
Università degli Studi di Padova

Analysis and improvement of a

non-projective dependency parsing

algorithm

Laureando: Relatore:
Marco Camillo Prof. Giorgio Satta

Corso di Laurea Magistrale in Ingegneria Informatica

12/12/2016 A.A. 2015-2016

Abstract

This essay inspects the previous work of [Nivre, 2009] about dependency
parsing of non-projective structures using a special Swap operation, and
proposes an improvement of the system in terms of number of transitions
and, consequently, execution time. We’ll show how a two-step parsing pro-
cess of non-projective sentences brings, in most cases, to a reduction of the
number of Swap operations, which are responsible of the whole parsing
execution time to exceed linear performances.

Ringraziamenti

Voglio ringraziare tutti quelli che mi hanno permesso di completare il mio
percorso di studi.

Per primo ringrazio il prof. Giorgio Satta, che mi ha sostenuto durante
la redazione di questa Tesi ed aiutato a superare le difficoltà incontrate.

Ringrazio i miei colleghi ingegneri, in particolare Andrea, mio fedele com-
pagno di mille progetti, giornate di studio e vita universitaria in generale,
dal primo all’ultimo anno; i nuovi amici della magistrale, con i quali con-
frontarsi è stato un piacere ed uno stimolo; e tutti i membri della compagnia
della triennale, che nonostante le separazioni è sempre un piacere ritrovare.

Ringrazio i miei amici di più lunga data, che da ormai dieci anni mi
forniscono il migliore supporto possibile: l’Amicizia, quella vera e sincera,
senza retorica. Non me ne vogliano gli altri, sapete quanto tenga a TUTTI,
ma cito in particolare Claudia, Silvia, Micheal e Matteo, che in diverse oc-
casioni mi hanno dimostrato quanto preziose possano essere le parole giuste
al momento giusto. Grazie in generale a chiunque mi abbia mai voluto un
minimo di bene, senza di voi non sarei quello che sono ora.

Infine ringrazio la mia Famiglia: mia sorella, che è stata gentilissima ad
aiutarmi con la stesura della Tesi nonostante la maternità, le mie nonne, i
miei zii e cugini, che con la loro stima mi hanno spinto a migliorare sempre di
più, ed mio padre e mia madre, dei quali ogni azione ed ogni pensiero è sem-
pre stato volto al mio bene, e che non ringrazierò mai e poi mai abbastanza
per il sostegno che mi hanno dato.

Contents

1 Introduction to Natural Language Processing 1

2 Dependency grammars and dependency parsing 3
2.1 Definitions . 3
2.2 Properties of dependency trees 5
2.3 Dependency parsing models 7

2.3.1 Transition based parsers 7
2.3.2 Application example 10

3 Non-projective dependency parser 13
3.1 Definition of projective order 13
3.2 Nivre’s non-projective dependency parser definition 14

3.2.1 Transition system . 14
3.2.2 Parsing algorithm . 15

3.3 Time complexity . 16

4 An improvement to Nivre parsing system 19
4.1 Definition of displacement score 19
4.2 Finding a better order . 20
4.3 TwoStep parsing system . 24

4.3.1 First step: “Arc-standard”-like reduction 24
4.3.2 Second step: reset and complete 25

4.4 Related work . 27

5 Statistical comparison of the approaches 29
5.1 Java implementation of the systems 29
5.2 Simulation results . 30

6 Conclusion 33

Appendices 37

A Java code used for simulations 37
A.1 NonProjectiveParsingSystem.java 37
A.2 NivreParsingSystem.java . 40
A.3 TwoStepParsingSystem.java 43

Chapter 1

Introduction to Natural
Language Processing

The Human Language Technology or, as it is also called, Natural Language
Processing, is a field of information technology that is quickly becoming of
great relevance. It comprises knowledge and concepts from many different
disciplines such as linguistics, computer science, logic and cognitive science,
as its main focus is to define an automated system capable of understanding
and analyzing the language that humans use naturally speaking to each
other. In the last few years many examples of application of these researches
have become quite popular, among them the most remarkable are:

• Google Translate, a service running on a website that simultaneously
translates text between a great set of human languages;

• Siri/Google Assistant/Cortana, the new personal assistants we can
find respectively in iOS (from version 5), Android (full version from
version 7.0, previously integrated in Google Now) and Windows Phone
(from 8.1 version) smartphones and tablets, that interpret natural lan-
guage queries and extract information from texts and documents, like
schedules and user preferences;

• Wolfram|Alpha, a computational knowledge engine that interprets the
query to extract information from the keyword and try to compose an
answer looking to the knowledge it has, instead of giving a link to a
pre existent document.

The first researches on this field date back to the mid twentieth century:
in 1950 the British mathematician Alan Turing proposed the well known
Touring Test, which was used to determine whether a machine could be con-
sidered intelligent: if a natural language conversation with it would make it
indistinguishable from an human interlocutor, the machine could be defined
intelligent. Between the first prototypes of human-like talker, the ELIZA

1

project [Weizenbaum, 1966] is one of the most remarkable. The system was
capable of carrying a limited conversation, simulating the behaviour of a
Rogerian psychotherapist. Many “patients” of this system were induced to
believe that they had been talking to a real doctor, and some of them re-
fused to believe that it was, in fact, a machine even after been explained its
operation. Years later, the increased computational power made it possible
to develop machine learning techniques. This brought even more attention
to this field, as the possibility of an automated system to create a set of
rules from a dataset of previously solved instances of a problem lead to a
completely new approach on natural language interpretation.

The whole analysis of an human language conversation is composed by
a series of phases, usually performed one after the other.

• Symbol analysis. The input is formatted to plain text and tokenized
following a dictionary.

• Grammar analysis (or part-of-speech tagging). Every token is anno-
tated with its grammatical category (like English name, adjective, pro-
noun, ...) and specific morfologic form (given by gender, number, ...)

• Syntactic analysis (or parsing). The single tokens are grouped in
graph-like structures that represent the relations between them.

• Semantic analysis. This structures are used to understand what a
sentence means, using other knowledge.

• Pragmatic analysis. The whole sentence is evaluated within the con-
versation context, considering who stated that and what do we know
about him.

• Discourse analysis. The whole conversation is scanned in order to find
more complex structures that include more than one sentence.

This essay focuses on the parsing process: we will define a modern theory
about how the structure of a sentence can be represented and how the words
it is composed by are related to each other. The next chapter introduces
this theory, then we will see an example of a parsing algorithm (proposed
by Joakim Nivre in [Nivre, 2009]) and how it can be improved.

2

Chapter 2

Dependency grammars and
dependency parsing

Dependency grammars are a popular tool used by researchers in Natural
Language Processing for automatic syntactic parsing of sentences. They de-
fine a set of relations between the words of a sentence, giving information
about how they depend on each other, which add more details to the sense
of a sentence than the simple word list. For example, if an automatic trans-
lation engine could know which is the main verb in a complex phrase or
which context a preposition is used into, it could make a better guess about
the meaning of the whole sentence and provide a better translation.
These information are given by this set of binary, asymmetric relations be-
tween words, called dependencies, that can be used to create a representa-
tion of the whole sentence as a dependency tree. To create this, we use a
dependency parsing model, which can infer which relation stands between
the words of a sentence and eventually construct the whole tree given the
simple sequence of the words.

In this chapter we’ll present the formal definition of dependency struc-
tures and how a parsing system can create a dependency tree from any
sentence.

2.1 Definitions

To define a system that operates over sentences, we must formally define
what a sentence is:

Definition 1. A sentence is a sequence of tokens (a word or a punctuation
marker) we denote by:

S = w0w1w2 · · ·wn

Actually, w0 is an artificial token, not representing any word, that we
add to the beginning of a sentence, as it will serve as root of the dependency

3

tree. This may seem to make the very basis of syntactic analysis unrealistic,
but it will become clear later that this addition provides great algorithmical
generalization ability.

These tokens are connected by a set of relations, each of them will have
a dependency relation type, that will result in an arc label when the tree
will be constructed. As this essay will be focused on guided parsing process,
for which relation type is irrelevant, we won’t specify them any further.
Anyway, knowing this, we can define dependency graphs.

Definition 2. Given a sentence S = w0w1 · · ·wn and a relation type set R,
a dependency graph G = (V,A) is defined as a standard labeled, directed
graph with a set of nodes, V , and a set of arcs, A, such as:

• V ⊆ {w0, w1, . . . , wn},

• A ⊆ V ×R× V,

• if (wi, r, wj) ∈ A, then (wi, r
′, wj) /∈ A for every r′ 6= r.

We call it a well-formed one (aka a dependency tree) if it has the form of a
directed tree with w0 as root node and V = {w0, w1, . . . , wn}

Figure 2.1 shows how a dependency tree looks like:

Figure 2.1: Example of a dependency tree

Note that for any sentence S and relation set R there may be many valid
trees, corresponding to many syntactic interpretations. This phenomenon
is called syntactic ambiguity and it’s very well known in linguistic research
field. An example can be seen in a famous joke by Groucho Marx:

One morning, I shot an elephant in my pajamas. How he got
into my pajamas, I’ll never know.

