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Abstract

In this thesis we prove the canonical-form theorem for the internal language of the regular cat-
egories by means of a dependent type theory a la Martin-L6f. This theorem allows to obtain
most of the standard consequence of a normalization theorem and it provides a computation
model that can be used to build a proof assistant for the theory.

We will consider the calculus of regular categories which contains the terminal type, the
indexed sum, the extensional equality and quotients on the terminal type.

The result that we will prove states that any closed typed term, whose derivation has no open
assumption, can be reduced by a sequence of reductions into an equivalent one in canonical
form, that s, a sort of external normal form, and that the proof of any provable judgement can
be transformed into an equivalent one in introductory form.

The present work has been partially formalised in the proof assistant Coq, where the preser-
vation of the computability for the logical rules of the type theory of regular categories has been
proved, in the case of empty context.
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Introduction

Category theory has become a standard tool in theoretical computer science with applications

such as

* Correspondence between lambda calculus and cartesian closed categories.

* Notion of monad that can be used as part of an explanation of side effects in program-
ming languages, for example the "Monad typeclass” in Haskell.

* F-coalgebra, where F is a functor, have been used as a general framework to model sys-
tems (streams, automata, transition systems, probabilistic systems).

* Application of monoidal categories to quantum computation

In this thesis we can see that regular categories enjoy an internal language formulated in terms
of a dependent type theory in the style of Martin-L6f’s extensional type theory in [1]. In more
detail, universal categorical properties correspond to already known type constructors of the

extensional type theory as follows

* The terminal type, indexed sum types and the extensional equality types describe the
type theory of finitely complete categories and they form the basic module of an exten-
sional dependent type theory internal to a category.

* Stable quotients of kernel pairs correspond to extensional quotient types on the terminal

type.



* The parametrised natural numbers object corresponds to the natural numbers type.

However we only have categorical semantics for its extensional version, while only the in-
tensional version can be really thought of a functional programming language because it is
strongly normalizing and its definitional equality between terms is decidable. Instead, the ex-
tensional version can not be considered a functional programming language since it does not
enjoy such properties as its definitional equality between terms is undecidable. Then, the inten-
sional version of type theory, not even enjoying extensionality of functions, is not suitable to
develop mathematics as it is. So, having dependent typed calculi available as internal languages
of categorical structures, lets us analyze their computational contents, such as investigating the
validity of canonical normal form theorems, which help to reduce the gap between extensional
mathematical language and normal proof assistants based on intensional calculus.

Our main goal is to prove the canonical form theorem for the type theory of regular cat-
egories. To achieve our goal, in chapter 2, we first provide a general introduction to regular
categories and their properties. In chapter 3 we therefore define the internal language of regu-
lar categories using the theory of dependent types and show how it can be used to reason about
these structures in a precise and systematic way. Furthermore, in chapter 4, we propose an ex-
tension of the theory with the type of natural numbers. In chapter 5 we present a complete
proof of the canonical form theorem and in chapter 6 we prove the theorem for the extended
theory of arithmetic regular categories. Finally, in chapter 7, the formalization in the proof
assistant Coq is discussed.

This thesis is intended for readers with some background in category theory and type theory,
but we strive to make our presentation as self-contained as possible. We hope that this work will
contribute to a deeper understanding of regular categories and their role in computer science.

The work reported here is mostly based on the article by Maria Emilia Maietti in [2] for
the internal type theory and on the PhD-thesis of Silvio Valentini in [3] for the proof of the

computability theorem.



Regular categories

Category theory is a special area that studies the fundamental structures used within mathe-
matics. It is based on the very simple notion of an arrow between objects. Category theory
is sometimes described as abstract nonsense, but it is often useful because it provides an ab-
stract framework in which similarities between seemingly different notions become apparent.
It has become a standard tool in theoretical computer science, especially in the semantics of
programming languages. In particular, the categorical description of fixed points, both of re-
cursive functions and of recursive types, captures the relevant “universal” properties that are

used in programming and reasoning with these constructs [4].

Definition 2.0.1 (Category). A category is a mathematical structure consisting of objects with
arrows between them, that can be composed.

More formally, a category C consists of a collection Obj(C) of objects and a collection Arr(C)
of arrows (also called maps, or morphisms). Usually we write X € C for X € Obj(C). Each
arrow in C, written as X Ly Yoras f: X = Y, bas a domain object X € C and a codomain

object Y € C. These objects and arrows carry a composition structure.

1. Foreach pairof mapsf: X — Yand g : Y — Zthere isa composition mapgof: X — Z.
This composition operation o is associative: if b : Z — W, thenho (go f) = (hog)of

2. Foreach object X € C there is an identity map idy : X — X, such that id is the neutral
element for composition o: for f: X — Yone bas foidy = f = idyof.



Ordinary sets with functions between them form an obvious example of a category, for
which we shall write Set. Although Set is a standard example, it is important to realise that
a category may be a very different structure. In particular, an arrow in a category need not
be a function. Another example is Grp, the category of groups with group homomorphisms

(preserving composition and unit, and thereby also inverses).

Definition 2.0.2 (Product). Let C be a category. The product of two objects X, Y € Cis a new
object X x Y € C with two projection morphisms

X&E Xxxy =2y

which are universal: for each pair of mapsf: Z — Xand g : Z — Yin C there is a unique tuple
morphism (f,g) : Z — X X Yin C, making the following diagram commaute.

X+ XxYy—257Y
\@/
Z

Products need not exist in a category, but if they exist they are determined up-to isomor-

phism. If there is another object with projections
Y& xevry

satisfying the above universal property, then there is a unique isomorphism X x ¥ Zx QY
commuting with the projections. What we have described is the product X X Y of two objects
X, Y. For a given X, we shall write X" = X X --- x X for the n-fold product (also known as

power). The special case where 7z = 0 involves the empty product X°, called terminal object.

Definition 2.0.3 (Terminal object). A terminal object in a category C is an object, usually writ-
ten as T € C, such that for each object X € C there is a unique morphism xx : X — T in
C.

Not every category needs to have a final object, but Sets does. Any singleton set is final. We
choose one, and writeitas T = {x}. Notice then that elements of a set X can be identified with

functions T — X. Hence we could forget about membership € and talk only about arrows.



When a category has binary products x and a final object T , one says that the category has
finite products: for each finitelist X3, . . . , X, of objects one can form the product X x - - - X X,.
The precise bracketing in this expression is not relevant, because products are associative (up-

to-isomorphism).

Definition 2.0.4 (Pullback). Let C be a category, with f : X — Zand g : Y — Z arrows. A
pullback of fand g consists of an object A together with arvows py : A — X and py : A — Y such
that, for any other object B with arrows qx : B — X and qy : B — Y, there exists a unique arrow
b : B — A such that the diagram

~
p/y

M ¢oo- b

%\

commutes.

We recall that for a category having a terminal object and pullbacks is equivalent to being
finitely complete.

A regular category is a finitely complete category which admits a good notion of image fac-
torization; they are considered since they have a decently behaved calculus of relations and they
provide a natural semantic environment to interpret a particularly well behaved positive frag-

ment of first order logic having connectives T, A, 3.

Definition 2.0.5 (Regular category). A regular category is a finitely complete category with
pullback-stable images. [5]

Examples of regular categories are Set, Grp and, in general, any abelian category, while Cat,
Pos, and Top are not regular.

Since the aim of this thesis is to describe the internal dependent type theory of the regular
categories, we list the necessary conditions that a category C has to satisty in order to enjoy a

dependent typed internal language:

1. Chas to be finitely complete. This is because we want to interpret substitution of terms

by means of pullbacks.



2. The structure of C necessary to interpret the type constructors on closed types has to
be local, i.e. for every object 4 € Ob(C) the slice category C/4 must enjoy the same
structure of C (for example, if C is a regular category then C/A4 should be a regular cate-
gory for every 4 € Ob(C)). This is because a dependent type is interpreted in a suitable
slice category and hence any slice category has to be equipped with all the structure to
interpret the type constructors under a certain dependency. The slice category is defined
as

Definition 2.0.6 (Slice category). The slice category C /A of a category C over an object
A € Ob(C) has

o objects that are all arrows f € Arr(C) such that cod(f) = A
* morphismsh : X — Y € Art(C) fromf: X — Atog: Y — Asuchthatgoh = f.

3. The structure of C has to be preserved by the pullback functor 7 : C/4 — C/Bforev-
ery morphism f: B — A of C. This is because, if we interpret substitution via pullback,
then the structure needs to be preserved under pullbacks to make the interpretation of
a type constructor closed under substitution.

Regular categories satisfy the necessary conditions to enjoy an internal dependent type the-

ory.



The internal dependent type theory of

regular categories ﬁgg

3.1 EXTENSIONAL DEPENDENT TYPE THEORIES

For the categorical structure of the regular categories described in the previous section we give
here the description of the corresponding typed calculus meant to provide its internal language
in the style of Martin-L6f’s extensional dependent type theory [1].

Any typed system is equipped with types, which should be thought of as sets or data types,
and with typed terms which represent proofs (or elements) of the types to which they belong.
In order to describe them in the style of Martin-L6f’s type theory, we have four kinds of judge-
ments [6]:

Atypell] A=B[] acdll] a=beAll

that is the judgements about type formation and their terms, the equality between types and
the equality between terms of the same type (called definitional equality of terms in contrast to
the propositional equality of terms that is a type).

The contexts of these judgements are telescopic [7], since types are allowed to depend on

variables of other types. The contexts are generated by the following rules

- Tcont  Atype[T]
0 cont I',x € A cont

wc(x€A¢T)

7



When the context is empty we write only Finstead of F[], and call /a “closed” judgement as
opposed to “hypothetical” judgement, that is with non-empty context.

Then, we need to add all the inference rules that express reflexivity, symmetry and transi-
tivity of the equality between types and terms together with the type equality rules and the

assumption of variables

REFLEXIVITY
ac Al A type [T
B — 2 reflt
i—acdm ™ g Y
SYMMETRY
4= y sym-tm I sym-ty
b= [T T
TRANSITIVITY
a=be A[] b=ce A A= B[] B=CIT]
trans-tm trans-ty
a=ce 4[] A=C[I
TYPE EQUALITY
a € Al A= B[] a=1be Al A= B[]
conv conv-eq
a € Bl a=0beB[
ASSUMPTION
Ix € A4, A cont

vedlxed A
Generally, when formulating a theory of types, it is convenient to use the minimum number
possible of structural rules and formation of types and terms in a way such, however, that the
theory is closed on some inalienable rules such as the weakening rules the substitution rules
and suitable exchange rules. Thanks to the form of the rules we will provide for building types
and terms it will not be necessary explicitly to add those which we list below because their are

admissible. We recall the following definition of admissible rule:

Definition 3.1.1 (Admissible rule). Let’s say that a rule formulated with the judgments of T,
theory is admissible in T, if and only if in the case its premise judgements are derivable in T,

then also the conclusion judgement is also derivable in T .

8



WEAKENING

At T T, A cont A=BI|T T A
ope L] 208 ind-ty [J ) & CONF ind-ty-eq
Atype [T, Al A=B[L,A]
a € AT T,Acom‘.d a=be A[] I, A cont indotmee
acAl,A] ™ 2a=beA[T, A 1
SUBSTITUTION

In a calculus of dependent types we must necessarily substitute terms in types, terms and their

equality when these are dependent on certain other types. Therefore the calculation must be

closed on the following substitution rules:

a; € AI [f] ...a, € An (ﬂh e 7élﬂfl) [r] C(xl, N ,xn) typ@ [r,xl € A17 RN, € An(xh e 7xn71)} sub-t
Cla,...,a,) type|T] Y

a=bedi[l]...a,=b,€d,(a,... ,a,1) [T C(x1,...,%,) type [T, € Ay, .y %, € Ay, oo, %1)] bt
sub-ty-e
Clay,...,a,) = C(by,...,b,) typeT] e

<3 Xn EAn (X1,-. - 7xn71)}

a €A, 1...a, €4, (a,...,a,1) [T] C(x,...,%,) =D (x1,...,x,) type [, € Ay, .. sub-Equty

Clar,...,a,) = D(ay,...,a,) type[I]

=D (x,....%,) type [T,00 € Ay, ..., %, € Ay (%1, ., %01 sub-Eqy-eq

a €A I...a, €4, (ar,...,a,1) [T] c(x,.oy2,) € Clowry .o oyx,) Do € Ayy .oy x, € Ay(r, oo, 2,-1)]
sub-tm

c(ay,...,a,) € Clay,...,a,) type[I]

clar,...,a,) =c(br,....b,) € Clay,...,a,) type[I]

) =d (. ,x,) €Clay,. o x,) Dw €4y, ., x, € Ay(x, .., %,1)] sub-ea-tm
c(ar,....a,) =d(a,...,a,) € Clar,...,a,) type[l] 9

ay=bc4(l]...ay=b,€d,(a,...,a,) [T] 4% )
c(ar,....a,) =d(br,...,b,) € Clay,...,a,) pype[l]

c(x,..,%,) € Clxy,...,x,) [T, €Ay, x, € Ay(r, .o, %,1)] sub-tm-eq



EXCHANGE

The rule of exchange of assumptions in a context in type theory dependent is not generally
derivable for the dependence of the type of an assumption in a I context from the assumptions
in T that precede it. However, we can demonstrate a restricted form of exchange rule such as

follows

Atype[I',x € C,y € D, A I''ye D,x € C,A cont

ex-ty
Atype [T,y € D,x € C,A]
A=B[I'xe C,ye€ D,A] I'ye D,x e C,Acont
ex-ty-eq
A=B[l,ye D,xec CA]
acdl,xe CyeD,A] Iy € D,x € C,A cont
ex-tm

acd[l,ye D,xe C A

a=beAdl,xe CyeD,A] I''ye D,x € C,A cont
a=beAdlye D,xe CA]

ex-tm-eq

We also adopt the usual definitions of bound and free occurrences of variables and we iden-

tify two terms under a-conversion.

3.2 THE CALCULUS OF REGULAR CATEGORIES 7;gg

Now, we give the formation rule for types specific to the calculus of regular categories with the

introduction, elimination and conversion rules of their terms.

3.2.1 TERMINAL TYPE

ForMATION
I cont 1
T type [I]
INTRODUCTION
T cont
weTm I

I0



EQuaLiTy

re T[] o
t=xeT
COMPUTATION
T=T
* = x
3.2.2 INDEXED SUM TYPE
ForMmATION
C(x) type [I', x € B C(x) = E(x) [I',x € B] S e
>.e5C(x) type [T Z.e8C(x) = ZepE(x) [T] 1
INTRODUCTION
b € B[T] c € C(b)[T] >.e5C(x) type [T Ls

(b,¢) € ZuepClx) [T]

b=decB[l] c=cecCl)I] SesC)sypell]

(b,c) = (d,e) € Z.e5C(x) [T] [-Z-eq

ErLimMINATION

M(z) type [T,z € ZiepClx)) d € 2.cpC(x) [T] m(x,y) € M((x,7)) [T,x € B,y € C(x)]

Els(d, m) € M(d) [T] Ex

M(z) type [I',z € ZyepC(x)) d=d € Z.5Cx) [T m(x,y) = m'(x,y) € M((x,y)) [[,x € B,y € C(x)]

Els(d,m) = Els(d',m') € M(d) [T] E-Z-eq

EqQuaLriTY

M(2) type [T, z € ZyepClx)] beB[I] ceC(b) ] m(x,y) € M({x,y)) [[,x € B,y € C(x)]

El (5, ), m) = m(b.c) € M((5,) [T] -z

II



COMPUTATION

2B C(x) = Zics C(x)

d= (b,c) m(b,c) =g

(b} = (b,c) Els(d,m) = g

3.2.3 EXTENSIONAL EQUALITY TYPE

ForMATION
CopelI] ceC[I] deC[I] .
Eq(C, ¢, d) type [I] &
C=E[] c=c¢e C[] d=feC[I] Eqeq
Eq(C,c,d) = Eq(E, ¢,f) [T]
INTRODUCTION
ce C[T) c=de C[]
I-E I-Eg-e
eqclc) €Eq(Ce 0[] 1 eqele) = eqold) € Eq(Cic, ) [T]
ErLiMINATION
p € Eq(C,c,d) [T] Eq
c=de C[]
EQuaLiTy
? € Eq(C.c,d) [T] C-Eq
? = eqc(c) € Eq(C,¢,d) [T]
COMPUTATION

eqc(c) = eqelc)

I2



3.2.4 QUOTIENT TYPES ON THE TERMINAL TYPE

ForMaTION
m . A/?iﬁ/@ 7 e
INTRODUCTION
[ﬂ]deeAji[Tr ][r] o [ZA:[F[L] e j/erfrgﬂ e
ELIMINATION

L(z) type [T,z € 4/ T] ped/TIT I(x) € L([x]) [T, x € 4] I(x) =1(y) € L([«]) [T,x € 4,y € 4] E-Qur
Elo(l,p) € L(p) [T

L) opellzed/T)  p=p €A/TIN o) =l e L) [Lred] o) =lp) L) Tmedyed) o
Elg(l,p) = Elo(!',p') € L(p) [T]

EQuaLiTy

L(z) type [T,z € A/ T] a € Al I(x) € L([«]) [T, x € 4] I(x)=1ly) e L([x]) [I,x € 4,y € 4] C-Qur
Elo(l, [a]) = U(a) € L([a]) [T]

COMPUTATION
AT = A/T

p=la  la)=g
EZQ(Z’p) =g

2] = [4]

We'll refer to the calculus of regular categories with the notation 7,

13



3.2.5§ PROPERTIES

In the next section we will frequently often use some concepts and properties that we will briefly

describe here.

