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Abstract

More and more single molecule experiments are reporting the observance of a Brownian-yet-non-
Gaussian diffusion.

In numerous situations the evidence is that the presence of a complex environment "acts" on the prob-
ability density function, making it no more a Gaussian one. On the contrary, there is no alteration of
the linear growth with time of the second moment of the diffusing particle displacement. A microscopic
foundation mechanism for this phenomenon is presently lacking.

We start from a polymer immersed in a bath of monomers, that we claim to be an appropriate setting
to show this evidence: so, the initial point is a polymerisation process which modifies the size of the
initial molecule. We aim at solving the associated master equation for both the steady state and
transient behaviour of this polymerisation process. For this part the main investigation tools employ
mathematical methods. Indeed, the connection with queuing theory is critically important for the
development of the solution that is presented.

By relying on the results of this analytic investigation, we go on with the analysis of the non-Gaussian
characteristics by means of the kurtosis of the x coordinate of the centre of mass, xkx: here we succeed
in showing that its calculation can be simplified in terms of a specific stochastic process and so we take
the first steps into that computation.
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Introduction

There is a growing number of single molecule experiments in soft matter and biological systems which
find out that some anomalous behaviour is a common characteristic shared by many systems.

This behaviour [...] occurs quite robustly in a wide range of systems, including beads
diffusing on lipid tubes or in networks, the motion of tracers in colloidal, polymeric or
active suspensions and in biological cells, as well as the motion of individuals in heteroge-
neous populations such as nematodes. Similar effects on the PDF are also observed in the

anomalous diffusion of labeled messenger RNA molecules in living FE.coli and S.cervisiae
cells. [7]

We claim that even a polymer in a chemostated monomer bath — that is actually undergoing poly-
merisation /depolymerisation — offers a natural and much easier setup to such peculiar diffusion if its
centre of mass is under tracking. In this case, the mean square displacement of the molecule still grows
linearly with time — as expected from a Brownian diffusion — but the associated probability density
function is actually a non-Gaussian one. The latter is then a strange aspect of the dynamics that is
of great interest. Existing theories are mesoscopic ones bringing up the subordination of diffusivities,
but a “microscopic” description is currently lacking. So, we attempt at presenting one here, provid-
ing a view that encloses both water action in Brownian motion and polymerisation in a birth-death
Markovian process.

The first section offers some general information on Brownian motion, stochastic processes and poly-
mers, which are macro-molecules made up by monomers, that are all held together by covalent bonds.
Their number represents the size of the polymer and varies from tens up to hundreds of thousands.
This work focuses specifically on linear homopolymers, which are characterised by only one well defined
type of sub-unit and form an open chain.

In our case, the polymerisation process (which happens when a three-unit initial polymer is immersed
in a bath of monomers) is suitably addressed by a specific master equation. We solve it, both in the
steady state and transient case: in this part mathematical methods are the primary instrument. In
fact, queuing theory is crucial for the development of the solution presented in this thesis. It allows
to compute explicitly the solution for the probability of the polymer size to be N = ng in the time-
dependent case. A significant number of «properties of practical importance»|1] need the explicit form
of the solution for transient behaviour: consequently, we present one of its equivalent rewriting in an
integral “version”, as proposed by P. M. Morse in 1955.

From this point, we move to the non-Gaussian characteristics of the diffusion. As for this topic, the
introduction of the kurtosis, k, is the key to analyse and quantify the anomalous behaviour of those
experimental data which show strong evidence of a significant deviation from the normal distribution
if in presence of a complex environment. We end by rewriting the expression for x along the x axis
by means of S(t), a new stochastic process, and start evaluating the first needed calculations for the
expression of Kx.



Polymer dynamics and polymerisation pro-
cess

1.1 Stochastic processes

The mathematics underlying many physical processes is a generalisation of ordinary calculus, in which
stochastic processes play a really relevant role [6].

A stochastic process! is denoted by { X (¢),t € T}? and consists of a set of random variables; the possible
values assumed by X (t) creates its state space. These random variables of X (t) are themselves indexed
by a set T, which is the parameter space of the process. X(t) represents the state of the process at
the time t. The set T' could be either countable — in which case the process is a discrete-time one —
or comnsisting of a collection of finite or infinite intervals on the time axis — referred as continuous-time
one. Correspondingly, the behaviour of the state space causes the process to be a continuous process or
a discrete one: the next sections will focus on both, analysing respectively Brownian motion and then
Markov chains. Finally, we remind that a stochastic process is stationary if (X (t2 + s) — X (t1 + ))
has the same distribution as of X (t2) — X (¢t1) Vt; € T and s > 0 [5].

1.1.1 Brownian motion: Einstein’s and Langevin’s approaches

The discover of the Brownian motion dates back to 1827: botanist Robert Brown, while analysing
microscopic life, observed very small particles of pollen moving in the liquid he was looking at in
the microscope. But it was Einstein who firstly solved the issue of explaining it in 1905: he claimed
that the peculiar pattern of motion of the particles was due to countless, constant collision with water
molecules. Neither the force vector associated with water “bombardment”, nor the location of the pollen
particle hit by water remained constant over time: this random characteristic implied “naturally” a
stochastic description. In his approach, time is considered to increase in steps, At; these, although
being macroscopically small, a are microscopically large enough to let the collision between many
fluid molecules and the Brownian particle happen. Changes in the position of the Brownian particle
evaluated during subsequent steps At turn out to be statistically independent.

