not entirely learned. Many research areas, other than computer vision,
widely started to apply this strategy [38, 39].

Domain adaptation is linked to transfer learning (explained in Section 3.4), which uses
labelled data from a source domain to tackle new tasks in the target domain. The greater the
domain shift is, the more the performance of a model are degraded, thus domain adaptation
is an easier task when the two domains are more correlated. For this reason, the ability of
discovering suitable source data, to extract useful clues from, is of fundamental importance.

A particular case is when no labelling information is available from the target domain. In
this situation, one idea could be to train the model only on the source domain (which is
labelled), hoping to get a functional machine also in different domains. This leads in general

to poor results, even if the domain shift is not so visually noticeable. A better idea is to

23

use all the labelled data from source domain and combine them with unlabelled data from
target domain. This takes name of Unsupervised Domain Adaptation (UDA) [4] and is
almost mandatory in applications like semantic segmentation where the acquisition of new
data is feasible (especially when using synthetic datasets), while the annotation of samples

for making new ground truth data is a much more demanding task.

4.1 ADAPTATION SPACES

As mentioned in the introduction of this chapter, when the distribution of source domain
(where a model is trained) and target domain (where a model is tested/used) is not the same,
finding a way to eliminate the presence of domain shifts is of essential importance to decrease
the performance drop of the model. In a network (focusing the analysis on semantic neural

networks), the adaptation step can be performed at different levels:

* Adaptation at the input level — the first possible strategy is to manage input sam-
ples (images) so to achieve uniformity with target samples. Although the two domains
can share high-level features, difterences at lower levels, even if unrelated to semantic,
imply a degradation of the model prediction efficiency. In common cases, a function
has to be found that can map input images to a new domain, or space, preserving the
semantic content, where they gain similarities w.r.t. target images; the model’s train-
ing is made on this new set of mapped images. One strength of this strategy is that it
is independent from the task (training is performed after the mapping step). On the
other hand, in its simplest version, it is not very discriminative; it needs some further
regularization scheme. In practice, it could be possible to realize a mapping function
able to add many domain invariances to images, all lacking semantic meaning, even-
tually making the network still unable to perform its task. During the years, many
techniques have been studied to make input image adaptation consistent also in a se-
mantic sense, for example exploiting image reconstruction constraints, uniformity of
segmentation regions or ad-hoc manipulation of low-level statistics.

* Adaptation at the feature level — another idea is to act inside the network, when
the training process is already started, forcing the feature extractor (encoder) to adjust
the distribution of source and target domains in the latent space. This way, the net-
work classifier (decoder) should learn how to segment both source and target domain
images, exploiting the similarities defined at the latent level. Notice that supervision
is applied only from source data. This technique turned out optimal for the image
classification task but presents problems with segmentation. In this second case, the
feature space reaches much greater complexity and dimensionality due to the presence
of global and local (class-wise) visual cues.

24

¢ Adaptation at the output level — adaptation can be performed on the network’s
output semantic map (or on the layer before the output one). This way, a lot of se-
mantic cues are kept, and the dimensionality of output space is smaller w.r.t. the one
of latent space simplifying the adaptation step. In addition, the operation is done on
semantic maps, thus allowing to infer labelled data to unlabelled ones of the target
domain, as in a weak supervised environment.

* Adaptation at specific network levels — in general, adaptation can be performed
at any level of the network, trying to align the relative space. The designated level
depends on the structure, and the reason in doing so is to achieve better high-level
patterns for segmentation and to reasonably match the source and target domains.

Output-level
adaptation

Feature-level
adaptation

Input-level
adaptation

ADAPTATION MODULES

}

L

Features Adapted
Features

l

Outputs Adapted
Outputs

l l

Inputs Adapted
Inputs

ENCODER DECODER

Figure 4.1: Schematic representation of the autoencoder deep learning architecture, with highlighted spots for adaptation
spaces (image take from [4]).

The scheme in Figure 4.1 shows various levels at which adaptation can be performed. In
addition, it is also a representation of the autoencoder architecture, composed by the two
main blocks encoder and decoder (also called backbone and classifier). The encoder has the
role of extracting features from input data, while the decoder makes predictions and resizes
features to their original size. In practical cases, pre-trained encoder are used to fasten the
training of new deep learning models, generally improving the obtained results. This struc-
ture helped a lot in tasks like semantic segmentation, where a common encoder can be used

while changing only the decoder depending on the specific requirements.

25

4.2 MATHEMATICAL FORMULATION

Computer vision tasks such as classification and segmentation can be seen as the problem
of finding the best function A (the one that minimizes a specific cost function) among a set
of functions H (hypothesis class, defined using prior knowledge of the problem), so that A :
X — Y isdefined from an input space X (e.g., images) to an output space) (e.g., semantic
maps). Mathematically, it is assumed that all real-world couples of data (z, y) € X x) have
a distribution D drawn according to an unknown probability.

In a Domain Adaptation environment, there are two different but related distributions
over the space X x), one for source domain Ds and one for target domain D7, and two
training sets S and 7, sampled over X, relatively for the same two domains. The purpose of
Domain Adaptation is to use labelled samples from & and labelled, unlabelled or both from
T in order to find the best i that works on 7. If only unlabelled data are used from 7 the
adaptation is said unsupervised (UDA).

Afterward, in Domain Adaptation three sub-categories can be found for source (Cs), tar-
get (Cr) and learning process (Cr), thus defining few sub-types of adaptation, represented

in Figure 4.2:
* Closed Set DA: Cs = Cr = all categories are in both source and target domains.

* Partial DA: Cs D Cr == all categories in source domain, only few categories in
target domain.

* Open Set DA: Cs C Cr = all categories in target domain, only few categories in
source domain.

* Open-Partial DA: Cs # Cr ACsNCr # @ = some categories in source domain,
some in target domain and some in both domains.

* Boundless DA: Cs C Cr ACz = Cs UCr = equal to Open Set DA but all
categories in target domain are individually learned.

