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Abstract

The cosmological standard model is built upon the theory of General Relativity and the two symmetry
assumptions that the Universe appears on average as homogeneous and isotropic to freely falling
observers. This model is remarkably successful, but some of its open questions suggest that General
Relativity might be replaced by a more general theory. The success of the standard model, however,
should imply that such a theory should have cosmological consequences not far from those of General
Relativity.
With the mean-field approach to the gravitational interaction between dark-matter particles in the
kinetic field theory (KFT) of cosmic structure formation, it has become possible to study the statistical
properties of non-linear cosmic structures analytically. Specifically, the non-linear density-fluctuaton
power spectrum predicted by KFT depends on the cosmological background model only via the cosmic
expansion function, and via a possible time dependence of the gravitational coupling. The analytic
form of the KFT approach allows taking functional derivatives of the non-linear power spectrum with
respect to the background functions, and thus to functionally Taylor-expand the non-linear density-
fluctuation power spectrum around the expectation from General Relativity. In the proposed Master’s
thesis, this approach will be taken to study the generic, first-order response of the non-linear power
spectrum not to specific, but to all generalisations of General Relativity whose cosmological models
deviate little from the standard model.
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Introduction

This master thesis work will be organised as follows. The first three chapters make up an introduction
into the topic, which is aimed to provide the mathematical and conceptual fundamentals for the later
discussion and to motivate the importance to carry out a research in this field.
In particular, the first chapter will be a standard introduction to cosmic structure formation and to
the standard model of cosmology. The second chapter, on the other hand, will provide an overview of
possible ways to overcome such a model. As we will see, the fundamental ingredient of a cosmological
model is the underlying theory of gravity and for this reason, several alternatives to General Relativity
have been developed in recent research works. These theories need of course to be tested and the aim
of this thesis is to present a new method for this purpose.
The mathematical framework in which this method will be developed is the Kinetic Field Theory
(KFT), a statistical field theory for deterministic particle ensembles, which can successfully be applied
to cosmic structure formation. The main concepts of this formalism will be illustrated in chapter three.
We will see that a very important result of KFT is the possibility of computing the non-linear evolution
of the matter power spectrum analytically.
Chapter four and five will include the topics on which I actually worked. The purpose is to develop
a general method for including in the power spectrum the alternative gravity theories and this is
covered in the fourth chapter. The fundamental hypothesis is that possible observable deviations of
an alternative theory of gravity from General Relativity must be small (as suggested by observations).
This allows a first order Taylor expansion of the non-linear power spectrum around the GR value of
two functions: the cosmic expansion function and the gravitational coupling.
Finally, in the fifth chapter some results from specific examples of alternative gravity are presented
and discussed.
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Chapter 1

Cosmic structure formation

1.1 Our universe

Modern cosmology is founded on the so called Cosmological Principle, which states that, on large
enough scales, our universe is spatially homogeneous and isotropic.
The claim of isotropy stems from astronomical observations of large scale structures and, primarily,
of the Cosmic Microwave Background (CMB).
Isotropy, combined with the copernican principle, which expects no point of space to be special or
preferred, suggest then homogeneity.
Indeed, modern observations hint that the scale at which the universe starts to look homogeneous and
isotropic is approximately ∼ 100Mpc.
As it is clear from our own experience, as we follow a single region of universe to smaller scales
we observe matter organizing in complex structures, from the cosmic web, down to galaxy clusters,
galaxies, stars.

Figure 1.1: The cosmic web. Credits: Millenium simulation project

Hence, the cosmological principle can be exploited to describe the universe as a whole. Within the
framework of General Relativity, homogeneity and isotropy allow an elegant description of spacetime
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10 CHAPTER 1. COSMIC STRUCTURE FORMATION

structure, through the so called Friedman-Lemaitre-Robertson-Walker metric [28]:

ds2 = gµν(x)dxµdxν = −c2dt2 +R2(t)γij(x
i)dxidxj (1.1)

with the coordinate set {t, χ, θ, φ}.
The spatial part reads:

γij(x
i)dxidxj =

dχ2

1−Kχ2
+ χ2(dθ2 + sin2 θdφ2) (1.2)

The first coordinate is the cosmic time t, the function R(t) the cosmic world radius, while χ, θ and φ
are the spherical comoving spatial coordinates.
With a suitable normalization, the curvature parameter K can be always reduced to one of the values
(−1, 0,+1). The case K = −1 and K = +1 represent respectively a negatively curved (hyperbolic)
spacetime and a positively curved (spherical) one. The case K = 0, on the other hand, represents a
flat spacetime.
The FLRW metric can be rearranged in the following way, collecting an overall adimensional scale
factor a(t) = R(t)/R0:

ds2 = a2(t)
[
− dτ2 + dr2 +R2

0f
2
K(r/R0)(dθ2 + sin2 θdφ2)

]
(1.3)

with the conformal time

dτ =
c

a(t)
dt (1.4)

and the curvature function

fK(r/R0) =


sin(r/R0) if K = +1

r/R0 if K = 0

sinh(r/R0) if K = −1

(1.5)

As we implicitly assumed so far, and as it is evident from observations, the universe is not static,
but it actually expands. The equations which govern the evolution of the universe, can be coherently
derived in the framework of General Relativity, namely from the Einstein equations:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (1.6)

We defined the Ricci tensor Rµν as the contraction of the Riemann tensor Rµν = Rαµαν , which reads

Rρµσν = ∂σΓρµν − ∂νΓρµρ + ΓρασΓαµν − ΓρανΓαµσ (1.7)

The object Γ is usually called Christoffel symbol or Levi-Civita connection. It is a combination of first
derivatives of the metric and cannot be considered a tensor due to its non-covariant transformation
rule under a diffeomorphism acting on coordinates. The complete expression is

Γαµν =
1

2
gαβ
(
∂µgνβ + ∂νgβµ − ∂βgµν

)
(1.8)

The scalar R is usually called Ricci scalar and can be computed as the trace of the Ricci tensor,
namely R = gµνRµν .
The so called Dark Energy, which produces the expansion of the universe, is effectively included in
equation (1.6) through the cosmological constant Λ.
The energy-momentum tensor Tµν on the right-hand side represents the matter-energy content of the
universe and we can model it with the ideal fluid form

Tµν =

(
ρ+

p

c2

)
uµuν + pgµν (1.9)
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where uµ is the fluid four-velocity, while ρ and p are, respectively, energy density and pressure.
Furthermore, the energy momentum-tensor must obey the conservation law

∇µTµν = ∂µT
µν + ΓµµαT

αν + ΓνµαT
µα = 0 (1.10)

where ∇µ is the covariant derivative.
Equation (1.6) and (1.10), applied to the FLRW metric, yield respectively, the Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
+

Λc2

3

(1.11)

and the energy density evolution equation

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
(1.12)

Note that equation (1.12) holds for every species individually. Therefore, it is important to specify
the different types of matter-energy that populate the universe. In general it is possible to express the
equation of state in the simple barotropic form

p = wc2ρ. (1.13)

The equation of state parameter w is ∼ 0 for non-relativistic matter (usually addressed in cosmology as
dust), while it is ∼ 1/3 for extremely relativistic particles like photons. Note that also the cosmological
constant produces energy density and negative pressure, with an equation of state given by w = −1.
For a species i with a generic equation of state of the form (1.13), equation (1.12) is solved by

ρi(t) ∝ a−3(1+wi), (1.14)

while the Friedman equation gives

a(t) ∝ t
2

3(1+w) (1.15)

and the Hubble parameter

H(t) =
ȧ

a
=

2

3(1 + w)t
. (1.16)

Considering a flat universe in which only Dark Energy is present, one obtains the constant H ∝
√

Λ,
and the exponential expansion

a(t) ∝ eHt. (1.17)

This case is usually addressed as De Sitter model and it is very important in the study of inflation.
In order to characterise cosmological models, it is convenient to define for the species i the density
parameter

Ωi =
ρi
ρc

(1.18)

with ρc = 3H2/8πG critical density.
In terms of density parameters, the Friedman equation can be rewritten as∑

i

Ωi −
Kc2

a2
=
∑
i

Ωi + ΩK = 1 (1.19)

with the definition of the curvature parameter ΩK , which behaves like an energy density contribution
with equation of state parameter w = −1/3.
It is worth to stress that the sign of the curvature parameter cannot change during the history of the
universe, hence, the corresponding parameter will remain as well positive, negative or null, according
with the initial conditions.
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The standard model of cosmology is usually called ΛCDM since it includes the cosmological constant
Λ as source of Dark Energy and the so called Cold Dark Matter. This latter constituent is represented
by an unknown form of non-baryonic matter which does not feel the electromagnetic interaction and
which is non-relativistic (cold) during the most of universe thermal history.
During the evolution of the universe different epochs can be distinguished in which the contribution
from a certain species dominates among all, as each one evolves with a different scaling according with
its equation of state.
The density parameters corresponding to different constituents today in the ΛCDM model can be
measured using data from CMB, supernovae Ia and baryonic acoustic oscillations (BAO).
The values are approximatively (see [2]):

Non-relat. matter: Ωm,0 = Ωbaryon,0 + Ωdm,0 ≈ 0.3

Dark energy: ΩΛ,0 ≈ 0.7

Relativistic species: Ωr,0 ≈ 10−5

(1.20)

while the curvature parameter has been constrained to be |ΩK | < 10−2. It is clear that today we
observe a universe which is strongly Dark Energy-dominated.

1.2 Newtonian perturbation theory

As already mentioned, on scales < 100Mpc the matter in the universe appears finely organized in
gravitational structures. However, we know that in the early stages, our universe was homogeneous
even on small scales, up to very tiny fluctuations. The structures that we observe today, must be,
therefore, the effect of a process of evolution led by gravity, of these primordial perturbations. This
evolution initially proceeds in a linear regime, in which perturbations can be described by small
variations of some physical quantities on top of a stationary background.
In such regime, newtonian hydrodynamics provides a pretty good description, even though a more
rigorous treatment would of course require General Relativity and the employment of Boltzmann
equation.
This regime breaks down when perturbations start to grow non-linearly and effects like shell-crossing
start to be effective.
Effects of relativistic free streaming of particles, which can also play a role in structure formation, are
not included in this classical treatment.
The system of equations is constituted by continuity, Euler and Poisson equation:

∂tρ+∇r · (ρ~v) = 0

∂t~v + (~v · ∇r)~v +
∇rp
ρ

+∇rΦ = 0

∇2
rΦ = 4πGρ

(1.21)

Let’s now introduce the perturbations:

ρ = ρ0 + δρ , p = p0 + δp , ~v = ~v0 + δ~v , Φ = Φ0 + φ (1.22)

Observe that, assuming adiabaticity, δp = c2
Sδρ, where cS is the sound speed, which depends on the

equation of state.
Let’s now pass to the comoving coordinate system:

~r(t) = a(t)~x , ∇r =
1

a(t)
∇x , ∂t|r = ∂t|x −

1

a(t)
~v0 · ∇x (1.23)

Furthermore, it is convenient to pass to Fourier space. Consider as an example the density perturbation
expansion in Fourier modes:

δρ(~x, t) =

∫
d3k

(2π)3
ei~x·

~kδρ(~k, t) (1.24)
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We will indicate the Fourier transform with the same notation, just as a function of wave vector
instead of coordinates.
The other relevant quantities can be expanded analogously.
The system now reads:

∂tδρ+ 3Hδρ+
iρ0

a
~k · δ~v = 0

∂tδ~v +Hδ~v +
i~k

aρ0
c2
Sδρ+

i~k

a
φ = 0

k2φ+ 4πGa2δρ = 0

(1.25)

Consider first the so called vortical modes, for which ~k · δ~v = 0.
Assuming δρ = φ = 0, Euler equation reduces to

∂tδ~v +Hδ~v = 0 (1.26)

which is solved by v ∝ a−1. These modes are rapidly suppressed as the universe expands and the
cosmic fluid becomes quickly nearly irrotational.
Consider now the adiabatic modes. From now on we will use the notation ρ̄ = ρ0. It is convenient to
define the so called density contrast

δ(~k, t) =
ρ(~k, t)− ρ̄(t)

ρ̄(t)
(1.27)

The continuity equation can be rewritten as

∂tδ +
i

a
~k · δ~v = 0 (1.28)

Differentiating it with respect to time and substituting ∂tδv from Euler and δv from (1.28) we obtain

δ̈ + 2Hδ̇ +

(
c2
Sk

2

a2
− 4πGρ̄

)
δ = 0 (1.29)

According to Jeans criterion, only perturbations with larger wavelenght compared to the Jeans lenght
can grow. Mathematically:

λ =
2πa

k
> λJ = cS

√
π

Gρ̄
(1.30)

Since the Jeans wavelenght is directly proportional to the speed of sound, the above condition can be
fulfilled more easily if the pressure of the fluid is tiny with respect to the energy density.
Considering only modes with wavelenght which are much larger compared to λJ , we can simplify
equation (1.29) to

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0 (1.31)

that is generally solved by:

δ(~k, t) = δ+(~k)D+(t) + δ−(~k)D−(t). (1.32)

The function D+(t) is called cosmic growth factor, and will be fundamental for our later discussion.
It is important to stress that structure formation is mainly efficient in the matter-dominated epoch,
namely in the stage of universe history in which the larger fraction of energy density is represented
by the contribution of non-relativistic matter. For this reason, from now on we will assume Ωm = 1.
This model, namely a flat universe in which only matter is present, is addressed as Einstein-de Sitter
universe (mind the difference from de Sitter model, in which Dark Energy is the only content).
In such model the cosmic growth factor scales like

D+(t) ∝ a(t) ∝ t2/3. (1.33)
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Let’s now rearrange a bit equation (1.31), passing from time variable to scale factor:

δ′′ +

(
3

a
+
E′(a)

E(a)

)
δ′ − 3Ωm

2a2
δ = 0 (1.34)

Note that we indicated with ′ the derivative with respect to a.
We also introduced the cosmic expansion function E(a) = H(t)/H0.
It can be expressed from the Friedmann equation in terms of the density parameters observed today,
with their proper scaling:

E(a) =

√∑
i

Ωi,0a−3(1+wi) + ΩKa−2 =

=
√

Ωm,0a−3 + Ωr,0a−4 + ΩΛ,0 + ΩKa−2.