Let p(x,t) be a function of z-position and time, so that p(x,t)dzx is equal to the probability of finding
a Brownian particle in = € [z, z + dz] at time ¢. The function p(z,t) should satisfy the following, also
referred as the “diffusion equation”

op(x.t) _ - 0%p(x,t)
ot =D Ox? (L1)

where D is a constant, called the “diffusion coefficient”, defined by means of the mean-square displace-
ment of the particle in time At over 2A¢. A phenomenological definition of D is
Ip(z, t)

Jz(z,t) = _DT (1.2)

here j,(z,t) is the probability flux, straightforward related to the flux of Brownian particles in the =
direction.

! An example of this could be the number of customers in a queuing system at any time, or the value of the temperature
recorded on different days of the same year.
2Usually, a function X of time ¢ is addressed as a “process”.



The fundamental linker between these two equations is the equality

op(z,t)  Oju(z,1)
ot Ox

also referred as the probability conservation equation (coming from particle conservation); it permits
one to get Eq. (1.1) by using Eq. (1.2).

Einstein’s solution of Eq. (1.1) resulted in a Gaussian distribution of the number of particles in the
unit volume:

1 —z
p(l‘, t) = \/ﬁe 2/4Dt (13)

with variance o2 = 2Dt. Tt follows that
(x?) = /Rpr(x,t)dx =2D(t) (1.4)

where t should be large enough: this restriction arises from Einstein’s coarse-grained time assumption.
A 3D analysis would — obviously — provide

(R%(t)) = 6D(t). (1.5)

This condition of linear dependence of (x2) — or R2(t) — with respect of ¢ permits to say that the
pattern of motion is Brownian and the system is in a diffusive state.

In 1908 Paul Langevin offered a quite different perspective pursued by focusing on the velocity of the
molecule instead of its position. He started from classical mechanics, arguing that the force to which
the Brownian particle of mass m was subjected can be resolved into two components:

1. a drag, dissipative force of the form —~vw,(t) (v is a positive drag coefficient and v, (t) is the
time-dependent component of the velocity along the x axis);

2. a force F(t) that is temporally uncorrelated, randomly fluctuating and with zero-mean, since the
fluid is supposed to be homogeneous and isotropic.

Then he wrote Newton’s second law:

dv,(t)
dt

m

= —yug(t) + F(t). (1.6)

Under overdamped conditions, the drag term usually dominates the inertial one obtaining thus

dvz(t) _ F(t)

dt %
do(ty = & (?dt — V2DdB(dt)

where B(t) = N(0,1) is a Gaussian stochastic process with zero mean and unit variance, also called
“Brownian motion”.

1.1.2 Markovian chains and master equation

Whereas in the previous section we focused our attention on continuous stochastic processes in contin-
uous time, here we shift to stochastic processes with a discrete state space, still addressing continuous
time. In fact, these will be employed to describe polymerisation, which is proved to be one of this
kind. From now on, we adopt this notation: a stochastic process will be addressed with N(¢) = n and
we will refer to n,, as the value of N at time ¢,,, that is n,, = N(t,,).



A discrete, stochastic process in continuous time is said to be a Markovian if it is stationary and
satisfies
P(npm|nm—1;1m—2; ...;n0) = P(np|nm—1), with : tg < t1 < ... <tp, (1.7)

the latter expresses the memory-less property: the evolution just depends on the immediately prior
condition. Birth-death processes are a subset of continuous time Markov process in which the transition
takes place from a given state only to the nearest “neighbours™ the polymer size varies its size by finite
“steps” of £1 sub-unit3. We refer to a birth as the addition of a sub-unit to the monomer and to a
death as its the deletion. Lastly, the following

P(n,t|no, to) := Probability{ N (t) = n, N(ty) = no},Vto < t (1.8)
is the definition of the conditional distribution function.

If we have to deal with a system that is characterised by a probabilistic combination of states, master
equations are especially helpful. A master equation outlines the continuous time evolution of the prob-
ability of a system to be in each one of the discrete states and generally consists of a set of first-order
differential equations. The following is its the most general form

OcP(n,t|ng, to) = W(vin — v, t)P(n — v, tlng, to) — W(—v|n,t)P(n,tIng, to). (1.9)

W is a non-negative function called “stepping function”. It expresses the probability of a step v, whose
values can be v = £1, and it has the dimension of the inverse of a time, that is: [Wy] =T~

1.2 Polymerisation and polymer dynamics

By establishing contact with queuing theory, we present a general description of the stochastic nature
of the polymerisation process, since a simple idea to provide the so called “diffusion of diffusivities
effects” with a microscopic foundation — which will be analysed in the second part — comes from
polymer physics. In fact, for polymerisation, this peculiar diffusion is connected to the diffusion of the
centre of mass of the macro-molecule.

Polymers are macro-molecules made up by several monomers, that are all held together by covalent
bonds. The simplest model which describes these molecules is the Gaussian chain (see [10] and [4]).
Considering a generic, linear polymer of size N — namely consisting of N = n sub-units — we can
change the length of its chain by adding or deleting monomers at each end.

£ 8o o oo

Figure 1.1: An elementary representation of the deletion of side-monomers for a homopolymer.