4.3 UDA IN ROAD SCENE SCENARIOS

UDA gains relevant importance in some particular cases. Its primary feature is to transfer
knowledge between datasets representing different contexts. This comes particularly in hand
when working with a source domain obtained by synthetic data, thus made of computer

generated images. Having such dataset allows a drastic reduction of costs when dealing with

26

Closed set DA Partial DA Open set DA

L) .
& .
MY

Boundless DA

............ Target domain
K ———— Source domain

v" Recognized class
o ? Unknown class

.
. L g
"o...-'. ®e0cs 00’

Figure 4.2: Five categories for Domain Adaptation. In Open Set DA, classes that belong only to the target domain are
labelled as unknown by the model, instead in Boundless DA they are learned separately (image taken from [4]).

generation of labelled data, because if before it was an operation done manually by human
operators, now all required information is automatically accessible through software. The
role of UDA is to adapt this synthetic and labelled data to real-world images.

Having said that, a big effort was put to apply this strategy to urban and road scenes (im-
ages containing vehicles, buildings, objects inside cities), and this was mainly due to the in-
creasing interest in Autonomous Driving research area. Works on Autonomous Driving
began to be the reference scenario regarding UDA for semantic segmentation, also because
a fully autonomous vehicle must have a precise and reliable understanding of the surround-
ing environment. This later extended to other scenarios, like autonomous robotics (visual
servoing).

Moreover, there are plenty of datasets (both synthetic and real-world) that have been made

publicly available for this task. Some of them are cited in Section 3.2, but many other exist:

* GTAj5 [40] — itis a synthetic dataset for urban driving scenario, and one of the first
of its genre. It is made of almost 25000 labelled images, from car perspective, for se-
mantic segmentation. Renderings have been computed using the video game Grand
Theft Auto V (GTA5) and have outstanding visual quality thanks to the high budget
invested in the video game engine (created by a popular brand). There are 19 object
classes, which after some label-managements are compatible with real-world dataset

such as Cityscapes.

27

* Mapillary [41] — itis a real-world dataset and one of the most complete for this task.
It contains 25000 high resolution images taken around the globe from different de-
vices, thus achieving extreme variability in its content (many classes, different appear-
ances, diversity of settings and external environments). It includes 152 object classes,
which are often adapted to the ones of Cityscapes.

* Oxford RobotCar Dataset [42] — itis a real-world dataset and an optimal one from
the scene diversity point. It has been made traversing the same route (10 km) for al-
most a year, generating 20M samples which are heterogeneous speaking of daytime,
weather, light condition, and sensor acquisition (6 cameras plus LIDAR, GPS and
INS sensors).

* Google Street View — Google Street View has been used to generate a dataset in
the paper by Chen et al.[43]. Four cities have been chosen trying to reach maximum
visual variations: Rome, Tokyo, Rio, Taipei. Location captured in the cities have been
randomly chosen.

2.8

Proposed solution

The first task of this thesis project consists of the generation of estimated depth-maps. Shortly
summarizing Chapter 2, the depth-map of an image is another image of same resolution as
the first one, where each pixel contains information about the distance (depth) between the
camera and the object seen in the pixel position. In order to obtain a depth-map, many ways
have been proposed, which differ in hardware complexity, production cost, performance
of the results. In this work, we analyse the easiest to implement, economic advantageous,
though low performance solution: stereo vision. This technique requires a pair of cameras
(left and right), which take a picture of the same scene from two different perspectives. With
the purpose of simplify further calculation, the two images must be aligned and placed in
the same 2D plane, and a reference frame has to be defined, e.g., with the origin on the left
camera. This way, it is possible to compute a first map, where each element contains the
disparity between a left pixel and its corresponding right pixels, thus the value of distance
(in pixel unit) between two pixels that represent the same object in the scene. If the images
are correctly aligned, the disparity is the difference between the position of the two pixels
on the horizontal axis, i.e., it is the horizontal shift of one pixel to the other. Afterward, the

depth-map can be computed by taking the inverse of the disparity map as follows:

f-b

depth =
b disparity

(s.1)

29

where f is the focal distance (distance between focal plane and image plane) and b is the
baseline (distance between the two cameras). The poor results offered by this strategy come
from the fact that, due to many artifact phenomena, such as obstacles or surface reflectivity,
it is not possible to evaluate the disparity for each pixel, resulting in high noise level in the

map.

5.1 DEPTH-MAP GENERATION

In order to get the best results, the code has been implemented in Python 3 [44] using
OpenCV [45], a well-known library for image processing. The work was carried out on the
SELMA dataset. Disparities have been computed using a method based on the Semi-Global
Matching (SGM) algorithm [46], which implements pixel-wise cost calculation, smooth-
ness constraint, sub-pixel accuracy for disparity computation and occlusion detection. The
method is named stereoSGBAM() and it needs two main parameters: numDisparities and
blockSize. Many other secondary parameters are available, and they have been used in later
versions of the code. The first parameter indicates the maximum horizontal shift explored by
the algorithm to find the two matching pixels. The greater it is, the smaller the measurable
depth is, but the overall noise increases, too. The second parameter indicates the size of the
square window used by the algorithm to compare the left pixel (and its neighbourhood) with
the candidate right pixels (and their neighbourhood). A small window gives precise though
noisy measurements, while a large window gives smoother but less precise measurements.
The increase of one or both parameters also imply an increase of the computational time.

Before addressing the effective disparity calculation, a small application was developed to
have a better visual understanding. The code allows to compute a disparity-map and open
it on a window, together with sliders to manually change the parameters. This has been an
initial analysis useful to gain familiarity with the concept of disparity and to visualize the
effects of different parameter configurations. Also, it was helpful to make some considera-
tions about the variable type (in Python) of the matrix obtained as output from the disparity
computation.

