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Abstract 

The impact of climate change on extreme rainfall events presents a critical challenge for 

urban planning, agriculture, and water resource management. This study aims to redefine 

Depth-Duration-Frequency (DDF) curves under changing climate conditions, focusing on 

the Veneto region in Northern Italy. Utilizing data from 29 rain gauge stations, we observed 

significant variability in rainfall patterns, which raises questions about the applicability of 

traditional, stationary DDF curves for future infrastructure planning. To improve the 

predictive capability of DDF curves, we employed Convection-Permitting Models (CPMs) 

and compared their outputs with observational data. While initial comparisons revealed 

biases in the CPMs, bias-correction techniques significantly improved the model's 

alignment with observational data. 

Our results indicate that there is a projected increase in 1-hour rainfall across a range of 

return periods by the year 2100. Specifically, increases ranged from 29% to 66% for various 

return periods after bias-correction. The study reveals that traditional methods based on the 

Clausius-Clapeyron relation may not be sufficient for capturing the nuances of extreme 

rainfall events, highlighting the importance of CPMs in future climate projections. 

The findings underscore the need for region-specific climate adaptation strategies and pave 

the way for more robust, climate-resilient infrastructure planning. These insights are not 

just pertinent for Northern Italy but could be indicative of larger, global patterns, 

emphasizing on how we approach climate change mitigation and adaptation. 
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Chapter 1 

1. Introduction  

The rising occurrence of extreme weather events due to climate change continues to have 

severe societal implications, particularly for urban and rural development, public 

infrastructure, agriculture, and human health (Mailhot & Duchesne, 2010; Rosenberg et 

al., 2010). Extreme rainfall events are of particular interest due to its potential to increase 

in both intensity and frequency as a result of global warming (Bao et al., 2017; Fischer & 

Knutti, 2015; Prein et al., 2017). 

Local depth-duration-frequency (DDF) curves are fundamental to the design of most 

hydraulic engineering structures. These curves are designed to reflect the statistical 

characteristics of precipitation and to represent the extreme rainfall depth (mm) for various 

time spans (ranging from minutes to days) and average recurrence intervals (years). 

Typically, precipitation depth for different durations are estimated by fitting a theoretical 

probability distribution to annual maximum (AM) precipitation samples or peaks over 

threshold (POT) samples. DDF curves for urban and small-catchment applications usually 

refer to rainfall durations between about  5 minutes and 24 hours and return periods ranging 

from 2 to 100 years (Martel et al., 2021). Currently, the derivation of  DDF curves for 

engineering design predominantly rests on the assumption of stationarity in extreme 

rainfall properties (Arnbjerg-Nielsen et al., 2013; Cheng & AghaKouchak, 2014). 

However, this concept is increasingly challenged by our improved understanding of the 

climate system. Long-term interannual variability due to variability inherent to the climate 

system,  including phenomena like the Atlantic Multidecadal Oscillation and the El Nino 

Southern Oscillation, has been shown to decisively impact rainfall and temperature patterns 

(Milly et al., 2008). More importantly, anthropogenic emissions of greenhouse gases 
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(GHG), are modifying the global water cycle in ways that are now known to significantly 

modify the frequency and intensity of extreme rainfall events (Mamoon et al., 2019; Myhre 

et al., 2019). Studies have documented marked increases in the magnitude of daily rainfall 

during the second half of the 20th century (Min et al., 2011), and further escalation in 

rainfall extremes is anticipated in future decades (Donat et al., 2016). Short-duration 

rainfall is showing even more marked increases in the frequency of  severe events (Dallan 

et al., 2022; Fowler, Ali, et al., 2021; Fowler, Wasko, et al., 2021; Westra et al., 2014). 

The increase in daily and sub-daily extreme rainfall, both observed and projected, raises 

doubts about using historical DDF curves for future civil infrastructure planning. An 

erroneous assumption about possible changes in DDF curves can result in inadequate 

infrastructure that is vulnerable to failure (under-design) or can lead to costly overdesign. 

Thus, there is a pressing need to define how information about the changing climate can 

be incorporated into the development of  DDF curves representing the future extremes 

impacting water infrastructure (Schlef et al., 2023). 

An approach proposed for assessing the possible changes in DDF curves is through the use 

of simulated projections from climate models which is a method grounded in physical 

principles but affected by significant model uncertainties. A critical aspect of this approach 

is the model ability to describe changes in rainfall, and particularly in their extremes. This 

ability hinges heavily on whether climate models can successfully represent convective 

processes, responsible for rainfall generation, particularly at small spatial and temporal 

scales. Convective processes generate rainfall patterns at scale of a few kilometers, such 

that the resolution of climate models used for these objectives need to be of the same order 

of magnitude (Berg et al., 2019). This requirement contrasts with the typical resolution of 

Global and Regional Climate Models, most often measured in tens of kilometers. However, 

in the past decade, a new generation of Convection-Permitting Models (CPMs) has been 

developed, which operate at horizontal resolutions ≤4 km, thereby representing a 

potentially powerful tool for modeling shorter-duration rainfall extremes (Meredith et al., 

2021) (Barlage et al. 2021). The potential of CPMs to offer a detailed and sophisticated 

depiction of such extremes in Northern Italy is a promising avenue for enhanced water 

management and risk mitigation strategies. 
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This study leverages recent advancements in CPMs to define how these can be used to 

redefine DDF curves under changing climate conditions, with particular reference to 

Veneto region in Northern Italy. First, I seek to evaluate the hypothesis that an upward shift 

and steepening trend can be detected in the DDF curves under a global warming scenario. 

Second, my objective is to understand if the alterations observed are dependent upon the 

return period. My third and last objective is to elucidate any potential connection between 

projected changes in the return levels of the DDF curves and the degree of local increase 

of temperature. Answers to these questions are essential to clarifying and quantifying the 

impacts of climatic changes on extreme rainfall events, and, therefore, to developing a 

robust basis for assist in designing climate-proof infrastructure. 

The Thesis is organized as follows. Chapter 2 will present the methodology and theoretical 

background of the work. Chapter 3 will be dedicated to presenting the results, and Chapter 

4 will present a discussion of the results and some conclusions. 
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 Chapter 2 

2. Theory and Methods  

2.1. Precipitation Physics Background  

The process of precipitation generation is initiated by the evaporation of water, 

transforming it into water vapor in the atmosphere. When subject to cooling processes, 

associated with buoyancy-driven or forced lifting, this vapor may condense around 

nucleation aerosol particles. This results in cloud formation, and,  if conditions are suitable 

for drop growth, rain falls from these clouds due to gravity (Martel et al., 2021). Depending 

on the lifting processes at play two main precipitation types may be produced (Poujol et 

al., 2021).  

a. Stratiform precipitation: This precipitation type is defined as a process in 

which the vertical air motion is generally small compared to fall velocity of 

ice crystals and snow.  

b. Convective precipitation: In the convective precipitation process, the 

vertical air motion is generally large compared to fall velocity of ice crystals 

and snow. For instance, the mean vertical air velocity at a given height in 

the updraft zone has a magnitude of w ~ 1-10 m/s, which equals or exceeds 

the typical fall speeds of ice crystals and snow.  

Because all the above processes depend on the amount of moisture that the atmosphere can 

hold and may be subject to condensation, a potential dependence of precipitation on 

temperature becomes immediately evident. According to the thermodynamic-based 

Clausius-Clapeyron relation, the amount of water vapor that can be held by an air parcel at 
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saturation is an increasing function of temperature. Hence, in a world that is projected to 

be warmer, more water vapor will be present in the atmosphere, potentially resulting in an 

increase in the amounts of precipitation delivered by the two kinds of rainfall-generating 

mechanisms (Trenberth et al., 2003). Among these types, convective precipitation, chiefly 

responsible for extreme precipitation events within sub-daily periods, is expected  to 

experience the greatest increase (Dai et al., 2020).  

2.1.1. The Thermodynamic and Dynamic Mechanisms of Extreme Precipitation 

Understanding the physical processes behind extreme precipitation events is essential for 

their prediction under a changing climate. To first order, the effects of climate change on 

extreme precipitation mechanisms has been suggested to be controlled by thermodynamics 

and by circulation mechanisms. Thermodynamic considerations are based on the Clausius-

Clapeyron (CC) equation, which is given as:  

𝜕𝑠𝑒

𝑠𝑒
=  

𝐿𝑣𝜕𝑇

𝑅𝑣𝑇2   (1) 

Here 𝑠𝑒 represents the saturation water vapor pressure at temperature T (degree Kelvin) 

(the absolute atmospheric temperature).  𝐿𝑣 stands for the latent heat of vaporization, and 

𝑅𝑣 is the gas constant. This notion suggests that increasing temperatures increases the air 

water-holding capacity by about 7% per degree Celsius (Fischer & Knutti, 2015). Because 

rainfall extremes are constrained by the level of moisture availability in the atmosphere, it 

is initially anticipated that changes in rainfall intensities will correspond with the CC 

relation (Trenberth et al., 2003). This notion has guided much recent and ongoing research 

on extreme precipitation changes (Drobinski et al., 2016, 2018; Hardwick Jones et al., 

2010; Singleton & Toumi, 2013; Utsumi et al., 2011).  