(1.35)

Using the Ansatz from the first term of (1.32), we have, for a given wave number, that δ+ is constant
with time, and therefore with the scale factor. Thus, we can plug the Ansatz inside (1.34) and obtain
a second order differential equation for D+(a):

D′′+(a) +

(
3

a
+
E′(a)

E(a)

)
D′+(a)− 3Ωm

2a2
D+(a) = 0. (1.36)

This equation will be fundamental later, when we will deal with functional differentiation of the cosmic
growth factor in order to study its variation with respect to some parameters.

1.3 Statistical tools

The density contrast δ can be described as a random field. It is reasonable to assume, that it is
actually a gaussian random field with zero mean. However, some deviation from gaussianity could be
present in the distribution of δ due to primordial mechanisms like inflation or topological defects and
they could have, for instance, some observable effects on CMB and clusters mass function (see [39]).
Nevertheless, observations constrain these non-gaussianities to be small enough to be safely neglected
for our purposes.
The simplest statistical feature that characterises a random field is the two-point correlation function

ξδ(~x, ~x
′) = 〈δ(~x)δ(~x′)〉 (1.37)

where we indicated with 〈·〉 the expectation value.
Thanks to homogeneity and isotropy, we claim that ξ only depends on the modulus r = |~x− ~x′|.
The two-point function can be expressed through its spectral decomposition in Fourier space, by

〈δ(~k)δ∗(~k′)〉 = (2π)3δD(~k − ~k′)Pδ(~k) (1.38)

where the sign ∗ indicates the complex conujugate.
The above relation defines the density fluctuation power spectrum Pδ which is an extremely efficient
tool in theoretical cosmology.
Due to the fact that ξ is real, we have Pδ(~k) = P ∗δ (−~k).
Furthermore, thanks to isotropy the power spectrum only depends on the wave vector modulus, namely
Pδ(~k) = Pδ(k).
The two-point correlation function can be expressed in terms of Pδ as

ξδ(r) =
1

(2π)3

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞
0

dk k2Pδ(k)eikr cos θ

=
1

2π2

∫ ∞
0

dk k2Pδ(k)j0(kr)

(1.39)
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where j0(y) = sin y/y is a spherical Bessel function.
Using again the Ansatz from (1.32) it is easy to show that in linear regime, the power spectrum evolves
according with

P linδ (k, t) =

(
D+(t)

D
(i)
+

)2

P
(i)
δ (k). (1.40)

This regime breaks down when δ ∼ 1, i.e. when the amplitude of density perturbation starts to be
comparable to the background values. At that point, the so called non-linear evolution sets in and
perturbation theory cannot be employed anymore.
Non-linear structure formation is usually investigated by means of numerical N-body simulations,
which yield excellent result, but do not provide an actual theoretical picture of the physics behind
them.
However, as we will see in chapter 3, the recently developed formalism of Kinetic Field Theory can
describe theoretically the non-linearly evolved density power spectrum, within some approximations.
This quick discussion concludes the first chapter, in which a brief overview of structure formation in
cosmology was given. In the next chapters we will widely employ the tools developed so far.
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Chapter 2

Gravity theories

2.1 General Relativity and beyond

In the previous chapter we introduced the standard model of cosmology, usually addressed as ΛCDM .
The two core pillars of this model are the cosmological principle and General Relativity. Indeed, gravity
is the one among the four fundamental interactions which most affects phenomena at cosmological
scales and therefore, the theory that we employ to describe it is an important discriminant between
different models.
General Relativity is nowadays universally accepted for the description of gravity at intermediate
scales, as it is remarkably constrained by the most of the experimental tests (even though some small
discrepancies have been found also in cosmological observations, see [23]). However, there are two
main theoretical puzzles that could conceal some general gaps within the theory.
The first problem is the quantization of gravity, which becomes necessary at Planck scale and above
and which is probably the most involved dilemma in theoretical physics. The issue arises from the
failure of the canonical quantization procedure for fields, as the underlying theory of gravity is not
renormalizable and can only hold effectively up to a certain energy scale.
The second one regards the cosmological constant. In fact, all the theoretical attempts of renormalization
led to a zero-point energy which does not agree with observations [31].
For these reasons, several alternative theories of gravity have been proposed in literature and our aim
is now to provide a brief overview.
In the previous chapter we introduced some mathematical objects from General Relativity and the
Einstein Equation, without any motivation or derivation. It is worth, then, to go a bit further in the
key concepts of this theory in order to identify the points in which generalisations can be grafted.
From a physical point of view, General Relativity is built upon the equivalence principle. For a
detailed discussion of the different statements see Carrol’s book [12] or [40] (the latter reference is
more focused on generalizations). The stricter formulation, however, is known as Strong Equivalence
Principle (SEP). This statement claims that the result of a local test on gravity is independent of
the frame and uniquely leads to General Relativity. In particular, to build an alternative theory of
gravity, a relaxation of SEP is, at least, necessary.
The (burdensome) mathematical implementation of the physical insight of Equivalence Principle leads
eventually to all the astonishing quantitative predictions of General Relativity. Let’s go more in depth
in the fundamental concepts.
Gravity can be viewed through different perspectives. One possibility is to proceed with a geometric
interpretation. This is the way which Einstein chose, namely to represent space time as a (Pseudo-
Riemannian) differentiable manifold. In particular, General Relativity describes gravity as the curvature
on this manifold, through the Riemann tensor, that we have already introduced. Actually, curvature
is not the only geometrical object which can be employed to model gravity, but it can be shown that
torsion and non-metricity (scheme in figure (2.1)) lead to equivalent equation of motion (Einstein
Equation) up to boundary terms (see [23] for a thorough discussion about this topic).
However, in modern theoretical physics it is customary to prefer the interpretation of field theory. In
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Figure 2.1: Equivalent geometric interpretations of gravity in terms of different mathematical objects. Standard
GR based on curvature, Teleparallel Equivalent of GR based on torsion and Coincident GR based on non-
metricity. Image from [23]

this picture, gravity, analogously to other fundamental interactions, is conveyed by a mediator, which
is associated to a field with certain transformation properties.
Indeed, the requirement of a consistent theory for a Lorentz-invariant spin-2 mediator, which correspond
to the metric tensor gµν , unambiguously leads to General Relativity, while the introduction of additional
fields set up an alternative theory of gravity.
This unicity is stated by Lovelock’s theorem. It claims that GR is the only possible theory arising from
an action which just contains the metric tensor and its first and second derivatives in four dimensions.
This action, with the cosmological constant, reads:

S =
M2
p

2

∫
d4x
√
−g
(
R− 2Λ

)
+ Sm = SEH + Sm (2.1)

We introduced the reduced Planck mass M2
p = ~c/8πG, the determinant of the metric g and the Ricci

scalar R.
The first term (without Λ) is called Einstein-Hilbert action and only regards gravity, while Sm is the
action associated to the matter content. The extremization of the action varying gµν leads to the
Einstein Equation. In particular, the variation of the Einstein Hilbert action leads to the Einstein
tensor

Gµν = Rµν −
1

2
Rgµν (2.2)

while the variation of Sm produces the energy-momentum tensor

Tµν =
−2√
−g

δSm
δgµν

. (2.3)

In the realm of geometric interpretation, one can try to extend General Relativity substituting to
the Ricci scalar some function f(R) in the Einstein-Hilbert action. The same procedure holds for
equivalent geometrical formulations where other scalars constructed from torsion or non-metricity
replace R.

On the other hand, in the frame of field theory, assuming locality, unitarity and local Lorentz
invariance, one can add new degrees of freedom to the Einstein-Hilbert action. These new degrees of
freedom necessary appear through additional fields (scalars, vectors, tensors) which interact with gµν
and represent new propagating mediators.
Note that the term Λ in equation (2.1) can be included in the action as it does not spoil its mathematical
properties and it is motivated by the need of dark energy source. However, in modified theories of
gravity dark energy is usually attributed to one or more dynamic fields and the cosmological constant
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Figure 2.2: Schematic classification of alternative theories of gravity. Image from [17]

is not needed anymore. This, as anticipated, allows to overcome the cosmological constant issue.
The classification of the different alternative gravity theories relies on the types of fields involved and
on the way they interact among each other and with the gravity sector.
Some theories can present particular problems related to the mathematical nature of specific terms.
These problems are called instabilities. Some of them arise at a certain energy scale, therefore a model
with such a pathology can anyways be stable as an effective field theory within a safe energy domain.
It is worth to mention the main examples of instability (see [23,25] for more details).
A ghost instability appears when a field has the wrong sign on its kinetic term (depending on signature
choice). This produce a so-called ghost particle with negative energy in the quantization procedure.
This can be very problematic since the vacuum state would then be unstable to a decay process with
zero energy cost and, therefore, infinite rate.
On the other hand, a laplacian instability occurs when a spatial derivative term with the wrong sign
appears. The effect of such kind of term, is an unbound exponential growing solution, which clearly
makes the theory unstable.
Another interesting example is the tachyonic instability, arising in presence of a field with negative
squared mass.
Let’s now take a brief overview of the different theories, according with the nature of the new degrees

of freedom they introduce. A schematic representation of the general classification is showed in figure
(2.2).
The first class of alternative gravity is represented by theories in which a scalar field interacts with the
tensor gµν . Theories of this family are therefore named Scalar-Tensor Theories and they come from a
relaxation of SEP.
The introduction of a simple scalar field in the general action is the simplest way to model cosmic
inflation. This kind of scalar field is usually called quintessence, as it stands as a fifth force besides
the fundamental four.
This approach can be opened up with the so-called K-essence model, in which a φ-dependent kinetic
term appears, and then further with covariant Galileon and Horndesky theories, which are the
most general theories with second order equations of motion. Dropping this requirement, we find
other consistent examples like beyond-Horndesky theories and Degenerate Higher-Order Scalar-Tensor
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theories (DHOST) with more general interactions.
However, a theory with equations of motion with order higher than two runs into the so-called
Ostrogadsky instability, i.e. the appearence of a ghost term. This problem can be worked around
in an effective field theory context.
An interaction could also exist between scalar fields and matter fields. A particularly relevant example
is a theory in which a quintessence scalar field interacts with dark matter. In this case we would have
a quintessence-dependent mass of dark matter particles which would modify its non-relativistic scaling
through the history of the universe. This effect also provides an interesting description of dark energy.
Another important class is represented by the so called vector-tensor theories. The allowed interactions
and symmetries are of course depending on whether the vector field is massive (Proca field) or not
(Maxwell field). The most general theory of this kind is the so called Generalised Proca.
Moreover, the most general scalar-tensor and vector-tensor theories can be unified in consistent scalar-
vector-tensor theories.
Finally, another class is represented by tensor-tensor theories, like massive gravity.
Some of these models will be described in more details in chapter 5.
The predictions of all these theoretical proposals, must of course face up to experimental tests. The
hypothesis of a fifth force generated, for instance, from a scalar field should be detectable where we
have the possibility to put tighter bounds.
However, the gravitational coupling predicted by General Relativity has been constrained with a high
degree of accuracy (see [25]) both through solar system physics and stellar evolution.
For this reason, many screening mechanisms have been proposed in literature, which would inhibit the
fifth force in the environments where we can perform tests. An example is the chameleon mechanism,
mainly related to scalar fields. Thanks to this effect, the field would acquire an effective mass which
increases with the density of the environment, and the interaction range of the fifth force would be
consequently suppressed outside the surface of astronomical bodies like the Sun or the Earth.
Another important example is the Vainshtein mechanism which arises from non-linear self-interaction
terms (usually kinetic term for scalars). This mechanism suppresses the fifth force in the region around
a gravitational source within the so-called Vainshtein radius (dependent on the specific theory). The
contributions of the hidden degrees of freedom would however play a role at larger scales.
Besides solar system physics and stellar evolution and dynamics, another fundamental way to test the
nature of gravity comes from gravitational waves. In particular, the detection of a binary neutron
star merger marked the beginning of multimessenger astrophysics era. The combined analysis of the
gravitational wave event GW170817 and the electromagnetic counterpart GRB170817A (a gamma-
ray burst) allowed to constrain the propagation speed for gravitational waves to the value of c with
∆c/c ∼ 10−15 [1].
The strict requirement ct = c (without assuming fine tuning among functions in the lagrangian) had a
tremendous impact on the alternative gravity theories landscape as many models predicted a deviation
from this value coming from high order couplings [16].
Finally, cosmological observations provide nowadays an important feedback for alternative theories of
gravity. The aim of this work is to estimate the predictions of some models in the non-linearly evolved
matter power spectrum, in comparison with General Relativity. It would be interesting in the future
to confront this analytical method with results from numerical simulations and observations.