The first approach to find valid estimated depth maps (ED maps) was to iteratively com-
pute the disparity map for many configurations of interest, saving some relevant information
in order to make a comparison among them. Chosen configurations were the possible com-
binations between the two parameters available in the stereoSGBAM() method. With a certain

range, only reasonable values have been checked. For numDisparities, after some initial tries,

30

a lower bound was found necessary to keep track of object very near the cameras (this will
be explained later), and an upper bound was arbitrarily chosen, knowing that the larger this
parameter is, the higher is the noise level. Furthermore, using this method, it can be only
a multiple of 16. For blockSize, which must be an odd number, the bounds were decided
considering that a high value can eliminate some noise, and a low value maintains the shape

of objects, thus it ensures precision. The most used parameters are summarized in Table s.1.

numDisparities | 96, 112, 128, 144, 160, 176, 192

blockSize 7,9, 11,13, 15,17,19

Table 5.1: Most analysed parameters during the iterative search.

While working on this, most time was spent by the algorithm to run, because images were
initially processed on a CPU. In this condition, computation of thousands of disparity-maps
can take many hours, and the situation is worsened when multiple computations for the
same pair of images have to be done, for example, in order to compare difterent configura-
tions of the estimation method (different values of num Disparities and blockSize). For this
reason, the research was always done on a subset of the training set of SELMA (not of the
test set in order to respect learning paradigms), for example, taking 100, 500 or even sooo
random images from it. This way, optimization was not performed on the whole dataset, or
even the whole training set, but it was sufficient to include a large number of samples so to
have an average idea of the result.

Initially, a random subset of the train dataset was created. For each image, it was taken
the difference between its ground truth (GT) map and various EDs (which translates into a
difference between matrices). Afterward, their mean absolute error (MAE) and mean square
error (MSE) have been calculated:

MAE = mean(|GT — ED]|)

MSE = mean((GT — ED)?) (52)

where GT'and E'D are matrices containing respectively ground truth depth information and
estimated depth information. The mean(-) operator computes average among all elements
of one matrix, while the absolute (| - |) and square ((-)?) operators act pixel-by-pixel. Ideally,
the ED map which is the most similar to the GT one would be the best candidate, which
means the one that gives the smaller MAE, MSE or both, depending on the cost function

31

that is used.

This strategy was still very coarse, because in the difference matrix (GT' — ED) there
were many elements containing invalid values. The first refinement step was to exclude these
values by masking the GT map, which is required to include only useful information, and

computing the difference only for the remaining elements. These were:

¢ invalid disparity values which are set to -1. As said above, the calculation of disparities
is far from a perfect procedure, thus many pixels of the left image are not matched
with the correspondent pixels of the right image

* GT depth values greater than the maximum measurable distance, which has been iden-
tified by Equation 5.1 when the disparity is equal to 1, thus depth = f - b.

Once the masking action was done, a further idea was to weight each score of MAE and
MSE by the number of useful elements. This way, if the error of one configuration is low
but also the number of pixels used to calculate that error is small, that configuration could be
worse than another with greater error but also greater number of useful pixels. The weighting

function was:

MAE = mean(|GT — ED|) - Npizer (5-3)

and similarly is for MSE. The coefficient N,;z; is the number of useful pixels for current ED
map. At code level, it was obtained exploiting the fact that, in Python, by masking a matrix,
a vector with just desired values can be outputted. Actually, the real coefficient used in the

source code is a scaled version of Nz, which corresponds to:

Npixel _ Npixel
TOT o H-W

(5-4)

where H = 640 and W = 1280 are respectively height and width of the map, i.c., the
resolution of each image.

The final step was to compute the weighted errors on a new subset containing sooo im-
ages of the train dataset. After some analysis, the final range used for numDisparities was
[96,112,128,144,160,176] and the one for blockSize was [9,11,13]. In order to have a clear
view of the results, boxplots were created for both MAE and MSE. Once the great part of
outliers is removed, the boxplots show how the errors mean and distribution increase with
increasing of both parameters: Figure s.1. Additionally, as already mentioned, great values

of numDisparities lead to more overall noise, and great values of block Size degrade the

32

shape of objects. Nevertheless, as shown in Figure 5.1, the lowest parameter configuration

(96,9) does not imply the lowest average error, which is given from configuration (112,9).

Boxplot for means of squared values (weighted)

2000

(s]e]

3 °
1750 4 8 g
o o g
g 8 8
: s 8
1500 g b3 g 8 E
o g 8 8
e o
o ° g a

1250 °

SIS D00 O

1000 o J
)

8
750 l

500 4

o
>0
mmwco ©
{mOED 00
SR O O
oo
a
EREEEOWRROD O D O

250

(96,9) (96,11) (96,13) (112, 9) (112,11)(112,13) (128, 9) (128, 11) (128, 13) (144, 9) (144, 11) (144, 13) (160, 9) (160, 11) (160, 13) (176, 9) (176, 11) (176, 13)

Figure 5.1: Boxplots for weighted MAE. On the horizontal axis there are configurations of the type (numbDispari-
ties,blockSize). On the vertical axis there are MAE values. Configuration (112,9) gives the lowest overall error.

One last analysis was a simple task, that helped in determining a good trade-off and choos-
ing the final configuration. The whole dataset (30909 images) was analysed, searching for the
minimum value of GT distance for each image, and calculating the correspondent minimum

required disparity to measure that distance:

f-b
min(GT)

man_required_disp = (5-5)

where the min(-) operator find the minimum among all elements of the input matrix.
Afterwards, it was calculated the number of images that required those values of disparity,

obtaining Table 5.2, and showing that, e.g., numDisparities equal to 96 is sufficient for the

61% of the whole dataset. Because from the boxplots graph the error for 96 and 112 are simi-

33

larly distributed, as final configuration it was chosen (112,9). From Table 5.2 it is also visible
why a good starting value for num Disparities is 96, and that 112 is good enough because the

84% of 30909 is still a big number of images.