Based on the rationale behind the CC relationship we can compute the future rain 

intensities according to most likely local increase in temperatures by the following formula 

(Martel et al., 2021): 
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𝐼𝑓𝑢𝑡 =  𝐼𝑟𝑒𝑓 [
100+ 𝑅𝑠𝑐

100
]

∆𝑇

   (2) 

Where 𝐼𝑟𝑒𝑓 and 𝐼𝑓𝑢𝑡 refers to reference and future rain intensities. 𝑅𝑠𝑐 is the rainfall scaling 

factor based on CC relationship (% ℃⁄ ), and ∆𝑇 indicates the projected difference in local 

temperature. In implementing of the above formula, several guidelines (CSA, 2019; ARR; 

Ball et al. 2019) recommend using a value of 5 to 7% for the 𝑅𝑠𝑐.  

However, the literal interpretation of CC scaling as the main, if not the only, mechanism 

controlling extreme precipitation is debatable and debated. It was empirically observed that 

an increase in water-holding capacity does not necessarily lead to more rainfall and several 

studies found extreme precipitation deviating from the CC relationship in many regions, 

with changes in the intensity of sub-daily extreme precipitation reaching twice the CC rate 

in mid-latitude areas (Lenderink et al., 2011; Westra et al., 2014). In contrast, some regions 

even exhibit decreasing precipitation intensity with warming (Lenderink & Fowler, 2017). 

Additionally, precipitation types and event durations also influence this correlation (Berg 

& Haerter, 2013; Wasko et al., 2015).  

The dynamic mechanisms responsible for atmospheric vapor transport, on the other hand, 

must also play a role, which has not yet been thoroughly described (O’Gorman, 2015). 

These mechanisms have the potential to create conditions conducive to rapid water 

condensation, thereby controlling the occurrence of various weather systems (Liu et al., 

2020; Trenberth, 1999). As our understanding of these dynamics continues to evolve, it 

becomes more important to grasp their influence on extreme rainfall events under changing 

climate conditions. 

Recent research into extreme rainfall events provides evidence of their likely increase in 

both intensity and frequency across various timescales. The magnitude of these changes, 

however, can be region-dependent, thus underscoring the need for a deeper understanding 

of both thermodynamic and dynamic mechanisms at play in a warming climate (Dallan et 

al., 2022; Formetta et al., 2022; Fosser et al., 2020; Myhre et al., 2019). 
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2.1.2. Climate Models and Their Ability to Simulate Extreme Rainfall 

Climate models offer a comprehensive view of precipitation extremes on a global scale 

(Sun et al., 2007), along with more detailed analyses at the regional level (Ban et al., 2014). 

These models can be utilized to explore various emissions scenarios or specific radiative 

forcings (Chen et al., 2011; Kodra et al., 2011), and  may support  investigations into the 

dynamics of precipitation generation (O’Gorman & Schneider, 2009). However, there are 

notable constraints in climate model ability to accurately reproduce precipitation extremes, 

particularly at sub-daily scales. These limitations are partly due to the employment of 

parameterized convection, a method used to depict deep convection (the vertical transport 

of air masses over large vertical distances; above the 500 hPa pressure level) occurring on 

scales smaller than the grid size (Kharin et al., 2007; Kooperman et al., 2014; Wehner, 

2013).  

Climate models can be categorized into global or regional types. Global models, known as 

Global Climate Models (GCMs), encompass the entire Earth and typically have resolutions 

spanning hundreds of kilometers, allowing them to depict broad-scale climate patterns. On 

the other hand, Regional Climate Models (RCMs) focus on particular areas and offer more 

detailed resolutions, often around tens of kilometers. This granularity aligns more with 

actual observations of aspects like topography, land cover, and soil varieties, all of which 

influence the climate. However, the temporal and spatial resolutions of both GCMs and 

RCMs are too coarse to directly assess future changes in sub-daily precipitation. To achieve 

the needed granularity, it becomes essential to employ downscaling and bias correction to 

refine the outputs to the desired spatial and temporal scales. Given that GCMs and RCMs 

usually possess resolutions of 10 km or even coarser, they depend on parameterizations to 

account for subgrid-scale processes. The parameterization of convection, which is vital for 

these smaller-scale processes, introduces a known source of uncertainty, affecting the 

model ability to accurately simulate rainfall extremes (Berg et al., 2019). While the 

limitations and uncertainties in modeling precipitation extremes, particularly at sub-daily 

scales, are known, it is also essential to recognize the contributions of Global and Regional 

Climate Models in describing the earth system at large scales.  
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Shifting our focus to a daily timescale, investigations utilizing multiple Global Climate 

Models (GCMs) indicate their consistent prediction of changes in heavy rainfall under 

climate change scenarios. Increases are estimated to be about 7%/°C at midlatitudes 

(Fischer et al., 2014), consistent with CC scaling. Further analysis by Fischer and Knutti 

(2015) estimated that up to 18% of heavy daily rainfall could be linked to observed 

temperature increases, with attribution percentages growing with more intense warming. 

Bao et al. (2017) and Tabari (2020) emphasized the skill of Regional Climate Models 

(RCMs) in reproducing observed apparent scaling and in projecting future rainfall 

intensities and frequencies that surpass observed rates, with increases between 6% and 15% 

depending on RCM configurations. Pfahl et al. (2017) break down daily heavy rainfall into 

its thermodynamic and dynamic elements, illustrating that the thermodynamic component 

alone would result in a uniform increase of approximately 7%/°C across various GCMs. In 

contrast, atmospheric vapor transport dynamics bring about a modification in regional 

responses, intensifying the increases in places like the Asian monsoon region, while 

diminishing them in areas such as the Mediterranean and South African regions. This 

analysis underscores the intricate nature of rainfall patterns and of their response to both 

consistent thermodynamic factors and varying regional dynamics. Additional research by 

Kharin et al. (2013) and Martel et al. (2020) showed an anticipated 3- to 4-fold increase in 

the frequency of extreme rainfall events in the future. However, it is known that rainfall 

processes are not explicitly represented at the coarse spatial scales characterizing GCMs, 

and hence these conclusions cannot be considered to be final.  

These complexities in the representation point to the need for refined modeling, especially 

in the realm of sub-daily precipitation. Rainfall events with sub-daily duration are projected 

to increase in future scenarios. However, their proper model representation requires short 

model temporal resolution (sub-hourly to hourly) and high-resolution discretizations (order 

of one to a few kilometers).  
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2.1.3. Convection Permitting Models 

In the past decade, the emergence of convection-permitting climate models (CPM), with 

horizontal resolutions of 4 km or less, has greatly enhanced our ability to simulate short-

duration rainfall extremes, even at sub-hourly levels (Meredith et al., 2021). This 

advancement has significant implications for water management practices (Orr et al., 

2021). Within these fine spatial resolutions, deep convection is explicitly modeled, 

rendering the need for deep convection parameterization in CPMs unnecessary (Fosser et 

al., 2020; Westra et al., 2014). Compared to RCMs, which operate at horizontal resolutions 

ranging from 10 to 50 km, CPMs provide substantial benefits in modeling rainfall extremes 

on hourly scales and the daily pattern of rainfall (Ban et al., 2014; Fosser et al., 2015; 

Kendon et al., 2014; Lind et al., 2020). 

This enhancement in rainfall representation makes CPM results potentially more robust in 

describing future changes in climate. Several studies utilizing CPMs have unveiled a 

growing intensification of hourly rainfall extremes across various regions. This tendency 

has been identified in simulations for the UK (Fosser et al., 2020; Kendon et al., 2014), the 

Alps (Ban et al., 2015, 2020), Belgium (Vanden Broucke et al., 2019) , and Germany (Knist 

et al., 2020), indicating a trend that is both consistent and widespread. Significantly, CPMs 

reveal a more pronounced intensification of forthcoming extreme precipitation compared 

to RCMs (Kendon et al., 2014).  

However, CPMs are still relatively new and considered to be in a developmental stage. 

CPM runs have been found to be affected by bias, such as overly intense precipitation 

(Kendon et al., 2014), or overly dry and warm conditions over specific continental areas 

(Barlage et al., 2021; Berthou et al., 2020). Despite these limitations, the lack of accessible 

high-resolution gridded datasets, both spatially and temporally, hinders the widespread 

application of bias correction, a commonly recommended solution to these biases (Argüeso 

et al., 2013). Furthermore, until recently, a comprehensive assessment of the uncertainties 

remained unattainable, largely due to the substantial computational costs associated with 

running ensembles at such high resolution. 
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2.1.3.1. Bias Correction Method 

Bias correction is a technique used to establish a correspondence between observed 

historical rainfall data and the rainfall data generated by climate prediction models. The 

essence of this process is to apply a mapping that transforms the distribution of historical 

rainfall from the model to closely mirror the observed historical rainfall distribution. Once 

established, this mapping can be subsequently used to adjust future rainfall data predicted 

by the climate model to eliminate bias, thereby yielding more accurate future rainfall 

sequences. In this study, I am implementing a popular bias correction methodology known 

as Quantile Mapping (henceforth referred to as QM). 