The first sentence may lead to think that the person who shot the ele-
phant is in his pajamas, but the second half explains that this wasn’t true.
The two interpretations of the ambiguous phrase correspond to two different
well-formed dependency trees, as we see in Figure 2.2. The different head
of the arc involving the group “in my pajamas” is what defines which of the
two interpretation is represented.

4

Figure 2.2: Example of syntactically ambiguous sentence

2.2 Properties of dependency trees

First of all, it will be useful to have some simple notational conventions to
help us in the analysis of dependency trees (all of the subsequent definitions
are valid for a generic well-formed tree G = (V,A))

• wi → wj denotes that there is a generic dependency relation between
wi and wj , so (wi, r, wj) ∈ A for some r ∈ R. We’ll call wi head of the
relation, and wj the dependent.

• wi →∗ wj denotes the reflexive transitive closure of the relation op-
erator. That is, it tells that there’s an arbitrary number of relations
that connects wi to wj , so it is either wi = wj or both wi →∗ wi′ and
wi′ → wj are true for some wi′ ∈ V .
We say that wj belongs to the yield of wi.

• wi ↔ wj denotes that there is a relation between the two tokens, but
does not specify which is the head and which the dependant. So, either
wi → wj or wj → wi is true.

• wi ↔∗ wj denotes the reflexive transitive closure of the undirected
relation operator. That is, either wi = wj or both wi ↔∗ wi′ and
wi′ ↔ wj are true.

Now we can state some properties of dependency trees

Property 1. A dependency tree G = (V,A) always satisfies the root prop-
erty, which states that there is no node wi ∈ V such that wi → w0

This property comes straightforward from the artificial addition of w0

to the sentence’s tokens as the root of the dependency tree.

5

Property 2. A dependency tree G = (V,A) always satisfies the connected-
ness property, which states that for every two nodes wi, wj ∈ V , wi ↔∗ wj

will always be true.

This is also pretty obvious, as all nodes will always be connected if they
belong to the yield of the same root. As we will see, it may happen that
a parsing process leads to the creation of a non-connected graph. If this is
the case, we add a fictitious arc from w0 to the roots of the single disjoint
connected components of the graph.

Property 3. A dependency tree G = (V,A) always satisfies the single head
property, which states that, for every node wj , if wi → wj there is no other
node wk such that wk → wj

Complying with this last property has the consequence to force the graph
to be acyclic, as a tree should be. These three properties are all uncorrelated
with each other (i.e., none of them can be deduced from any combination of
the others), and together they set enough constraints to define a dependency
graph as a directed tree rooted at w0.
There is also a fourth property that, differently from the others, does not
stand for all trees:

Property 4. A dependency tree G = (V,A) satisfies the projectivity prop-
erty if, and only if, each yield of all its nodes forms a convex set with respect
to precedence (that is, all the node belonging to the yield form a contiguous
subsequence of the sentence).

As an example, see the sentence in Figure 2.3 and its associated depen-
dency tree.

Figure 2.3: Example of a non-projective dependency tree

As you can see, considering w2, we can see that its yield (the set {w1, w2,
w5, w6, w7}) is not a convex set, as w3 and w4 are missing. We call the arc
closing that gap (in this case the arc (w2,NMOD, w5)) a non-projective arc.
A direct consequence of non-projectivity is that if we draw all the arcs on
the same semiplane respect to the sentence, non-projective arcs will always
cross the path of one or more of the others.

6

Non-projective structures are quite rare in English language, but they are
noticeably frequent in Nordic languages like Danish and Swedish. Note that
this property is greatly affected by the order of the tokens that compose the
sentence. In fact, any dependency tree can always be made projective if we
change this order. This will come more clear in the next chapter, when we’ll
show how we can parse non-projective structures.

2.3 Dependency parsing models

There is a great variety of approaches that can be used to solve the depen-
dency parsing problem (i.e., the task of automatically building the depen-
dency structure of a given input sentence). Broadly speaking, we can divide
them in two classes: grammar-based approaches, which use formal gram-
mars and define formal languages to categorize sentences; and data-driven
approaches, which use machine learning techniques over annotated linguistic
data. In this essay we will focus on transition-based parsers, an example of
the latter category which make use of supervised machine learning.

Namely, the data-driven approach divides the whole problem in two
phases: the learning phase, where a parsing model is inferred through the
analysis of annotated sentence sets called treebanks; and the parsing phase,
where the parsing model is used to build brand new dependency trees from
plain sentences.

2.3.1 Transition based parsers

Transition-based parsers consist in two components: a transition system,
which represents the parsing model that must be induced in the learning
phase; and a parsing algorithm that, given the sentence, uses the transition
system to build the dependency tree.

Transition system

First of all, we must define what the transitions are made over.

Definition 3. A configuration is a triple c = (Σ, B,A) such that Σ and B
are two disjoint sublists of Vx, the ordered list of all tokens of a sentence x,
and A is a set of arc over the elements of Vx.

We will call Σ and B the stack and the buffer of the transition system, re-
spectively. As an example, given the sentence seen in Figure 2.1, a valid con-
figuration could be ck = ([w0, w2, w3, w4], [w5, w6, w7, w8, w9], {(w2,ATT, w1)}).

With this definition, we can now say what a transition system is.

Definition 4. A transition system for dependency parsing can be defined
as a quadruple S = (C, T, cs, Ct), where

7

• C is a set of configurations,

• T is a set of transitions, which are functions in the form t : C 7→ C
used to modify the configurations,

• cs is an initialization function, which maps a sentence x to an initial
configuration c ∈ C,

• Ct ⊆ C is a set of terminal configurations.

In this essay, we will use a dummy initialization function that creates
a standard starting configuration, cs(x) = ([w0], [w1, . . . , wn], {}), for any
sentence x = w0 . . . wn. Also, we will define the set of terminal configurations
Ct as composed by all configurations of the form c = ([w0], [], A), with a
generic set of arcs A. The parsing algorithm, then, will use transitions
contained into T to switch step by step from the initial configuration to one
of those contained in Ct, generating a transition sequence.

Definition 5. A transition sequence for a sentence x is a sequence of con-
figurations C0,m = (c0, c1, . . . , cm) where:

• c0 = cs(x), i.e., the first configuration is the one generated with the
initialization function.

• cm ∈ Ct, i.e., the last configuration must be contained in the terminal
configurations set.

• ∀i with 1 < i ≤ m, ci = t(ci−1) for some t ∈ T , i.e., every configuration,
apart from the first, is the result of a transition of the previous one.

Eventually, the result of the parsing process will be a dependency graph
Gcm = (Vx, Acm), with Acm as the arc set in configuration cm. To make sure
that the parsed graph is also a tree, the transition set will ensure that the
three necessary properties defined in section 2.2 are achieved.

Parsing algorithm

The last statement of definition 5 is crucial to define what a determinis-
tic parsing algorithm must know: for every configuration of the sequence
(except the terminal ones) it must choose which transition function to use,
in order to create the dependency tree. This choice is made by the oracle
function, that gives us the optimal transition for every configuration.
Defining an oracle function is the central problem in dependency parsing,
and it’s the goal of the classification phase of the whole parsing process,
which lies outside the focus of this essay.

Given this function, though, the parsing algorithm is straightforward:

8

1: function parse(o, x)
2: c← cs(x)
3: while c /∈ Ct do
4: t← o(c)
5: c← t(c)
6: end while
7: return Gc

8: end function

The only component still not specified is the transition function set.
We will use a quite common approach for generic parsing, the shift-reduce
technique. Basically, we need a way to transfer tokens from the buffer to
the stack (a shift operation), and a way to remove them from the stack,
replacing them with a subtree they belong to, while adding some arc to
the arc set (a reduce operation). A minimal example of transition set (for
projective sentences’ parsing only) is equipped with the following transition
functions:

• the Shift transition is identical to the one used in common shift/re-
duce parsers: it removes the first token from the buffer and pushes it
to the top of the stack. It can always be done, given that the buffer is
non-empty. Formally,

Shift((σ|wi, wj |β,Ac)) = (σ|wi|wj , β, Ac)

• the Left-Arcr transition, given any label r ∈ R, looks at the top two
elements of the stack, say wi and wj , and adds the arc (wj , r, wi) to
the arc set. Also, it removes wi from the stack. This is permitted only
if i 6= 0, otherwise it violates the root property. Formally,

Left-Arcr((σ|wi|wj , B,Ac)) = (σ|wj , B,Ac ∪ {(wj , r, wi)})

• the Right-Arcr transition, for any label r ∈ R, works similarly to
Left-Arcr. It takes the first two elements of the stack, again we’ll
call them wi and wj , and adds the arc (wi, r, wj) to the arc set. Addi-
tionally, it pops wj from the stack. Formally,

Right-Arcr((σ|wi|wj , B,Ac)) = (σ|wi, B,Ac ∪ {(wi, r, wj)})

These transitions define the Arc-Standard parsing system, which was firstly
hinted in [Abney and Johnson, 1991] and is the most simple example of a
dependency parser for projective sentences only.