H numDisparities Occurrences Rate H

8o 10 0.03%
96 18781 60.8%
112 25962 84.0%
128 28162 91.1%
144 29979 97.0%
160 30380 98.3%
176 30584 99.0%
192 30687 99.3%
208 30740 99.5%
224 30790 99.6%

Table 5.2: First column is the value of numDisparities which have been used. Second column is the number of images that
require the related value of numDisparities to correctly represent their less distant pixel. Third column is the rate between
second column and total number of images (30909).

Asmentioned before, the method stereoSGBA() has many parameters other than numDis-
parities and blockSize. However, in this case the greater part of them is not of interest but
for a couple which are thought to control the disparity smoothness, namely P1 and P2
(see https://docs.opencv.org/3.4/d2/d85/classcv_1_1StereoSGBM. html). Us-
ing these two parameters can effectively reduce amount of noise generated by the standard
procedure. Performing a few tests, it was visible that some images, but not all, reached a
lower MAE/MSE w.r.t. the case where P1 and P2 were not used. Despite this result, we’ll
see that for the final training of the neural network these two parameters are left out, because

they led to a lower metrics score.

5.2 DEEP LEARNING STRUCTURE

The next part of the work was focused on the study, use and modification of a deep learning
structure, i.e., a deep neural network. To tackle this in Python, it was used PyTorch [47],
a popular framework to work in deep learning environments, which is provided of many

pre-built classes that ease managing data.

34

The architecture is an encoder-decoder (see Section 4.1 for the definition), where the en-
coder is based on MobileNet [48], which is a class of models for mobile and embedded vision

applications, and the decoder on DeepLab (Section 3.3.5).

5.2.1 SOURCE CODE DESCRIPTION

The work started from an already existing source code, which has been extended for address-
ing the computation of estimated depths. The core features using PyTorch are thought to
simplify the use of datasets and the processes of training, validation and test of the neural

network. Among them, the following stand out:

* Tensors: objects used to store multidimensional arrays of any numeric type. They’re
not directly thought to work in a deep learning framework, but their fundamental
feature is they can be run either on CPU or GPU, allowing faster computation in the
second case.

* Dataset: it’s called data primitive. It allows to define a new class for your custom
dataset, or even to use pre-loaded ones. It stores samples (like images) and labels (like
semantic map).

* DataLoader: it’s another data primitive. It’s used to define an iterable object, which
ease accessing dataset’s samples, and to set many parameters used during the train-
ing/test operations.

The code is enabled to load data from both SELMA and Cityscapes datasets, even if only
the first one was used almost for the whole project. Some fast experiments were done on the
second at the very end. Furthermore, there are many parameters from command prompt:
used dataset, whether to re-scale or crop images and relative numeric factors, used encoder
and decoder and size of batches for the DatalLoader, to name a few. Furthermore, the code
can automatically access three files, containing information about which images to use for
training, validation and test. The three splits are as follows: 24735 samples for training set,
3087 samples for validation set and 3087 for test set, for a total number of 30909 samples.
All the three split sets are randomly generated.

Moreover, in order to evaluate the metrics discussed in Section 3.1, thus to give a score to
the trained model, the code makes use of the so called confusion matrix. The idea is to create
a matrix having segmentation classes on both vertical and horizontal axis, one representing
the true labels and the other representing the predicted ones. A score is given to each cell:

the more this matrix is similar to a diagonal matrix, the more the model predictions are good,

35

because it means a high score is assigned to the cell that matches a prediction with its correct
label. The confusion matrix is computed after each epoch of training process, using output
predictions, and it allows to easily calculate the metrics mentioned above.

When training a machine learning or deep learning model, two core concepts are: the
loss function, which has to be minimized, and the optimizer, an algorithm used to change
parameters inside the neural network (such as weights) and to minimize the loss function.
The are several existing solutions for both these objects. The main idea is to take predictions
(Yprea) outputted by the model and compare them with true labels (%¢ye). Some commonly
used loss functions are: L1Loss and L2Loss, similar to the cost functions in Equation 5.2,

and CrossEntropyLoss:

c
L1Loss = Z [Ypredi — Yerueil

i=1
c
L2LOSS - Z(ypred,i - ytrue,i)Q (56)
i=1
. eXP (Ypred.)
CrossEntropyLoss = Z w; - log e P \Ypredi Yirued
i=1 Zj:l CXp (ypred,j)

where C'is the number of classes and wj is a possible weight for each class. For the training of
this project’s model it was used the last one. The logarithmic argument in the cross entropy
loss is the output of the Softmax layer: the model gives a prediction score, for each class, to
each input sample. These scores are normalized by the Softmax to make them compatible
with a probability distribution (the sum of all class scores must be equal to 1), using expo-
nential functions. In Figure 5.2 there is an example for the image classification task to have

a better understanding of this.

Class Score | Softmax
Dog 5.0 0.943
Cat 2.0 0.047
Bird 0.5 0.010

Figure 5.2: Application of the Softmax activation function.

36

Also for model optimizers there are many available choices. Gradient Descent (GD), and
its stochastic variant (SGD), is one of the first and most basic algorithm, still widely used in
many applications, also during back-propagation in neural networks, for its low complexity
of implementation and computation. Another one is Momentum: it introduces an addi-
tional hyper-parameter, namely 7, and is used to reduce oscillations, parameters variance
and convergence time w.r.t. GD/SGD. For training the current model the chosen optimizer
is named Adam [49], which is easy to implement and requires low memory occupation. It
is appropriate for the current task, because it works well for problems having a large amount

of data, parameters and gradients noise.

