
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Computer Science

A canonical normal form theorem for

the type theory of regular categories

Supervisor Master Candidate
Prof. Maria EmiliaMaietti Candidate Riccardo Borsetto
University of Padova

Student ID
2026842

Academic Year
2022-2023

ii

iv

Abstract

In this thesis we prove the canonical-form theorem for the internal language of the regular cat-
egories by means of a dependent type theory à la Martin-Löf. This theorem allows to obtain
most of the standard consequence of a normalization theorem and it provides a computation
model that can be used to build a proof assistant for the theory.

We will consider the calculus of regular categories which contains the terminal type, the
indexed sum, the extensional equality and quotients on the terminal type.

The result that wewill prove states that any closed typed term, whose derivation has no open
assumption, can be reduced by a sequence of reductions into an equivalent one in canonical
form, that is, a sort of external normal form, and that the proof of any provable judgement can
be transformed into an equivalent one in introductory form.

The present work has been partially formalised in the proof assistant Coq, where the preser-
vation of the computability for the logical rules of the type theory of regular categories has been
proved, in the case of empty context.

v

vi

Contents

Abstract v

1 Introduction 1

2 Regular categories 3

3 The internal dependent type theory of regular categories Treg 7
3.1 Extensional dependent type theories . 7
3.2 The calculus of regular categories Treg . 10

3.2.1 Terminal type . 10
3.2.2 Indexed Sum type . 11
3.2.3 Extensional Equality type . 12
3.2.4 Quotient types on the terminal type 13
3.2.5 Properties . 14
3.2.6 Alternative version . 18

4 The internaldependenttypetheoryofarithmeticregularcategories
Tareg 19

5 The canonical form theorem for Treg 21
5.1 The evaluation tree . 21
5.2 Computability . 22
5.3 Computability of the rules . 25

5.3.1 The structural rules . 26
5.3.2 The logical rules . 48

5.4 The computability theorem . 77

6 The canonical form theorem for Tareg 81

7 Formalisation in Coq 95

References 97

vii

viii

1
Introduction

Category theory has become a standard tool in theoretical computer science with applications
such as

• Correspondence between lambda calculus and cartesian closed categories.

• Notion of monad that can be used as part of an explanation of side effects in program-
ming languages, for example the ”Monad typeclass” in Haskell.

• F-coalgebra, where F is a functor, have been used as a general framework to model sys-
tems (streams, automata, transition systems, probabilistic systems).

• Application of monoidal categories to quantum computation

In this thesiswe can see that regular categories enjoy an internal language formulated in terms
of a dependent type theory in the style ofMartin-Löf’s extensional type theory in [1]. In more
detail, universal categorical properties correspond to already known type constructors of the
extensional type theory as follows

• The terminal type, indexed sum types and the extensional equality types describe the
type theory of finitely complete categories and they form the basic module of an exten-
sional dependent type theory internal to a category.

• Stable quotients of kernel pairs correspond to extensional quotient types on the terminal
type.

1

• The parametrised natural numbers object corresponds to the natural numbers type.

However we only have categorical semantics for its extensional version, while only the in-
tensional version can be really thought of a functional programming language because it is
strongly normalizing and its definitional equality between terms is decidable. Instead, the ex-
tensional version can not be considered a functional programming language since it does not
enjoy such properties as its definitional equality between terms is undecidable. Then, the inten-
sional version of type theory, not even enjoying extensionality of functions, is not suitable to
developmathematics as it is. So, having dependent typed calculi available as internal languages
of categorical structures, lets us analyze their computational contents, such as investigating the
validity of canonical normal form theorems, which help to reduce the gap between extensional
mathematical language and normal proof assistants based on intensional calculus.

Our main goal is to prove the canonical form theorem for the type theory of regular cat-
egories. To achieve our goal, in chapter 2, we first provide a general introduction to regular
categories and their properties. In chapter 3 we therefore define the internal language of regu-
lar categories using the theory of dependent types and show how it can be used to reason about
these structures in a precise and systematic way. Furthermore, in chapter 4, we propose an ex-
tension of the theory with the type of natural numbers. In chapter 5 we present a complete
proof of the canonical form theorem and in chapter 6 we prove the theorem for the extended
theory of arithmetic regular categories. Finally, in chapter 7, the formalization in the proof
assistant Coq is discussed.

This thesis is intended for readers with some background in category theory and type theory,
butwe strive tomake our presentation as self-contained as possible. Wehope that thisworkwill
contribute to a deeper understanding of regular categories and their role in computer science.

The work reported here is mostly based on the article by Maria Emilia Maietti in [2] for
the internal type theory and on the PhD-thesis of Silvio Valentini in [3] for the proof of the
computability theorem.

2

2
Regular categories

Category theory is a special area that studies the fundamental structures used within mathe-
matics. It is based on the very simple notion of an arrow between objects. Category theory
is sometimes described as abstract nonsense, but it is often useful because it provides an ab-
stract framework in which similarities between seemingly different notions become apparent.
It has become a standard tool in theoretical computer science, especially in the semantics of
programming languages. In particular, the categorical description of fixed points, both of re-
cursive functions and of recursive types, captures the relevant “universal” properties that are
used in programming and reasoning with these constructs [4].

Definition 2.0.1 (Category). A category is a mathematical structure consisting of objects with
arrows between them, that can be composed.

More formally, a category C consists of a collection Obj(C) of objects and a collection Arr(C)
of arrows (also called maps, or morphisms). Usually we write X ∈ C for X ∈ Obj(C). Each
arrow in C, written as X

f→ Y or as f : X → Y, has a domain object X ∈ C and a codomain
object Y ∈ C. These objects and arrows carry a composition structure.

1. For each pair ofmaps f : X→ Y and g : Y→ Z there is a compositionmap g◦ f : X→ Z.
This composition operation ◦ is associative: if h : Z→W, then h ◦ (g ◦ f) = (h ◦ g) ◦ f

2. For each object X ∈ C there is an identity map idX : X → X, such that id is the neutral
element for composition ◦: for f : X→ Y one has f ◦ idX = f = idY ◦f.

3

Ordinary sets with functions between them form an obvious example of a category, for
which we shall write Set. Although Set is a standard example, it is important to realise that
a category may be a very different structure. In particular, an arrow in a category need not
be a function. Another example is Grp, the category of groups with group homomorphisms
(preserving composition and unit, and thereby also inverses).

Definition 2.0.2 (Product). Let C be a category. The product of two objects X,Y ∈ C is a new
object X× Y ∈ C with two projection morphisms

X π1←− X× Y π2−→ Y

which are universal: for each pair of maps f : Z→ X and g : Z→ Y inC there is a unique tuple
morphism ⟨f, g⟩ : Z→ X× Y inC, making the following diagram commute.

X X× Y Y

Z

π2π1

f g⟨f,g⟩

Products need not exist in a category, but if they exist they are determined up-to isomor-
phism. If there is another object with projections

X
p1←− X⊗ Y

p2−→ Y

satisfying the above universal property, then there is a unique isomorphism X× Y
∼=−→ X⊗ Y

commuting with the projections. What we have described is the productX× Y of two objects
X,Y. For a given X, we shall write Xn = X × · · · × X for the n-fold product (also known as
power). The special case where n = 0 involves the empty product X0, called terminal object.

Definition 2.0.3 (Terminal object). A terminal object in a categoryC is an object, usually writ-
ten as ⊤ ∈ C, such that for each object X ∈ C there is a unique morphism ⋆X : X → ⊤ in
C.

Not every category needs to have a final object, but Sets does. Any singleton set is final. We
choose one, andwrite it as⊤ = {∗}. Notice then that elements of a setX can be identifiedwith
functions⊤ → X. Hence we could forget about membership ∈ and talk only about arrows.

4

When a category has binary products× and a final object⊤ , one says that the category has
finite products: for each finite listX1, . . . ,Xn of objects one can form the productX1×· · ·×Xn.
The precise bracketing in this expression is not relevant, because products are associative (up-
to-isomorphism).

Definition 2.0.4 (Pullback). Let C be a category, with f : X → Z and g : Y → Z arrows. A
pullback of f and g consists of an object A together with arrows pX : A→ X and pY : A→ Y such
that, for any other object B with arrows qX : B→ X and qY : B→ Y, there exists a unique arrow
h : B→ A such that the diagram

B

X A Y

Z

qYqX

pYpX

h

f g

commutes.

We recall that for a category having a terminal object and pullbacks is equivalent to being
finitely complete.
A regular category is a finitely complete category which admits a good notion of image fac-

torization; they are considered since they have a decently behaved calculus of relations and they
provide a natural semantic environment to interpret a particularly well behaved positive frag-
ment of first order logic having connectives⊤,∧, ∃.

Definition 2.0.5 (Regular category). A regular category is a finitely complete category with
pullback-stable images. [5]

Examples of regular categories are Set,Grp and, in general, any abelian category, whileCat,
Pos, andTop are not regular.

Since the aim of this thesis is to describe the internal dependent type theory of the regular
categories, we list the necessary conditions that a category C has to satisfy in order to enjoy a
dependent typed internal language:

1. C has to be finitely complete. This is because we want to interpret substitution of terms
by means of pullbacks.

5

2. The structure of C necessary to interpret the type constructors on closed types has to
be local, i.e. for every object A ∈ Ob(C) the slice category C/A must enjoy the same
structure ofC (for example, ifC is a regular category thenC/A should be a regular cate-
gory for everyA ∈ Ob(C)). This is because a dependent type is interpreted in a suitable
slice category and hence any slice category has to be equipped with all the structure to
interpret the type constructors under a certain dependency. The slice category is defined
as

Definition 2.0.6 (Slice category). The slice category C/A of a category C over an object
A ∈ Ob(C) has

• objects that are all arrows f ∈ Arr(C) such that cod(f) = A
• morphisms h : X→ Y ∈ Arr(C) from f : X→ A to g : Y→ A such that g◦h = f.

3. The structure ofC has to be preserved by the pullback functor F∗ : C/A→ C/B for ev-
ery morphism f : B→ A ofC. This is because, if we interpret substitution via pullback,
then the structure needs to be preserved under pullbacks to make the interpretation of
a type constructor closed under substitution.

Regular categories satisfy the necessary conditions to enjoy an internal dependent type the-
ory.

6

3
The internal dependent type theory of

regular categories Treg

3.1 Extensional dependent type theories

For the categorical structure of the regular categories described in the previous section we give
here the description of the corresponding typed calculusmeant to provide its internal language
in the style of Martin-Löf’s extensional dependent type theory [1].

Any typed system is equipped with types, which should be thought of as sets or data types,
and with typed terms which represent proofs (or elements) of the types to which they belong.
In order to describe them in the style of Martin-Löf’s type theory, we have four kinds of judge-
ments [6]:

A type [Γ] A = B [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the judgements about type formation and their terms, the equality between types and
the equality between terms of the same type (called definitional equality of terms in contrast to
the propositional equality of terms that is a type).

The contexts of these judgements are telescopic [7], since types are allowed to depend on
variables of other types. The contexts are generated by the following rules

1c
∅ cont

Γ cont A type [Γ]
2c (x ∈ A /∈ Γ)Γ, x ∈ A cont

7

When the context is empty we write only F instead of F [], and call J a “closed” judgement as
opposed to “hypothetical” judgement, that is with non-empty context.

Then, we need to add all the inference rules that express reflexivity, symmetry and transi-
tivity of the equality between types and terms together with the type equality rules and the
assumption of variables

Reflexivity

a ∈ A [Γ]
refl-tma = a ∈ A [Γ]

A type [Γ]
refl-ty

A = A [Γ]

Symmetry

a = b ∈ A [Γ] sym-tm
b = a ∈ A [Γ]

A = B [Γ] sym-ty
B = A [Γ]

Transitivity

a = b ∈ A [Γ] b = c ∈ A [Γ]
trans-tm

a = c ∈ A [Γ]
A = B [Γ] B = C [Γ] trans-ty

A = C [Γ]

Type equality

a ∈ A [Γ] A = B [Γ] conv
a ∈ B [Γ]

a = b ∈ A [Γ] A = B [Γ] conv-eq
a = b ∈ B [Γ]

Assumption

Γ, x ∈ A,Δ cont var
x ∈ A [Γ, x ∈ A,Δ]

Generally, when formulating a theory of types, it is convenient to use theminimumnumber
possible of structural rules and formation of types and terms in a way such, however, that the
theory is closed on some inalienable rules such as the weakening rules the substitution rules
and suitable exchange rules. Thanks to the form of the rules we will provide for building types
and terms it will not be necessary explicitly to add those which we list below because their are
admissible. We recall the following definition of admissible rule:

Definition 3.1.1 (Admissible rule). Let’s say that a rule formulated with the judgments of Treg
theory is admissible in Treg if and only if in the case its premise judgements are derivable in Treg
then also the conclusion judgement is also derivable in T .

8

Weakening

A type [Γ] Γ,Δ cont
ind-ty

A type [Γ,Δ]
A = B [Γ] Γ,Δ cont ind-ty-eq

A = B [Γ,Δ]

a ∈ A [Γ] Γ,Δ cont
ind-tma ∈ A [Γ,Δ]

a = b ∈ A [Γ] Γ,Δ cont ind-tm-eq
a = b ∈ A [Γ,Δ]

Substitution

In a calculus of dependent types we must necessarily substitute terms in types, terms and their
equality when these are dependent on certain other types. Therefore the calculation must be
closed on the following substitution rules:

a1 ∈ A1 [Γ] . . . an ∈ An (a1, . . . , an−1) [Γ] C (x1, . . . , xn) type [Γ, x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] sub-ty
C (a1, . . . , an) type [Γ]

a1 = b1 ∈ A1 [Γ] . . . an = bn ∈ An (a1, . . . , an−1) [Γ] C (x1, . . . , xn) type [Γ, x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] sub-ty-eq
C (a1, . . . , an) = C (b1, . . . , bn) type [Γ]

a1 ∈ A1 [Γ] . . . an ∈ An (a1, . . . , an−1) [Γ] C (x1, . . . , xn) = D (x1, . . . , xn) type [Γ, x1 ∈ A1, . . . , xn ∈ An (x1, . . . , xn−1)] sub-Eq-ty
C (a1, . . . , an) = D (a1, . . . , an) type [Γ]

a1 = b1 ∈ A1 [Γ] . . . an = bn ∈ An (a1, . . . , an−1) [Γ] C (x1, . . . , xn) = D (x1, . . . , xn) type [Γ, x1 ∈ A1, . . . , xn ∈ An (x1, . . . , xn−1)] sub-Eq-ty-eq
C (a1, . . . , an) = D (b1, . . . , bn) type [Γ]

a1 ∈ A1 [Γ] . . . an ∈ An (a1, . . . , an−1) [Γ] c (x1, . . . , xn) ∈ C (x1, . . . , xn) [Γ, x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] sub-tmc (a1, . . . , an) ∈ C (a1, . . . , an) type [Γ]

a1 = b1 ∈ A1 [Γ] . . . an = bn ∈ An (a1, . . . , an−1) [Γ] c (x1, . . . , xn) ∈ C (x1, . . . , xn) [Γ, x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] sub-tm-eq
c (a1, . . . , an) = c (b1, . . . , bn) ∈ C (a1, . . . , an) type [Γ]

a1 ∈ A1 [Γ] . . . an ∈ An (a1, . . . , an−1) [Γ] c (x1, . . . , xn) = d (x1, . . . , xn) ∈ C (x1, . . . , xn) [Γ, x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] sub-eq-tm
c (a1, . . . , an) = d (a1, . . . , an) ∈ C (a1, . . . , an) type [Γ]

a1 = b1 ∈ A1 [Γ] . . . an = bn ∈ An (a1, . . . , an−1) [Γ] c (x1, . . . , xn) = d (x1, . . . , xn) ∈ C (x1, . . . , xn) [Γ, x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] sub-eq-tm
c (a1, . . . , an) = d (b1, . . . , bn) ∈ C (a1, . . . , an) type [Γ]

9

Exchange

The rule of exchange of assumptions in a context in type theory dependent is not generally
derivable for the dependence of the type of an assumption in a Γ context from the assumptions
in Γ that precede it. However, we can demonstrate a restricted form of exchange rule such as
follows

A type [Γ, x ∈ C, y ∈ D,Δ] Γ, y ∈ D, x ∈ C,Δ cont ex-ty
A type [Γ, y ∈ D, x ∈ C,Δ]

A = B [Γ, x ∈ C, y ∈ D,Δ] Γ, y ∈ D, x ∈ C,Δ cont ex-ty-eq
A = B [Γ, y ∈ D, x ∈ C,Δ]

a ∈ A [Γ, x ∈ C, y ∈ D,Δ] Γ, y ∈ D, x ∈ C,Δ cont
ex-tm

a ∈ A [Γ, y ∈ D, x ∈ C,Δ]

a = b ∈ A [Γ, x ∈ C, y ∈ D,Δ] Γ, y ∈ D, x ∈ C,Δ cont ex-tm-eq
a = b ∈ A [Γ, y ∈ D, x ∈ C,Δ]

We also adopt the usual definitions of bound and free occurrences of variables and we iden-
tify two terms under α-conversion.

3.2 The calculus of regular categories Treg
Now, we give the formation rule for types specific to the calculus of regular categories with the
introduction, elimination and conversion rules of their terms.