This process is governed by association/dissociation constants, ki and k_, which in turn depend on
the chemistry of the environment. The following equation

AN:EAl \:ANil (1.10)

represents a chemical reaction where Ay is a chain of N sub-units. We choose an initial three-units-
polymer (N(t = 0) = ng = 3): this mathematical “shifting” of N is not just a choice dictated by
convenience, but has a physical reason for being; in fact, N = 1,2 would create an asymmetric pro-
cess which we do not like: the addiction or deletion of sub-units during polymerisation should always
include both ends of the macro-molecule.

3These stochastic processes are characterised by discrete random variables: the leap from the state n to a different
state, n’, is instant and happens at a specific time ¢': during all the time interval At = (¢’ — t) the state remains n.



We now immerse it in a thermal, infinite monomer bath at temperature 7. This bath also acts as a
chemical reservoir and is thus characterised by a fixed number monomer concentration c¢. Finally, we
define p := A/u = kyc/k_, that is in “queuing language” the ratio of the “rate of input” A and the “rate
of service”, u.

Polymerisation may be modelled as a Markovian birth-death stochastic process: “Markovian birth-
death” due to the only possibilities for the polymer size N to remain unchanged (N = n) or in-
crease/decrease by one unit (N = n £ 1) whereas “stochastic” for the fact that the there is no way to
determine the exact moment in which two monomers are detached or added to the chain: there is no
determinism, we compute only probabilities. But the Markovian nature of polymerisation implies that
W (v) satisfies

W(ln) =Wi(n) :=A=2kic n>1

W(v|n,t) := W(v|n) = {W(—l]n) =W_(n):=p=2ky n>3

where W, (n)dt represents the probability that a polymer being in the state N(t) = n at time ¢ jumps
in the state with N(¢) = n+1 during the time interval [¢, ¢+ dt); the factor “2” is due to addition/dele-
tion of sub-units to both ends of the chain. Moreover, stepping functions satisfy the physical condition
W, (0) =0, W_(0) = 1, since we accept only non-negative physical states. Finally, there is also the
constraint W_(1) = W_(2) = 0 Vt.

All of this being considered, a master equation can be specifically derived in the case of polymeri-
sation, using A and p (or equivalently, k4 and k_) instead of Wi(n). Let P(n,t) = P(N(t),t) with
N(t) = n, then

P(n,t+ At) = pP(n+ 1,t)At + AP(n — 1,t)At + P(n,t)(1 — AAt — pAt) + o(At),n > 1
P(0,t+ At) = pP(1,t)At + P(0,¢)(1 — AAt — pAt) + o(At),n =1
(1.11)
bringing P(n,t) and P(0,t) to the left, collecting and dividing both members by At¢, Eq. (1.11) can
be written like this

P(n,t + At) — P(n,t) _ P(n,t)u+ P(n —1,t)A — P(n, t)(A + p) + @7” >1

At At
(1.12)
P(0,t + At) — P(0,t) o(t)
=P(l,t)u— PO, ) A+ —,n=1.
) (10— PO.0A+ 47 0
taking lim one obtains the time-derivative of P(n,t) for the left side, considering that @ =0
At—0 At
dP(n,t
gtl’) =uP(n+1,t) + AP(n—1,t) — P(n,t)( A+ p),n > 1
(1.13)
dP(0,t
L(it,) =uP(1,t) — AP(0,t),n =1

In Eq. (1.13) we have implicitly assumed the change of variables as: n — n — 3 in order to maintain
the — mathematically convenient — condition n > 1.

1.2.1 Rouse model for polymer dynamic

Among the variety of models which have been formulated both to describe the Brownian motion of
the centre of mass of polymers immersed in a heat bath and to calculate its dynamical properties, we
choose the so-called Rouse model.

The latter is as simple as possible in order to concentrate on physical concepts and not on mathematical
issues and it is built on a Gaussian? one; moreover, this model relies on the coarse graining of the
polymer chain into subsections that are large enough to show rubber-like elastic behaviour, so the
underlying physics it is quite easy.

4The Gaussian chain is used for the modelling of equilibrium properties of polymers, see [10] for details.
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Figure 1.2: Stylised picture for the Rouse model of a polymer. Source [9].

A polymer immersed in a liquid moves and this motion causes a velocity field to emerge in the liquid,
but to first order this can be neglected: water — or a different solvent — becomes an indifferent ether
that is responsible only for the friction. Also, each bead (which could be either a monomer or a bigger
portion of the chain) will be subjected both to a certain friction and to random forces. Now, let R;
be the position vectors connecting the origin to the n—th monomer. Each monomer interacts with his
“neighbours” via harmonic potential: let b be the rest length of the ideal springs connecting monomers
one to each other. Defining 7, := ﬁn — En_l, it holds true

((ri)?) = b? (1.14)

and the potential energy equals

U(R,) = szkBTZ ( )2. (1.15)

Considering only one bead and keeping all the other fixed, we have a Gaussian equilibrium distribution

for fén
3kpT

202

> ~ ~ 3kpT = -
G(R,) = Cexp (—5 (Rp — Rp_1)? — 5T52(Rn+1 — Rn)2> . (1.16)
Each degree of freedom of monomers contributes to energy with a factor kgT'/2, so in 3D, the Equipar-
titition theorem implies that we would have 3kpT'/2.
At this point, one could write the Langevin equation describing the motion of the bead® [3] or derive
the equation of motion for Rops by integrating

= N-1
dRo 1 -
N 1.1
=N go f (1.17)
where f,, is the statistical force [3], [10]. The result is
- - | .
Roum(t) = Rowm(0) + /0 dr~ zn:fn(T) (1.18)

Bearing in mind that the probability density function of Rcjs is a normal distribution that can be
assumed to be a zero mean one® with variance o2 = 2Dt, one gets the following result

<(ECM() Rem(0 /dT/ dr' (Nan >-<Jb2f:n(r)>>:6DCMt (1.19)

For the diffusion coefficient it holds true that Doy (N) = Do/ (IN)® where Dy is the diffusion coefficient

of each sub-unit and « is a real parameter whose value depends on the chosen polymer model, that is
a =1 for Rouse’s one. From now on, for sake of simplicity, we choose to refer to the  component of
the random vector Reas(t) := (Xoar, You, Zow).