As we already said, the parsing system will build a dependency graph
over a sentence. We would like to know, though, if, given these transition

9

functions, the graph built is also a dependency tree. To find this out, we
look at the three properties defined in section 2.2, and check if they are
fullfilled:

• Root property : the only way an arc with w0 as a tail could be added
would be if a Left-Arc transition is used on a configuration with
Σ = [w0, w1]. However, we know that it is not permitted in this case,
so the root property will be always complied.

• Connectedness property : the terminal configurations we defined for
this system must all have an empty buffer and a stack that contains
w0 only. As the only way to remove a token from the stack-buffer
combined list is by adding an arc with the token to remove as the tail,
we know for sure that there won’t be any token not connected to the
others.

• Single head property : the two transitions that augment the arc set
also remove from the stack the tail of the dependency they create. For
this reason, it’s impossible for a token to be tail of more than one
dependency.

So, since all properties are valid for this system, it will always produce a
well-formed dependency tree.

2.3.2 Application example

Having defined all the components of a dependency parsing system, we
hereby provide an example of execution of the parsing algorithm over the
sentence provided in Figure 2.1. We will use the transitions we just defined,
and a simple, deterministic oracle function that can access the arc set A
of a valid dependency tree associated to the sentence (this is obviously an
ideal oracle, in practice it is approximated by the classifier built from the
treebank). Basically, given a generic configuration c = (σ|wi|wj , β, Ac), it
checks these conditions:

• if (wj , r, wi) ∈ A, for any r ∈ R, it predicts t = Left-Arcr;

• if (wi, r, wj) ∈ A, for any r ∈ R, and if there is no other arc (wj , r
′, wl) ∈

A but not belonging to Ac, it predicts t = Rigth-Arcr;

• if both the two previous conditions aren’t met, it predicts t = Shift.

The additional condition imposed for the choice of t = Rigth-Arcr is
crucial for the possibility of the parsing algorithm to reach a terminal con-
figuration, that is, to empty the stack. In fact, if a node of the tree that is
head of some relation is removed before all of his dependants, these latter
tokens will never be put beside their “father” in the stack, and thus never

10

popped out of it, causing the algorithm to fail.
This system, with slightly different variants, is widely used in dependency
parsing literature. Table 2.1 shows the stack and buffer content in the con-
figuration sequence, the transition the oracle chooses for all of them, and
the arc the two reduce-like transitions add to the arc set (for the sake of
clarity, in such tables we will use the real word with its position n in the
sentence to represent the node wn).

Stack Buffer Transition Arc added (if any)

[Root0] [Economic1, . . . , .9] Shift -
[Root0, Economic1] [news2, . . . , .9] Shift -
[Root0, Economic1, news2] [had3, . . . , .9] Left-ArcATT (w2,ATT, w1)
[Root0, news2] [had3, . . . , .9] Shift -
[Root0, news2, had3] [little4, . . . , .9] Left-ArcSBJ (w3,SBJ, w2)
[Root0, had3] [little4, . . . , .9] Shift -
[Root0, had3, little4] [effect5,. . . ,.9] Shift -
[Root0, . . . , little4, effect5,] [on6, . . . , .9] Left-ArcATT (w5,ATT, w4)
[Root0, had3, effect5] [on6, . . . , .9] Shift -
[Root0, . . . , effect5, on6] [financial7, . . . , .9] Shift -
[Root0, . . . , on6,financial7] [markets8, .9] Shift -
[Root0, . . . ,financial7,markets8] [.9] Left-ArcATT (w8,ATT, w7)
[Root0, . . . , on6,markets8] [.9] Right-ArcPC (w6,PC, w8)
[Root0, . . . , effect5, on6] [.9] Right-ArcATT (w5,ATT, w6)
[Root0, had3, effect5] [.9] Right-ArcOBJ (w3,OBJ, w5)
[Root0, had3] [.9] Shift -
[Root0, had3, .9] [] Right-ArcPU (w3,PU, w9)
[Root0, had3] [] Right-ArcPRED (w0,PRED, w3)
[Root0] [] Stop -

Table 2.1: Execution of the parsing algorithm on the sentence in Figure 2.1

As we can see, in the sixth row we had w0 and w3 at the top of the stack
but the oracle correctly suggested to use the Shift transition, even if the
arc (w0,PRED, w3) ∈ A.

11

Chapter 3

Non-projective dependency
parser

3.1 Definition of projective order

As it has already been noted, we can’t say that a dependency tree is intrinsi-
cally projective or not: in fact, this property is related with the order of the
tokens of the sentence the tree is associated with. This has the consequence
of making projectivity a crucial property when executing parsing algorithms
that, as we have seen in the previous chapter, are greatly affected by this
order. As an example, if we try to parse the sentence in Figure 2.3 with the
Arc-standard parsing system, we get the result shown in Table 3.1.

Stack Buffer Transition Arc added (if any)

[Root0] [A1, . . . , .9] Shift -
[Root0,A1] [hearing2, . . . , .9] Shift -
[Root0,A1, hearing2] [is3, . . . , .9] Left-ArcDET (w2,DET, w1)
[Root0, hearing2] [is3, . . . , .9] Shift -
[Root0, hearing2, is3] [scheduled4, . . . , .9] Left-ArcSBJ (w3,SBJ, w2)
[Root0, is3] [scheduled4, . . . , .9] Shift -
[Root0, is3, scheduled4] [on5, . . . , .9] Shift -
[Root0, . . . , scheduled4, on5] [the6, . . . , .9] Shift -
[Root0, . . . , on5, the6] [issue7, . . . , .9] Shift -
[Root0, . . . , the6, issue7] [today8, .9] Left-ArcDET (w7,DET, w6)
[Root0, . . . , on5, issue7] [today8, .9] Right-ArcPC (w5,PC, w7)
[Root0, . . . , scheduled4, on5] [today8, .9] Shift -
[Root0, . . . , on5, today8] [.9] Shift -
[Root0, . . . , today8, .9] [] ERROR -

Table 3.1: Attempt of execution of the parsing algorithm of the previous
chapter on the sentence in Figure 2.3

13

As expected the algorithm failed, as it can’t reach any valid terminal
configurations. Analysing the parsing sequence, we note that we start to go
off track on the fifth step, when we add (w2,DET, w1) to the arc set even if
we couldn’t link w2 with its right subtree. That’s because we can’t extract
w3 and w4, which separate w2 from w5, because they can’t be connected to
their dependent w8. If we try to rearrange the list of the tokens, though, we
can obtain a projective tree, as we can see in Figure 3.1.

Figure 3.1: Example of a different order for the sentence in Figure 2.3

Any order of the tokens of a sentence that can be associated to a pro-
jective tree is called a projective order. As we already mentioned before, for
every tree it is possible to define a projective order. This will be proved
later on in this chapter, as will be the very basis of the definition of a new
parsing system able to directly build non-projective trees.

3.2 Nivre’s non-projective dependency parser def-
inition

The Swedish researcher Joakim Nivre, in his already cited 2009 paper, pre-
sented a simple extension of the Arc-standard system with the aim to expand
the set of feasible trees to all dependency trees. We will call it Nivre parsing
system.

3.2.1 Transition system

The transition system is very similar to the one used in the Arc-standard.
It uses equally structured configurations, the same starting and terminal
functions but a different transition set: in addition to the Shift, Left-
Arcr and Right-Arcr transitions, it has a fourth one, defined as follows

• the Swap transition, given a configuration like c = (σ|wi|wj , β, Ac),
takes wi and pushes it back in the buffer, changing its relative order
with wj . This is only permitted if 0 < i < j. Formally,

Swap(σ|wi|wj , β, Ac) = (σ|wj , wi|β,Ac)

14

The condition imposed to the permissibility of the operation prevents two
nodes to be swapped more than once, avoiding deadlocks. It is clear that,
if we now can change the order of the nodes, we can also rearrange them
so as to push them in the stack in the projective order. Also, note that the
transition does not swap two elements keeping them in the stack, but it pops
an element out and pushes it back in the buffer, allowing the element that
was previously on the top to be linked to the lower elements of the stack.

3.2.2 Parsing algorithm

In Nivre system it is used the same parsing algorithm we used in the previous
chapter, but obviously the oracle function must be modified to include the
case when a Swap is needed. Therefore, we need to find a way to define a
projective order for any possible dependency tree. An example can be an
inorder traversal of the tree itself.

Definition 6. The inorder traversal of a tree processes all its nodes visiting
recursively the left subtree, the root, and the right subtree, respectively.

For example, given the tree in Figure 3.2, if we print the label of each
node while visiting them, the result will be “D B E A F C G”.