3.2.1 Terminal type

Formation

Γ cont Tr⊤ type [Γ]

Introduction

Γ cont I-Tr
⋆ ∈ ⊤ [Γ]

10

Equality

t ∈ ⊤ [Γ]
C-Trt = ⋆ ∈ ⊤ [Γ]

Computation

⊤⇛ ⊤

⋆⇒ ⋆

3.2.2 Indexed Sum type

Formation

C(x) type [Γ, x ∈ B]
ΣΣx∈BC(x) type [Γ]

C(x) = E(x) [Γ, x ∈ B] Σ-eq
Σx∈BC(x) = Σx∈DE(x) [Γ]

Introduction

b ∈ B [Γ] c ∈ C(b) [Γ] Σx∈BC(x) type [Γ]
I-Σ⟨b, c⟩ ∈ Σx∈BC(x) [Γ]

b = d ∈ B [Γ] c = e ∈ C(b) [Γ] Σx∈BC(x) type [Γ] I-Σ-eq
⟨b, c⟩ = ⟨d, e⟩ ∈ Σx∈BC(x) [Γ]

Elimination

M(z) type [Γ, z ∈ Σx∈BC(x)] d ∈ Σx∈BC(x) [Γ] m(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)]
E-ΣElΣ(d,m) ∈M(d) [Γ]

M(z) type [Γ, z ∈ Σx∈BC(x)] d = d′ ∈ Σx∈BC(x) [Γ] m(x, y) = m′(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)]
E-Σ-eq

ElΣ(d,m) = ElΣ(d′,m′) ∈M(d) [Γ]

Equality

M(z) type [Γ, z ∈ Σx∈BC(x)] b ∈ B [Γ] c ∈ C(b) [Γ] m(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)]
C-ΣElΣ(⟨b, c⟩,m) = m(b, c) ∈M(⟨b, c⟩) [Γ]

11

Computation

Σx∈BC(x) ⇛ Σx∈BC(x)

⟨b, c⟩ ⇒ ⟨b, c⟩
d⇒ ⟨b, c⟩ m(b, c)⇒ g

ElΣ(d,m)⇒ g

3.2.3 Extensional Equality type

Formation

C type [Γ] c ∈ C [Γ] d ∈ C [Γ]
Eq

Eq(C, c, d) type [Γ]

C = E [Γ] c = e ∈ C [Γ] d = f ∈ C [Γ]
Eq-eq

Eq(C, c, d) = Eq(E, e, f) [Γ]

Introduction

c ∈ C [Γ] I-Eq
eqC(c) ∈ Eq(C, c, c) [Γ]

c = d ∈ C [Γ] I-Eq-eq
eqC(c) = eqC(d) ∈ Eq(C, c, c) [Γ]

Elimination

p ∈ Eq(C, c, d) [Γ] E-Eq
c = d ∈ C [Γ]

Equality

p ∈ Eq(C, c, d) [Γ]
C-Eq

p = eqC(c) ∈ Eq(C, c, d) [Γ]

Computation

Eq(C, c, d) ⇛ Eq(C, c, d)

eqC(c)⇒ eqC(c)

12

3.2.4 Quotient types on the terminal type

Formation

A type [Γ]
Qtr

A/⊤ type [Γ]
A = B [Γ] Qtr-eq

A/⊤ = B/⊤ [Γ]

Introduction

a ∈ A [Γ] I-Qtr
[a] ∈ A/⊤ [Γ]

a ∈ A [Γ] b ∈ A [Γ] eq-Qtr
[a] = [b] ∈ A/⊤ [Γ]

Elimination

L(z) type [Γ, z ∈ A/⊤] p ∈ A/⊤ [Γ] l(x) ∈ L([x]) [Γ, x ∈ A] l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A]
E-Qtr

ElQ(l, p) ∈ L(p) [Γ]

L(z) type [Γ, z ∈ A/⊤] p = p′ ∈ A/⊤ [Γ] l(x) = l′(x) ∈ L([x]) [Γ, x ∈ A] l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A]
E-Qtr-eq

ElQ(l, p) = ElQ(l′, p′) ∈ L(p) [Γ]

Equality

L(z) type [Γ, z ∈ A/⊤] a ∈ A [Γ] l(x) ∈ L([x]) [Γ, x ∈ A] l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A]
C-Qtr

ElQ(l, [a]) = l(a) ∈ L([a]) [Γ]

Computation

A/⊤⇛ A/⊤

[a]⇒ [a]
p⇒ [a] l(a)⇒ g

ElQ(l, p)⇒ g

We’ll refer to the calculus of regular categories with the notation Treg

13

3.2.5 Properties

In thenext sectionwewill frequently oftenuse someconcepts andproperties thatwewill briefly
describe here.

Definition 3.2.1 (Proof). Aproof is a tree of judgements built up in the usualwayusing instances
of the rules of inference.

Lemma 3.2.1 (Sanitary checks rules on typing correctness). In a type theory theymust also hold
the following properties of sanitary check to ensure correctness of the typing of terms:

1. If [Γ,Δ] cont is derivable then [Γ] cont is also derivable;

2. If [Γ, x ∈ A] cont is derivable then [Γ] cont and A type [Γ] are also derivable;

3. If A type [Γ] is derivable then [Γ] cont is also derivable;

4. If a ∈ A [Γ] is derivable then A type [Γ] is also derivable;

5. If A = B type [Γ] is derivable then so be it A type [Γ] and B type [Γ] are derivable;

6. If a = b ∈ A [Γ] is derivable then so be it a ∈ A [Γ] and b ∈ A [Γ] are derivable.

To express the fact that a sequence of variables can be substituted by a given sequence of
expressions, we introduce the following concept of fitting substitutions.

Definition 3.2.2 (Fitting substitution). The sequences of judgements

a1 ∈ A1[Γ], . . . , an ∈ An [Γ]

and
a1 = a′1 ∈ A1[Γ], . . . , an = a′n ∈ An [Γ]

where
Ai ≡ Ai(a1, . . . , ai−1)

are substitutions that fit with any context [Γ, x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn)].

We introduce the notion of associate judgements.

Definition 3.2.3 (Associate judgements). The associate judgement(s) of

14

1. a ∈ A [Γ] is A type [Γ]

2. A = B [Γ] are A type [Γ] and B type [Γ]

3. a = b ∈ A [Γ] are a ∈ A [Γ] and b ∈ A [Γ]

Theorem 3.2.1 (Associate judgements derivability). Let J be a derivable judgement. Then the
associate judgements of J are derivable.

Proof. The three cases should be proved simultaneously. The proof follows almost immedi-
ately by induction on the length of the derivation of the considered judgement. Only in some
cases structural rules or substitution rules should be carefully used.

Substituted judgements

Substitution is a central operation on judgements. Many concepts that we shall introduce in
the next section will be based on the two kinds of substitutions we define now.

Definition 3.2.4 (Tail substituted judgements). Let Δ ≡ [Γ, x1 ∈ A1, . . . , xn ∈ An] be a con-
text, a1 ∈ A1 [Γ], . . . , an ∈ An [Γ] and a1 = a′1 ∈ A1 [Γ], . . . , an = a′n ∈ An [Γ] be substitutions
that fit with the last n assumption in the context Δ, and J ≡ F [Δ] be any judgement. Then

1. J [x1 := a1, . . . , xn := an] is an abbreviation for the tail substituted judgement of J which
is the following:

(a) If F ≡ A type
A(a1, . . . , an) type [Γ]

(b) If F ≡ A = B
A(a1, . . . , an) = B(a1, . . . , an) [Γ]

(c) If F ≡ a ∈ A
a(a1, . . . , an) ∈ A(a1, . . . , an) [Γ]

(d) If F ≡ a = b ∈ A

a(a1, . . . , an) = b(a1, . . . , an) ∈ A(a1, . . . , an) [Γ]

2. J [x1 ← a1 = a′1, . . . , xn ← an = a′n] is an abbreviation for the tail substituted judgement
of J which is the following:

15

(a) If F ≡ A type
A(a1, . . . , an) = A(a′1, . . . , a′n) [Γ]

(b) If F ≡ A = B
A(a1, . . . , an) = B(a′1, . . . , a′n) [Γ]

(c) If F ≡ a ∈ A

a(a1, . . . , an) = a(a′1, . . . , a′n) ∈ A(a1, . . . , an) [Γ]

(d) If F ≡ a = b ∈ A

a(a1, . . . , an) = b(a′1, . . . , a′n) ∈ A(a1, . . . , an) [Γ]

The substitutions rules are sufficient to prove the following theorem

Lemma 3.2.2. The tail substituted judgements of a derivable judgement are derivable.

Proof. Just apply the suitable substitution rule.

Definition 3.2.5 (Head substituted judgements). Let Δ ≡ [x1 : A1, . . . , xn : An] be a context,
a1 ∈ A1, . . . , ai ∈ Ai and a1 = a′1 ∈ A1, . . . , ai = a′i ∈ Ai for some i ≤ n, be substi-
tutions that fit with the first i assumptions of Δ, J ≡ F [Δ] be any judgement. Moreover let
A′
j ≡ Aj(a1, . . . , ai) for any i+ 1 ≤ j ≤ n. Then

1. J [x1 := a1, . . . , xi := ai] is an abbreviation for the head substituted judgement of J which
is the following:

(a) If F ≡ A type

A(a1, . . . , ai) type [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

(b) If F ≡ A = B

A(a1, . . . , ai) = B(a1, . . . , ai) [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

(c) If F ≡ a ∈ A

a(a1, . . . , ai) ∈ A(a1, . . . , ai) [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

16

(d) If F ≡ a = b ∈ A

a(a1, . . . , ai) = b(a1, . . . , ai) ∈ A(a1, . . . , ai) [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

2. J [x1 ← a1 = a′1, . . . , xn ← an = a′n] is an abbreviation for the tail substituted judgement
of J which is the following:

(a) If F ≡ A type

A(a1, . . . , ai) = A(a′1, . . . , a′i) [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

(b) If F ≡ A = B

A(a1, . . . , ai) = B(a′1, . . . , a′i) [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

(c) If F ≡ a ∈ A

a(a1, . . . , ai) = a(a′1, . . . , a′i) ∈ A(a1, . . . , ai) [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

(d) If F ≡ a = b ∈ A

a(a1, . . . , ai) = b(a′1, . . . , a′i) ∈ A(a1, . . . , ai) [xi+1 ∈ A′
i+1, . . . , xn ∈ A′

n]

Lemma 3.2.3. The head substituted judgements of a derivable judgement are derivable.

Proof. 1. Note that if a1 ∈ A1, . . . , ai ∈ Ai is a substitution that fits with
[x1 ∈ A1, . . . , xi ∈ Ai] then a1 ∈ A1, . . . , ai ∈ Ai, xi+1 ∈ Ai+1, . . . , xn ∈ An is a sub-
stitution that fits with [x1 ∈ A1, . . . , xn ∈ An]. Hence the result follows by using the
suitable substitution rule.

2. If a1 = a′1 ∈ A1, . . . , ai = a′i ∈ Ai is a substitution that fits with [x1 ∈ A1, . . . , xi ∈ Ai]
then a1 = a′1 ∈ A1, . . . , ai = a′i ∈ Ai, xi+1 = xi+1 ∈ Ai+1, . . . , xn = xn ∈ An is
a substitution that fits with [x1 ∈ A1, . . . , xn ∈ An]. Hence the result follows by using
directly the suitable substitution rule.

Note that we use the same notation for the head and the tail substitutions since the names
of the variables and their positions in the context are sufficient to determine the kind of substi-
tution we want to perform.

17

3.2.6 Alternative version

In order to prove the canonical normal form forTreg, we’ll consider an equivalent version of the
theory, named T ∗

reg, where the Σ-formation rules and the var rule are replaced by the following
rules:

B type [Γ] C(x) type [Γ, x ∈ B]
Σ∗

Σx∈BC(x) type [Γ]
B = D [Γ] C(x) = E(x) [Γ, x ∈ B] Σ∗-eq

Σx∈BC(x) = Σx∈DE(x) [Γ]

p ∈ Eq(C, c, d) [Γ] C type [Γ] c ∈ C [Γ] d ∈ C [Γ]
E-Eq∗

c = d ∈ C [Γ]

Γ, x ∈ A,Δ cont A type [Γ]
var∗x ∈ A [Γ, x ∈ A,Δ]

The equivalence is guaranteed by the following lemma.

Lemma 3.2.4. Treg and T ∗
reg are equivalent, i.e.

1. Treg derives the Σ∗-formation and the var∗ rules

2. T ∗
reg derives the Σ-formation and the var rules

Proof. 1. Σ∗ canbederivedusing theΣ rule, Σ∗-eq canbederivedusing theΣ-eq rule, E-Eq∗
can be derived using the E-Eq rule and var∗ can be derived using the var rule.

2. To derive the Σ rule, consider the derivable judgementC(x) type [Γ, x ∈ B], then [Γ, x ∈
B] cont is derivable and so is B type [Γ]. The result follows by applying the Σ∗ rule. Simi-
larly for the Σ-eq rule.
To derive the E-Eq rule, consider the derivable judgement p ∈ Eq(C, c, d) [Γ], then
Eq(C, c, d) type [Γ] is derivable and so are C type [Γ], c ∈ C [Γ] and d ∈ C [Γ]. The result
follows by applying the E-Eq∗ rule.
To derive the var rule, consider the derivable judgement Γ, x ∈ A,Δ cont, then, by point
1 of lemma 3.2.1, Γ, x ∈ A cont is derivable, and so, by point 2 of the same lemma, also
A type [Γ]. Hence, the result follows by applying the var∗ rule.

18

4
The internal dependent type theory of

arithmetic regular categories Tareg

In this chapter, we extend the theory of regular categories by adding natural numbers. This
allows us to reason about recursive functions and their properties in amore precise and system-
atic way. Here, we show the added rules of the natural numbers type.

Natural numbers type

Formation

Γ cont nat
N type [Γ]

Introduction

Γ cont I1-nat0 ∈ N [Γ]
n ∈ N [Γ]

I2-nat
s(n) ∈ N [Γ]

m = n ∈ N [Γ] I2-nat-eq
s(m) = s(n) ∈ N [Γ]

Elimination

L(z) type [Γ, z ∈ N] n ∈ N [Γ] a ∈ L(0) [Γ] l(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)]
E-natElN(a, l, n) ∈ L(n) [Γ]

19

L(z) type [Γ, z ∈ N] n = n′ ∈ N [Γ] a = a′ ∈ L(0) [Γ] l(x, y) = l′(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)]
E-nat-eq

ElN(a, l, n) = ElN(a′, l′, n′) ∈ L(n) [Γ]

Equality

L(z) type [Γ, z ∈ N] a ∈ L(0) [Γ] l(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)]
C1-natElN(a, l, 0) = a ∈ L(0) [Γ]

L(z) type [Γ, z ∈ N] n ∈ N [Γ] a ∈ L(0) [Γ] l(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)]
C2-natElN(a, l, s(n)) = l(n,ElN(a, l, n)) ∈ L(s(n)) [Γ]

Computation

N ⇛ N

0⇒ 0
n⇒ 0 a⇒ g
ElN(a, l, n)⇒ g

s(m)⇒ s(m)
n⇒ s(m) l(m,ElN(a, l,m))⇒ g

ElN(a, l, n)⇒ g

20

5
The canonical form theorem for Treg

5.1 The evaluation tree

A set of computation rules is associated to each defined type. They specify a process for eval-
uating expressions denoting elements or types. They apply to variable-free and saturated ex-
pressions, that is, expressions of arity 0 in which no variable occurs free. The ”normal form”
theorem for expressions [8], assures us that a variable-free, saturated expression is always defini-
tionally equivalent to an expression of the form c (a1, . . . , an)where c is a constant. Hence, to
evaluate an expression, we first consider its normal form and then detect the suitable computa-
tion rule. This can be done by looking at the outermost constant of the expression in normal
form and, only in some cases, at the value of its first argument. Then each premise of the se-
lected rule indicate how to continue the process recursively. Clearly, the process of evaluating
an expression denoting an element or a type using the computation rules naturally gives rise
to a finitary tree: we will refer to it as the evaluation tree. Of course an expression evaluates if
and only if its evaluation tree is finite. Hence if we know that an expression can be evaluated an
induction on the depth of its evaluation tree is a correct proof-method. It can be used to prove
the following theorem.

Theorem 5.1.1. Let c and C be variable-free and saturated expressions. Then

1. If c ⇒ g then g is a canonical expression for an element, i.e. exactly one of the following
holds: g ≡ ⋆, g ≡ ⟨a, b⟩, g ≡ eqA(a), g ≡ [a].

21

2. If C⇒ G then G is a canonical expression for a type, i.e. exactly one of the following holds:
G ≡ ⊤,G ≡ Σx∈AB(x),G ≡ Eq(A, a, b),G ≡ A/⊤.

Note that the objects in the conclusion of a formation rule or an introduction rule are always
denoted by canonical expressions. We will call them canonical elements or canonical types re-
spectively. However a canonical expression does not necessarily denote a canonical element or
a canonical type. The successive canonical form theoremwill certify this whenever we consider
judgements derived within the theory. More precisely, if the judgement a ∈ A (or A type) is
derived within the theory, then the canonical expression resulting from the evaluation of the
expression a (or A) denotes a canonical element (or a canonical type). Moreover, under the
same hypothesis, the evaluation process of the expression a (or A) always terminates.
Finally let us also observe that, since the computation rules do not ”add” variables, it is obvi-

ous that if no variable appears in a (respectively A) and a ⇒ g (respectively A ⇒ G), then no
variable appears in g (respectivelyG).

5.2 Computability

In this section we introduce the main notion of the chapter: the definition of computable
judgement.

To prove a canonical-form theorem for the systemwe are considering we will follow a proof
style similar to the one used by MartinLöf in [9] based on the method of Tait [10] to prove
normalization theorems. Therefore we will introduce the notion of computable judgement.
This notion applies both to closed judgements and to hypothetical ones. Essentially, to express
the computability of a judgement is equivalent to express what it is necessary to know in order
to be allowed to formulate that judgement. Hence the definition formally summarizes the
meaning of all the forms of judgements which can be obtained by a derivation in type theory.
Of course, it is directly inspired by the informal explanation of the rules given in [1], but the
needs of formalization make it a very long definition.