2.2 General-relativistic perturbation theory

We have already described the newtonian perturbation theory in cosmology and we want now to
extend the same approach in a covariant manner.
One first has to express the metric and the energy-momentum tensor respectively as:

gµν = ḡµν + δgµν , Tµν = T̄µν + δTµν . (2.4)

The linearised Einstein equations can be arranged as:

L̂[ ḡµν ]δgµν = δTµν , (2.5)
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where L̂[ · ] is a suitable second-order differential operator which acts on the background metric.
The metric perturbation can be decomposed in scalar, vector and tensor modes, according with the
irreducible representation of SO(3) group. The components of the metric perturbation therewith read:

δg00 = −2a2φ

δg0j = a2(ωj + ∂jω)

δgij = a2
[
2ψδij +

(
∂i∂j −

δij
3
∂k∂k

)
χ+ ∂iχj + ∂jχi + χij

]
.

(2.6)

The functions φ, ω, ψ, χ are scalar perturbations, while ωj , χj are vectors and χij pure tensors, i.e.
gravitational waves.
The matter fields enclosed in Tµν can be organised in a similar manner. The density perturbations
δρ, which are the base of structure formation analysis, are for instance scalar perturbations.
Thanks to the diffeomorphism symmetry of General Relativity, one enjoys the freedom to choose
a certain gauge to carry out the calculation (see [23] for an overview of the main gauge choices in
cosmological context).
One can instead decide to proceed with gauge-invariant quantities without choosing any specific gauge.
This latter approach has the advantage that final equations are free from unphysical terms, at the
price, however, of a huger calculation burden.
From the perturbed Einstein equation one can obtain a generalised Poisson equation in terms of the
gauge invariant Bardeen’s potential Ψ which reads:

k2 Ψ + 4πGρ̄a2δ = 0 . (2.7)

This is clearly an extension of the newtonian Poisson equation (2.5).
This kind of analysis allows, of course, to include possible additional fields from alternative gravity
theories. In this case the concerned fields must be properly perturbed and the system (2.5) must be
expanded to include the equations of motions for the additional degrees of freedom.
A common approach is to view the modification of gravity as variation of the gravitational coupling,
which can be in general promoted to an effective function of time and scale:

G 7−→ Geff(t, k) (2.8)

where the explicit expression for Geff depends on the details of the theory.
Introducing a gauge-invariant density contrast δ, in quasi-static approximation, it is also possible to
recover the density perturbation evolution equation as

δ̈ + 2Hδ̇ − 4πGeffρ̄δ ' 0 . (2.9)

At this point we have an idea of how the fundamental equations of cosmic structure formation can be
extended to alternative theories of gravity.
In the next chapters we will develop a method for the computation of the non-linear matter power
spectrum which can smoothly include different theories simply knowing Geff and the background
expansion function.
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Chapter 3

Kinetic Field Theory

3.1 Motivation

As emerged from many theoretical works in the last decade, there are several examples of systems in
physics, which could be well described with a statistical field theory adapted to classical degrees of
freedom [18,32].
The idea of Kinetic Field Theory formalism comes from this necessity and can be successfully applied
to different problems in physics. In this work we will focus on its application to cosmic structures
formation.
As we will see, the advantages of this theoretical approach are several. First of all, the deterministic
evolution of particles in phase space follow hamiltonian trajectories, which allow to get rid of the
shell-crossing problem arising in hydrodynamics [11].
Furthermore, as we will see more in details in the next section, KFT allows the analytical computation
of the non-linear power spectrum through a mean-field approximation. The closed analytical form of
the spectrum is extremely useful for studying the role of single physical parameters. This approach is
very promising for testing the effects of different theories of gravity on structures formation.

3.2 Generating functional and equation of motion

Let’s start with the introduction of a generic state variable, mathematically described by the field ϕ
and governed by the probability distribution P (ϕ).
In full analogy to quantum statistical field theory, let’s introduce also a generator field J and the
following scalar product, defined by means of an integral over time:

〈J, ϕ〉 =

∫ t

0
dt′ J(t′)ϕ(t′) (3.1)

The collective dynamics of the system is described by a generating functional, which has the role of
the grand canonical partition function in equilibrium
thermodynamics:

Z[ J ] =

∫
DϕP (ϕ)ei〈J,ϕ〉 (3.2)

with the functional integration measure Dϕ expressed with the standard path integral notation.
A generic moment of the field ϕ can be easily computed as an appropriate functional derivative of the
generating functional:

〈ϕn〉 =

(
− i δ

δJ

)n
Z[ J ]

∣∣∣∣
J=0

(3.3)

Setting a time t = 0, let’s assume we have the initial configuration ϕ(i), P (ϕ(i)).
As the system evolves out of equilibrium, for a generic time t > 0, we will have the final state ϕ

23
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with the corresponding probability distribution. The initial configuration is mapped in the final one
through the transition probability P (ϕ(i)|ϕ). Then:

P (ϕ) =

∫
Dϕ(i) P (ϕ(i))P (ϕ(i)|ϕ). (3.4)

Defining the initial integration measure DΓ(i) = Dϕ(i)P (ϕ(i)), one can express the generating functional
as:

Z[ J ] =

∫
DΓ(i)

∫
DϕP (ϕ(i)|ϕ)ei〈J,ϕ〉. (3.5)

So far we provided an abstract description which holds in principles for every statistical ensemble.
Let’s now restrict to the case of N classical particles of equal mass m.
A point in phase space is defined by a vector which includes spatial coordinates qi and momenta pi.

xi = (qi, pi), with i ∈ [1, N ] (3.6)

The trajectories of all particles can be combined in a single object:

x(t) = xi(t)⊗ ei (3.7)

with the orthonormal basis {ei}.
The tensor x(t) will replace the abstract state variable ϕ in this specific case. The generator field and
the scalar product can be defined accordingly:

J(t) = Ji(t)⊗ ei =

(
Jqi(t)
Jpi(t)

)
⊗ ei (3.8)

〈J,x〉 = 〈Ji(t)⊗ ei, xj(t)⊗ ej〉 = 〈Ji, xj〉δij =

∫ t

0
dt′ Ji · xi (3.9)

Here comes the main conceptual difference between a quantum and a classical ensemble. While in the
first case the transition probability has an amplitude in phase space due to uncertainty principle, in
the classical case the evolution is fully deterministic.
Therefore, given some equations of motion E(x) = 0 the transition probability will be non vanishing
only for trajectories which satisfy them. Mathematically, this translates into a Dirac delta distribution,
with its functional representation:

P (x|x(i)) = δD[E(x) ] =

∫
Dχ ei〈χ,E(x)〉 (3.10)

Figure 3.1: Representation of trajectories in phase space. Image from [11]
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Let’s now introduce a field K conjugate to χ and rewrite the generating functional:

Z[J,K ] =

∫
DΓ(i)

∫
Dx

∫
Dχ ei〈χ,E(x)〉+i〈J,x〉+i〈K,χ〉. (3.11)

In analogy to the quantum field theory path integral, we can view the argument of the exponential as
the action associated to a certain field, defined as integral over time of the corresponding lagrangian:

〈χ, E(x)〉 =

∫ t

0
dt′χ ·E =

∫ t

0
dt′L = S[χ ] (3.12)

At this point it is convenient to express the equation of motion operator as a sum of a free and an
interaction contribution, namely:

E(x) = ẋ + E0(x) + EI(x). (3.13)

Ignoring the interaction term, one obtains the free generating functional:

Z0[J,K ] =

∫
DΓ(i)

∫
Dx

∫
Dχ ei〈χ,E(x)〉+i〈J,x〉+i〈χ,ẋ+E0(x)+K〉 =

=

∫
DΓ(i)

∫
Dx δD[ ẋ + E0(x) + K ]ei〈J,x〉 =

=

∫
DΓ(i) ei〈J,x̄(K)〉,

(3.14)

where K has replaced the interaction term in the equation of motion and the corresponding solution
x̄(K).
Let’s now go more specifically into the equation of motion. An ensamble of N classical particle, such
as the one we introduced, is well described by the Hamilton equations, which can be written in a
compact manner for each particle as:

ẋi = I∂xiH (3.15)

with the hamiltonian function:

H(qi, pi) =
|pi|2

2m
+ V (qi) (3.16)

and the symplectic matrix:

I =

(
0 I3
−I3 0

)
. (3.17)

Therefore, equation (3.15) reads explicitelly:(
q̇i
ṗi

)
=

(
∂pi
−∂qi

)(
|pi|2

2m
+ V (qi)

)
=

(
pi/m
−∂qiV

)
(3.18)

Let’s study the mathematical form of the solutions, starting from the free case, in which the potential
energy term vanishes (V = 0). In this rather simple case, the system reads:(

q̇i
ṗi

)
=

(
0 (1/m)I3
0 0

)(
qi
pi

)
= M

(
qi
pi

)
(3.19)

and it is solved by direct exponentiation of the matrix M :

x̄i(t) = exp

(∫ t

t0

dt′M(t′)

)
xi(t0) =

(
I3

(
(t− t0)/m

)
I3

0 I3

)
xi(t0) (3.20)

The matrix in the last passage is the so called Green’s function:

G(t, t0) =

(
I3

(
(t− t0)/m

)
I3

0 I3

)
=

(
gqq(t, t0) gqp(t, t0)

0 gpp(t, t0)

)
. (3.21)
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The Green’s function formalism is very convenient to move to the interacting case in which V 6= 0 in
which the solution reads:

x̄i(t) = G(t.t0)xi(t0)−
∫ t

t0

dt′G(t.t′)

(
0

−∂qiV (t′)

)
(3.22)

All these results in the hamiltonian framework can be rewritten in a tensorial form, according with
(3.7), in order to plug the equation of motion into the generating functional of KFT.
Define then the tensors

I = I⊗ IN , ∇ = ∂xi ⊗ ei , G(t, t0) = G(t, t0)⊗ IN (3.23)

with which the final form of the solution reads:

x̄(t) = G(t, 0)x(i) −
∫ t

0
dt′G(t, t′)

(
0

−∂qV (t′)

)
. (3.24)

3.3 Density operator

Since we are dealing with classical point-particles, the numerical density of the system is a combination
of Dirac deltas:

ρ(~q, t) =

N∑
i=1

ρi(~q, t) =

N∑
i=1

δD[~q − ~qi(t)]. (3.25)

The Fourier representation of a single particle density reads:

ρj(1) = exp(−i~k1 · ~qj(t1)) (3.26)

where we defined 1 = (t1,~k1). It describes the contribution of particle j at time t = t1 and wave
number ~k = ~k1.
As it is usual in field theories, ordinary functions can be promoted to operators through the action of
an appropriate derivative. As phase space coordinates are the state variables in KFT, we can use the
following definition using generator fields:

qi(t1) 7−→ −i δ
δJqi(t1)

. (3.27)

The density is promoted accordingly to the operator

ρ̂i(1) =

N∑
i=1

exp

(
− ~k1 ·

δ

δJqi(t1)

)
(3.28)

It can be demonstrated that the exponential of a differential operator produces a finite translation. In
fact, the infinitesimal translations are generated in group theory by first order differential operators,
and this can be viewed as the first term of a Taylor expansion. Introducing the infinite sum over higher
order terms one recovers the definition of exponential. Hence, applying the density operator to the
the generating functional we shift the value of the field J at which the functional itself is evaluated.

ρ̂i(1) Z[J,K ]|J=0 = exp

(
− ~k1 ·

δ

δJqi(t1)

)
Z[J,K ]|J=0 = Z[L,K ] (3.29)

The amount of shift depends on the wave vector of the mode associated to ρ̂:

〈L, x̄(K)〉 = −~k1 ·
δ

δJqi(t1)
〈J, x̄(K)〉|J=0 =

= −~k1〈δD(t− t1)

(
1
0

)
⊗ ei, x̄(K)〉 =

= −~k1[q̄i(t1)− K̄i(t1)].

(3.30)
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where q̄i(t1) = qi + t1pi and K̄i(t1) =
∫ t1

0 dt′ [K̄qi(t
′) + (t − t′)K̄pi(t

′)] from the general solution of
Hamilton equation.
Applying the density operator r times one obtains:

ρ̂i1(1) · · · ρ̂ir(r) Z[J,K ]|J=0 = Z[L,K ] (3.31)

with

〈L, x̄(K)〉 = −
r∑
s=1

~ks[q̄is(ts)− K̄is(ts)]. (3.32)

This Ansatz for density can be exploited for expressing the interaction potential, namely:

V (q) =
N∑
i=1

v(q − qi) =
N∑
i=1

∫
q′
v(q − q′)δD(q′ − qi) =

∫
q′
v(q − q′)ρ(q′) (3.33)

where we introduced the following shorthand notation for integrals over positions:∫
q′

=

∫
d3q′. (3.34)

Therefore, the gradient of the potential evaluated at position q = qi reads:

∂qV (q)|q=qi =

∫
q
δD(q − qi)∂qV (q) =

∫
q

∫
q′
ρi(q)∂qv(q − q′)ρ(q′) =

= −
∫
q

∫
q′
∂qρi(q)v(q − q′)ρ(q′).

