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Abstract

High-grade serous ovarian cancer (HGSOC) is characterized by widespread ge-

nomic instability, with copy number alterations (CNAs) playing a key role in tu-

mor progression and therapy resistance. Single-cell RNA sequencing (scRNA-seq)

enables the study of genetic heterogeneity inside tumors at the single-cell level.

In this thesis, CNAs inferred from scRNA-seq data with InferCNV, SCEVAN, and

Numbat are compared to those derived from bulk whole-genome sequencing data,

which serves as the ground truth, in order to evaluate their ability in CNA detection.

Based on samples from patients with HGSOC, the analysis demonstrates that SCE-

VAN is the most accurate method. CNA profiles generated from scRNA-seq-based

tools are further used to quantify CNA signature activities and predict platinum-

based treatment response. However, the results indicate that these predictions are

not consistent when compared with those derived from WGS data. In conclusion,

this benchmark provides guidance for selecting the optimal tool for CNA inference

when working with scRNA-seq data, being particularly relevant to future studies of

chromosomal instability and tumor heterogeneity in HGSOC.
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1. Introduction

1.1 High-Grade Serous Ovarian Cancer

Ovarian cancer (OC) is a critical global health concern. In 2022, it was the sev-

enth most common cancer and the fifth leading cause of cancer-related deaths in

women, with 275,335 new cases and 159,285 deaths reported globally (Cancer To-

day (IARC), 2022) (see Figure 1). High-grade serous ovarian cancer (HGSOC), the

most common subtype of OC (see Figure 2), is responsible for the 70-80% of the

disease’s mortality (Bowtell et al., 2015; Kim et al., 2018), leading to an estimated

111,500 to 127,500 deaths in 2022.

Early detection of HGSOC can significantly improve treatment outcomes and

survival rates. When diagnosed early, with tumors localized to the ovary, the 5-year

survival rate is 92.3%; when the disease has spread to the pelvis, it is 74.5%. In

advanced stages, when metastasis has occurred, the 5-year survival rate drops to

29.2% (Kim et al., 2018) and the 10-year survival rate is just 15% (Lisio et al.,

2019). Unfortunately, over 75% of HGSOC cases are diagnosed at an advanced

stage (Lisio et al., 2019; Kim et al., 2018; Forgó et al., 2024; Kurman et al., 2016),

primarily due to the lack of effective early screening methods and the late presenta-

tion of non-specific symptoms.

Understanding the molecular mechanisms of HGSOC is crucial to improve early

identification and patient outcomes. This includes chromosomal alterations, muta-

tional processes, cell origin, early cancer progression, and metastatic transition.

Several biological challenges occur when dealing with HGSOC.

The first one regards the origin of HGSCOC. Initially, it was thought to arise

from the ovarian surface epithelium, which is subsceptible to DNA damage dur-

ing ovulation cycles. However, recent research suggests that pre-cancerous lesions,

known as serous tubal intraepithelial carcinomas (STICs), generated by epithelial

cells in the distal fimbriae of the fallopian tubes, may be the site of origin of HG-

SOC due to their shared genetic instability. Yet, not all HGSOC cases involve the

fallopian tubes, other mechanisms may potentially contribute to its development

(Lisio et al., 2019; Kim et al., 2018). This uncertainty complicates early detection

and often leads to late-stage diagnoses.
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HGSOC’s metastatic nature is another significant problem. Unlike many other

cancers, tumor cells do not primarily spread through the bloodstream or lymphatic

system. Instead, cells detach from the primary tumor site, disseminate within the

peritoneal cavity via peritoneal fluid, and implant on nearby organs such as the

ovaries and the omentum. In later stages, HGSOC may extend to the liver, lungs, or

pleural space. Furthermore, patients often develop malignant ascites, where clusters

of tumor cells are floating in fluid, potentially promoting metastasis and chemother-

apy resistance by preventing cell death in the absence of surface attachment (Lisio

et al., 2019). By the time symptoms manifest, this metastatic process is often well

advanced, contributing to the high mortality rate.

Finally, both the primary and the metastatic tumor are characterized by a high

degree of chromosomal instability and nearly universal TP53 mutations (Kurman

et al., 2016; Forgó et al., 2024). These factors contribute to HGSOC’s complex

mutational profile, which leads to immune evasion and resistance to conventional

therapies, making it aggressive

(Vázquez-García et al., 2022). This leads to complicated treatment approaches,

frequent recurrence, and a poor prognosis.

This thesis contributes to addressing the last challenge by benchmarking tools

that infer copy number alterations, essential for understanding chromosomal insta-

bility in HGSOC.

Figure 1: Absolute numbers of cancer incidence and mortality for females aged 0-
74 worldwide in 2022 (Top 20 cancer sites). The left figure is ordered by incidence,
while the right figure is ordered by mortality. It can be observed that there are
275,335 cases and 159,285 deaths attributed to ovarian cancer.
Source: Cancer TODAY | IARC - Globocan 2022 (version 1.1)
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Figure 2: Ovarian
cancers classification
based on data in Arora
T. et al. book Epithelial
Ovarian Cancer. The
percentages indicate the
proportion of each
ovarian cancer subtype
out of the total ovarian
cancer cases.

1.2 Chromosomal Instability and Copy Number Al-

terations

HGSOC is characterized by a high level of chromosomal instability (CIN), which

contributes to its agressiveness and poor prognosis. CIN originates from vari-

ous mechanisms, including frequent mis-segregation of chromosomes during mi-

tosis, replication stress, homologous recombination deficiency, telomere crisis, and

breakage-fusion-bridge cycles. These processes lead to the accumulation of struc-

tural variations in the genome, mostly copy number alterations (CNAs) (Lynch et

al., 2024; Drews et al., 2022).

CNAs are changes in the number of copies of genomic regions larger than 10

kb, involving gains and losses ranging from partial chromosomal segments to entire

arms or even whole chromosomes (Harbers et al., 2021).

These alterations frequently affect oncogenes and tumor suppressor genes, im-

pacting critical cellular processes and promoting tumorigenesis. For instance, re-

current amplifications in MYC, TERT, CCNE1, and PIK3CA increase cell prolifer-

ation and survival, while deletions in BRCA1 and BRCA2 disrupt the homologous

recombination DNA repair pathway, leading to further genomic instability and dis-

ease progression (Vázquez-García et al., 2022; Harber Martins et al., 2022)
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The role of CNAs in cancer is not limited to initiating tumorigenesis. In fact,

due to CIN, new CNAs continually emerge as the tumor evolves, leading to the

coexistance of multiple genetically distinct subclones within a single tumor, each

with its unique CNA profile that contributes to differential sensitivity to therapeutic

agent (Lynch et al., 2024). This intra-tumor heterogeneity (ITH) poses a significant

challenge in cancer treatment as it enables the tumor to adapt to selective pressures,

such as chemotherapy, by allowing drug-resistant subclones to survive and expand,

leading to recurrence and treatment resistance (Lynch et al., 2024; Harber Martins et

al., 2022). CIN’s dynamic nature ensures that new genetic alterations develop over

time, creating new subclones and boosting tumor adaptability and aggressiveness

(Lynch et al., 2024).

CIN, in addition to ITH, contributes to inter-tumor heterogeneity. Tumors from

different HGSOC patients have different CNA profiles, reflecting diverse evolution-

ary trajectories (van Dijk et al., 2021). The variability of patients makes it difficult

to develop standardized treatment strategies and predict therapy effects. As a result,

personalized therapies based on the CNA profile of each tumor subclone of each

patient are becoming increasingly important (Lynch et al., 2024; van Dijk et al.,

2021).

CIN levels correlate with cancer progression, where moderate CIN enhances

tumor adaptability and resistance to therapies, leading to poor prognosis, while ex-

treme CIN leads to genomic catastrophe. (Lynch et al., 2024)(see Figure 3).

Figure 3: llustration of tumor growth and subclone selection during treatment:
A normal cell transforms into a tumor cell, which proliferates to form a clone. As
the tumor grows, it accumulates mutations, giving rise to genetically distinct sub-
clones, each represented by different colors. Treatment selectively eliminates sensi-
tive subclones (S), but resistant ones (R) survive and continue to proliferate, leading
to tumor recurrence and the formation of new subclones.
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1.3 CNA signatures

To better understand tumor phenotypes and support diagnosis, prognosis, and treat-

ment prediction, signatures derived from gene expression have been widely used

(Nevins and Potti, 2007; Chibon, 2013). However, the tumor microenvironment af-

fects gene expression, which may mask the tumor direct genetic signals (Macintyre

et al., 2018).