Definition 3.2.1 (Proof). A proofis a tree of judgements built up in the usual way using instances
of the rules of inference.

Lemma 3.2.1 (Sanitary checks rules on typing correctness). In a type theory they must also hold

the following properties of sanitary check to ensure correctness of the typing of terms:
1. If [T, A cont is derivable then | cont is also derivable;
2. If [T, x € A cont is derivable then [T| cont and A type [T| are also derivable;
3. If A type [T] is derivable then [T cont is also derivable;
4. Ifa € A [T s derivable then A type [T is also derivable;
If A = Bype [I] is derivable then so be it A type [I'| and B type [I'] are derivable;

by

Ifa =b e Al isderivable then so beita € A [T and b € A [I] are derivable.

S

To express the fact that a sequence of variables can be substituted by a given sequence of

expressions, we introduce the following concept of fitting substitutions.

Definition 3.2.2 (Fitting substitution). The sequences of judgements

a € A4, ... a, €4,

and
ay=ay € Al,...,a, =a, € 4,[T]
where
é = Ai(dlu C. 741'71)
are substitutions that fit with any context [U',x; € Ay, ..., %, € A,(x1, ..., x,)].

We introduce the notion of associate judgements.

Definition 3.2.3 (Associate judgements). The associate judgement(s) of

14



1. a € AT is A type [T
2. A= B[l ared type [I'| and B type [T
3.a=beAlareac Allandb € A[T]

Theorem 3.2.1 (Associate judgements derivability). Let J be a derivable judgement. Then the

associate judgements of | are derivable.

Proof. The three cases should be proved simultaneously. The proof follows almost immedi-
ately by induction on the length of the derivation of the considered judgement. Only in some
cases structural rules or substitution rules should be carefully used. O

SUBSTITUTED JUDGEMENTS

Substitution is a central operation on judgements. Many concepts that we shall introduce in

the next section will be based on the two kinds of substitutions we define now.

Definition 3.2.4 (Tail substituted judgements). Ler A = [I',x € 4y,...,x, € 4,] be a con-
text,ay € A [1),...,a, € 4,[Tanda, = 4, € 4, [1],...,a, = a, € 4, [T] be substitutions
that fit with the last n assumption in the context A, and | = F |A] be any judgement. Then

1. J[x = ay, ... %, = a,] is an abbreviation for the tail substituted judgement of | which
is the following:

(a) IfF = A type
(b) FF=A4 =8
() fF=ac 4
(d) [fF=a=bcd

alay,...,a,) =blay,...,a,) € A4y, ..., a,)[I]

2. Jl; —ay =4, ... ,x, < a, = a4, isan abbreviation for the tail substituted judgement

of J which is the following:

Is



(a) If F = Atype

Alay, ... a,) =Alay, ... 4,
(b) IfF=A=B
Alay, ... a,) = Blay, ... 4,
(c) fF=acAd
alay,...,a,) =al4),....4,) € Aa,
() [fF=a=be 4
alay,...,a,) =b4,,...,4a) € A(a,

The substitutions rules are sufficient to prove the following theorem

Lemma 3.2.2. The tail substituted judgements of a derivable judgement are derivable.

Proof. Just apply the suitable substitution rule.

Definition 3.2.5 (Head substituted judgements). Let A = [x; : 4,
cya; € A;and ay = a] € 4,.
tutions that fit with the first i assumptions of A, J
sa;) foranyi+1<j<n Then

a; € Al,.

A]/ = Aj(dl, ..

1 Jx =a,. ..

is the following:

(a) If F = A type

(b) IFF=A =B
A(ay,. .
() fFF=ac A
alay, ...

ceyd

F [A] be any

A(ﬂla ce 741‘) Lype [‘xl*l < A;Jrl’ o
741‘) = B(ﬂla e 741') [xl"f‘l € AZ*“
741') S A(ﬂlv o ’dl') [xl“"‘l S A;'H’

]

ooy %, 1 Ay be a context,

= a. € A, forsomei < n, be substi-

Judgement. Moreover let

,X; 1= a,] is an abbreviation for the bead substituted judgement of ] which

X, €A

oy x, €A

X, €A



(d) [fF=a=be 4

alay,....a;) =blay,...,a;) € Alay, ... ,a;) (%1 €Ay, ... %, €A

2. Jlm a1 =ay,...,x, < a, = a,] isan abbreviation for the tail substituted judgement

of Jwhich is the following:

(a) IFF= A ype

Aay,....a;) =Aay,...,a4,) (% €Ay, ... %, €A
(b) IfF=A4=B

Aay, ... a;) =Blay,...,a,) [xi € Aryy, ... %, €A
(c) fF=acAd

alay,...,a;) =alay,...,a)) € Alay,...,a4;) [xi1 € Aipy, ..., x, € A

(d) fF=a=be 4

ala, ... a;) =blay,....a;) € Alay, ... a;) (%1 €Ay, ... %, €A

Lemma 3.2.3. The head substituted judgements of a derivable judgement are derivable.

Proof- 1. Notethatifa; € 4, ...,a; € A;isasubstitution that fits with
[xi €Ay, ...,x; € A thena, € 4y,...,a; € Aj,x;41 € Aiy, ..., %, € A, isasub-
stitution that fits with [x; € 4, ..., x, € 4,]. Hence the result follows by using the
suitable substitution rule.

2. Ifay =4} € 4y,...,a; = 4, € A;isasubstitution that fits with [x; € 4}, ...,x; € 4}]
thena; = ay € 4y,...,a; = 4. € A, %01 = %41 € Aijr, .., %, = %, € A, is
a substitution that fits with [x; € 44, ..., x, € 4,]. Hence the result follows by using

directly the suitable substitution rule.

]

Note that we use the same notation for the head and the tail substitutions since the names

of the variables and their positions in the context are sufficient to determine the kind of substi-

tution we want to perform.

17



3.2.6 ALTERNATIVE VERSION

In order to prove the canonical normal form for 7,.,, we’ll consider an equivalent version of the

theory, named 7;;;, where the X-formation rules and the var rule are replaced by the following
rules:
B rype [T] Clx) type [T, x € B] _, B=DI] C(x) = E(x) [I',x € B Seq
2.e5C(x) type [T Z.e8C(x) = ZiepE(x) [T

»EEQ(Ced)[I]  Copell] ceCll] dec

E-Eq*
c=de [ 1

I,x€Ad,Acont  Atype[T]
x€A[l,x€ 4,4

var®

The equivalence is guaranteed by the following lemma.

Lemma 3.2.4. T, and ’Ejg are equivalent, i.e.

1. Ty derives the X*-formation and the var* rules

2. T, derives the Z-formation and the var rules

Proof- 1. 2" canbe derived using the X rule, ¥*-eq can be derived using the X-eq rule, E-Eq*
can be derived using the E-Eq rule and var* can be derived using the var rule.

2. To derive the X rule, consider the derivable judgement C(x) zype [I', x € BJ, then [I',x €
B] cont is derivable and so is B type [I']. The result follows by applying the =* rule. Simi-
larly for the Z-eq rule.

To derive the E-Eq rule, consider the derivable judgement p € Eq(C,¢,d) [I], then
Eq(C, ¢, d) type [I'] is derivable and so are C zype [T'],c € C[I]andd € C[I]. The result
follows by applying the E-Eq* rule.

To derive the var rule, consider the derivable judgement I', x € A4, A cont, then, by point
1 of lemma 3.2.1,T', x € A cont is derivable, and so, by point 2 of the same lemma, also
A type [I]. Hence, the result follows by applying the var* rule.

]
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The internal dependent type theory of

arithmetic regular categories Ergg

In this chapter, we extend the theory of regular categories by adding natural numbers. This
allows us to reason about recursive functions and their properties in a more precise and system-

atic way. Here, we show the added rules of the natural numbers type.

NATURAL NUMBERS TYPE

ForMATION
T cont na
Niype [T
INTRODUCTION
_Tcont I;-nat L‘le nat m=n € NI L-nat-e
0 € N[IJ s(n) € N[I] ° sim) =s(n) e N[I] 20
EriMINATION

L(z) type [T,z € N| ne NIl a€L(0)[I] Ixy) €L(s(x))[[,x€N,yec L(x)]
Eln(a,l,n) € L(n) [T]

E-nat
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L(z) type [T,z € N] n=n € NI a=a4 €L(0)[I lx,y) =1(x,y) € L(s(x)) [T,x € N,y € L(x)]

E-nat-
Eln(a 1,n) = Ein(a, I, 7)€ L(n) [T] nared

EQuaLiTy

L(z) type [T,z € N| a € L(0) [T] l(x,y) € L(s(x)) [[,x € N,y € L(x)]
Eln(a,1,0) = a € L(0) [T]

L(z) type [T,z € N| neNI| a€L(0)[I] Ilxy) €L(sx)[I,x€N,y€ Lx)]
Eln(a,l,s(n)) = {(n, Eln(a,l,n)) € L(s(n)) |

COMPUTATION

N= N

n=0 a=4g

0=0
~ Eln(a,l,n) = ¢

n=s(m)  I(m, Elx(a,l,m)) =g

s(m) = s(m) Eln(a,l,n) = g
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The canonical form theorem for ﬁeg

§.I THE EVALUATION TREE

A set of computation rules is associated to each defined type. They specify a process for eval-
uating expressions denoting elements or types. They apply to variable-free and saturated ex-
pressions, that is, expressions of arity 0 in which no variable occurs free. The "normal form”
theorem for expressions [8], assures us that a variable-free, saturated expression is always defini-
tionally equivalent to an expression of the form ¢ (a4, . . ., 4,) where ¢ is a constant. Hence, to
evaluate an expression, we first consider its normal form and then detect the suitable computa-
tion rule. This can be done by looking at the outermost constant of the expression in normal
form and, only in some cases, at the value of its first argument. Then each premise of the se-
lected rule indicate how to continue the process recursively. Clearly, the process of evaluating
an expression denoting an element or a type using the computation rules naturally gives rise
to a finitary tree: we will refer to it as the evaluation tree. Of course an expression evaluates if
and only if its evaluation tree is finite. Hence if we know that an expression can be evaluated an
induction on the depth of its evaluation tree is a correct proof-method. It can be used to prove

the following theorem.
Theorem s.1.1. Let ¢ and C be variable-free and saturated expressions. Then

1. If ¢ = gthen g is a canonical expression for an element, i.e. exactly one of the following
holds: g = *,g = (a,b),g = eq (a),g = [a].
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2. If C = Gthen G is a canonical expression for a type, i.e. exactly one of the following holds:
G=T,G=2,4B(x),G=Eq(4,4,b),G=A/T.

Note that the objects in the conclusion of a formation rule or an introduction rule are always
denoted by canonical expressions. We will call them canonical elements or canonical types re-
spectively. However a canonical expression does not necessarily denote a canonical element or
a canonical type. The successive canonical form theorem will certify this whenever we consider
judgements derived within the theory. More precisely, if the judgement 2 € A (or A type) is
derived within the theory, then the canonical expression resulting from the evaluation of the
expression a (or A) denotes a canonical element (or a canonical type). Moreover, under the
same hypothesis, the evaluation process of the expression « (or 4) always terminates.

Finally let us also observe that, since the computation rules do not "add” variables, it is obvi-
ous that if no variable appears in z (respectively 4) and 2 = g (respectively 4 = G), then no
variable appears in g (respectively G).

5.2 COMPUTABILITY

In this section we introduce the main notion of the chapter: the definition of computable
judgement.

To prove a canonical-form theorem for the system we are considering we will follow a proof
style similar to the one used by MartinLL6f in [9] based on the method of Tait [10] to prove
normalization theorems. Therefore we will introduce the notion of computable judgement.
This notion applies both to closed judgements and to hypothetical ones. Essentially, to express
the computability of a judgement is equivalent to express what it is necessary to know in order
to be allowed to formulate that judgement. Hence the definition formally summarizes the
meaning of all the forms of judgements which can be obtained by a derivation in type theory.
Of course, it is directly inspired by the informal explanation of the rules given in [1], but the

needs of formalization make it a very long definition.

Definition s5.2.1 (Computable judgement). The judgement ] = F [I] is computable if it is

derivable and
1. There is no assumption, i.e. the context I is empty.
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* Subcase 1.1: F = A type. Then

— (evaluation) A = G,
— (correct evaluation) the judgement A = G 4 is derivable
— (parts) the parts of G4 are computable type(s), i.e.
x if G4 = T then no condition
* if Gy = Zieq, Ca(x) then the judgements Cy type and Cy(x) type [x € C}]
are computable
* if Gy = Eq (C, a1, c2) then the judgements C type, ¢, € Cand ¢, € Care
computable

* if Gy = C/T then the judgement C type is computable

* Subcase 1.2: F = A = B then
— (associate judgements) the associate judgements A type and B type are
computable, and hence A = G4 and B = Gp.
— (parts) Gy and Gg are equal computable types, i.e.
* G =TiffGy=T
* Gy = 2o Co(x) iff Gy = Ziep,Da(x) and the judgements C; = Dy
and Cy(x) = D,(x) [x € C\] are computable
* Gy =Eq(C,a,0)iff Gy = Eq (D, d\, d,) and the judgements C = D,
a =d € Candc, = d, € Carecomputable
* G4 = C/T iff Gg = D/ T and the judgement C = D is computable

* Subcase 1.3: F = a € A then
— (associate judgements) The associate judgement A type is computable, and hence
A= Gy
— (evaluation)a = g
— (correct evaluation) a = g € A is provable
— (parts) the parts of g are computable element(s) in G4, i.e.
*x Gyu=Tiffg=x
* Gy = ZuecD(x) iff ¢ = (¢, d) and the judgements c € Cand d € D(c)
are computable
* G4 = Eq(C,a,0) iff g = eqcles) and the judgement ¢ = ¢, € Cis
computable
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* Gy = C/T iff g = [c] and the judgement ¢ € C is computable

* Subcase 1.4: F=a=b € Athen
— (associate judgements) the associate judgements a € A and b € A are com-
putable, and bencea = g,,b = gyand 4 = G,
— (parts) the following holds
* Gy =T iffg, = and g, = *
* Gy = 2ecD(x) iff g = (a,dy1) and g, = (2, d>) and the judgements
a=c € Candd, = d, € D(q)) are omputable
* Gy = Eq(C,a,0) iff . = eqe(cs) and g, = eqc(cs) and the judge-
ment ¢, = ¢ € Cis computable
* Gy = C/Tiffg, = |a] and g, = [c2] and the judgements ¢, € C and

¢, € Care computable

2. There are assumptions, i.e. I = x € Ay, ...,x, € A,, for somen > 0. The judgement
J is computable if for any computable closed substitution (c.c.s.) ay € 4i,...,a, € 4,
(i.e. a; € A, for1l < i < n, are computable judgements), and for any computable closed
substitution (c.c.s.) ay = o € Ay,...,a, = ¢, € A, (i.e. a; = ¢; € A, for1 < i < n,
are computable judgements) that fit with T

 Subcase 2.1: F= B (xy, . .., x,) type

») type is computable
2) = B(c, ..., c,)iscomputable

— (substitution :=) the judgement B (ay, . .

Y

., a
— (substitution <) the judgement B (ay, . .. ,a

* Subcase2.2: F= B (xy,...,x,) = D (x1,...,x,) then

— (associate) the judgement B (xy, . . ., x,) type [T is computable

— (substitution :=) the judgement B (ay, . . . ,a,) = D (ay, ..., a,) s
computable

— (substitution <) the judgement B (ay, . . . ,a,) = D (a1, . .. ,¢,) is computable

* Subcase2.3: F=b(xy,...,x,) € B(xy,...,x,) then

— (associate) the judgement B (x4, . . ., x,) type L] is computable
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— (substitution =) the judgement b (a, . . . ,a,) € B(ay, ..., a,) iscomputable

— (substitution <) the judgement
b(ai,...,a,) =b(a,...,c,) € Bla,...,a,)iscomputable

* Subcase2.4: F=b(xy,...,x,) =d(x1,...,%,) € B(x1,...,x,) then

— (associate) the judgement b (xy, . .. ,x,) € B (x1, ..., x,) [ is computable
— (substitution :=) the judgement

b(ai,...,a,) =d(a,...,a,) € Blay,...,a,)iscomputable
— (substitution <) the judgement

b(ay,...,a,) =d(a,...,c,) € B(a,...,a,)iscomputable

Note that the asymmetry in the conditions on associate judgements (point 2.2.1 and 2.4.1)
reflects the asymmetry in the rules of the theory. Actually we will prove that also the other
associate judgement is computable but the reduced requirement simplifies the next inductive
proofs. By looking at the above definition as a "generalized process” to search for computability
of a judgement, a search tree is naturally associate to any derivable judgement. It is clear that
whenever /is recognized to be a computable judgement its search tree is well founded. In such

a case we give the definition of computation tree.