SWe will not use them for this work, so they are not reported here.
In t = 0 the centre of mass of the chain is located on the origin of the coordinate system.



Brownian non-Gaussian polymer diffusion

Brownian yet non Gaussian diffusion is one in which Eq. (1.1) does not hold: this kind of process is
reported in experiments “following” the motion of the position of the centre of mass — Rear — of the
macro-molecule in complex biological contests. The following two sections will draw attention to the
analysis of this peculiar diffusion on the basis of the details which were stressed out in the previous
sections.

2.1 Solution of the master equation

Eq. (1.5) shows that ((Rcas)?) is directly proportional to time ¢ and Deps. Moreover, under over-
damped conditions, it is valid the following®

dRcai(t) = /2D(N)dB(dt) (2.1)

where, as previously seen in section 1.1.1, B(t) is a Brownian motion. Specifically, if a polymer chain
(its specific characteristic have been explained in section 1.2) undergoes a polymerisation process the
size N becomes a random variable that changes over time: N — N(¢) and, consequently, so does
D(N) — D(N(t)). By exploiting the connection with queuing theory, we aim here at finding both
the time-dependent and stationary solutions for Eq.(1.13) that is we compute explicitly the solution
for the probability of the polymer size to be N = ng in the stationary and time-dependent case of the
Markov chain describing the polymerisation process.

Before we start, is relevant to mention that methods that will be exposed here are two out of many: one
could apply different algorithms both for the stationary case (it could be the mathematical induction)
and the time-dependent one (in this case see [5] for examples of other methods).

2.1.1 General approach

Eq.(1.13) is made up by differential-difference equations: differential equations in ¢ and difference ones
in n.

One possibility to manage the differential part is by using the Laplace transform: for this reason, it
is useful to introduce a general notation, pointing out that we will refer to quantities that depend on
the two couples (n, t) and (ng, tg). The initial conditions (ng and ty) will not be made explicit in
equations in order not to complicate notation.

Considering a sequence a, with n € N and a,, € R, the generating function of this sequence has the

following definition?
e}

G(z) := Z(anz") (2.2)
n=0
with z € C. If {a,} is the probability function of a non-negative, discrete random variable N(t),
then G(z) is a probability generating function, that is analytic and converges V |z| < 1. For the
polymerisation process we have

G(z,t) == ZP(n,t)z” (2.3)
n=0

!This form is the 3D one, in section 1.1.1 we also presented its one dimentional, “z component” form.
2Here the notation G(z) is used in a general way, for the definition (and comes from the word “generating”.



it is easy to obtain, for example that

1= (NO(t)) = io:P(n, Hn’ = lim G(2, 1)
n=0

(N () = 3 Pl tyn’ = lim <zaG(z’t)>
n=0

z—1 0z
since repeated differentiation of G(z,t) yields the factorial moments of N(¢). All these relations are
also valid for G*(z) := > ">, P*(n)z" where tlggo P(n,t) := P*(n) is the stationary distribution?.
Finally, we define what follows
o0
G(2,0) = / G (2, 1)t

0

P(n,0) = /00 e %' P(n,t)dt
’ (2.4)
where the tilde indicates the application of the Laplace transform. We make here two assumptions:
e There are initially ¢ monomers;

e P(n,t) is one of bounded exponential growth?.

We now wish to obtain the equation for the time evolution of G(z,t). Let’s start by considering the
left member of the first equation in (1.13), multiply it by 2™ and sum from n =1 to oo

o0

dP(n,t) ,
n=1
To this we add and subtract dP(0,t)/dt:
~dP(n,t) , ~=~dP(n,t) , dP(0,t)
; i nz:% at - it
0G(z,t) dP(0,t)
ot a
= (()Géi’t) +AP(0,1) — uP(1,1). (2.6)

Multiplying the latter once again by z we get

; (Z Wy) _ ZaGé?t) + 2 (AP(0, ) — uP(1,1)). (2.7)

n=1

We want now to rewrite the left hand side of Eq. (2.7) in a new form. Using again Eq. (1.13) we have

i puP(n+1,6)z" + AP(n —1,t)z" — (A + p)P(n,t)z"| . (2.8)

n=1

z

3This definition means also that a different way to express G*(z) is

tlim G(z,t) == G*(2).

4The Laplace Transform of a generic function f(t) is:

f(s):= /000 e T f(t)dt

and a sufficient condition for its existence is that f(¢) has a bounded exponential growth, meaning that there exists
numbers p and v, such that for all ¢ > 0, |f(¢)| < uet.