The QM approach is widely utilized for minimizing systematic discrepancies in various 

meteorological variables, such as precipitation and temperature, obtained from climate 

models  (Cannon, 2008). The principle behind QM is the creation of a transfer function that 

most accurately maps the model's cumulative density function (CDF) of the variable onto 

the CDF derived from observational data (Gudmundsson et al., 2012). 

The QM process entails estimating the cumulative density functions for observed (𝐹0) and 

modeled (𝐹𝑚) historical rainfall amounts. These estimates are then combined to form a 

transformation function defined as: 

𝑥𝐶𝑜𝑟𝑟 = 𝐹0
−1[𝐹𝑚(𝑥𝑚)]   (3) 

In this equation, 𝑥𝑚 stands for the rainfall intensity as predicted by the climate prediction 

model, whereas 𝑥𝐶𝑜𝑟𝑟 represents the bias-corrected rainfall intensity. The transformation 

function 𝐹0
−1[𝐹𝑚]  consequently yields the observed distribution (or an approximation 

thereof, depending on the methodology) when applied to the historical time series from the 

model. When this function is applied to the future time series predicted by the model, it 

produces a bias-corrected future scenario. In summary the following steps were taken place 

to implement the QM: 

a) The CDFs for both the observed (𝐹0) and modeled (𝐹𝑚) historical 

rainfall data are computed. 
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b) Using the computed CDFs, a transfer function is created that maps 𝐹𝑚 

onto 𝐹0. 

c) The transfer function is applied to the modeled historical data to ensure 

that it closely approximates the observed historical data. 

d) The transfer function is applied to the future rainfall data predicted by 

the climate model to obtain bias-corrected future rainfall estimates. 

2.2. Statistical and Probabilistic Methods 

In order to advance the accuracy of future projections of short-duration rainfall extremes, 

some existing work suggests the combination of convection-permitting models with 

sophisticated statistical methodologies that optimally exploit shorter records (Zhang et al., 

2017). Responding to this recommendation, this thesis proposes the utilization of the 

Metastatistical Extreme Value Distribution (MEVD), as proposed by Marani and Ignaccolo 

(2015). The MEVD approach suggests that the nature of extreme events is shaped by the 

repeated sampling of the ordinary events. Once the distribution of these ordinary events is 

determined, the distribution of extremes, defined as yearly maxima, becomes a function of 

this foundational distribution and of the number of times it is sampled every year (Zorzetto 

et al., 2016). This approach not only relaxes the asymptotic assumption of the traditional 

extreme value theory, but also leverages the whole available set of data, rather than relying 

solely on annual maxima or on a few peaks over a high threshold, as in the case of the 

Generalized Extreme Value Distribution (GEV). This dual advantage significantly reduces 

the uncertainty in parameter estimation (Zorzetto et al., 2016). 

2.2.1. The Conventional Extreme Value Theory  

In traditional Extreme Value Theory (EVT), extremes are identified as "block maxima", 

meaning the events that have the highest magnitude x within a fixed-length period 

(frequently 1 year). The ‘n’ events that happen within each block are presumed to be 
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independent, and their magnitude to adhere to the same overarching cumulative 

distribution F(x). This notion of block maxima and the underlying assumptions about event 

independence and distribution within EVT lay the foundation for more specific analyses of 

extreme values. When analyzing a specific event duration of interest, the study of extreme 

value often focuses on the distribution of annual maxima, either by evaluating it directly 

or by examining the distribution of rainfall values exceeding a high threshold (Davison & 

Smith, 1990).  

The traditional Extreme Value Theory (EVT) recognizes a Generalized Extreme Value 

(GEV) distribution for yearly maxima, under the assumptions that rainfall intensity is 

independent and identically distributed (i.i.d.), and that the number of occurrences per year 

tends towards infinity (Fisher & Tippett, 1928; Gumbel, 1958; Jenkinson, 1955). Because 

of the latter hypothesis, this formulation is often said to be an asymptotic one. The 

formulation of the GEV distribution encompasses the special cases of the Gumbel, Fréchet, 

and Weibull distributions. The GEV cumulative distribution function can be articulated as 

follows (Coles, 2001): 

𝜁𝐺𝐸𝑉(𝑥) = 𝑒𝑥𝑝 {− (1 + 𝜉 (
𝑥− 𝜇

𝜎
))

−1

𝜉
} ,   (4) 

where 𝜁(𝑥) is defined for 1 + 𝜉 (
𝑥− 𝜇

𝜎
) > 0; elsewhere, 𝜁(𝑥) is either 0 or 1 (Smith, 1989). 

The GEV distribution is characterized by three parameters: the location parameter (𝜇), 

which specifies the central tendency of the distribution; the scale parameter (𝜎), which 

details the deviation around 𝜇; and the shape parameter (𝜉), which describes the tail 

behavior of the GEV distribution. Depending on the value of 𝜉, the GEV may correspond 

to different distributions: when 𝜉 tends to 0, it leads to the Gumbel distribution; when 𝜉 < 

0, it results in the Weibull distribution; and when 𝜉 > 0, it gives rise to the Fréchet 

distribution. GEV parameters are often estimated using a Maximum Likelihood approach 

(Otten & Van Montfort, 1980; Prescott & Walden, 1980) or using L-moments (Hosking, 

1990). 
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Another approach to EVT theory, closely related to GEV, involves examining the 

distribution of rainfall values exceeding a certain threshold known as the peak over 

threshold (POT) approach (Balkema & De Haan, 1974; Pickands, 1975). The POT method 

involves setting a high-intensity threshold, and then presuming a Poisson distribution for 

occurrences of events that surpass this threshold, then it models these values by employing 

a generalized Pareto distribution (GPD). This GPD distribution is a widely-used tool for 

modeling time series based on the POT method and has been applied to diverse fields such 

as precipitation (De Michele, 2003), earthquake data (Pisarenko & Sornette, 2003), wind 

speed (Holmes & Moriarty, 1999), and economic data (Gençay & Selçuk, 2004), among 

others. Given a sequence 𝑌 of independent and random variables, for a large enough 

threshold 𝑢, the cumulative distribution function of the excesses 𝑌𝑒 = 𝑌 − 𝑢, conditional 

on 𝑌 > 𝑢, is approximated by the GPD (Coles, 2001): 

𝜁𝐺𝑃𝐷(𝑦𝑒) = 1 −  (1 + 𝜉 (
𝑦𝑒

𝜎
))

−1

𝜉
,    (5) 

where 𝜉 and 𝜎 are the shape and the scale parameters, respectively. The interarrival of 

exceedances is assumed to be exponentially distributed (Poisson process). The parameters 

involved in the POT approach are often estimated using a Maximum Likelihood approach 

(Grimshaw, 1993). It may be shown that the POT approach with Poisson exceedance 

arrivals leads again to a GEV formulation, thereby providing a way of estimating its 

parameters that uses a larger amount of observational information. 

 While the methodologies and distributions described above form the core of traditional 

EVT, and have been utilized in various fields, there are significant challenges and 

assumptions underlying these approaches that may limit their applicability. 

Extreme value theory, despite its conceptual appeal in providing justification for using the 

GEV distribution and the POT approach, comes with restrictive assumptions. These 

include the need for large samples from independent and identically distributed data to 

enable the AMS or POT to asymptotically converge to the GEV and GPD distributions 

(Fisher & Tippett, 1928). The convergence assumptions, though common, are often not 

verifiable in practice, as the number of independent rainfall events in a year is far from 
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infinite (Koutsoyiannis, 2004), and long data records are required, particularly when 

considering rainfall extremes at sub-daily durations (Libertino et al., 2018). Additionally, 

the assumptions of the POT approach present limitations, holding for a “large enough” 

threshold and under similar asymptotic assumptions to the GEV derivation (Pickands, 

1975). This complicates the selection of a suitable threshold for the POT approach and 

reveals that traditional EVT can only use a small fraction of the observations, resulting in 

a waste of information. These challenges question the overall effectiveness and efficiency 

of traditional EVT approach, hampering the proper analysis and utilization of extreme 

value data. 

2.2.2. The Metastatistical Extreme Values Framework 

To address effectiveness concerns about traditional EVT approaches, Marani and Ignaccolo 

(2015) proposed the Metastatistical Extreme Value Distribution (MEVD) framework, an 

innovative approach that relaxes some of the assumptions of extreme value theory. 

Unlike traditional extreme value theory, which relies on one or a few large values per 

observation year, the MEVD method exploits the full data record, regarding both the 

distributions that describe ordinary values (F(x;𝜃⃗)) and the number of occurrences in each 

year (n) as random variables (Marani & Ignaccolo, 2015). In the MEVD, ordinary events 

are assumed to be independent and the probability for a yearly maximum being smaller or 

equal to a particular value (x) is defined as: 

𝐻(𝑥) =  ∑ ∫
𝛺

𝛩⃗⃗⃗⃗

∞
𝑛=1 [𝐹(𝑥; 𝜃⃗)]

𝑛
𝑔(𝑛; 𝜃⃗)𝑑𝜃⃗ ,    (6) 

In this expression, 𝑔(𝑛; 𝜃⃗) represents the joint probability distribution which is discrete 

with respect to the number of events in a year, n, and continuous in relation to the parameter 

vector 𝜃⃗; 𝛺𝛩⃗⃗⃗ signifies the entire population of the parameters values. This approach 

recognizes that extreme instances are samples from 'ordinary events,' independent 
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realizations of the same stochastic process. Since ordinary events are more numerous than 

extremes, the MEVD framework can utilize the majority of observational data. 