Figure 3.2: Example of a tree

If we execute an inorder traversal of a projective tree, the result will
always follow the original token order of the sentence. If we take any non-
projective tree, instead, it won’t follow it, but we are sure that the arcs
connecting the nodes of the tree won’t cross each other, so none of them will
be non-projective with respect to the new order. So, the inorder visit will
always define a sequence of token in some projective order. We will use the
symbol <P to say that a node comes before another one in this projective
order. Figure 3.1 shows precisely the inorder sequence of that tree: when we
reach node w2, we first visit its right subtree before returning to its father
w3.

15

Now it is possible to define the oracle function used in the Nivre sys-
tem, which chooses the optimal transition t for a generic configuration
c = (σ|wi|wj , wk|β,Ac) (that is, the one that will let to build a given graph
G = (V,A)):

• if (wj , r, wi) ∈ A, for any relation type r, and if there is no other arc
(wi, r

′, wl) ∈ A but not belonging to Ac, it predicts t = Left-Arcr;

• if (wi, r, wj) ∈ A, for any relation type r, and if there is no other arc
(wj , r

′, wl) ∈ A but not belonging to Ac, it predicts t = Right-Arcr;

• if wj <P wi, it predicts t = Swap;

• otherwise, it predicts t = Shift.

Note that the double condition we have previously imposed only to the sec-
ond choice must now be applied also to the first one, as a previous Swap
operation may have moved an incomplete node deeper into the stack. Ap-
plying the whole algorithm to the same non-projective sentence we tried to
parse earlier, we get the transition sequence shown in Table 3.2.

As we can see, the Swap transition is used to move w3 and w4 after the
group w5, w6, w7, in order to be able to link w2 to w5.
It is important to note that if the target tree associated to the input sentence
is projective, the transition sequence will be identical to the one produced
by the Arc-Standard system, as no Swap operations would be necessary.

3.3 Time complexity

The time needed for the complete parsing of a sentence is obviously directly
related to its length n. If we use a deterministic oracle function, such as
those we defined until now, we can ignore the real classification and decision
process and just consider that every prediction and transition will always
need constant time to complete. Therefore, we can use the number of tran-
sitions needed to convert the initial configuration into a terminal one as a
direct measure of the total execution time of the parsing algorithm.

If we consider the Arc-Standard system, as we must move all tokens from
the buffer to the stack and then remove them leaving only the root, we will
always need n Shift operations + n Left/Right-Arc transitions to parse
a sentence of n words. So the time complexity will be Tas(n) = c·2n = O(n),
with c as the constant execution time of o(c) and t(c).

Regarding Nivre system, if the target is a projective structure the ex-
ecution time will obviously be identical. If not, though, the transition se-
quence will surely contain a Swap operation. Consequently, as this transi-
tion pushes back to the buffer an element from the stack, it will be necessary
an additional Shift to restore the cardinality of the buffer. For this reason,

16

Stack Buffer Transition Arc added (if any)

[Root0] [A1, . . . , .9] Shift -
[Root0,A1] [hearing2, . . . , .9] Shift -
[Root0,A1, hearing2] [is3, . . . , .9] Left-ArcDET (w2,DET, w1)
[Root0, hearing2] [is3, . . . , .9] Shift -
[Root0, hearing2, is3] [scheduled4, . . . , .9] Shift -
[Root0, . . . , is3, scheduled4] [on5, . . . , .9] Shift -
[Root0, . . . , scheduled4, on5] [the6, . . . , .9] Swap -
[Root0, . . . , is3, on5] [scheduled4, . . . , .9] Swap -
[Root0, hearing2, on5] [is3, . . . , .9] Shift -
[Root0, . . . , on5, is3] [scheduled4, . . . , .9] Shift -
[Root0, . . . , is3, scheduled4] [the6, . . . , .9] Shift -
[Root0, . . . , scheduled4, the6] [issue7, . . . , .9] Swap -
[Root0, . . . , is3, the6] [scheduled4, . . . , .9] Swap -
[Root0, . . . , on5, the6] [is3, . . . , .9] Shift x 3 -
[Root0, . . . , scheduled4, issue7] [today8, .9] Swap -
[Root0, . . . , is3, issue7] [scheduled4, . . . , .9] Swap -
[Root0, . . . , the6, issue7] [is3, . . . , .9] Left-ArcDET (w7,DET, w6)
[Root0, . . . , on5, issue7] [is3, . . . , .9] Right-ArcPC (w5,PC, w7)
[Root0, hearing2, on5] [is3, . . . , .9] Right-ArcNMOD (w2,NMOD, w5)
[Root0, hearing2] [is3, . . . , .9] Shift -
[Root0, hearing2, is3] [scheduled4, . . . , .9] Left-ArcSBJ (w3,SBJ, w2)
[Root0, is3] [scheduled4, . . . , .9] Shift -
[Root0, is3, scheduled4] [today8, .9] Shift -
[Root0, . . . , scheduled4, today8] [.9] Right-ArcADV (w4,ADV, w8)
[Root0, is3, scheduled4] [.9] Right-ArcVG (w3,VG, w4)
[Root0, is3] [.9] Shift -
[Root0, is3, .9] [] Right-ArcPU (w3,PU, w9)
[Root0, is3] [] Right-ArcROOT (w9,ROOT, w3)
[Root0] [] Stop -

Table 3.2: Nivre system’s parsing sequence of the sentence in Figure 2.3.
Projective order used: [w0, w1, w2, w5, w6, w7, w3, w4, w8, w9]

every Swap needed adds two steps to the total count, so TN (n) = c(2n+2k)
with k Swaps done. To find the asymptotic complexity, we must know how
k is related to n. As we said, this transition can only be executed when the
two nodes at the top of the stack follow the original token order. Hence, the

number of Swaps is capped by
n(n− 1)

2
, which means that in the worst case

TN = c(2n+ 2 · n
2 − n

2
) = c(n2 + n) = O(n2). This is a pretty high cap; in

fact, experimental studies show that the real time complexity is more close
to linear than to quadratic performances. In the next chapter we’ll show

17

some more specific observations done on the matter, as we’ll try to under-
stand how the projective order used influences the length of the transition
sequences.

18

Chapter 4

An improvement to Nivre
parsing system

When we use the Nivre system’s parsing algorithm, it is clear that the main
factor that affects the execution time is the number of Swaps needed, and
so, being its cause, how “far” from their original positions are the tokens in
the projective order. If we could find a way to relate this distance to the
execution time of the parsing process, we could then imagine how an optimal
projective order can look like, and use that instead of the inorder traversal
sequence. For this reason, first of all we have to find a way to measure how
much scrambled any sort is with respect to the original token order.

4.1 Definition of displacement score

As it has been observed in [Havelka, 2007] and [Kuhlmann and Nivre, 2006],
the vast majority of non-projective structures are quite simple, with a single
group of tokens placed in the middle of a connected sequence. Therefore,
the projective order will differ from the original one only by the position of
these tokens. We will talk about this difference as the displacement score of
a group of tokens. Basically, it is defined as follows:

Definition 7. For every token, we define its displacement score as the dif-
ference from the position it has in the original order (that is, its subscript)
and the one it has in a given sort. We will call every consecutive subsequence
of tokens with the same score a displaced group.

For example, if a valid projective order of a sentence of nine words is
[w0, w1, w2, w3, w4, w8, w5, w6, w7, w9], we will have two displaced groups:
one composed by [w5, w6, w7], with displacement score +1, and one com-
posed by [w8] only, which has displacement score −3.

A simple property of this quantity is that the displacement scores of
every token in a sentence will always sum to 0, as the change of position of

19

Figure 4.1: Visualization of the sentence used in section 4.1

a group can be always seen as the consequence of another shift.

4.2 Finding a better order

We will now take a closer look to the Nivre parsing algorithm, and in par-
ticular to which conditions lead to the necessity of a Swap transition. We
know that, without any non-projective structures, the projective order is
equal to the original word order, so the tokens are naturally pushed from
the buffer to the stack following the correct sequence. If the projective order
is different, though, the oracle will predict the need of a Swap as soon as
the two tokens on the top of the stack are reciprocally unordered, moving
back by one position the top element in the combined sequence of stack
and buffer. This will continue until the token that is being “overtaken” by
the Swaps will be in the desired position, and the just mentioned combined
sequence will follow the projective order.

For example, let’s imagine a parsing system which only uses the Swap
and Shift transitions, whose oracle predicts the first one in the same cases
in which the oracle in Nivre system does (it is obvious that this system will
only rearrange the tokens until the projective order is followed). If we try
to use this system on the hypothetical sentence of section 4.1, the transition
sequence would be the one showed in Table 4.1.