Let us define A, B and C as the quantities below

o0

> P+ 1,4)2" = P(1,t)z — P(0,t)
n=-—1

= uG(z,t) — pP(1,t)z — pP(0,1),

o0
A= ZuP(n +1,8)2" T =y

n=1

o0 o0
B = Z AP(n —1,t)2" ™t =\ Z P(m,t)zm+2] = \2%G(2,t),in which we define m :=n — 1,
n=1 m=0

Ci==Y (A+mP(n,t):"" = -z [Z(A + ) P(n, t)z" — (A + ) P(0, t)

n=1

n=0

=2(A+ p)P(0,t) — z(A+ u)G(z,t),
so that Eq. (2.8) simplifies to (A+B+C), that equals
A+ B+ C = pG(z,t) — pP(1,t)z — uPo(t) + \22G(2,t) + 2(A + p) P(0,t) — 2(A + u)G(z,t). (2.9)
For the first equation of (1.13) we have obtained (2.7) = (2.8) that is

9G(2, 1)
ot

z + 2 (AP(0,t) — pP(1,t)) = A+ B+ C. (2.10)

Rearranging and simplifying Eq. (2.10) we have

0G(z,t)
ot

z

= G(2,t) [\2® — 2(A + p) + p] + pP(0,1)(1 — 2). (2.11)

Now we compute the roots for the polynomial and rearrange: Az? — z(A 4+ p) 4+ p = (1 — 2) (1 — A2),
so (2.11) becomes
0G(z,t)
ot

Equation (2.12) contains the equation we aimed at the beginning.

z

=(1—2)[(pg—A2)G(z,t) — uP(0,t)]. (2.12)

2.1.2 Steady state behaviour with the generating function method

We want to evaluate now tlim P(n,t) := P*(n). This follows directly from the general approach
—00

presented above: one takes the limit of both sides of (2.12) to get to
0= (u— A2)G*(z) — uP*(0). (2.13)

From (2.13)

_ pPr(0) _ P*(0)
=Xz 1—pz
Since lim G*(z) = 1, we can obtain an expression for P*(0): P*(0) = 1—p, so that G*(z2) =1—p/(1—

G*(2) (2.14)

z—1
pz).
Lastly, applying “backwards” the geometric series formula
G z)= =P —(1—p) ip”z" . (2.15)
(1—pz) =

Remembering the definition of G*(z):
o0 o
> Pr(n)z" = (Zu - p)pnzn> (2.16)
n=0 n=>0

8



we get to the final solution for the stationary case:
P*(n) = U(n)(1 - p)p" (2.17)
note that we replaced the condition (n > 1) by multiplying by U(n), the discrete unit step function.

The sequence P*(n) is a probability distribution only for p < 1, since

oo

D (1= p)p" =00

n=0

if p > 1. The mathematical condition p < 1 is intuitively confirmed: if it weren’t so, the size of the
polymer could grown to excess with time and there would not be a time independent solution.

2.1.3 Transient behaviour

Equation (2.12) contains P(0,t), which makes it unsolvable in a “direct” way: here we exploit the
possibilities of the Laplace transform, applying it on both its sides® to obtain

p (eé(z, 0) — zi)> =(1-2) [(M —A2)G(2,0) — uP(n, 9)} (2.18)

where i is the initial number of monomers; it follows easily that

~ 2 — (1 - 2)P(0,0)
GO = a0 ) -

(2.19)

Before assessing the situation, a brief analysis on the denominator of (2.19), that has two zeroes:

_ AR OF V(A +0)? — 4

2.20
21,2 o) (2.20)
By easy computation, one can show that
(=222 2(A+pu+0) —p) =Mz — 21)(20 — 2) (2.21)
Using the obvious inequality, |2z1]| < |22, together with simple computation one gets that
+A+6
(2’1 + Zg) = Mf, (2’122) = g (2.22)

Since we started, we have obtained a great result that is Eq. (2.19). Now we want to get an explicit
expression for P(0,0) from Eq. (2.19): Rouche’s Theorem is one of great help in this case.

It states “Let f(z) and g(z) be analytic inside a region C' and |g(z)| < |f(z)| in each point on the
boundary of C. Then f(z) and f(z) & ¢g(z) have the same number of zeroes inside C”.

We choose contour C : |z| = 1 that has no self-intersections and identify the functions needed by the
hypotheses f(z) = +2(A + pu+0) and g(z) = —Az? — . So, we consider the region R : |z| < 1 in the
complex plan and check for the validity of assumptions:

/ e O (M) dt = 0G(z,0) — 2'
0 ot

which is proved via integration by parts:

/Ooo o (%) dt = [z 0] - /Ooo(—e)e—“(;(z,t)dt -

0

5This in turn is obtained using

=0—(z)+ /Ooo(e)e*f’tc(z,t)dt =

=0G(z,0) — 2',i is the initial number of monomers.[]



o f(2) =+z(A+ p+0) and g(z) = —Az% — p are holomorphic in R;

o | — 22—y < |2(A+ p+ 0)| in each point of the boundary of R.

6

The first one is easily proved by using the Cauchy—Riemann equations®. The second point requires

different considerations:
9(2)| = — = AZ%| > | = p + AP = p+ Alz[? (2.23)

which, if evaluated in C : |z| = 1 equals p + A. For |f(z)| the same passages are repeated to get
f(Z)=A+p+0.
Now, 0 is a complex number, so it has a real part and an imaginary one. The inequality we wanted
to solve has become

pHA<p+A+0

which holds true if (Re(d) > 0)7. So, Rouche’s Theorem allows us to state that the denominator of
(2.19) has only one zero inside R and, since [21] < |22, this is z1.