The cumulative distribution for yearly maxima in the MEVD framework is derived from 

the probability distributions of ordinary values. The empirical extreme value distribution 

is calculated as a sample average of the distributions of the ordinary events that occur in 

each year, and these are sampled a varying number of times annually. Following Marani 

and Ignaccolo (2015), the cumulative distribution function of ordinary events (block 

maxima) is represented as follows: 

𝜁𝑀𝐸𝑉(𝑥) =
1

𝑀
∑ [𝐹(𝑥; 𝜃⃗𝑗)]

𝑛𝑗𝑀
𝑗=1 ,    (7) 

Where x is the precipitation intensity, M is the number of sampled blocks (years) on record, 

𝐹(𝑥; 𝜃⃗𝑗) is the distribution of the ordinary events for each block j fitted to 𝑛𝑗  ordinary 

events of the jth block. A schematic visualization of the application of the MEVD is 

presented in Figure 2.1 from Zorzetto et al. (2016).  

 

Figure 2-1: This illustration presents the application methodology of MEV to a sequence 

of daily rainfall data. Each year, the Weibull distribution's scale (C) and shape (w) 

parameters are calculated by fitting them to ordinary values. The event count 'n' represents 

the number of rainy days within a specific year. Using this methodology, we can calculate 

the annual cumulative distribution of maximum daily rainfall, as shown in the sum 

expression in Equation (4). The MEVD is then determined as the average cumulative 

distribution of annual peak values over all the years, which is depicted here by a red line. 

Source: (Zorzetto et al., 2016) 
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The core premise of the MEVD method is the identification of an appropriate statistical 

model for ordinary events. Daily and hourly rainfall within the MEVD approach are usually 

represented using a Weibull distribution (Marani & Ignaccolo, 2015; Marra et al., 2018; 

Miniussi & Marani, 2020; Zorzetto et al., 2016). Once an appropriate model is found, it 

can be used to predict the distribution of yearly maxima and the probability of rare, possibly 

unprecedented, extremes. Recent work on rainfall statistics indeed supports this model 

choice (e.g., Marani & Ignaccolo, 2015; Marra et al., 2018; Miniussi & Marani, 2020; 

Zorzetto et al., 2016). Hence, the MEVD-Weibull can be presented as: 

𝜁𝑀𝐸𝑉(𝑥) =
1

𝑀
∑ [1 − 𝑒𝑥𝑝 (− (

𝑥

𝐶𝑗
))𝑤𝑗]

𝑛𝑗
𝑀
𝑗=1 ,    (8) 

Where, 𝐶𝑗 and 𝑤𝑗 are the scale and shape parameters of the Weibull distribution for year j. 

Several research efforts have highlighted the benefits of employing the MEVD method 

instead of the conventional EVT in analyzing rainfall data. Tested on daily rainfall records, 

the MEVD method has demonstrated superiority over traditional extreme value theory, 

especially when estimating return periods longer than the data record length, thereby 

diminishing the limitations of extreme value analysis from short data records (Zorzetto et 

al., 2016). Expanding this approach to sub-daily rainfall frequency analysis, Marra et al. 

(2018) found that although MEV may underestimate the 100-year return period quantiles 

of hourly rainfall with 5–20 years of actual data, it demonstrates diminished uncertainty 

and is less sensitive to errors (<30% uncertainty for 5-year records). These findings 

strongly support the use of MEVD for rainfall frequency analyses and showcase its 

significantly reduced uncertainty when dealing with short records in estimating rare 

quantiles (Marra et al., 2018; Miniussi & Marani, 2020; Zorzetto et al., 2016; Zorzetto & 

Marani, 2020).  

In conclusion, the MEVD represents an improvement over traditional approaches, 

overcoming the problem of data wastage in the estimation of extremes and offering a way 

to tackle non-stationary processes. By embracing the concept of ordinary events and 

leveraging the majority of available data, the MEVD method opens new avenues for more 
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accurate and comprehensive extreme value analysis. Practically, the following steps will 

be implemented in this thesis for the application of MEV: 

a) For each year of each rain gage and the corresponding CPM datasets the 

ordinary events are identified and separated.  

b) A Weibull distribution is fitted to each yearly record of ordinary events. The 

parameters of the Weibull distribution are estimated using the Probability 

Weighted Moments (PWM) method. This approach is analytically identical 

to the L-moments method and is more reliable for small sample sizes 

compared to the Maximum Likelihood method (Hosking, 1990). 

c) Then implementing Eq. (5) the cumulative distribution function of MEV is 

calculated. 

d) The desired quantiles are calculated numerically by inverting Eq. (5). 

2.2.2.1. Selection of Ordinary Events 

Ordinary events represent independent realizations of specific processes, in our case, 

precipitation intensities observed over various durations. The identification and selection 

of these ordinary events are crucial for ensuring a consistent and accurate analysis of 

precipitation patterns. 

The definition of ordinary events in this study is based on the storm-centric approach 

proposed by Marra et al. (2020). In this method, storms are perceived as independent 

meteorological objects, and ordinary events of varying durations are extracted directly 

from these storms. Specifically, storms are described as consecutive wet time intervals, 

separated by dry hiatuses. The duration of these dry intervals is determined based on the 

specific climatology of the region under consideration (Marra et al., 2020). 

Here, a wet period is defined by a 1-h time interval that reports at least 0.2 mm (based on 

recording capacity of rain gauges) of precipitation. In contrast, dry hiatuses, which 

delineate different storms, last for 24 hours (Dallan et al., 2022). This criteria aids in 

ensuring the accuracy of the model's application while minimizing data loss.  
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Once the storms are separated, ordinary events are identified using moving windows that 

span the duration of interest. Within each storm, the maximum intensities observed define 

the ordinary events.  

2.2.3. Derivation of DDF curves  

By adhering to the procedures outlined in section 2.2.2, we can determine the desired 

quantiles for various return periods, such as 2, 10, 25, 50, 100, and 200 years, utilizing the 

MEVD's cumulative distribution function for rainfall of different durations of 1 h, 3 h, 6 h, 

12 h, and 24 h. By plotting these quantiles against their durations for each return period 

and fitting the Montana type curve, we can generate the depth-duration-frequency curves. 

The formula for the Montana DDF curves is: 

ℎ = 𝑎𝐷𝑏   (9) 

In this equation, 'h' represents rainfall depth (in mm). 'a' is the Montana curve's coefficient, 

'b' is its exponent, ranging between 0 and 1, and 'D' indicates the duration under 

consideration. 

2.3. Study Area and Data 

For this thesis a benchmark of continuous, quality-controlled, rainfall data is available from 

the Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (ARPAV 

dataset), which contains rain gauge stations with a temporal resolution of 5 minutes and 

data quantization of 0.2 mm. A total of 29 stations (Fig. 2-2) were selected with a minimum 

length of records of 17 years and a maximum length of 37 years. These rain gauges cover 

elevation in the range of -3 to 2090 m a.s.l. The data for all the stations were aggregated to 

1, 3, 6, 12 and 24 h durations.  
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Convection-Permitting Model (CPM) simulation carried out by Zurich's Swiss Federal 

Institute of Technology (ETH Zurich), in collaboration with the Consortium for Small-

Scale Modeling (COSMO-crCLIM) is utilized in this thesis. This particular simulation 

pertains to a broader geographical region encompassing the Alps, a scope defined under 

the Flagship Pilot Study on Convective Phenomena over Europe and the Mediterranean 

(FPS-Convection) as part of the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) initiative (Coppola et al., 2020). These CPMs are available in decadal periods 

of 1996 – 2005 for historical period and 2040 – 2049 and 2090 – 2099 for near and far 

future.  

In this vein, the transition to high-resolution CPMs is especially relevant for Northern Italy. 

In the context of this region, shifting from conventional Regional Climate Models (RCMs) 

to high-resolution CPMs could potentially address the gap in accurately predicting sub-

daily extreme rainfall events (Maraun et al., 2010). This area, with its varied topography 

and diverse climate, is subject to extreme rainfall hazard, with large impacts both on urban 

and rural landscapes. 
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Figure 2-2: Map of Veneto Region and the details and locations of the rain gauge stations. 
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Chapter 3 

3. Results 

3.1. Statistics of the Rain Gauge Stations 

In this study, 29 rain gauge stations were analyzed, as illustrated in Figure 2-2. The average 

rain intensity for these stations is presented in (Figure 3-1). Furthermore, Figure 3-2 

showcases the mean annual maximum rain intensity for these stations.  