5.3 COMPUTABILITY OF THE RULES

We are now going to prove that any judgement derivable in the theory is computable. The
proof will consist in proving that each rule preserves computability, that is, if the judgements
in the premises of a rule are computable then also the judgement in the conclusion of the rule
is computable. Of course, this is the inductive step in a proof by induction on the depth of
the derivation of the considered judgement. Note that the computability of the judgements
in the base cases is given by definition. We will consider only “full-context” derivations, i.e.
derivations build up by applying a rule only if the assumptions which are not discharged by the
rule are equal in all the premises, with the only exception of the assumption rules. Note that

this is not restrictive since every derivable judgement can be derived by a full-context derivation.
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5.3.1 THE STRUCTURAL RULES

Lemma s.3.1 (Weakening rules). IfF [I| is computable then F T, A] is computable.

Proof. Letl =[x € 4y,...,x, € AyJand A = [y; € By, ...,y € B,
* (substitution := ) Forany c.c.s. 41 € 44,...,a, € 4,,b1 € By,...,b, € B, fitting
with [[, A], we have thata;, € 4y,...,a, € A4, isac.c.s. that fits with [; hence
FIl[w =ay,...,x,:=a,| = F[[,A][x1 = a1, ..., %, = a,, 01 = b1, ..., 9 = b,

is computable by assumption.

* (substitution <— ) For any c.c.s. a4y = a4y € Ay,...,a, = a, € A,,b = b} €
Bi,...,b, =V, € B, fitting with [I,A], we have thata; = 4} € 4;,...,a, =
a,, € 4, isac.c.s. that fits with T; hence

Fl|[xy <~ ar =4}, ...,x%, ¢ a, =4a,] =
FL,Alqi «—ar=ay,...,%, < a, =d,, b =0by,....9, b, =10)

is computable by assumption.

* (associate) Consider any possible form of the judgement /.

— It F = Ctype, then there is no condition.

— If F = C = D, then the associate judgement
Ctype [I', A] is computable by the previous case.

— If F = ¢ € C, then the associate judgement Ctype [T, A} is computable by the first

case.

— If F= ¢ = d € C, then the associate judgement
¢ € C[I', A] is computable by the previous case.

The next lemma on the reflexivity rule states that the rule preserves computability.
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REFLEXIVITY RULES

Lemma s.3.2 (Reflexivity on elements). The reflexivity on elements rule preserves computabil-
ity, that is, if

ac Al
is computable, then

a=acA[]

is computable.

Proof. e Subcase I’ = ().

— (associate judgements) The associate judgements are computable by hypothesis.

— (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of the values of z and 4.

x Ifu = xand 4 = T, then there is no condition to show.

* Ifa = (¢,d) and 4 = X.ccD(x), thenc € Candd € D(c) are computable
and by induction hypothesis alsoc = ¢ € Candd = d € D(c).

* Ifa = eqe(;) and 4 = Eq(C, ¢, 0), then ¢ = ¢, € Cis computable by
assumption.

* Ifa = [c]and 4 = C/T, then¢ € Cis computable by assumption.

* Subcase I' # ().

— (associate) The computability of the associate judgement of 2 = a € A [I']is given
by hypothesis.

— (substitution :=) Consider any c.cs. 41 € A4y,...,a, € A, fitting withT' =
[x; € 41,...,x, € A4,], then

a € Al[x = au,...,x, = ay,)

is computable;
a=acA[lx :=a,...,x, :=a,

has empty context, then it is computable by (I' = @) subcase.
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— (substitution <) Consider any c.c.s. @1 = a; € A4y,...,a, = a, € A, fitting
with = [x; € 4y,...,x, € 4,], then

a €A« ay=d,... % a,=d]=

a=acAllwm —ar=ay,...,x, < a, =a,)

is computable by assumption.

]

Lemma s.3.3 (Reflexivity on types). The reflexivity on types rule preserves computability, that

is, if

Atype [T

is computable, then

is computable.

A=Al

Proof. e Subcase I’ = ().

— (associate judgements) The associate judgements are computable by hypothesis.

— (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of the values of 4.

*

*

If 4 = T, then there is no condition to show.
If4 = X.ccD(x), then C type and D(x) type [x € C] are computable, and
by induction hypothesis also C = Cand D(x) = D(x) [x € C].

If4 = Eq(C,c,c), then Crype, g € Candc, € C are computable; by
induction hypothesis we have that C = C'is computable and by the previous
lemmaalso¢ = ¢ € Cand¢, = ¢, € C.

If4A = C/T,then C type is computable and by induction hypothesis also
Cc=2C.

* Subcase I' # ().

— (associate) The computability of the associate judgement of 4 = 4 € [Iis given
by hypothesis.
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— (substitution :=) Consider any c.cs. 4, € 4y,...,a, € A, fitting with ' =
[x; € 4,...,x, € A4,], then

Atype [T[xy i=ay, ..., %, = a,)

is computable;
A=A[lx = a,...,x, = a,]
has empty context, then it is computable by (I' = 0)) subcase.
— (substitution <) Consider any c.c.s. a; = 4] € 4,,...,a, = a, € 4, fitting

with = [x; € 4y,...,x, € 4,], then

Atype U]y < a1 = ay, ..., x, < a, = a,) =
A=A < ay=aj,...,x,  a, = 4]

is computable by assumption.

THE SUBSTITUTION LEMMAS

The following lemma does not concern one of the rules of the theory but states some properties

of computable judgements which will be very often referred to in the following subsections.

Lemma s.3.4 (Head substitution). LerT' = [x; € 4y, ... ,x, € A, be a context, ] = F[I] be
a computable judgement, a; € 4y, ... a; € Ajanda; = ay € 4,...,a, = a. € A, fori < n,
be c.c.s that fit with the context [x; € 4y, . .., x; € A;|. Then

1 J[x = a,...,x = a,] is a computable judgement.

2. Jlv a1 =ay, ..., x; < a; = 4| is a computable judgement.

Proof. Let A = |:xl'+1 €Ay, ... %, € Aﬂ, where A} = djay,...a;),tori+1 < j <
n,and leta; .y € A, ,,...,a, € A, beaccs. that fits with the context A. To prove the
computability of the head substituted judgements we will show that for any c.c.s. saturating
Jxw i =a1,...,x;:=ajorf|xi < ay =al,...,x < a; = al] itis possible to find outa c.c.s.

saturating / and yielding the same judgement.
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* (substitution := ) For any c.c.s. 4,44 € A}yy,...,a, € A, we have thatz; €

A, ...,a, € A,isac.c.s. that fits with I'; hence

(e :=ar, ..y x = a)]) [ = a1, -, % = a,] =0 = ay, ..., %, = a,

is computable.

(substitution <— ) Forany c.c.s. 2,41 = 4}, € A}y, ... ,a, = a,, € A4, that fits
with the context A, we have that 2y = a4y : 4y,...,4; = a; : ;4,11 = a) :
Aitr, ... a, = a,, : A, isaccs. that fits with I'. Note that the reflexivity-on-

elements lemma 5.3.2 must be used here. Hence

(i :=ar, ..., % = a)]) [xZ-H A = Al Xy A, = d;}

— !/ /
:][xl S A=A, G K AT A X 5 Al = Ay Xy Ay = dn}
is computable.
(associate) Consider any possible form of the judgement /.

— If F = Ctype, then there is no condition.

— If F = C = D, then the associate judgement
Crype [I| [x := ay, . .., x; == a;] is computable by the previous case.

— If F= ¢ € C, then the associate judgement Ctype 1] [x1 := ay, .. ., x; 1= 4]
is computable by the first case.

— If F= ¢ = d € C, then the associate judgement
¢ € CI'l[x :=ay,...,x = a,] is computable by the previous case.

(associate judgements) The computability of the associate judgements follows from

case 1 sinceif 4y = a4} : 4y,...,a; = a4 : A;, fori < n, are computable then also
ay i Ay, ..., a; : A;are computable and
T i=a, ..., x = a

is the associate judgement of

Jw—a=ay,...,x« a;=a]

whose computability is required.

(substitution :=) For any c.c.s. ;41 € A4}y, ...,a, € A, that fits with the con-
text A, we have thatay = 4} 1 Ay, ...,a, = a. : Ajyaiv1 = a1 Air,y -+ a, =
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a, : A, isac.c.s. that fits with I'; hence also

(Jw <~ ar=ay,...,x < a; = a)]) %1 = a1, .., %, := a,)

— ! !
=J < ar=ay, .. X A= A Xppy S A = iy KXy S Ay = a4y

is computable.

* (substitution <) For any c.c.s. 2,41 = @)y : A}y, ... a4, = a,, : A, that fits
with the context A, we have that 2y = 4{ : 4y,...,a; = 4, : ;a4 = a;, :
A1, a, = a, : A, isac.cs. that fits with T hence

. / o / o / . /
(oo a1 =ay,...,x; < a; = a)) [x,qu Al = Ay Xy Ay = n}
— / !/ / /
:][xl S A=A, K A= A X 5 Al = Ay Xy Ay = an}

is computable.

]

The definition of computable judgement directly states that the substitution rules preserve
computability in the special case of saturating substitutions. In the next lemma we will prove
that computability is preserved by substitution rules also in the general case of tail substitution.
Since the different forms of judgement of the substitution rules are not essential to prove the

result we will compact the sentence as much as possible.

Lemma s.3.5 (Tail substitution). Let I be a context, A = [[,x; € 4y, ... ,x, € A, be a con-
text, | = F[A] be a computable judgement, a, € 4, [I,...,a, € 4, [I| and a, = a; € 4, [T,
- a, = a4, € A, [T] be two lists of substitutions that fit with the context [x; € Ay, ..., x, € 4,].
Then
1 J[x = a,...,%, = a,] is a computable judgement.
2. [l —ay=al,....x, < a, = a4, isa computable judgement.

Proof. If the context I' is empty then the claim holds by definition. Thus, let us suppose that
F=[s5€S8,...,5, €S,), forsomem > 0.

I. * (substitution := ) Forany c.cs. ¢ € Sy,...,¢, € S, fitting with the context T,

we define
d; =aic,...cn) 1<i<n
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Then

dl‘ S é([l, ce

are computable. Moreover we have

Az’(ﬁa ..

(Az'(dh
A
A

s Cm)

Thereforec, € S, ..
context A. Hence

(/[.X‘l =4ap,...
][51 =, ..

-3 Cm ESmadl EAla

y X

is computable.

(substitution <—) Forany c.c.s. ¢ = ¢ € S, . ..

context I', we define

d; =aic,...cn)
and
d;=ald,...c,)
Then
d; = d; € 4

l'(Cl, ..
;

) s =a, ...

S = Gy X1 = dy, ..

7Cm)

ceyai)) ety 6m)

. 7Cm7dla e ,dl',l)

...,a, € A, isac.cs. fitting with the

, Xy

e = ¢, €S, that fits with the

ClyveyCm)

are computable. Moreover from the previous point we have

Az‘ = é([l, ..

Thencl == le € SI, ..
that fits with the context A. Hence

([ == a, ...

Xy = a,)) [ a

.,Cm:ij ESm,dl ==

7Cm)

dy€A,...,d,=d, €Ad,isaccs.

/ / —
=S =0 =

/ / ! !
][31%q:cl,...,sm%cm:cm,m(—dl:dl,...,xn%dn:dn]

is computable.

* (associate) Consider any possible form of the judgement /.

— If F = Ctype, then there is no condition.

— If F = C = D, then the associate judgement

Crype [A] [x1 :=ay, . ..
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— If F= ¢ € C, thentheassociatejudgement Ctype [A] [x; := ay, ..., x; = a,]
is computable by the first case.

— If F= ¢ = d € C, then the associate judgement
¢ € ClA][x :=ay,...,x; = a,] is computable by the previous case.

* (associate judgements) The computability of the associate judgements follows from

case I.
* (substitution := ) Forany c.c.s. ¢ € Sy,...,¢, € S, fitting with the context T,
we define
d;=a/c,...cn) 1<i<n
and
d,=al(c,...cn) 1<i<nm
Then

dl‘ = d; S é(q, ce ,Cm)
is computable. Therefore, since
A, =Aier, .. 6n)

a=0a€8,....0p=10Cy € Spydy =d; € 4y,....,d, =d, € 4,isaccs.
fitting with the context A. Hence

Jw—ar=a),.... 6, a,=a)))[si:=c,eeydm i =Cp) =

U !
][51FQ:Q,...?SmFfm:Cm,xl%dlzdl,...,andn:dn]

is computable.

* (substitution <— ) Forany c.cs. g = ¢} © Sy,...,¢, = ¢, : S, fitting with the
context I, we define

and

Then
d;=d; € 4i(cr,. .., c)

are computable. Therefore, since
A=Aty 6m)

s a=q €S, ..,cn =20, €Sydi =d; € A4,....d,=4d, € 4d,isaccs.
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fitting with the context A. Hence

Jw—ar=ay,... x5, a,=a)))n+a=d,....smc,=C,) =

/ / ! U
][51<—C1:C1,...,5m<—Cm:€m,xl<—d1:dl,...,xn<—dn:dn]

is computable.

]

The following lemmas are a key point in the proof of computability since they establish that

structural rules preserve computability.
Lemma 5.3.6. The following properties on closed judgements hold

L Iff=a=cc A =b=d¢cdand]s = a = b € Aare computable, then
¢ =d € Aiscomputable.

2. The elements in equal types rule preserves computability, that is, if J, = A = B is com-
putable, then Js = a € A is computable if and only if a € B is computable.

3. The equal elements in equal types rule preserves computability, that is, if Jo = A = B is
computable, then J; = a = b € A is computable, if and only if a = b € B is computable.

Proof. 1. ¢ = d € A is derivable with the following derivation tree

7_]1 y sym-tm 7j 3_ 7 J: 2A trans-tm
(=ac a=4ac trans-tm

c=ded

2. By conv rule.

3. By conv-eq rule.

By induction on the maximum length / > 2 of the derivation of the hypotheses /1, /2, /5, [
JssJe and /7.

* (/ = 2) The minimum / is 2, which is the case when /}, /5, /3 and J; are x = xin T, J; and

Jeare T = Tand sisx € T thenalsoqg =dy € Aisx =x € T,a, € Byisx € T
andas; = b3 € Byisx =x € T.
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* (/ — [+ 1) Suppose that the maximum length of the derivation of the hypotheses /i, />,
Jzand /g is/ + 1, then

1. — (associate judgements) The associate judgements are computable by hypoth-
esis.
— (parts) To prove the computability of the parts we analyze each possible form
of the values of 4, b, ¢, d and A.

x Ifa = %, = x,c = *,d = xand 4 = T, then there is no condition
to show.

* Ifa = (e,i), b = (e, /2), ¢ = (&3,/3),d = (es, fs) and 4 =
SecrF(x), thene; = e3 € Eyep = ¢4 € Eyep = ¢, € E,fi = f3 €
Fle), f» = fi € Flez) and i = f, € F(e;) are computable; since /; is
computable, 4 #ype is computable and, by definition, F(x) zype [x € E]|
is computable and so is F(e;) = F(e,). By inductive hypothesis (case 3),
f» =fi € Fle) is computable and also e = ¢4 € Eand f5 = fi € F(e)
are computable; hence the result follows by inductive hypothesis again
(case 3).

* Ifa = eqp(es), b = eqples), ¢ = eqples), d = eqpes) and 4 =
Eq (£, e, e2), thene; = ¢, € Eis computable by assumption.

* Ifa = [a],b = [e),c = [e3),d = [es) and 4 = E/T,thene; € E
and ¢; € E are computable by assumption.

2. Let us prove the only-if part (the proof of the if-part is completely similar).

— (associate judgements) The associate judgement is computable by hypothesis.

— (evaluation) 2 = ¢ by hypothesis.

— (correct evaluation) @ = ¢ € B is derivable using the conv-eq rule.

— (parts) To prove the computability of the parts we analyze each possible form
of the values of 2, 4 and B.

x Ifau = x,4= T and B = T, then there is no condition to show.

* Ifa = (a,0), 4 = ZeqC(x) and B = Z.cp, D)(x), then C; = Dy,
Ci(x) = Dy(x) [x € Ci], 1 € Ci, ca € Cy(q) are computable; then
Cy(¢1) = Dy (¢1) is computable, so by induction hypothesis ¢; € Dy and
¢2 € D,(c;) are computable.

* Ifa = eqe(i), 4 = Eq(C,c,¢0) and B = Eq (D, dy,d>), then C =
D,eg =¢, € Coeg =dy € Cand e, = d, € Care computable; then,
by inductive hypothesis (case 1), d; = d, € Cis computable, hence the
result follows by inductive hypothesis (case 3).

* Ifa = [q),4 = C/Tand B = D/T,thenc € Cand C = D are
computable and by inductive hypothesis (case 2) also ¢ € D.
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3. Let us prove the only-if part (the proof of the if-part is completely similar).

— (associate judgements) The associate judgements are computable by induc-
tive hypothesis (case 2).

— (parts) To prove the computability of the parts we proceed by structural in-
duction on each possible form of the values of @, 4 and B.

x Ifa = x,b = %, 4 = T and B = T, then there is no condition to
show.