Mutational signatures, which are genomic patterns that reflect cumulative ge-

nomic alterations caused by mutagenic processes over the course of a tumor cell’s

lifetime, can overcome this limitation (Macintyre et al., 2018). Unlike gene expres-

sion data, they provide a direct view of genomic alterations that are not impacted

by the microenvironment (Drews et al., 2022).

Among mutational signatures, CNA signatures stand out as they capture the

different patterns of CNAs that result from CIN, revealing the underlying muta-

tional processes contributing to this genomic instability (Drews et al., 2022). This

makes them particularly useful for studying complex tumors like HGSOC, where

CIN plays a crucial role (Macintyre et al., 2018).

To derive meaningful insights, CNA patterns are condensed into CNA signa-

tures by analyzing specific CNA features (Macintyre et al., 2018). In this context,

Drews et al. (2022) discovered 17 CNA signatures across 33 cancer types, including

ovarian cancer, by analyzing the CN difference between neighboring segments, the

segment length, the number of breakpoints per 10 megabases, the number of break-

points per chromosome arm, and the length of chains of contiguous CN segments

that alternate between two CN states. Each signature reflects one or more pro-

cesses that contribute to CIN, such as chromosome missegregation, telomere dys-

function, impaired homologous recombination, replication stress, impaired damage

sensing, PI3K/AKT-mediated toleration, whole-genome duplication, and impaired

non-homologous end joining. Understanding these CNA signatures reveals how

different types of CIN contribute to cancer development, progression and resistance

to treatment.
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1.4 CNAs detection: from bulk DNA sequencing to

single-cell RNA sequencing

Although CIN and CNAs play important roles in tumor growth and therapy resis-

tance, their clinical application as biomarkers to inform patient prognosis or treat-

ment selection is restricted due to challenges in measuring them accurately and

efficiently (Lynch et al., 2024).

Traditional techniques to infer CNAs, such as cytogenetics and bulk sequencing

of DNA or RNA, give a comprehensive picture but lack the resolution to capture

subclonal variability within tumors (Lynch et al., 2024). Single-cell sequencing of

DNA or RNA offers a more detailed view, revealing tumor subclones with distinct

CNA patterns that bulk methods cannot detect (Kurt et al., 2024). Understanding

this genomic heterogeneity is crucial for developing strategies to target therapy-

resistant subclones, which frequently cause relapse (Mallory et al., 2020; Gao et al.,

2023).

Although single-cell DNA sequencing (scDNA-seq) enables direct detection of

CNAs at single-cell resolution, it has technical constraints, including the necessity

for whole-genome amplification, which can introduce biases and uneven coverage,

resuting in false positives (Mallory et al., 2020). Furthermore, scDNA-seq datasets

are limited in availability and access (Kurt et al., 2024).

On the other hand, single-cell RNA sequencing (scRNA-seq) data are more

widely available. CNAs cannot be detected directly from RNA, but can be in-

ferred indirectly because they correlate with gene expression levels (Gao et al.,

2023; Lynch et al., 2024). However, scRNA-seq presents its own challenges due

to the complexity of the tumor microenvironment, such as the presence of immune

cells and the cell-cycle state (Kurt et al., 2024), as well as sparse and noisy data (Gao

et al., 2023). Despite limitations, this technology has the potential to improve clin-

ical treatment of HGSOC and develop more targeted therapies. Therefore, several

methods have been proposed to infer CNAs profiles from scRNA-seq data (Lynch

et al., 2024).
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1.5 Aim of the project

Several computational approaches have been developed to infer CNAs from single-

cell RNA sequencing (scRNA-seq) data, however the predictions are not always

consistent due to differences in algorithms and assumptions. In the context of HG-

SOC, inaccurate CNA profiles might lead to incorrect conclusions regarding tumor

progression, therapy resistance and overall patient prognosis, interfering with clini-

cal decision-making.

This thesis benchmarks three tools selected for their relevance in the field. Infer-

CNV (Tickle et al., 2018) is one of the most widely used tools, while SCEVAN (De

Falco et al., 2023) and Numbat (Gao et al., 2023) are more recent, actively main-

tained tools that in recent studies have outperformed other state-of-the-art methods,

including CopyKAT and HoneyBADGER (De Falco et al., 2023; Gao et al., 2023).

By comparing the CNAs inferred from scRNA-seq data using these approaches

with those derived from bulk whole-genome sequencing (WGS) data using ASCAT,

this benchmark aims to determine the most accurate method for CNA detection. The

reason the CNAs from bulk WGS are utilized as the ground truth is that ASCAT is

considered a very reliable tool (Van Loo et al., 2010).

Some of these tools, including inferCNV, CopyKAT, CaSpER, HoneyBAD-

GER, sciCNV, SCEVAN, Numbat, have already been benchmarked across several

cancer types and cell lines in very recent studies not published yet but available as

pre-print (Chen et al., 2024; Minfang et al., 2024). While these studies provide

a broad benchmarking, this thesis specifically addresses the need for specific re-

search on HGSOC, using patient-derived samples to reflect the complexity of the

tumor microenvironment. By focusing on chromosomal instability and tumor het-

erogeneity in HGSOC, this work fills a gap in the literature and paves the way for

future research in this aggressive cancer.

An additional goal of this thesis is to assess whether the CN profiles inferred

from scRNA-seq-based tools are sufficiently consistent with those obtained by AS-

CAT from WGS data (considered the ground truth) to be used for quantifying the 17

CNA pan-cancer signatures discovered by Drews et al. (2022). This analysis also

aims to identify which tool performs best for signature quantification. Demonstrat-

ing such consistency would support the use of scRNA-seq data for studying CIN in

HGSOC.
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2. Materials and Methods

2.1 Datasets overview

This thesis uses two datasets derived from the Vázquez-García et al. study (2022)

conducted at Memorial Sloan Kettering Cancer Center (MSK), which investigates

the influence of mutational processes and anatomical tumor sites on immune eva-

sion mechanisms in HGSOC using multimodal approaches, including scRNA-seq

and bulk WGS.

The original cohort comprised 42 patients. However, this analysis focused on

39 patients with paired scRNA-seq data and tumor-normal bulk WGS samples. Pa-

tient SPECTRUM-OV-004 was excluded due to the lack of scRNA-seq data, while

SPECTRUM-OV-071 and SPECTRUM-OV-090 were excluded due to the lack of

tumor bulk WGS samples. Among the 271 scRNA-seq samples collected from

multiple sites in these 39 patients, only 128 CD45- and 6 Unknown-sorting samples

were included, while the CD45+ samples were excluded from the analysis.

Samples collection

Tissue samples were obtained from various anatomical sites (adnexa, omentum,

peritoneum, bowel, ascites, and other intra-peritoneal sites) of treatment-naive HG-

SOC patients during laparoscopic biopsies or debulking surgeries.

In addition to the tissue biopsies, blood samples were collected pre-surgery to

isolate peripheral blood mononuclear cells (PBMCs), which were used for normal

bulk WGS, ensuring a tumor-normal matched WGS dataset for each patient.

Samples processing

• scRNA-seq processing:

– Fresh tumor tissue were dissociated into single cells immediately after

collection.

– Single-cell suspensions were sorted into CD45+ (immune cells) and

CD45- (tumor cells) using fluorescence-activated cell sorting.
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– Sequencing libraries containing 1400-5000 cells per sample were pre-

pared using the Chromium Single-Cell 3’ Reagent kit v3 (10x Ge-

nomics) and sequenced on the Illumina HiSeq 2500 or NovaSeq 6000.

• Bulk WGS processing:

– Fresh tumor tissue was snap-frozen.

– DNA was extracted from microdissected tumor sections (for tumor

WGS) and from PBMCs isolated from blood samples (for normal

WGS).

– Sequencing libraries were prepared using the KAPA Hyper Prep Kit and

sequenced on the Illumina NovaSeq 6000.

These datasets were selected because they provided both genomic and transcrip-

tomic profiles from the same cohort of HGSOC patients, allowing the use CNAs

inferred from WGS as a ground truth for benchmarking. Additionally, the samples

were treatment-naive, meaning no alterations in the tumor and microenvironment

composition were caused by prior therapies.