(3.35)

where in the last passage we performed the integration by parts.
With these last expressions we are finally able to derive the interaction contribution to the equation
of motion. In fact, we can define the interaction lagrangian for hamiltonian equation of motion, like
we did in equation (3.12) :

LI = χ ·EI = χpi∂qiV = −
∫
q
B(q)V (q). (3.36)

In the last passage the response field B(q) = χpi∂qρi(q) has been defined. Moving to Fourier
representation, one obtains the elegant expression:

B(1) = ik1χpiρi(1), χ · EI = −
∫
k
B(−k)v(k)ρ(k) (3.37)

with the compact notation for integrals over wave numbers:∫
k

=

∫
d3k

(2π)3
. (3.38)

Finally, following the same procedure that we employed for positions, we can promote B to an operator
as:

B̂(1) = k1
δ

δKpi(t1)
ρ̂i(1). (3.39)

Then we can write the full interaction action in operator form, which will be suitably applied to the
free generating functional:

ŜI =

∫
dt χ̂ · ÊI = −

∫
d1 B̂(−1)v(1)ρ̂(1). (3.40)

This interaction can be cast in a more elegant form ( [8]) through the introduction of the doublet field

Φ̂(~k, t) =

(
ρ̂(~k, t)

B̂(~k, t)

)
(3.41)
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and the suitable metric:

σ(1, 2) = −ν(1)δD(1− 2)

(
0 1
1 0

)
. (3.42)

In this way the interaction term becomes:

ŜI = −
∫
d1

∫
d2 Φ̂T (−1)σ(1, 2)Φ̂(2). (3.43)

Finally, thanks to these last passages, the interacting generating functional can be expressed as the
action of the interaction operator on the free one in a very compact form, by:

Z[J,K ] = eiŜIZ0[J,K ]. (3.44)

This conclude the general overview of KFT formalism. It is evident how KFT can provide macroscopic
and statistical correlations in phase space starting from microphysical assumptions about fundamental
constituent of the system in hamiltonian framework.
At this point we are ready to apply this general expressions to the context of cosmic structure
formation.

3.4 Application to cosmology

The main step to apply the KFT general framework to the context of cosmology is the choice of proper
coordinates and variables. As it is intuitive, the best choice is a system of comoving coordinates {q},
which are related to physical ones through the scale factor by q = r/a(t) ( [6]).
Regarding the cosmic structures, we will introduce them like perturbations in the linear regime on top
of a globally homogeneous expanding universe.
The equation of motion of a test particle in the background universe can be derived from the classical
lagrangiang:

L(r, ṙ, t) =
m

2
ṙ2 −mΦ(r). (3.45)

The gravitational potential is the solution to the modified Poisson’s equation:

∇2
rΦ = 4πGρ− Λ (3.46)

where the expansion of the universe is introduce through the gravitational constant Λ.
The passage to comoving coordinate is straightforward and yields:

L(q, q̇, t) = L
m

2
a2q̇2 −mφ , ∇2

qφ = 4πGa2(ρ− ρ̄) (3.47)

where φ is the so called peculiar gravitational potential. We stress that we are operating in the linear
regime in which the condition δ � 1 on the density contrast holds.
It is convenient to rescale the time coordinate using the cosmic growth factor:

t 7−→ t = D+(a)−D(i)
+ (3.48)

normalized such that a(ti) = 1, ti = 0, i.e. with D
(i)
+ = 1.

Transforming the time derivative accordingly and imposing that the action is left unchanged by this
transformation, one obtains a suitable lagrangian, which can be written with the standard form,
introducing a time dependent mass and the potential ϕ = (a2/mH2

0 )φ:

L(q, q̇, t) =
m(t)

2
q̇2 −m(t)ϕ (3.49)

The time-dependent mass reads:

m(t) = a2D+fE (3.50)
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with the function f defined by

f =
dlnD+

dlna
, (3.51)

E(t) is the cosmic expansion function introduced in chapter 1 and we will employ it widely when we
deal with the effect of the gravity theory on KFT predictions.
Note that the potential ϕ fulfills the Poisson’s equation:

∇2ϕ =
3a

2m2
δ. (3.52)

The particle trajectories are given by the Euler-Langrange equation:

q̈ +
ṁ

m
q̇ +∇ϕ = 0. (3.53)

With this choice of time coordinate, particle trajectories can be described as inertial, introducing the
effective force

f = −ṁ
m
q̇ −∇ϕ. (3.54)

Impose now that the solution of (3.53) has the hamiltonian form, i.e. the one constructed in terms of
Green functions:

q(t) = q(i) + gqp(t, 0) +

∫ t

0
dt gqp(t, t

′)f(t′). (3.55)

The term gqp has the so called Zel’dovich propagator form:

gqp(t, t
′) = t− t′ (3.56)

while the effective force reads:

f = −∇ϕ− ṁ

m2

[
p(i) −

∫ t

0
dt′m∇ϕ

]
(3.57)

Now that this formalism has been developed, it is important to characterize properly the initial state,
i.e. to build a suitable initial probability distribution function, relying on some fundamental statistical
assumptions.
In the context of structure formation, it is convenient to sample phase space coordinates from the pair
(δ(i), p(i)), which we can constrain using hydrodynamics equations.
Cosmological observations suggest that we can assume a gaussian power spectrum for the initial
density fluctuation distribution. From this homogeneous configuration in the early universe, the
formation of cosmic structures will be described in KFT evolving phase space configurations through
the hamiltonian deterministic flux. Thanks to the scaling of vortical perturbation modes, it is also
safe to assume that, particle momenta have vanishing vorticity, i.e. vanishing curl. This translates in
the mathematical statement that the corresponding vector field can be expressed as the gradient of a
scalar potential ψ, namely:

p(i) = ∇ψ. (3.58)

The advantage of this approach is that ψ is a statistically homogeneous, isotropic, gaussian random
field, and it is therefore, fully characterized by its power spectrum, in analogy to δ(i).
Furthermore, these two quantities can be related using continuity equation:

δ̇ +∇ · p =
∂

∂t
(δ(i)t) +∇ · ∇ψ = 0 (3.59)

with the linear Ansatz from the first term of (1.32) for δ. This leads to

δ(i) = −∇2ψ. (3.60)

Using the definition of power spectrum, we obtain, as a consequence, the important statistical relation
between our two fundamental random fields in Fourier space:

k4Pψ(k) = Pδ(k). (3.61)
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From now on, we will drop the superscript (i) for the initial state since no ambiguity can arise anyway.
At this point we are ready to derive the expression from the probability distribution in phase space,
applying the definition (3.4) and using the transition probabilities to sample (q, p) from (δ,∇ψ):

P (q,p) =

∫
Dδ

∫
D(∇ψ)P (q|δ)P (p|∇ψ)P (δ,∇ψ). (3.62)

The transition probability from ∇ψ 7−→ p is simply the Dirac delta δD(p −∇ψ), while the one from
δ 7−→ q can be expressed as

P (q|δ) =
ρ

N
=
ρ̄(1 + δ)

N
. (3.63)

The joint probability then reads:

P (q,p) =
ρ̄

N

∫
Dδ (1 + δ)P (δ, p). (3.64)

After some mathematical manipulations, it can be demonstrated (see [10] and [19]) that this intial
joint probability can be expressed in a nearly gaussian form, after the introduction of a suitable kernel
matrix C̄pp. Namely:

P (q,p) ≈ V −N√
(2π)3NdetC̄pp

exp

(
− 1

2
pT C̄−1

pp p

)
= N exp

(
− 1

2
pT C̄−1

pp p

)
. (3.65)

Let’s describe more in depth the momentum correlation matrix.
Using the properties of tensor product:

C̄pp = 〈p⊗ p〉 = 〈pj ⊗ pk〉 ⊗ (ej ⊗ ek) =
σ2
p

3
13 ⊗ 1N + Cpjpk ⊗ Ejk (3.66)

where in the last passage we separated the diagonal part (j = k) from the off-diagonal terms (j 6= k)
and the matrix Ejk = eJ ⊗ ek was defined.
The term σ2

p is the momentum dispersion. The generic form of a moment of order n is:

σ2
n =

∫
k
k2(n−2)Pδ(k) =

1

2π2

∫ ∞
0

dk k2n−2Pδ(k) (3.67)

with the initial density fluctuation power spectrum Pδ(k).
Given the momenta pj and pk separated by a distance q, their correlation matrix is represented by
the term

Cpjpk = 〈∇ψ ⊗∇ψ〉 = −(∇⊗∇)ξψ(q) (3.68)

where the function ξψ(q) is the one point correlation function of the potential ψ and reads:

ξψ(q) =
1

2π2

∫ ∞
0

dk

k2
Pδ(k)j0(kq) (3.69)

where j0(kq) is the spherical Bessel function of zeroth order.
It is convenient to introduce the projectors on the parallel and perpendicular direction to the unitary
separation vector q̂:

π‖ = q̂ ⊗ q̂ , π⊥ = 13 − π‖. (3.70)

Therefore, we will have:

Cpjpk = −π‖ξ′′ψ(q)− π⊥
ξ′ψ(q)

q
. (3.71)

Note that for q = 0 the momentum dispersion reads simply:

σ2
p =

∫
k
k2Pψ(k). (3.72)

With these ingredients we are able to see how power spectra are described in KFT.
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3.5 Power spectrum and mean-field approach

In this section we will start to tackle the problem of describing structure formation in different regimes
(linear and non-linear) through the power spectrum formalism within the KFT framework.
Let’s start from the simple case of synchronous (i.e. t1 = t2 = t) two-point free density correlation
function, using the density operators which we previously introduced.

Gρρ = 〈ρ2(−1)ρ1(1)〉 = ρ̂2(−1)ρ̂1(1)Z0[J,K ]|J=0 = Z0[J,K ] =

= eik1(K̄2(t)− K̄1(t))

∫
DΓ(i) e−ik1(q̄2(t)−q̄1(t))

(3.73)

The particle trajectories in phase space are the ones which solve the hamiltonian equation, namely
the inertial trajectories under the effective force that we defined previously.

q̄1,2(t) = q1,2 + tp1,2. (3.74)

Let’s define the spatial separation between positions 1 and 2 and the corresponding momentum shift:

q = q2 − q1 , Lp = −k1t⊗ (e2 − e1) (3.75)

which lead to:

Z0[L, 0 ] =

∫
DΓ(i) e−ik1qeiLp·p =

=

∫
dq dpN exp

(
− 1

2
pT C̄−1

pp p

)
e−ik1qeiLp·p =

=

∫
dq exp

(
− 1

2
LTp C̄

−1
pp Lp

)
e−ik1q =

=

∫
dq exp

(
− t2

(
σ2
pk

2
1

2
+ kT1 Cp1p2k1

))
.

(3.76)

In the third passage we integrated out the momenta degrees of freedom using the gaussian integral
rule for multivariate gaussians.
Introduce now the director cosine between the unitary wave vector and the spatial separation versor
µ = k̂1 · q̂ which allows to express in a more operative form the projection operation from (3.70).
Accordingly, let’s define the two functions

a‖(q) = µ2ξ′′ψ(q) + (1− µ2)
ξ′ψ(q)

q
, QD =

σ2
pt

2k2
1

3
(3.77)

Equipped with these definitions, we can rewrite the free generating functional as

Z0[L, 0 ] = e−QD

∫
dq et

2k21a‖(q)e−ik1q. (3.78)

Observe that through this expression the physical meaning of the quadratic form QD is clear. It
represents a damping term in time evolution, coming from momentum dispersion which tend to hamper
the matter concentration and the consequent formation of structures.
Since this last integral yields a term which is proportional to a Dirac delta, it is convenient to define
the power spectrum for this initial case as

P(1) = Z0[L, 0 ]− δD(k1) = e−QD

∫
q

[
et

2k21a‖(q) − 1
]
e−ik1q. (3.79)

Observe that, neglecting for a second the damping term, one can linearize the time evolution of P
for small enough values of the exponent, through the Taylor expansion

et
2k21a‖(q) = 1 + t2k2

1a‖(q) + ... (3.80)
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which produces the time scaling

P(k1, t) ≈ t2P (i)
δ (k1) = P linδ (k1), (3.81)

that we already found in equation (1.40). The great advantage of KFT is the possibility to study
analytically the non linear evolution of density power spectrum through a mean-field approach for the
interaction term (see [7, 9]), extending the mathematical description beyond the linear regime. We
will conclude this chapter describing how this approach works.
Qualitatively, we expect the gravitational interaction among particles to counteract the damping from
particles free streaming represented by QD.
Quantitatively, we will use a suitable average of the interaction term 〈SI [L]〉 and employ the Burger’s
approximation to express the non-linear power spectrum as

Pnlδ (k) ≈ ei〈SI(k)〉P linδ (k). (3.82)

Consider the interaction lagrangian (3.12) from two particles suffering the mutual influence through
the effective force f . It can be averaged as:

〈LI,21〉 = χp2 ·
∫
q2

∫
q1

〈ρ2(q2)f(q1 − q2)ρ1(q1)〉 =

= χp2 ·
∫
q1

∫
q
f(q)ξ(q) = Vχp2

·
∫
q
f(q)ξ(q)

(3.83)

where we reintroduced the spatial separation q = q2− q1 and the two point function ξ(q). The volume
Vχp2

comes from the first integral.
It is well known that an ordinary product is mapped to a convolution in Fourier space. This implies
that the integrand function in (3.83) can be Fourier-transformed as:

f(k) ∗ Z0[L,K ]. (3.84)