Definition 5.2.1 (Computable judgement). The judgement J ≡ F [Γ] is computable if it is
derivable and

1. There is no assumption, i.e. the context Γ is empty.

22

• Subcase 1.1: F ≡ A type. Then

– (evaluation) A ⇛ GA

– (correct evaluation) the judgement A = GA is derivable
– (parts) the parts of GA are computable type(s), i.e.

* if GA ≡ ⊤ then no condition

* if GA ≡ Σx∈C1C2(x) then the judgements C1 type and C2(x) type [x ∈ C1]
are computable

* if GA ≡ Eq (C, c1, c2) then the judgements C type, c1 ∈ C and c2 ∈ C are
computable

* if GA ≡ C/⊤ then the judgement C type is computable

• Subcase 1.2: F ≡ A = B then

– (associate judgements) the associate judgements A type and B type are
computable, and hence A ⇛ GA and B ⇛ GB.

– (parts) GA and GB are equal computable types, i.e.

* GA ≡ ⊤ iff GB ≡ ⊤

* GA ≡ Σx∈C1C2(x) iff GB ≡ Σx∈D1D2(x) and the judgements C1 = D1
and C2(x) = D2(x) [x ∈ C1] are computable

* GA ≡ Eq (C, c1, c2) iff GB ≡ Eq (D, d1, d2) and the judgements C = D,
c1 = d1 ∈ C and c2 = d2 ∈ C are computable

* GA ≡ C/⊤ iff GB ≡ D/⊤ and the judgement C = D is computable

• Subcase 1.3: F ≡ a ∈ A then

– (associate judgements) The associate judgementA type is computable, and hence
A ⇛ GA

– (evaluation) a⇒ g
– (correct evaluation) a = g ∈ A is provable
– (parts) the parts of g are computable element(s) in GA, i.e.

* GA ≡ ⊤ iff g ≡ ⋆

* GA ≡ Σx∈CD(x) iff g ≡ ⟨c, d⟩ and the judgements c ∈ C and d ∈ D(c)
are computable

* GA ≡ Eq (C, c1, c2) iff g ≡ eqC(c3) and the judgement c1 = c2 ∈ C is
computable

23

* GA ≡ C/⊤ iff g ≡ [c] and the judgement c ∈ C is computable

• Subcase 1.4: F ≡ a = b ∈ A then

– (associate judgements) the associate judgements a ∈ A and b ∈ A are com-
putable, and hence a⇒ ga, b⇒ gb and A ⇛ GA.

– (parts) the following holds

* GA ≡ ⊤ iff ga ≡ ⋆ and gb ≡ ⋆

* GA ≡ Σx∈CD(x) iff ga ≡ ⟨c1, d1⟩ and gb ≡ ⟨c2, d2⟩ and the judgements
c1 = c2 ∈ C and d1 = d2 ∈ D (c1) are computable

* GA ≡ Eq (C, c1, c2) iff ga ≡ eqC(c3) and gb ≡ eqC(c4) and the judge-
ment c1 = c2 ∈ C is computable

* GA ≡ C/⊤ iff ga ≡ [c1] and gb ≡ [c2] and the judgements c1 ∈ C and
c2 ∈ C are computable

2. There are assumptions, i.e. Γ ≡ x1 ∈ A1, . . . , xn ∈ An, for some n > 0. The judgement
J is computable if for any computable closed substitution (c.c.s.) a1 ∈ A1, . . . , an ∈ An
(i.e. ai ∈ Ai, for 1 ≤ i ≤ n, are computable judgements), and for any computable closed
substitution (c.c.s.) a1 = c1 ∈ A1, . . . , an = cn ∈ An (i.e. ai = ci ∈ Ai, for 1 ≤ i ≤ n,
are computable judgements) that fit with Γ

• Subcase 2.1: F ≡ B (x1, . . . , xn) type

– (substitution :=) the judgement B (a1, . . . , an) type is computable
– (substitution←) the judgement B (a1, . . . , an) = B (c1, . . . , cn) is computable

• Subcase 2.2: F ≡ B (x1, . . . , xn) = D (x1, . . . , xn) then

– (associate) the judgement B (x1, . . . , xn) type [Γ] is computable
– (substitution :=) the judgement B (a1, . . . , an) = D (a1, . . . , an) is

computable
– (substitution←) the judgement B (a1, . . . , an) = D (c1, . . . , cn) is computable

• Subcase 2.3: F ≡ b (x1, . . . , xn) ∈ B (x1, . . . , xn) then

– (associate) the judgement B (x1, . . . , xn) type [Γ] is computable

24

– (substitution :=) the judgement b (a1, . . . , an) ∈ B (a1, . . . , an) is computable
– (substitution←) the judgement

b (a1, . . . , an) = b (c1, . . . , cn) ∈ B (a1, . . . , an) is computable

• Subcase 2.4: F ≡ b (x1, . . . , xn) = d (x1, . . . , xn) ∈ B (x1, . . . , xn) then

– (associate) the judgement b (x1, . . . , xn) ∈ B (x1, . . . , xn) [Γ] is computable
– (substitution :=) the judgement

b (a1, . . . , an) = d (a1, . . . , an) ∈ B (a1, . . . , an) is computable
– (substitution←) the judgement

b (a1, . . . , an) = d (c1, . . . , cn) ∈ B (a1, . . . , an) is computable

Note that the asymmetry in the conditions on associate judgements (point 2.2.1 and 2.4.1)
reflects the asymmetry in the rules of the theory. Actually we will prove that also the other
associate judgement is computable but the reduced requirement simplifies the next inductive
proofs. By looking at the above definition as a ”generalized process” to search for computability
of a judgement, a search tree is naturally associate to any derivable judgement. It is clear that
whenever J is recognized to be a computable judgement its search tree is well founded. In such
a case we give the definition of computation tree.

5.3 Computability of the rules

We are now going to prove that any judgement derivable in the theory is computable. The
proof will consist in proving that each rule preserves computability, that is, if the judgements
in the premises of a rule are computable then also the judgement in the conclusion of the rule
is computable. Of course, this is the inductive step in a proof by induction on the depth of
the derivation of the considered judgement. Note that the computability of the judgements
in the base cases is given by definition. We will consider only “full-context” derivations, i.e.
derivations build up by applying a rule only if the assumptions which are not discharged by the
rule are equal in all the premises, with the only exception of the assumption rules. Note that
this is not restrictive since every derivable judgement can be derived by a full-context derivation.

25

5.3.1 The structural rules

Lemma 5.3.1 (Weakening rules). If F [Γ] is computable then F [Γ,Δ] is computable.

Proof. Let Γ ≡ [x1 ∈ A1, . . . , xn ∈ An] and Δ ≡ [y1 ∈ B1, . . . , ym ∈ Bm].

• (substitution :=) For any c.c.s. a1 ∈ A1, . . . , an ∈ An, b1 ∈ B1, . . . , bm ∈ Bm fitting
with [Γ,Δ], we have that a1 ∈ A1, . . . , an ∈ An is a c.c.s. that fits with Γ; hence

F [Γ] [x1 := a1, . . . , xn := an] ≡ F [Γ,Δ] [x1 := a1, . . . , xn := an, y1 := b1, . . . , ym := bm]

is computable by assumption.

• (substitution ←) For any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An, b1 = b′1 ∈
B1, . . . , bm = b′m ∈ Bm fitting with [Γ,Δ], we have that a1 = a′1 ∈ A1, . . . , an =
a′n ∈ An is a c.c.s. that fits with Γ; hence

F [Γ] [x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡
F [Γ,Δ] [x1 ← a1 = a′1, . . . , xn ← an = a′n, y1 ← b1 = b′1, . . . , ym ← bm = b′m]

is computable by assumption.

• (associate) Consider any possible form of the judgement J.

– If F ≡ C type, then there is no condition.

– If F ≡ C = D, then the associate judgement
C type [Γ,Δ] is computable by the previous case.

– If F ≡ c ∈ C, then the associate judgementC type [Γ,Δ] is computable by the first
case.

– If F ≡ c = d ∈ C, then the associate judgement
c ∈ C [Γ,Δ] is computable by the previous case.

The next lemma on the reflexivity rule states that the rule preserves computability.

26

Reflexivity rules

Lemma 5.3.2 (Reflexivity on elements). The reflexivity on elements rule preserves computabil-
ity, that is, if

a ∈ A [Γ]

is computable, then
a = a ∈ A [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (associate judgements) The associate judgements are computable by hypothesis.

– (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of the values of a and A.

* If a⇒ ⋆ and A ⇛ ⊤, then there is no condition to show.
* If a⇒ ⟨c, d⟩ and A ⇛ Σx∈CD(x), then c ∈ C and d ∈ D(c) are computable
and by induction hypothesis also c = c ∈ C and d = d ∈ D(c).

* If a ⇒ eqC(c3) and A ⇛ Eq (C, c1, c2), then c1 = c2 ∈ C is computable by
assumption.

* If a⇒ [c] and A ⇛ C/⊤, then c ∈ C is computable by assumption.

• Subcase Γ ̸= ∅.

– (associate)The computability of the associate judgement of a = a ∈ A [Γ] is given
by hypothesis.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

a ∈ A [Γ][x1 := a1, . . . , xn := an]

is computable;
a = a ∈ A [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

27

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting
with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

a ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡
a = a ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by assumption.

Lemma 5.3.3 (Reflexivity on types). The reflexivity on types rule preserves computability, that
is, if

A type [Γ]

is computable, then
A = A [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (associate judgements) The associate judgements are computable by hypothesis.

– (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of the values of A.

* If A ⇛ ⊤, then there is no condition to show.
* If A ⇛ Σx∈CD(x), then C type and D(x) type [x ∈ C] are computable, and
by induction hypothesis also C = C andD(x) = D(x) [x ∈ C].

* If A ⇛ Eq (C, c1, c2), then C type, c1 ∈ C and c2 ∈ C are computable; by
induction hypothesis we have that C = C is computable and by the previous
lemma also c1 = c1 ∈ C and c2 = c2 ∈ C.

* If A ⇛ C/⊤, then C type is computable and by induction hypothesis also
C = C.

• Subcase Γ ̸= ∅.

– (associate) The computability of the associate judgement ofA = A ∈ [Γ] is given
by hypothesis.

28

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

A type [Γ][x1 := a1, . . . , xn := an]

is computable;
A = A [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting
with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

A type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡
A = A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by assumption.

The substitution lemmas

The following lemmadoes not concern one of the rules of the theory but states some properties
of computable judgements which will be very often referred to in the following subsections.

Lemma 5.3.4 (Head substitution). Let Γ ≡ [x1 ∈ A1, . . . , xn ∈ An] be a context, J ≡ F [Γ] be
a computable judgement, a1 ∈ A1, . . . , ai ∈ Ai and a1 = a′1 ∈ A1, . . . , ai = a′i ∈ Ai, for i < n,
be c.c.s that fit with the context [x1 ∈ A1, . . . , xi ∈ Ai]. Then

1. J [x1 := a1, . . . , xi := ai] is a computable judgement.

2. J [x1 ← a1 = a′1, . . . , xi ← ai = a′i] is a computable judgement.

Proof. Let Δ ≡
[
xi+1 ∈ A′

i+1, . . . , xn ∈ A′
n
]
, where A′

j = Aj(a1, . . . ai), for i + 1 ≤ j ≤
n, and let ai+1 ∈ A′

i+1, . . . , an ∈ A′
n be a c.c.s. that fits with the context Δ. To prove the

computability of the head substituted judgements we will show that for any c.c.s. saturating
J [x1 := a1, . . . , xi := ai] or J [x1 ← a1 = a′1, . . . , xi ← ai = a′i] it is possible to find out a c.c.s.
saturating J and yielding the same judgement.

29

1. • (substitution :=) For any c.c.s. ai+1 ∈ A′
i+1, . . . , an ∈ A′

n we have that a1 ∈
A1, . . . , an ∈ An is a c.c.s. that fits with Γ; hence

(J [x1 := a1, . . . , xi := ai]) [xi+1 := ai+1, . . . , xn := an] ≡ J [x1 := a1, . . . , xn := an]

is computable.

• (substitution←) For any c.c.s. ai+1 = a′i+1 ∈ A′
i+1, . . . , an = a′n ∈ A′

n that fits
with the context Δ, we have that a1 = a1 : A1, . . . , ai = ai : Ai, ai+1 = a′i+1 :
Ai+1, . . . , an = a′n : An is a c.c.s. that fits with Γ. Note that the reflexivity-on-
elements lemma 5.3.2 must be used here. Hence

(J [x1 := a1, . . . , xi := ai])
[
xi+1 ← ai+1 = a′i+1, . . . , xn ← an = a′n

]
≡ J

[
x1 ← a1 = a1, . . . , xi ← ai = ai, xi+1 ← ai+1 = a′i+1, . . . , xn ← an = a′n

]
is computable.

• (associate) Consider any possible form of the judgement J.

– If F ≡ C type, then there is no condition.
– If F ≡ C = D, then the associate judgement

C type [Γ] [x1 := a1, . . . , xi := ai] is computable by the previous case.
– If F ≡ c ∈ C, then the associate judgementC type [Γ] [x1 := a1, . . . , xi := ai]

is computable by the first case.
– If F ≡ c = d ∈ C, then the associate judgement

c ∈ C [Γ] [x1 := a1, . . . , xi := ai] is computable by the previous case.

2. • (associate judgements)The computability of the associate judgements follows from
case 1 since if a1 = a′1 : A1, . . . , ai = a′i : Ai, for i < n, are computable then also
a1 : A1, . . . , ai : Ai are computable and

J [x1 := a1, . . . , xi := ai]

is the associate judgement of

J [x1 ← a1 = a′1, . . . , xi ← ai = a′i]

whose computability is required.

• (substitution :=) For any c.c.s. ai+1 ∈ A′
i+1, . . . , an ∈ A′

n that fits with the con-
text Δ, we have that a1 = a′1 : A1, . . . , ai = a′i : Ai, ai+1 = ai+1 : Ai+1, . . . , an =

30

an : An is a c.c.s. that fits with Γ; hence also

(J [x1 ← a1 = a′1, . . . , xi ← ai = a′i]) [xi+1 := ai+1, . . . , xn := an]
≡ J [x1 ← a1 = a′1, . . . , xi ← ai = a′i, xi+1 ← ai+1 = ai+1, , xn ← an = an]

is computable.
• (substitution←) For any c.c.s. ai+1 = a′i+1 : A′

i+1, . . . , an = a′n : A′
n that fits

with the context Δ, we have that a1 = a′1 : A1, . . . , ai = a′i : Ai, ai+1 = a′i+1 :
Ai+1, . . . , an = a′n : An is a c.c.s. that fits with Γ; hence

(J [x1 ← a1 = a′1, . . . , xi ← ai = a′i])
[
xi+1 ← ai+1 = a′i+1, . . . , xn ← an = a′n

]
≡ J

[
x1 ← a1 = a′1, . . . , xi ← ai = a′i, xi+1 ← ai+1 = a′i+1, . . . , xn ← an = a′n

]
is computable.

The definition of computable judgement directly states that the substitution rules preserve
computability in the special case of saturating substitutions. In the next lemma we will prove
that computability is preserved by substitution rules also in the general case of tail substitution.
Since the different forms of judgement of the substitution rules are not essential to prove the
result we will compact the sentence as much as possible.

Lemma 5.3.5 (Tail substitution). Let Γ be a context, Δ ≡ [Γ, x1 ∈ A1, . . . , xn ∈ An] be a con-
text, J ≡ F [Δ] be a computable judgement, a1 ∈ A1 [Γ], . . . , an ∈ An [Γ] and a1 = a′1 ∈ A1 [Γ],
. . . , an = a′n ∈ An [Γ] be two lists of substitutions that fitwith the context [x1 ∈ A1, . . . , xn ∈ An].
Then

1. J [x1 := a1, . . . , xn := an] is a computable judgement.

2. J [x1 ← a1 = a′1, . . . , xn ← an = a′n] is a computable judgement.

Proof. If the context Γ is empty then the claim holds by definition. Thus, let us suppose that
Γ ≡ [s1 ∈ S1, . . . , sm ∈ Sm], for somem > 0.

1. • (substitution :=) For any c.c.s. c1 ∈ S1, . . . , cm ∈ Sm fitting with the context Γ,
we define

di ≡ ai(c1, . . . cm) 1 ≤ i ≤ n

31

Then
di ∈ Ai(c1, . . . , cm)

are computable. Moreover we have

Ai(c1, . . . , cm) ≡ (Ai(a1, . . . , ai−1))(c1, . . . , cm)
≡ Ai(c1, . . . , cm, d1, . . . , di−1)

≡ Ai

Therefore c1 ∈ S1, . . . , cm ∈ Sm, d1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting with the
context Δ. Hence

(J [x1 := a1, . . . , xn := an]) [s1 := c1, . . . , sm := cm] ≡
J [s1 := c1, . . . , sm := cm, x1 := d1, . . . , xn := dn]

is computable.

• (substitution←) For any c.c.s. c1 = c′1 ∈ S1, . . . , cm = c′m ∈ Sm that fits with the
context Γ, we define

di ≡ ai(c1, . . . cm) 1 ≤ i ≤ n

and
d′i ≡ ai(c′1, . . . c′m) 1 ≤ i ≤ n

Then
di = d′i ∈ Ai(c1, . . . , cm)

are computable. Moreover from the previous point we have

Ai ≡ Ai(c1, . . . , cm)

Then c1 = c′1 ∈ S1, . . . , cm = c′m ∈ Sm, d1 = d′1 ∈ A1, . . . , dn = d′n ∈ An is a c.c.s.
that fits with the context Δ. Hence

(J [x1 := a1, . . . , xn := an]) [s1 ← c1 = c′1, . . . , sm ← cm = c′m] ≡
J [s1 ← c1 = c′1, . . . , sm ← cm = c′m, x1 ← d1 = d′1, . . . , xn ← dn = d′n]

is computable.