* Ifa = (a,di), b = (a,ds), A = Z.ccD(x) and B = X cpF(x),
then C = FE,D(x) = Flx) [x € Cl,q = ¢, € C,dy = dy € D(q)
are computable; then ¢ € Cis computable and also D(¢;) = F(q) is
computable, so by induction hypothesis ¢; = ¢, € Fandd, = d, €
F(¢1) are computable.

* Ifa = eqelcs), b = eqe(es), 4 = Eq(C, e, ¢2) and
B = Eq(D,d,,d;),then C = D,¢c; = ¢ € C,qq = dy € Cand ¢, =
d, € C are computable; then, by inductive hypothesis (case 1), d; =
d, € Cis computable, hence the result follows by inductive hypothesis.

* Ifa = [a],b = [],4 = C/Tand B= D/T,then¢ € C,c; € C
and C = D are computable and by inductive hypothesis (case 2) also
¢ € Dand ¢ € D are computable.

]

Lemma 5.3.7 (Assumption in equal types). If 4 = B [I| is computable then ] = F ', x € A|
is computable if and only if FT', x € B.

Proof. Let us prove the only if-part (the proof of the if-part is completely similar).
To prove that F [I',x € B] is derivable, we proceed by induction on the length / of the
derivation of the judgement /. Base cases are trivial. Suppose / has a derivation of length / + 1,

then
* If the last rule of the derivation tree is a var rule, then there are two cases

— (F = x € A) Since we know that I cont and B type [I'] are derivable, we get a
derivation of x € 4 [I', x € B]
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[cont  Btype[T] A= B[]

2 ind-ty-e
T.x€Bant ° A=B[Lxc B yed
var refl-ty
x € B[[,x € B] B=A[l,x€ B
conv
x€A[l,x € B

— (F=x € BorF =y € C) A derivation is built easily by applying the var rule.

* If the last rule of the derivation tree is » # var, then the premises Fy [I',x € A, A,
o Fy [Iyx € A, A, are derivable with length of derivation at most /. By using the
rules of suitable exchange and by inductive hypothesis, we get that F; [I',x € B, A], ...,
F, [I',x € B,A,] are derivable. Hence the result follows by applying the rule 7.

Then

* (substitution :=) In order to analyse the substituted judgements, suppose I' is the con-
text [x € 4y,...x, € 4,]. Since A = B [I] is computable then for any c.c.s. 4; €
A, ... a, € 4,,¢ € Afitting with [T, x € 4], we have that

A=B[l|[lx:=ay,...,x, = a,]

and
Fl,x € Allx; :=ay,...,x, := a,,x = ¢

are computable hence, by point 2 of lemma 5.3.6, ¢ € Bis a computable judgement and
thus the same substitution fits also with [I', x € B|. Hence

FIx € Bllx; == ay,...,%, = a,,x = ¢
is computable.

* (substitution <—) In order to analyse the substituted judgements, suppose I'is the con-
text [x; € Ay, ...x, € 4,]. Since 4 = B [I'] is computable then for any c.c.s. a; = af €
A, ...,a, =a, € 4,,¢e =¢ € A4 fitting with [T, x € 4], we have that

A=B[l|lx < ar=ay,...,x, + a, =da,)

and
Fl,x € Aljxi a1 =ay, ..., %, < a, =d,,x+c¢=¢]

are computable hence, by point 3 oflemma 5.3.6,¢ = ¢ € Bisacomputable judgement
and thus the same substitution fits also with [T, x € B]. Hence

Fl,x€ Bl a1 =4a),...,x, a,=a,,x+ e="]
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is computable.

* (associate) Consider any possible form of the judgement /.

— If F = C(x) type, then there is no condition.

— If F= C(x) = D(x), then the associate judgement Czype [T, x € B]is computable
by the previous case.

— If F = ¢(x) € C(x), then the associate judgement C #ype [I', x € B] is computable
by the first case.

— If F = ¢(x) = d(x) € C(x), then the associate judgement ¢(x) € C(x)[I',x € B]

is computable by the previous case.

Lemma s.3.8. If/=a = b € A [I'| is computable, then b € A [T is computable.
Proof- * Subcase I' = (). This subcase is trivial, since & € 4 is computable by assumption.

* Subcase I # ().

— (associate) The associate judgement of Jisa € A [I], so A type [I'] is computable.

— (substitution :=) Consider any c.c.s. 41 € 4y,...,a, € A, fitting withT' =
[x; € 41,...,x, € A4,], then

a=beAlllx:=a,...,x, :=a,

is computable;
be Al[x :=a,...,x, = a,)

has empty context, then it is computable by definition.

— (substitution <) Consider any c.c.s. a1 = a; € A4y,...,a, = a, € A, fitting
withl = [ € 4y,...,x, € 4,], thenalsoa; € A4y,...,a, € A,and a] €
Ay, ... a4, € A,are ccs. fitting with T, and so

a=becA[l|lx1:=ay,...,x, = a,)

a=beA[l|x :=ay,...,x,:=a)

and
a€Alm «—ay=4),...,x, < a,=4a,)
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are computable;
beAl|x a1 =4,,...,x, < a, =4,

is computable by point 1 of previous lemma s.3.6.

Lemma s.3.9. The following hold

1. If A = BT is computable, then B type [I'] is computable.

2. Iff =A4=C[l],,=B=D[l|and]; = A = B[I| are omputable, then C = D [I]
is computable.

Proof- 1. By derivability of associate judgements.

2. C = D [I'| is derivable with the following derivation tree

b ymey D)
C=A[] A=D[

C=D[]

trans- ty

trans- ty

e Subcase I’ = ().

1. This subcase is trivial, since B type is computable by assumption.

2. — (associate judgements) The associate judgements are computable by hypoth-
esis.

— (parts) To prove the computability of the parts we proceed by structural in-
duction on each possible form of the values of @, b, cand 4.

xIf4A= T,B= T,C= Tand D = T, then there is no condition to
show.

* If 4 = ZepFr(x), B = Zeph(x), C = 2c6G(x) and D =
SemHs(x), then Fy = Gy, F{ = Hy, Fy = F, E)(x) = Gy(x) [x € Ey,
Fy(x) = Hy(x) [x € Fi] and E>(x) = F>(x) [x € E;] are computable; by
lemma 5.3.7, also F(x) = H,(x) [x € E;] is computable and, by induc-
tion hypothesis, G; = H; and G,(x) = H,(x) [x € E;] are computable;
hence the result follows by lemma s.3.7.
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* If 4 = Eq(E,a,e),B= Eq(F f1,/2),C= Eq(G,g1,02) and D =
Eq(H, b1, by),thenE = G F=H,E=Fe =g € E,fi=h € F,
e =fH €L e =g €E f, =h, € F e, = f, € Eare computable; by
point 3 of lemma 5.3.6, /i = by € Eand f, = b, € E are computable,
then, by point 1 of lemma 5.3.6, ¢y = b € Eandg, = b, € Eare
computable, by inductive hypothesis G = H is computable and thus the
result follows by point 3 of lemma s.3.6.

* If4 = E/T,B = F/T,C = G/T,D = H/T,then E = G,
F = Hand E = Fare computable; hence the result follows by inductive
hypothesis.

* Subcase I # ().

I.

— (substitution :=) Consider any c.c.s. a1 € 4y,...,a, € A, fitting with

[=[x€4,...,x, €A, then
A=B[lx :=a,...,x, = a,]

is computable;
Brype [I[x1 :=ay, ..., x, = a,]

has empty context, then it is computable by definition.

(substitution ¢<—) Consider any c.c.s. 4y = a; € 4y,...,a, = a4, € 4,
fitingwith' = [x € 4y,...,x, € 4,], thenalsoa; € 4,...,a, € 4,
anda; € 4y,...,4, € 4, are c.c.s. fitting with T, and so

A=B[x :==ay,...,x, = a,]

A=B[l[x:=ay,...,x,:=4a)
and
Atype Uy < a1 = ay, ..., %, < a, = 4]
are computable;
Btype [U)[x) < a1 = 4, ..., %, < a, = 4]

has empty context, then it is computable by (I' = ) subcase.

(associate) The computability of the associate judgement of C = D [I] fol-
lows by previous point.
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— (substitution :=) Consider any c.c.s.

[=[x €4,...,x, €A4,],then

A=C[lx :=ay,...

B=D[]x =ay,...

and

A=B[]x :=ay,...

are computable;

C=D[x :=ay,...

€ 4,...,a, € A, fitting with

s X - — dn]
s Xp - — ﬂn]
y X = ﬂn]
s Xp = dn]

has empty context, then it is computable by (I' = )) subcase.

(substitution <—) Consider any c.c.s. 4y = 4] € 4y,...,a, = 4, € 4,
fittingwithI = [x; € 4;,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isa

c.c.s. fitting with I', and so

A=C[lx =ay,...

B:D[F][xl%ozl:a;,...

and

A=B[]x :=ay,...

are computable;

C=D[x + a=ay,..

_ !
Xy S a, =)

has empty context, then it is computable by (I' = )) subcase.

Lemma s.3.10. The following hold

L lff=a=ce A, h=b=dec Alland]; = a = b € AT are computable,

then ¢ = d € A [T is computable.

2. Theelements in equal types rule preserves computability, that is, if A = B[] is computable,
then a € A [I') is computable if and only if a € B [I| is computable.

3. The equal elements in equal types rule preserves computability, that is, if A = B [I] is
computable, then a = b € A [T is computable, if and only ifa = b € B|I] is computable.



Proof. 1. ¢ =d € A [I'| is derivable with the following derivation tree

]—13 m-tm S ) ;
c—acdm a—ded e

c=deA[T]

trans-tm

2. By conv rule.
3. By conv-eq rule.
4. By derivability of associate judgements.
If T = (), then just apply lemma 5.3.6, otherwise

I. * (associate) The computability of the associate judgement of ¢ = d € A [I'] follows
by lemma 5.3.8.

* (substitution :=) Consider any c.c.s. @1 € 4y,...,a, € 4, fittingwith' =
[x; € 4,...,x, € A4,], then

a=c€A[x =ay,...,x,:=a,)

b=dec Alljx =ai,...,x, := a,)

and
a=becAl|lx1:=a1,...,x, = a,)

are computable;
c=deAMx =ay,...,x, = a,]

has empty context, then it is computable by point 1 of lemma 5.3.6.

* (substitution <—) Consider any c.c.s. 4 = af € 4y,...,a, = 4, € A, fitting
withT' = [x; € 4y,...,x, € 4,],thenalsoa; € 4,,...,a, € 4,isac.c.s. fitting
with I, and so

a=c€A[x =ai,...,x,:=a,)

b=de Alllx < ar=ay,...,x, < a, =,

and
a=beAl|x =ay,...,x, = a,]

are computable;
c=deAl]fx < ar=ay,...,x, + a, =4,

has empty context, then it is computable by point 1 of lemma 5.3.6.
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2. * (associate) The computability of the associate judgement B #ype [I'| follows by
point 1 of previous lemma 5.3.9.

* (substitution :=) Consider any c.c.s. 41 € 4y,...,a, € A, fitting with ' =
[x1 € 4,...,x, € 4,], then
A=B[lx :=a1,...,%, = a,]
and
a € Alx :=ay,...,x, == a,]

are computable;
a € B[x:=a1,...,x, = a,)

has empty context, then it is computable by point 2 of lemma 5.3.6.

* (substitution <—) Consider any c.c.s. @ = a{ € 4y,...,a, = a,, € A, fitting
withl =[x € 4y,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isac.cs. fitting

with I, and so
A=B[x :=ay,...,x, :=a,)

and
a€Allm < ay=4,,...,x, < a,=4a)

are computable;
/ /
a€Bl|x«—a1=ay,...,x, < a, =4)

has empty context, then it is computable by point 3 of lemma 5.3.6.

3. Let us prove the only-if part (the proof of the if-part is completely similar).

* (associate) The computability of the associate judgement 2 € B [I] follows by
previous point.

* (substitution :=) Consider any c.c.s. a1 € 4y,...,a, € 4, fittingwith' =
[x; € 41,...,x, € A4,], then

A=B[lx :=ay,...,x, = a,]

and

are computable;



has empty context, then it is computable by point 3 of lemma 5.3.6.

* (substitution <—) Consider any c.c.s. 4 = 4} € 4y,...,a, = a,, € A, fitting
withl' = [x € 4y,...,x, € 4,],thenalsoa, € 4;,...,a, € 4,isac.cs. fitting
with I, and so

A=B[lx:=a,...,x, = a,]

and
a=beAl|x+ai=ay,...,x, < a, =4,

are computable;
a=beBllxyar=4),...,x, < a, =4

has empty context, then it is computable by point 3 of lemma 5.3.6.

SYMMETRY RULES

Lemma s.3.11 (Symmetry on elements). The symmetry on elements rule preserves computabil-
ity, that is, if
a=beA[l

is computable, then
b=ac A

is computable.

Proof- e Subcase T = 0.

— (associate judgements) The associate judgements are computable by hypothesis.

— (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of the values of 4, b and 4.

x Ifa = x,b = xand 4 = T, then there is no condition to show.

* Ifa = (a,d), b = (c,dr) and 4 = Z.ccD(x), theng = ¢, € C
and d; = d, € D(q) are computable and, by inductive hypothesis, also
¢, =¢ € Candd, = d; € D(¢;) are computable. The judgementa € 4 is
computable and so is 4 #ype, thus D(x) type [x € C| and D(c;) = D(cy) are
computable too. Hence the result follows by point 3 of lemma 5.3.6.
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* Ifa = eqc(e), b = eqe(es) and 4 = Eq(C, e, ¢5), then¢ = ¢, € Cis
computable by assumption.

* Ifa = [a], b= [;]and4 = C/T,then¢g € Cand¢, € Care computable
by assumption.

* Subcase I' # ().

— (associate) The computability of the associate judgement & € A [I'] follows by

lemma 5.3.8.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € 4, fitting withI' =
1 € 41,...,x, € 4,], then

a=bedAlllx:=a,...,x, :=a,
is computable;

b=acAlllx :=a1,...,x, := a,)
has empty context, then it is computable by (I’ = ) subcase.

(substitution <) Consider any c.c.s. 41 = 4y € 4,,...,a, = a4, € 4, fitting
withl =[x € 4y,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isac.cs. fitting
with I, and so

a=becA[l|lx:=a1,...,%, = a,)

a€Allm < ar=4,,...,%, < a,=4a)
ac€Alx :=ay,...,x, = a,]
are computable, then by point 1 of lemma 5.3.6

b=acAllx a1 =4},...,x, < a, =4,

is computable.

]

Lemma s5.3.12 (Symmetry on types). The symmetry on elements rule preserves computability,

that is, if

is computable, then



is computable.

Proof- e Subcase I = 0.

— (associate judgements) The associate judgements are computable by hypothesis.

— (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of 4 and B.

*

*

If 4 = T and B = T, then there is no condition to show.

If4 = 2.c¢C(x) and B = Z.cp Ds(x), then C; = D;and Cy(x) =
D,(x) [x € (] are computable; by inductive hypothesis, also D; = C; and
D;(x) = Cy(x) [x € 1], hence the result follows by lemma 5.3.7.

If A4 = Eq (C, Cl,Cz) and B = Eq (D, dl,dz), then C = D, aq = dl eC
and ¢, = d, € Care computable; by lemma 5.3.11,d; = ¢ € Candd, =
¢, € Care computable, then, by point 3 of lemma 5.3.6, alsod; = ¢ € D
andd, = ¢, € D are computable. Hence the result follows by inductive

hypothesis.

If4 = C/Tand B = D/T, then C = D is computable, hence the result
follows by inductive hypothesis.

* Subcase I' # ().

— (associate) The computability of the associate judgement B #ype [I] follows by
lemma 5.3.9.2.

— (substitution :=) Consider any c.c.s. 4, € A4y,...,a, € A, fitting withT' =
[x1 € 41,...,x, € A4,], then

A=B[l|lx:=ay,...,x, = a,]

is computable;

B=A[l[x:=a,...,x, = a,)

has empty context, then it is computable by (I' = )) subcase.

— (substitution <) Consider any c.c.s. a1 = 4] € 4,,...,a, = a4, € 4, fitting
withT = [x; € 4y,...,x, € 4,), then, by the symmetry lemma 5.3.11 also 4] =
a1 €4y,...,4,=a, € 4,isac.cs. fitting with I', and so

A=B[l][x < ay=ay,...,x, + a, = a,]
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is computable;
B=A[llxy a1 =4,,...,%, < a, =4

has empty context, then it is computable by (I’ = 0)) subcase.

TRANSITIVITY RULES

Lemma s.3.13 (Transitivity on elements). The transitivity on elements rule preserves computabil-

ity, that is, if

a=beA[
and

b=ce Al
are computable, then

a=ceA[l]

is computable.

Proof. By using the symmetry lemma 5.3.11, we obtain that b = 4 € A4 [I'] is computable.
Hence b € A [I] is computable and, by the reflexivity lemma 5.3.2, 6 = b € A4 [I'] is com-
putable. Then the result follows by point 1 of lemma 5.3.6. ]

Lemma s.3.14 (Transitivity on types). The transitivity on types rule preserves computability,
that is, if

A= B[
and

B=ClI]
are computable, then

A= CI[T]

is computable.

