
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Data Science

Optimization of Electric Scooter

Rebalancing Tour through

Mathematical Programming

Supervisor Master Candidate
Prof. Luigi De Giovanni Gita Rayung Andadari (2041509)
University of Padova

Academic Year
2022-2023

ii

Hardwork never betrays.

iv

Abstract

The pursuit of Sustainable Development Goal 11 (SDG11), striving to create inclusive, resilient, and sustainable
urban environments, has become a global priority. One of SDG11’s key objectives is to ensure safe, affordable,
accessible, and sustainable transport systems for all. In response to this imperative, the concept of electric scooter
(e-scooter) sharing has gained remarkable popularity. This innovative model allows users to access e-scooters on
demand, providing a personalized last-mile solution that complements public transportation andhas the potential
to reduce private car ownership and greenhouse gas emissions.

As e-scooters take on an increasingly pivotal role in urban mobility, the efficient management of their distri-
bution and charging presents a critical challenge. One of the key problems in this sharing system is to ensure that
e-scooter is not over-saturated andunder-utilized. This thesis embarks on a comprehensive exploration of the com-
plexities surrounding this challenge and proposes solutions to enhance the integration of e-scooter sharing into
everyday urban life. The core idea revolves around conducting a night tour operation that allow operator to drop
full-charge e-scooter, but also swap the battery of the low charged unit to re-balance the e-scooter distribution.

Within this thesis, twomathematical programming formulations are presented in order to plan ahead the route
and suggested actions at each station during the night tour. The first model, adapted from previous literature
work on bike sharing systems rebalancing, provides a benchmark and introduces readers to the night rebalancing
tour problem. The second model represents an original improved version, allowing night tour operators to swap
only the battery rather than the whole e-scooter unit during operations. Both models confront the challenge of
managing exponential growth in constraints and size of the solution space as the number of stations increases.
In response, tailor-made branch-and-cut algorithms are developed to efficiently solve this problem. This scalable
framework offers the potential to manage extensive e-scooter fleets and station networks within the city, enabling
companies to enhance their operations, foster citizen trust, and establish e-scooter sharing systems as a dependable
choice for daily last-mile transportation. This thesis aims to make the topic accessible and easily understandable,
inviting broader participation and contributions to research in this vital field.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 Content and Contributions . 2

2 Literature Review and ProblemDefinition 5
2.1 The Evolution: Bike Sharing Systems to E-Scooter Sharing Systems 5
2.2 Success andScaleBringBroadResponsibility: Addressingover-saturation andunder-utilization

challenges as the e-scooter sharing system grows . 7
2.3 Research Gap, Goals, and ProblemDefinition . 10

3 Methodological and Implementation Tools 13
3.1 Mathematical Programming . 13
3.2 Travelling Salesman and Vehicle Routing Problem . 15
3.3 Branch and Bound . 17
3.4 Optimization Techniques in Linear Programming . 19

3.4.1 RowGenerationMethod . 19
3.4.2 Cutting Plane and Valid Inequalities . 20
3.4.3 Integrating Row generation and Cutting plane procedures 20
3.4.4 Separation Procedures . 21
3.4.5 Branch-and-cut . 22

3.5 Mathematical Programming Implementation in Docplex 23

4 Mathematical Formulation for the Rebalancing Tour Problem 27
4.1 Simple Night TourModel . 27
4.2 An Illustrative Example of Simple Night TourModel . 31
4.3 Night Rebalancing Tour Problem with Battery Swaps (NRTP-BS) 33
4.4 An Illustrative Example of Battery SwapModel . 36

5 Models Implementation in Docplex 39
5.1 Implementation of the Simple Night TourModel . 39
5.2 Implementation of NRTP-BS . 44

6 Computational Experiments 47
6.1 Instance benchmark . 47

6.1.1 Results on the Simple Night Tour Experiment 49

vii

6.1.2 Results on NRTP-BS Experiment . 50

7 Conclusions 53

References 55

Acknowledgments 59

viii

Listing of figures

2.1 Docking stations: fixed [left][26], dockless [middle][16], hybrid [right][51]. 6
2.2 E-Scooter easy battery change [8] . 10
2.3 Night tour operation . 11

3.1 Feasible region for optimization problem stated in equation 3.1 16
3.2 Shortest Path. Source: [23] . 16
3.3 Branch and bound example. Source: [23] . 18
3.4 Cutting Plane (left) vs RowGeneration method (right) . 21
3.5 [Top] Network Flow yielding the maximum flow. [Bottom] The residual graph 22