• (associate) Consider any possible form of the judgement J.

– If F ≡ C type, then there is no condition.
– If F ≡ C = D, then the associate judgement

C type [Δ] [x1 := a1, . . . , xi := an] is computable by the previous case.

32

– IfF ≡ c ∈ C, then the associate judgementCtype [Δ] [x1 := a1, . . . , xi := an]
is computable by the first case.

– If F ≡ c = d ∈ C, then the associate judgement
c ∈ C [Δ] [x1 := a1, . . . , xi := an] is computable by the previous case.

2. • (associate judgements)The computability of the associate judgements follows from
case 1.

• (substitution :=) For any c.c.s. c1 ∈ S1, . . . , cm ∈ Sm fitting with the context Γ,
we define

di ≡ ai(c1, . . . cm) 1 ≤ i ≤ n

and
d′i ≡ a′i(c1, . . . cm) 1 ≤ i ≤ n

Then
di = d′i ∈ Ai(c1, . . . , cm)

is computable. Therefore, since

Ai ≡ Ai(c1, . . . , cm)

c1 = c1 ∈ S1, . . . , cm = cm ∈ Sm, d1 = d′1 ∈ A1, . . . , dn = d′n ∈ An is a c.c.s.
fitting with the context Δ. Hence

(J [x1 ← a1 = a′1, . . . , xn ← an = a′n]) [s1 := c1, . . . , sm := cm] ≡
J [s1 ← c1 = c1, . . . , sm ← cm = cm, x1 ← d1 = d′1, . . . , xn ← dn = d′n]

is computable.
• (substitution←) For any c.c.s. c1 = c′1 : S1, . . . , cm = c′m : Sm fitting with the
context Γ, we define

di ≡ ai(c1, . . . cm) 1 ≤ i ≤ n

and
d′i ≡ ai(c′1, . . . c′m) 1 ≤ i ≤ n

Then
di = d′i ∈ Ai(c1, . . . , cm)

are computable. Therefore, since

Ai ≡ Ai(c1, . . . , cm)

, c1 = c′1 ∈ S1, . . . , cm = c′m ∈ Sm, d1 = d′1 ∈ A1, . . . , dn = d′n ∈ An is a c.c.s.

33

fitting with the context Δ. Hence

(J [x1 ← a1 = a′1, . . . , xn ← an = a′n]) [s1 ← c1 = c′1, . . . , sm ← cm = c′m] ≡
J [s1 ← c1 = c′1, . . . , sm ← cm = c′m, x1 ← d1 = d′1, . . . , xn ← dn = d′n]

is computable.

The following lemmas are a key point in the proof of computability since they establish that
structural rules preserve computability.

Lemma 5.3.6. The following properties on closed judgements hold

1. If J1 ≡ a = c ∈ A, J2 ≡ b = d ∈ A and J3 ≡ a = b ∈ A are computable, then
c = d ∈ A is computable.

2. The elements in equal types rule preserves computability, that is, if J4 ≡ A = B is com-
putable, then J5 ≡ a ∈ A is computable if and only if a ∈ B is computable.

3. The equal elements in equal types rule preserves computability, that is, if J6 ≡ A = B is
computable, then J7 ≡ a = b ∈ A is computable, if and only if a = b ∈ B is computable.

Proof. 1. c = d ∈ A is derivable with the following derivation tree

J1 sym-tm
c = a ∈ A

J3 J2 trans-tma = d ∈ A trans-tmc = d ∈ A

2. By conv rule.

3. By conv-eq rule.

By induction on the maximum length l ≥ 2 of the derivation of the hypotheses J1, J2, J3, J4,
J5, J6 and J7.

• (l = 2) Theminimum l is 2, which is the case when J1, J2, J3 and J7 are ⋆ = ⋆in⊤, J4 and
J6 are⊤ = ⊤ and J5 is ⋆ ∈ ⊤ then also c1 = d1 ∈ A is ⋆ = ⋆ ∈ ⊤, a2 ∈ B2 is ⋆ ∈ ⊤
and a3 = b3 ∈ B3 is ⋆ = ⋆ ∈ ⊤.

34

• (l→ l+ 1) Suppose that the maximum length of the derivation of the hypotheses J1, J2,
J3 and J4 is l+ 1, then

1. – (associate judgements) The associate judgements are computable by hypoth-
esis.

– (parts) To prove the computability of the parts we analyze each possible form
of the values of a, b, c, d and A.

* If a⇒ ⋆, b⇒ ⋆, c⇒ ⋆, d⇒ ⋆ andA ⇛ ⊤, then there is no condition
to show.

* If a ⇒ ⟨e1, f1⟩, b ⇒ ⟨e2, f2⟩, c ⇒ ⟨e3, f3⟩, d ⇒ ⟨e4, f4⟩ and A ⇛
Σx∈EF(x), then e1 = e3 ∈ E, e2 = e4 ∈ E, e1 = e2 ∈ E, f1 = f3 ∈
F(e1), f2 = f4 ∈ F(e2) and f1 = f2 ∈ F(e1) are computable; since J1 is
computable, A type is computable and, by definition, F(x) type [x ∈ E]
is computable and so is F(e1) = F(e2). By inductive hypothesis (case 3),
f2 = f4 ∈ F(e1) is computable and also e3 = e4 ∈ E and f3 = f4 ∈ F(e1)
are computable; hence the result follows by inductive hypothesis again
(case 3).

* If a ⇒ eqE(e3), b ⇒ eqE(e4), c ⇒ eqE(e5), d ⇒ eqE(e6) and A ⇛
Eq (E, e1, e2), then e1 = e2 ∈ E is computable by assumption.

* If a ⇒ [e1], b ⇒ [e2], c ⇒ [e3], d ⇒ [e4] and A ⇛ E/⊤, then e3 ∈ E
and e4 ∈ E are computable by assumption.

2. Let us prove the only-if part (the proof of the if-part is completely similar).
– (associate judgements) The associate judgement is computable by hypothesis.
– (evaluation) a⇒ g by hypothesis.
– (correct evaluation) a = g ∈ B is derivable using the conv-eq rule.
– (parts) To prove the computability of the parts we analyze each possible form

of the values of a, A and B.

* If a⇒ ⋆, A ⇛ ⊤ and B ⇛ ⊤, then there is no condition to show.
* If a ⇒ ⟨c1, c2⟩, A ⇛ Σx∈C1C2(x) and B ⇛ Σx∈D1D2(x), then C1 = D1,
C2(x) = D2(x) [x ∈ C1], c1 ∈ C1, c2 ∈ C2(c1) are computable; then
C2(c1) = D2(c1) is computable, so by induction hypothesis c1 ∈ D1 and
c2 ∈ D2(c1) are computable.

* If a ⇒ eqC(c3), A ⇛ Eq (C, c1, c2) and B ⇛ Eq (D, d1, d2), then C =
D, c1 = c2 ∈ C, c1 = d1 ∈ C and c2 = d2 ∈ C are computable; then,
by inductive hypothesis (case 1), d1 = d2 ∈ C is computable, hence the
result follows by inductive hypothesis (case 3).

* If a ⇒ [c1], A ⇛ C/⊤ and B ⇛ D/⊤, then c ∈ C and C = D are
computable and by inductive hypothesis (case 2) also c ∈ D.

35

3. Let us prove the only-if part (the proof of the if-part is completely similar).

– (associate judgements) The associate judgements are computable by induc-
tive hypothesis (case 2).

– (parts) To prove the computability of the parts we proceed by structural in-
duction on each possible form of the values of a, A and B.

* If a ⇒ ⋆, b ⇒ ⋆, A ⇛ ⊤ and B ⇛ ⊤, then there is no condition to
show.

* If a ⇒ ⟨c1, d1⟩, b ⇒ ⟨c2, d2⟩, A ⇛ Σx∈CD(x) and B ⇛ Σx∈EF(x),
then C = E, D(x) = F(x) [x ∈ C], c1 = c2 ∈ C, d1 = d2 ∈ D(c1)
are computable; then c1 ∈ C is computable and also D(c1) = F(c1) is
computable, so by induction hypothesis c1 = c2 ∈ E and d1 = d2 ∈
F(c1) are computable.

* If a⇒ eqC(c3), b⇒ eqC(c4), A ⇛ Eq (C, c1, c2) and
B ⇛ Eq (D, d1, d2), then C = D, c1 = c2 ∈ C, c1 = d1 ∈ C and c2 =
d2 ∈ C are computable; then, by inductive hypothesis (case 1), d1 =
d2 ∈ C is computable, hence the result follows by inductive hypothesis.

* If a ⇒ [c1], b ⇒ [c2], A ⇛ C/⊤ and B ⇛ D/⊤, then c1 ∈ C, c2 ∈ C
and C = D are computable and by inductive hypothesis (case 2) also
c1 ∈ D and c1 ∈ D are computable.

Lemma 5.3.7 (Assumption in equal types). If A = B [Γ] is computable then J ≡ F [Γ, x ∈ A]
is computable if and only if F [Γ, x ∈ B].

Proof. Let us prove the only if-part (the proof of the if-part is completely similar).
To prove that F [Γ, x ∈ B] is derivable, we proceed by induction on the length l of the

derivation of the judgement J. Base cases are trivial. Suppose J has a derivation of length l+ 1,
then

• If the last rule of the derivation tree is a var rule, then there are two cases

– (F ≡ x ∈ A) Since we know that Γ cont and B type [Γ] are derivable, we get a
derivation of x ∈ A [Γ, x ∈ B]

36

Γ cont B type [Γ]
2cΓ, x ∈ B cont var

x ∈ B [Γ, x ∈ B]

A = B [Γ] ind-ty-eq
A = B [Γ, x ∈ B] refl-ty
B = A [Γ, x ∈ B] conv

x ∈ A [Γ, x ∈ B]
– (F ≡ x ∈ B or F ≡ y ∈ C) A derivation is built easily by applying the var rule.

• If the last rule of the derivation tree is r ̸= var, then the premises F1 [Γ, x ∈ A,Δ1],
…, Fn [Γ, x ∈ A,Δn] are derivable with length of derivation at most l. By using the
rules of suitable exchange and by inductive hypothesis, we get that F1 [Γ, x ∈ B,Δ1], …,
Fn [Γ, x ∈ B,Δn] are derivable. Hence the result follows by applying the rule r.

Then

• (substitution :=) In order to analyse the substituted judgements, suppose Γ is the con-
text [x1 ∈ A1, . . . xn ∈ An]. Since A = B [Γ] is computable then for any c.c.s. a1 ∈
A1, . . . , an ∈ An, e ∈ A fitting with [Γ, x ∈ A], we have that

A = B [Γ][x1 := a1, . . . , xn := an]

and
F [Γ, x ∈ A][x1 := a1, . . . , xn := an, x := e]

are computable hence, by point 2 of lemma 5.3.6, e ∈ B is a computable judgement and
thus the same substitution fits also with [Γ, x ∈ B]. Hence

F [Γ, x ∈ B][x1 := a1, . . . , xn := an, x := e]

is computable.

• (substitution←) In order to analyse the substituted judgements, suppose Γ is the con-
text [x1 ∈ A1, . . . xn ∈ An]. SinceA = B [Γ] is computable then for any c.c.s. a1 = a′1 ∈
A1, . . . , an = a′n ∈ An, e = e′ ∈ A fitting with [Γ, x ∈ A], we have that

A = B [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

and
F [Γ, x ∈ A][x1 ← a1 = a′1, . . . , xn ← an = a′n, x← e = e′]

are computable hence, by point 3 of lemma 5.3.6, e = e′ ∈ B is a computable judgement
and thus the same substitution fits also with [Γ, x ∈ B]. Hence

F [Γ, x ∈ B][x1 ← a1 = a′1, . . . , xn ← an = a′n, x← e = e′]

37

is computable.

• (associate) Consider any possible form of the judgement J.

– If F ≡ C(x) type, then there is no condition.

– IfF ≡ C(x) = D(x), then the associate judgementC type [Γ, x ∈ B] is computable
by the previous case.

– If F ≡ c(x) ∈ C(x), then the associate judgement C type [Γ, x ∈ B] is computable
by the first case.

– If F ≡ c(x) = d(x) ∈ C(x), then the associate judgement c(x) ∈ C(x)[Γ, x ∈ B]
is computable by the previous case.

Lemma 5.3.8. If J ≡ a = b ∈ A [Γ] is computable, then b ∈ A [Γ] is computable.

Proof. • Subcase Γ = ∅. This subcase is trivial, since b ∈ A is computable by assumption.

• Subcase Γ ̸= ∅.

– (associate) The associate judgement of J is a ∈ A [Γ], so A type [Γ] is computable.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

a = b ∈ A [Γ][x1 := a1, . . . , xn := an]

is computable;
b ∈ A [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by definition.

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting
with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An and a′1 ∈
A1, . . . , a′n ∈ An are c.c.s. fitting with Γ, and so

a = b ∈ A [Γ][x1 := a1, . . . , xn := an]

a = b ∈ A [Γ][x1 := a′1, . . . , xn := a′n]

and
a ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

38

are computable;

b ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by point 1 of previous lemma 5.3.6.

Lemma 5.3.9. The following hold

1. If A = B [Γ] is computable, then B type [Γ] is computable.

2. If J1 ≡ A = C [Γ], J2 ≡ B = D [Γ] and J3 ≡ A = B [Γ] are computable, then C = D [Γ]
is computable.

Proof. 1. By derivability of associate judgements.

2. C = D [Γ] is derivable with the following derivation tree

J1 sym-ty
C = A [Γ]

J3 J2 trans-ty
A = D [Γ] trans-ty

C = D [Γ]

• Subcase Γ = ∅.

1. This subcase is trivial, since B type is computable by assumption.
2. – (associate judgements) The associate judgements are computable by hypoth-

esis.
– (parts) To prove the computability of the parts we proceed by structural in-

duction on each possible form of the values of a, b, c and A.

* If A ⇛ ⊤, B ⇛ ⊤, C ⇛ ⊤ andD ⇛ ⊤, then there is no condition to
show.

* If A ⇛ Σx∈E1E2(x), B ⇛ Σx∈F1F2(x), C ⇛ Σx∈G1G2(x) and D ⇛
Σx∈H1H2(x), then E1 = G1, F1 = H1, E1 = F1, E2(x) = G2(x) [x ∈ E1],
F2(x) = H2(x) [x ∈ F1] and E2(x) = F2(x) [x ∈ E1] are computable; by
lemma 5.3.7, also F2(x) = H2(x) [x ∈ E1] is computable and, by induc-
tion hypothesis, G1 = H1 and G2(x) = H2(x) [x ∈ E1] are computable;
hence the result follows by lemma 5.3.7.

39

* If A ⇛ Eq (E, e1, e2), B ⇛ Eq (F, f1, f2), C ⇛ Eq (G, g1, g2) andD ⇛
Eq (H, h1, h2), then E = G, F = H, E = F, e1 = g1 ∈ E, f1 = h1 ∈ F,
e1 = f1 ∈ E, e2 = g2 ∈ E, f2 = h2 ∈ F, e2 = f2 ∈ E are computable; by
point 3 of lemma 5.3.6, f1 = h1 ∈ E and f2 = h2 ∈ E are computable,
then, by point 1 of lemma 5.3.6, g1 = h1 ∈ E and g2 = h2 ∈ E are
computable, by inductive hypothesisG = H is computable and thus the
result follows by point 3 of lemma 5.3.6.

* If A ⇛ E/⊤, B ⇛ F/⊤, C ⇛ G/⊤, D ⇛ H/⊤, then E = G,
F = H and E = F are computable; hence the result follows by inductive
hypothesis.

• Subcase Γ ̸= ∅.

1. – (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

A = B [Γ][x1 := a1, . . . , xn := an]

is computable;
B type [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by definition.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An
and a′1 ∈ A1, . . . , a′n ∈ An are c.c.s. fitting with Γ, and so

A = B [Γ][x1 := a1, . . . , xn := an]

A = B [Γ][x1 := a′1, . . . , xn := a′n]

and
A type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

B type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The computability of the associate judgement of C = D [Γ] fol-
lows by previous point.

40

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

A = C [Γ][x1 := a1, . . . , xn := an]

B = D [Γ][x1 := a1, . . . , xn := an]

and
A = B [Γ][x1 := a1, . . . , xn := an]

are computable;

C = D [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

A = C [Γ][x1 := a1, . . . , xn := an]

B = D [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

and
A = B [Γ][x1 := a1, . . . , xn := an]

are computable;

C = D [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 5.3.10. The following hold

1. If J1 ≡ a = c ∈ A [Γ], J2 ≡ b = d ∈ A [Γ] and J3 ≡ a = b ∈ A [Γ] are computable,
then c = d ∈ A [Γ] is computable.

2. The elements in equal types rule preserves computability, that is, if A = B [Γ] is computable,
then a ∈ A [Γ] is computable if and only if a ∈ B [Γ] is computable.

3. The equal elements in equal types rule preserves computability, that is, if A = B [Γ] is
computable, then a = b ∈ A [Γ] is computable, if and only if a = b ∈ B [Γ] is computable.

41

Proof. 1. c = d ∈ A [Γ] is derivable with the following derivation tree

J1 sym-tm
c = a ∈ A [Γ]

J3 J2 trans-tm
a = d ∈ A [Γ]

trans-tm
c = d ∈ A [Γ]

2. By conv rule.

3. By conv-eq rule.

4. By derivability of associate judgements.
If Γ ≡ ∅, then just apply lemma 5.3.6, otherwise

1. • (associate) The computability of the associate judgement of c = d ∈ A [Γ] follows
by lemma 5.3.8.