Proof. By using the symmetry lemma 5.3.12, we obtain that B = 4 [I'] is computable. Hence
B type [I'] is computable and, by the reflexivity lemma 5.3.3, B = B [I] is computable. Then
the result follows by lemma 5.3.9.1. O
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Lemma s.3.15 (Assumption of variables). Lez A type [I'| be a computable judgement. Then the

Judgement
x€A[l,x€4,A]

is computable.
Proof. LetT' =[5 €81,..., €S, A=[z1€C...2, € C,]

* (associate) The computability of the associate judgement
Atype I',x € A, A

follows by weakening lemma s.3.1.

* (substitution :=) Consider any c.c.s. dy € S,...,dp € Sp,a € A,q € C,. ..
C,, fitting with [I', x € 4, A]. Then

x€AL,x €A A][sy:=di,....50:=dp,x =a,21:=0C,.,2m = Cp)

is computable by assumption.

* (substitution <-) Consider any c.cs. di = d} € Sy,...,d, = d}, € Sp,a =
Aag=q€C,... ¢, =0, € C,fitting with [I',x € 4, A]. Then

x€AN,x €A A]lsy:=dy=dy,....sp+dp=dj,xa=4d,

/
2140 =y, By S Oy =

is computable by assumption.

5.3.2 THE LOGICAL RULES

a e

&)

We have now to analyze the rules that we call “logical” since they can be used to interpret a

logical intuitionistic first order calculus or a logical theory of natural numbers. An informal

discussion on the computability of these rules is usually depicted in many of the descriptions

of the intuitionistic type theory, nevertheless, a complete formal proof of computability for

these rules cannot be carried on without a substantial use of lemmas on structural rules.
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TERMINAL TYPE RULES

Lemma 5.3.16 (T-formation rules). The T-formation rule preserves computability. That is the
Judgement
T oype 1]

is computable.

Proof. e Subcase I’ = ().

— (evaluation) T = T holds.

— (correct evaluation) T = T is derivable with the following derivation tree

Tr
T type
a-
T ty
— (parts) No condition to show.
* Subcase I' # ().
— (substitution :=) Consider any c.c.s. a1 € Ay,...,a, € 4, fitting with ' =

1 € 4,...,x, € A4,], then
Toype[lx :=ay,...,x, :=a,| =T type

is computable by (T = 0) subcase.

— (substitution <) Consider any c.c.s. a1 = 4] € 4,,...,a, = a, € 4, fitting
with = [x; € 4y,...,x, € 4,], then

Tl‘,)’]’€[r][x1%41:pzi,...,xﬂ(—4n:ﬂ;]ET:T

is computable, since it is derivable and the associate judgement T #ype is com-

putable.
O

Lemma s5.3.17 (T-introduction rules). The T -introduction rule preserves computability. That

is the judgement
* € TII]

is computable

49



Proof. e Subcase I’ = 0.

— (associate judgement) The computability of the associate judgement is immediate
by the previous lemma on T-formation rule.

— (evaluation) * = x holds.

— (correct evaluation) x = x € T is derivable with the following derivation tree

I-Tr

*
€T refl-tm

*x =% €T

— (parts) No condition to show.

* Subcase I' # ().

— (associate) The judgement T #ype [I] is computable for the previous lemma on
T-formation rule

— (substitution :=) Consider any c.cs. 2, € A4y,...,a, € A, fitting withT' =
[x1 € 41,...,x, € 4,], then

* € T[[x:=a1,...,x%,:=a, =*x€T

is computable by (I' = 0)) subcase.

— (substitution <) Consider any c.c.s. @1 = 4] € 4y,...,a, = a4, € 4, fitting
with = [x; € 4y,...,x, € 4,], then

x€T[Mm—ar=a,..., 6, a,=a,|]=x=x€T

is computable, since it is derivable and the associate judgement x € T is com-

putable.
O

Lemma 5.3.18 (T-equality rule). The T-equality rule preserves computability, i.e., if the judge-
ment ] =t € T (I is computable then the judgement

t=x¢€ T[]

is computable.

Proof. e Subcase I = ().
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— (associate judgements) The associate judgement # € T is computable by assump-
tion, while x € T is computable by the previous lemma on T-introduction rule.

— (parts) No condition to show.

* Subcase I # ().

— (associate) The judgement z € T [I] is computable by assumption.

— (substitution :=) Consider any c.c.s. 4, € A4y,...,a, € A, fitting with ' =
[x; € 41,...,x, € A4,], then

t€ T [xi=an,...,%, = a,)

is computable;
t=xe€T[x:=a,...,x,:=a,

has empty context, then it is computable by (I' = @) subcase.

— (substitution <) Consider any c.c.s. a1 = 4] € 4,,...,a, = 4, € 4, fitting
withl =[x € 4y,...,x, € 4,],thenalsoa, € 4;,...,a, € 4,isac.cs. fitting
with T, and so

t=xeT[m«a=4,....5, ¢ a,=4)) =
t=*x€T[x:=a,...,x, :=a,

is computable by (substitution :=) subcase.

INDEXED SUM TYPE RULES
Lemma s5.3.19 (X*-formation rules). The Z*-formation rules preserve computability. That is
1. IfJy = Btype [T] and J, = C(x) type [T, x € B] are computable judgement then
ZepClx) type [T
is computable.
2. Iff = B= D[l and ], = C(x) = E(x) [, x € B| isa computable judgement then
ZeesC(x) = ZiepE(x) [T

is computable.
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Proof. e Subcase I’ = 0.

1. — (evaluation) X, 3C(x) = Z.c5C(x) holds.

— (correct evaluation) 2,.c5C(x) = X,c5C(x) is derivable with the following
derivation tree

h b 5
>.e5C(x) type
2.e3C(x) = Ze5C(x)
— (parts) The parts are /; and /, which are assumed to be computable.

refl-ty

2. — (associate judgements) The judgement C(x) type [x € B, associate of /, is
computable by assumption, and, by lemma 5.3.9.2 also E(x) zype [x € B is
computable. By lemma 5.3.7, we know that also E(x) #ype [x € D] is com-
putable and hence the result follows by case 1.

— (parts) The parts are /; and /, which are assumed to be computable.

* Subcase I' # ().

1. — (substitution :=) Consider any c.c.s. @y € 4y,...,a, € A, fitting with
=[x €4,...,x, €A4,],then

Brype [I[x1 = ay, ..., x, == a,]
is computable by assumption and
C(x) type [T, x € Bl[x1 :=ay, ..., x, = a,]
is computable by head substitution lemma 5.3.4;
2e5Clx) type [T[xy i=ay, ..., x, 1= a,]

has empty context, then it is computable by (I' = )) subcase.
— (substitution <—) Consider any c.c.s. a1 = 4} € 4,...,a, = a4, € 4,
fitingwith' = [x; € 4, ..., x, € 4,], then

Brype [U[x) <= a1 = ay, ..., %, < a, = 4,
is computable by assumption and
Clx) type [T,x € Bl[xy < ay = a4, ... ,x,  a, = 4]
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is computable by head substitution lemma 5.3.4;
2esC(x) type [U)[x) <— a1 = 4, ..., x, < a, = 4]

has empty context, then it is computable by (I’ = ) subcase.

(associate) The judgements B type [I'] and C(x) type [I', x € B] associates of J;
and /, are computable. Hence the result follows by case 1.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
=[x €4,...,x, € A4,], then

B=D[]x :=a1,...,%, := a,)
is computable by assumption and
C(x) = E(x) [[,x € Bl[x; :==ay, ..., x, = a,]
is computable by head substitution lemma 5.3.4;
ZeepClx) = ZiepE(x) Mo :=ay, ..., %, 1= a,]

has empty context, then it is computable by (I' = 0)) subcase.

(substitution <—) Consider any c.c.s. 4y = a; € 4y,...,a, = a,, € 4,
fitingwith = [x; € 4, ..., x, € 4,], then

B=D[lx a1 =4,,...,%, ¢ a, =4
is computable by assumption and
Clx) =E(x) [[,x € Bl[xy a1 =4, ...,x, + a, = 4]
is computable by head substitution lemma 5.3.4;
3e8C(x) = ZepEx) My a1 = 4, ..., %, < a, = 4]

has empty context, then it is computable by (I' = (}) subcase.

]

Lemma s.3.20 (Z-introduction rules). The Z-introduction rules preserve computability. That
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. Ifh =be BI,h =ce Cb)[Iland 5 = Z.e5C(x) type [I| are computable
Judgements then
<b,€> € ExGBC<x> [r]

is computable.

2. Ifi=b=de B[l =c=cec Cb)[I|and]; = Z.cC(x) type [I| are computable
Judgements then
(b,c) = (d,e) € Z.epC(x) [T]

is computable.

Proof.
e Subcase I’ = ().

1. — (associate judgements) The associate judgement is /5 which is computable by
assumption.

— (evaluation) (b, ¢) = (b, ¢) holds.
— (correct evaluation) (b, ¢) = (b,¢) € Z,c5C(x) is derivable by using first the
>-introduction rule and then the reflexivity on elements rule.
h L5
(b,¢) € ZeepClx)
<b’ C> = <b7 C> € erBC(x)
— (parts) The parts are /; and /, which are assumed to be computable.

=

refl-tm

2. — (associate judgements) The judgements b € B,d € B,c € C(b)ande € C(b),
associates of /; and /,, are computable by definition. Hence the result follows
from case 1.

— (parts) The parts are /; and /, which are assumed to be computable.

* Subcase I' # ().

1. — (associate) The associate judgement is /3 which is computable by assumption.

— (substitution :=) Consider any c.cs. a1 € 4y,...,a, € A4, fitting with
=[x €4,...,x, €A4,],then

beBlx :=ay,...,x, :=a,)
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c€ Cb)N[x1 :=a,...,x, = a,]

and
Z,;eBC(.X‘) Lype [r] [.X'1 = ALy Xy = dn]

are computable;
<b7 C> S ExGBC(x) [r] [x1 =4y, Xy = 47;]

has empty context, then it is computable by (I' = 0)) subcase.

(substitution <—) Consider any c.c.s. a; = 4] € 4y,...,a, = 4, € 4,
fittingwithI = [x; € 44,...,x, € 4,],thenalsoa; € 4y,...,a, € 4,isa
c.c.s. fitting with I', and so

beB[lw < ar=ay,...,x,  a, =a)

ceCO)MNm«—ar=4,,...,x, < a, =4

and

ZxGBC(x> t)’Pe [r] [xl =l Xy i = dﬂ]
are computable;
(bycy € ZoepClx) [Ty <~ a1 = ay, .., x, ¢ a, = 4,
has empty context, then it is computable by (I' = )) subcase.
(associate) The judgements & € B [I'] and ¢ € C(b) [T, associate respectively

of /i and /, are computable. /5 is also computable, hence the result follows by
case I.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
[=[x €4,...,x, €A, then

b=de B[l[x :=ay,...,x, = a,]

c=e¢€ C)lx:=a,...,x, =a,

and
5esClx) type [T = a3, = )

are computable;
(b¢) € ZepClx) [T][v == ay, ..., %, = 4]

has empty context, then it is computable by (I' = ().
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— (substitution <=) Consider any c.c.s. a1 = 4} € 4,...,a, = a, € 4,
fitingwithT =[x € 4;,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isa
c.c.s. fitting with I', and so

b=deBl|lx+a=aj,... x,+ a,=da)

c=e€CO)x +a=ay,...,x, + a,=d)

and

2e5Clx) type [T[xy i=ay, ..., x, = a,]

are computable;
(b,c) € ZepClx) Ty a1 = 4, ..., %, — a, = a))

has empty context, then it is computable by (I = ().

]

Lemma s.3.21 (Z-elimination rules). The Z-elimination rules preserve computability. That is

1. Ifi = M(z) type [T,z € ZoepC(x)], o = d € ZepClx) [T] and J; = m(x,y) €
M((x,9)) [T, x € B,y € C(x)] are computable judgements then

Lls(d,m) € M(d) [T]
is computable.

2. If i = M(2) type [T,z € ZoepC(x)], o =d = d' € ZepC(x) [T and J5 = m(x,y) =
m'(x,y) € M({x,y)) [[',x € B,y € Clx)] are computable judgements then

E[z(d, m) = Elz(d/, m') S M(d) [F]

is computable.

Proof. e Subcase I = ().

1. — (associate judgements) The computability of the judgement M(d) type, asso-
ciate of the judgement Els(d, m) € M(d), follows by assumption.

— (evaluation) /; is computable and 2,c5C(x) = X,c5C(x), thend = (e, /)
and the judgements ¢ € Band f € C(e) are computable; thus it is a c.c.s.
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fitting withx € B,y € C(x); therefore /3[x := ¢,y := f], whichis m(e, f) €
M({e,[)), is a computable judgement. Hence m(e,f) = ¢ and the result
follows by using the computation rule.

— (correct evaluation) Since /; is computable, we know that there exists a deriva-
tion of the judgement X, 5 C(x) rype; hence x € X, c5C(x) isa correct assump-
tion, and d = (e, f) € Z,e5C(x) is derivable. Let I be

S x € Z,epClx) [x € ZoepClw)] NE
d=(e.f) € ZepC(x) Els(x,m) € M(x) [x € Z,e5C(x)]
Els(d, m) = Els({e,f), m) € M(p)

EX
sub-tm-eq

then IT, is

d=(c¢,f) € ZesC(x)
I, M(p) = M((e.f))
E[z(d, Wl) - EZZ(<€af>7 Wl) € M(<€’f>)
Since /; is computable, so are e € Band f € C(e) and then f5[x := ¢,y := ]

is computable. Thus the judgements m(e, /) = ¢ € M({e,f)), e € Band
f'€ C(e) are derivable. Let IT; be

sub-tm-eq

conv-eq

¥ eeB  feCle) 5

Bi(leof),m) = mle.f) € MUef)) % mlef) =geMllef))
Els({e. f),m) = g € M((e.f))
then
I, 1l trans-tm
Els(d,m) = g € M((e,f))
Hence

d=(e.f) € Z.e5C(x)
M) = M)
Badm) =g € Mllef))  MUef) = M@)o
Els(d,m) =g € M(d)

— (parts) Since /, is computable we know thatd = (e, f), then ¢ € B and
f € (C(e) are computable by the previous lemma on nat-introduction rules.
Hence we can deduce that the judgementd = (¢,f) € Z.e5C(x) is com-
putable. Therefore, since /; is computable, we obtain that the judgement
M(e, f)) = M(d) is a computable judgement. Then, since /3 is computable,
sois zlx = e,y := f]l and m(e,f) € M(d) is computable by point 2 of
lemma 5.3.6. Hence, since m(e, f) = g, the parts of ¢ which is also the value
of Els(d, m), satisfy the computability requirements in M(d).

sub-tm-eq
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2.

— (associate judgements) The computability of Els(d, m) € M(d) follows by

case 1. Also the computability of Els(d', m') € M(d') follows by case 1, since
from the fact that /, and /5 are computable, by lemma 5.3.8, we obtain that
d' € Z.cpC(x) and m/ (x,y) € M({x,y)) [x € B,y € C(x)] are computable
judgements. Then, since the judgement M(d) = M(d') is computable, by
point 2 of lemma 5.3.6, Els(d', m') € M(d) is computable.

(parts) The judgement /; is computable, thend = (b,¢),d’ = (¥/,) and
the judgements & = 4 € Band ¢ = ¢ € C(b) are computable. Moreover
b=V € Bande = ¢ € C(b) areccs. forx € Bandy € C(x) in J;,
respectively, and then 5(x <= & = &',y < ¢ = (], that is the judgement
m(b,c) = m(b',) € M((b,c)) is computable. Then, by point 3 of lemma
5.3.6, m(b,c) = m(¥,c) € M(d) is a computable judgement, since, as in
the previous point, we can prove that M((b,c)) = M(d). So, if m(b,c) =
g and m/(b,c) = g,v, the parts satisfy the computability requirements in
M(d).

* Subcase I' # ().

I.

— (associate) The computability of the judgement M(d) rype [I], associate of

the judgement Els(d, m) € M(d) [I'], follows by substitution lemma s.3.5.
(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
[ =[x €4,...,x, €A, then

M(2) type [T,z € ZepClx)|[x1 = an, ..., %, = a,,]
is computable by head substitution lemma 5.3.4;
d € 2. pClx) [ :=ay,...,x, = a,]
is computable and
m(x,y) € M((x,y)) [I,x € B,y € C(x)|[x1 == ay,...,%, :=a,]
is computable by head substitution lemma 5.3.4;
Els(d,m) € M(d) [[|x := a1, ..., %, := a,]

has empty context, then it is computable by (I' = )) subcase.

(substitution =) Consider any c.c.s. 4y = a; € 4y,...,a, = a4, € 4,
fitingwithl' = [x; € 44,...,x, € 4,],thenalsoa; € 4y,...,a, € 4,isa
c.c.s. fitting with I', and so
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M(z) type [T,z € ZoepClx)|[x1 = an, ..., %, = a,,]

is computable by head substitution lemma 5.3.4;
d € ZepClx) Ty — a1 =4, ..., %, « a, = a,,

is computable and
m(x,y) € M((x,y)) [[,x € B,y € C(x)|[x) < a1 = a,...,x, < a, = 4]
is computable by head substitution lemma 5.3.4;

Els(d,m) € M(d) [I[x < a1 = aj, ..., %, < a, = a,,
has empty context, then it is computable by (I' = @) subcase.
(associate) The computability of the judgement Els(d, m) € M(d) [I], asso-

ciate of the judgement Els(d, m) = Els(d’', m') € M(d) [T, follows by case

I.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
[=[x€4,...,x, €A, then

M(z) type [T,z € ZepClx)|[x1 = an, ..., %, = a,,]
is computable by head substitution lemma 5.3.4;
d=d € Z.c3Cx) [[|[x1 :==ay,...,%, = a,)
is computable and
m(x,y) = m'(x,y) € M((x,3))[[,x € B,y € Clw)|[ 1= ar, ..., %, 1= a,]
is computable by head substitution lemma 5.3.4;
Els(d,m) = Els(d',m') € M(d) [T][x, :==ay,...,x, := a,)

has empty context, then it is computable by (I' = )) subcase.