 To better understand these rain events, the Weibull distribution was applied to the data 

from ordinary events. Utilizing the criteria specified for selecting ordinary events in section 

2.2.2.1, Figure 3-3 represents the map of values of parameter ‘N’ for the ordinary events 

of the stations. Figure 3-4 and Figure 3-5, illustrate the scale and shape parameters of the 

Weibull distribution for the ordinary events of the gauged data. 

Building on a 10-year data record, 50-year return levels were estimated in alignment with 

the historical reference period used in the CPMs from 1996 to 2005. Map of 50-year return 

levels are presented in Figure 3-6. 

Figure 3-7,  8, and 9 depict the parameters values of ordinary events distribution from the 

observational data across various durations. To differentiate among the 29 stations, 20 

unique color iterations were employed in these figures. For clarity, the remaining nine 

stations, which share similar colors, are represented with a solid line to ensure easy 

distinction. 

Figure 3-7 highlights the values of the ‘N’ parameter for ordinary events. Given that the 

same criteria were applied consistently across all durations for the selection of ordinary 



29 

 

events, the 'N' values remain consistent throughout the various durations for each station. 

Meanwhile, Figure 3-8 displays the scale parameter values against duration for each 

station's ordinary events. Lastly, Figure 3-9 showcases the shape parameter values of the 

ordinary events set against duration. 

 

 

Figure 3-1: Map of mean rain intensity in ordinary events of the observation data for five 

different rainfall durations. The sixth map on the bottom right corner of the figure displays 

the locations of each of the rain gauge stations. 
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Figure 3-2: Map of mean annual maximum rain intensity in the observation data for five 

different rainfall durations. The sixth map on the bottom right corner of the figure displays 

the locations of each of the rain gauge stations. 
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Figure 3-3: Map of values of parameter 'N' of the ordinary events in the observation data 

for five different rainfall durations. The sixth map on the bottom right corner of the figure 

displays the locations of each of the rain gauge stations. 
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Figure 3-4: Map of values of scale parameter of the ordinary events in observation data 

for five different rainfall durations. The sixth map on the bottom right corner of the figure 

displays the locations of each of the rain gauge stations. 
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Figure 3-5: Map of values of shape parameter of the ordinary events in observation data 

for five different rainfall durations. The sixth map on the bottom right corner of the figure 

displays the locations of each of the rain gauge stations. 
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Figure 3-6: Map of 50-yr return levels of the observation data for five different rainfall 

durations. The sixth map on the bottom right corner of the figure displays the locations of 

each of the rain gauge stations. 
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Figure 3-7: Plot of 'N' parameter versus duration for all rain gauge stations. 

 

Figure 3-8: Plot of scale parameter versus duration for all the rain gauge stations. 
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Figure 3-9: Plot of shape parameter versus duration for all the rain gauge stations. 

3.2. Comparison of Observation Data with CPM Historical Run (1996 

– 2005). 

In this section, we will present the assessment of the biases of the CPM by comparing it to 

the statistics from the observation data presented in the previous section. The evaluation 

will present the ratio of CPM values to observational values for each aspect: mean rain 

intensity, mean annual maximum rain, and parameters of the ordinary events distribution. 

Figure 3-10 displays the ratio of mean rain intensity values for ordinary events in both 

CPM and observations. Figure 3-11, on the other hand, visualizes these ratios across 

various durations for each station. A clear observation from the figures is the evident 

overestimation by the CPM. Furthermore, Figure 3-11, illustrates that this overestimation 

amplifies across the duration for all the stations. 

Concerning the mean annual maximum rain intensity, Figure 3-12 and Figure 3-13 

highlight the CPM's tendency to overestimate compared to the observational data for the 
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majority of the stations. While Figure 3-13 maps these ratios against durations and reveals 

an increasing trend in the ratio for most stations, however, certain stations display an 

unpredictable pattern across different durations. 

When examining the parameters of the ordinary events distribution, the CPM overestimates 

all three parameters: ‘N’, ‘C’, and ‘W’. This overestimation is evident in Figure 3-14 and 

Figure 3-15, which depict the ratio of the number of events in the CPM compared to the 

observations for parameter ‘N’. Similarly, Figure 3-16 and Figure 3-17 display the ratio 

discrepancies in the scale parameters between the two datasets. Lastly, Figure 3-18 and 

Figure 3-19 highlight the overestimation in the shape parameters' ratios. 

As for the 50-year return levels, Figure 3-20 and Figure 3-21 indicate that the CPM actually 

underestimates the observations for approximately half of the stations. 
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Figure 3-10: Map of ratios mean rain intensity for CPM and observation data. 

 

Figure 3-11: Ratios of mean rain intensity for CPM and observation data across all 

durations. 
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Figure 3-12: Map of ratios of mean annual maximum rain intensity for CPM and 

observation data. 

 

 

Figure 3-13: Ratios of mean annual maximum rain intensity for CPM and observation 

data across all durations. 
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Figure 3-14: Map of ratios of parameter 'N' for CPM and observation data. 

 

Figure 3-15: Ratios of parameter 'N' for CPM and observation data across all durations. 
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Figure 3-16: Map of ratios of scale parameter 'C' for CPM and observation data. 

 

Figure 3-17: Ratios of scale parameter 'C' for CPM and observation data across all 

durations. 
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Figure 3-18: Map of ratios of shape parameter 'W' for CPM and observation data. 

 

Figure 3-19: Ratios of shape parameter 'W' for CPM and observation data across all 

durations. 
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Figure 3-20: Map of ratios of 50-yr return levels of CPM and observation data. 

 

Figure 3-21: Ratios of 50-yr return levels of CPM and observation data across all 

durations. 
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3.3. Comparison of Observation Data with Corrected CPM Historical 

Run (1996 – 2005) 

In this section, we will present the comparison between the bias-corrected CPM and the 

observed data. As outlined in section 2.1.3.1 (page 17), we employed the Quantile Mapping 

method for bias correction, which effectively aligned the CPM statistics with those of the 

observations. 

Figure 3-22 illustrate the ratios of mean rain intensity considering corrected CPM to the 

observation data. The bias correction performance for the case of mean annual maximum 

rain in the CPM, is illustrated in Figure 3-23 and Figure 3-24. 

In terms of the parameters for the ordinary events distribution, refer to Figure 3-25 for 

parameter ‘N’, Figure 3-26 for the scale parameter, and Figure 3-27 for the shape 

parameter. 

Moreover, Figure 3-28 and Figure 3-29 examine the performance of bias correction for 50-

year return levels for the CPM's and the observational data. 
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Figure 3-22: Ratios of mean rain intensity for Corrected_CPM and observation data 

across all durations. 
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Figure 3-23: Map of ratios of mean annual maximum rain intensity for Corrected_CPM 

and observation data. 

 

Figure 3-24: Ratios of mean annual maximum rain intensity for Corrected_CPM and 

observation data across all durations. 
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.  

Figure 3-25: Ratios of parameter 'N' for Corrected_CPM and observation data across all 

durations. 

 

Figure 3-26: Ratios of scale parameter 'C' for Corrected_CPM and observation data 

across all durations. 
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Figure 3-27: Ratios of shape parameter 'W' for Corrected_CPM and observation data 

across all durations. 

 

Figure 3-28: Map of ratios of 50-yr return levels of Corrected_CPM and observation 

data. 
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Figure 3-29: Ratios of 50-yr return levels of Corrected_CPM and observation data 

across all durations. 

3.4. Evaluation of Parameters of Depth-Duration-Frequency Curves 

In section 2.2.3, we discussed the analysis framed around the parameters of the depth-

duration-frequency (DDF) curves as illustrated by equation 10. These parameters will be 

presented in this section which is organized into dedicated subsections for each dataset: 

a) Observation data 

b) Uncorrected CPM historical run (1996-2005) 

c) Bias-corrected CPM historical run (1996-2005) 

d) Uncorrected CPM near future run (2040-2049) 

e) Bias-corrected CPM near future run (2040-2049) 

f) Uncorrected CPM far future run (2090-2099) 

g) Bias-corrected CPM far future run (2090-2099). 