5.2.2 SOURCE CODE MODIFICATION

The pre-existing code could already load images differentiating among rgb images, depth-
maps and semantic-maps. One thing it was missing is the possibility to perform online esti-
mation of depth (during training/test operations). For this reason, the code responsible for
depth estimation, i.e., the one developed in Section 5.1, has been imported inside the other
one and managed to run during training/test steps. Three new parameters were defined set-
table from the command prompt: one for enabling online computation of depth, the other
two to determine the value of zum Disparities and blockSize inside the stereoSGBAM() method.
From previous analysis, the best combination for the two parameters has been found to be
(112,9), determined on the MAE/MSE cost functions for the depth estimation task, and for
this reason a new dataset containing all estimated images (30909 as SELMA) has been cre-
ated. However, this does not ensure the same combination to be the best for the semantic
segmentation task. Thus, enabling online computation of depth allows to perform different
estimations without storing a complete new dataset for each combination, which would im-
ply an enormous occupation of memory. Adding the computation of depth-maps for each
couple of images as an online operation is more time consuming than reading an already
existing sample. As an example, if without online computation a single test operation took
more or less three minutes, after adding online computation it required roughly ten minutes.
Of course, the time-demand problem is subjective to the task and external parameters.
Afterwards, results of training and test steps have been analysed using the visualization
toolkit TensorBoard (https://www.tensorflow.org/tensorboard), whichis provided
of many tools to check model’s parameters (e.g., weights, biases, loss function) and to show
images of input, output (prediction) and reference (GT) samples. This has been quite a

helpful step, because allowed to notice an inconsistency between input/reference samples

37

and output ones, which were wrongly cropped and rescaled, leading to poorer model’s per-
formances.

Finally, one important feature is the possibility to keep track of results (score tables) also af-
ter the environment, where the training is performed, has been closed. Of course, the model
has to be saved, but also creating a log file is fundamental. This allows to know the evolution
of the training during each epoch. A useful guideline, applied during this work, is to create
different directory paths based on date when process is started, whether training or test is
performed, and other parameters, so to ease the search for desired log file. Also, creating a
log directory is essential to use the above mentioned TensorBoard, which reads information

from there.

38

Results

In this chapter we analyse some results obtained during estimation of depth-maps, of train-

ing the neural network on them, and relative tests.

Figure 6.1 shows an example of disparity-map from a random sample of SELMA. The pa-
rameters used are the optimal ones (zumDisparities = 112, blockSize = 9). Note that this is

considered a disparity-map because near objects are brighter than far objects, implying pixels

of the first group have a higher value of gray.

Figure 6.1: SELMA sample (on the left) and relative disparity-map (on the right).

Figure 6.2 shows two problematic situations. On the left, the disparity-map has been gener-
ated using a very low numDisparities = 16, thus nearest objects are not identifiable. On the
right, the map is generated using a too high value of blockSize = 35, leading to destruction of
objects shape.

39

Figure 6.2: Erroneous depth estimation: too low numDisparities (on the left) and too high blockSize (on the right).

Figure 6.3 is the same estimation of Figure 6.1 performed using the parameters P1 and P2
mentioned in Section 5.1. Using specific values for these parameters should lead to an opti-

mal smoothing action.

Figure 6.3: Applying best smoothing. P1 and P2 work as penalties for disparity change of pixels in the window. P1 is
penalty by £1 while P2 is penalty by more than 1. P2 must be greater than P1.

Figure 6.4 shows ideally how a disparity-map should appear: noiseless, with perfect edges,
generally shaped like the original image. The estimated version shows instead the presence
of many noisy artifacts, due also to stereo vision it-self (e.g., that shadow-like effect visible on

the left of various objects and in the bottom left corner of the image).

Figure 6.4: Ground truth disparity-map (on the left) and estimated one (on the right).

40

Table 6.1 shows the training scores for each class, and their average, for the three metrics:

Pixel Accuracy (Recall), Pixel Precision and Intersection over Union.

Class PA% PP% IoU% Class PA% PP% IoU%
road 99.5 99.3 98.8 road 98.4 98.7 97.1
sidewalk 953 963 919 sidewalk 844 933 796
building 967 968 937 building 91.1 901 82.8
wall 96.7 95.8 92.8 wall 88.1 92.8 8a.5
fence 80.4 817 68.2 fence 63.4 71.5 506
pole 73.3 83.3 63.9 pole 61.8 69.3 485
trafficlight 73.2 825 63.2 trafficlight s3.0 672 421
trafficsign 81.1 895 740 trafficsign = 590 813 519
vegetation 94.2 92.3 87.3 vegetation 87.4 829 74.0
terrain 91.4 94.2 86.5 terrain 82.1 83.2 70.4
sky 08.8 98.8 97.6 sky 96.8 97.1 94.1
person 8.1 82.8 723 person 65.2 72.2 §2.I
rider 77.9 817 66.3 rider 63.0 73.3 51.2
car 97.5 96.7 94.4 car 94.8 90.7 86.4
truck 82.4 84.3 7.5 truck 63.6 81.5 55.6
bus 91.8 85.2 79.I bus 77.8 61.6 52.4
train 92.2 90.3 83.9 train 76.9 89.0 70.3
motorbike 83.1 854 727 motorbike 6o.s 784 519
bicycle 55.7 59.8 40.5 bicycle 36.0 45.4 25.1
Average 86.6 88.2 78.9 Average 73.9 80.0 64.1
Std.Dev. 11.4 9.3 15.1 Std.Dev. 17.1 135 195
(a) Training score GT. (b) Training score ED.

Table 6.1: Scores for the network trained with GT data (a) and with ED data (b). Training is done in many epochs, these
values come from the best one.

Scores are coloured depending on how far
their value is from the average. Distance
from the average is determined by the stan-
dard deviation. Colour-code is shown in

Figure 6.5, where a Gaussian is represented

being /1 the average value and o the standard — : u n+o

deviation. Figure 6.5: Colour code for tables containing scores. Values

are grouped depending on how much they differ from the
average.

41

Table 6.2 shows the test scores for the metrics when the network is tested on the same type
of data used for training (GT — GT, ED — ED).