Furthermore, remember that any field can be promoted to an operator through a suitable functional
derivative with respect to the conjugate:

χp2 7−→ −i
δ

δKp2(t1)
(3.85)

Therefore, applying it to the generating functional, we get

− i δ

δKp2(t1)
Z0[L,K ]

∣∣∣∣
K=0

= ik(t− t1)Z0[L, 0 ] = ik(t− t1)P(1) (3.86)

which leads in Fourier space to the mean interaction action

i〈SI〉(k, t) = −k
∫ t

0
dt1 (t− t1)f(1) ∗P(1). (3.87)

In linear approximation, as anticipated, we have

P(1) ≈ e−QDk2t2
∫
q
a‖(q)e

−ikq = e−QDPδ(1) = P̄δ(1) (3.88)

Where we defined the damped density fluctuation power spectrum linearly evolved to t1 P̄δ(1). Hence:

i〈SI〉(k, t) ≈ −k ·
∫ t

0
dt1 (t− t1)f(1) ∗ P̄δ(1) (3.89)

The general expression for the non linear power spectrum in mean-field approximation is finally:

P(k, t) = ei〈SI〉−QD

∫
q

[
et

2k2a‖(q) − 1
]
e−ikq. (3.90)
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The last passage is to find a closed expression for the mean interaction term, starting from a model
of gravitational interaction potential.
A physically motivated shape in Fourier space for the gravitational potential (see [9]) is:

ṽ(k) = − Aϕ
ρ̄(k2

0 + k2)
(3.91)

The term k0, that gives the shape of a Yukawa propagator, represents the scale value at which non-
linear evolution sets on.
The amplitude Aϕ comes from the definition of the potential ϕ, namely:

ϕ = φ−AϕD+ψ (3.92)

Then, since the spatial gradient is mapped to Fourier space as∇ 7−→ i~k, we can express the convolution
in equation (3.87) as

~k · (∇̃v ∗ P̄ )(k) = − iAϕ
ρ̄

∫
k′

~k · (~k − ~k′)
k2

0 + (~k − ~k′)2
P̄ (k′) (3.93)

The integral can be simplified introducing spherical polar coordinates, with the polar axis chosen as
the direction of ~k and the calling µ the cosine of the angle defined by ~k and ~k′ and introducing the
new variables y = k′/k and y0 = k0/k. The result is

~k · (∇̃v ∗ P̄ )(k) = − iAϕ
ρ̄

k3

(2π)2

∫ ∞
0

dy y2P̄ (ky, t′)J(y, y0) (3.94)

with

J(y, y0) =

∫ +1

−1
dµ

1− yµ
1 + y2

0 + y2 − 2kyµ
=

= 1 +
1− y2 − y2

0

4y
ln
y2

0 + (1 + y)2

y2
0 + (1− y)2

(3.95)

Given the damped initial power spectrum P̄ (i), it is convenient to define the moment

σ2
J =

k3

(2π)2

∫ ∞
0

dy y2P̄ (i)(ky)J(y, y0) (3.96)

which allows to write
~k · (∇̃v ∗ P̄ )(k) = − iAϕ

ρ̄
D2

+σ
2
J = − iṁ

ρ̄m
D2

+σ
2
J . (3.97)

In the second passage we plug directly the expression of Aϕ in terms of the functions m and ṁ =
3aD+/2m.
At the end we get for the average interaction term the closed expression

i〈SI〉(k, t) = 2

∫ t

0
dt′(t− t′)ṁ

m

[
D+σ

2
J −

1

m

∫ t′

0
dt̄ṁD+σ

2
J

]
. (3.98)

This formula will be the starting point for the discussion of the next chapter, in which the functional
dependence of this interaction term with respect to some important gravity-related parameters will
be investigated.
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Chapter 4

Functional variation of non-linear
power spectrum

4.1 Gravitational parameters

In the previous chapter we discussed the KFT formalism and its application to cosmic structure
formations. In particular, we concluded with the derivation of the mean-field interaction term:

i〈SI〉(k, t) = 2

∫ t

0
dt′(t− t′)ṁ

m

[
D+σ

2
J −

1

m

∫ t′

0
dt̄ṁD+σ

2
J

]
=

= 2

∫ t

0
dt′(t− t′)f(t′).

(4.1)

Let’s point out some mathematical aspects of this object. As it is clear, it is, first of all, an ordinary
function of time and scale. However, we are now interested in the hidden functional dependence, which
is related to the choice of a gravity theory.
In particular, it turns out that this choice only affects (4.1) through the cosmic expansion function
E(a) and the effective gravitational coupling G(a).
Since cosmological observations constrain eventual deviation from General Relativity to be very small,
we expect these two functions to depart just slightly from the ΛCDM background values.
This point is fundamental, as it allows to provide a mathematical description of such deviations which
is only partially dependent on the gravity theory itself. In other words, we are able to perform a
functional Taylor expansion of the non-linear density power spectrum around these two parameters,
where the functional derivatives are evaluated in the GR values and are, then, independent of the
theory itself.
Note that we have chosen the time coordinate as t = D+ − 1, so, given the variations E → E + δE,
G→ G+δG, it will experience a variation δt which can be expressed through the functional derivatives
of D+(t) with respect to E(t) and G(t). The integrated time variables t′ and t̄ are however unaffected.
This happens because the physical effect of a small change in the gravitational theory is just a shift
δt in the evolution of the interaction operator.

4.2 Functional derivatives

Given a generic functional F [φ] and the perturbation φ 7−→ φ+ δφ, the functional variation reads:

δF = F [φ+ δφ]− F [φ] =

∫
dy

(
δF

δφ(y)

)
δφ(y) +O(δφ2). (4.2)

This formula defines the functional derivative of F with respect to φ, δF/δφ. It has all the standard
properties of derivatives, like Leibnitz and chain rule, properly generalized.

35
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Also, defining the identity functional Id : φ(y) 7−→ φ(x) as

Id[φ] = φ(x) =

∫
dy δD(y − x)φ(y) (4.3)

one notices that the following fundamental identity holds:

δφ(x)

δφ(y)
= δD(x− y). (4.4)

Equation (4.2) can be applied, as anticipated, to the non-linear power spectrum of a generic alternative
theory of gravity, in order to Taylor expand it around the General Relativity values of E(a) and G(a).

Pnlδ,Alt(t, k) ≈ Pnlδ

∣∣∣
GR

(t, k) +

∫
dx

δPnlδ
δE(x)

∣∣∣∣
GR

δE(x) +

∫
dx

δPnlδ
δG(x)

∣∣∣∣
GR

δG(x) (4.5)

where δE and δG are the only ingredients which depend specifically on the theory of gravity we are
considering, since all functional derivatives are evaluated in the GR-predicted values.
Let’s start with the variation of the cosmic growth factor D+(a) with respect to the gravitational
parameters E(a) and G(a). In both cases, we are not able to derive the explicit functional dependence,
but we can exploit the linear density perturbation evolution equation for directly computing the
functional derivative (see [36]). We will explain the procedure for E(a) and the one for G(a) will be
fully analogous.
Since δ/δE commutes with the derivative with respect to the scale factor a, we can apply it to equation
(1.34) and solve it for the functional derivative:

δ

δE(x)

[
D′′+(a) +

(
3

a
+
E′(a)

E(a)

)
D′+(a)− 3Ωm(a)

2a2
D+(a)

]
= 0 (4.6)

Performing the functional derivative, one gets:

d2

da2

δD+(a)

δE(x)
+

(
3

a
+
d lnE(a)

da

)
d

da

δD+(a)

δE(x)
− 3Ωm(a)

2a2

δD+(a)

δE(x)
=

= − d

da

(
δD(a− x)

E(a)

)
D′+(a)− 3D+(a)Ωm(a)

a2E(a)
δD(a− x).

(4.7)

It is reasonable to introduce the ansatz

δD+(a)

δE(x)
= C(a, x)D+(a) (4.8)

and the causality condition
δD+(a)

δE(x)
∝ ΘH(a− x) (4.9)

where ΘH is the Heaviside step function.
Given these assumptions, equation (4.7) is solved by

δD+(a)

δE(x)
= D+(a)g(x)Γ(x, a) (4.10)

with

g(x) = xD2
+(x)Ωm(x)

[
Ω2γ−1
m (x)− 3

2

]
(4.11)

and

Γ(x, a) = ΘH(a− x)

∫ a

x

dy

y3D2
+(y)E(y)

. (4.12)
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The exponent γ in equation (4.15) is implicitly given by the logarithmic derivative

d lnD+(a)

d ln a
= Ωγ

m(a). (4.13)

A similar procedure can be applied for computing the functional derivative of D+ with respect to the
gravitational coupling [33].
The final result is:

δD+(a)

δG(x)
= D+(a)f(x)Γ(x, a) (4.14)

with

f(x) =
3xD+(x)2E(x)Ωm(x)

2G(x)
. (4.15)

Equipped with (4.10) and (4.14) we are able to compute all the variations we need with respect to
these two functions.

4.3 The non-linear power spectrum

Consider now the variation E → E + δE, G → G + δG, which produces t[E,G] → t[E,G] + δt[E,G]
and assume they are all of order ε� 1.
Using equation (3.81) and (3.82) we can compute the corresponding variation of the non-linear power
spectrum:

Pnlδ [E + δE,G+ δG] = Pnlδ [E,G] + δPnlδ (4.16)

with

δPnlδ = ei〈SI〉δP linδ + δ
(
ei〈SI〉

)
P linδ =

= ei〈SI〉P
(i)
δ D+

(
2δD+ +D+δ(i〈SI〉)

)
+O(ε2).

(4.17)

where the first term δD+ can be obtained integrating equation (4.10) and (4.14) according with the
definition of functional derivative (4.2).
The second term needs, on the other hand, some passages.
The functions m(t′), ṁ(t′) change accordingly as an effect of the variation of E and G.

m[E + δE,G+ δG] = (a+ δa)3(D′+ + δD′+)(E + δE) =

= a3D′+E + 3a2D′+E δa+ a3E δ

(
dD+

da

)
+ a3D′+δE +O(ε2) =

= m[E,G] + δm .

(4.18)

One may immediately notice that there are two terms involving respectively the variation of the scale
factor and the variation of the derivative of the cosmic growth factor w.r.t. the scale factor. We have
assumed that the time t′ which appears as integration variable is not directly varied as a consequence
of the perturbation of E and G. What varies is, however, the way the scale factor depends on t′, since
the ordinary dependence which maps t′ 7−→ a(t′) is functionally mediated by E and G. The complete
expression for δm can be therefore expressed as:

δm =

(
3a2E

dD+

da

da

dt′
δD+

δE
+ a3E

d

da

δD+

δE
+

+ a3D′+

)
δE +

(
3a2E

dD+

da

da

dt′
δD+

δG
+ a3E

d

da

δD+

δG

)
δG =

=

(
3a2E

δD+

δE
+ a3E

d

da

δD+

δE
+ a3D′+

)
δE+

+

(
3a2E

δD+

δG
+ a3E

d

da

δD+

δG

)
δG .

(4.19)
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The functional derivatives of D+ derived w.r.t. a can be further processed using equations (4.10) and
(4.14):

d

da

(
δD+

δE

)
=

d

da

(
ΘH(a− x)D+(a)g(x)

∫ a

x

dy

y3D2
+(y)E(y)

)
=

= δD(a− x)D+(a)g(x)

∫ a

x

dy

y3D2
+(y)E(y)

+

+ ΘH(a− x)
dD+(a)

da
g(x)

∫ a

x

dy

y3D2
+(y)E(y)

+

+ Θ(a− x)D+(a)g(x)
1

a3D2
+(a)E(a)

.

(4.20)

Observe that the first term vanishes since the Dirac Delta is 6= 0 only for x = a and this force the two
extrema of the integral to coincide. Then:

d

da

(
δD+

δE

)
= ΘH(a− x)g(x)

[
dD+(a)

da

∫ a

x

dy

y3D2
+(y)E(y)

+

+D+(a)
1

a3D2
+(a)E(a)

]
.

(4.21)

At this point we have the full variation δm and we can express δṁ in terms of it:

ṁ[E+δE,G+ δG] =
3aD+

2(m+ δm)
=

3aD+

2m

(
1− δm

m
+O(ε2)

)
=

=
3aD+

2m
− 3aD+

2m2
δm+O(ε2) = ṁ[E,G] + δṁ+O(ε2)

(4.22)

Using the definition of functional derivative we have:

δm(t′) =

∫
dτ

(
δE(τ)

δm(t′)

δE(τ)
+ δG(τ)

δm(t′)

δG(τ)

)
+O(ε2) (4.23)

which, compared with equation (4.18) and with all the substitutions yields:

δm(t′)

δE(τ)
= 3a2(t′)E(t′)

δD+(t′)

δE(τ)
+ a3(t′)E(t′)

d

da

δD+(t′)

δE(τ)
+

+
m(t′)

E(t′)
δD(t′ − τ)

δm(t′)

δG(τ)
= 3a2(t′)E(t′)

δD+(t′)

δG(τ)
+ a3(t′)E(t′)

d

da

δD+(t′)

δG(τ)
.