Lastly, G(z,0) converges® in R. The denominator of G(z, ) diverges if z = z; but this can be avoided

if the numerator goes to zero: N(z;) = 0; this turns out to be [zi“ — (1= 2)P(0,0) = 0. The
z=z
latter permits us to get 1
N 2t
P0,0) = —L 9.24
OO === 220

Now we go on by searching for an explicit expression of é(z, 0). Putting together Eq. (2.19) with
Eq. (2.25) we get to

i+1 1 zi“
e (=) _ #0-m-0- o 025)
Mz — 2z1)(z2 — 2) Mz —z1)(z2 — 2)(1 — 21)
The right member can be expressed in a different way which will serve us later, that is
2t B (1- z)z?’l B 1 [ 21 B (1—214+21— z)zi’q] B
Mz—21)(z2—2) Mz—2z1)(22—2)1—21) Az2—2) [(z—21) (z—21)(1 — 2z1)
_ 1 [ 2t B Pk Pk }
Mze—2) |(z—21) (z—2z1) (1—=2)
(2.26)

Now (2.26) can be written as

1 i (2/2) = A } - % 1 ) [zi (1 — (zl/z)i“) = A ]

Mzz —2) [2(1—21/2) 2(1—2/2) (1—2) 29— 2 1—1(z1/2) 1—2)

where we have recognised the sum of the first i + 1 terms of a geometric series (|z1/z| < 1). Finally,
we get to

~ 1 . i A Zi—'_l
G(z,0) = —— ZZZle +— . 2.27
6The Cauchy-Riemann theorem states that a function of z € C, f(z) = u(zx) 4 iv(y) is holomorphic if and only if the
equations g—’; = g—z and g—z = —g—; are satisfied; if one writes z as z = x 4 iy, where ¢ is the imaginary unit, it is trivial

to verify that these equations hold true both for f(z) and g(z).
"A complex number @ is positive by definition if fRe(9) > 0.
81n fact, one has:

G(z,0) := / e "Gz, t)dt = / e ZP(n,t)zndt = Z z”/ e ' P(n, t)dt = Zz"ﬁ(n, 0)
0 0 n=0 n=0 0 n=0

here >~ 2" P(n,0) converges if P(n,t) is characterised by bounded exponential growth; we assumed that P(n,t) was
one of bounded exponential growth and found now that this is consistent with what we obtained. Moreover, |z| < 1
ensures the convergence of the geometric-series component.
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We finish by doing a two-stage inversion, so that we have ﬁ(n, 0) and then we can get to P(n,t). In
fact, one notices that

G(z,0) := /0 e "G (z, t)dt = /0 e 0t Z P(n,t)z"dt = Z z"/o e "' P(n,t)dt = Z Z"P(n,0)
n=0 n=0 n=0

(2.28)
and so, from the equality Eq. (2.27) = Eq. (2.28), that is
1 . i & Z’i-i—]. o »
— |2 (n/2)f+ =Y z"P(n,0)
Az2 — 2) kz—o (1—2) nz;)
some standard calculation exploiting relations between z; and zo of Eq. (2.22) leads to:
~ 1] . . . . e ,
P(n,0) = 5 [ W0 + 24720 4k T o) 0 YD ()| (229)
J=n+1+2

The final step is to invert (2.29). We get through this apparently-hard-analytic computation thank to:

1. The following relation for the inverse Laplace Transform of 25"

——1"1 —(A+p)t ()2 (L (2 ut
~ e n)-(p n
] - (- (" 1250, 00)
2. the Bessel differential equation (|2],[8])
d*u du
2 2 _ 2\ _
o +Zdz + (2*—=n")u=0,n>0 (2.31)

has a set of solution, J,(z), called Bessel function of the first kind of order n. The values assumed
on the imaginary axis z = iy by J,, in the case J,(z) define a new family of real-valued functions,
I,(y) = (:7™)Jn(iy), namely the modified Bessel function of order n. These have a power series
representation

o (y/2)m
In(y) = k;) e (2.32)

Moreover, a generating function of I,(y) is given by a specific Laurent series. Some useful
properties are

o I,(y) = I_,(y) for all non negative integers n;

e 1,(0) = dpp, for y = 0 where dgy, is the Kronecker delta;

2
o I 1(y) — Int1(y) = ?nln(y), the recurrence relation.

Hence: L -
P(n,tlno) = Un)U(ng) - ("M |p" 2 " E+p 2 F+(1-p)p"G (2.33)
where
E = I, _»,(2ut\/p) (2.34)
F = Inino+1(20t\/p) (2.35)
Gi= S () (Ln(2uty/p) (2.36)
m=n-+ng+2

The behaviour of I,, as t — oo proves the fact that tlim (2.33) = P*(n) and this confirms the correct-
—00
ness of the result obtained in (2.17).
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2.1.4 Integral representation

We report now the main result of [1].
Eq. (2.33) could be even presented in a more versatile form which makes use of integrals, “leaving” the
transform space. The solution (see [1] for details) is

n—ng 21
Prjno (1) = U(n)0nng — U(n)U(n0) (Zp 2 /0 d9f(9)> (2.37)

where

f(0) = [sin (nof) — /psin ((no + 1)(0))] - [sin (nh) — /psin ((n + 1)(8))] -

Wl(1+ p) — 2B cos (0)]
(2.38)

| — e—ntl(+)—2y/peos (en]

Figure 2.1: This plot has been taken from Morse’s article of 1955 [1]. In this picture, ng :== N = (0 V 4) and
n = 0. Arrows point at the stationary solution, that is expressed by Eq. (2.17).