• (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

a = c ∈ A [Γ][x1 := a1, . . . , xn := an]

b = d ∈ A [Γ][x1 := a1, . . . , xn := an]

and
a = b ∈ A [Γ][x1 := a1, . . . , xn := an]

are computable;

c = d ∈ A [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by point 1 of lemma 5.3.6.
• (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting
with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

a = c ∈ A [Γ][x1 := a1, . . . , xn := an]

b = d ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

and
a = b ∈ A [Γ][x1 := a1, . . . , xn := an]

are computable;

c = d ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by point 1 of lemma 5.3.6.

42

2. • (associate) The computability of the associate judgement B type [Γ] follows by
point 1 of previous lemma 5.3.9.

• (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

A = B [Γ][x1 := a1, . . . , xn := an]

and
a ∈ A [Γ][x1 := a1, . . . , xn := an]

are computable;
a ∈ B [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by point 2 of lemma 5.3.6.

• (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting
with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

A = B [Γ][x1 := a1, . . . , xn := an]

and
a ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

a ∈ B [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by point 3 of lemma 5.3.6.

3. Let us prove the only-if part (the proof of the if-part is completely similar).

• (associate) The computability of the associate judgement a ∈ B [Γ] follows by
previous point.

• (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

A = B [Γ][x1 := a1, . . . , xn := an]

and
a = b ∈ A [Γ][x1 := a1, . . . , xn := an]

are computable;

a = b ∈ B [Γ][x1 := a1, . . . , xn := an]

43

has empty context, then it is computable by point 3 of lemma 5.3.6.

• (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting
with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

A = B [Γ][x1 := a1, . . . , xn := an]

and
a = b ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

a = b ∈ B [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by point 3 of lemma 5.3.6.

Symmetry rules

Lemma 5.3.11 (Symmetry on elements). The symmetry on elements rule preserves computabil-
ity, that is, if

a = b ∈ A [Γ]

is computable, then
b = a ∈ A [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (associate judgements) The associate judgements are computable by hypothesis.

– (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of the values of a, b and A.

* If a⇒ ⋆, b⇒ ⋆ and A ⇛ ⊤, then there is no condition to show.
* If a ⇒ ⟨c1, d1⟩, b ⇒ ⟨c2, d2⟩ and A ⇛ Σx∈CD(x), then c1 = c2 ∈ C
and d1 = d2 ∈ D(c1) are computable and, by inductive hypothesis, also
c2 = c1 ∈ C and d2 = d1 ∈ D(c1) are computable. The judgement a ∈ A is
computable and so is A type, thusD(x) type [x ∈ C] andD(c2) = D(c1) are
computable too. Hence the result follows by point 3 of lemma 5.3.6.

44

* If a ⇒ eqC(c3), b ⇒ eqC(c4) and A ⇛ Eq (C, c1, c2), then c1 = c2 ∈ C is
computable by assumption.

* If a⇒ [c1], b⇒ [c2] andA ⇛ C/⊤, then c1 ∈ C and c2 ∈ C are computable
by assumption.

• Subcase Γ ̸= ∅.

– (associate) The computability of the associate judgement b ∈ A [Γ] follows by
lemma 5.3.8.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

a = b ∈ A [Γ][x1 := a1, . . . , xn := an]

is computable;
b = a ∈ A [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

a = b ∈ A [Γ][x1 := a1, . . . , xn := an]

a ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

a ∈ A [Γ][x1 := a1, . . . , xn := an]

are computable, then by point 1 of lemma 5.3.6

b = a ∈ A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable.

Lemma 5.3.12 (Symmetry on types). The symmetry on elements rule preserves computability,
that is, if

A = B [Γ]

is computable, then
B = A [Γ]

45

is computable.

Proof. • Subcase Γ = ∅.

– (associate judgements) The associate judgements are computable by hypothesis.

– (parts) To prove the computability of the parts we proceed by structural induction
on each possible form of A and B.

* If A ⇛ ⊤ and B ⇛ ⊤, then there is no condition to show.
* If A ⇛ Σx∈C1C2(x) and B ⇛ Σx∈D1D2(x), then C1 = D1 and C2(x) =
D2(x) [x ∈ C1] are computable; by inductive hypothesis, also D1 = C1 and
D2(x) = C2(x) [x ∈ C1], hence the result follows by lemma 5.3.7.

* If A ⇛ Eq (C, c1, c2) and B ⇛ Eq (D, d1, d2), then C = D, c1 = d1 ∈ C
and c2 = d2 ∈ C are computable; by lemma 5.3.11, d1 = c1 ∈ C and d2 =
c2 ∈ C are computable, then, by point 3 of lemma 5.3.6, also d1 = c1 ∈ D
and d2 = c2 ∈ D are computable. Hence the result follows by inductive
hypothesis.

* If A ⇛ C/⊤ and B ⇛ D/⊤, then C = D is computable, hence the result
follows by inductive hypothesis.

• Subcase Γ ̸= ∅.

– (associate) The computability of the associate judgement B type [Γ] follows by
lemma 5.3.9.2.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

A = B [Γ][x1 := a1, . . . , xn := an]

is computable;
B = A [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting
with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then, by the symmetry lemma 5.3.11 also a′1 =
a1 ∈ A1, . . . , a′n = an ∈ An is a c.c.s. fitting with Γ, and so

A = B [Γ][x1 ← a′1 = a1, . . . , xn ← a′n = an]

46

is computable;

B = A [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Transitivity rules

Lemma5.3.13 (Transitivity on elements). The transitivity on elements rule preserves computabil-
ity, that is, if

a = b ∈ A [Γ]

and
b = c ∈ A [Γ]

are computable, then
a = c ∈ A [Γ]

is computable.

Proof. By using the symmetry lemma 5.3.11, we obtain that b = a ∈ A [Γ] is computable.
Hence b ∈ A [Γ] is computable and, by the reflexivity lemma 5.3.2, b = b ∈ A [Γ] is com-
putable. Then the result follows by point 1 of lemma 5.3.6.

Lemma 5.3.14 (Transitivity on types). The transitivity on types rule preserves computability,
that is, if

A = B [Γ]

and
B = C [Γ]

are computable, then
A = C [Γ]

is computable.

Proof. By using the symmetry lemma 5.3.12, we obtain that B = A [Γ] is computable. Hence
B type [Γ] is computable and, by the reflexivity lemma 5.3.3, B = B [Γ] is computable. Then
the result follows by lemma 5.3.9.1.

47

Lemma 5.3.15 (Assumption of variables). Let A type [Γ] be a computable judgement. Then the
judgement

x ∈ A [Γ, x ∈ A,Δ]

is computable.

Proof. Let Γ ≡ [s1 ∈ S1, . . . , sk ∈ Sk], Δ ≡ [z1 ∈ C1 . . . zm ∈ Cm]

• (associate) The computability of the associate judgement

A type [Γ, x ∈ A,Δ]

follows by weakening lemma 5.3.1.

• (substitution :=) Consider any c.c.s. d1 ∈ S1, . . . , dk ∈ Sk, a ∈ A, c1 ∈ C1, . . . , cm ∈
Cm fitting with [Γ, x ∈ A,Δ]. Then

x ∈ A [Γ, x ∈ A,Δ] [s1 := d1, . . . , sk := dk, x := a, z1 := c1, . . . , zm := cm]

is computable by assumption.

• (substitution←) Consider any c.c.s. d1 = d′1 ∈ S1, . . . , dk = d′k ∈ Sk, a = a′ ∈
A, c1 = c′1 ∈ C1, . . . , cm = c′m ∈ Cm fitting with [Γ, x ∈ A,Δ]. Then

x ∈ A [Γ, x ∈ A,Δ][s1 := d1 = d′1, . . . , sk ← dk = d′k, x← a = a′,
z1 ← c1 = c′1, . . . , zm ← cm = c′m]

is computable by assumption.

5.3.2 The logical rules

We have now to analyze the rules that we call “logical” since they can be used to interpret a
logical intuitionistic first order calculus or a logical theory of natural numbers. An informal
discussion on the computability of these rules is usually depicted in many of the descriptions
of the intuitionistic type theory, nevertheless, a complete formal proof of computability for
these rules cannot be carried on without a substantial use of lemmas on structural rules.

48

Terminal type rules

Lemma 5.3.16 (⊤-formation rules). The⊤-formation rule preserves computability. That is the
judgement

⊤ type [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (evaluation)⊤⇛ ⊤ holds.

– (correct evaluation)⊤ = ⊤ is derivable with the following derivation tree

Tr⊤ type
refl-ty⊤ = ⊤

– (parts) No condition to show.

• Subcase Γ ̸= ∅.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

⊤ type [Γ][x1 := a1, . . . , xn := an] ≡ ⊤ type

is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

⊤ type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡ ⊤ = ⊤

is computable, since it is derivable and the associate judgement ⊤ type is com-
putable.

Lemma 5.3.17 (⊤-introduction rules). The⊤-introduction rule preserves computability. That
is the judgement

⋆ ∈ ⊤ [Γ]

is computable

49

Proof. • Subcase Γ = ∅.

– (associate judgement) The computability of the associate judgement is immediate
by the previous lemma on⊤-formation rule.

– (evaluation) ⋆⇒ ⋆ holds.

– (correct evaluation) ⋆ = ⋆ ∈ ⊤ is derivable with the following derivation tree

I-Tr
⋆ ∈ ⊤ refl-tm

⋆ = ⋆ ∈ ⊤
– (parts) No condition to show.

• Subcase Γ ̸= ∅.

– (associate) The judgement ⊤ type [Γ] is computable for the previous lemma on
⊤-formation rule

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

⋆ ∈ ⊤ [Γ][x1 := a1, . . . , xn := an] ≡ ⋆ ∈ ⊤

is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

⋆ ∈ ⊤ [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡ ⋆ = ⋆ ∈ ⊤

is computable, since it is derivable and the associate judgement ⋆ ∈ ⊤ is com-
putable.

Lemma 5.3.18 (⊤-equality rule). The⊤-equality rule preserves computability, i.e., if the judge-
ment J ≡ t ∈ ⊤ [Γ] is computable then the judgement

t = ⋆ ∈ ⊤ [Γ]

is computable.

Proof. • Subcase Γ = ∅.

50

– (associate judgements) The associate judgement t ∈ ⊤ is computable by assump-
tion, while ⋆ ∈ ⊤ is computable by the previous lemma on⊤-introduction rule.

– (parts) No condition to show.

• Subcase Γ ̸= ∅.

– (associate) The judgement t ∈ ⊤ [Γ] is computable by assumption.
– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡

[x1 ∈ A1, . . . , xn ∈ An], then

t ∈ ⊤ [Γ][x1 := a1, . . . , xn := an]

is computable;
t = ⋆ ∈ ⊤ [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

t = ⋆ ∈ ⊤ [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡
t = ⋆ ∈ ⊤ [Γ][x1 := a1, . . . , xn := an]

is computable by (substitution :=) subcase.

Indexed Sum type rules

Lemma 5.3.19 (Σ∗-formation rules). The Σ∗-formation rules preserve computability. That is

1. If J1 ≡ B type [Γ] and J2 ≡ C(x) type [Γ, x ∈ B] are computable judgement then

Σx∈BC(x) type [Γ]

is computable.

2. If J1 ≡ B = D [Γ] and J2 ≡ C(x) = E(x) [Γ, x ∈ B] is a computable judgement then

Σx∈BC(x) = Σx∈DE(x) [Γ]

is computable.

51

Proof. • Subcase Γ = ∅.

1. – (evaluation) Σx∈BC(x) ⇛ Σx∈BC(x) holds.
– (correct evaluation) Σx∈BC(x) = Σx∈BC(x) is derivable with the following

derivation tree
J1 J2 ΣΣx∈BC(x) type refl-ty

Σx∈BC(x) = Σx∈BC(x)
– (parts) The parts are J1 and J2 which are assumed to be computable.

2. – (associate judgements) The judgement C(x) type [x ∈ B], associate of J2 is
computable by assumption, and, by lemma 5.3.9.2 also E(x) type [x ∈ B] is
computable. By lemma 5.3.7, we know that also E(x) type [x ∈ D] is com-
putable and hence the result follows by case 1.

– (parts) The parts are J1 and J2 which are assumed to be computable.

• Subcase Γ ̸= ∅.

1. – (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

B type [Γ][x1 := a1, . . . , xn := an]

is computable by assumption and

C(x) type [Γ, x ∈ B][x1 := a1, . . . , xn := an]

is computable by head substitution lemma 5.3.4;

Σx∈BC(x) type [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

B type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by assumption and

C(x) type [Γ, x ∈ B][x1 ← a1 = a′1, . . . , xn ← an = a′n]

52

is computable by head substitution lemma 5.3.4;

Σx∈BC(x) type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The judgements B type [Γ] andC(x) type [Γ, x ∈ B] associates of J1
and J2 are computable. Hence the result follows by case 1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

B = D [Γ][x1 := a1, . . . , xn := an]

is computable by assumption and

C(x) = E(x) [Γ, x ∈ B][x1 := a1, . . . , xn := an]

is computable by head substitution lemma 5.3.4;

Σx∈BC(x) = Σx∈DE(x) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

B = D [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by assumption and

C(x) = E(x) [Γ, x ∈ B][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by head substitution lemma 5.3.4;

Σx∈BC(x) = Σx∈DE(x) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 5.3.20 (Σ-introduction rules). The Σ-introduction rules preserve computability. That
is

53

1. If J1 ≡ b ∈ B [Γ], J2 ≡ c ∈ C(b) [Γ] and J3 ≡ Σx∈BC(x) type [Γ] are computable
judgements then

⟨b, c⟩ ∈ Σx∈BC(x) [Γ]

is computable.

2. If J1 ≡ b = d ∈ B [Γ], J2 ≡ c = e ∈ C(b) [Γ] and J3 ≡ Σx∈BC(x) type [Γ] are computable
judgements then

⟨b, c⟩ = ⟨d, e⟩ ∈ Σx∈BC(x) [Γ]

is computable.

Proof.
• Subcase Γ = ∅.

1. – (associate judgements) The associate judgement is J3 which is computable by
assumption.

– (evaluation) ⟨b, c⟩ ⇒ ⟨b, c⟩ holds.
– (correct evaluation) ⟨b, c⟩ = ⟨b, c⟩ ∈ Σx∈BC(x) is derivable by using first the

Σ-introduction rule and then the reflexivity on elements rule.
J1 J2 J3 I-Σ⟨b, c⟩ ∈ Σx∈BC(x) refl-tm⟨b, c⟩ = ⟨b, c⟩ ∈ Σx∈BC(x)

– (parts) The parts are J1 and J2 which are assumed to be computable.

2. – (associate judgements) The judgements b ∈ B, d ∈ B, c ∈ C(b)and e ∈ C(b),
associates of J1 and J2, are computable by definition. Hence the result follows
from case 1.

– (parts) The parts are J1 and J2 which are assumed to be computable.

• Subcase Γ ̸= ∅.

1. – (associate) The associate judgement is J3 which is computable by assumption.
– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with

Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

b ∈ B [Γ][x1 := a1, . . . , xn := an]

54

c ∈ C(b) [Γ][x1 := a1, . . . , xn := an]

and
Σx∈BC(x) type [Γ][x1 := a1, . . . , xn := an]

are computable;

⟨b, c⟩ ∈ Σx∈BC(x) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

b ∈ B [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

c ∈ C(b) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

and
Σx∈BC(x) type [Γ][x1 := a1, . . . , xn := an]

are computable;

⟨b, c⟩ ∈ Σx∈BC(x) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The judgements b ∈ B [Γ] and c ∈ C(b) [Γ], associate respectively
of J1 and J2 are computable. J3 is also computable, hence the result follows by
case 1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

b = d ∈ B [Γ][x1 := a1, . . . , xn := an]

c = e ∈ C(b) [Γ][x1 := a1, . . . , xn := an]

and
Σx∈BC(x) type [Γ][x1 := a1, . . . , xn := an]

are computable;

⟨b, c⟩ ∈ Σx∈BC(x) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅).

55

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

b = d ∈ B [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

c = e ∈ C(b) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

and
Σx∈BC(x) type [Γ][x1 := a1, . . . , xn := an]

are computable;

⟨b, c⟩ ∈ Σx∈BC(x) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅).

Lemma 5.3.21 (Σ-elimination rules). The Σ-elimination rules preserve computability. That is

1. If J1 ≡ M(z) type [Γ, z ∈ Σx∈BC(x)], J2 ≡ d ∈ Σx∈BC(x) [Γ] and J3 ≡ m(x, y) ∈
M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)] are computable judgements then

ElΣ(d,m) ∈M(d) [Γ]

is computable.

2. If J1 ≡ M(z) type [Γ, z ∈ Σx∈BC(x)], J2 ≡ d = d′ ∈ Σx∈BC(x) [Γ] and J3 ≡ m(x, y) =
m′(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)] are computable judgements then

ElΣ(d,m) = ElΣ(d′,m′) ∈M(d) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

1. – (associate judgements) The computability of the judgementM(d) type, asso-
ciate of the judgement ElΣ(d,m) ∈M(d), follows by assumption.

– (evaluation) J2 is computable and Σx∈BC(x) ⇛ Σx∈BC(x), then d ⇒ ⟨e, f⟩
and the judgements e ∈ B and f ∈ C(e) are computable; thus it is a c.c.s.

56

fitting with x ∈ B, y ∈ C(x); therefore J3[x := e, y := f], which ism(e, f) ∈
M(⟨e, f⟩), is a computable judgement. Hence m(e, f) ⇒ g and the result
follows by using the computation rule.