(4.24)

Using the same procedure for ṁ one gets:

δṁ(t′)

δE(τ)
= −3a(t′)D+(t′)

2m2(t′)

δm(t′)

δE(τ)
=

= −ṁ(t′)

[
2
a2(t′)E(t′)

m(t′)

δD+(t′)

δE(τ)
+
a3(t′)E(t′)

m(t′)

d

da

(
δD+(t′)

δE(τ)

)
+

+
δD(t′ − τ)

E(t′)

]
δṁ(t′)

δG(τ)
= −3a(t′)D+(t′)

2m2(t′)

δm(t′)

δG(τ)
=

= −ṁ(t′)

[
2
a2(t′)E(t′)

m(t′)

δD+(t′)

δE(τ)
+
a3(t′)E(t′)

m(t′)

d

da

(
δD+(t′)

δE(τ)

)]
(4.25)
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Then, coming back to our mean interaction term, we have:

〈SI〉[E + δE,G+ δG] = 2

∫ t+δt

0
dt′(t+ δt− t′)ṁ+ δṁ

m+ δm
×

×

[
D+σ

2
J −

1

m+ δm

∫ t′

0
dt̄(ṁ+ δṁ)D+σ

2
J

]
+O(ε2) =

= 2

∫ t+δt

0
dt′(t+ δt− t′)

(
ṁ

m
+
δṁ

m
− ṁ

m2
δm

)
×

×

[
D+σ

2
J −

(
1

m
− δm

m2

)∫ t′

0
dt̄(ṁ+ δṁ)D+σ

2
J

]
+O(ε2).

(4.26)

Proceeding further with simplifications and neglecting second order terms, one obtains:

2

∫ t+δt

0
dt′(t+ δt− t′)

[
ṁD+σ

2
J

m
+
D+σ

2
J

m
δṁ−

ṁD+σ
2
J

m2
δm+

− ṁ

m2

∫ t′

0
dt̄ ṁD+σ

2
J −

(
δṁ

m2
− 2

ṁ

m3
δm

)∫ t′

0
d̄ tṁD+σ

2
J+

− ṁ

m2

∫ t′

0
dt̄D+δṁσ

2
J

]
=

= 2

∫ t

0
dt′ (t− t′)f(t′) + 2

∫ t+δt

t
dt′ (t− t′)f(t′) + 2δt

∫ t+δt

0
dt′f(t′)+

+ 2

∫ t+δt

0
dt′(t− t′)δf =

= 〈SI〉[E,G] + 2δt

∫ t

0
dt′f(t′) + 2

∫ t

0
dt′(t− t′)δf.

(4.27)

Note that, in the last passage, some term has been neglected since they yields second order contributions.
Namely:

2

∫ t+δt

t
dt′ (t− t′)f(t′) = 2δt f(t′)(t− t′)

∣∣
t′=t

+O(ε2) = O(ε2)

2

∫ t+δt

t
dt′ δf(t′) = δt2f(t) +O(ε2) = O(ε2).

(4.28)

It was also introduced the functional variation of f(t′), which reads:

δf(t′) =
D+σ

2
J

m
δṁ−

ṁD+σ
2
J

m2
δm−

(
δṁ

m2
− 2ṁ

m3
δm

)∫ t′

0
dt̄ṁD+σ

2
J+

− ṁ

m2

∫ t′

0
dt̄D+σ

2
Jδṁ.

(4.29)

The variations δm and δṁ can then be expressed in terms of δE through equation (4.18) and (4.22)
and using explicit expressions (4.24) and (4.25). The full expression would be really cumbersome, so
let’s do some further considerations first. The functional derivatives of m(t′) and ṁ(t′) w.r.t. E(τ),
compared to the ones w.r.t. G(τ) possess an extra term which is proportional to the Dirac Delta
and comes from the direct dependence on the expansion function. Since we need to integrate those
functions, it is worth to separate the terms containing Dirac Deltas as they are going to yield analytic
expressions after the integration. On the other hand, all the remaining integrals will be computed
numerically and we will refer to them as NE(t′) +NG(t′) as they results from a contribution from the
variation of E and G separetely.
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The contributions from these analytical terms to δf read as follows:

δf(t′) =

∫ t

0
dτ δE(τ)

{
δD(t′ − τ)

[
−

2ṁD+σ
2
J

mE
+

3ṁ

m2E

∫ t′

0
dt̄ ṁD+σ

2
J

]
+

+
ṁ

m2

∫ t′

0
dt̄ δD(t̄− τ)

ṁD+σ
2
J

E

}
+ N(t′) =

=

∫ t

0
dτ δE(τ)

{
δD(t′ − τ)

[
−

2ṁD+σ
2
J

mE
+

3ṁ

m2E

∫ t′

0
dt̄ ṁD+σ

2
J

]
+

+
ṁ

m2
(t′)×

ṁD+σ
2
J

E
(τ)ΘH(t′ − τ)

}
+ NE(t′) + NG(t′).

(4.30)

The Heaviside step function has been introduced in order to extend the integration extremum to ∞
and apply properly the Dirac delta.
This result can be plugged in the last term of equation (4.27):

2

∫ t

0
dt′ (t− t′)δf =

∫ t

0
dτ δE(τ)

{
(t− τ)ΘH(t− τ)

[
−

2ṁD+σ
2
J

mE
+

+
3ṁ

m2E

∫ τ

0
dt̄ ṁD+σ

2
J

]
+

ṁ

m2

∫ t

τ
dt′ (t− t′) ṁ

m2

}
+

+

∫ t

0
dt′ (t− t′)

(
NE(t′) + NG(t′)

)
.

(4.31)

Note that this last expression only depends on the time variables t and τ .
At this point we only need to expand the variation δt in equation (4.27). The second term as whole,
then, reads:

2δt

∫ t

0
dt′ f(t′) = 2

∫ t

0
dτ

(
δD+(t)

δE(τ)
δE(τ) +

δD+(t)

δG(τ)
δG(τ)

)∫ t

0
dt′ f(t′). (4.32)

The first order variation of the average interaction term is:

δ〈SI〉 = 〈SI〉[E + δE,G+ δG]− 〈SI〉[E,G] =

=

∫
dτ

[
δ〈SI〉
δE(τ)

δE(τ) +
δ〈SI〉
δG(τ)

δG(τ)

]
(4.33)

Comparing this expression with the terms computed previously, one obtains the full expressions for
the functional derivatives of the average interaction operator with respect to E(τ) and G(τ):

δ〈SI〉
δE(τ)

= 2
δD+(t)

δE(τ)

∫ t

0
dt′ f(t′) + (t− τ)ΘH(t− τ)

[
−

4ṁD+σ
2
J

mE
+

+
6ṁ

m2E

∫ τ

0
dt′ ṁD+σ

2
J

]
+

2ṁD+σ
2
J

E

∫ t

τ
dt′ (t− t′) ṁ

m2
+

+

∫ t

0
dt′ (t− t′)NE(t′)

δ〈SI〉
δG(τ)

= 2
δD+(t)

δG(τ)

∫ t

0
dt′ f(t′) +

∫ t

0
dt′ (t− t′)NG(t′).

(4.34)

At this point, we have all the explicit mathematical expressions that we need for studying the variation
of the non-linear power spectrum through equation (4.5) and we can move to the numerical evaluation
of remaining integral functions.
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4.4 Numerical evaluation

For the numerical evaluation of integrals we used the GNU Scientific Library (GSL), see [21] as a
reference.
We need to perform numerically some integrals over time, which we derived in the previous section,
but it is more convenient to move to the scale factor as integration variable. Since we chose time as
the cosmic growth factor, which is related to scale factor through a one-to-one correspondence, we can
smoothly change variable introducing the Jacobian:∫

dD+(· · ·) =

∫
da J(a)(· · ·) =

∫
da

dD+

da
(· · ·) (4.35)

It is possible to test the accuracy of the integration routine comparing the numerical results with an
analytic solution.
For a generic cosmological model we can express the matter density parameter as

Ωm(a) =
Ωm,i

a3E2(a)
≈ 1

a3E2(a)
(4.36)

Note that, as we are considering the matter-dominated epoch, we can safely assume the initial matter
density parameter to be unitary, i.e. Ωm,i ≈ 1.
Furthermore, in numerical evaluation, we will normalize the scale factor in units today’s value. This
will, of course, hold for both a and x.
In the Einstein-De Sitter model it is possible to get closed expressions for the functional derivatives
of the cosmic growth factor from equations (4.10) and (4.14). In such model we have:

Ωm(a) = 1 , E(a) = a−3/2 , D+(a) = a (4.37)

and, therefore:
δD+(a)

δE(x)
=
ax3

5
ΘH(a− x)

(
a−5/2 − x−5/2

)
; (4.38)

δD+(a)

δG(x)
=

3ax3/2

5
ΘH(a− x)

(
x−5/2 − a−5/2

)
. (4.39)

In figure (4.1) we showed the absolute relative difference between the numerical and analytical predictions
for these two quantities at x = 0.001 as a function of a, namely:

Figure 4.1: Absolute relative difference between numerical and analytic computation of functional derivatives
of cosmic growth factor with respect to G for x = 0.001.
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Figure 4.2: Logarithmic functional derivatives of D+ with respect to E and G.

∆

(
δD+

δE,G

)
=

(
δD+

δE,G

∣∣∣∣
analytic

− δD+

δE,G

∣∣∣∣
numerical

)/
δD+

δE,G

∣∣∣∣
analytic

. (4.40)

It is evident that the error is small enough to trust the numerical integration procedure.
After this dutiful estimate of the magnitude of numerical error, we can proceed to evaluate relevant
functions from previous section for the ΛCDM model.
The logarithmic functional derivatives of the cosmic growth factor with respect to the cosmic expansion
function and the effective gravitational constant are represented in figure (4.2) as a function of both
the ordinary scale factor a and the perturbation scale factor x. The effect of the Heaviside function,
whose causal interpretation was already discussed, is here clearly evident. In fact, below the diagonal,
namely for a < x, the functional derivatives are identically zero as a perturbation at a certain x cannot
affect structure formation at earlier times.
The functional derivatives of the interaction term, are represented in figure (4.3) evaluated at the
today value of scale factor a = a0.
The conclusion of this chapter will be a brief note about the normalization of the power spectrum
that will be adopted for the following graphic representations.
As it is evident from equation (4.17) the variation of the power spectrum produced by a deviation of
E and G can be viewed as the sum of two terms. The first one is purely time dependent and its effect
is a ”rigid” amplitude change. The second one, which comes from the mean interaction term, is, on
the other hand, scale-dependent and will the shape of the power spectrum at fixed time.
Since we are mostly interested in the shape distortion due to gravity modification, a convenient choice
is to normalize the power spectrum with the amplitude of ΛCDM power spectrum at wavenumber
k = 0.01hMpc−1 and at fixed time (or scale factor).

Pnlalt(k, t) −→
PnlGR(0.01, t)

Pnlalt(0.01, t)
Pnlalt(k, t) . (4.41)

In the next chapter we will observe how this Taylor expansion method behaves with some specific
alternative gravity theories.
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Figure 4.3: Functional derivatives of SI evaluated at a0 with respect to x and k.
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Chapter 5

Application to specif models

5.1 Proca theory

The first order Taylor expansion method, which we discussed so far, should be now applied to a
concrete alternative gravity theory.
In the second chapter a schematic overview of the different ways to extend GR was provided and we
want now to focus on some of them.
The first theory that we are going to discuss is the generalized Proca theory, i.e. the most general
example of vector-tensor gravity.
The choice of starting with such a complex model and then moving to simpler ones could sound
unusual. Nevertheless, the non-linear KFT power spectrum has already been applied to it in an exact
manner in [24] and therefore it is worth to start herewith the application of the Taylor expansion
method.
After that, we will focus on scalar-tensor theories.
The Generalized Proca lagrangian can be expressed as a sum of some terms [22], namely LP =
−FµνFµν/4 +

∑6
i=2 Li.

Consider a massive vector field Aµ and define the strength Fµν = ∇µAν − ∇νAµ and its dual
F̃µν = εµναβFαβ/2. For convenience, define also the tensor Kµν = ∇µAν (∇µ be the usual covariant
derivative).
Define also the scalars X = −AµAµ/2, F = −FαβFαβ/4 and Y = AµAνFαµ Fαν .
The terms Li read:

L2 = G2(X,F, Y ),

L3 = G3(X)[K],

L4 = G4(X)R+G4, X[[K]2 − [K2]],

L5 = G5(X)GµνK
µν − 1

6
G5,X [[K]2 − 3[K][K2] + 2[K3]]− g5(X)F̃αµF̃ βµKαβ,

L6 = G6(X)LµναβKµνKαβ +
1

2
G6,X F̃

αβF̃µνKαβKµν .

(5.1)

The tensor Lµναβ = εµνρσεαβγδRρσγδ is the so called double-dual Riemann tensor, while Gi and g5 are
generic functions. Note that we used the compact notation , X for derivative with respect to X.
The following step will be to apply these equations to a specific cosmological model. First of all we
can express the background FLRW line element in the form

ds2 = −N(t)2dt2 + a(t)2 ~dx · ~dx, (5.2)

with the lapse function N(t).
Due to the symmetries of this background, the vector field is forced into the configuration Aµ =
(A0(t),~0)T . In fact, a non-vanishing spatial part or a spatial dependence in A0 would shatter the
homogeneity and isotropy requirement.