Class ~ PA% PP% IoU% | Class ~ PA% PP% IoU% |
road 99.5 99.2 98.7 road 98.3 98.7 97.0
sidewalk sidewalk
building building
wall wall
fence fence
pole 73.8 64.4 pole
traffic light 73.3 62.6 traffic light s2.1 41.5
traffic sign traffic sign
vegetation vegetation
terrain terrain
sky 98.8 98.8 97.6 sky 96.9 97.1 94.2
person person
rider rider
car 94.4 car 94.9 86.7
truck truck
bus bus 65.7
train train
motorbike motorbike 51.4 44.3
bicycle 58.0 61.3 42.5 bicycle 37.0 44.2 25.2
Average 87.0 88.6 79.3 Average 74.0 8o.1 64.3
Std.Dev. 110 9.1 14.8 Std.Dev. 17.4 13.4 19.5

(a) Test score GT — GT. (b) Test score ED — ED.

Table 6.2: Scores for the GT network tested on GT data (a) and the ED network tested on ED data (b).

These tests confirm the efficacy of the network, in both cases. Using GT data the mIoU’s
score reached almost 80% which is a very good result, and using ED data 64% is quite satis-
tying, considering that no adaptation techniques are applied, thus this result is likely to be

improved.

42

Table 6.3 shows the test scores for the metrics when the network is tested on a different type
of data from the training one (GT — ED, ED — GT).

| Clas PA% PP% IoU% | | Clas PA% PP% IoU% |
road 98.7 road 10.5 10.4
sidewalk 91.6 sidewalk
building building 95.8 72.3
wall wall
fence o o fence
pole pole
traffic light traffic light
traffic sign 91.2 traffic sign
vegetation 86.8 vegetation
terrain terrain 80.3 22.4
sky 66.9 55.7 sky 98.6 91.8
person person
rider rider
car car 94.8 65.6
truck o 4.3 o truck 14.6
bus o 0.1 o bus 14.9 25.1 10.3
train o o o train 0.4 0.4
motorbike 8.1 motorbike
bicycle o 6.7 o bicycle 82 39.2 7.3
Average 10.4 484 5.9 Average 47.1 67.7 35.5
Std.Dev. 23.9 35.1 12.7 Std.Dev. 28.7 26.2 23.8
(a) Test score GT — ED. (b) Test score ED — GT.

Table 6.3: Scores for the GT network tested on ED data (a) and the ED network tested on GT data (b).

Test of Table 6.3a shows the inefficacy of the network trained on GT data when used on ED
data. Many classes (train, bus, truck) are not even recognized (scores equal zero are coloured
in black). This is a consequence of the domain shift issue mentioned in Chapter 4; a visual
change in the data can mean a catastrophic failure of the model. Table 6.3b shows a test
in the opposite situation. Although mIoU = 35.5 is not a good result w.r.t. the supervised
situation, it is way better than the previous case; some classes are well recognized considering
the mIoU of the network from training is 64%. This is particularly good knowing that the
model is trained source-only, and it suggests that improvements of the network are possible

if adaptation techniques are applied.

43

Table 6.4a shows what happened when the network was trained using ED-maps calculated
using the parameters P1 and P2 for best smoothing (see Figure 6.3); despite the removal
of noise, performance are less effective than without using those parameters. Table 6.4b
shows instead a test of the neural network trained on ED-maps (the one of Table 6.1b) on

the Cityscapes dataset.

| Class PA% PP% IoU% | | Class PA% PP% IoU% ||
road 98.1 98.5 96.7 road 65.4 97.2 64.2
sidewalk sidewalk
building building 64.4 48.3
wall wall
fence fence 92.1
pole 50.4 pole
traffic light 37.4 32.0 traffic light 7.1
trafficsign = 515 traffic sign
vegetation vegetation 33.3
terrain terrain 75.2 2.5
sky 96.1 95.5 92.0 sky 73.9
person person
rider rider
car 94.4 85.3 car 94.4
truck truck
bus 61.9 bus
train train
motorbike motorbike 4.9
bicycle 37.6 44.1 25.5 bicycle
Average 70.8 77.2 60.3 Average 22,2 41.0 13.1
Std.Dev. 19.2 13.6 20.6 Std.Dev. 27.7 33.5 18.I

(a) Train on EDs generated with P1 and P2. (b) Test score ED-SELMA — ED-Cityscapes.

Table 6.4: Scores for training on ED data obtained through best smoothing (a) and test on Cityscapes (b).

It is interesting to notice the result on the Cityscapes dataset. Despite the low score, again
here no adaptation strategies have been applied, and here not only the target dataset is dif-
ferent from the source one, but they’re also of different type (SELMA synthetic, Cityscapes
real-world). The domain shift is then very hard to handle, but considering that the GT based
network reached roughly 2-3% mloU (results are not reported) on the same task, this is a

pretty good result for future developments.

44

Conclusion

This thesis tackled two main tasks: first, the analysis of depth estimation through stereo vi-
sion, code development for research of best parameters of the stereo vision algorithm on the
SELMA dataset, and the study of deep learning frameworks, training and testing a convo-
lutional neural network, designed with the autoencoder architecture, on both ground truth

and estimated depth-maps.

The first part was a preliminary analysis and it required a certain amount of work to be com-
pleted. Code development has not been straightforward, many versions have been worked
out, not always working solutions, thus implying the necessity of debugging them. In addi-
tion, a lot of time was spent by the application to run on a CPU device. Considering the
stereoSGBM() method good enough, not particular care was taken on refining the disparity-
maps (or the depth-maps). However, post-processing ideas can be thought to further opti-
mize the maps that are fed as input to the neural network, and additional researches can be
done to effectively understand whether a parameter configuration of the estimation method

is better than another for the semantic segmentation task.