(substitution <—) Consider any c.c.s. 4y = 4] € 4y,...,a, = 4, € 4,
fitingwithl = [x; € 44,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isa
c.c.s. fitting with I', and so

M(z) type [T,z € ZoepClx)|[xr = ay, ..., %, := a,)
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is computable by head substitution lemma 5.3.4;

d=d €S 3Cx) N[y a1 =4,...,x, + a, =4

is computable and

m(x,y) = ml(x>}’) € M(<x?)’>)

[[,x € B,y € Clx)|[x) < a1 = ay, ..., %, < a, = a,

is computable by head substitution lemma 5.3.4;

Els(d,m) = Els(d',m") € M(d) [U][x; < a1 = ay, ..., %, + a, = 4,

has empty context, then it is computable by (I' = )) subcase.

Lemma s.3.22 (Z-equality rule). The Z-equality rule preserve computability. That is if
o= M) e[,z € SuesClllfo = b € BITJs = ¢ € C(8) [T = SuesCx) type T
and Js = m(x,y) € M({x,y)) [[,x € B,y € C(x)| are computable judgements then

Els((b,¢), m) = m(b,c) € M({b,)) [T]

is computable.
Proof- e Subcase T = 0.

— (associate judgements) /5, /5 and J; are computable by assumption, thus, lemma
5.3.20 on X-introduction rules yields that (4, ¢) € X,c5C(x) isa computable judge-
ment, and hence Els ({6, c), m) € M((b, c)) is computable by the previous lemma
on Z-elimination rules. Moreover, since /5, /5 and /s are computable, we obtain
Jslx := b,y := ¢, i.e. the second associate judgement m(b,c) € M((b,c)), is

computable.
— (parts) By the computability rule, E/s (b, ¢), m) and m(b, ¢) evaluate into the same

canonical element, so all cases are trivial.

* Subcase I' # ().

— (associate) /5, /5 and J; are computable by assumption, thus, lemma 5.3.20 on
>-introduction rules yields that (b, ¢) € ,c5C(x) [I] is a computable judgement,

6o



and hence Els((b,c),m) € M((b,c)) [I' is computable by the previous lemma

on X-elimination rules.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € 4, fitting withI' =
[xi € 4y, ...,x, € 4,], then

M(z) type [T,z € ZoepClx)|[x1 1= a1, ..., %, = ay)
m(x,y) € M((x,y)) [[,x € B,y € C(x)|[x1 :=a,...,x, = a,]
are computable by head substitution lemma 5.3.4;
beB[lx:=a,...,x, =a,

c€ Co) [Mx :==ai,...,x, == a,]
ZxEBC(x) type [F] [xl =dly .., X, = dn]
are computable and

Els({b,c),m) = m(b,c) € M((b,c)) I][x1 :=ay,...,x, = a,]

has empty context, then it is computable by (I’ = @) subcase.

(substitution <—) Consider any c.c.s. a1 = 4y € 4i,...,a, = a,, € 4, fitting
withl = [x € 4y,...,x, € 4,],thenalsoa, € 4;,...,a, € 4,isac.cs. fitting
with I, and so

Els((b,¢),m) = m(b,c) € M((b,)) [l 1= ar, ..., %, = )]

is computable by (substitution :=) subcase.
Moreover, since Js[x := b,y := ¢ is computable, also s[x := b,y = c|[x; +
ay=4aj,...,x, < a, = a,| which s

m(b,c) € M({b,c)) [[|[x) a1 = ay,...,%, < a, = 4]

is computable and then the result follows by transitivity lemma 5.3.13.

O

Lemma s.3.23 (Eq-formation rules). The Eg-formation rules preserve computability. That is

1. Iff = Ctype L), o =c € Cll|and J5 = d € CI| are computable judgements then

Eq(C,¢,d) type [T]

is computable.
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2 Ifh=C=E[I,h=c=c¢€ Cllland}; = d = f € C|[I| are computable
Judgements then
Eq(C,c,d) = Eq(E, ¢, f) type [I]

is computable.

Proof- e Subcase T = 0.

1. — (evaluation) Eq(C, ¢,d) = Eq(C,¢,d) holds.
— (correct evaluation) Eq(C, ¢,d) = Eq(C, ¢, d) is derivable with the following
derivation tree
h B By
Eq(C,c,d) type
Eq(C,¢,d) = Eq(C, ¢, d)
— (parts) The parts are /;, /> and /3 which are assumed to be computable.

refl-ty

2. — (associate judgements) The judgements C type, E type,c € C,e € C,d € C
and f € C, associates of /;, /> and /5 are computable by assumption, and, by
point 1 of lemma s5.3.6 also ¢ € Eand f € E are computable. Hence the
result follows by case 1.

— (parts) The parts are /;, /> and /3 which are assumed to be computable.

* Subcase I # ().

1. — (substitution :=) Consider any c.cs. @y € 4y,...,a, € A, fitting with
=[x €4,...,x, € A4,],then

Ctype [I[x == a1, ..., %, == a,]

c€ Cllfw :=an,...,x, := a,]
de Cllx =ay,...,x, = a,]

are computable;
Eq(C,c,d) type [T][x1 := ay, . .., x, = a,,]

has empty context, then it is computable by (I' = )) subcase.
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— (substitution <=) Consider any c.c.s. a1 = 4} € 4,...,a, = a, € 4,
fittingwith = [x; € 4,,...,x, € 4,], then

Ctype [l[x1 ¢ a1 = ay, ..., %, ¢ a, = a,)
ceCl[xy a1 =al,...,x, < a,=4d)
deCll|m a1 =ay,...,x, < a, =4

are computable;
Eq(C,c,d) type [T)[x) < ay = 4, ..., x, < a, = 4]

has empty context, then (I' = )) subcase.

— (associate) The judgements C type [I],¢ € C[I],d € C|[I] associate respec-
tively of /;, /> and /3 are computable. Hence the result follows by case 1.

— (substitution :=) Consider any c.c.s. a1 € 4y,...,a, € A, fitting with
=[x €4,...,x, € A4,], then

C=E[x :=a1,...,%, :=a,)

c=clllx :=a1,...,x, := a,)
d=flx =a,...,x, = a,
are computable;

Eq(C,c,d) = Eq(E,e,f) [[][x1 := a1, ..., %, = a,)

has empty context, then it is computable by (I' = )) subcase.
— (substitution <—) Consider any c.c.s. a1 = 4} € 4,...,a, = a4, € 4,
fitingwith' = [x; € 4,...,x, € 4,], then

C=Elx a1 =ay,...,x,“ a,=4a,]

c=cel[llx a1 =4},...,x, < a, =4
d=fllx < a1 =ay,...,%, < a, = a,]

are computable;
Eq(C,c,d) = Eq(E,e.f) Tjxi ¢~ a1 = ay, ..., %, ¢ a, = a,)]

has empty context, then it is computable by (I' = ) subcase.
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]

Lemma s5.3.24 (Eq-introduction rules). The Eg-introduction rules preserve computability. That

s

1. If] = c € C I is a computable judgement then

eqc(c) € Eq(C.c.c) [T]

is computable.

2. If] = c=d € CI[I|isa computable judgement then

eqc(c) = eqc(d) € Eq(C,c,¢) [T]

is computable.

Proof.

I.

e Subcase I’ = 0.

— (associate judgements) The judgement C #ype, associate of /is computable by

assumption, hence by point 1 of the previous lemma also Eq(C, ¢, ¢) is com-
putable.
(evaluation) eq.(c) = eq.(c) holds.

(correct evaluation) eq.(c) = eqq(c) € Eq(C, ¢, ¢) is derivable with the fol-
lowing derivation tree

J
eqc(c) € Eq(C, ¢ ¢)
eqc(c) = eqc(c) € Eq(Cc,c)
(parts) The partis ¢ = ¢ € C which is computable by lemma 5.3.2 about

I-Eq

refl-ty

reflexivity on elements.

(associate judgements) The judgements ¢ € Candd € C, associates of /,
are computable. Then, by case 1, also eq(c) € Eq(C,¢,¢) and eq.(d) €
Eq(C,d, d) are computable.

— (parts) The part is / which is assumed to be computable.

* SubcaseI' # ().
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I.

— (associate) The judgement C #ype [I], associate of / is computable by assump-

tion, hence by point 1 of the previous lemma also Eq(C, ¢, ¢) zype [I] is com-
putable.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
=[x €4,...,x, € A4,],then

c€ Cllw :=an,...,x, := a,]
are computable;
eqc(c) € Eq(C,c,c) [T][x1 :=ay, .. ., x, 1= a,]
has empty context, then it is computable by (I’ = 0)) subcase.

(substitution =) Consider any c.c.s. 4y = a; € 4y,...,a, = a4, € 4,
fitingwith = [x; € 4, ..., x, € 4,], then

c€CM[xy a1 =ay,...,%, < a, =4,
are computable;
eqc(c) € Eq(C,c,c) [T < a1 = ay, ..., %, < a, = 4]
has empty context, then it is computable by (I’ = 0)) subcase.

(associate) The judgementc € C|[I'], which is the associate of /, is computable
by definition, hence the result follows by case 1.

(substitution :=) Consider any c.c.s. 41 € 4y, ..., a, € 4, fittingwith' =
[x; € 41,...,x, € A4,], then

c=deClllx:=ay,...,x, :=a,]
are computable;
eqc(c) = eqe(d) € Eq(Ce.0) [T i= an, -, %, 1= )
has empty context, then it is computable by (I' = @) subcase.

(substitution =) Consider any c.c.s. 4y = a; € 4y,...,a, = a4, € 4,
fitingwith' = [x; € 4, ..., x, € 4,], then

c=deClllx «ay=ay,...,x, a, =a,)
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are computable;
eqc(c) = eqce(d) € Eq(C,c,c) [T]fw) < a1 =4y, ..., %, < a, = 4.

has empty context, then it is computable by (I’ = )) subcase.

]

Lemma s.3.25 (Eq*-elimination rule). The Eq*-elimination rule preserves computability. That
isif the judgements | = p € Eq(C,¢,d) [I],, = Ctype [T, s =c € C[land], =d € C[I]
are computable then the judgement

c=deCll
is computable.

Proof. * Subcase I' = (). The result follows by definition of computability of /.
* Subcase I' # ().

— (associate) The associate judgement is /3 which is computable by assumption.

— (substitution :=) Consider any c.c.s. 41 € 4y,...,a, € 4, fitting with I' =
[x1 € 4,...,x, € A4,], then

VAS Eq(C,Qd) [r][xl = Ay e Xy ﬂn]

Crype I[x1 = ay, ..., %, == a,]
c€ Cllx :=ay,...,x, = a,)
de Clllx =ay,...,%, = a,)

are computable;
c=de Clllx :=ay,...,x, :=a,]

has empty context, then it is computable by (I' = )) subcase.

— (substitution <) Consider any c.c.s. a1 = ay € 4y,...,a, = a, € A, fitting
withl =[x € 4y,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isac.cs. fitting
with I, and so

c=de Cllllx :=ay,...,x, :=a,]

is computable by (substitution :=) subcase. Moreover
deClllx +ai=ay,...,x, < a, =4

is computable and then the result follows by transitivity lemma 5.3.13.
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]

Lemma 5.3.26 (Eq-equality rules). The Eq-equality rule preserves computability. That is if the
Judgement ] = p € Eq(C, ¢, d) [T is computable then the judgement

P= eqC(C) S Eq(C7 6 d) [r]

is computable.

Proof- e Subcase I’ = ().

— (associated judgements) The first associate judgement is / which is computable by
assumption.

Since /is computable, then ¢ = d € C, ¢ € Cand C type are computable; then,
by point 1 of lemma on Eqg-introduction rules s5.3.24, the judgement eq.(c) €
Eq(C, ¢, c) is computable. Moreover, by reflexivity lemmas 5.3.3 and 5.3.2, C = C
and ¢ = ¢ € Care computable, thus, by lemma on Eq-formation rules 5.3.23, also
Eq(C,c,¢) = Eq(C, ¢, d) type is computable. Hence, by point 2 of lemma s.3.6,
eqc(c) € Eq(C, ¢, d) is computable.

— (parts) The judgement ¢ = d € Cis computable by assumption.

* Subcase I' # ().

— (associate) The associate judgement is / which is computable by assumption.

— (substitution :=) Consider any c.cs. 2, € A4y,...,a, € A, fitting withT' =
[x; € 41,...,x, € 4,], then

yAS Eq(C7 C’d) [r][xl =Aly e Xy dn]
is computable;
P = eacl0) € Ea(Coecd) [T = ... 35, = ]

has empty context, then it is computable by (I’ = @) subcase.

— (substitution <) Consider any c.c.s. a1 = 4] € 4,,...,a, = a4, € 4, fitting
withl =[x € 4y,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isac.cs. fitting
with I, and so

p € Eq(C,c,d) T][x1 :==a, ..., x, = a,]
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is computable;
p =-eqclc) € Eq(C,c,d) T][x) < a1 = 4, ... ,x, < a, = 4,
has empty context, then it is computable by (I’ = 0)) subcase.

]

Lemma s5.3.27 (Qtr-formation rules). The Qtr-formation rules preserve computability. That is

1. If] = A vype [T is a computable judgement then
A/ T type 1]
is computable.
2. If] = A = B|[I| is a computable judgement then
A/T =B/T[I]

is computable.

Proof. By induction on the computational complexity « of /.
* Subcase I = ).

1. — (evaluation)4/T = A4/T holds.

— (correct evaluation) A/ T = A/T is derivable with the following derivation
tree

S
A/ T type
AT =4/T
— (parts) The part is ] which is assumed to be computable.

Qtr
refl-ty

2. — (associate judgements) The judgements A #ype and B type, associates of J are
computable by assumption, hence the result follows by case 1.

— (parts) The part is ] which is assumed to be computable.
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* Subcase I' # ().

1. — (substitution :=) Consider any c.cs. 41 € Ay,...,a, € A, fitting with
=[x €4,...,x, € A4,],then

Atype [[xy i=ay, ..., %, = ay,)
is computable by assumption;
AT type [T[x1 = an, ..., %, = a,,]

has empty context, then it is computable by (I' = ) subcase.
— (substitution <—) Consider any c.c.s. a1 = 4} € 4,...,a, = a4, € 4,
fittingwithl = [x; € 4,,...,x, € 4,], then

Atype Uy < a1 = ay, ..., x, < a, = 4]
is computable by assumption;
AT type Ny <= ar = ay, ..., %, & a, = a,)

has empty context, then it is computable by (I' = )) subcase.

2. — (associate) The judgement 4 #ype [I'| associate of / is computable. Hence the
result follows by case 1.

— (substitution :=) Consider any c.c.s. a1 € 4y,...,a, € A, fitting with
[=[x €4,...,x, €A,],then

A=B[lx:=a,...,x, = a,]
is computable by assumption;
A/T =B/T [lx :=ay,...,x, = a,]

has empty context, then it is computable by (I' = (}) subcase.
— (substitution <—) Consider any c.c.s. a1 = 4} € 4,...,a, = a4, € 4,
fitingwith' = [x; € 4, ..., x, € 4,], then

A=B[l|lx < a1=ay,...,x, + a, =4,
is computable by assumption;

A/T =B/TMx a1 =ay,...,x, < a, =4,
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has empty context, then it is computable by (I’ = 0)) subcase.

]

Lemma 5.3.28 (Qtr-introduction rules). The Qtr-introduction rules preserve computability.
That is

1. If] = a € A [T is a computable judgement then
[a] € 4/T [T
is computable.
2. Iff=a € Alland], = b € A [T are computable judgements then
[a] = (6] € 4/ T [T]

is computable.

Proof. e Subcase I’ = 0.

1. — (associate judgements) The judgement 4 #ype, associate of /is computable by
assumption, hence by point 1 of the previous lemma also 4/ T zype is com-
putable.

— (evaluation) [4] = [4] holds.

— (correct evaluation) [4] = [4] € A/T is derivable with the following deriva-
tion tree

VAN
[a) € A/ T
la) =[a) €A4)T
— (parts) The part is / which is assumed to be computable.

I-Qtr

refl-tm

2. — (associate judgements) The result follows from case 1.

— (parts) The judgements 2 € 4 and b € B are computable by assumption.
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* Subcase I' # ().

1. — (associate) The associate judgement of /, A type [I'], is computable by assump-
tion; then, by previous lemma, also 4/ T #ype [I'] is computable.