45
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The time component can be chosen as A0(t) = φ(t)/N(t). In this way we have a set of scalar degrees
of freedom represented by (N(t), a(t), φ(t)) whose evolution can be studied through the variational
principle.
In particular, we have the usual density-evolution equation for matter content:

ρ̇m + 3Hρm = 0 . (5.3)

Besides this, one gets two equations from the variation of the action with respect to gµν and one more
varying it with respect to Aµ [20]:

G2G2,Xφ
23G3,XHφ

3 + 6G4H
26(2G4,X +G4,XXφ

2)H2φ2+

+G5,XXH
3φ5 + 5G5,XH

3φ3 = ρm ,

G2 − φ̇φ2G3,X + 2G4(3H2 + 2Ḣ)− 2G4,Xφ(3H2φ+ 2Hφ̇+ 2Ḣφ)+

− 4G4,XXHφ̇φ
3 +G5,XXH

2φ̇φ4 +G5,XHφ
2(2Ḣφ+

+ 2H2φ+ 3Hφ̇) = 0

φ(G2,X + 3G3,XHφ+ 6G4,xH
2 + 6G4,x,XH

2φ2+

− 3G5,XH
3φ−G5,X,XH

3φ3) = 0 .

(5.4)

In total the system consists of four equation of motions, but only three of them are independent since
we are dealing with a massive vector field which is endowed with three physical degrees of freedom.
In fact, one can immediately notice that last equation is algebraic.
One trivial solution for the time component is φ = 0. Let’s consider however the other solution, given
implicetely by:

G2,X + 3G3,XHφ+ 6G4,xH
2+6G4,x,XH

2φ2

− 3G5,XH
3φ−G5,X,XH

3φ3 = 0 .
(5.5)

Once we know the time evolution of the background functions, we can introduce perturbations gµν =
ḡµν + δgµν and Aµ = Āµ + δAµ.
Without going into details, we directly show the effective gravitational coupling Geff for Generalised
Proca theory:

Geff =
H

4πφ

(
µ2µ3 − µ1µ4

µ5

)
. (5.6)

See [15] for the explicit expression of functions µi.
For the specific form of functions Gi we employed the model described in [15]. The functions are set
as:

G2 = b2X
p2 + F

G3 = b3X
p3

G4 =
1

16πG
+ b4X

p4

G5 = b5X
p5

(5.7)

with the exponents:

p3 =
1

2
(p+ 2p2 − 1)

p4 = p+ p2

p5 =
1

2
(3p+ 2p2 − 1)

(5.8)

and allow the solution φp ∝ H−1.
It is convenient to introduce the usual density parameters and the adimentional functions:

y ≡ 8πGb2φ
2p2

3H22p2
, βi ≡

pibi
22pi−p2p2b2

(φpH)i−2 . (5.9)
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Thanks to equation (5.5) β3 can be expressed in terms of β4 and β5 through:

1 + 3β3 + 6(2p+ 2p2 − 1)β4 − (3p+ 2p2)β5 = 0. (5.10)

The dark energy density parameter reads:

ΩDE = 1− Ωm =
6p2

2(2p+ 2p2 − 1)β4 − p2(p+ p2)(1 + 4p2β5)

p2(p+ p2)
y. (5.11)

The equation of state parameter for dark energy is itself dependent on ΩDE as:

wDE = − 1 + s

1 + sΩDE
, (5.12)

with s = p2/p.
One has then all the ingredients to compute the expansion function E(a) predicted by this theory.
Finally, in the examined model, the effective gravitational constant reads:

Geff

G
=

(p+ p2){qV u2 − 2p2y[1− 6β4(2p+ 2p2 − 3) + 2β5(3p+ 2p2 − 3)]]}
FG

(5.13)

where qV is

qV = G2,F + 2G2,Y φ
2 − 4g5Hφ+ 2G6H

2 + 2G6,XH
2φ2 (5.14)

and FG is a function of the parameters p, p2, β4, β5 which reads

FG =qV u
2{p+ p2 + 6β4 p2 y + p2(p+ p2)[1− 6β4(1 + 2p+ 2p2)+

+ 2β5(3 + 3p+ 2p2)] y}+ 2p2 y{(p+ p2)[−1 + 6β4(2p+ 2p2 − 3)+

+ β5(6− 6p− 4p2)] + 6p2[18β4(2p+ 2p2 − 1)+

− β4(1 + β5(30p+ 28p2 − 6)) + 6β2
5(p+ p2)]y} .

(5.15)

Now, equipped with the cosmic expansion function and the effective gravitational coupling for this
model, we are able to compute the variations δE and δG in order to apply our Taylor expansion model.
In figure (5.1) the relative variation of the non-linear power spectrum for Generalised Proca Theory
with respect to the ΛCDM one is shown for two models (see the parameters in the caption) and for
different values of qV .
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Figure 5.1: Relative non-linear power spectrum deviation for two models within Proca theory.
In both model we have p = 2.5. p2 = 0.5 and λ = 0.86, model 1 then has β4 = 10−4, β5 = 0.052 while model 2
has β4 = β5 = 0.

5.2 Scalars in gravity: Jordan VS Einstein frame

Let’s take a few steps back. Consider the following action [29] describing a generic theory of gravity
which include a scalar field φ interacting with the metric tensor and its derivatives.

S =

∫
d4x
√
−g

[
A(φ)R

16πG
− B(φ)

2
gµν∇µφ∇νφ− V (φ) + Lm(e2α(φ)g, φ)

]
(5.16)

This can be obtained relaxing the Strong Equivalence Principle (SEP), i.e. the last and stricter
statement.
However, one enjoys the freedom to simplify a bit this expression, thanks to two important symmetries:
invariance of the action under scalar field redefinition and conformal transformation of the metric.
There are two main possible convenient choices. The first is to take α = 0 and A = φ. This brings to:

S =

∫
d4x
√
−g

[
φR

16πG
− B(φ)

2
gµν∇µφ∇νφ− V (φ) + Lm(g, φ)

]
. (5.17)

It is immediate to observe that the modification, namely the presence of the scalar field, is gathered
in the purely gravitational part of the action. The matter part, on the other hand, does not contain
φ and the matter fields follow the geodesics of Jordan metric, in absence of external forces. In this
frame scalar-tensor theories can in general be reduced to f(R) theories with an appropriate choice
of scalar potential V (φ). Furthermore, Jordan frame is particularly suitable to test the stability of
different theories and to check if they have ghosts.
The latter choice, namely the Einstein frame, consists of imposing A = B = 1. Then:

S =

∫
d4x

√
−g̃

[
R̃

16πG
− 1

2
g̃µν∇̃µφ∇̃νφ− V (φ) + Lm(e2α(φ)g̃, φ)

]
. (5.18)
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Unlike Jordan frame, with this choice one obtains a kinetic term for gravity which is independent on
φ, but the gravitational interaction suffered by matter particles is mediated by the scalar field.

5.3 Scalar quintessence

In this paragraph we will apply our method to some examples of scalar-tensor theories. We will start
with the simplest models in which the scalar field only interact with gravity through the scalar product
in the kinetic term of the lagrangian. After that, we will move to models in which the scalar field is
coupled to dark matter and finally to the most general Horndesky theories.
As anticipated, the simpler scalar field which we can introduce in a cosmological model, as we already
anticipated, is the so called quintessence φ(x) and it is described by the lagrangian

L(φ,X) = X − V (φ) (5.19)

with X = 1
2∂

µφ gµν ∂
νφ.

The equation of motion is the Klein-Gordon equation:

1√
−g

∂ν
(√
−g gµν∂µφ

)
+
∂V

∂φ
= φ̈+ 3Hφ̇− ∇

2φ

a2
+
∂V

∂φ
= 0 . (5.20)

The energy-momentum tensor reads:

Tµν = ∂µφ∂νφ− gµν(X + V ) (5.21)

Since we are now interested in the background evolution, we can safely assume our scalar field to
be homogeneous, according with cosmological principle. This implies φ = φ(t), so all the spatial
derivatives of φ vanish.
Energy density and pressure can be computed from the components of the energy-momentum tensor
as

ρφ = −T 0
0 = X + V =

φ̇2

2
+ V , pφ = T ii = X − V =

φ̇2

2
− V . (5.22)

Introducing the equation of state parameter w = pφ/ρφ, it is easy to observe that it is ≤ −1 for every
value value of φ, φ̇.
Observe that we can use w to express φ̇ and V (φ) as

φ̇2 = (1 + w)ρφ , 2V (φ) = (1− w)ρφ . (5.23)

On the other hand, the density evolves according to the well-known continuity equation

ρ̇φ = −3H(1 + w)ρφ (5.24)

We we can choose a simple exponential form for the potential:

V (φ) = V0e
−λφ/Mp . (5.25)

With this choice we can write
V̇

V
= − λφ̇

Mp
= − λ

Mp

√
ρφ(1 + w) (5.26)

but also:

2V̇ = (1− w)ρ̇φ − ρφẇ (5.27)

Putting together these expressions, substituting ρ̇φ from the continuity equation and isolating the
time derivative, we get an evolution equation for w, namely:

ẇ = −3H(1− w2) + (1− w)
λ

Mp

√
3(1 + w)ρφ (5.28)
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Consider now a cosmological model which only contains non-relativistic matter (made up of baryons
and dark matter) and dark energy coming from the scalar field. Their evolution with the scale factor
can be described as:

ρm = ρm,0a
−3 , ρφ = ρφ,0fφ(a) (5.29)

All the information we need can be enclosed in a system of three equations, which reads:

dw

d ln a
= −3(1− w2) +

λ

E
(1− w)

√
3(1 + w)ΩDE0,0fφ

E =
√

Ωm,0a−3 + ΩDE,0fφ

d ln fφ
d ln a

= −3(1 + w)

(5.30)

It is usually employed in cosmology the Chevallier-Polarski-Linder (CPL) parametrization (see for
instance [30,35]), which describes the dependence of w on the scale factor through the simple Ansatz

w(a) = w0 + wa(1− a). (5.31)

With this choice, the scalar model is defined by the two parameters (w0, wa). The constant λ can be
expressed then as

λ =
wa − 3(1− w2

0)

(1− w0)
√

3(1 + w0)ΩDE,0

(5.32)

The third equation of the system (5.30) is hereby directly solved, and yields

fφ(a) = a−3(1+w0+wa)e3wa(a−1). (5.33)

In this simple model, the scalar field represents a form of dark energy which affects the expansion
function making it deviate form the one predicted in the ΛCDM framework. No modification of the
gravitational attraction among particles is however introduced, therefore the gravitational constant
remains the usual one.
The application to our Taylor expansion method is rather simple. In figure (5.2) the relative deviation
of non-linear power spectrum for different choices of λ is shown. The value of w0 has been fixed to
w0 = −0.95.
Increasing λ above the values represented in the plot would produce huge relative deviations.

Figure 5.2: Relative non-linear power spectrum deviation for a simple scalar quintessence model with CPL
parametrization for w.
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5.4 Scalar interacting with dark matter

In some models the scalar quintessence can be coupled to dark matter [3,14,34,37,38] or to matter in
general in the so-called coupled quintessence (CQ) [4, 5].
An example is a Yukawa-type coupling [14]

LI,Yukawa ∝ f(φ/Mp)ψ̄ψ (5.34)

where ψ, ψ̄ are, respectively a Dirac spinor and its conjugate and they describe fermionic dark matter
particles.
In Einstein frame, this is realized introducing a modified metric tensor in the matter lagrangian
corresponding to dark matter [38]. The new metric is related to the standard one through a transformation
which depends on φ. The general transformation is the following:

g̃µν = C(φ) gµν +D(φ) ∂µφ∂νφ , (5.35)

where C(φ) is the conformal part, while D(φ) is the disformal one. Let’s consider only the former.
This translates into a φ-dependent mass of dark-matter particles. The example we will focus on is:

m(φ) = m0e
−c̃(φ/Mp) . (5.36)

Thus, the density of non-relativistic dark matter can be expressed as the product of a scale factor-
dependent number density and a φ-dependent mass, namely:

ρDM = nDM (a)m(φ) = ρDM,0 a
−3 e−c̃(φ−φ0)/Mp . (5.37)

All the quantities with the subscript 0 are evaluated today.
Expression (5.37) can be plugged in Friedmann equation (neglect relativistic contributions):

3H2M2
p = ρb,0 a

−3 + ρDM,0 a
−3 e−c̃(φ−φ0)/Mp + ρφ . (5.38)

However, the Klein-Gordon equation which rules the evolution of the scalar field must contain an
additional forcing term related to this new coupling, namely

φ̈+ 3Hφ̇+
∂V

∂φ
= −ρDM,0 a

−3 ∂

∂φ
e−c̃(φ−φ0)/Mp =

= c̃ ρDM,0 a
−3 e−c̃(φ−φ0)/Mp

(5.39)

Multiplying both sides by ˙phi one can recognize the time derivative of the scalar energy density
ρ̇φ = φ̇(φ̈+ ∂φV ):

ρ̇φ + 3Hφ̇2 = c̃ ρDM,0 a
−3 e−c̃(φ−φ0)/Mp φ̇ . (5.40)

Using now the first equation in (5.23) one can get rid of the φ̇ term:

ρ̇φ + 3H ρφ(1 + wφ) = c̃ ρDM,0 a
−3 e−c̃(φ−φ0)/Mp

√
ρφ(1 + wφ) . (5.41)