P(n,tIng)
0.8

0.6

0.4+

0.2=

o s 10 15 20 2"

Figure 2.2: This image has been obtained using Eq. (2.33) and contains all four cases covered by figure 2.1:
the same two values for p, 0.49 and 0.81 have been used.

The green and the red curves, respectively P,—.49(0,¢[0) and P,—9.49(0,t|4), tend to the equilibrium solution
in light blue, that is P*(0) = (1 — 0.49)(0.49)° = 0.51.

The purple and the dark orange functions are P,—¢.1(0,¢|0) and P,=.s1(0,?/4) and tend to the stationary
solution in yellow, which equals to P*(0) = (1 —0.81)(0.81)° = 0.19.

To be exact, n = 0 is not possible for a polymer, since it has no sense from a physical point of view:
we consider images 2.1 and 2.2 as a mathematical, graphical proof of the equivalence between (2.33)
and (2.37).
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We made a plot of Eq. (2.33): we set n =4, ng = 3 and p = 0.49. We also used the fact that A\ = pp,
so that A + u = (u(1 + p)). So the function resulted in:

P(4,4]3) = U)U(3)-(e 10 | pb (1,(2ut/5)) + Is (20t /5) + (1 — p)p* (Z (5™/?) - (Im(2utﬁ))>]

m=9

P(n.tino)
0.14;
0.12;
0.10;
o.osf—
0.06,

0.04

=

0.02}
(

I I I 1 I I I 1 I I I 1 I I I 1 I I I 1 I I I 1 I I I 1 I I /Jt
0 2 4 6 8 10 12 14

Figure 2.3: Example plot that proves tlim (2.33) = P*(n). Here n = 4, np = 3 and p = 0.49. The yellow line is
— 00

the non-equilibrium curve, whereas the blue is the stationary solution. Graphically, the asymptotic behaviour

is evident for ut — oo.
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2.2 Diffusion of diffusivities effects

As previously seen, since the polymerisation process is a stochastic one, it is clear that during it its
size N becomes a random variable that changes over time. This entails the diffusion coefficient D
being a random variable too, due to its dependence on N (t). In section 1.1.1 we have found that the
probability density function of X¢cps is a normal distribution that can be assumed to be a zero mean
one with variance o2 = 2Dt.

However, the variance itself should be treated as a random variable whenever short times are concerned.
This results in a specific probability density function for the position of the centre of mass, that is
actually a weighted mean of Gaussian distributions. The following formula shows clearly the last
concept: a mean over all normal-distribution-determined positions with reference to the probability
density function of the variance o

22

T 952
e QUi

PXcom (z) = Zpa(gi) . (2.39)

2
2mo}

With Eq. (2.39), we clearly see that if the probability density function p,(0;) is a Kronecker delta, the
distribution along the x axis for the position of the centre of mass remains Gaussian.

In this case, the anomalous-to-Gaussian shift could be linked to temporal fluctuations of D. As a
consequence,

models in which the diffusion varies with time by obeying a stochastic equation have been
introduced and solved both analytically than numerically. These models are referred in the
literature as “diffusing diffusivity®. [7]

Starting from Eq. (2.1), one could rewrite its x component as
Xea(t+dt) = Xea(t) + /2D(6)N(0, 1)Vdt (2.40)

and, if N were fixed, assuming x = 0 at t = 0 we would have

22

¢~ DN
PXxen (T, t[N) = m

However, N does not remain constant over time. The diffusing path is then reparametrised using a
new coordinate related to a different and convenient stochastic process:

(2.41)

t
S(t) :== / dt'[2D(N(t))] (2.42)
0
with s > 0 and, directly from (2.42)
ds = 2[D(N(t))]dt. (2.43)
We thus have that the x component of Eq.(2.1) and Eq. (2.40) become

dXcn(s) = dBy (ds) (2.44)

Xom(s+ds) = Xem(s) +N(0,1)Vds. (2.45)
S(t) is nothing but a stochastic process, so we have the subordination formula:

a2
2s

DXy (1) = /0 " 05 [ (2. Hls)p5 (5, £)] = /0 s sl

%In this case the diffusion coefficient diffuses itself: this is the reason why this phenomenon is referred to as “diffusing
diffusivity”.
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where we exploited the formula for the conditional probability'®. For a polymer of size N = ng at time

to more precisely we get
2

o [
x,tng) = ds s, tln 2.46
prea(etino) = [ ds | Sps(s.tino) (2.40)

This result shows us expressly the non-Gaussian nature of the CM diffusion. However, that is not all:
from Eq. (2.46) we now note that

2

oo oo 6_%
dx [wk x, t|n } :/ dx xk/ ds s, tln =
pXCM( ’ 0) 0 \/%pS( | 0)

[e.9]

(XEar (B)lno]) = /

—00 — 00

2
9] 3] ef'g—s 9]
—/ dsps(s,t]ng)/ dr |2F | — —/ dsps(s,t]ng)((Xk»N(O’s) (2.47)
0 0

o 27s

Now we perform a change of variables such that: 2’ = z/4/s. It follows that dx = (s%)d:v’ (with both
the lower and the upper limit of the dz integral remaining unchanged) one gets
) 00 o) /Sk/2 i (2')2
(Cbar(Olmo)) = [ dsps(s,tIN) [ da' = e =
M 0 —0o0 27

- / " dsps (5. 18) (572X o)) = (X o (15772) (2.48)
0

where ((X k)>N(071) is the zero-mean, unit-variance Gaussian moment of order k.