Figure 4: Data collection and processing.
Source: inspired by the work of Vázquez-García et al. (2022)
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2.2 CNAs inference from scRNA-seq

In this section, InferCNV (Tickle et al., 2018), SCEVAN (De Falco et al., 2023),

and Numbat (Gao et al., 2023) are presented with a focus on their inputs, workflows,

outputs, and the parameter settings used in this benchmark. For simplificy, only the

outputs relevant to the benchmark are included.

2.2.1 Main inputs

The raw count matrix is the main input for InferCNV, SCEVAN, and Numbat. De-

pending on the tool, additional information on cells types may also be required.

These inputs are processed differently depending on the tool, with varying format

requirements. Below is overview of both an explanation of how they were obtained.

scRNA-seq data from multiple anatomical sites of the same patients were

merged to ensure comprehensive coverage of tumor heterogeneity and to increase

the pool of cells. This merging step resulted in higher sequencing depth, which in

turn improved the reliability of cell type classification and CNA inference.

Raw count matrix

The raw count matrix contains gene expression data, with rows corresponding to

genes and columns to individual cell barcodes. The values within the matrix indi-

cate the number of unique molecular identifiers (UMIs) mapped to each gene for a

specific cell.

The matrix is generated using the Cell Ranger pipeline from 10x Genomics,

which processes the raw FASTQ files to quantify gene expression.

As is common in scRNA-seq data, the matrix is sparse, meaning most values

are zero, as shown in the example table below:

GSM5467087_AAACCCAAGTGATAGT.1 GSM5467087_AAACCCACATTCACCC.1 GSM5467087_AAACCCAGTCCAAGAG.1

MIR1302-2HG 0 0 0

FAM138A 0 0 0

OR4F5 0 0 0

AL627309.1 0 0 0

AL627309.3 0 0 0

LINC01128 0 0 1

LINC00115 0 0 0

AL645608.6 0 1 0
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Before analysis, this matrix undergoes preprocessing steps, such as filtering out

low-quality cells and genes with low expression. The genes are then ordered by

their genomic coordinates.

It’s important to note that while Numbat requires tumor_matrix, a modified

version of the matrix that excludes normal cells, InferCNV and SCEVAN use the

full count matrix, which includes both normal and tumor cells.

Cell type information

To differentiate between normal and malignant cells, cell type annotations are re-

quired, though the specific format depends on the tool being used.

• InferCNV: Requires a header-free, tab-delimited annotations_file that

maps cell barcodes to their cell type classification labels (malignant or spe-

cific normal cell type) and a ref_group_names vector containing the cell

type classification labels of cell types to be used as reference.

– Example of the annotations_file:

GSM5467087_AAACCCAAGTGATAGT.1 malignant_GSM5467087

GSM5467087_AAACCCACATTCACCC.1 malignant_GSM5467087

GSM5467087_AAACCCAGTCCAAGAG.1 malignant_GSM5467087

GSM5467087_AAACGAAGTCTTGAAC.1 malignant_GSM5467087

GSM5467087_AAACGAATCACGTCCT.1 Endothelial.cell

GSM5467087_AAAGAACTCCATAAGC.1 malignant_GSM5467087

– Example of the ref_group_names vector:

c("Endothelial.cell", "Fibroblast", "other", "T.cell", "Myeloid.cell")

• SCEVAN: Requires a norm_cell vector containing barcodes of normal cells.

Example of the norm_cell vector:
c("GSM5467087_AAACGAATCACGTCCT.1", "GSM5467087_AAAGAACTCGAGATGG.1",

"GSM5467087_AAAGGATCATTCATCT.1", "GSM5467087_AAAGTGAAGGCTCAAG.1", ...)

• Numbat: Requires a lambdas_ref reference matrix, with rows correspond-

ing to genes and columns to normal cell types. The marix values represent

gene expression values for each normal cell type, normalized such that the

total expression within each cell type group sums to 1.

Example of the lambdas_ref matrix:
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Endothelial.cell Fibroblast Myeloid.cell other T.cell

MIR1302-2HG 0 0.000000e+00 0 0 0

FAM138A 0 0.000000e+00 0 0 0

OR4F5 0 0.000000e+00 0 0 0

AL627309.1 0 1.768628e-07 0 0 0

AL627309.3 0 0.000000e+00 0 0 0

While InferCNV requires the annotation file to distinguish between malignant

and normal cells, SCEVAN and Numbat can classify cells internally using their

algorithms. However, for consistency in this benchmark, the same cell type infor-

mation was provided a priori to all tools.

To classify cell types, the CellAssign tool (version 0.99.2) (Zhang et al., 2019)

was applied to the merged scRNA-seq data for each patient. The marker genes used

by CellAssign were derived from a previous study (Vázquez-García et al., 2022).

The output is formatted the same way as the annotations_file input required by

InferCNV.

2.2.2 InferCNV

Overview

InferCNV (Tickle et al., 2018) compares gene expression levels of tumor cells to

those of reference normal cells to identify CNAs. The tool uses a six-state Hidden

Markov Model (HMM) to detect CNAs and a Bayesian Network to refine the results

and reduce false positives.

Inputs

• raw_counts_matrix (see Main inputs - raw counts matrix)

• annotations_file and ref_group_names (see Main inputs - cell type in-

formation)

• gene_order_file: provides the chromosomal locations for many genes, in-

cluding all those present in the count matrix. For this benchmark, a pre-

generated file was used, available at [TrinityCTAT]

The file lists each gene’s name along with its chromosome and start/end co-

ordinates, as shown in the example below:
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DDX11L1 chr1 11869 14412

WASH7P chr1 14363 29806

FAM138A chr1 34554 36081

Method workflow

1. COUNTS MATRIX PREPROCESSING: Genes expressed in fewer than a minimum

number of cells (min_cells_per_gene) are removed from the counts matrix. Read

counts are scaled to sum the median total read count across all cells to adjust for

sequencing depth, and a log-transformation (log2(counts+ 1)) is applied to reduce

the variance associated with higher mean values.

2. CENTERING BY NORMAL GENE EXPRESSION: For each gene, the mean expression

value across reference (normal) cells is subtracted from the expression values of all

cells in log space, yielding log-fold changes relative to normal expression. These val-

ues are thresholded so that log-fold changes exceeding a predefined limit (default=3)

are capped.

3. SMOOTHING BY CHROMOSOME: Expression levels of genes ordered along each

chromosome are smoothed using a weighted running average (default window size:

101 genes), reducing noise. The mean expression level of normal cells is again sub-

tracted from tumor cells to correct discrepancies introduced during the smoothing.

4. CENTERING BY CELL: The median expression for each cell is centered at zero, under

the assumption that most genes are not in CNA regions.

5. LOG TRANSFORMATION REVERSION: The log transformation applied earlier is re-

versed to make gains and losses more symmetrical around the mean.

6. CNAS CALLING: Application of a six-state HMM to model CNAs, with the follow-

ing CNA states: complete loss (state 1), loss of one copy (state 2), neutral (state 3),

addition of one copy (state 4), addition of two copies (state 5), and a placeholder for

amplifications beyond two copies (state 6).

7. SIMULATED DATA: Generation of simulated scRNA-seq data, referred to as “hspike”

data. This dataset is constructed based on characteristics of the input normal (refer-

ence) cells, matching both the mean/variance expression intensity trend and zero-

inflation properties. Tumor cells are simulated to have chromosomal regions with

CNA levels corresponding to each of the six states. The variance for each CNA state

is estimated based on the sample size (or subclone size, depending on the analysis

mode) and is standardized across all CNA states to the median variance of all hspike

distributions. The hspike data goes through the same processing steps as the real

data, and are used to calibrate the HMM’s emission probabilities for each CNA state.
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8. BAYESIAN NETWORK ADJUSTMENT: A Bayesian Network is applied to compute

the posterior probability of each CNA being in a specific state, filtering out false

positives by assigning low confidence to regions that are likely normal, despite HMM

predictions.

9. FINAL FILTERING OF FALSE POSITIVES: CNAs with a high posterior probability of

being normal (typically above 0.5) are filtered out to reduce false positives.