From this last result it is clear that the usual continuity equation for the scalar energy density is not
valid anymore. The physical reason is that the energy-momentum tensor for the scalar field and the
one for dark matter are not conserved separately.
The fact that these two energy contributions are tangled together throughout the evolution of the
universe require a definition of effective dark energy which results from scalar field and interacting
dark matter:

ρeffDE = ρφ + ρDM,0 a
−3
(
e−c̃(φ−φ0)/Mp − 1

)
(5.42)

This picture allows to disentangle the different energy contributions, therefore dark matter will scale
in the usual way, without φ-dependent factor:

ρDM = ρDM,0 a
−3 (5.43)
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On the other hand the effective dark energy will satisfy the homogeneous continuity equation:

ρ̇effDE + 3H(1 + weff )ρeffDE = 0 . (5.44)

Deriving (5.42) with respect to time one gets:

ρ̇effDE = −3H

[
ρDM,0 a

−3
(
e−c̃(φ−φ0)/Mp − 1

)
+ (1 + wφ)ρφ

]
, (5.45)

which compared to (5.44), yields:

weff = −1 +
1

ρeffDE

[
ρDM,0 a

−3
(
e−c̃(φ−φ0)/Mp − 1

)
+ (1 + wφ)ρφ

]
. (5.46)

The first thing to notice, is that this weff can be < −1, unlike wφ.
Let’s use again for the scalar field the simple exponential potential (5.25) so that the evolution equation
for wφ is the same.
Passing from time to scale factor, our system reads:

dw

d ln a
= (1− wφ)

[
− 3(1 + wφ) +

λ

H

√
3(1 + wφ)ρφ

]
dρeffDE

d ln a
= −3

[
ρDM,0 a

−3
(
e−c̃(φ−φ0)/Mp − 1

)
+ (1 + wφ)ρφ

]
dφ

d ln a
=

√
ρφ(1 + wφ)

H
dρφ
d ln a

= −3(1 + wφ)ρφ + c̃
ρDM,0 a

−3

H
e−c̃ (φ−φ0)/Mp

√
ρφ(1 + wφ)

E(a) =

√
(Ωb,0 + ΩDM,0)a−3 + ρeffDE(a)/(3H2

0M
2
p )

(5.47)

We can require that today weff = wφ. This yields immediately the initial condition for the first

equation. Furthermore, this condition implies ρφ,0 = ρeffDE,0 = ρDE,0. The parameters left to be set
are the constant λ, the coupling c̃ and the value of the scalar field today φ0.
From the solution of the system we obtain the alternative expansion function, i.e. the first term of our
Taylor-expanded power spectrum. However, the fifth force suffered by dark matter particles appears
as an effective change in the gravitational coupling. In the simple model we are considering, this
simply reads:

Geff = G(1 + 2c̃2) . (5.48)

In figure (5.3) the results for different values of the coupling constant c̃ are shown.
It is important to stress that in both the simple quintessence and in the coupled-quintessence model
we employed for w the CPL parameterization, which is a fit holding for low redshifts. This choice
is aimed to produce an alternative expansion function which does not deviate too much from the
ΛCDM one, in order to safely assume δE � 1. The direct solution of the evolution equation would
provide a trend for w which is rather far from the linearity of CPL parameterization at early times.
The effect on the non-linear power spectrum would be in this case dramatic, with deviations of order
∼ 10 or more from ΛCDM , regardless of values of the characteristic parameters. Such an outcome
could however been interpreted as a strong constraint on this kind of theories.
As we will see in the next paragraph, a more complex model of scalar-tensor gravity could predict
convincing non-linear power spectra even with the direct solution of the equations of motion and
without strong assumptions on the trend of w.
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Figure 5.3: Relative non-linear power spectrum deviation for the coupled quintessence model. A value of λ = 0.5
has been set in order to see the role of scalar field-DM coupling.

5.5 Horndeski theory

As already mentioned, the Horndeski theory is the most general scalar-tensor theory with second order
equation of motion. Similarly to the Proca theory, its lagrangian can be expressed as the sum of the
following terms [16,26,29]

L2 =G2(φ,X)

L3 =−G3(φ,X)�φ

L4 =G4(φ,X)R+G4,X

[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
L5 =G5(φ,X)Gµν(∇µ∇νφ)− 1

6
G5,X

[
(�φ)3+

− 3(�φ)(∇µ∇νφ)(∇µ∇νφ) + 2(∇µ∇αφ)(∇α∇βφ)(∇β∇µφ)
]
.

(5.49)

Observe that it is easy to recover from this general action the simpler scalar-tensor theories. For
instance, the choice:

G2 = G2(φ,X), G3 = 0, G4 =
M2
p

2
, G5 = 0 (5.50)

leads to quintessence and K-essence, where the former comes from the particular case G2(φ,X) =
X − V (φ) [13].
Considering again the general lagrangian and expressing again the line element as in (5.2) one can take
the variation w.r.t. to the lapse function N(t) and the scale factor a(t) [16], obtaining respectively:

5∑
i=2

Ei = −ρm

5∑
i=2

Pi = 0

(5.51)
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with the functions

E2 = 2X G2,X −G2 ,

E3 = 6Xφ̇H G3,X − 2X G3,φ ,

E4 = −6H2G4 + 24H2Ẋ(G4,X +X G4,XX)− 12HXφ̇G4,φX − 6H φ̇G4,φ ,

E5 = 2H3Xφ̇(5G5,X + 2X G5,XX)− 6h2X(3G5,φ + 2X G5,φX) ;

(5.52)

and

P2 = G2 ,

P3 = −2X(G3,φ + φ̈ G3,X) ,

P4 = 2(3H2 + 2Ḣ)G4 − 12H2X G4,X − 4H Ẋ G4,X − 8Ḣ X G4,X+

− 8HX Ẋ G4,XX + 2(φ̈+ 2Hφ̇)G4,φ + 4X G4,φφ

+ 4X(φ̈− 2Hφ̇)G4,φX ,

P5 = −2X (2H 3̇φ̇+ 2H Ḣ φ̇+ 3H2φ̈)G5,X − 4H2X2φ̈ G5,XX+

+ 4HX (Ẋ −HX)G5,φX + 2[2(Ḣ X +H Ẋ) + 3H2X]G5,φ+

+ 4HX φ̇G5,φφ .

(5.53)

The equation of motion for φ can be written in the elegant form

a−3 d

dt
(a3 J) = Pφ (5.54)

with

J = φ̇ G2,X + 6HX G3,X − 2φ̇ G3,φ + 6H2φ̇(G4,X + 2X G4, XX)+

− 12HX G4,φX + 2H3X (3G5,X + 2X G5,XX)− 6H2 φ̇(G5,φ +X G5,φX) ,

Pφ = G2,φ − 2X(G3,φφ + φ̈ G3,φX) + 6(2H2 + Ḣ)G4,φ+

+ 6H(Ẋ + 2HX)G4,φX − 6H2X G5,φφ + 2H3Xφ̇G5,φX .

(5.55)

Finally, the matter density evolution is ruled by the usual continuity equation (5.3).
We focus now on a concrete model (model D2 in [26]), given by the lagrangian:

L = (1− 6Q2)F (φ)X −m3φ+ β3X �φ+
M2
p

2
F (φ)R . (5.56)

with F (φ) = e−2Q(φ−φ0). One needs to set β3, Q, and φ0. The cosmological evolution of this model is
studied extensively and even in a Beyond-Horndeski framework, in [27].
The term ∼ X �φ characterises the so-called cubic Galileon, as in the limit of minkoski spacetime the
equation of motion of such a model satisfies the galilean symmetry

∂µφ 7−→ ∂µφ+ bµ . (5.57)

For a constant four-vector bµ.
The scalar field is non-minimally coupled to gravity through the function F (φ), which produce a fifth
force, which is efficiently screened by a mechanism of chameleon type (high density suppression).
In order to solve the equations of motion for this model, it is convenient to introduce the following
dimensionless variables:

x1 =
φ̇√

6MpH
, Ωφ2 =

m3φ

3M2
pH

2 F
, Ωφ3 = − β3φ̇

M2
pH

2 F
,

Ωr =
ρr

3M2
pH

2 F
, Ωm =

ρm
3M2

pH
2 F

, λ = −Mp

φ
.

(5.58)
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The density parameter for matter can be however expressed in terms of the other variables thanks to
the Friedmann equation:

Ωm = 1− (1− 6Q2)x2
1 − 2

√
6Qx1 − Ωφ2 − Ωφ3 − Ωr . (5.59)

The differential system, using the notation ′ = d/d ln a , reads:

x′1 = x1(εφ − h) ,

Ω′φ2 = Ωφ2[
√

6(2Q− λ)x1 − 2h] ,

Ω′r = 2Ωr(
√

6Qx1 − 2− h) ,

Ω′φ3 = Ωφ3[2
√

6Qx1 + 3εφ − h] ,

λ′ =
√

6λ2x1 .

(5.60)

where the functions εφ = φ̈/(Hφ̇) and h = Ḣ/H2 have been defined. Their full expressions are:

h = −{Ωφ3(6 + 2Ωr − 6Ωφ2 + 3Ωφ3) +
√

6Ωφ3(2Q− λΩφ2)x1+

+ 2[3 + Ωr − 3Ωφ2 + 6Ωφ3 − 6λQΩφ2 + 6Q2(1− Ωr+

+ 3Ωφ2 − 2Ωφ3)]x2
1 + 2

√
6Q(6Q2 − 1)(Ωφ3 − 2)x3

1+

+ 6(12Q4 − 8Q2 + 1)x4
1}/D ,

εφ = {
√

6Ωφ3(Ωr − 3Ωφ2 − 3) + 12[Q(Ωr − 1− 3Ωφ2 − 2Ωφ3)+

+ λΩφ2]x1 + 3
√

6[Ωφ3 − 4 + 2Q2(4 + Ωφ3)]x2
1+

+ 12Q(5− 6Q2)x3
1}/(
√

6D)

(5.61)

with

D = 4x2
1 + 4Ωφ3 + 4

√
6Qx1Ωφ3 + Ω2

φ3 . (5.62)

Finally, the equation of state parameter for dark energy reads:

wDE = −{3 + 2h− [3 + 2h+ 3(1 + 2Q2)x2
1 − 3Ωφ2 − εφ Ωφ3

− 2
√

6Qx1(2 + εφ)]}F × {3− 3[1− Ωφ2 − Ωφ3+

+ (6Q2 − 1)x2
1 − 2

√
6Qx1]F }−1 .

(5.63)

At this point one is able to obtain the expansion function integrating these equations.
The effective gravitational coupling reads:

Geff = (1 + 2Q2)G . (5.64)

In figure (5.4) the relative variation of the non-linear power spectrum is presented. Note that more
negative values of the coupling Q tend to lower the power spectrum at small scales with respect to
the standard one.
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Figure 5.4: Relative non-linear power spectrum deviation for the Horndeski model discussed in this chapter.
Each color is associated to a value of the initial condition λ and different traits represent different values of Q.

5.6 Conclusions and future prospects

In this last chapter some concrete applications of the KFT Taylor expansion method were presented.
Even though different models were compared, some common features can be observed.
First of all, the departure of non-linear power spectra predicted by alternative gravity theories with
respect to standard model always occur at k & 0.1h/Mpc, i.e. at the scale of galaxy clusters or
beneath. Indeed, it is at small scales that one expects to see the most evident non-linear gravitational
effects and, consequently, the possible signatures of additional degrees of freedom from alternative
gravity.
Some interesting physical intuitions about the role of different parameters within a certain theory
can also be inferred from the plots of this last chapter. In the Proca theory for instance, it is clear
how increasing parameter qV , which measures the magnitude of the contribution from vector modes,
results in an enhanced two-point correlation. This is in agreement with [24], even though a different
normalization choice was used in that work.
A peculiar behavior can be seen in the simple quintessence model, as increasing in λ seems to inhibit
the correlation. This suppression is effective up to k ∼ 1.0, while the trend is inverted at very small
scales.
Something similar, but more regular is observable in Horndeski. In particular, the initial condition
λ, which is inversely proportional to the scalar field, tends to suppress the correlation. On the other
hand, the coupling Q enhances it.
It is finally important to stress that the first order truncation of the functional Taylor expansion would
require δE , δG � 1. This could be not always the case, especially for E, which in a dynamic dark
energy model at very early times can deviate considerably from the expansion function induced by
ΛCDM . Nevertheless, the wide applicability of this method could provide interesting constraints on
many alternative gravity theories and on a wide scale range.
In fact, it would be interesting to extend this method to many other models which were recently
proposed in literature and try to put constraints on specific parameters.
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It would be also important in the future to compare these results with the ones from numerical
simulations. The application of the KFT mean interaction operator to ΛCDM non-linear power
spectrum yielded a good agreement with numerical results even at small scales (see [7,9]), even though a
possible underestimation of the correlation at k & 5h/Mpc has been pointed out in [7]. We have to bear
in mind that, as already discussed, the KFT mean-field approach stands upon some approximations
and could in principle be extended to consider for instance three-particle correlations or a different
interaction potential. In general, while at large scales the matter is characterised by a rather smooth
collective behavior, as we move to smaller scales, an appropriate modeling of fundamental physics
becomes more and more involved.
Anyways, as we leave ΛCDM to explore alternative models, a comparison with numerical simulations
could also be crucial for having a clearer idea of possible limits of the Taylor expansion approach
developed so far.
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