Stack Buffer Transition Arc added (if any)

[w0] [w1, . . . , w9] Shift -
[w0, w1] [w2, . . . , w9] Shift -
[w0, w1, w2] [w3, . . . , w9] Shift x 6 -
[w0, . . . , w5, w6, w7, w8] [w9] Swap -
[w0, . . . , w5, w6, w8] [w7, w9] Swap -
[w0, . . . , w5, w8] [w6, w7, w9] Swap -
[w0, . . . , w4, w8] [w5, w6, w7, w9] Shift x 4 -
[w0, . . . , w8, w5, w6, w7, w9] [] Stop -

Table 4.1: Execution of rearranging algorithm defined in section 4.2 over
the hypothetical sentence in figure 4.1. Red coloured tokens have negative
displacement score, blue coloured have positive score

20

Figure 4.2: Visualization of the sentence of eight words used in the second
example in section 4.2

We can see that, to obtain the desired order, we must swap the member
of the displaced group with positive displacement score over all the tokens
of the other group. It is evident, then, that the more tokens we have to
rearrange in the sequence, the more transitions are needed. Still, it is also
true that in this example we omitted any possibly existent arc between the
positive scored tokens [w5, w6, w7]. If, for example, this group could be
reduced to only one token, then only one Swap transition would have been
needed.

Let’s take, as another example, a sentence of eight words with [w0, w1, w2,
w4, w5, w6, w7, w3, w8] as projective ordered sequence. As we can see in Fig-
ure 4.2, in this case we have a displaced group composed by [w4, w5, w6, w7]
with score −1 and another composed by [w3] with score +4. When we try
to parse this sentence, the first time we need a Swap transition will be when
w3 and w4 are at the top of the stack. This will push w3 back in the buffer,
so the necessity of a rearrangement will recur as we reach w5: again w3

will be pushed back, until it will reach its correct position in the projective
ordered sequence, after w7, as shown in Table 4.2.

This time we had only one token with positive displacement score, and a
group with negative score. As the tokens are pushed in the stack following
the original order, we will always “meet” nodes with positive score before
nodes with negative score. For this reason, it’s impossible to add any arc be-
tween them before the Swap transitions, so these possible reductions would
be useless in term of reduction of execution time.

So, if we could find a way to compute a projective order that produces
more positive scoring tokens than negative scoring ones, we would proba-
bly see an improvement in term of length of the transition sequence and,
by consequence, of overall time performances. An attempt has been made
with a sketchy algorithm we designed, that tries to obtain a valid projective
order operating directly on the trees. The basic idea is to locate, for every
non-projective arc, the set of tokens that do not belong to the yield of the
head of this arc, but still are between its extremes. To make it projective
we move these tokens to the left, before the leftmost element between the
head and the tail of the examined arc. This way the selected group will get
negative displacement score, and all the tokens between its original and final

21

Stack Buffer Transition Arc added (if any)

[w0] [w1, . . . , w8] Shift -
[w0, w1] [w2, . . . , w8] Shift x 3 -
[w0, . . . , w3, w4] [w5, w6, w7, w8] Swap -
[w0, w1, w2, w4] [w3, w5, w6, w7, w8] Shift -
[w0, . . . , w4, w3] [w5, w6, w7, w8] Shift -
[w0, . . . , w3, w5] [w6, w7, w8] Swap -
[w0, . . . , w4, w5] [w3, w6, w7, w8] Shift -
[w0, . . . , w4, w5, w3] [w6, w7, w8] Shift -
[w0, . . . , w4, w5, w3, w6] [w7, w8] Swap -
[w0, . . . , w4, w5, w6] [w3, w7, w9] Shift x 2 -
[w0, . . . , w4, w5, w6, w3, w7] [w8] Swap -
[w0, . . . , w4, w5, w6, w7] [w3, w8] Shift x 2 -
[w0, . . . , w4, w5, w6, w7, w3, w8] [] Stop -

Table 4.2: Execution of rearranging algorithm defined in section 4.2 over a
the hypothetical sentence in figure 4.2.

positions will get positive scores. As the moved groups are usually composed
by few tokens (as we stated at the beginning of section 4.2), this will usually
produce more positive scored tokens than negative scored ones.

1: function ProjSort(x,G(V,A))
2: for every wi ∈ V, i 6= 0 do
3: wj ∈ V |a = (wj , r, wi) ∈ A
4: Y ← yield(wj)
5: if Y forms a contiguous sequence then
6: a is projective
7: else
8: W ⊂ V |(W ∩Y = ∅)∧(wk ∈W ⇐⇒ (i < k < j∨j < k < i))
. W is the set of nodes that makes the yield unconnected

9: move W before wi

10: end if
11: end for
12: end function

For example, if we take the Swedish sentence in Figure 4.3a and apply
this simple piece of pseudocode, we obtain the sentence in Figure 4.3b

This approach has a major flaw: the relocation of the token belonging
to W is uncontrolled, and can make other arcs non-projective. For example,
if we use this approach to the sentence we used in chapter 2 the result
would be what can be seen in Figure 4.4. In addition to the sentence being
unreadable, the relocation of w3, which was the responsible of the non-

22

(a)

(b)

Figure 4.3: Example of working execution of ProjSort algorithm. Con-
sidering (w3,OC, w7), the W set contains only w5, which made the yield of
w3 discontinuous.

(a)

(b)

Figure 4.4: Example of a not working application of ProjSort algorithm.

projectivity of (w2,NMOD, w5), created another non-projective structure,
so it was completely useless.

Many tries were made to develop a deterministic way to find a suitable

23

place to move the W set to without making other yields unconnected. For
example, we could place it next to the nearest ancestor of its tokens which
is outside the unconnected yield. This may work, as we are sure it won’t
interpose other yields, but we can’t know for sure whether this node is left
to the original position or not, so we could end up making a relocation that
will be useless in term of parsing performances. Also, if one of the tokens
in W set has other dependents, the arc connecting to them can become
not-projective.

Due to not being able to determine a generally working algorithm, we
switched to another approach: a two-step algorithm who parses a sentence
with two different transition sets.

4.3 TwoStep parsing system

While looking more deeply at the Nivre parsing algorithm, we understood
that if we could reduce a sentence to as few tokens as possible, the number
of Swap transitions needed would be reduced. We know that, if we have
a token with positive displacement score, the oracle will force us to move
it to its correct position in the projective ordered sequence before checking
if there is any arc between the negative scored tokens, as we have seen in
Table 4.2.

Therefore, any reduction will be made after it would have been useful.
Instead of looking for a different order, we tried to modify the whole parsing
system in order to overcome this flaw. We kept the same basis of the two
transition based systems we have defined, changing only the transition sets
and oracle functions used by the parsing algorithm. The latter has been
divided in two different phases, each of them generating a different transition
sequence.

4.3.1 First step: “Arc-standard”-like reduction

The first phase aims to add every possible arc we can without the use of
Swap transitions. To do this we use a transition set with the same Left-
Arc, Right-Arc and Shift transitions we already defined, plus a Save
operation defined as follows:

• the Save transition saves the number of elements contained in the
stack Σc of the configuration c is used onto (we will call it sp), then it
operates a Shift transition.

The oracle function for this phase is similar to the one in Nivre system:
we use Left-Arc and Right-Arc when it exists an arc between the two
elements at the top of the stack, checking if the tail has no other dependents
still in the stack or the buffer. We will use the Save transition only once:

24

when we first meet a couple of tokens not following the used projective
order, that is, the first time the oracle we used with Nivre system would
have predicted a Swap transition. Instead of swapping, we store the point
in the sentence we reached and we continue to analyze what remains of it,
adding any existent arc. This way, when we meet the positively displaced
tokens, we ignore them and keep shifting, reaching the negative scored group
and reducing it as much as possible.

The result of this phase is a transition sequence leading to a non-terminal
configuration, as it happened when we tried to parse a non-projective sen-
tence with the Arc-standard system (see Table 3.1). The last configuration
of this sequence cf will have an empty buffer and a stack containing all the
tokens that was not possible to reduce. This will be used, together with sp,
to define the starting configuration of the second step.

4.3.2 Second step: reset and complete

In the second phase of the algorithm, we complete the parsing of the sentence
using the same transition set and oracle function as in the Nivre system.
Instead of considering the whole sentence, though, we use a custom initial
configuration:

• the stack will contain the first sp elements, starting from the bottom,
of the stack in the final configuration of the first phase cf .

• The buffer will contain all the remaining elements of Σcf not inserted
in the new one.

• The arc set will be the same of the one in cf .

In this way we’ll start with the stack containing the same elements contained
by the one that leads to the Save transition in the first phase, while the
buffer will hold only the tokens not reduced in the first phase. We are sure
that this will not affect the correctness of the parsing algorithm, because even
if we parse all the tokens in Σcf we will eventually reach this configuration
with repeated Shift transitions, as all other cases have been checked in the
first step.
Making the algorithm analyze even a small subset of the same sentence
twice may seem to worsen its performances: in fact, a considerable overhead
is introduced by this approach. In the next chapter we will see how the
advantages brought by the additional reductions we manage to operate in
this way still lead to an overall reduction of the transitions needed.