Figure 5: lnferCNV workflow

Source: Tickle et al. (2019)
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Output

• Segmentation file (HMM_CNV_predictions.*.pred_cnv_regions.dat)

containing the group of cells affected by the CNA, CNA genomic region

coordinates (chromosome, start and end posisions), and copy number state

assignments. If the HMM is run on all cells for a given sample, the

cell_group_name ’all_observations.all_observations_s1’ corresponds to all

tumor cells in the sample. However, if subcluster analysis is used, the sample

is divided into subclusters.

An example format with analysis_mode = ’samples’ is shown below:

cell_group_name cnv_name state chr start end

all_observations.all_observations_s1 chr1-region_2 4 chr1 6221193 7781432

all_observations.all_observations_s1 chr1-region_4 4 chr1 215311817 43991170

all_observations.all_observations_s1 chr2-region_7 4 chr2 6221193 217756593

all_observations.all_observations_s1 chr3-region_10 2 chr2 62318973 99799226

An example format with analysis_mode = ’subclusters’ is shown

below:

cell_group_name cnv_name state chr start end

all_observations.all_observations_s2 chr1-region_2 2 chr1 32247233 36464437

all_observations.all_observations_s2 chr1-region_4 3 chr1 53916574 70205620

all_observations.all_observations_s1 chr1-region_68 4 chr1 3772788 9196983

all_observations.all_observations_s1 chr4-region_88 2 chr4 55853616 93810157

all_observations.all_observations_s10 chr6-region_273 4 chr6 33299694 38703141

Parameters used in this benchmark

The hg38_gencode_v27.txt file was used as the gene_order_file to create the

InferCNV object. InferCNV (version 1.20.0) was then run with the following key

parameters: cutoff = 0.1, min_cells_per_gene = 3, cluster_by_groups =

FALSE, denoise = TRUE, HMM = TRUE, analysis_mode = ’samples’. The

analysis_mode = ’samples’ option ensures that CNV prediction is performed

by grouping all malignant cells from a single patient together, rather than analyzing

smaller subclusters of malignant cells.
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2.2.3 SCEVAN (Single-Cell Evolutionary Variational ANalysis)

Overview

SCEVAN (De Falco et al., 2023) segments the genome using a variational approach

and performs joint segmentation across cells within the same clone, assuming that

cells within a clone share similar CNAs breakpoints. Thus, the expression profile

of every individual cell, seen as a function of the genomic coordinates, contributes

to the evidence of CNAs in each subclone.

Inputs

• count_mxt (see Inputs - raw counts matrix)

• norm_cells (see Inputs - cell type information)

Method workflow

1. COUNTS MATRIX PREPROCESSING: cells with fewer than 200 detected genes, genes

expressed in fewer than 1% of cells, and genes involved in the cell cycle are removed

from the counts matrix. The remaining genes are annotated with genomic locations

and sorted by genomic coordinates. The Freeman-Tukey transformation (Freeman et

al., 1950) is applied to the read counts to reduce the variance associated with higher

mean values. Then, each gene is scaled by subtracting its mean to center the data

around zero.

2. CONFIDENT NORMAL CELLS IDENTIFICATION: Confident normal cells are identi-

fied using gene expression signatures of various types of normal cells from public

collections. However, when the vector norm_cells is provided by the user, a priori

information can be used.

3. CENTERING BY NORMAL GENE EXPRESSION: For each gene, the median expres-

sion value across reference (normal) cells is subtracted from the expression values of

all cells, yielding a matrix of values relative to normal expression.

4. SMOOTHING: Application of edge-preserving smoothing to the gene expression data.

This process reduces noise while preserving sharp transitions between different CNA

states, which correspond to chromosomal breakpoints.

5. JOINT SEGMENTATION: A greedy multichannel segmentation algorithm identifies

the boundaries of homogeneous copy number regions across all cells in a clone, re-

sulting in a CNA matrix where expression values between breakpoints are averaged.
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A Mumford-Shah energy model (Mumford et al., 1989) is applied to minimize the

number of breakpoints, where adjacent regions are iteratively merged based on seg-

ment size and mean expression differences. The segmentation process assumes that

cells in the same clone share similar copy number breakpoints. By segmenting across

multiple cells at once, the tool ensures that CNAs are detected at the clone level, re-

ducing the impact of single-cell noise.

6. CLASSIFICATION OF MALIGNANT AND NON-MALIGNANT CELLS: The CNA ma-

trix obtained with segmentation is splitted into two groups using hierarchical clus-

tering, with cells in the cluster having the highest number of confident normal cells

classified as non-malignant. The final matrix is obtained by subtracting again the

mean expression values of the non-malignant cells.

7. SUBCLONAL STRUCTURE CHARACTERIZATION: Malignant cells are clustered

based on their CNA profiles. Joint segmentation is applied to each subclone, identify-

ing alterations that are subclone-specific, shared between some subclones or clonal.

Alterations in different subclones are considered the same if breakpoints are within

10 Mb and differ in size by less than 40%.

8. CNAS CALLING: A 5-states mixture model-based algorithm, with each component

defined as a truncated normal distribution, is used to assign copy number states (0 =

deletion, 1 = loss, 2 = neutral, 3 = gain, 4 = amplification) to each segmented region.

Clonal CN profiles can be obtain from all tumour cells (ClonalCN = TRUE) or from

each subclone.

Figure 6: SCEVAN workflow
Source: (De Falco et al., 2023)
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Output

• Segmentation file (*_Clonal_CN_ṡeg) containing the identified CNAs and

their corresponding genomic region coordinates (chromosome, start and end

positions), copy number state assignments, and the segment mean.

An example format is shown below:

Chr Pos End CN segm.mean

1 825138 151249536 2 0.020223

1 151281618 161964070 4 0.162726

1 161983192 248859144 2 0.02111

2 38814 69674349 2 0.004106

2 69644425 134918710 3 0.102261

Parameters used in this benchmark

The pipelineCNA function in SCEVAN (version 1.0.1) was run with the following

key parameters: ClonalCN = TRUE, norm_cell = norm_cell. The ClonalCN =

TRUE option ensures that clonal CNA prediction is performed by grouping all tumor

cells from a single patient together, while norm_cell = norm_cell ensures that a

vector of a priori identified normal cells is used as a reference.

2.2.4 Numbat

Overview

Numbat (Gao et al., 2023) uses an haplotype-aware Hidden Markov Model (HMM)

that integrates scRNA-seq data, allelic ratios, and population-derived haplotype in-

formation to detect allele-specific CNAs. Differently from InferCNV and SCEVAN,

it is able to distinguish allele-specific events, like loss of heterozygosity (LOH) and

biallelic amplification (bAMP).

Inputs

• count_mat (see Main inputs - raw counts matrix)

• lambdas_ref (see Main inputs - cell type information)

• allele_df: dataframe containing phased allele counts per single nucleotide

polymorphisms (SNP)
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Method workflow

1. PILEUP AND PHASING: Allele counts are generated for known SNPs using

cellsnp-lite, and heterozygous SNPs are phased into maternal and paternal hap-

lotypes using Eagle2 based on reference panels (e.g., 1000 Genomes). The result is

a phased allele dataframe containing SNP positions, genotypes, and allele counts.

2. COUNTS MATRIX PREPROCESSING: cells with a total gene expression of zero and

low-expressed genes are removed from the counts matrix. Each gene’s raw counts are

normalized by the total counts in each cell to account for differences in sequencing

depth between cells. A log transformation is applied to the read counts to reduce

the variance associated with higher mean values. The transformation is scaled by a

factor of 106 to bring normalized counts to a readable scale.

countgene, cell = log
(

raw_countgene, cell

∑gene raw_countgene, cell
×106 +1

)

Reference expression profiles from matched normal cells or external datasets are used

to build the lambdas_ref matrix.

3. CNAS CALLING: A 15-states haplotype-aware HMM is used to detect CNAs across

the genome. This HMM integrates gene expression (to detect copy number gains

or losses), ratio of reference to alternate alleles at heterozygous SNP sites (devia-

tions from the expected 1:1 ratio in diploid cells indicate the presence of CNAs),

and phased haplotype information (to differentiate between monoallelic and biallelic

CNAs and thus to detect allele-specific events, such as LOH or bAMPs).

The HMM models the likelihood of the observed data under 15 states, capturing a

continuum of copy number variations and haplotype fractions. It assigns probabilities

to different states (deletion, LOH, neutral, bAMP, amplification) and then computes

the most likely state for each genomic region.