– (correct evaluation) Since J2 is computable, we know that there exists a deriva-
tion of the judgementΣx∈BC(x) type; hence x ∈ Σx∈BC(x) is a correct assump-
tion, and d = ⟨e, f⟩ ∈ Σx∈BC(x) is derivable. Let Π1 be

d = ⟨e, f⟩ ∈ Σx∈BC(x)
J1 x ∈ Σx∈BC(x) [x ∈ Σx∈BC(x)] J3 E-ΣElΣ(x,m) ∈M(x) [x ∈ Σx∈BC(x)] sub-tm-eq

ElΣ(d,m) = ElΣ(⟨e, f⟩,m) ∈M(p)
then Π2 is

Π1

d = ⟨e, f⟩ ∈ Σx∈BC(x) J1 sub-tm-eq
M(p) = M(⟨e, f⟩) conv-eq

ElΣ(d,m) = ElΣ(⟨e, f⟩,m) ∈M(⟨e, f⟩)
Since J2 is computable, so are e ∈ B and f ∈ C(e) and then J3[x := e, y := f]
is computable. Thus the judgements m(e, f) = g ∈ M(⟨e, f⟩), e ∈ B and
f ∈ C(e) are derivable. Let Π3 be

J1 e ∈ B f ∈ C(e) J3
C-ΣElΣ(⟨e, f⟩,m) = m(e, f) ∈M(⟨e, f⟩) m(e, f) = g ∈M(⟨e, f⟩)

trans-tm
ElΣ(⟨e, f⟩,m) = g ∈M(⟨e, f⟩)

then
Π2 Π3 trans-tm

ElΣ(d,m) = g ∈M(⟨e, f⟩)
Hence

ElΣ(d,m) = g ∈M(⟨e, f⟩)

d = ⟨e, f⟩ ∈ Σx∈BC(x) J1 sub-tm-eq
M(d) = M(⟨e, f⟩) sym-ty
M(⟨e, f⟩) = M(d) conv-eq

ElΣ(d,m) = g ∈M(d)
– (parts) Since J2 is computable we know that d ⇒ ⟨e, f⟩, then e ∈ B and

f ∈ (C(e) are computable by the previous lemma on nat-introduction rules.
Hence we can deduce that the judgement d = ⟨e, f⟩ ∈ Σx∈BC(x) is com-
putable. Therefore, since J1 is computable, we obtain that the judgement
M(⟨e, f⟩) = M(d) is a computable judgement. Then, since J3 is computable,
so is J3[x := e, y := f] and m(e, f) ∈ M(d) is computable by point 2 of
lemma 5.3.6. Hence, sincem(e, f)⇒ g, the parts of gwhich is also the value
of ElΣ(d,m), satisfy the computability requirements inM(d).

57

2. – (associate judgements) The computability of ElΣ(d,m) ∈ M(d) follows by
case 1. Also the computability ofElΣ(d′,m′) ∈M(d′) followsby case 1, since
from the fact that J2 and J3 are computable, by lemma 5.3.8, we obtain that
d′ ∈ Σx∈BC(x) andm′(x, y) ∈ M(⟨x, y⟩) [x ∈ B, y ∈ C(x)] are computable
judgements. Then, since the judgementM(d) = M(d′) is computable, by
point 2 of lemma 5.3.6, ElΣ(d′,m′) ∈M(d) is computable.

– (parts) The judgement J2 is computable, then d ⇒ ⟨b, c⟩, d′ ⇒ ⟨b′, c′⟩ and
the judgements b = b′ ∈ B and c = c′ ∈ C(b) are computable. Moreover
b = b′ ∈ B and c = c′ ∈ C(b) are c.c.s. for x ∈ B and y ∈ C(x) in J3,
respectively, and then J3[x ← b = b′, y ← c = c′], that is the judgement
m(b, c) = m(b′, c′) ∈ M(⟨b, c⟩) is computable. Then, by point 3 of lemma
5.3.6, m(b, c) = m(b′, c′) ∈ M(d) is a computable judgement, since, as in
the previous point, we can prove thatM(⟨b, c⟩) = M(d). So, ifm(b, c) ⇒
gm and m′(b, c) ⇒ gm′ , the parts satisfy the computability requirements in
M(d).

• Subcase Γ ̸= ∅.

1. – (associate) The computability of the judgement M(d) type [Γ], associate of
the judgement ElΣ(d,m) ∈M(d) [Γ], follows by substitution lemma 5.3.5.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

M(z) type [Γ, z ∈ Σx∈BC(x)][x1 := a1, . . . , xn := an]

is computable by head substitution lemma 5.3.4;

d ∈ Σx∈BC(x) [Γ][x1 := a1, . . . , xn := an]

is computable and

m(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)][x1 := a1, . . . , xn := an]

is computable by head substitution lemma 5.3.4;

ElΣ(d,m) ∈M(d) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

58

M(z) type [Γ, z ∈ Σx∈BC(x)][x1 := a1, . . . , xn := an]

is computable by head substitution lemma 5.3.4;

d ∈ Σx∈BC(x) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable and

m(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by head substitution lemma 5.3.4;

ElΣ(d,m) ∈M(d) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The computability of the judgement ElΣ(d,m) ∈M(d) [Γ], asso-
ciate of the judgement ElΣ(d,m) = ElΣ(d′,m′) ∈M(d) [Γ], follows by case
1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

M(z) type [Γ, z ∈ Σx∈BC(x)][x1 := a1, . . . , xn := an]

is computable by head substitution lemma 5.3.4;

d = d′ ∈ Σx∈BC(x) [Γ][x1 := a1, . . . , xn := an]

is computable and

m(x, y) = m′(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)][x1 := a1, . . . , xn := an]

is computable by head substitution lemma 5.3.4;

ElΣ(d,m) = ElΣ(d′,m′) ∈M(d) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

M(z) type [Γ, z ∈ Σx∈BC(x)][x1 := a1, . . . , xn := an]

59

is computable by head substitution lemma 5.3.4;

d = d′ ∈ Σx∈BC(x) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable and

m(x, y) = m′(x, y) ∈M(⟨x, y⟩)
[Γ, x ∈ B, y ∈ C(x)][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by head substitution lemma 5.3.4;

ElΣ(d,m) = ElΣ(d′,m′) ∈M(d) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 5.3.22 (Σ-equality rule). The Σ-equality rule preserve computability. That is if
J1 ≡ M(z) type [Γ, z ∈ Σx∈BC(x)], J2 ≡ b ∈ B [Γ], J3 ≡ c ∈ C(b) [Γ], J4 ≡ Σx∈BC(x) type [Γ]
and J5 ≡ m(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)] are computable judgements then

ElΣ(⟨b, c⟩,m) = m(b, c) ∈M(⟨b, c⟩) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (associate judgements) J2, J3 and J4 are computable by assumption, thus, lemma
5.3.20onΣ-introduction rules yields that ⟨b, c⟩ ∈ Σx∈BC(x) is a computable judge-
ment, and henceElΣ(⟨b, c⟩,m) ∈M(⟨b, c⟩) is computable by the previous lemma
on Σ-elimination rules. Moreover, since J2, J3 and J5 are computable, we obtain
J5[x := b, y := c], i.e. the second associate judgement m(b, c) ∈ M(⟨b, c⟩), is
computable.

– (parts)By the computability rule,ElΣ(⟨b, c⟩,m) andm(b, c) evaluate into the same
canonical element, so all cases are trivial.

• Subcase Γ ̸= ∅.

– (associate) J2, J3 and J4 are computable by assumption, thus, lemma 5.3.20 on
Σ-introduction rules yields that ⟨b, c⟩ ∈ Σx∈BC(x) [Γ] is a computable judgement,

60

and hence ElΣ(⟨b, c⟩,m) ∈ M(⟨b, c⟩) [Γ] is computable by the previous lemma
on Σ-elimination rules.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

M(z) type [Γ, z ∈ Σx∈BC(x)][x1 := a1, . . . , xn := an]

m(x, y) ∈M(⟨x, y⟩) [Γ, x ∈ B, y ∈ C(x)][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4;

b ∈ B [Γ][x1 := a1, . . . , xn := an]

c ∈ C(b) [Γ][x1 := a1, . . . , xn := an]

Σx∈BC(x) type [Γ][x1 := a1, . . . , xn := an]

are computable and

ElΣ(⟨b, c⟩,m) = m(b, c) ∈M(⟨b, c⟩) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

ElΣ(⟨b, c⟩,m) = m(b, c) ∈M(⟨b, c⟩) [Γ][x1 := a1, . . . , xn := an]

is computable by (substitution :=) subcase.
Moreover, since J5[x := b, y := c] is computable, also J5[x := b, y := c][x1 ←
a1 = a′1, . . . , xn ← an = a′n]which is

m(b, c) ∈M(⟨b, c⟩) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable and then the result follows by transitivity lemma 5.3.13.

Lemma 5.3.23 (Eq-formation rules). The Eq-formation rules preserve computability. That is

1. If J1 ≡ C type [Γ], J2 ≡ c ∈ C [Γ] and J3 ≡ d ∈ C [Γ] are computable judgements then

Eq(C, c, d) type [Γ]

is computable.

61

2. If J1 ≡ C = E [Γ], J2 ≡ c = e ∈ C [Γ] and J3 ≡ d = f ∈ C [Γ] are computable
judgements then

Eq(C, c, d) = Eq(E, e, f) type [Γ]

is computable.

Proof. • Subcase Γ = ∅.

1. – (evaluation) Eq(C, c, d) ⇛ Eq(C, c, d) holds.
– (correct evaluation) Eq(C, c, d) = Eq(C, c, d) is derivable with the following

derivation tree
J1 J2 J3 Eq
Eq(C, c, d) type

refl-ty
Eq(C, c, d) = Eq(C, c, d)

– (parts) The parts are J1, J2 and J3 which are assumed to be computable.

2. – (associate judgements) The judgements C type, E type, c ∈ C, e ∈ C, d ∈ C
and f ∈ C, associates of J1, J2 and J3 are computable by assumption, and, by
point 1 of lemma 5.3.6 also e ∈ E and f ∈ E are computable. Hence the
result follows by case 1.

– (parts) The parts are J1, J2 and J3 which are assumed to be computable.

• Subcase Γ ̸= ∅.

1. – (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

C type [Γ][x1 := a1, . . . , xn := an]

c ∈ C [Γ][x1 := a1, . . . , xn := an]

d ∈ C [Γ][x1 := a1, . . . , xn := an]

are computable;

Eq(C, c, d) type [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

62

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

C type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

c ∈ C [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

d ∈ C [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

Eq(C, c, d) type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then (Γ = ∅) subcase.

2. – (associate) The judgements C type [Γ], c ∈ C [Γ], d ∈ C [Γ] associate respec-
tively of J1, J2 and J3 are computable. Hence the result follows by case 1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

C = E [Γ][x1 := a1, . . . , xn := an]

c = e [Γ][x1 := a1, . . . , xn := an]

d = f [Γ][x1 := a1, . . . , xn := an]

are computable;

Eq(C, c, d) = Eq(E, e, f) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

C = E [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

c = e [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

d = f [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

Eq(C, c, d) = Eq(E, e, f) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

63

Lemma5.3.24 (Eq-introduction rules). TheEq-introduction rules preserve computability. That
is

1. If J ≡ c ∈ C [Γ] is a computable judgement then

eqC(c) ∈ Eq(C, c, c) [Γ]

is computable.

2. If J ≡ c = d ∈ C [Γ] is a computable judgement then

eqC(c) = eqC(d) ∈ Eq(C, c, c) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

1. – (associate judgements) The judgementC type, associate of J is computable by
assumption, hence by point 1 of the previous lemma also Eq(C, c, c) is com-
putable.

– (evaluation) eqC(c)⇒ eqC(c) holds.
– (correct evaluation) eqC(c) = eqC(c) ∈ Eq(C, c, c) is derivable with the fol-

lowing derivation tree
J I-Eq

eqC(c) ∈ Eq(C, c, c) refl-ty
eqC(c) = eqC(c) ∈ Eq(C, c, c)

– (parts) The part is c = c ∈ C which is computable by lemma 5.3.2 about
reflexivity on elements.

2. – (associate judgements) The judgements c ∈ C and d ∈ C, associates of J,
are computable. Then, by case 1, also eqC(c) ∈ Eq(C, c, c) and eqC(d) ∈
Eq(C, d, d) are computable.

– (parts) The part is Jwhich is assumed to be computable.

• Subcase Γ ̸= ∅.

64

1. – (associate) The judgement C type [Γ], associate of J is computable by assump-
tion, hence by point 1 of the previous lemma also Eq(C, c, c) type [Γ] is com-
putable.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

c ∈ C [Γ][x1 := a1, . . . , xn := an]

are computable;

eqC(c) ∈ Eq(C, c, c) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

c ∈ C [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

eqC(c) ∈ Eq(C, c, c) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate)The judgement c ∈ C [Γ], which is the associate of J, is computable
by definition, hence the result follows by case 1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

c = d ∈ C [Γ][x1 := a1, . . . , xn := an]

are computable;

eqC(c) = eqC(d) ∈ Eq(C, c, c) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

c = d ∈ C [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

65

are computable;

eqC(c) = eqC(d) ∈ Eq(C, c, c) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 5.3.25 (Eq∗-elimination rule). TheEq∗-elimination rule preserves computability. That
is if the judgements J1 ≡ p ∈ Eq(C, c, d) [Γ], J2 ≡ C type [Γ], J3 ≡ c ∈ C [Γ] and J4 ≡ d ∈ C [Γ]
are computable then the judgement

c = d ∈ C [Γ]

is computable.

Proof. • Subcase Γ = ∅. The result follows by definition of computability of J.

• Subcase Γ ̸= ∅.

– (associate) The associate judgement is J3 which is computable by assumption.
– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡

[x1 ∈ A1, . . . , xn ∈ An], then

p ∈ Eq(C, c, d) [Γ][x1 := a1, . . . , xn := an]

C type [Γ][x1 := a1, . . . , xn := an]

c ∈ C [Γ][x1 := a1, . . . , xn := an]

d ∈ C [Γ][x1 := a1, . . . , xn := an]

are computable;
c = d ∈ C [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

c = d ∈ C [Γ][x1 := a1, . . . , xn := an]

is computable by (substitution :=) subcase. Moreover

d ∈ C [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable and then the result follows by transitivity lemma 5.3.13.

66

Lemma 5.3.26 (Eq-equality rules). The Eq-equality rule preserves computability. That is if the
judgement J ≡ p ∈ Eq(C, c, d) [Γ] is computable then the judgement

p = eqC(c) ∈ Eq(C, c, d) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (associated judgements) The first associate judgement is Jwhich is computable by
assumption.
Since J is computable, then c = d ∈ C, c ∈ C and C type are computable; then,
by point 1 of lemma on Eq-introduction rules 5.3.24, the judgement eqC(c) ∈
Eq(C, c, c) is computable. Moreover, by reflexivity lemmas 5.3.3 and 5.3.2,C = C
and c = c ∈ C are computable, thus, by lemma on Eq-formation rules 5.3.23, also
Eq(C, c, c) = Eq(C, c, d) type is computable. Hence, by point 2 of lemma 5.3.6,
eqC(c) ∈ Eq(C, c, d) is computable.

– (parts) The judgement c = d ∈ C is computable by assumption.

• Subcase Γ ̸= ∅.

– (associate) The associate judgement is Jwhich is computable by assumption.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

p ∈ Eq(C, c, d) [Γ][x1 := a1, . . . , xn := an]

is computable;

p = eqC(c) ∈ Eq(C, c, d) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

p ∈ Eq(C, c, d) [Γ][x1 := a1, . . . , xn := an]

67

is computable;

p = eqC(c) ∈ Eq(C, c, d) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 5.3.27 (Qtr-formation rules). The Qtr-formation rules preserve computability. That is

1. If J ≡ A type [Γ] is a computable judgement then

A/⊤ type [Γ]

is computable.

2. If J ≡ A = B [Γ] is a computable judgement then

A/⊤ = B/⊤ [Γ]

is computable.

Proof. By induction on the computational complexity α of J.

• Subcase Γ = ∅.

1. – (evaluation) A/⊤⇛ A/⊤ holds.
– (correct evaluation) A/⊤ = A/⊤ is derivable with the following derivation

tree
J Qtr

A/⊤ type
refl-ty

A/⊤ = A/⊤
– (parts) The part is J which is assumed to be computable.

2. – (associate judgements) The judgements A type and B type, associates of J are
computable by assumption, hence the result follows by case 1.

– (parts) The part is J which is assumed to be computable.

68

• Subcase Γ ̸= ∅.

1. – (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

A type [Γ][x1 := a1, . . . , xn := an]

is computable by assumption;

A/⊤ type [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

A type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by assumption;

A/⊤ type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The judgement A type [Γ] associate of J is computable. Hence the
result follows by case 1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

A = B [Γ][x1 := a1, . . . , xn := an]

is computable by assumption;

A/⊤ = B/⊤ [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

A = B [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by assumption;

A/⊤ = B/⊤ [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

69

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 5.3.28 (Qtr-introduction rules). The Qtr-introduction rules preserve computability.
That is

1. If J ≡ a ∈ A [Γ] is a computable judgement then

[a] ∈ A/⊤ [Γ]

is computable.

2. If J1 ≡ a ∈ A [Γ] and J2 ≡ b ∈ A [Γ] are computable judgements then

[a] = [b] ∈ A/⊤ [Γ]

is computable.

Proof. • Subcase Γ = ∅.

1. – (associate judgements) The judgementA type, associate of J is computable by
assumption, hence by point 1 of the previous lemma also A/⊤ type is com-
putable.

– (evaluation) [a]⇒ [a] holds.
– (correct evaluation) [a] = [a] ∈ A/⊤ is derivable with the following deriva-

tion tree
J I-Qtr

[a] ∈ A/⊤
refl-tm

[a] = [a] ∈ A/⊤
– (parts) The part is Jwhich is assumed to be computable.