Table 4.3 shows the two transition sequences generated by this algorithm
over the same sentence parsed with Nivre system in chapter 3. In Figure 4.5
we recall the projective order produced by the inorder traversal and compute
its displacement scores.

25

Figure 4.5: Displacement scores for the inorder traversal of the dependency
tree in Figure 2.3.

Stack Buffer Transition Arc added (if any)

[Root0] [A1, . . . , .9] Shift -
[Root0,A1] [hearing2, . . . , .9] Shift -
[Root0,A1, hearing2] [is3, . . . , .9] Left-ArcDET (w2,DET, w1)
[Root0, hearing2] [is3, . . . , .9] Shift -
[Root0, hearing2, is3] [scheduled4, . . . , .9] Shift -
[Root0, . . . , is3, scheduled4] [on5, . . . , .9] Shift -
[Root0, . . . , scheduled4, on5] [the6, . . . , .9] Save *sp = 5*
[Root0, . . . , on5, the6] [issue7, today8, .9] Shift -
[Root0, . . . , the6, issue7] [today8, .9] Left-ArcDET (w7,DET, w6)
[Root0, . . . , on5, issue7] [today8, .9] Right-ArcPC (w5,PC, w7)
[Root0, . . . , scheduled4, on5] [today8, .9] Shift -
[Root0, . . . , on5, today8] [.9] Shift -
[Root0, . . . , today8, .9] [] Stop -

[Root0, hearing2, is3, scheduled4, on5] [today8, .9] Swap -
[Root0, hearing2, is3, on5] [scheduled4, today8, .9] Swap -
[Root0, hearing2, on5] [is3, . . . , .9] Right-ArcNMOD (w2,NMOD, w5)
[Root0, hearing2] [is3, . . . , .9] Shift -
[Root0, hearing2, is3] [scheduled4, today8, .9] Left-ArcSBJ (w3,SBJ, w2)
[Root0, is3] [scheduled4, today8, .9] Shift -
[Root0, is3, scheduled4] [today8, .9] Shift -
[Root0, is3, scheduled4, today8] [.9] Right-ArcADV (w4,ADV, w8)
[Root0, is3, scheduled4] [.9] Right-ArcVG (w3,VG, w4)
[Root0, is3] [.9] Shift -
[Root0, is3, .9] [] Right-ArcPV (w3,PV, w9)
[Root0, is3] [] Right-ArcROOT (w0,ROOT, w3)
[Root0] [] Stop

Table 4.3: Execution of the two-step algorithm over the non-projective sen-
tence of Figure 2.3 using the inorder traversal sequence as projective order.

As you can see, we managed to complete the parsing using only two Swap
transitions instead of six. In fact, ignoring the reciprocal disorder of w4 and
w5 and all the subsequent ones, we managed to reduce the three negatively
displaced group [w5, w6, w7] into only one token. Globally, the number of

26

transitions needed is significantly lower than before: 24 transitions against
30, an improvement of 20%, so we can say that the overhead has been well
compensated.

4.4 Related work

A similar approach has been used in [Nivre et al., 2009]. In that work, in
order to reduce the number of swaps the oracle function has been modified,
so that it delays the prediction of this transition until it is strictly necessary.
To know when this point is, it uses the concept of maximal projective com-
ponents (MPC). It conjectures a previous parse with the same oracle used
in [Nivre, 2009] deprived of the Swap transition case; as it has been already
shown, if the input is a non-projective sentence some tokens will remain
in the stack, and not all the arcs forming the tree will be present in the
last configuration. For each of these nodes, we define a maximal projective
component as the set of tokens that can be reached from them using only
the added arcs. Thus, the new oracle will predict that a Swap transition is
needed only if the two tokens at the top of the stack don’t follow the pro-
jective order and the next token in the buffer belongs to a different MPC.
Formally, given a configuration like (σ|wi|wj , wk|β,Ac), we’ll have to swap
only if j <p i ∧MPC(j) 6= MPC(k).

In this essay we used a different approach: we considered the compu-
tation of the maximal projective components as the first phase of a two-
stepped algorithm, instead of taking it for granted, and then operate the
needed swaps to complete the parsing process in the second phase. In fact,
our main goal is to show that the overall execution time, in term of total
number of transitions made (comprehensive of the first phase), is still lower,
unlike the one of the cited paper which focuses on the accuracy of the deci-
sions a classifier based on that system would take. This is the main goal of
the next chapter, as we will describe the implementation of the two systems
we introduced and discuss the results of their execution over some treebanks.

27

Chapter 5

Statistical comparison of the
approaches

To have a more realistic idea on whether the TwoStep approach is to be
preferred over Nivre system, we created a Java executable which performs
the parsing of a set of sentences knowing the dependency tree that must be
built. We used a set of treebanks in different languages to avoid any possible
correlation to some typical structure that can be found in a single language.
The datasets are stored in plain text files written using the CoNLL-X format,
a standard way to represent a dependency tree developed during the Tenth
Conference on Computational Natural Language Learning, that took place
at New York City in 2006. They contains all the tags and annotation needed
to define a dependency tree and to train a classificator able to emulate an
oracle function.

5.1 Java implementation of the systems

To try to evaluate and compare the two approaches we wrote two Java classes
that implements the parsing systems we described. The most important
source files used can be found in Appendix A.

We used an abstract class NonProjectiveParsingSystem, based on a set of
support classes which represent arcs, nodes and whole trees, to stub for a
generic transition based system capable of parsing non-projective structures.
It carries two abstract methods, predictAction and execute, that stand for the
oracle function and the parsing algorithm respectively, and a set of meth-
ods any implementations of these can use. Namely, the findArc subroutine
checks, looking in the gold standard tree acquired from the treebank, if there
is any addable arc between two given nodes, and the createInorderTraversal
function builds the projective ordered sequence the oracle must follow to
decide when a Swap is necessary.

The two implementations are contained in two classes, NivreParsingSys-

29

tem and TwoStepParsingSystem. The parsing algorithms use a switch-case
structure to operate the transitions following the result of the predictAction
method. In the TwoStep system we unified the oracles used in the two
phases to avoid repeated code and implemented the differences between a
Save and a Swap transition directly in the parsing algorithm.

5.2 Simulation results

As we already said, we will use the number of transitions needed to reach a
terminal configuration as a direct metric of the execution time of the parsing
algorithm. We hereby present the results we got parsing all the sentences
of some treebanks in different languages1. We reported the composition
of the corpora, the number of sentences for which one system needed less
transition than the other and the total number of Swap transitions needed
for all sentences. We also presented the total number of transitions used to
parse only non-projective sentences, as for projective ones the two systems
need the same one.

Swedish Danish Portuguese English Dutch

sentences
Total 11042 5190 9071 12543 13349

Non-projective 1079 811 1718 655 4865

sentences parsed
with fewer transitions

Nivre 424 209 294 306 3447
TwoStep 616 565 977 318 1312

Swap transitions
Nivre 9444 8296 18144 4787 28154

TwoStep 2620 1497 4072 1307 16000

% of reduction - 72.3% 82.0% 77.6% 72.7% 43.2%

of transitions in
non-projective sents.

Nivre 74836 58716 147602 45646 256810
TwoStep 65100 48004 127372 40953 252860

% of improvement - 13.0% 18.2% 13.7% 10.3% 2.5%

Table 5.1: Report of the execution of the two parsing algorithms over five
treebanks in different languages

We can see that in all cases the TwoStep system outperforms the old
Nivre system, reducing the overall time needed to parse the whole corpus.
The exact improvement, though, is strongly different from language to lan-
guage. For example, we observe that in four out of five languages the new
system produces shorter transitions sequences for the majority of the sen-
tences, but when it comes to Dutch we have the opposite situation, even if
the total number of transitions is still significantly lower. We can also note

1All the dataset used are available online. Swedish, Danish, Portuguese and Dutch cor-
pora can all be found on the official site of the CoNLL-X shared task (http://ilk.uvt.nl/
conll/free_data.html, last checked on 11/11/2016), while the English one can be found
on https://github.com/UniversalDependencies/UD_English (last checked 7/11/2016).

30

http://ilk.uvt.nl/conll/free_data.html
http://ilk.uvt.nl/conll/free_data.html
https://github.com/UniversalDependencies/UD_English

that some languages use non-projective structures more frequently than oth-
ers: in the English corpus, for example, only 5% of its sentences have such
structure. This obviously causes a lower overall improvement percentage,
but we can see that the reduction of the number of swaps is similar to the
one in other languages.

Looking at the single sentences, we can note some differences between
the ones in which one of the two approaches is clearly faster. We can confirm
what we discussed in chapter 4: the more left-displaced tokens we have, the
more we can gain reducing them before doing the necessary swaps, which
will consequently reduce in number. Conversely, we favour Nivre system
when the projective order is very similar to the original sequence, so the
Swap transition it uses are all indispensable; when the Save transition in
TwoStep system is called nearly at the beginning of the sentence, so the
second phase introduces a lot of overhead; or when we have a very small
negatively displaced group, so Nivre system also reduces what it is possible
before doing the swap.