4. FILTERING OF FALSE POSITIVES: CNAs with a log-likelihood ratio > 5 or a poste-

rior probability < 0.5 are filtered out, reducing false positives.

5. CLONAL PHYLOGENY RECONSTRUCTION: Malignant cells are clustered based on

their CNA profiles, and a distance matrix is used to infer subclone relationships.

Numbat generates a phylogenetic tree that shows the evolutionary relationships

among subclones, with CNAs annotated at each evolutionary step.

6. PHYLOGENY RECONSTRUCTION AND SUBCLONES IDENTIFICATION: The inferred

CNAs are used to build a maximum-likelihood phylogeny of the cells, capturing

clonal and subclonal structure. Numbat identifies distinct subclones within the tumor

by grouping cells based on their phylogenetic relationships.
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7. FINAL CNA CALLS: After iterative optimization of the phylogeny and CNAs detec-

tion, Numbat outputs a consensus segmentation file and joint posterior probabilities

of CNV states for each genomic segment in each cell.

Figure 7: Numbat workflow
Source: Gao et al. (2023)

Output

• Segmentation file (segs_consensus_i.tsv.gz) containing the identified

CNAs and their corresponding genomic region coordinates (chromosome,

start and end positions), copy number state assignments, and additional

information that is not relevant for this analysis.

An example format displaying only the columns of interest is shown below:

CHROM cnv_state_post seg_start seg_end

1 loh 779047 115691884

1 neu 115747427 248906235

2 neu 8814 241883646

3 loh 209229 186106855

3 loh 86139752 195529015

3 amp 195543189 197960200

Parameters used in this benchmark

To generate the phased allele dataframe allele_df using pileup_and_phase.R,

the following files were downloaded: gmap = genetic_map_hg38_withX.txt,

snpvcf = genome1K.phase3.SNP_AF5e2.chr1toX.hg38.vcf, paneldir =

1000G_hg38.

Numbat (version 1.4.2) was then run with the following key parameters: genome

= ’hg38’, t = 1e-5, lambdas_ref = lambdas_ref. The lambdas_ref =

lambdas_ref option ensures that a priori identified normal cells are used as a ref-

erence.
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2.3 CNAs inference from WES - ASCAT (Allele -

Specific Copy Number Analysis of Tumors)

Overview

ASCAT (Van Loo et al., 2010; Ross et al., 2021; Van Loo et al., 2012) is an al-

gorithm designed to automate the discovery of tumor ploidy (the average number

of DNA copies in tumor cells) and purity (fraction of tumor cells in the sample) to

derive allele-specific CNAs from bulk WGS data.

ASCAT relies on LogR (log2 intensity ratio, a measure of total copy number)

and BAF (B-allele frequency) values, which can be extracted from WGS BAM files.

These data reveal imbalances that differentiate the tumor genome from a normal

genome and help determine whether a sample is actually aneuploid (Figure 8).

In solid tumors, there is often a mixture of normal and tumor cells leading to

mosaic CNAs profiles in LogR and BAF data. ASCAT addresses both aneuploidy

and non-aberrant cell mixtures simultaneously.

In earlier versions, ASCAT required matched normal WGS samples to distin-

guish tumor-specific CNAs from germline variations, providing a baseline of nor-

mal genomic variation. Although later versions removed this requirement, this

benchmark includes matched normal samples to improve the accuracy of CNA de-

tection.

Inputs

• Tumor BAM file

• Normal BAM file

Note: A BAM file stores aligned sequences from WGS data in a binary format. It

includes a header section with metadata about the sequencing run and an alignment

section with details for each read aligned to the reference, such as position, mapping

quality, and a CIGAR string, which describes the alignment pattern (e.g. matches,

insertions, deletions). It is compressed for efficient storage and indexed (via .bai

files) to enable fast retrieval of alignments within specific regions (Marshall, 2024).
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Method workflow

1. LOGR AND BAF DATA EXTRACTION: LogR and BAF data are generated for each

SNP locus in both tumor and normal cells from WGS BAM files.

2. LOGR CORRECTION: LogR values are corrected for GC content and replication

timing to ensure that the total copy number measurements are adjusted for potential

biases in sequencing data.

3. SEGMENTATION: The Allele-Specific Piecewise Constant Fitting (ASPCF) algo-

rithm segments the genome into regions based on differences in copy number and

allelic balance (using the LogR and BAF data).

4. ESTIMATION OF PURITY AND PLOIDY: A sunrise plot is generated to determine the

best estimates for tumor purity and ploidy by evaluating different possible values.

The matched normal sample improves the accuracy of these estimates, ensuring that

only tumor-specific CNAs are analyzed.

5. ALLELE-SPECIFIC CNAS CALLING: The number of maternal and paternal copies

in tumor cells is determined for each segment of the genome by combining the seg-

mented LogR and BAF data with the purity and ploidy estimates.

Output

• Tumor purity and ploidy estimates.

• Segmentation file (segments_raw.txt) containing the identified CNAs,

their corresponding genomic region coordinates (chromosome, start and end

positions), and raw and rounded copy number state assignments for both mi-

nor and major alleles. An example format is shown below:

sample chr startpos endpos nMajor nMinor nAraw nBraw

SPE-OV-002 1 809641 3964554 2 1 2.4933291 1.162646898

SPE-OV-002 1 3965681 16678804 2 1 2.3824587 1.092205206

SPE-OV-002 1 16678933 18180875 3 1 3.3821671 1.015665293

SPE-OV-002 1 18182422 30389876 2 1 2.1023286 1.055509309

SPE-OV-002 1 30389957 30394257 1 0 1.0154774 0.342194144

SPE-OV-002 1 30394908 50397494 2 1 2.0524650 1.018038938

Parameters used in this benchmark

The allele-specific copy number data (LogR and BAF) was generated from the WGS

BAM files of both tumor and matched normal samples using the ASCAT (version

3.1.3) function ascat.prepareHTS with the following key parameters:
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• alleles.prefix = "path/G1000_alleles_hg38_chr"

• loci.prefix = "path/G1000_loci_hg38_chr"

• gender = "XX",

• genomeVersion = "hg38"

• chrom_names = seq(22)

• ref.fasta = "path/Homo_sapiens.GRCh38.dna.primary_assembly.fa".

ASCAT algorithm was run using the function ascat.runAscat on an AS-

CAT object that had previously undergone GC content and replication timing cor-

rection and segmentation, with the following key parameters: gamma = 1 and

write_segments = TRUE". A gamma value of one is standard for sequencing

data, ensuring the correct interpretation of LogR shifts for a one-copy loss.

Figure 8:

• Panel 1, 3, 5, 7: In a normal diploid situation, denoted by the blue X for the
paternal allele and the pink X for the maternal allele, the LogR is zero, and
there are three distinct BAF bands.

• Panel 2: When an allele is lost (e.g., the maternal allele), the LogR decreases,
and heterozygosity (middle BAF band) is lost, leaving only homozygous
bands.

• Panel 4: In cases of copy-neutral LOH, one allele is lost, and the other is
duplicated, leading to homozygosity with LogR = 0.

• Panel 6: Gains, such as trisomy, increase the LogR and result in four distinct
BAF bands.

Source: van Loo video file (2013)
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2.4 Tools benchmarking

To assess the ability of InferCNV, SCEVAN, and Numbat in detecting CNAs, a de-

tailed comparison was conducted between the CN regions inferred by these tools,

representing their predictions, and those identified using bulk WGS data analyzed

with ASCAT, which served as the ground truth. The comparison was done at the

base-pair level, allowing to capture even the smallest discrepancies between pre-

dicted and actual CNAs across the genome.

ASCAT’s CNAs are obtained by summing the number of copies of the minor

and major alleles, and are adjusted for ploidy to ensure comparability with outputs

from other tools.

For all benchmarked tools and ASCAT, including ASCAT, regions with losses

of one or two copies are labeled as "loss," while neutral regions or those with LOH

are labeled as "neutral," and amplifications of one or more copies, whether balanced

or unbalanced, are labeled as "gain."

Since InferCNV does not explicitly call regions it assigns a neutral copy number,

uncalled regions from InferCNV that are called by ASCAT are labeled as "neutral."