— (substitution :=) Consider any c.c.s. a1 € 4y,...,a, € A, fitting with
=[x €4,...,x, €A4,],then

a € Al[x :=ay,...,x, = a,)
is computable;
[a) € 4)T I[x1 :=ay, ..., x, 1= a,)

has empty context, then it is computable by (I = (}) subcase.

— (substitution <=) Consider any c.c.s. a1 = 4} € 4,...,a, = a, € 4,
fiting with' = [x € 4y,...,x, € 4,], thenalsoa; € 4,...,a, € 4,
anda; € 4y,...,a, € A, areccs. fitting with T, and so

a € Al[x :=ay,...,x, = a,)

and
a € Alx :=ay, ... ,x, =4

are computable;
al €A rx1<—dl——ﬂ/,...,xn<—ﬂn——ﬂ/
[ } 1 n

has empty context, then it is computable by (I' = )) subcase.

2. — (associate) The result follows by case 1.

— (substitution :=) Consider any c.c.s. a1 € 4y,...,a, € A, fitting with
[ =[x €4,...,x, €A,],then

a € Alx = ay,...,x, = a,]

and
be Alx :=ay,...,x, = a,)

are computable;
[a] = [0 € 4/T [ = an, .., %, := )

has empty context, then it is computable by (I' = ().
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— (substitution <=) Consider any c.c.s. a1 = 4} € 4,...,a, = a, € 4,
fitingwithT =[x € 4;,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isa
c.c.s. fitting with I', and so

[a] = [0 € 4/T [M][w :=an, ..., %, = 4,
is computable by (substitution :=) subcase; then
0] € AT Moy < a1 = ay, ..., %, < a, = 4]
is computable by case 1. Hence
la] = (6] € A/ T [[][x1 <= a1 = ay, ..., %, < a, = a,]

is computable by transitivity lemma 5.3.13.

]

Lemma 5.3.29 (Qtr-elimination rules). The Qtr-elimination rules preserve computability. That

1. If the judgements | = L(z) type I,z € A/T), h = p € A/T I, 5 = l(x) €

L([x]) [T,x € Al and ], = l(x) = I(y) € L([x]) [T, x € 4,y € A| are computable then
the judgement

Elo(l.p) € L(p) [I]
is computable.

P EeEATL L =) =

. If the judgements | = L(z) type [T,z € A/ T, h, = p =
€ L([x]) [T,x € 4,y € 4] are

p)
x) € L([x]) [T,x € Al and ], = l(x) = I(y)
computable then the judgement

Elo(l,p) = Elo(l'.p') € L(p) [T]

is computable.

e Subcase I’ = 0.

1. — (associate judgements) The computability of the judgement L(p) zype, asso-
ciate of the judgement Ely(/,p) = Elo(/,p") € L(p), follows by assump-
tion.
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— (evaluation) /; is computable and 4/ T = A/T, then p = [4] and the
judgement z € A is computable; thus it is a c.c.s. fitting with x € A; there-
fore /3[x := al, whichis /(2) € L([4]), is a computable judgement. Hence
/(a) = gand the result follows by using the computation rule.

— (correct evaluation) Since /; is computable, we know that there exists a deriva-
tion of the judgement A/ T fype; hencex € A/ T isacorrectassumption , and
p = la] € A/ T is derivable. Let IT; be the following derivation

N x€A/T[xed/T] s

]7 = [4] € A/T EZQU’ x) € L<x> [x < A/T] sub—tmEi—e(ltr
Elo(l,p) = Ely(l, [a]) € L(p) 1
then I, is
p=1al €4/T ) svim-
mo L - o))

Fig(h,p) = Flgll, a])  L{(a])
Since /, is computable, so is 2 € A and then /3[x := 4] is computable.
Thus the judgements /(2) = g € L([4]) and 2 € A are derivable. Let IT; be

N acd i C-Qur
Elo(l, [4]) = Ua) € L([a]) l(a) = g < L([4])
I, Llo(l, |a]) = g € L([4])
Elo(l,p) = g € L([4])

trans-tm

trans-tm

Hence
p=laed/T &
L(p) = L([a])
1T L([a]) = L(p)
Elg(l,p) = g € L(p)
— (parts) The part is / which is assumed to be computable.

sym-ty

conv-eq

— (associate judgements) The computability of Elo(Z, p) € L(p) follows by case
1. Then, since /5 is computable also /(y) = /(y') € L([y] [y € A|; then, by
weakening lemma s.3.1, by Qtr-introduction lemma s.3.28, by point 3 of
lemma 5.3.6, both /(x) = /(x') € L([x]) [x € 4,y € A]and l(y) = I(¥') €
L([x])[x € A4,y € A] are computable, so, by point 1 of 5.3.6,/(x) = I'(y) €
L([x]) [x € 4,y € A]. The computability of Elo(/,p") € L(p'), thus, fol-
lows by case 1, since from the fact that /, and /5 are computable, by lemma
5.3.8, we obtain that p’ € A/ T and /'(x) € L([]) [x € 4] are computable
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judgements. Then, since the judgement L(p) = L(p') is computable, by
point 2 of lemma 5.3.6, Ely(/', p') € L(p) is computable.

(parts) The judgement /, is computable, then p = [4], p/ = [4'] and the
judgements 2 € A4 and 4’ € A are computable. Moreover they are c.c.s.
forx € A,y € AinJ;, and then Ji[x := a4,y := 4’|, that is the judgement
l(a) = l(a’) € L([a]) is computable; then 3[x := &'], thatisl(a’) = /'(d’) €
L([4']), is computable, hence, by point 2 of Qtr-introduction lemma 5.3.28
and by point 3 of lemma 5.3.6, also /(a’) = /(') € L([4]) is computable.
By transitivity lemma, /(a) = /'(a') € L([a]) is a computable judgement.
Then, by point 3 of lemma 5.3.6, [(a) = ['(a’) € L(p) is a computable
judgement, since, as in the previous point, we can prove that L([4]) = L(p)
is a computable judgement. So, if /(2) = g;and /'(4") = gy, the parts of g
and gy satisty the computability requirements.

* Subcase I # ().

I.

— (associate) The computability of the judgement L(p) zype [I], associate of the

judgement El(Z, p) € L(p) [T, follows by substitution lemma s.3.5.

— (substitution :=) Consider any c.c.s. a1 € 4y,...,a, € A, fitting with

=[x €4,...,x, € A4,], then
L(z)type [T,z € AT = ay, ..., %, := a,]
l(x) € L([x]) [T, x € A][x1 := a1, ...,%, := a,]

l(x) =1ly) e L([x]) [T,x € 4,y € 4] == a1, ... ,x, = a,]

are computable by head substitution lemma 5.3.4 and
peA/TMwm =ai,...,x, :=a,
is computable;
Elo(l,p) € L(p) T][x1 := ar, ..., %, := a,)]

has empty context, then it is computable by (I' = )) subcase.

(substitution =) Consider any c.c.s. 2y = a; € 4y,...,a, = a4, € 4,
fitingwithl' = [x; € 44,...,x, € 4,],thenalsoa; € 4y,...,a, € 4,isa
c.c.s. fitting with I', and so

L(z)type T,z € A/ T = ay, ..., %, := a,]
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Ix) e L(x]) [T,x e d]mi a1 =4, ..., %, < a, = 4]
l(x)=1y) e L([x]) [T,x € 4,y € A|[x1 := a1, ...,%, = a,]
are computable by head substitution lemma 5.3.4;
pEA/T v a1 =4y ... %, < a, =4
is computable;
Elo(Lp) € L(p) T[w1 = a1 = ay, ..., %, < a, = a,,]

has empty context, then it is computable by (I = (}) subcase.

(associate) The computability of the judgement Ely(/,p) € L(p) [T, asso-
ciate of the judgement Ely(Z,p) = Elo(l',p") € L(p) [I], follows by case

I.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
[=[x €4,...,x, €A, then

L(z)type [T,z € AT = ay, ..., %, := a,]
l(x> = l,(x) S L([x]) [r,x € A] [xl =day, ..., X, = ﬂn]
l(x) = ZO’) € L([x]) [Ix € A,y € Allxy == ay, ... %, i= ay,)
are computable by head substitution lemma s.3.4 and
p :p/ EA/T [I‘Hxl =4y, .. Xy = dn]

is computable;

Elo(Lp) = Elo(I',p') € L(p) [x1 := a1, ..., %, = a,
has empty context, then it is computable by (I' = 0)) subcase.

(substitution =) Consider any c.c.s. 4y = 4} € 4y,...,a, = a4, € 4,
fittingwithT = [x; € 4y, ...,x, € 4,], thenalsoa; € 4;,...,a, € 4,isa
c.c.s. fitting with I', and so
L(z)type T,z € AT = ay, ..., %, = a,]
l(x) =1 (x) € L([x]) T,x € ][x) < a1 = 4}, ..., X, < a, = a4,
l(x)=1Iy) € L([x]) [T,x € A,y € Al[x1 := a1, ..., %, := a,]
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are computable by head substitution lemma 5.3.4 and
p=p €A/T[Mlx :=an,...,x, :=a,)
is computable;
Elo(L,p) = Elo(l'.p') € L(p) T][x1 <= a1 = ay, ..., %, < a, = a,]

has empty context, then it is computable by (I’ = )) subcase.

]

Lemma s.3.30 (Qtr-equality rule). The Qtr-equality rule preserves computability, i.e., if the
Judgements Jy = L(z) type T,z € A/ T, h =a € A1), 5 = l(x) € L([x]) [I,x € 4| and
Ji =1U(x) =1Uy) € L([x]) [T, x € 4,y € A| are computable then the judgement

Elo(l, |a]) = U(a) € L([a]) [T]
is computable.

Proof. e Subcase I = 0.

— (associated judgements) /, is a computable judgement by assumption.
Thus, lemma on Qtr-introduction rules yields that (4] € 4/ T is a computable
judgement, and hence Ely(/, [4]) € L([4]) is computable by the previous lemma
on Qtr-elimination rules. Moreover, since /5 is computable, we obtain that /5 [x :=
a), ie. the second associate judgement /(2) € L([a]), is computable.

— (parts) Since Ely(/, [a]) and /() evaluate into the same canonical element, the
computability of the judgement Ely(/, [a]) = l(a) € L([a]) follows from the
computability of the associated judgements.

* Subcase I' # ().

— (associate) /; is a computable judgement by assumption.
Thus, lemma on Qtr-introduction rules yields that [2] € 4/T [I']is a computable
judgement, and hence Ely(/, [a]) € L([4]) [I'] is computable by the previous
lemma on Qtr-elimination rules.
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— (substitution :=) Consider any c.cs. 4, € 4y,...,a, € A, fitting with ' =
[x; € 4,...,x, € A4,], then

L(z)type T,z € AT = ay, ..., %, := a,]
l(x) € L([x]) [T[,x € A][x) := a1, ..., %, := a,)
l(x) =1y) € L([x]) T,x € 4,y € Al[x1 == a1, ..., %, := a,]
are computable by head substitution lemma s.3.4 and
a €A =ay, ..., %, == a,]
is computable by assumption;
Elg(l,[a]) = ) € L(la]) [T 1= ar, . 5 = @]

has empty context, then it is computable by (I' = @) subcase.

— (substitution <) Consider any c.c.s. a1 = 4y € 4,,...,a, = a, € 4, fitting
withl =[x € 4y,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isac.cs. fitting
with I, and so

Els({b,c),m) = m(b,c) € M(d) [T][x) :== a1, ...,%, ‘= a,]

is computable by (substitution :=) subcase.

Moreover, since Js[x := b,y := (| is computable, also s[x := b,y := (|[x; <
ay=aj,...,x, < a, = a.,| whichis

m(b,c) € MA) T][x1 < a1 =4, ... ,x, < a, = 4]

is computable and then the result follows by transitivity lemma, 5.3.13.

S-4 THE COMPUTABILITY THEOREM

Now we can state our main theorem about computability/operational semantics: it shows that

any derivable judgement is computable and hence that all the properties we ask for ajudgement

to be computable hold for any derivable judgement

Theorem s.4.1 (Computability theorem). Let J be any derivable judgement. Then ] is com-
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Proof. 1f Jis derivable, then a proof IT of /is built only with the rules of 7. All the rules of
Ty preserve computability, then /is computable. O

A normal form theorem is a theorem that states that any proof can be transformed in a new
one with the same conclusion but enjoying stronger structure properties. The computability
theorem does not regard derivations but still is strongly related to normal form theorems as the

following definitions will clarity.
Definition s.4.1 (Canonical proof). A4 proof 11 of a judgement J is canonical if
1. = Atypeor] = A = Band the last inference step in 1 is a_formation rule.

2. J=a € Aor]=a = bc A4andthelast inference step in I1 is an introduction rule.

A canonical proof might be also called ”normal at the end”. Clearly not every closed judge-
ment can be derived by a canonical proof. This holds only for the judgements which, according

to the following definition, are in canonical form.

Definition 5.4.2 (Canonical form). Let ] be a closed judgement. Then
s if] = Atypeand A = G, then the canonical form of ] is G 4 type;
* iff=A = Band A = G4 and B = Gg then the canonical form of Jis G4 = Gp;
*iff]=ac danda = g, and A = G, then the canonical form of [ is g, € Gy;

ciffj=a=bec danda = g,and b = g,and A = G, then the canonical form of ] is
L= € Ga

Corollary 5.4.1 (Canonical-form theorem). Let ] be a derivable closed judgement then there

exists a canonical proof of the canonical form of J.

7oof. Since [ is derivable then it is computable and hence there exist a derivation of its parts
P, S derivable then it putable and hence th t a derivat fits part
judgements since they also are computable. By putting them together with a formation or an

introduction rule we obtain a canonical proof of the canonical form of /. O

Itis easy to see that if /is a derivable closed judgement then its computability implies that its

canonical form is a judgement equivalent to /, in fact:
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if/ = Atypeand 4 = G, then the canonical form of /is G, type and the computability
of Jassures that 4 = G is derivable.

if[= A= Band 4 = G, and B = Gj then the canonical form of /is G; = Gp and
the computability of /assures that 4 = G, and B = Gj are derivable judgements.

if/=a € Aanda = g,and 4 = G, then the canonical form of /is g, € G4 and the
computability of / yields that 4 = G, anda = g, € 4 are derivable judgements.

if/=a=0b¢c Aanda = g,,b = g,and 4 = G, then the canonical form of /
is ¢, = g, € G, and the computability of / assures that 4 = G4,2 = g, € 4 and
b = g, € A are derivable judgements.
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The canonical form theorem for 7, reg

The proof of the canonical-form theorem for 7., follows the same structure as the proof of the

canonical-form theorem for 7,

involve case analysis, where also the type of the natural numbers must be considered. Further-

in the previous chapter, paying attention to when the proofs

more, the preservation of computability must be proved for all the rules of the type of natural

numbers, which we report below.

Lemma 6.0.1 (nat-formation rule). The nat-formation rule preserves computability. That is

the judgement
N type I

is computable.

Proof. * Subcase T’ = 0.

— (evaluation) N = N holds.

— (correct evaluation) N = Nis derivable with the following derivation tree
I' cont
N type

N=N

— (parts) There is no condition to prove.

nat

refl-ty
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* Subcase I' # ().

— (substitution :=) Consider any c.c.s. 41 € 4y,...,a, € A, fitting withT' =
[x1 € 4,...,x, € A4,], then

Nuoype Il[x = ay,...,%, == a,] = Ntype

is computable by (I’ = 0)) subcase.

— (substitution <) Consider any c.c.s. @1 = 4] € 4,,...,a, = a4, € 4, fitting
with = [x; € 4y, ...,x, € 4,], then

Ntype[Ujxy — a1 = ay, ..., %, < a,=a,| =N=N

is computable, since it is derivable and the associate judgement N #ype is com-

putable.
O

Lemma 6.0.2 (nat-introduction rules). The nat-introduction rule preserves computability. That

is
1. The judgement
0 € NI
is computable
2. If] = n € NI is a computable judgement then
s(n) € NI
is computable.
3. IfJ=m = n € N[I|isa computable judgement then
s(m) =s(n) € N[T]
is computable.
Proof.

e Subcase I’ = ().
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1. — (associate judgement) The computability of the associate judgement is imme-
diate by the previous lemma on nat-formation rule.

— (evaluation) 0 = 0 holds.
— (correct evaluation) 0 = 0 € N is derivable with the following derivation
tree

T cont
0eN
0=0cn m
— (parts) No condition to show.

Il—nat

2. — (associate judgements) The computability of the associate judgement is im-
mediate by the previous lemma on nat-formation rule.
— (evaluation) s(z) = s(n) holds.
— (correct evaluation) s(z) = s(n) € Nis derivable by using first the second
nat-introduction rule and then the reflexivity on elements rule.

VA
s(n) e N
s(n) =s(n) € N
— (parts) The part is / which is assumed to be computable.

Iz—nat

refl-tm

3. — (associate judgements) The judgements m € Nand n € N, associates of /,
are computable by definition. Hence the result follows from case 2.

— (parts) The part is / which is assumed to be computable.

* Subcase I' # ().

1. — (associate) The judgement N #ype [I'] is computable for the previous lemma
on nat-formation rule.