The second part concerns the introduction of depth-map computations inside the training
and test of the neural network. Initially, an estimated version of SELMA was created in order
to quickly access to estimated samples, but some data-type problems occured while saving

the maps, thus making the whole new dataset useless. Adding the online computation of

45

depths helps avoiding this problem and allows to perform estimation with different parame-
ter configurations. Unlike the first part, this was done on a computer equipped with a GPU,
which is able to perform fast computation of images. From a practical point of view, this

was almost mandatory because of time-demanding reasons.

Despite obtained results can be considered good for a master thesis project, there’s still a lot of
room for improvements and different solutions. For example, deep learning can be exploited
to perform stereo vision too, and many works have already addressed this task. One of the
most recent and promising model is CREStereo [50]: the authors explain as their solution
outstand all previous ones, but also that it is very computational demanding. In fact, one
problem with deep learning structures can be the heavy computation they need (intuitively,
the deeper the havier). Making such structures lighter is then of fundamental importance if

it is required to run them on mobile devices.

Another possible approach is monocular depth estimation: in this case stereo vision is no
more used. Instead, depth-maps are generated using a single image and exploiting domain
adaptation strategy called multi-task learning (or multi-tasking learning). Its analysis though

is out of the scope of this thesis.

46

[1]

[7]

References

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 3431—3440.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
tully connected crfs,” IEEE transactions on pattern analysis and machine intelligence,

vol. 40, no. 4, pp- 834-848, 2017.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.

2.881-2890.

M. Toldo, A. Maracani, U. Michieli, and P. Zanuttigh, “Unsupervised domain adap-

tation in semantic segmentation: a review,” Technologies, vol. 8, no. 2, p. 35, 2020.

F. Barbato, M. Toldo, U. Michieli, and P. Zanuttigh, “Latent space regularization
for unsupervised domain adaptation in semantic segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2835—
2845.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S.Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understand-
ing,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 3213—-3223.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231

1237, 2013.

47

[8]

[13]

[x6]

[17]

P. Testolina, F. Barbato, U. Michieli, M. Giordani, P. Zanuttigh, and M. Zorzi,
“Selma: Semantic large-scale multimodal acquisitions in variable weather, daytime

and Viewpoints,” arXiv preprint arXiv:2204.09788, 2022.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open

urban driving simulator,” in Conference on robot learning. PMLR, 2017, pp. 1-16.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in 2012 IEEE conference on computer vision and pat-

tern recognition. 1EEE, 2012, pp. 3354-3361.

Y. Sun, W. Zuo, and M. Liu, “Rtfnet: Rgb-thermal fusion network for semantic seg-
mentation of urban scenes,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.

2576-2583, 2019.

Y. Zhang, D. Sidibé, O. Morel, and F. Mériaudeau, “Deep multimodal fusion for se-
mantic image segmentation: A survey,” Image and Vision Computing, vol. 105, p.

104042, 2021.

0. Faugeras and O. A. Faugeras, Three-dimensional computer vision: a geometric view-

point. MIT press, 1993.

A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and]. Garcia-
Rodriguez, “A review on deep learning techniques applied to semantic segmenta-

tion,” arXiv preprint arXiv:1704.06857, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,

vol. 25, 2012.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein ez 4/., “Imagenet large scale visual recognition challenge,”

International journal of computer vision, vol. 115, no. 3, pp. 211-252, 2015.

J. Deng, W. Dong, R. Socher, L.-]. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern

recognition. leee, 2009, pp. 248-255.

48

[x8]

[22]

[26]

M. Everingham, S. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes challenge: A retrospective,” International journal of

computer vision, vol. 111, no. 1, pp- 98-136, 2015.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll4r, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in European conference on

computer vision. Springer, 2014, Pp. 740-755.

A. Gupta, P. Dollar, and R. Girshick, “Lvis: A dataset for large vocabulary instance
segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition, 2019, pp. 5356—5364.

R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and
A. Yuille, “The role of context for object detection and semantic segmentation in the

wild,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2014, pp. 891-898.

X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, “Detect what you
can: Detecting and representing objects using holistic models and body parts,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2014,

pp- 1971-1978.

J. M. Alvarez, T. Gevers, Y. LeCun, and A. M. Lopez, “Road scene segmentation

from a single image,” in European Conference on Computer Vision. Springer, 2012,

pp- 376-389.

R. Zhang, S. A. Candra, K. Vetter, and A. Zakhor, “Sensor fusion for semantic seg-
mentation of urban scenes,” in 2015 IEEE international conference on robotics and

automation (ICR4). 1EEE, 2015, pp. 1850-1857.

G.Ros, S. Ramos, M. Granados, A. Bakhtiary, D. Vazquez, and A. M. Lopez, “Vision-
based offline-online perception paradigm for autonomous driving,” in zor5 IEEE

Winter Conference on Applications of Computer Vision. 1EEE, 2015, pp. 231-238.

G.Rosand]. M. Alvarez, “Unsupervised image transformation for outdoor semantic

labelling,” in 201 5 IEEE Intelligent Vebicles Symposium (IV). 1EEE, 2015, pp. 537—
542.

49

[27]

[34]

[35]

[36]

G.Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia dataset:
A large collection of synthetic images for semantic segmentation of urban scenes,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
Pp- 3234-3243.
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, and U. J. Nunes, “Multimodal vehi-

cle detection: fusing 3d-lidar and color camera data,” Pattern Recognition Letters, vol.

115, pp. 20—29, 2018.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.15 56, 2014.

W. Yu, K. Yang, Y. Bai, T. Xiao, H. Yao, and Y. Rui, “Visualizing and comparing
alexnet and vgg using deconvolutional layers,” in Proceedings of the 33 rd Interna-

tional Conference on Machine Learning, 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp- 770-778.

M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian, “A real-
time algorithm for signal analysis with the help of the wavelet transform,” in Wauvelets.
Springer, 1990, pp. 286-297.

P. Krihenbtihl and V. Koltun, “Efficient inference in fully connected crfs with gaus-

sian edge potentials,” Advances in neural information processing systems, vol. 24, 2011.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep

neural networks?” Advances in neural information processing systems, vol. 27, 2014.