2. – (associate judgements) The result follows from case 1.
– (parts) The judgements a ∈ A and b ∈ B are computable by assumption.

70

• Subcase Γ ̸= ∅.

1. – (associate) The associate judgement of J,A type [Γ], is computable by assump-
tion; then, by previous lemma, also A/⊤ type [Γ] is computable.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

a ∈ A [Γ][x1 := a1, . . . , xn := an]

is computable;

[a] ∈ A/⊤ [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An
and a′1 ∈ A1, . . . , a′n ∈ An are c.c.s. fitting with Γ, and so

a ∈ A [Γ][x1 := a1, . . . , xn := an]

and
a ∈ A [Γ][x1 := a′1, . . . , xn := a′n]

are computable;

[a] ∈ A/⊤ [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The result follows by case 1.
– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with

Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

a ∈ A [Γ][x1 := a1, . . . , xn := an]

and
b ∈ A [Γ][x1 := a1, . . . , xn := an]

are computable;

[a] = [b] ∈ A/⊤ [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅).

71

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

[a] = [b] ∈ A/⊤ [Γ][x1 := a1, . . . , xn := an]

is computable by (substitution :=) subcase; then

[b] ∈ A/⊤ [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by case 1. Hence

[a] = [b] ∈ A/⊤ [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable by transitivity lemma 5.3.13.

Lemma5.3.29 (Qtr-elimination rules). TheQtr-elimination rules preserve computability. That
is

1. If the judgements J1 ≡ L(z) type [Γ, z ∈ A/⊤], J2 ≡ p ∈ A/⊤ [Γ], J3 ≡ l(x) ∈
L([x]) [Γ, x ∈ A] and J4 ≡ l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A] are computable then
the judgement

ElQ(l, p) ∈ L(p) [Γ]

is computable.

2. If the judgements J1 ≡ L(z) type [Γ, z ∈ A/⊤], J2 ≡ p = p′ ∈ A/⊤ [Γ], J3 ≡ l(x) =
l′(x) ∈ L([x]) [Γ, x ∈ A] and J4 ≡ l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A] are
computable then the judgement

ElQ(l, p) = ElQ(l′, p′) ∈ L(p) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

1. – (associate judgements) The computability of the judgement L(p) type, asso-
ciate of the judgement ElQ(l, p) = ElQ(l′, p′) ∈ L(p), follows by assump-
tion.

72

– (evaluation) J2 is computable and A/⊤ ⇛ A/⊤, then p ⇒ [a] and the
judgement a ∈ A is computable; thus it is a c.c.s. fitting with x ∈ A; there-
fore J3[x := a], which is l(a) ∈ L([a]), is a computable judgement. Hence
l(a)⇒ g and the result follows by using the computation rule.

– (correct evaluation) Since J2 is computable, we know that there exists a deriva-
tion of the judgementA/⊤ type; hence x ∈ A/⊤ is a correct assumption , and
p = [a] ∈ A/⊤ is derivable. Let Π1 be the following derivation

p = [a] ∈ A/⊤
J1 x ∈ A/⊤ [x ∈ A/⊤] J3 J4 E-Qtr

ElQ(l, x) ∈ L(x) [x ∈ A/⊤]
sub-tm-eq

ElQ(l, p) = ElQ(l, [a]) ∈ L(p)
then Π2 is

Π1

p = [a] ∈ A/⊤ J1 sym-ty
L(p) = L([a]) conv-eq

ElQ(l, p) = ElQ(l, [a]) ∈ L([a])
Since J2 is computable, so is a ∈ A and then J3[x := a] is computable.
Thus the judgements l(a) = g ∈ L([a]) and a ∈ A are derivable. Let Π3 be

Π2

J1 a ∈ A J3 J4 C-Qtr
ElQ(l, [a]) = l(a) ∈ L([a]) l(a) = g ∈ L([a])

trans-tm
ElQ(l, [a]) = g ∈ L([a])

trans-tm
ElQ(l, p) = g ∈ L([a])

Hence

Π3

p = [a] ∈ A/⊤ J1
L(p) = L([a]) sym-ty
L([a]) = L(p) conv-eq

ElQ(l, p) = g ∈ L(p)
– (parts) The part is Jwhich is assumed to be computable.

2. – (associate judgements)The computability ofElQ(l, p) ∈ L(p) follows by case
1. Then, since J3 is computable also l(y) = l(y′) ∈ L([y] [y ∈ A]; then, by
weakening lemma 5.3.1, by Qtr-introduction lemma 5.3.28, by point 3 of
lemma 5.3.6, both l(x) = l(x′) ∈ L([x]) [x ∈ A, y ∈ A] and l(y) = l(y′) ∈
L([x])[x ∈ A, y ∈ A] are computable, so, by point 1 of 5.3.6, l′(x) = l′(y) ∈
L([x]) [x ∈ A, y ∈ A]. The computability of ElQ(l′, p′) ∈ L(p′), thus, fol-
lows by case 1, since from the fact that J2 and J3 are computable, by lemma
5.3.8, we obtain that p′ ∈ A/⊤ and l′(x) ∈ L([x]) [x ∈ A] are computable

73

judgements. Then, since the judgement L(p) = L(p′) is computable, by
point 2 of lemma 5.3.6, ElQ(l′, p′) ∈ L(p) is computable.

– (parts) The judgement J2 is computable, then p ⇒ [a], p′ ⇒ [a′] and the
judgements a ∈ A and a′ ∈ A are computable. Moreover they are c.c.s.
for x ∈ A, y ∈ A in J4, and then J4[x := a, y := a′], that is the judgement
l(a) = l(a′) ∈ L([a]) is computable; then J3[x := a′], that is l(a′) = l′(a′) ∈
L([a′]), is computable, hence, by point 2 of Qtr-introduction lemma 5.3.28
and by point 3 of lemma 5.3.6, also l(a′) = l′(a′) ∈ L([a]) is computable.
By transitivity lemma, l(a) = l′(a′) ∈ L([a]) is a computable judgement.
Then, by point 3 of lemma 5.3.6, l(a) = l′(a′) ∈ L(p) is a computable
judgement, since, as in the previous point, we can prove that L([a]) = L(p)
is a computable judgement. So, if l(a) ⇒ gl and l′(a′) ⇒ gl′ , the parts of gl
and gl′ satisfy the computability requirements.

• Subcase Γ ̸= ∅.

1. – (associate) The computability of the judgementL(p) type [Γ], associate of the
judgement ElQ(l, p) ∈ L(p) [Γ], follows by substitution lemma 5.3.5.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

L(z) type [Γ, z ∈ A/⊤][x1 := a1, . . . , xn := an]

l(x) ∈ L([x]) [Γ, x ∈ A][x1 := a1, . . . , xn := an]

l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4 and

p ∈ A/⊤ [Γ][x1 := a1, . . . , xn := an]

is computable;

ElQ(l, p) ∈ L(p) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

L(z) type [Γ, z ∈ A/⊤][x1 := a1, . . . , xn := an]

74

l(x) ∈ L([x]) [Γ, x ∈ A][x1 ← a1 = a′1, . . . , xn ← an = a′n]

l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4;

p ∈ A/⊤ [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable;

ElQ(l, p) ∈ L(p) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The computability of the judgement ElQ(l, p) ∈ L(p) [Γ], asso-
ciate of the judgement ElQ(l, p) = ElQ(l′, p′) ∈ L(p) [Γ], follows by case
1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

L(z) type [Γ, z ∈ A/⊤][x1 := a1, . . . , xn := an]

l(x) = l′(x) ∈ L([x]) [Γ, x ∈ A][x1 := a1, . . . , xn := an]

l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4 and

p = p′ ∈ A/⊤ [Γ][x1 := a1, . . . , xn := an]

is computable;

ElQ(l, p) = ElQ(l′, p′) ∈ L(p) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

L(z) type [Γ, z ∈ A/⊤][x1 := a1, . . . , xn := an]

l(x) = l′(x) ∈ L([x]) [Γ, x ∈ A][x1 ← a1 = a′1, . . . , xn ← an = a′n]

l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A][x1 := a1, . . . , xn := an]

75

are computable by head substitution lemma 5.3.4 and

p = p′ ∈ A/⊤ [Γ][x1 := a1, . . . , xn := an]

is computable;

ElQ(l, p) = ElQ(l′, p′) ∈ L(p) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 5.3.30 (Qtr-equality rule). The Qtr-equality rule preserves computability, i.e., if the
judgements J1 ≡ L(z) type [Γ, z ∈ A/⊤], J2 ≡ a ∈ A [Γ], J3 ≡ l(x) ∈ L([x]) [Γ, x ∈ A] and
J4 ≡ l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A] are computable then the judgement

ElQ(l, [a]) = l(a) ∈ L([a]) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (associated judgements) J2 is a computable judgement by assumption.
Thus, lemma on Qtr-introduction rules yields that [a] ∈ A/⊤ is a computable
judgement, and hence ElQ(l, [a]) ∈ L([a]) is computable by the previous lemma
onQtr-elimination rules. Moreover, since J3 is computable, we obtain that J3 [x :=
a], i.e. the second associate judgement l(a) ∈ L([a]), is computable.

– (parts) Since ElQ(l, [a]) and l(a) evaluate into the same canonical element, the
computability of the judgement ElQ(l, [a]) = l(a) ∈ L([a]) follows from the
computability of the associated judgements.

• Subcase Γ ̸= ∅.

– (associate) J2 is a computable judgement by assumption.
Thus, lemma onQtr-introduction rules yields that [a] ∈ A/⊤ [Γ] is a computable
judgement, and hence ElQ(l, [a]) ∈ L([a]) [Γ] is computable by the previous
lemma on Qtr-elimination rules.

76

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

L(z) type [Γ, z ∈ A/⊤][x1 := a1, . . . , xn := an]

l(x) ∈ L([x]) [Γ, x ∈ A][x1 := a1, . . . , xn := an]

l(x) = l(y) ∈ L([x]) [Γ, x ∈ A, y ∈ A][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4 and

a ∈ A [Γ][x1 := a1, . . . , xn := an]

is computable by assumption;

ElQ(l, [a]) = l(a) ∈ L([a]) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a c.c.s. fitting
with Γ, and so

ElΣ(⟨b, c⟩,m) = m(b, c) ∈M(d) [Γ][x1 := a1, . . . , xn := an]

is computable by (substitution :=) subcase.
Moreover, since J5[x := b, y := c] is computable, also J5[x := b, y := c][x1 ←
a1 = a′1, . . . , xn ← an = a′n]which is

m(b, c) ∈M(d) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable and then the result follows by transitivity lemma, 5.3.13.

5.4 The computability theorem

Nowwe can state ourmain theorem about computability/operational semantics: it shows that
any derivable judgement is computable and hence that all the properties we ask for a judgement
to be computable hold for any derivable judgement

Theorem 5.4.1 (Computability theorem). Let J be any derivable judgement. Then J is com-
putable.

77

Proof. If J is derivable, then a proof Π of J is built only with the rules of Treg. All the rules of
Treg preserve computability, then J is computable.

A normal form theorem is a theorem that states that any proof can be transformed in a new
one with the same conclusion but enjoying stronger structure properties. The computability
theorem does not regard derivations but still is strongly related to normal form theorems as the
following definitions will clarify.

Definition 5.4.1 (Canonical proof). A proofΠ of a judgement J is canonical if

1. J ≡ A type or J ≡ A = B and the last inference step inΠ is a formation rule.

2. J ≡ a ∈ A or J ≡ a = b ∈ A and the last inference step inΠ is an introduction rule.

A canonical proof might be also called ”normal at the end”. Clearly not every closed judge-
ment can be derived by a canonical proof. This holds only for the judgementswhich, according
to the following definition, are in canonical form.

Definition 5.4.2 (Canonical form). Let J be a closed judgement. Then

• if J ≡ A type and A⇒ GA then the canonical form of J is GA type;

• if J ≡ A = B and A⇒ GA and B⇒ GB then the canonical form of J is GA = GB;

• if J ≡ a ∈ A and a⇒ ga and A⇒ GA then the canonical form of J is ga ∈ GA;

• if J ≡ a = b ∈ A and a ⇒ ga and b ⇒ gb and A ⇒ GA then the canonical form of J is
ga = gb ∈ GA.

Corollary 5.4.1 (Canonical-form theorem). Let J be a derivable closed judgement then there
exists a canonical proof of the canonical form of J.

Proof. Since J is derivable then it is computable and hence there exist a derivation of its parts
judgements since they also are computable. By putting them together with a formation or an
introduction rule we obtain a canonical proof of the canonical form of J.

It is easy to see that if J is a derivable closed judgement then its computability implies that its
canonical form is a judgement equivalent to J, in fact:

78

• if J ≡ A type andA⇒ GA then the canonical formof J isGA type and the computability
of J assures that A = GA is derivable.

• if J ≡ A = B and A ⇒ GA and B ⇒ GB then the canonical form of J is GA = GB and
the computability of J assures that A = GA and B = GB are derivable judgements.

• if J ≡ a ∈ A and a⇒ ga and A⇒ GA then the canonical form of J is ga ∈ GA and the
computability of J yields that A = GA and a = ga ∈ A are derivable judgements.

• if J ≡ a = b ∈ A and a ⇒ ga, b ⇒ gb and A ⇒ GA then the canonical form of J
is ga = gb ∈ GA and the computability of J assures that A = GA, a = ga ∈ A and
b = gb ∈ A are derivable judgements.

79

80

6
The canonical form theorem for Tareg

Theproof of the canonical-form theorem forTareg follows the same structure as the proof of the
canonical-form theorem for Treg in the previous chapter, paying attention to when the proofs
involve case analysis, where also the type of the natural numbers must be considered. Further-
more, the preservation of computability must be proved for all the rules of the type of natural
numbers, which we report below.

Lemma 6.0.1 (nat-formation rule). The nat-formation rule preserves computability. That is
the judgement

N type [Γ]

is computable.

Proof. • Subcase Γ = ∅.

– (evaluation)N ⇛ N holds.

– (correct evaluation) N = N is derivable with the following derivation tree

Γ cont natN type
refl-tyN = N

– (parts) There is no condition to prove.

81

• Subcase Γ ̸= ∅.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with Γ ≡
[x1 ∈ A1, . . . , xn ∈ An], then

N type [Γ][x1 := a1, . . . , xn := an] ≡ N type

is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An fitting

with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

N type [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡ N = N

is computable, since it is derivable and the associate judgement N type is com-
putable.

Lemma6.0.2 (nat-introduction rules). Thenat-introduction rule preserves computability. That
is

1. The judgement
0 ∈ N [Γ]

is computable

2. If J ≡ n ∈ N [Γ] is a computable judgement then

s(n) ∈ N [Γ]

is computable.

3. If J ≡ m = n ∈ N [Γ] is a computable judgement then

s(m) = s(n) ∈ N [Γ]

is computable.

Proof.

• Subcase Γ = ∅.

82

1. – (associate judgement) The computability of the associate judgement is imme-
diate by the previous lemma on nat-formation rule.

– (evaluation) 0⇒ 0 holds.
– (correct evaluation) 0 = 0 ∈ N is derivable with the following derivation

tree
Γ cont I1-nat0 ∈ N refl-tm0 = 0 ∈ N

– (parts) No condition to show.

2. – (associate judgements) The computability of the associate judgement is im-
mediate by the previous lemma on nat-formation rule.

– (evaluation) s(n)⇒ s(n) holds.
– (correct evaluation) s(n) = s(n) ∈ N is derivable by using first the second

nat-introduction rule and then the reflexivity on elements rule.
J I2-nat

s(n) ∈ N
refl-tm

s(n) = s(n) ∈ N
– (parts) The part is Jwhich is assumed to be computable.

3. – (associate judgements) The judgements m ∈ N and n ∈ N, associates of J,
are computable by definition. Hence the result follows from case 2.

– (parts) The part is Jwhich is assumed to be computable.

• Subcase Γ ̸= ∅.

1. – (associate) The judgement N type [Γ] is computable for the previous lemma
on nat-formation rule.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

0 ∈ N [Γ][x1 := a1, . . . , xn := an] ≡ 0 ∈ N

is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

0 ∈ N [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n] ≡ 0 = 0 ∈ N

83

is computable, since it is derivable and the associate judgement 0 ∈ N is
computable.

2. – (associate) The judgement N type [Γ] is computable for the previous lemma
on nat-formation rule.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

n ∈ N [Γ][x1 := a1, . . . , xn := an]

is computable;

s(n) ∈ N [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

n ∈ N [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

s(n) ∈ N [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

3. – (associate) The judgement m ∈ N [Γ], associate of J is computable. Hence
the result follows by case 2.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

m = n ∈ N [Γ][x1 := a1, . . . , xn := an]

is computable;

s(m) = s(n) ∈ N [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅).
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

m = n ∈ N [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

84

is computable;

s(m) = s(n) ∈ N [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅).

Lemma 6.0.3 (nat-elimination rules). The nat-elimination rules preserve computability. That
is

1. If J1 ≡ L(z) type [Γ, z ∈ N], J2 ≡ n ∈ N [Γ], J3 ≡ a ∈ L(0) [Γ] and J4 ≡ l(x, y) ∈
L(s(x)) [Γ, x ∈ N, y ∈ L(x)] are computable judgements then

ElN(a, l, n) ∈ L(n) [Γ]

is computable.

2. If J1 ≡ L(z) type [Γ, z ∈ N], J2 ≡ n = n′ ∈ N [Γ], J3 ≡ a = a′ ∈ L(0) [Γ] and
J4 ≡ l(x, y) = l′(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)] are computable judgements then

ElN(a, l, n) = ElN(a′, l′, n′) ∈ L(n) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

1. – (associate judgements) The computability of the judgement L(n) type, asso-
ciate of the judgement ElN(a, l, n) ∈ L(n), follows by assumption.