31

Chapter 6

Conclusion

In this essay we have analyzed the parsing system presented in [Nivre, 2009],
discussing the core idea is based on and its major flaws that brings its time
complexity to quadratic time in the worst case. We presented a new parsing
system that, as we showed, it considerably improves this performance. The
new system does not reduce the parsing time for all single sentences, but
considering a simulation over a sizeable dataset the overall time is decreased.

We can prove that this system is able to parse any non-projective sen-
tences. That’s because we know that the tokens left after the first phase
form a connected tree, as we know that the sentence we start from is asso-
ciated with such a tree and every time we remove a node from the stack we
check if all its children has been linked to it. Since the second phase is oper-
ated by a system which is proofed to be able to parse every non projective
sentence, the new system altogether can do the same.

We may wonder if the number of Swap transitions we still must execute
after the first phase is minimal, or instead there is a way to reduce them
further. If this would be proofed to be false, it would lead to an even more
performing parsing system that could reach linear execution time. Also,
we did not discuss how the accuracy of the resulting system in non-guided
parsing. The results in [Nivre et al., 2009] shows that an oracle equipped
with the information we extract in our first phase has better scores about
prediction of the right arcs, but our separation of the two steps of the algo-
rithm probably affects these results, whether in a positive o negative way it
is unknown.

33

Bibliography

[Abney and Johnson, 1991] Abney, S. P. and Johnson, M. (1991). Mem-
ory requirements and local ambiguities of parsing strategies. Journal of
Psycholinguistic Research, 20(3):233–250.

[Havelka, 2007] Havelka, J. (2007). Beyond projectivity: Multilingual eval-
uation of constraints and measures on non-projective structures.

[Kubler et al., 2009] Kubler, S., McDonald, R., Nivre, J., and Hirst, G.
(2009). Dependency Parsing. Morgan and Claypool Publishers.

[Kuhlmann, 2010] Kuhlmann, M. (2010). Dependency Structures and Lex-
icalized Grammars: An Algebraic Approach. Lecture Notes in Computer
Science. Springer Berlin Heidelberg.

[Kuhlmann and Nivre, 2006] Kuhlmann, M. and Nivre, J. (2006). Mildly
non-projective dependency structures. In Proceedings of the COL-
ING/ACL on Main conference poster sessions, pages 507–514. Associ-
ation for Computational Linguistics.

[Nivre, 2007] Nivre, J. (2007). Incremental non-projective dependency pars-
ing. In HLT-NAACL, pages 396–403.

[Nivre, 2009] Nivre, J. (2009). Non-projective dependency parsing in ex-
pected linear time. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 1-Volume 1, pages
351–359. Association for Computational Linguistics.

[Nivre, 2013] Nivre, J. (2013). Transition-based parsing.

[Nivre et al., 2009] Nivre, J., Kuhlmann, M., and Hall, J. (2009). An im-
proved oracle for dependency parsing with online reordering. In Proceed-
ings of the 11th international conference on parsing technologies, pages
73–76. Association for Computational Linguistics.

[Silveira et al., 2014] Silveira, N., Dozat, T., de Marneffe, M.-C., Bowman,
S., Connor, M., Bauer, J., and Manning, C. D. (2014). A gold standard

35

dependency corpus for English. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC-2014).

[Weizenbaum, 1966] Weizenbaum, J. (1966). Eliza—a computer program
for the study of natural language communication between man and ma-
chine. Communications of the ACM, 9(1):36–45.

36

Appendix A

Java code used for
simulations

We present a part of the code used to implement the two parsing systems
and measure the performances of the two approaches, described in chapter
5.

A.1 NonProjectiveParsingSystem.java

import j a v a . u t i l . A r r a y L i s t ;

pub l i c abst ract c l a s s N o n P r o j e c t i v e P a r s i n g S y s t e m {

f i n a l i n t LEFT ARC=0, RIGHT ARC=1, SWAP=2, SHIFT=3;
DependencyTree g o l d = nu l l ;
protected i n t n s h i f t , n op , n swap , s e n t l e n g t h ;

protected f i n a l A r r a y L i s t<I n t e g e r> p r o j e c t i v e o r d e r =
new A r r a y L i s t <>() ;

abstract i n t p r e d i c t A c t i o n (A r r a y L i s t<I n t e g e r> s e n t e n c e ,
i n t top) ;

abstract DependencyTree e x e c u t e () ;

pub l i c N o n P r o j e c t v e P a r s i n g S y s t e m (DependencyTree t a r g e t)
{
s e t T a r g e t T r e e (t a r g e t) ;

}

/∗∗
∗ Se t s the Dependency Tree tha t we a r e b u i l d i n g
∗ @param t a r g e t the t a r g e t Dependency t r e e
∗/

pub l i c void s e t T a r g e t T r e e (DependencyTree t a r g e t) {

37

t h i s . g o l d = t a r g e t ;
Node r o o t = g o l d . getNodes () . g e t (0) ;
i f (r o o t == nu l l)

return ;
c r e a t e I n o r d e r T r a v e r s a l (r o o t) ;

}

/∗∗
∗ I n i t i a l i z e s an A r r a y L i s t w i th the sequence gene r a t ed

from the i n o r d e r t r a v e r s a l
∗ @param n the s t a r t i n g Node
∗/

pr i va te void c r e a t e I n o r d e r T r a v e r s a l (Node n) {
i f (n == nu l l)

return ;

f o r (Arc l e f t : n . g e t L e f t c h i l d r e n ())
c r e a t e I n o r d e r T r a v e r s a l (l e f t . g e t T a i l ()) ;

p r o j e c t i v e o r d e r . add (n . g e t I d ()) ;

f o r (Arc r i g h t : n . g e t R i g h t c h i l d r e n ())
c r e a t e I n o r d e r T r a v e r s a l (r i g h t . g e t T a i l ()) ;

}

/∗∗
∗ Checks i f an a r c between any two nodes e x i s t s
∗ @param head i d I d o f the head o f the wanted a r c
∗ @param t a i l i d I d o f the t a i l o f the wanted a r c
∗ @re tu rn whether an Arc has been found or not
∗/

protected boolean f i n d A r c (i n t h e a d i d , i n t t a i l i d) {
Arc p o s s i b l e a r c = nu l l ;
i f (h e a d i d > t a i l i d) {

f o r (Arc a r c : g o l d . getNodes () . g e t (h e a d i d) .
g e t L e f t c h i l d r e n ())
i f (a r c . g e t T a i l () . g e t I d () == t a i l i d)

p o s s i b l e a r c = a r c ;
}
e l s e

fo r (Arc a r c : g o l d . getNodes () . g e t (h e a d i d) .
g e t R i g h t c h i l d r e n ()) {
i f (a r c . g e t T a i l () . g e t I d () == t a i l i d)

p o s s i b l e a r c = a r c ;
}

//Check i f the found a r c has a complete t a i l (we
have a l r e a d y found a l l h i s t a i l ’ s c h i l d r e n)

38

boolean complete = true ;
i f (p o s s i b l e a r c != nu l l) {

Node p o s s i b l e t a i l = p o s s i b l e a r c . g e t T a i l () ;
f o r (Arc c h i l d : p o s s i b l e t a i l . g e t L e f t c h i l d r e n

())
i f (! c h i l d . i sAdded ()) {

complete = f a l s e ;
break ;

}
f o r (Arc c h i l d : p o s s i b l e t a i l .

g e t R i g h t c h i l d r e n ())
i f (! c h i l d . i sAdded ()) {

complete = f a l s e ;
break ;

}
i f (comple te) {

p o s s i b l e a r c . setAdded (true) ;
return true ;

}
}
return f a l s e ;

}

protected void p r i n t E x e c u t i o n S t a t s () {
System . out . p r i n t l n (” Senten ce l e n g t h : ” + (

s e n t l e n g t h − 1)) ;
System . out . p r i n t l n (”# SHIFT : ” + n s h i f t) ;
System . out . p r i n t l n (”# SWAP: ” + n swap) ;
System . out . p r i n t l n (”# t o t a l o p e r a t i o n s : ” + n op) ;

}

pub l i c i n t getN op () {
return n op ;

}
}

39

A.2 NivreParsingSystem.java

import j a v a . u t i l . A r r a y L i s t ;

pub l i c c l a s s N i v r e P a r s i n g S y s t e m extends
N o n P r o j e c t i v e P a r s i n g S y s t e m {

pub l i c N i v r e P a r s i n g S y s t e m (DependencyTree s e n t) {
super (s e n t) ;

}

/∗∗
∗ Orac l e f u n c t i o n o f the pa r s e r , t e l l s which

t r a n s i t i o n shou l d be chosen g i v en the s t a c k
s i t u a t i o n

∗ @param sen t enc e The s t a c k and b u f f e r con t en t
∗ @param top Index to the top e l ement o f the s t a c k
∗ @re tu rn Constant cod ing the a c t i o n
∗/

pub l i c i n t p r e d i c t A c t i o n (A r r a y L i s t<I n t e g e r> s e n t e n c e ,
i n t top) {

i f (top == 0)
return SHIFT ;