— (substitution :=) Consider any c.c.s. 2y € 4y,...,a, € A, fitting with
=[x €4,...,x, €A4,],then

0 N[M[x, :=a1,...,%,:=a,] =0 N

is computable by (I’ = ) subcase.
— (substitution <—) Consider any c.c.s. a1 = a4} € 4,...,a, = a4, € 4,
fitingwith' = [x; € 4, ..., x, € 4,], then

0OeN[Tqa=a),..., 6,4 a,=4,]=0=0€N
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is computable, since it is derivable and the associate judgement 0 € N'is
computable.

(associate) The judgement N #ype [I'] is computable for the previous lemma
on nat-formation rule.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
=[x €4,...,x, € 4,], then

neN[Ix:=ay,...,x,:=a,
is computable;
s(n) € N[I[x == a1, ...,%, := a,]

has empty context, then it is computable by (I’ = ) subcase.

(substitution <—) Consider any c.c.s. 4y = 4} € 4y,...,a, = a4, € 4,
fitingwith = [x; € 4,,...,x, € 4,], then

n€N[x a1 =ay,...,x, < a, = a,
are computable;
s(n) e N[[|[xy a1 =ay,...,%, < a, =4

has empty context, then it is computable by (I' = ) subcase.

(associate) The judgement 7 € N [I, associate of / is computable. Hence
the result follows by case 2.

(substitution :=) Consider any c.cs. a1 € 4y,...,a, € A, fitting with
[=[x €4,...,x, €A,],then

m=n€ N[[x :=ay...,x,:=a,
is computable;
s(m) =s(n) € NI|[x =a1,...,x, := a,]

has empty context, then it is computable by (I' = ().

(substitution =) Consider any c.c.s. 4y = a; € 4y,...,a, = a4, € 4,
fitingwith' = [x; € 4, ..., x, € 4,], then

m=n€N[x «a=4,,...,x, < a,=4a)
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is computable;
S(Wl) = S(”) € N[r][xl <—a = di, ey Xy S a, = d;]

has empty context, then it is computable by (I' = ().

]

Lemma 6.0.3 (nat-climination rules). The nat-elimination rules preserve computability. That
is

. Iff =Lz)oype [T,z € N, h=ne€ NI, =a € L(0) I and ], = l(x,y) €
L(s(x)) [I[,x € N,y € L(x)| are computable judgements then

Eln(a,l,n) € L(n) [T]
is computable.

2 Iff = Le)pe[l,z € NLh=n=n" € NI =a =24 € L(0) [I] and
Ji =lx,y) =1l (x,9) € L(s(x)) [I',x € N,y € L(x)] are computable judgements then

Eln(a,1,n) = Ely(d I, n') € L(n) [T]

is computable.

Proof- e Subcase T = 0.

1. — (associate judgements) The computability of the judgement L(%) #ype, asso-
ciate of the judgement Elx(a,/, n) € L(n), follows by assumption.

— (evaluation) /, is computable and N = N, then either n = 0 or n = s(m).
* If n = 0, then, since /5 is computable, we have that 2 = g; hence the
result follows by the computation rule.

* If n = s(m), then m € Nand Elx(a,l,m) € L(m) are computable
and itis a c.c.s. fitting withx € N, y € L(x); therefore /3[x := m,y :=
Eln(a,l, m)|, which is (m, Elx(a,l,m)) € L(s(m)), is a computable
judgement. Hence /(m, Eln(a, [, m)) = g and the result follows by us-
ing the computation rule.
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— (correct evaluation) Since /, is computable, we know that there exists a deriva-
tion of the judgement N #ype; hencex € Nisa correct assumption, and either
n=0orn=s(m) € Narederivable.

x If n = 0 then, let IT; be

s xeEN[xeN L

n=0eN Eln(a,l,n) € L(x) [x € N
Eln(a,l, n) = Eln(a,l,0) € L(n)

E-nat

sub-tm-eq

then I, is
n=0eN ]
I, L(n) = L(0)
Eln(a,l,n) = Eln(a,l,0) € L(0)
Since /5 is computable, the judgement 2 = ¢ € L(0) is derivable. Let

sub-ty-eq

conv-¢q

H3 be
h s
Fln@,L0)—ac L) ™ 41— e L(0)
Ein(a,1,0) = g € L(0) frans-tm
then
I, I trans-tm
Eln(a,l,n) =g € L(0)
Hence
sub-ty-eq
=10
Eln(a,l,n) =g € L(0) L(0) = L(n) conv-cq

Eln(a,l,n) =g € L(n)
* If n = s(m) € N, then let IT; be

N x € N[x € N| NE A

n=stm)eN  Ealn ellkeN]
Eln(a, 1, 7) = Eln(a, 1,5(m)) € L(n) 1
then I, is
n=s(m)eN J
sub-ty-e
I L =Listm) U

Elx(a,1,7) = Ely(a, 1,s(m)) € L(s(m))

Since /, iscomputable, sois 7 € Nand then/i[x := m,y := Ely(a, [, m)]
is computable. Thus the judgements /(m, Eln(a,l,m)) = g € L(s(m))
and m € N are derivable. Let I'T; be
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2.

Ji meN 5
Eln(a,l,s(m)) = l(m, Eln(a, 1, m)) € L(s(m)) I(m, Ely(a,l,m)) = g € L(s(m))
Eln(a,l,s(m)) = g € L(s(m))

C,-nat

then
I, I,
Ein(a,d,n) =g € L(s(m)) o™
Hence
=s(m)eN ]
Hn) = Els(m)) 220
Elnla,l,n) =g € L(s(m)  Lislm) = Llw) o7

Eln(a,l,n) =g € L(n)

— (parts) Since /, is computable we know that either = 0 or n = s(m).

* If n = 0, then 0 € N is computable by the previous lemma on nat-
introduction rules. Hence we can deduce that the judgementz = 0 €
N is computable. Therefore, since /; is computable, we obtain that the
judgement L(0) = L(z) is a computable judgement. Then, since /5 is
computable, so is2 € L(z) by point 2 of lemma 5.3.6. Hence, since
a = g, the parts of ¢ which is also the value of Elx(a, [, n), satisfy the
computability requirements in L (7).

* If n = s(m), thenm € Nands(m) € Nis computable by the previous

lemma on nat-introduction rules. Hence we can deduce that the judge-
ment z = s(m) € Nis computable. Therefore, since /; is computable,
we obtain that the judgement L(s(m)) = L(n) is a computable judge-
ment. Then, since /; is computable, so is J4[x := m,y := Ely(a,l, m)]
and /(m, Eln(a,l,m)) € L(n) is computable by point 2 of lemma 5.3.6.
Hence, since /(m, Eln(a,l,m)) = g, the parts of ¢ which is also the
value of Eln(a, [, n), satisfy the computability requirements in L(1).

— (associate judgements) The computability of Elx(a,/, n) € L(n) follows by

trans-tm

case 1. Also the computability of Eln(a’,l',n") € L(n') follows by case 1,
since from the fact that /, /3 and /; are computable, by point 4 of lemma 5.3.6,

we obtain that 7’ € N, 5 = a4 € L(0) [Iand /(x,y) € L(s(x)) [[,x
N,y € L(x)] are computable judgements. Then, since the judgement L()

S

L(n") is computable, by point 2 of lemma 5.3.6, Eln(a', /', n') € L(n) is com-

putable.

arts) The judgement /, is computable, then either » = 0and »’ = 0 or
(parts) The judg J p

n = s(m)andn’ = s(m’)
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* If n = 0and #’ = 0, then, by point 3 of lemma 5.3.6,4 = 4’ € L(n)
is a computable judgement, since, as in the previous point, we can prove
that L(0) = L(n). So,ifa = gand 4’ = ¢, the parts satisfy the
computability requirements in L (7).

* If n = s(m) and n’ = s(m') then m = m’ € Nis computable. More-
over m = m' € Nand Ely(a,l,m) = Ely(a',lI',m') € L(m) are
ccs. forx € Nandy € L(x) inJy, respectively, and then Ji[x <
m = m',y < Eln(a,l,m) = Eln(a',l',m')], that is the judgement
l(m,Eln(a,l,m)) = I'(m',Eln(a',l',m")) € L(s(m)) is computable.

Then, by point 3 oflemmas.3.6,/(m, Eln(a,l,m)) = I'(m', Eln(a', I, m")) €

L(n) isa computable judgement, since, as in the previous point, we can
prove that L(s(m)) = L(n). So, if {(m, Eln(a, 1, m)) = g,, and
I'(m',Eln(a',I',m")) = g,v, the parts satisfy the computability require-
ments in L(n).

* Subcase I' # ().

I.

— (associate) The computability of the judgement L(1) type [I'], associate of the
judgement Eln(a,/, n) € L(n) [I], follows by substitution lemma 5.3.5.

— (substitution :=) Consider any c.c.s. @y € 4y,...,a, € A, fitting with
=[x €4,...,x, € A4,],then

L(z) type [I',z € N|[x1 :=ay, ...,x, = a,]
and
l(x,y) € L(s(x)) [T,x € N,y € L(x)][x1 == a1, . ..,%, := a,]
are computable by head substitution lemma 5.3.4,
n€ N[[x =a,...,x, :=a,
a € L) [Ix :=ar,...,x, :=a,]
are computable;

Eln(a,lin) € L(n) [Tx = a1, ..., %, := a,)

has empty context, then it is computable by (I' = ) subcase.
— (substitution <—) Consider any c.c.s. a1 = 4} € 4,...,a, = a4, € 4,
fitingwithI' = [x; € 4y,...,x, € 4,],thenalsoa; € 4y,...,a, € 4,isa
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c.c.s. fitting with I', and so
L(z) type I,z € N|[x1 :=ay, ..., %, ‘= a,
and
[(x,7) € L(s(x)) [I[,x € N,y € L(x)][x1 <~ a1 = a1, ..., %, < a, = 4,
are computable by head substitution lemma 5.3 .4,
ne€N[x a=4ay,...,%, < a, =a)

and
a € LO) My a1 =4, ..., %, < a, = 4]

are computable;
Eln(a,l,n) € L(n) [T[x < a1 = ay, ..., x, < a, = 4

has empty context, then it is computable by (I' = 0)) subcase.

(associate) The computability of the judgement Elx(a,l,n) € L(n) [T, as-
sociate of the judgement Eln(a,/, n) = Eln(a', !, n") € L(n) [T, follows by

case I.

(substitution :=) Consider any c.cs. a1 € A4y,...,a, € A, fitting with
=[x €4,...,x, € 4,], then

L(z) type [T,z € N|[xy :=ay, ..., X, = a,,]
and
l(x,y) =1'(x,y) € L(s(x)) [[,x € N,y € L(x)][x; := a1, ..., %, := a,,]
are computable by head substitution lemma 5.3.4,
n=n€N[|x:=ay...,x, :=a,

a=2a €L0) [ :=a1,...,% =a,)

are computable;
Eln(a,l,n) = Eln(a',I',n") € L(n) )x = ar, ..., %, := a,]

has empty context, then it is computable by (I' = )) subcase.
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— (substitution <=) Consider any c.c.s. a1 = 4} € 4,...,a, = a, € 4,

fitingwithT =[x € 4;,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isa

c.c.s. fitting with I', and so
L(Z) type [F,Z € M[xl =dr, .., X, = d”}

and

[x,y) =1 (x,y) € L(s(x)) [T, x € N,y € L(x)][x) < a1 = 4}, ...

are computable by head substitution lemma 5.3.4,
n=n €Nl +ar=4,,...,x, < a, =4

and
a=a €L0)[)fx < a1=4ay,...,x, < a, = a,]

are computable;

/
Xy S d, = a,

Eln(a,l,n) = Eln(d' I n') € L(n) [T)|x < a1 = ay, ..., %, & a, = 4]

has empty context, then it is computable by (I' = )) subcase.

Lemma 6.0.4 (nat-equality rules). The nat-equality rules preserve computability. That is

1 If = L(z) ype I,z € N|, b, = a € L(0) I and 5 = l(x,y) € L(s(x)) I',x €

N,y € L(x)| are computable judgements then

Eln(a,1,0) = a € L(0) [T]

is computable.

2. Ifh =Liz)type [T,z € N, , =n € NI, s =a € L(0) I and Js = l(x,y) €

Proof.

L(s(x)) [I,x € N,y € L(x)| are computable judgements then

Eln(a,l,s(n)) = l(n, Eln(a,l,n)) € L(s(n)) [I]

is computable.

e Subcase I = ().
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I.

— (associate judgements) Lemma 6.0.2 on nat-introduction rules yields that 0 €

N is a computable judgement, and hence E/x(a,/,0) € L(0) is computable
by the previous lemma on nat-elimination rules. Moreover, the other asso-
ciate is J, which is assumed to be computable.

(parts) By the computability rule, E/x(4,/,0) and 2 evaluate into the same
canonical element, so all cases are trivial.

(associate judgements) /, is computable by assumption, thus, lemma 6.0.2
on nat-introduction rules yields that s(z) € Nis a computable judgement,
and hence Eln(a,l,s(n)) € L(s(n)) is computable by the previous lemma
on nat-elimination rules. Moreover, since /5, /3 and /s are computable, we
obtain /5[x := n, y := l(n, Eln(a, [, n))], i.e. the second associate judgement
l(n,Eln(a,l,n)) € L(s(r)), is computable.

(parts) By the computability rule, E/x(a, /,s(r)) and {(n, Eln(a, I, n)) evalu-

ate into the same canonical element, so all cases are trivial.

* Subcase I' # ().

I.

— (associate) Lemma 6.0.2 on nat-introduction rules yields that 0 € N [I]isa

computable judgement, and hence Eln(a,/,0) € L(0) [I'] is computable by
the previous lemma on nat-elimination rules.

(substitution :=) Consider any c.c.s. 4, € 4y,...,a, € A, fitting with
I'=x €4,...,x, € A,], then

L(z) type I,z € N][x1 :=ay, ..., %, = a,,]

l(x,9) € L(s(x)) [T, x € N,y € L(x)|[x1 == a1, ...,%, = a,]

are computable by head substitution lemma 5.3.4;
a € L(0) Ix :=ay,...,x, = a,]
is computable and
Eln(a,l,0) = a € L(0) [T[x = ay, ..., %, := a,)

has empty context, then it is computable by (I' = (}) subcase.

(substitution =) Consider any c.c.s. 4y = a; € 4y,...,a, = a4, € 4,
fitingwithI' = [x; € 4y,...,x, € 4,],thenalsoa; € 4y,...,a, € 4,isa
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c.c.s. fitting with I', and so
Eln(a,l,0) = a € L(0) [T][x :=ay, ..., %, = a,]

is computable by (substitution :=) subcase.
Moreover,

a € LO) sy a1 =4),...,%, < a, =4])]

is computable and then the result follows by transitivity lemma 5.3.13.

(associate) /, is computable by assumption, thus, lemma 6.0.2 on nat-introduction
rules yields thats(z) € N|I'|isacomputablejudgement, and hence Ely(a,/,s(n)) €
L(s(n)) [I'] is computable by the previous lemma on nat-elimination rules.

(substitution :=) Consider any c.c.s. 4, € 4y,...,a, € A, fitting with
I'=x €4,...,x, € A,], then

L(z) type I,z € N][x1 :=ay, ..., %, = a,,]
l(x,9) € L(s(x)) I, x € N,y € L(x)|[x1 == a1, ...,%, = a,]
are computable by head substitution lemma 5.3.4;
n€ N[x =ay,...,x, = a,)

and
a € L0) [ :=ay,...,x, :=a,]

are computable;

Eln(a,l,s(n)) = Un, Eln(a,l,n)) € L(s(n)) [Tz := a1, ..., %, = a,)

has empty context, then it is computable by (I' = @) subcase.

(substitution <—) Consider any c.c.s. 4y = 4] € 4y,...,a, = 4, € 4,
fittingwithT = [x; € 4;,...,x, € 4,],thenalsoa; € 4;,...,a, € 4,isa
c.c.s. fitting with I', and so

Eln(a,l,s(n)) = U(n, Eln(a,l,n)) € L(s(n)) [T][x = a1, ..., %, := a,]
is computable by (substitution :=) subcase.
Moreover, since J4[x := 7,y := [(n, Eln(a, ], n))] is computable, also /4 [x :=

n,y:=l(n,Eln(a,l,n))][x < a1 =ay,...,x, < a, = 4, whichis

l(n,Eln(a,l,n)) € L(s(n)[T][x1 < a1 =4, ..., %, < a, = 4}
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is computable and then the result follows by transitivity lemma 5.3.13.
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Formalisation in Coq

The work has been partially formalised in the Coq proof assistant [1 1] on top of the Lumsdaine-
Bauer-Haselwarter General Type Theories framework [12]. The General Type Theories frame-
work is, in turn, built on top of the Homotopy Type Theory library [13] with an eye towards
future formalisation of the categorical semantics of type theories, but it does not depend on
concepts such as the Univalence axiom or the Uniqueness of identity proofs. The only axiom
that it is used is the function extensionality axiom and the development is constructive, since
there are no uses of excluded middle or the axiom of choice.

The formalisation deals with selected topics of the thesis, starting from defining the signa-
ture and the types of 7T, together with the logical and the computation rules; then, the notion
of computable judgement is introduced and, finally, it’s showed the preservation of the com-
putability of the logical rules in the case of empty context.

The formalization is publicly available on [14], where the General Type Theories library has
been fixed to work with the latest version of the Coq-HoT'T [15] library.
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