For each dataset, we display the values of parameters ‘a’ and ‘b’ of the DDF curves on 

maps across various return periods, culminating in comprehensive boxplots for all datasets. 
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Figure 3-30 and Figure 3-31 highlight these parameter values for observational data. The 

parameters for uncorrected and bias-corrected CPM historical run are depicted in Figure 

3-32 through 39. Figure 3-36 to 43 showcase the coefficients and exponents of the DDF 

curve for the near-future CPM run, while Figure 3-40 to 47 illuminate these aspects for the 

far-future CPM run. The encompassing boxplots, contrasting the uncorrected and bias-

corrected parameters across different return periods, are presented in Figure 3-44 to 51. 
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3.4.1. Observation data 

 

Figure 3-30: Map of coefficient 'a' of DDF curves of observation data for various return 

periods. 
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Figure 3-31: Map of exponent 'b' of the DDF curves of observation data for various 

return periods. 
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3.4.2. CPM historical (1996-2005) without correction 

 

Figure 3-32: Map of coefficient 'a' of DDF curves for biased CPM historical (1996-2005) 

for various return periods. 
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Figure 3-33: Map of exponent 'b' of DDF curves for biased CPM historical (1996-2005) 

for various return periods. 
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3.4.3. CPM historical (1996-2005) bias corrected 

 

Figure 3-34: Map of coefficient 'a' of DDF curves for bias corrected CPM historical 

(1996-2005) for various return periods. 
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Figure 3-35: Map of exponent 'b' of DDF curves for bias corrected CPM historical 

(1996-2005) for various return periods. 
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3.4.4. CPM near future (2040-2049) without correction 

 

Figure 3-36: Map of coefficient 'a' of DDF curves for biased CPM near future (2040-

2049) for various return periods. 
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Figure 3-37: Map of exponent 'b' of DDF curves for biased CPM near future (2040-

2049) for various return periods. 
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3.4.5. CPM near future (2040-2049) bias corrected 

 

Figure 3-38: Map of coefficient 'a' of DDF curves for bias corrected CPM near future 

(2040-2049) for various return periods. 
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Figure 3-39: Map of exponent 'b' of DDF curves for bias corrected CPM near future 

(2040-2049) for various return periods. 
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3.4.6. CPM far future (2090-2099) without correction 

 

Figure 3-40: Map of coefficient 'a' of DDF curves for biased CPM far future (2090-2099) 

for various return periods. 
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Figure 3-41: Map of exponent 'b' of DDF curves for biased CPM far future (2090-2099) 

for various return periods. 
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3.4.7. CPM far future (2090-2099) bias corrected 

 

Figure 3-42: Map of coefficient 'a' of DDF curves for bias corrected CPM far future 

(2090-2099) for various return periods. 
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Figure 3-43: Map of exponent 'b' of DDF curves for bias corrected CPM far future 

(2090-2099) for various return periods. 
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3.4.8. Boxplot of parameters of DDF curve for all datasets 

 

Figure 3-44: Boxplot of coefficient 'a' of DDF curves for all the datasets, CPM_Hist refers 

to the CPM run in reference period (1996-2005) and CPM_Near and CPM_Far refer to 

CPM projection for (2040-2049) and (2090-2099) respectively. This boxplot is based on 

biased CPMs. 
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Figure 3-45: Boxplot of exponent 'b' of DDF curves for all the datasets, CPM_Hist refers 

to the CPM run in reference period (1996-2005) and CPM_Near and CPM_Far refer to 

CPM projection for (2040-2049) and (2090-2099) respectively. This boxplot is based on 

biased CPMs. 
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Figure 3-46: Boxplot of coefficient 'a' of DDF curves for all the datasets, CPM_Hist refers 

to the CPM run in reference period (1996-2005) and CPM_Near and CPM_Far refer to 

CPM projection for (2040-2049) and (2090-2099) respectively. This boxplot is based on 

corrected CPMs. 
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Figure 3-47: Boxplot of exponent 'b' of DDF curves for all the datasets, CPM_Hist refers 

to the CPM run in reference period (1996-2005) and CPM_Near and CPM_Far refer to 

CPM projection for (2040-2049) and (2090-2099) respectively. This boxplot is based on 

corrected CPMs. 
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3.5. Evaluation of CC scaling 

Here the mean temperature difference between the reference period (1996 – 2005) and the 

projected period (2090 – 2099) will be presented along with the corresponding percent 

difference in mean rain intensity and mean annual maximum rain for each of the stations. 

Then based on the projected increase in warming and the CC relationship future rain 

intensities were computed and incorporated into the DDFs to estimate quantiles with 

different return time. 

Figure 3-48 illustrates the mean temperature difference between CPM historical and CPM 

far future. Figure 3-49 shows the percent difference in mean rain intensity between the 

CPM of reference period and the 2090 – 2099 period across all the durations. Figure 3-50 

represents the percent difference in mean annual maximum rain intensity between periods 

(1996 – 2005) and (2090 – 2099).  

Figure 3-51 and Figure 3-52 show the percent difference per degree Celsius for the cases 

of mean rain intensity and mean annual maximum rain between the reference period and 

the far future.  
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Figure 3-48: Map of mean temperature difference between CPM historical (1996-2005) 

and CPM far future run (2090-2099). 
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Figure 3-49: Map of percent change in mean rain intensity between CPMs (1996-2005) 

and (2090-2099). 
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Figure 3-50: Map of percent change in mean annual maximum rain intensity between 

CPMs (1996-2005) and (2090-2099). 
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Figure 3-51: Map of percent change in mean rain intensity per ℃ change in warming 

between CPMs (1996-2005) and (2090-2099). 
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Figure 3-52: Map of percent change in mean annual maximum rain intensity per ℃ 

change in warming between CPMs (1996-2005) and (2090-2099). 
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3.5.1. Derivation of DDF curves based on CC scaling 

Based on the rationale behind the CC relationship discussed in section 2.1, we can compute 

the future rain intensities according to most likely local increase in temperatures utilizing 

formula 2 in page 13. 

Figure 3-53 and Figure 3-54 show the parameters of DDF curves based on CC scaling. In 

Figure 3-55 and Figure 3-56 the boxplots for these parameters are represented. One can see 

that projected quantiles using CC scaling are overestimated with respect to those obtained 

from corrected CPM projections across all return periods.   
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Figure 3-53: Map of coefficient 'a' of DDF curves for CC projection based on temperature 

projected according to far future scenario (2090-2099) for various return periods. 
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Figure 3-54: Map of exponent 'b' of DDF curves for CC projection based on temperature 

projected according to far future scenario (2090-2099) for various return periods. 
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Figure 3-55: Boxplot of coefficient 'a' of DDF curves for all the datasets, CPM_Hist refers 

to the CPM run in reference period (1996-2005) and CPM_Near and CPM_Far refer to 

CPM projection for (2040-2049) and (2090-2099) respectively. And Far CC refers to CC 

projection based on temperature projected according to far future. This boxplot is based 

on corrected CPMs. 
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Figure 3-56: Boxplot of exponent 'b' of DDF curves for all the datasets, CPM_Hist refers 

to the CPM run in reference period (1996-2005) and CPM_Near and CPM_Far refer to 

CPM projection for (2040-2049) and (2090-2099) respectively. And Far CC refers to CC 

projection based on temperature projected according to far future. This boxplot is based 

on corrected CPMs. 

 

 

 

 

 

 



80 

 

3.6. Comparison of DDFs Curves for Few Examples Stations 

In this section, we will present a comparison of the DDFs at specific station locations. 

This comparison encompasses both corrected and uncorrected CPM projections, as well 

as the CC scaled projections. Four station locations were chosen at random for this 

illustrative purpose, focusing on DDF curve comparisons for return periods of 10, 100, 

and 200 years. Specifically: 

• Figure 3-57 and Figure 3-58 display the DDF curves for station 'TN_0032' located 

at Lavarone (Chiesa). 

• Figure 3-59 and Figure 3-60 provide insights into the curves for station 'VE_0037' 

situated at Passo Falzarego. 

• For station 'VE_0139' at Lusiana, the curves are presented in Figure 3-61 and 

Figure 3-62. 

• Lastly, Figure 3-63 and Figure 3-64 present the DDF curves for station ‘VE_0247’ 

located at Casamazzagno. 
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Figure 3-57: DDF curves for station ‘TN_0032’ for 10-yr return period. In the legend 

‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) CPM 

datasets and observation data respectively. The plots from top to bottom indicate projected 

DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  

TN_0032: Lavarone (Chiesa) 
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Figure 3-58: DDF curves for station ‘TN_0032’ for 100 and 200-yr return periods. In the 

legend ‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) 

CPM datasets and observation data respectively. The plots from top to bottom indicate 

projected DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  
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Figure 3-59: DDF curves for station ‘VE_0037’ for 10-yr return period. In the legend 

‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) CPM 

datasets and observation data respectively. The plots from top to bottom indicate projected 

DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  

VE_0037: Passo Falzarego 

 



84 

 

 

Figure 3-60: DDF curves for station ‘VE_0037’ for 100 and 200-yr return periods. In the 

legend ‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) 

CPM datasets and observation data respectively. The plots from top to bottom indicate 

projected DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  
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Figure 3-61: DDF curves for station ‘VE_0139’ for 10-yr return period. In the legend 

‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) CPM 

datasets and observation data respectively. The plots from top to bottom indicate projected 

DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  

VE_0139: Lusiana 
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Figure 3-62: DDF curves for station ‘VE_0139’ for 100 and 200-yr return periods. In the 

legend ‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) 

CPM datasets and observation data respectively. The plots from top to bottom indicate 

projected DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  
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Figure 3-63: DDF curves for station ‘VE_0247’ for 10-yr return period. In the legend 

‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) CPM 

datasets and observation data respectively. The plots from top to bottom indicate projected 

DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  

VE_0247: Casamazzagno 
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Figure 3-64: DDF curves for station ‘VE_0247’ for 100 and 200-yr return periods. In the 

legend ‘Far’, ‘Near’, ‘Hist’ and ‘Obs’ refers to (2090-2099), (2040-2049), (1996-2005) 

CPM datasets and observation data respectively. The plots from top to bottom indicate 

projected DDF curves based on CPMs, CPM biased corrected, and CC scaled respectively.  
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Chapter 4 

4. Discussion and Conclusions 

The comprehensive study on rainfall events and their implications, across a plethora of 

stations and data ranges, offers valuable insights into the characteristics and future 

trajectories of rainfall. Drawing from the extensive analyses and findings presented in the 

prior sections, we now discuss the broader implications and conclude the study. 