– (evaluation) J2 is computable andN ⇛ N, then either n⇒ 0 or n⇒ s(m).

* If n ⇒ 0, then, since J3 is computable, we have that a ⇒ g; hence the
result follows by the computation rule.

* If n ⇒ s(m), then m ∈ N and ElN(a, l,m) ∈ L(m) are computable
and it is a c.c.s. fitting with x ∈ N, y ∈ L(x); therefore J3[x := m, y :=
ElN(a, l,m)], which is l(m,ElN(a, l,m)) ∈ L(s(m)), is a computable
judgement. Hence l(m,ElN(a, l,m)) ⇒ g and the result follows by us-
ing the computation rule.

85

– (correct evaluation) Since J2 is computable, we know that there exists a deriva-
tion of the judgementNtype; hence x ∈ N is a correct assumption, and either
n = 0 or n = s(m) ∈ N are derivable.

* If n = 0 then, let Π1 be

n = 0 ∈ N
J1 x ∈ N [x ∈ N] J3 J4 E-natElN(a, l, n) ∈ L(x) [x ∈ N] sub-tm-eq

ElN(a, l, n) = ElN(a, l, 0) ∈ L(n)
then Π2 is

Π1

n = 0 ∈ N J1 sub-ty-eq
L(n) = L(0) conv-eq

ElN(a, l, n) = ElN(a, l, 0) ∈ L(0)
Since J3 is computable, the judgement a = g ∈ L(0) is derivable. Let
Π3 be

J1 J3 J4 C1-natElN(a, l, 0) = a ∈ L(0) a = g ∈ L(0)
trans-tm

ElN(a, l, 0) = g ∈ L(0)

then
Π2 Π3 trans-tm

ElN(a, l, n) = g ∈ L(0)
Hence

ElN(a, l, n) = g ∈ L(0)

n = 0 ∈ N J1 sub-ty-eq
L(n) = L(0) sym-ty
L(0) = L(n) conv-eq

ElN(a, l, n) = g ∈ L(n)

* If n = s(m) ∈ N, then let Π1 be

n = s(m) ∈ N
J1 x ∈ N [x ∈ N] J3 J4 E-natElN(a, l, n) ∈ L(x) [x ∈ N] sub-tm-eq

ElN(a, l, n) = ElN(a, l, s(m)) ∈ L(n)
then Π2 is

Π1

n = s(m) ∈ N J1 sub-ty-eq
L(n) = L(s(m)) conv-eq

ElN(a, l, n) = ElN(a, l, s(m)) ∈ L(s(m))

Since J2 is computable, so ism ∈ N and then J4[x := m, y := ElN(a, l,m)]
is computable. Thus the judgements l(m,ElN(a, l,m)) = g ∈ L(s(m))
andm ∈ N are derivable. Let Π3 be

86

J1 m ∈ N J3 J4 C2-natElN(a, l, s(m)) = l(m,ElN(a, l,m)) ∈ L(s(m)) l(m,ElN(a, l,m)) = g ∈ L(s(m))
trans-tm

ElN(a, l, s(m)) = g ∈ L(s(m))

then
Π2 Π3 trans-tm

ElN(a, l, n) = g ∈ L(s(m))

Hence

ElN(a, l, n) = g ∈ L(s(m))

n = s(m) ∈ N J1 sub-ty-eq
L(n) = L(s(m)) sym-ty
L(s(m)) = L(n) conv-eq

ElN(a, l, n) = g ∈ L(n)

– (parts) Since J2 is computable we know that either n⇒ 0 or n⇒ s(m).

* If n ⇒ 0, then 0 ∈ N is computable by the previous lemma on nat-
introduction rules. Hence we can deduce that the judgement n = 0 ∈
N is computable. Therefore, since J1 is computable, we obtain that the
judgement L(0) = L(n) is a computable judgement. Then, since J3 is
computable, so is a ∈ L(n) by point 2 of lemma 5.3.6. Hence, since
a ⇒ g, the parts of g which is also the value of ElN(a, l, n), satisfy the
computability requirements in L(n).

* If n⇒ s(m), thenm ∈ N and s(m) ∈ N is computable by the previous
lemma on nat-introduction rules. Hence we can deduce that the judge-
ment n = s(m) ∈ N is computable. Therefore, since J1 is computable,
we obtain that the judgement L(s(m)) = L(n) is a computable judge-
ment. Then, since J4 is computable, so is J4[x := m, y := ElN(a, l,m)]
and l(m,ElN(a, l,m)) ∈ L(n) is computable by point 2 of lemma 5.3.6.
Hence, since l(m,ElN(a, l,m)) ⇒ g, the parts of g which is also the
value of ElN(a, l, n), satisfy the computability requirements in L(n).

2. – (associate judgements) The computability of ElN(a, l, n) ∈ L(n) follows by
case 1. Also the computability of ElN(a′, l′, n′) ∈ L(n′) follows by case 1,
since from the fact that J2, J3 and J4 are computable, by point 4 of lemma5.3.6,
we obtain that n′ ∈ N, J3 ≡ a ∈ L(0) [Γ] and l′(x, y) ∈ L(s(x)) [Γ, x ∈
N, y ∈ L(x)] are computable judgements. Then, since the judgementL(n) =
L(n′) is computable, by point 2 of lemma 5.3.6,ElN(a′, l′, n′) ∈ L(n) is com-
putable.

– (parts) The judgement J2 is computable, then either n ⇒ 0 and n′ ⇒ 0 or
n⇒ s(m) and n′ ⇒ s(m′)

87

* If n ⇒ 0 and n′ ⇒ 0, then, by point 3 of lemma 5.3.6, a = a′ ∈ L(n)
is a computable judgement, since, as in the previous point, we can prove
that L(0) = L(n). So, if a ⇒ g and a′ ⇒ g′, the parts satisfy the
computability requirements in L(n).

* If n ⇒ s(m) and n′ ⇒ s(m′) thenm = m′ ∈ N is computable. More-
over m = m′ ∈ N and ElN(a, l,m) = ElN(a′, l′,m′) ∈ L(m) are
c.c.s. for x ∈ N and y ∈ L(x) in J4, respectively, and then J4[x ←
m = m′, y ← ElN(a, l,m) = ElN(a′, l′,m′)], that is the judgement
l(m,ElN(a, l,m)) = l′(m′,ElN(a′, l′,m′)) ∈ L(s(m)) is computable.
Then, bypoint 3of lemma5.3.6, l(m,ElN(a, l,m)) = l′(m′,ElN(a′, l′,m′)) ∈
L(n) is a computable judgement, since, as in the previous point, we can
prove that L(s(m)) = L(n). So, if l(m,ElN(a, l,m))⇒ gm and
l′(m′,ElN(a′, l′,m′))⇒ gm′ , the parts satisfy the computability require-
ments in L(n).

• Subcase Γ ̸= ∅.

1. – (associate) The computability of the judgementL(n) type [Γ], associate of the
judgement ElN(a, l, n) ∈ L(n) [Γ], follows by substitution lemma 5.3.5.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

L(z) type [Γ, z ∈ N][x1 := a1, . . . , xn := an]

and

l(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4,

n ∈ N [Γ][x1 := a1, . . . , xn := an]

a ∈ L(0) [Γ][x1 := a1, . . . , xn := an]

are computable;

ElN(a, l, n) ∈ L(n) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a

88

c.c.s. fitting with Γ, and so

L(z) type [Γ, z ∈ N][x1 := a1, . . . , xn := an]

and

l(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable by head substitution lemma 5.3.4,

n ∈ N [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

and
a ∈ L(0) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

ElN(a, l, n) ∈ L(n) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

2. – (associate) The computability of the judgement ElN(a, l, n) ∈ L(n) [Γ], as-
sociate of the judgement ElN(a, l, n) = ElN(a′, l′, n′) ∈ L(n) [Γ], follows by
case 1.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

L(z) type [Γ, z ∈ N][x1 := a1, . . . , xn := an]

and

l(x, y) = l′(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4,

n = n′ ∈ N [Γ][x1 := a1, . . . , xn := an]

a = a′ ∈ L(0) [Γ][x1 := a1, . . . , xn := an]

are computable;

ElN(a, l, n) = ElN(a′, l′, n′) ∈ L(n) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.

89

– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An
fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

L(z) type [Γ, z ∈ N][x1 := a1, . . . , xn := an]

and

l(x, y) = l′(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable by head substitution lemma 5.3.4,

n = n′ ∈ N [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

and
a = a′ ∈ L(0) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

are computable;

ElN(a, l, n) = ElN(a′, l′, n′) ∈ L(n) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

has empty context, then it is computable by (Γ = ∅) subcase.

Lemma 6.0.4 (nat-equality rules). The nat-equality rules preserve computability. That is

1. If J1 ≡ L(z) type [Γ, z ∈ N], J2 ≡ a ∈ L(0) [Γ] and J3 ≡ l(x, y) ∈ L(s(x)) [Γ, x ∈
N, y ∈ L(x)] are computable judgements then

ElN(a, l, 0) = a ∈ L(0) [Γ]

is computable.

2. If J1 ≡ L(z) type [Γ, z ∈ N], J2 ≡ n ∈ N [Γ], J3 ≡ a ∈ L(0) [Γ] and J4 ≡ l(x, y) ∈
L(s(x)) [Γ, x ∈ N, y ∈ L(x)] are computable judgements then

ElN(a, l, s(n)) = l(n,ElN(a, l, n)) ∈ L(s(n)) [Γ]

is computable.

Proof. • Subcase Γ = ∅.

90

1. – (associate judgements)Lemma6.0.2onnat-introduction rules yields that 0 ∈
N is a computable judgement, and hence ElN(a, l, 0) ∈ L(0) is computable
by the previous lemma on nat-elimination rules. Moreover, the other asso-
ciate is J2 which is assumed to be computable.

– (parts) By the computability rule, ElN(a, l, 0) and a evaluate into the same
canonical element, so all cases are trivial.

2. – (associate judgements) J2 is computable by assumption, thus, lemma 6.0.2
on nat-introduction rules yields that s(n) ∈ N is a computable judgement,
and hence ElN(a, l, s(n)) ∈ L(s(n)) is computable by the previous lemma
on nat-elimination rules. Moreover, since J2, J3 and J5 are computable, we
obtain J5[x := n, y := l(n,ElN(a, l, n))], i.e. the second associate judgement
l(n,ElN(a, l, n)) ∈ L(s(n)), is computable.

– (parts) By the computability rule, ElN(a, l, s(n)) and l(n,ElN(a, l, n)) evalu-
ate into the same canonical element, so all cases are trivial.

• Subcase Γ ̸= ∅.

1. – (associate) Lemma 6.0.2 on nat-introduction rules yields that 0 ∈ N [Γ] is a
computable judgement, and hence ElN(a, l, 0) ∈ L(0) [Γ] is computable by
the previous lemma on nat-elimination rules.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

L(z) type [Γ, z ∈ N][x1 := a1, . . . , xn := an]

l(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4;

a ∈ L(0) [Γ][x1 := a1, . . . , xn := an]

is computable and

ElN(a, l, 0) = a ∈ L(0) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a

91

c.c.s. fitting with Γ, and so

ElN(a, l, 0) = a ∈ L(0) [Γ][x1 := a1, . . . , xn := an]

is computable by (substitution :=) subcase.
Moreover,

a ∈ L(0) [Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

is computable and then the result follows by transitivity lemma 5.3.13.

2. – (associate) J2 is computableby assumption, thus, lemma6.0.2onnat-introduction
rules yields that s(n) ∈ N [Γ] is a computable judgement, andhenceElN(a, l, s(n)) ∈
L(s(n)) [Γ] is computable by the previous lemma on nat-elimination rules.

– (substitution :=) Consider any c.c.s. a1 ∈ A1, . . . , an ∈ An fitting with
Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then

L(z) type [Γ, z ∈ N][x1 := a1, . . . , xn := an]

l(x, y) ∈ L(s(x)) [Γ, x ∈ N, y ∈ L(x)][x1 := a1, . . . , xn := an]

are computable by head substitution lemma 5.3.4;

n ∈ N [Γ][x1 := a1, . . . , xn := an]

and
a ∈ L(0) [Γ][x1 := a1, . . . , xn := an]

are computable;

ElN(a, l, s(n)) = l(n,ElN(a, l, n)) ∈ L(s(n)) [Γ][x1 := a1, . . . , xn := an]

has empty context, then it is computable by (Γ = ∅) subcase.
– (substitution←) Consider any c.c.s. a1 = a′1 ∈ A1, . . . , an = a′n ∈ An

fitting with Γ ≡ [x1 ∈ A1, . . . , xn ∈ An], then also a1 ∈ A1, . . . , an ∈ An is a
c.c.s. fitting with Γ, and so

ElN(a, l, s(n)) = l(n,ElN(a, l, n)) ∈ L(s(n)) [Γ][x1 := a1, . . . , xn := an]

is computable by (substitution :=) subcase.
Moreover, since J4[x := n, y := l(n,ElN(a, l, n))] is computable, also J4[x :=
n, y := l(n,ElN(a, l, n))][x1 ← a1 = a′1, . . . , xn ← an = a′n]which is

l(n,ElN(a, l, n)) ∈ L(s(n))[Γ][x1 ← a1 = a′1, . . . , xn ← an = a′n]

92

is computable and then the result follows by transitivity lemma 5.3.13.

93

94

7
Formalisation in Coq

Theworkhas beenpartially formalised in theCoqproof assistant [11] on topof theLumsdaine-
Bauer-HaselwarterGeneral TypeTheories framework [12]. TheGeneral TypeTheories frame-
work is, in turn, built on top of the Homotopy Type Theory library [13] with an eye towards
future formalisation of the categorical semantics of type theories, but it does not depend on
concepts such as the Univalence axiom or the Uniqueness of identity proofs. The only axiom
that it is used is the function extensionality axiom and the development is constructive, since
there are no uses of excluded middle or the axiom of choice.

The formalisation deals with selected topics of the thesis, starting from defining the signa-
ture and the types of Treg together with the logical and the computation rules; then, the notion
of computable judgement is introduced and, finally, it’s showed the preservation of the com-
putability of the logical rules in the case of empty context.

The formalization is publicly available on [14], where the General Type Theories library has
been fixed to work with the latest version of the Coq-HoTT [15] library.

95

96

References

[1] P.Martin-Löf, “Intuitionistic type theory, notes by g. sambin of a series of lectures given
in padua, june 1980.” Bibliopolis, Naples, 1984.

[2] M. E. Maietti, “Modular correspondence between dependent type theories and cat-
egories including pretopoi and topoi.” 2005, under consideration for publication in
Math. Struct. in Comp. Science.

[3] S. L. M. Valentini, “Meta-mathematical aspects of martin-l ̈of’s type theory,” Ph.D. dis-
sertation, Katholieke Universiteit Nijmegen, 2000.

[4] B. Jacobs, Introduction to Coalgebra. Towards Mathematics of States and Observations.
Cambridge University Press, 2016.

[5] ——, Categorical Logic and Type Theory., ser. Studies in Logic. Elsevier, 1999, vol.
141.

[6] B. Nordström, K. Peterson, and J. Smith, Programming in Martin L ̈of ’s Type Theory.
Clarendon Press, Oxford., 1990.

[7] N. G. de Bruijn, “Telescopic mappings in typed lambda calculus,” Information and
Computation, vol. 91, pp. 189–204, apr 1991.

[8] A. Bossi and S. Valentini, “An intuitionistic theory of types with assumptions of high-
arity variables,” Annals of Pure and Applied Logic, vol. 57, pp. 93–149, 1992.

[9] P.Martin-Löf,Hauptsatz for the intuitionistic theory of iterated inductive definitions, ser.
Studies in Logic and the Foundations of Mathematics. J.E. Fenstad, 1971, vol. Pro-
ceedings of the Second Scandinavian Logic Symposium.

[10] W. Tait, “Intensional interpretation of functionals of finite type i,” Journal of Symbolic
Logic, vol. 32, no. 2, pp. 198–212, jun 1967.

[11] C. development team. (2023) Coq. [Online]. Available: http://coq.inria.fr/

97

http://coq.inria.fr/

[12] P. L. Lumsdaine, A. Bauer, and P. G. Haselwarter. (2020) A formalisation of general
type theories in coq. [Online]. Available: https://github.com/peterlefanulumsdaine/
general-type-theories/tree/arXiv

[13] P. L. Andrej Bauer, Jason Gross et al., “The hott library: a formalization of homotopy
type theory in coq.” Proceedings of the 6th ACMSIGPLANConference on Certified Pro-
grams and Proofs, pp. 164–172, jan 2017.

[14] R. Borsetto. (2023) A canonical normal form for the type theory
of regular categories. [Online]. Available: https : //github .com/eapiova/
canonical-normal-form-regular-categories

[15] H. T. T. development team. (2023) Coq-hott. [Online]. Available: https://github.
com/HoTT/Coq-HoTT

98

https://github.com/peterlefanulumsdaine/general-type-theories/tree/arXiv
https://github.com/peterlefanulumsdaine/general-type-theories/tree/arXiv
https://github.com/eapiova/canonical-normal-form-regular-categories
https://github.com/eapiova/canonical-normal-form-regular-categories
https://github.com/HoTT/Coq-HoTT
https://github.com/HoTT/Coq-HoTT

	Abstract
	Introduction
	Regular categories
	The internal dependent type theory of regular categories Treg
	Extensional dependent type theories
	The calculus of regular categories Treg
	Terminal type
	Indexed Sum type
	Extensional Equality type
	Quotient types on the terminal type
	Properties
	Alternative version

	The internal dependent type theory of arithmetic regular categories Tareg
	The canonical form theorem for Treg
	The evaluation tree
	Computability
	Computability of the rules
	The structural rules
	The logical rules

	The computability theorem

	The canonical form theorem for Tareg
	Formalisation in Coq
	References