On the other hand, SCEVAN and Numbat do call neutral regions, and any regions

uncalled by these tools but identified by ASCAT were labeled as "NA."

Regions called by scRNA-seq based tools but not by ASCAT were excluded

from the analysis, as their ground truth state is unknown, making it impossible to

assess the correctess of these predictions.

Classification metrics

For each CNA state (loss, neutral, or gain) classification metrics (True Positives TP,

False Positives FP, True Negatives TN, False Negatives FP) were computed based

on the length of the segments in base pairs (bp), rather than the number of segments.

This approach better reflects the physical size of the alterations detected and ensures

a more precise assessment of performance: longer regions have a greater impact on

the metrics than smaller regions.
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The classification metrics for each state are defined as follows (see Figure 9a

and 10):

• For losses predicted by scRNA-seq based tools:

– TP: Regions classified as loss using WGS data and as loss using scRNA-

seq data.

– FP: Regions classified as neutral or gain using WGS data and as loss

using scRNA-seq data.

– TN: Regions classified as neutral or gain using WGS data and as neutral,

gain or no-call using scRNA-seq data.

– FN: Regions classified as loss using WGS data and as neutral, gain or

no-call using scRNA-seq data.

• For neutrals predicted by scRNA-seq based tool:

– TP: Regions classified as neutral using WGS data and as neutral using

scRNA-seq data.

– FP: Regions classified as loss or gain using WGS data and as neutral

using scRNA-seq data.

– TN: Regions classified as loss or gain using WGS data and as loss, gain

or no-call using scRNA-seq data.

– FN: Regions classified as neutral using WGS data and as loss, gain or

no-call using scRNA-seq data.

• For gains predicted by scRNA-seq based tool:

– TP: Regions classified as gain using WGS data and as gain using

scRNA-seq data.

– FP: Regions classified as loss or neutral using WGS data and as gain

using scRNA-seq data.

– TN: Regions classified as loss or neutral using WGS data and as loss,

neutral or no-call using scRNA-seq data.

– FN: Regions classified as gain using WGS data and as loss, neutral or

no-call using scRNA-seq data.
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Performance metrics

Beyond the raw classification metrics (TP, FP, TN, FN), performance metrics were

calculated to provide a more intuitive understanding of the tools’ overall perfor-

mance (see Figure 9b). These metrics were computed for each copy number state

and include:

• Sensitivity: The proportion of actual positive regions that were correctly iden-

tified by the tool
( TP

TP+FN

)
.

• Specificity: The proportion of actual negative regions that were correctly

identified by the tool
( TN

TN+FP

)
.

• Positive predictive value (PPV): The proportion of predicted positive regions

that were truly positive
( TP

TP+FP

)
.

• Negative predictive value (NPV): The proportion of predicted negative re-

gions that were truly negative
( TN

TN+FN

)
.

• Accuracy: The proportion of true results over the total number of regions( TP+TN
TP+TN+FP+FN

)
.

Additionally, an overall accuracy metric was calculated by considering the cu-

mulative length of regions where predictions from WGS and scRNA-seq data were

concordant. Specifically, it is computed by dividing the total length of regions where

both ASCAT and tools using scRNA-seq data classified the regions as either gain,

loss, or neutral (i.e., green regions in Figure 10) by the total length of all regions

with a call in WGS (green and red regions combined).

In an ideal scenario, where the tool credictions perfectly agree with the ground

truth, each performance metrics would be as close to 1 as possible, reflecting maxi-

mum TP and TN rates and minimal FP and FN rates.
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(a) (b)

Figure 9:
(a) Classification metrics: TP, FP, TN, and FN. The "state" can represent loss,
neutral, or gain, and "non-state" can represent non-loss, non-neutral, or non-gain.
ASCAT serves as the ground truth, while the predictions come from tools using
scRNA-seq data.
(b) Performance metrics: accuracy, sensitivity, specificity, PPV, and NPV.

Figure 10: Visual representation of state concordance between regions inferred by
ASCAT and by tools using scRNA-seq data. Green segments indicate regions where
the predictions agree, while red segments indicate regions where the predictions dis-
agree. The bottom table illustrates how each region contributes to the classification
metrics.
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2.5 CNA signatures by Drews et al.

Drews et al. (2022) used ASCAT to derive high-quality CN profiles from SNP array

data across a large set of tumor samples with detectable CIN, spanning 33 cancer

types. This dataset expanded their previously developed framework for identifying

CNA signatures in ovarian cancer (Macintyre et al., 2018). Their CNA signatures

discovery workflow included:

• PREPROCESSING: CN profiles were processed to extract values for five features

from each CNA segment across samples. These features (segment size, change-

point, lengths of chains of oscillating CN, breakpoints per 10MB, and breakpoints

per chromosome arm) are known to capture distinct CNA patterns associated with

CIN causes (see Figure 1).

• MIXTURE MODELING: Mixture modeling was applied to each feature’s values, clas-

sifying variations within each feature’s distribution into components representing

core characteristics of CNA patterns associated with CIN. For each tumor sample,

the probabilities of each CNA event belonging to each component were calculated,

and then summed to produce a vector of posterior probabilities. These vectors were

merged into a sample-by-component matrix.

• SIGNATURE IDENTIFICATION: Non-negative matrix factorization was applied to the

full sample-by-component matrix, identifying 10 pan-cancer signatures, and to ma-

trices from individual cancer types with at least 100 samples, leading to 7 additional

cancer-type-specific signatures. The pan-cancer and cancer-type-specific signatures

were then combined into a compendium of 17 CNA signatures. Following identifi-

cation, potential causes for each of the signatures were explored (see Figure 1).

• ROBUSTNESS EVALUATION: The robustness of these signatures was assessed across

various genomic technologies (SNP6, WGS, shallow WGS, and WES). Results in-

dicated that they were stable, although WES showed limitations due to its lower

resolution.

In this thesis, the quantifyCNSignatures function (with parameters method

= ‘Drews’, build = ‘hg38’) and the clinPredictionPlatinum funtion from

Drews et al.’s CINSignatureQuantification package were used to quantify the

activity of the 17 CNA signatures based on CN profiles generated both by AS-

CAT (from WGS data) and scRNA-seq-based tools, and to predict platinum-based

treatment response. A Pearson correlation was then computed for each patient to

compare the consistency of signature activities across these tools.
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Figure 11: Copy number features and the CNA patterns they capture. The features
are:

• Segment size (Seg. size): Length of CNA segments in base pairs.
• Changepoint (CNC): Absolute CN difference between a CNA segment and

its left neighboring segment.
• Breakpoints per 10MB (BP10): Number of breaks within a 10MB sliding

window across the genome.
• Breakpoints per chromosome arm (BPARM): Total number of breaks per

chromosome arm.
• Lengths of chains of oscillating CN (OSC): Length of contiguous where CN

oscillates between two states, often due to mutational processes like chro-
mothripsis.

Source: Drews et al., Supplementary Methods (2022)
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Figure 12: A summary of the pan-cancer frequency, proposed aetiology, aetiology
confidence rating, pattern of copy number change, and distribution across cancer
types for each signature. In HGSOC (highlighted in orange), the most frequent
signatures are CX1, CX2, CX3, and CX5.
Source: Drews et al. (2022)
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3. Results and discussion

3.1 Introduction to results

Table 2-8 (Appendix) provide patient-level information on classification and per-

formance metrics, as well as the cumulative lengths of genomic regions classified

as loss, neutral, or gain for each tool. Additionally, they include ploidy and purity

values inferred by ASCAT, and cell counts.

Out of the initial 38 patients, 22 were excluded due to unresolved errors en-

countered in Numbat’s execution, leaving 16 of them (listed in the rownames of

Table 2 - Appendix). To ensure fair metric comparisons, these 22 patients were

excluded across all tools, even though SCEVAN, InferCNV, and ASCAT generated

valid results, potentially resulting in a loss of valuable data.

Visual representations, presented in the following sections, have been made to

aid in the interpretation of this information.

3.2 Classification trends and visualization of CNAs

across the genome

As observed in Figure 14, ASCAT and SCEVAN classify similar proportions of the

genome as gain, loss, or neutral, suggesting a close agreement in their classification

patterns. In contrast, InferCNV and Numbat classify a larger proportion of genome

as neutral, suggesting a more conservative approach to detecting losses and gains.