4.1. Observational Insights 

Upon examining 29 rain gauge stations, visualized in Figure 2-2, it becomes evident that 

rainfall patterns exhibit variability across different regions. The data gleaned from these 

stations underscores the range in average rain intensities: for a 1-hour event, the intensity 

varies between 3.3 to 6.1 mm/h, and for a 24-hour duration, it lies between 0.4 to 1.0 mm 

(as shown in Figure 3-1). Moreover, the annual maximum average rain intensities for these 

stations are between 16.2 to 39.4 mm/h over 1 hour and 2.5 to 6.5 mm over 24 hours (refer 

to Figure 3-2). 

To systematically analyze these rain events, we utilized the Weibull distribution. Following 

the criteria detailed in section 2.2.2.1 for ordinary events, the data exhibits a variation with 

the stations recording between 528 to 771 such events (see Figure 3-3). The Probability 

Weighted Moments (PWM) method was instrumental in estimating the distribution 

parameters. The scale parameter, essential in determining the intensities, varied from 2.2 

to 5.6 mm/h for the 1-hour duration and 0.2 to 0.8 mm/h for 24 hours (referenced in Figure 
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3-4). In practical terms, a station with a higher scale parameter for its ordinary event 

distribution implies that it tends to experience higher return levels and vice versa. 

The shape parameter of the Weibull distribution is pivotal in understanding the 

distribution's tail. When the shape parameter is lower, it indicates a heavier tail, suggesting 

that high-intensity rainfalls might not decrease in probability as quickly as expected. 

Intriguingly, for all stations and durations considered, the shape parameter was always 

below 1 (Figure 3-5). 

Using a decade-long data record, we estimated the 50-year return levels, aligning with the 

historical period from 1996 to 2005. For a 1-hour duration, rain intensities varied from 35 

to 100 mm/h, and for the 24-hour period, they spanned between 7 to 20 mm/h. A cross-

comparison between Figure 3-5 and Figure 3-6 demonstrates a discernible link between 

return levels and shape parameters. For instance, stations with higher 50-year return levels 

for the 1-hour duration, such as 127 and 195, exhibited lower shape parameters. In contrast, 

stations like 3 and 37 which displayed lowest 50-yr return levels had the highest shape 

parameters. 

Figure 3-7 through 9 offer a detailed perspective on the parameter values derived from 

observational data across varied durations. Concerning the 'N' parameter as depicted in 

Figure 3-7, its consistency across durations is attributed to the uniform criteria employed 

for selecting ordinary events. As depicted in Figure 3-8, the scale parameter tends to 

diminish as durations increase, yet this decline is not uniform for every incremental 

duration. Still, a consistent trend is observable among all stations. In contrast, the shape 

parameter manifests a more erratic trend across durations and among different stations. 

Notably, a majority of stations display lower shape parameters at 1 h and 24 h durations, 

while indicating elevated values at intervals of 3 and 6 hours as highlighted in Figure 3-9. 
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4.2. Model Evaluations 

4.2.1. Comparison with CPM 

The Convection Permitting Model initially showcased a tendency to overestimate in 

several key areas compared to the observational data. Whether it is the mean rain intensity, 

annual maximum rain, or parameters of ordinary events distribution, this consistent 

overestimation highlights the challenges in direct model deployment without bias 

correction. 

In terms of mean rain intensity, Figure 3-10 reveals that the CPM overestimated 

observations by a significant margin—up to 70% for certain stations like VE_0248. Figure 

3-11 further expands on this, suggesting that these biases amplify with duration, leading to 

greater discrepancies in the CPM's 24-hour predictions compared to its 1-hour forecasts. 

Diving into the CPM's biases concerning the mean annual maximum rain intensity, Figure 

3-12 elucidates that the model underestimates for half of the stations at a 1-hour duration. 

This trend, intriguingly, inverts as the duration extends. By the 24-hour mark, the CPM 

overestimates for every station, as highlighted in Figure 3-13. 

Addressing the ordinary event distribution parameters, the CPM consistently overestimates 

across the three parameters: 'N', scale 'C', and shape 'W'. Figure 3-17 shows an ascending 

trend of overestimation for the scale parameter 'C' with increasing duration across all 

stations. The shape parameter 'W' also sees a conspicuous overestimation for most stations, 

as evidenced by Figure 3-18. Furthermore, Figure 3-19 maps out this overestimation across 

durations, revealing a non-uniform increase with marked peaks appearing intermittently 

between 1-hour and 24-hour durations. 

When analyzing the 50-year return levels, Figure 3-20 and Figure 3-21 demonstrate the 

CPM's inclination to underestimate these quantiles. The magnitude of this underestimation, 

however, fluctuates across durations. A compelling observation arises when aligning the 

50-year return levels with the shape parameters: station 'VE_0003', displaying the most 

pronounced underestimation in the shape parameter (Figure 3-19), presents the most 
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considerable overestimation in the 50-year return levels. In contrast, station 'VE_0127', 

with its marked overestimation in the shape parameter, shows the highest underestimation 

for the 50-year return levels. 

4.2.2. Bias Correction 

Fortunately, the bias correction using the Quantile Mapping method has notably improved 

the CPM’s alignment with observational data. This correction, applied across multiple 

parameters, underscores the importance of refining models. 

When considering the mean rain intensity, Figure 3-22 illustrated how closely the CPM 

now matches the observed data. The ratios for every duration and at all stations hover 

around 1. The bias correction also improved the representation of the mean annual 

maximum rain in the CPM, effectively diminishing its prior overestimation, as seen in 

Figure 3-23 and Figure 3-24. 

Regarding the parameters for the ordinary events distribution, post-correction findings 

suggest that the CPM now more faithfully mirrors the reference observational data across 

all parameters. Figure 3-26 illustrated the improved alignment of the scale parameter with 

observational data, converging around a value of 1. Similarly, Figure 3-27 underscored the 

refined correspondence of the shape parameter with observational data when compared 

with pre-bias correction scenarios. 

Moreover, when examining the 50-year return level, the bias correction has significantly 

bridged the gap between the CPM's overestimation and the observational data, as 

demonstrated in Figure 3-28 and Figure 3-29. 
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4.2.3. Temperature and Rainfall 

The link between temperature rises and the corresponding change in rain intensities is 

noteworthy. The majority of the stations indicate an increase in rain intensity in line with 

increasing temperatures.  

Figure 3-48 illustrated the mean temperature difference between CPM historical and CPM 

far future. The location at Brendola (VE_0148) exhibits the slightest increase in 

temperature at 0.2℃. Conversely, station location at Passo Sommo (TN_0369) shows the 

most significant surge, with a 4.8℃ rise. Notably, most locations show temperature rise 

between 2 to 4℃. 

In Figure 3-49 we showed the percent difference in mean rain intensity between the CPM 

of reference period and the 2090 – 2099 period across all the durations. Location 

corresponding to VE_0037 indicates the maximum percent difference in mean rain 

intensity of 31.3 % increase in 1 h duration. While the minimum percentage difference was 

for station location VE_0067 at 24 h by 3.5 % decrease in the far future scenario. For most 

of the locations the percent increase in mean rain intensity during the 1 h duration decreases 

as duration increases toward 24 h. See Figure 5-1 and Figure 5-2 in the Appendix for better 

visualization of percent difference in mean rain intensity with respect to temperature 

change. 

Regarding mean annual maximum rain intensity, Figure 3-50 represented that station 

location VE_0247 exhibits the maxim intensity by 50.8% in far future and location 

VE_0252 has the maximum decrease for the far future scenario by 20.5%. The majority of 

the locations experience an increase in their mean annual maximum rain by about 20%. 

For more details see Figure 5-3 and Figure 5-4 in the Appendix. 

Figure 3-51 and Figure 3-52 showed the percent difference per degree Celsius for the cases 

of mean rain intensity and mean annual maximum rain between the reference period and 

the far future scenario. Regarding the mean rain intensity, model projections suggest that 

the majority of the station locations will encounter an increase in the range of 2.5 to 10 % 

per each degree Celsius of warming in the future. With respect to mean annual maximum 

rain intensity a notable number of locations exhibit a decrease of up to 5% in the future 



94 

 

scenario per degree of warming. While the majority of them have an increase of up to 7% 

per degree of Celsius warming. 