//Case LEFT ARC
boolean found = f i n d A r c (s e n t e n c e . g e t (top) , s e n t e n c e

. g e t (top − 1)) ;
i f (found)

return LEFT ARC ;

//Case RIGHT ARC
found = f i n d A r c (s e n t e n c e . g e t (top − 1) , s e n t e n c e . g e t

(top)) ;
i f (found) {

return RIGHT ARC ;
}

//Case SWAP
i f (p r o j e c t i v e o r d e r . i n d e x O f (s e n t e n c e . g e t (top)) <

p r o j e c t i v e o r d e r . i n d e x O f (s e n t e n c e . g e t (top−1)))
return SWAP;

return SHIFT ;
}

/∗∗
∗ Execute s the p a r s i n g a l g o r i t hm
∗ @re tu rn The DependencyTree gene r a t ed from pa r s i n g

40

p r o c e s s
∗/

pub l i c DependencyTree e x e c u t e () {

s e n t l e n g t h = g o l d . getNodes () . e n t r y S e t () . s i z e () ;

A r r a y L i s t<I n t e g e r> s e n t e n c e = new A r r a y L i s t <>() ;
f o r (i n t i = 0 ; i < s e n t l e n g t h ; i ++)

s e n t e n c e . add (i) ;

i n t t o p i n d e x = 1 ;
n s h i f t = 1 ; n op = 1 ; //We i n i t i a l i z e

the s t a c k to two e lements , as the f i r s t c h o i c e
i s a lways SHIFT

n swap = 0 ;

DependencyTree b u i l d e d = new DependencyTree (g o l d .
getSent number ()) ;

Node head node , t a i l n o d e ;
whi le (s e n t e n c e . s i z e () > 1) {

switch (p r e d i c t A c t i o n (s e n t e n c e , t o p i n d e x)) {
case LEFT ARC :

head node = b u i l d e d . addNode (s e n t e n c e .
g e t (t o p i n d e x)) ;

t a i l n o d e = b u i l d e d . addNode (s e n t e n c e .
g e t (t o p i n d e x − 1)) ;

head node . addLef tSon (t a i l n o d e) ;
s e n t e n c e . remove (t o p i n d e x − 1) ;
t o p i n d e x −−;
break ;

case RIGHT ARC :

head node = b u i l d e d . addNode (s e n t e n c e .
g e t (t o p i n d e x − 1)) ;

t a i l n o d e = b u i l d e d . addNode (s e n t e n c e .
g e t (t o p i n d e x)) ;

head node . addRightSon (t a i l n o d e) ;
s e n t e n c e . remove (t o p i n d e x) ;
t o p i n d e x −−;
break ;

case SWAP:

i n t s w a p i d = s e n t e n c e . g e t (t o p i n d e x −

41

1) ;
s e n t e n c e . s e t (t o p i n d e x − 1 , s e n t e n c e .

g e t (t o p i n d e x)) ;
s e n t e n c e . s e t (t o p i n d e x , s w a p i d) ;
t o p i n d e x −−;
n swap++;
break ;

case SHIFT :

t o p i n d e x ++;
n s h i f t ++;
break ;

}
n op++;

}
i f (n swap > 0)

p r i n t E x e c u t i o n S t a t s () ;

return b u i l d e d ;
}

}

42

A.3 TwoStepParsingSystem.java

import j a v a . u t i l . A r r a y L i s t ;

pub l i c c l a s s TwoStepPars ingSystem extends
N o n P r o j e c t i v e P a r s i n g S y s t e m {

pub l i c TwoStepPars ingSystem (DependencyTree s e n t) {
super (s e n t) ;

}

/∗∗
∗ Orac l e f u n c t i o n o f the pa r s e r , t e l l s which

t r a n s i t i o n shou l d be chosen g i v en the s t a c k
s i t u a t i o n

∗ @param sen t enc e The s t a c k and b u f f e r con t en t
∗ @param top Index to the top e l ement o f the s t a c k
∗ @re tu rn Constant cod ing the a c t i o n
∗/

pub l i c i n t p r e d i c t A c t i o n (A r r a y L i s t<I n t e g e r> s e n t e n c e ,
i n t top) {

i f (top == 0)
return SHIFT ;

//Case LEFT ARC
boolean found = f i n d A r c (s e n t e n c e . g e t (top) , s e n t e n c e

. g e t (top − 1)) ;
i f (found)

return LEFT ARC ;

//Case RIGHT ARC
found = f i n d A r c (s e n t e n c e . g e t (top − 1) , s e n t e n c e . g e t

(top)) ;
i f (found) {

return RIGHT ARC ;
}

//Case SWAP
i f (p r o j e c t i v e o r d e r . i n d e x O f (s e n t e n c e . g e t (top)) <

p r o j e c t i v e o r d e r . i n d e x O f (s e n t e n c e . g e t (top−1)))
return SWAP;

return SHIFT ;
}

/∗∗
∗ Execute s the p a r s i n g a l g o r i t hm
∗ @re tu rn The DependencyTree gene r a t ed from pa r s i n g

p r o c e s s

43

∗/
pub l i c DependencyTree e x e c u t e () {

s e n t l e n g t h = g o l d . getNodes () . e n t r y S e t () . s i z e () ;
DependencyTree b u i l d e d = new DependencyTree (g o l d .

getSent number ()) ;

A r r a y L i s t<I n t e g e r> s e n t e n c e = new A r r a y L i s t <>() ;
f o r (i n t i = 0 ; i < s e n t l e n g t h ; i ++)

s e n t e n c e . add (i) ;

Node head node , t a i l n o d e ;
i n t t o p i n d e x = 1 ;
n s h i f t = 1 ; n op = 1 ;

boolean f i r s t s w a p = true , f i r s t s t e p = true ;
i n t s w a p p o i n t = 0 ;

whi le (s e n t e n c e . s i z e () > 1) {
switch (p r e d i c t A c t i o n (s e n t e n c e , t o p i n d e x)) {

case LEFT ARC :
head node = b u i l d e d . addNode (s e n t e n c e .

g e t (t o p i n d e x)) ;
t a i l n o d e = b u i l d e d . addNode (s e n t e n c e .

g e t (t o p i n d e x − 1)) ;

head node . addLef tSon (t a i l n o d e) ;
s e n t e n c e . remove (t o p i n d e x − 1) ;
t o p i n d e x −−;
break ;

case RIGHT ARC :
head node = b u i l d e d . addNode (s e n t e n c e .

g e t (t o p i n d e x − 1)) ;
t a i l n o d e = b u i l d e d . addNode (s e n t e n c e .

g e t (t o p i n d e x)) ;

head node . addRightSon (t a i l n o d e) ;
s e n t e n c e . remove (t o p i n d e x) ;
t o p i n d e x −−;
break ;

case SWAP:

i f (f i r s t s t e p) { \\SAVE t r a n s i t i o n
i f (f i r s t s w a p) {

s w a p p o i n t = t o p i n d e x ;
f i r s t s w a p = f a l s e ;

}

44

t o p i n d e x ++;
n s h i f t ++;
break ;

} e l s e { \\SWAP t r a n s i t i o n
i n t s w a p i d = s e n t e n c e . g e t (

t o p i n d e x − 1) ;
s e n t e n c e . s e t (t o p i n d e x − 1 ,

s e n t e n c e . g e t (t o p i n d e x)) ;
s e n t e n c e . s e t (t o p i n d e x , s w a p i d) ;

t o p i n d e x −−;
n swap++;
break ;

}

case SHIFT :
t o p i n d e x ++;
n s h i f t ++;
break ;

} // end sw i t ch
n op++;
i f (f i r s t s t e p && t o p i n d e x == s e n t e n c e . s i z e ())

{
t o p i n d e x = s w a p p o i n t ;
f i r s t s t e p = f a l s e ;

}
}
i f (n swap > 0)

p r i n t E x e c u t i o n S t a t s () ;
return b u i l d e d ;

}
}

45

	Introduction to Natural Language Processing
	Dependency grammars and dependency parsing
	Definitions
	Properties of dependency trees
	Dependency parsing models
	Transition based parsers
	Application example

	Non-projective dependency parser
	Definition of projective order
	Nivre's non-projective dependency parser definition
	Transition system
	Parsing algorithm

	Time complexity

	An improvement to Nivre parsing system
	Definition of displacement score
	Finding a better order
	TwoStep parsing system
	First step: ``Arc-standard"-like reduction
	Second step: reset and complete

	Related work

	Statistical comparison of the approaches
	Java implementation of the systems
	Simulation results

	Conclusion
	Appendices
	Java code used for simulations
	NonProjectiveParsingSystem.java
	NivreParsingSystem.java
	TwoStepParsingSystem.java