The distribution along the genome of CNAs detected across each sample by

ASCAT and scRNA-seq-based tools (Figure 13) can be compared with the CNA

frequency data from Martins et al. (2022) and Punzón-Jiménez et al. (2022) in

HGSOC.

Both studies identified frequent gains on chromosomes 3q and 8q, and losses on

chromosomes 5q, 6q, 16, 17, 18q, 19q, and 22. These altered chromosomal regions

contain oncogenes (e.g., PIK3CA and MECOM on 3q, and MYC on 8q) and tumor

suppressor genes (e.g., NF1 on 17q). ASCAT detected all these alterations across

most samples, confirming its validity as a ground truth for CNAs in HGSOC.
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While scRNA-seq-based tools detected most of these frequently altered regions

as well, they showed limitations specifically with losses on chromosome 19q, which

ASCAT identified across many samples. This suggests that, while capturing the

majority of critical CNAs, scRNA-seq-based tools may be less sensitive to some

specific events.

Figure 14: Proportions of genome classified as loss, gain, neutral, or no-call by each
tool, calculated as the total base pairs for each call type summed across all samples.

Figure 13: Visualization of CNA segments across the genome for each sample,
comparing ASCAT (top line for each sample) with InferCNV, SCEVAN, and Num-
bat. Colors represent different CN states (loss, neutral, gain, and no-call)
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3.3 Classification metrics

Confusion matrices (Figure 13) show the number of bases classified as TP, FP, TN,

and FN for loss, neutral, and gain calls using InferCNV, SCEVAN, and Numbat.

Each confusion matrix shows the distribution of these classification metrics across

the 16 samples.

• Loss calls (Figure 13a): SCEVAN achieves the highest TP and lowest FN.

InferCNV achieves less FP but has the lowest TP and highest FN.

• Neutral calls (Figure 13b): In terms of TP and FN, InferCNV outperforms,

with the highest TP and fewest FN. SCEVAN outperforms in both FP and

TN, with the lowest FP and highest TN. Numbat remains in the middle of

both sets of metrics.

• Gain calls (Figure 13c): SCEVAN achieves the highest TP and lowest FN,

indicating effective detection of gain regions, but also the highest FP and

slightly lower TN compared to the other tools.

The classification metrics reveal distinct strengths and weaknesses across the

tools.

SCEVAN has the highest FP and lowest TN for loss and gain calls, but the

lowest FP and the highest TN for neutral calls. This indicates that both InferCNV

and Numbat tend to minimize FP at the expense of higher FN in loss and gain

regions: they make few loss and gain calls at cost of missing some true alterations.

This suggests that InferCNV and Numbat have a tendency to classify regions as

neutral more often, aligning with the observations from Figure 14.

Numbat generally performs between SCEVAN and InferCNV without excelling

in any single category.

While classification metrics provide an overview, they rely on raw counts and

may not fully reflect each tool’s effectiveness. Detailed performance metrics, dis-

cussed in the next section, allow for a more immediate comparison.

40



(a)
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(c)

Figure 13: Each figure shows four panels illustrating TP, FP, TN, and FN for loss
(a), neutral (b), and gain (c) calls, respectively. Each panel contains three boxplots
(one for each of the scRNA-seq-based tools) that display the distribution of the
number of bases with a specific call in ASCAT (WGS) and scRNA-seq-based tools
(SC) across the 16 samples.

3.4 Performance metrics

Figure 16 and Figure 17 present performance metrics for InferCNV, SCEVAN, and

Numbat.

Figure 16 shows overall, loss, neutral, and gain accuracy metrics. SCEVAN

achieves the highest median overall accuracy (0.67), especially outperforming in

neutral regions (median neutral accuracy = 0.68), above InferCNV (median neutral

accuracy = 0.57) and Numbat (median neutral accuracy = 0.52).

Figure 17 shows sensitivity, specificity, PPV, and NPV metrics for each call

type (loss, neutral, gain). SCEVAN consistently achieves median values above 0.50

across all metrics and call types. InferCNV and Numbat achieve lower performance,

particularly with NPV values below 0.50 for loss and gain calls, and both PPV and

specificity below 0.50 for neutral calls.

The performance metrics confirm insights from the classification metrics. The

lower performance of InferCNV and Numbat reflects that many regions classified

as neutral by these tools should not be neutral. In particular, the low NPV for loss

and gain calls derives from high FN rates in these categories (i.e., many true loss
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regions are incorrectly classified as neutral or gain, and many true gain regions are

incorrectly classified as neutral or loss). Similarly, the low PPV and specificity for

neutral calls are due to high FP for neutral regions (i.e., many regions classified as

neutral are actually altered).

Given the prevalence of neutral regions (as visible in Figure 14 - Appendix), ac-

curacy in neutral calls greatly influences overall accuracy. Therefore, even though

InferCNV and Numbat achieve similar accuracy for loss and gain, SCEVAN’s

higher neutral accuracy has a positive impact on its median overall accuracy (0.67),

making it the most accurate tool.

SCEVAN’s higher overall accuracy reflects its greater ability to minimize errors

across CNA types. Figure 21 (Appendix) shows that SCEVAN achieves the most

balanced values across pairs of performance metrics for gain, loss, and neutral calls.

In particular, Figure 18 highlights that, although SCEVAN exhibits a slightly lower

median sensitivity for neutral calls, it compensates with a much higher specificity,

achieving a superior balance between these two metrics.

It was tested whether performance, specifically overall accuracy, is influenced

by factors such as tumor purity inferred by ASCAT from WGS data, the number of

normal and malignant cells, the fraction of malignant cells, or coverage in scRNA-

seq data (Figure 22, Figure 23 - Appendix). However, no correlation was observed.

Figure 16: Accuracy metrics (overall, loss, neutral, gain) for each tool.
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Figure 17: Performance metrics (sensitivity, specificity, PPV, and NPV) across each
call type for each tool. The mean of each metric across all samples is represented
by a pink dot. Ideally, all metrics should be close to 1, indicating high performance.

Figure 18: Scatter plot comparing sensitivity and specificity across CNA call types
for each patient, colored by tool. Points near the diagonal indicate patients with bal-
anced metrics, with those toward the top right along the diagonal reflecting optimal
performance for both metrics.
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3.5 Signatures

In Figure 19, CNA signatures were quantified across all samples starting from CNA

segments detected by ASCAT and by scRNA-seq-based tools. Signature activity

was not computed from scRNA-seq data in samples with fewer than 20 altered

segments, affecting especially Numbat, which could only quantify signatures for 3

of 16 samples, limiting the comparison across methods.

Using ASCAT, CX1, CX2, CX3, and CX5 were found active in the majority of

samples. This supports the findings of Drews et al. (2022) that they were prevalent

in HGSOC. However, while employing scRNA-seq-bases methods, CX5 was not

found. This could be due to the nature of CX5, which has medium-sized, clustered,

two-to-three-copy changes. In the benchmark analysis, all copy number changes

were classified as gains or losses, but it would be helpful to compare the tools by

distinguishing between types of gains and losses, as this could reveal whether the

tools correctly identify gains or losses while misclassifying the actual number of

copies changed. Also CX2 (short to medium-sized, clustered, single-copy changes)

was difficult to detect, CX3 (long-sized, single-copy changes) was detected when

using SCEVAN, and CX1 (whole arm or chromosome changes) was consistently

detected when using all scRNA-seq tools.

The differences in WGS and scRNA-seq signature activities may be due to how

each tool outputs copy number segments: ASCAT generates unrounded values,

while scRNA-seq-based tools generate rounded values, making direct comparisons

difficult. Furthermore, ASCAT does not correct for ploidy, while scRNA-seq tools

algorithms integrate ploidy adjustments.

Pearson correlation analysis was used to assess the correlation between the sig-

nature activities quantified from WGS and scRNA-seq data. SCEVAN had the high-

est median correlation with ASCAT-derived signatures (about 0.45), although it is

still quite low (Figure 20). This suggests that while SCEVAN captures some CIN

characteristics, scRNA-seq–derived CNA profiles generally diverge from WGS-

derived profiles, raising questions about whether the information captured is suf-

ficient for clinical applications of these signatures.