4.3. DDF curves 

In the evaluation between the CPMs for the reference period and the far-future scenario, 

the alterations in projected rainfall quantiles emerge clearly. Based on the projections 

derived from the CPM, it is anticipated that 1-hour rainfall will see a substantial increase 

by 2100. Specifically, increases of 33%, 36%, 41%, 44%, 51%, and 57% are projected for 

return periods of 2, 10, 25, 50, 100, and 200 years, respectively. These findings are detailed 

further in the Appendix, Figure 5-5 and Figure 5-6 . When considering the bias-corrected 

CPM, the projected changes are slightly different, expecting to be 29%, 41%, 46%, 54%, 

63%, and 66% for the respective return periods, see Figure 5-7 and Figure 5-8 in the 

Appendix. On the other hand, the projections determined from CC scaling are consistently 

uniform across all durations and return periods. This is primarily because the same 

temperature difference and percentage increase in rainfall affect uniformly the future 

projection for different durations in the method of CC scaling, as referenced in section 

2.1.1. Based on this CC scaling methodology, it is predicted that there will be a uniform 

increase in rainfall of up to 38% across all return periods and durations. The Figure 5-9 and 

Figure 5-10 in the Appendix offers more detailed visual representations of these percentage 

changes across various durations and return periods. 

Turning to Figure 3-44, the box plots present the coefficients of the Depth-Duration-

Frequency (DDF) curves, specifically for the case of biased CPMs. Here, it is evident that 

in the far-future scenario there is a notable rise in this coefficient when juxtaposed against 

observations spanning all return periods. Conversely, projections for the near-future 

scenario denote a decrease. For the CPM of the reference period, the coefficient 'a' seems 

to be consistently underestimated in comparison to the observational data, across all the 

return periods. Moving on to Figure 3-45, which focuses on the exponent of the DDF 

curves, the data suggests that this exponent remains relatively constant, on average, across 

all return periods when visualizing the far-future scenario. Yet, there is a discrepancy when 
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comparing the exponents between the CPM of the reference period and observational data: 

the exponent in the CPM tends to be consistently overestimated for all return periods. 

Shifting the focus to bias-corrected CPMs, Figure 3-46 and Figure 3-47 showcase box plots 

representing the coefficients 'a' and 'b' of the DDF curves for these datasets. Observing the 

coefficient 'a', it is clear that the bias correction has had a favorable impact. It has enhanced 

the representation of this coefficient in the CPM for the reference period, more closely 

aligning it with the outcome of observation when compared to the uncorrected CPM 

dataset. Further, Figure 3-46 also captures an upward trend of the coefficient 'a' value for 

the far-future scenario across all return periods. This enhanced alignment between the 

results derived from observational data and the bias-corrected CPM is further corroborated 

by Figure 3-47 which represents the exponents of the DDF curves. Additionally, Appendix 

Figure 5-11 and Figure 5-12 provide a detailed overview of the 'a' and 'b' parameters for 

the curves derived across all considered return periods for each of the durations. These 

figures unambiguously show a decline in the 'a' values as duration increases. Moreover, a 

marked uptick in the 'a' values is evident for future scenarios compared to the reference 

period. Conversely, the 'b' values indicate that observational data consistently overestimate 

these parameters when compared to CPMs across all durations. However, the variation in 

'b' values across all datasets and durations is relatively minor. 

Further insights emerge when considering the DDF curves constructed based on CC 

scaling. Figure 3-55 underscores that the DDF curve coefficient exhibits its highest values 

in the far-future projections based on this CC scaling method. This is in contrast to the 

CPM projections for the same far-future scenario. Moreover, the CC scaling method seems 

to considerably overestimate the value of the exponent of the DDF curve in comparison to 

other datasets. 

Concluding with the overarching observations from the Depth-Duration-Frequency curves: 

when these are formulated on the basis of CC scaling, it suggests a potential trend of the 

future projections erring on the side of overestimation in terms of rain intensities, 

specifically across different return periods. This is a clear indication that while the trend 

suggesting an increase in future rainfalls is probably on the mark, there is a definite need 

to refine the exact magnitudes through further nuanced adjustments. 
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4.4. Conclusions 

The challenges posed by climate change have been underscored in this study. The wide-

ranging changes projected in rainfall patterns, particularly in Northern Italy, signify the 

need for a shift in our infrastructural and preparedness strategies. 

From our in-depth observational analysis, the pronounced variability in rainfall patterns 

across different regions became evident. This realization serves as a clear testament to the 

inadequacy of one-size-fits-all policies. Instead, there is a pressing need to tailor strategies 

that cater to the distinct weather extremities of individual regions. 

Our use of the MEVD approach to examine rainfall events has been particularly 

enlightening. Its ability to maximize data utility, especially when grappling with limited 

dataset values, underscores its suitability in analyzing rainfall events in intricate scenarios. 

The identification of the shape and scale parameters provides a crucial understanding of 

the expected rain intensities, which is essential for designing flood mitigation strategies. 

The CPMs, even though advanced, still showcased biases when compared to observational 

data. This emphasizes the need for continuous refinement of modeling strategies to ensure 

their relevance and accuracy. The bias correction using the Quantile Mapping method has 

notably bridged the gap between CPM predictions and observed data, underlining its 

importance in climate studies. 

Moreover, CPMs provide compelling evidence of significant alterations in rainfall patterns 

by the year 2100. The projections indicate a substantial increase in 1-hour rainfall across a 

range of return periods, with bias-corrected CPMs forecasting even greater changes. While 

the coefficient 'a' tends to be underestimated in the reference period CPM, bias correction 

improves its alignment with observational data. Concerning the parameters of DDF curves, 

the coefficient 'a' shows a rising trend with increasing return periods but exhibits a decline 

with increasing durations. In contrast, the exponent 'b' demonstrates only minor variations 

across both return periods and durations for all the datsets. 

The clear association between temperature rises and changing rain intensities is alarming. 

With temperature rises being a global concern, the findings from Northern Italy could be 
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reflective of larger, worldwide patterns. This potentially indicates more intense and 

frequent rainfall events in many regions as global warming progresses. 

Furthermore, the DDF curves constructed based on CC scaling and CPMs present varying 

outcomes. As discussed in previous section the DDF curves based on CC scaling anticipate 

an increase of 38% across all return periods for future scenario. On the other hand, the 

DDFs based on CPMs exhibit an increasing trend in quantiles with return periods, marking 

an increase of 66% for 1 h rainfall with 200 return time. This signifies that while the 

Clausius-Clapeyron relation might provide a fundamental understanding of temperature 

and precipitation relationships, its direct application might lead to discrepancies when 

assessing rainfall extremes. In light of this, CPMs emerge as central tools, aiding in refining 

the CC scaling method, especially considering the shorter and less frequent rainfall events. 

In conclusion, as we advance into an era characterized by rapid climatic changes, studies 

like these offer valuable foresight. It is paramount that such insights inform policy-making 

and infrastructural development, ensuring that our societies remain resilient in the face of 

the changing nature of rainfall events. For regions like Northern Italy, where changing 

rainfall patterns could significantly impact urban regions, agriculture, and water resources, 

addressing these findings is not merely academic but a requirement for sustainable 

development and preparedness. 
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Chapter 5 

5. Appendix 
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Figure 5-1: Histograms of percent change in mean rain intensity and mean temperature 

of CPM (1996-2005) and CPM (2090-2099) for all the stations.   
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Figure 5-2: Histograms of percent change in mean rain intensity and mean temperature 

of bias corrected CPMs (1996-2005) and (2090-2099) for all the stations.   
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Figure 5-3: Histograms of percent change in mean annual maximum rain intensity and 

mean temperature of CPMs (1996-2005) and (2090-2099) for all the stations.   
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Figure 5-4: Histograms of percent change in mean annual maximum rain intensity and 

mean temperature of bias corrected CPMs (1996-2005) and (2090-2099) for all the 

stations.   
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Figure 5-5: Plots of percent change in quantiles of DDFs in CPMs of (1996-2005) and 

far future scenario (2090-2099) across all return periods for all durations. 
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Figure 5-6: Histograms of percent change in quantiles of DDFs in CPMs of (1996-2005) 

and far future scenario (2090-2099) for all durations. Each color denotes a return period 

indicated in the legend of each figure.  
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Figure 5-7: Plots of percent change in quantiles of DDFs in bias corrected CPMs of 

(1996-2005) and far future scenario (2090-2099) across all return periods for all 

durations. 
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Figure 5-8: Histograms of percent change in quantiles of DDFs in bias corrected CPMs 

of (1996-2005) and far future scenario (2090-2099) for all durations. Each color denotes 

a return period indicated in the legend of each figure.  
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Figure 5-9: Plots of percent change in quantiles of DDFs in bias corrected CPM of 

(1996-2005) and CC scaled far future projection (2090-2099) across all return periods 

for all durations. 
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Figure 5-10: Histograms of percent change in quantiles of DDFs in bias corrected CPMs 

of (1996-2005) and CC scaled far future projection (2090-2099) for all durations. Each 

color denotes a return period indicated in the legend of each figure.  
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Figure 5-11: This figure shows the value of ‘a’ parameter when the DDFs quantiles are 

represented across all return periods for each rainfall duration. Here CPM_Hist, 

CPM_Near, CPM_Far (corrected) refer to the bias corrected CPM datasets respectively 

for historical period, near future and far future scenarios.   
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Figure 5-12: This figure shows the value of ‘b’ parameter when the DDFs quantiles are 

represented across all return periods for each rainfall duration. Here CPM_Hist, 

CPM_Near, CPM_Far (corrected) refer to the bias corrected CPM datasets respectively 

for historical period, near future and far future scenarios.   
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