2.2.1 The kurtosis

The introduction of the kurtosis, &, is the key to analyse and quantify the anomalous (equivalently, non-
Gaussian) behaviour of those experimental data which show strong evidence of a significant deviation
from the normal distribution of the probability density function if in presence of a complex environment
(such as the polymerisation one). kx = 3 only for Gaussian variables.

The kurtosis, k, is defined as follows:

oo oo A=) .19

2
(X = (X))?])
The concept and the consequent definition of kurtosis is of general validity in statistics and probability
theory and it is strongly connected to the already-addressed subordination of stochastic processes. The
subordination process involves a subordinant one, whose statistics directly influences the subordinated
(here the latter is the motion of the centre of mass). Each of these two processes follows its own

distribution, whose moments determine the statistics.
In this case, the equation describing the subordination process holds for at least two reasons:

e The diffusion coefficient depends on the size of the polymer N (t) (that is, in fact, due to Rouse’s
model);

e N(t) itself is a stochastic process.

From the subordination formula — Eq.(2.46) — thanks to what we saw in Eq.(2.48), the latter expression
simplifies to:

(S(t)Ino)
((S(#)Ino))?
One could investigate the behaviour of £ when the probability density function coincides either with
the stationary solution for P(n,t|ng) or with the non-equilibrium solution.

Kx =3 (2.50)

0That is P(B|A) = P(A, B)/P(A).
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From Eq.(2.50) we deduce that, given ng, we need to calculate (S(t)|ng) and (S%(t)|ng) if we want to
study the kurtosis of Xcoay.

Calculation of (S(t)|ng):
Here there are a few simple steps:

o0

(#)[ng) = [/ it (N ]no} /dt (2D(N(t)[ng)) = 2(5203)/;&'19(%#;%). (2.51)

Calculation of and (S%(t)|no):
This computation requires many more passages (and some will be omitted in order not to overshadow
the basic subject with mathematical tricks)

(S2(8)no) = <[ DN Ino) [ dt"D(N(t">|no>]> _
0 0
t t
- / dt / dt" ([D(N () [no) D(N (") |no)]) =
0 0
/

t t (o0} o
2Dy 2Dy
= dt’/ dt” P/ t';n" t"ng) =
0 7;) (n' +3) 7;0 (n” +3)
oo
2D 2D t t
— Z ( : 0 - 0 >/ dt' dt"P(n/,t';n" t"|ng).
n/7n//|n0 (n + 3) (n + 3) 0 0
Fort" >t >0
) t t
2D 2D
_ Z ( / 0 - 0 )/ dt,/ dt”P(n',t’;n”,t"\no) —
n'.n"|ng (n + 3) (TL + 3) 0 0
0 t !’ t t’
2D 2D
= Z ( . 0 = 0 ) / dt”/ dt’P(n’,t’;n”,t”\no)Jr/ dt’/ dt" P(n',t';n" "|no)
o (n'+3) (n” +3) 0 0 0 0

Referring to

t tl/
*::/ dt”/ dt' P(n/,t'sn”  t"|ng)
0 0

t t
**::/ dt’/ dt" P(n',¢';n"  t"|ng)
0 0

and applying to both * and *x Bayes’ theorem and the Markov-memoryless property!!, we see that
actually x and xx are the same integral, hence

and to

(S2(t)) = 2 g; ( (75203) (n?,lf?))) [ /0 " /0 dt’P(n’,t’;n”,t”)] . (2.52)

"That is the equation: P(n/,t';n”,t"|no) = P(n/,t';n”,t").
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Conclusions and Outlook

To sum up, we have presented here a microscopic model for Brownian yet non-Gaussian diffusion:
this depicts the diffusion dynamics of the centre of mass of a polymer molecule undergoing a specific
polymerisation process.

As for the initial part of section 2, we solved the master equation in both the stationary and non-
equilibrium cases. In fact, equations (2.17) and (2.33) together constitute the solution of Eq. (1.13),
being the key result of this work. Eq. (2.17) and Eq. (2.33) are self-consistent, since tllrcr)lo(2.33) =
(2.17). In particular, the transient solution is often involved in further applications. One first example
could be the evaluation of the auto-correlation coefficient (see [1] and [11]); moreover, its integral
rewriting, combined with the identity

2T
TOnnoU(no — 1) = / df sin (no0) sin (nh)
0

where U (n) is the discrete unit step function, shall be used to provide a convenient short-time expansion
to apply to calculations or approximations in a much deeper study of kurtosis (some of these have been
partially treated in [11]).

Taking into account the “diffusion diffusivity”, what has been analytically computed in 2.2.1 offers
several developments, since both (S(t)|ng) and (S?(t)|ng) could be evaluated by means of the transient
solution of the master equation (more likely in its integral rewriting); this may lead to an exact
expression for x, which might be studied with classic mathematical analysis tools; for example, one
could check its possible convergence or divergence, expecting it not to have a monotonic trend but,
instead, to have a stationary point at some time.

Another possible aspect would be the study of the dynamics of the centre of mass of the polymer to
varying of the initial conditions, so that P(n,0|ng) is either a Kroneker delta or coincides with the
stationary solution of Eq. (2.17).

Lastly, a possible and interesting evolution of what was made with queuing theory would be the search
for complex polymer topologies, such as branched polymers (as has been proposed in [11]).
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