Using the clinical classifier from Drews et al. (2022), no scRNA-seq tool iden-

tified platinum-sensitive patients as classified by ASCAT (Table 1). The classifier

relies on higher CX3 activity over CX2 to predict sensitivity and high CX5 activity

to predict resistance. Since CX2 activity is hard to detect in scRNA-seq data, the

45



baseline is compromised, contributing to the classifier’s limited performance with

scRNA-seq data. These discrepancies between WGS and scRNA-seq signatures

suggest a need for clinical classifiers specifically tailored to scRNA-seq data, which

would require larger datasets to develop effectively.

(a)

(b)

(c)

(d)

Figure 19: Raw (on left panel) and normalized (on right panel) signature activities
computed from CNA segments inferred by ASCAT (a), considered the ground truth,
InferCNV (b), SCEVAN (c) and Numbat (d).
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Figure 20: Boxplots showing the Pearson correlation between signature activities
derived from CNA segments inferred by ASCAT and by scRNA-seq-based tools.
Correlations are computed across all samples where both tools provided signature
activity quantifications. The number of samples is indicated above each boxplot.

Patient ASCAT InferCNV SCEVAN Numbat

SPECTRUM-OV-002 Resistant Resistant Resistant <NA>

SPECTRUM-OV-003 Resistant Resistant Resistant <NA>

SPECTRUM-OV-014 Resistant Resistant Resistant <NA>

SPECTRUM-OV-022 Sensitive Resistant Resistant <NA>

SPECTRUM-OV-025 Sensitive Resistant Resistant Resistant

SPECTRUM-OV-026 Resistant <NA> Sensitive <NA>

SPECTRUM-OV-037 Resistant <NA> Resistant <NA>

SPECTRUM-OV-041 Resistant Resistant <NA> <NA>

SPECTRUM-OV-045 Resistant Resistant Resistant Resistant

SPECTRUM-OV-049 Resistant Resistant Resistant <NA>

SPECTRUM-OV-050 Resistant Resistant Resistant <NA>

SPECTRUM-OV-052 Resistant Resistant Resistant <NA>

SPECTRUM-OV-053 Sensitive <NA> Resistant <NA>

SPECTRUM-OV-067 Resistant Resistant Resistant <NA>

SPECTRUM-OV-070 Resistant <NA> Resistant Resistant

SPECTRUM-OV-075 Resistant <NA> Resistant <NA>

Table 1: Platinum-treatment resistance prediction. Green cells represent predictions
concordant with the ASCAT ground truth, red cells represent discordant predictions,
and gray cells represent cases where predictions are unavailable due to missing
signature activity quantifications.
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4. Conclusion and future perspec-
tives

In this thesis, three tools (InferCNV, SCEVAN, and Numbat) for inferring CNA

profiles from scRNA-seq data are benchmarked using CNAs inferred from WGS

data as the ground truth, specifically within the context of HGSOC. It was shown

that SCEVAN performed the best, even though all three tools can infer CNA pro-

files to some extent. The results also reveal a limitation in InferCNV and Numbat,

which have a tendency to classify regions as neutral, thereby overlooking significant

genomic gains and losses. SCEVAN is therefore the most reliable tool for studying

HGSOC.

The observed differences between CNAs inferred from scRNA-seq and WGS

data, such as in regions like chromosome 19q, highlight the need for algorithms

refinement.

A larger and more diverse patient cohort, including additional cancer types and

samples processed using different scRNA-seq platforms and protocols, could be

analyzed to improve the reliability and broaden the applicability of this benchmark-

ing. Furthermore, evaluating additional tools, such as CopyVAE (Kurt et al., 2024),

would provide a more complete benchmarking.

Future research should explore the clinical potential of CNA signatures derived

from scRNA-seq data, particularly for predicting responses to platinum-based ther-

apies. The results demonstrate that current classifiers optimized for SNP6/WGS-

derived signatures do not perform well on scRNA-seq-derived signatures, highlight-

ing the need for classifiers specifically made for scRNA-seq data.

This thesis evaluated the ability of the tools to infer CNA profiles from pseudo-

bulk RNA-seq produced from scRNA-seq data, however future studies are still

needed to determine how accurately they can identify CNAs of individual tumor

subclones.

In conclusion, this field of study has the potential to advance precision oncol-

ogy. Tools that infer CNAs from scRNA-seq data provide detailed insights into the

genomic and clonal composition of tumors, holding promise to predict treatment

response and improve patient outcomes.
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Appendix

Figure 21: Scatter plots comparing pairs of performance metrics across CNA call
types for each patient, colored by tool. Points near the diagonal indicate patients
with balanced metrics, with those toward the top right along the diagonal reflecting
optimal performance for both metrics.

Figure 22: Scatter plots illustrating the relationship between overall accuracy in
CNA detection and the tumor cell fraction, the number of tumor and normal cells
in the scRNA-seq sample, and tumor purity inferred by ASCAT from WGS data,
colored by tool.
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Figure 23: Scatter plots illustrating the relationship between overall accuracy in
CNA detection and the mean coverage per base in pseudo-bulk samples derived
from normal and tumor cells in each scRNA-seq sample, colored by tool.
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patient ploidy purity

SPECTRUM-OV-002 3.31 0.55

SPECTRUM-OV-003 3.16 0.29

SPECTRUM-OV-014 3.06 0.86

SPECTRUM-OV-022 3.68 0.68

SPECTRUM-OV-025 3.02 0.65

SPECTRUM-OV-026 1.98 0.82

SPECTRUM-OV-037 1.83 0.86

SPECTRUM-OV-041 3.88 0.97

SPECTRUM-OV-045 2.92 0.46

SPECTRUM-OV-049 3.25 0.57

SPECTRUM-OV-050 1.83 0.52

SPECTRUM-OV-052 2.58 0.82

SPECTRUM-OV-053 3.1 0.31

SPECTRUM-OV-067 2.74 0.41

SPECTRUM-OV-070 3.67 0.61

SPECTRUM-OV-075 1.7 0.54

Table 2: Tumor ploidy and purity values estimated by ASCAT from WGS data.

patient n_cells n_mal n_nor frac_mal

SPECTRUM-OV-002 1512 933 579 0.6171

SPECTRUM-OV-003 22206 2690 19516 0.1211

SPECTRUM-OV-014 9880 7416 2464 0.7506

SPECTRUM-OV-022 6750 5313 1437 0.7871

SPECTRUM-OV-025 3674 1708 1966 0.4649

SPECTRUM-OV-026 15753 8096 7657 0.5139

SPECTRUM-OV-037 3853 2166 1687 0.5622

SPECTRUM-OV-041 6185 3019 3166 0.4881

SPECTRUM-OV-045 6852 2889 3963 0.4216

SPECTRUM-OV-049 6903 1637 5266 0.2371

SPECTRUM-OV-050 6452 2268 4184 0.3515

SPECTRUM-OV-052 6059 2349 3710 0.3877

SPECTRUM-OV-053 9051 1613 7438 0.1782

SPECTRUM-OV-067 4257 974 3283 0.2288

SPECTRUM-OV-070 9432 2877 6555 0.3050

SPECTRUM-OV-075 8322 746 7576 0.0896

Table 3: Total number of cells (n_cells), number of malignant (n_mal) and normal
cells (n_nor), and fraction of malignant cells (frac_mal) in scRNA-seq data.
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Table 4: Cumulative lengths of regions for each type of CNA (loss, neu = neutral,
gain) for each tool (A = ASCAT, I = InferCNV, S = SCEVAN, N = Numbat).
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Table 5: Performance metrics (spe = specificity, ppv = positive predictive value, npv
= negative predictive value, sen = sensitivity) for losses for each scRNA-seq based
tool (I = InferCNV, S = SCEVAN, N = Numbat)
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Table 6: Performance metrics (spe = specificity, ppv = positive predictive value,
npv = negative predictive value, sen = sensitivity) for neutrals for each scRNA-seq
based tool (I = InferCNV, S = SCEVAN, N = Numbat)
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Table 7: Performance metrics (spe = specificity, ppv = positive predictive value, npv
= negative predictive value, sen = sensitivity) for gains for each scRNA-seq based
tool (I = InferCNV, S = SCEVAN, N = Numbat)
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Table 8: Accuracy (acc_ov = overall accuracy, acc_loss = accuracy for losses,
acc_neu = accuracy for neutrals, acc_gain = accuracy for gains) for each scRNA-
seq based tool (I = InferCNV, S = SCEVAN, N = Numbat)
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