S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understanding data

augmentation for classification: when to warp?” in 2016 international conference on
digital image computing: techniques and applications (DICTA). 1EEE, 2016, pp.
1-6.

50

[37]

X. Shen, A. Hertzmann, J. Jia, S. Paris, B. Price, E. Shechtman, and 1. Sachs, “Au-
tomatic portrait segmentation for image stylization,” in Computer Graphics Forum,

vol. 35, n0.2. Wiley Online Library, 2016, pp. 93-102.

[38] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in nlp.” ACL,

[39]

[42]

[43]

[47]

2007.

F. Fang, K. Dutta, and A. Datta, “Domain adaptation for sentiment classification in
light of multiple sources,” INFORMS Journal on Computing, vol. 26, no. 3, pp. 86—
598, 2014.

S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground truth
from computer games,” in Europmn conference on computer vision. Springer, 2016,

pp. 102—-118.

G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The mapillary vistas
dataset for semantic understanding of street scenes,” in Proceedings of the IEEE inter-

national conference on computer vision, 2017, pp. 4990—4999.

W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, rooo km: The oxford

robotcar dataset,” The International Journal of Robotics Research, vol. 36, no. 1, pp.

3-15,2017.

Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun, “No
more discrimination: Cross city adaptation of road scene segmenters,” in Proceedings

of the IEEE International Conference on Computer Vision, 2017, pp. 1992—2001.
G. Van Rossum and F. L. Drake, Python 3 reference manual. —CreateSpace, 2009.

G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV li-
brary. ” O’Reilly Media, Inc.”, 2008.

H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching
and mutual information,” in 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR 05), vol. 2. 1EEE, 2005, pp. 807-814.

N. Ketkar and J. Moolayil, “Introduction to pytorch,” in Deep learning with python.
Springer, 2021, pp. 27-91.

51

[48] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mo-

bile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[49] D. P. Kingma and]. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[so] J.Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan, and S. Liu, “Practical

stereo matching via cascaded recurrent network with adaptive correlation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 16 263-16 272.

52

Appendix A

This appendix contains examples of the core functions of the project, plus some further ex-

amples of estimated disparity-maps.

Listing A.1 shows all imported libraries at some point during code development (not all
of them were always called together).

Listing A.2 shows the function used to compute disparity-maps.

Listing A.3 shows the function used to compute depth-maps and create a path to store
them, if required.

Figure A.1 shows another example of disparity-maps estimated with different parameter
configurations.

Figure A.2 shows another example of disparity-maps estimated with different parameter
configurations and best smoothing (parameters 1 and P2).

Figure A.3 shows a semantic prediction after performinga testin the four situations (whether

the network or the test data are GT or ED based).

53

import numpy as np
import cv2 as cv

import math

import os

from os.path import join
import sys

import pandas as pd

from tqgdm import tqdm
import time

import csv

import random

> import shutil
; import logging

import datetime
from tensorboardX import SummaryWriter

from PIL import Image, ImageFile

#pytorch

import torch

from torch.utils.data import Dataset, Dataloader
from torch +dimport nn

import torch.nn.functional as F

from torch.nn import CrossEntropylLoss, LlLoss, MSELoss

Listing A.1: Import of required libraries.

54

. def compute_disparity(imgL, imgR, numDisparities, blockSize):

3

4

#create the stereo object with minimum disparity set to 0

stereo = cv.StereoSGBM_create(0,numDisparities,blockSize)

#compute disparity

#create a version of the two images with all starting columns (the first
numDisparities columns) set to 0

#this way the stereo computation does not clip the final result

blackL = np.concatenate((np.zeros((imgL.shape[0],numDisparities),dtype=np.
uint8),imglL) ,axis=1)

blackR = np.concatenate((np.zeros((imgR.shape[0],numDisparities),dtype=np.
uint8),imgR) ,axis=1)

disparity = stereo.compute(blackL,blackR)

#now remove the first disp columns, because they have only useless values
disparity = disparity[:,numDisparities:].astype(np.float32)/16 #here it is

assumed that the minimum disparity is 0

return disparity

Listing A.2: Function to compute disparity.

55

. def depth_estimator(lr_path, numDisparities, blockSize, f, b, est_dir = None):

3 #left and right images loaded in gray scale
4 imgL = cv.imread(lr_path[0], flags=0)

s imgR = cv.imread(lr_path[1], flags=0)

6 #call the function to compute disparities

7 disparity = compute_disparity(imgL, imgR, numDisparities, blockSize)

9 est_path = None

10 if est_dir is not None:

. #path where to save estimated images

12 est_path = [est_dir+lr_path[0][str.find(lr_path[0],'\\'):-4]+'.png',
13 est_dir+lr_path[0] [str.find(lr_path[0],"'\\"'):-4]+'.png']
14 est_path[0] = est_path[0].replace('CAM_FRONT_LEFT', 'DISPARITY"')

s est_path[1] = est_path[1].replace('CAM_FRONT_LEFT','DISTANCE')

17 #set the invalid (-1) disparity value to 0, which becomes the common value for
invalid elements (leads to infinity depth)

18 distance = np.zeros_like(disparity)

19 mask = disparity > 0

20 distance[mask] = fxb/disparity[mask]

22 return disparity, distance, est_path

Listing A.3: Function to compute depth.

56

Figure A.l: From left to right and from top to bottom, the parameters configuration is (numDispari-
ties,blockSize)=None,(112,9),(16,9),(112,17),(256,9),(112,35).

57

Figure A.2: From left to right and from top to bottom, the parameters configuration is (numDispari-
ties,blockSize)=None,(112,9),(16,9),(112,17),(256,9),(112,35).

58

Figure A.3: On top, the semantic labelled GT sample. Then, from left to right and from top to bottom: prediction of
GT network on GT data, prediction of ED network on ED data, prediction of ED network on GT data, prediction of GT
network on ED data.

59