4.1 Example of sub tour . 30
4.2 MILP formulation for the NRTP-BS . 37

5.1 Simple Night Tour with row generation implementation flow 40
5.2 Simple Night Tour with LazyConstraintCallback implementation flow 42
5.3 Snapshot of the generated result . 43
5.4 CutCallback+LazyConstraintCallback flow in NRTP-BS 46

6.1 [Left] Growth ofNumber of Variables vsNumber of Station. [Middle] Average 10RunTime
per Station for Simple Night Tour docplex implementation. [Right] Average Number of cuts
per 10 run per station for Simple Night Tour docplex implementation. 49

6.2 Average 3 run time per station for NRTP-BS . 51
6.3 Average number of Separation Process for NRTP-BS . 52

ix

x

Listing of tables

4.1 Route permutation and its associated cost . 33

xi

xii

Listing of acronyms

EBSS Electric Bike Sharing System

BFS Breadth-First Search

DFS Depth-First Search

BSS Bike Sharing System

E-bike Electric bike

E-scooter Electric scooter

NRTP-BS Night Rebalancing Tour Problem with Battery Swaps

MILP Mixed Integer Linear Programming

TSP Travelling Salesman Problem

QP Quadratic Programming

VRP Vehicle Routing Problem

xiii

xiv

1
Introduction

In the fantasyworld, one daywe all lived close to our lovedones, in a placewhere it is safe, clean, andwell connected
by public transportation. This vision mirrors the core essence of Sustainable Development Goal 11 (SDG11)
set by the United Nations (UN), which strives to transform cities and human settlements into inclusive, safe,
resilient, and sustainable spaces [32]. One of the key targets of this topic is to provide access to safe, affordable,
accessible, and sustainable transport systems for all, improving road safety, notably by expanding public transport,
with special attention to the needs of those in vulnerable situations, women, children, persons with disabilities,
and older persons by 2030.

Back to the present world, we have seen the uprising popularity of electric scooter (e-scooter) sharing. This
ride-sharing concept allows users to rent e-scooters on demand for a fee, enabling them to navigate within the city.
Users can locate available scooters through smartphone applications, unlock them using QR codes, and then pay
for their use. Once done, the user can leave the scooter in designated areas, making it available for the next person
to use. This core concept resonates very well with the previously mentioned SDG11 target. Personally, I see this
concept as a key component in encouraging more people to use public transportation by providing personalized
last-mile solutions. In the long run, it can help reduce the need for private car ownership andminimize greenhouse
gas emissions.

In the rapidly evolving landscape of urban transportation, electric scooters have emerged as pivotal players, of-
fering a convenient and sustainable mode of commuting. However, with their growing prominence, the effective
orchestration of their distribution and charging has become a paramount challenge. The intricate task of manag-
ing these electric scooters encompasses the need to strike a delicate balance, preventing both over-saturation and
under-utilization across the city. The challenge lies not only in providing accessible and available scooters for users
but also in optimizing their distribution to meet demand while minimizing operational inefficiencies. Achieving
this delicate equilibrium is crucial for the sustainability and success of e-scooter sharing systems, emphasizing the
pressing importance of devising innovative solutions to address the intricacies of distribution and utilization in
urban environments.

1

Electric scooter companiesmust address the challenge of rebalancing. This challenge encompasses two distinct
time frames: the beginning of each day and throughout the day [49]. The operations conducted during the night,
before a newdaybegins, arewhatwe refer to as the “night rebalancing tour.”This tour aims to achieve twoprimary
objectives: to guarantee that the scooters are fully charged and to redistribute them efficiently across the city. All
of this must be achieved while minimizing operational costs.

Given the importance of the topic at hand, this thesis aspires to be more than just a technical document. We
endeavor to make this thesis an accessible and comprehensible resource, ensuring that readers from various back-
grounds can followour research and gain insights into this critical field. By providing comprehensive explanations
and clear illustrations of our methods and findings, we aim to encourage wider participation and contributions
to research in this area.

The core concept revolves around translating the diverse criteria governing the rebalancing tour into a mathe-
matical model with a set of linear constraints, providing a foundation for the effective utilization of mathematical
optimization techniques. Within this framework, two distinct mathematical programming formulations will be
explored in this thesis. The initial model draws inspiration from the work of Dell’Amico et al. on bicycle rebal-
ancing problems [11]. Functioning as a benchmark model, it serves to familiarize the reader with the intricacies
of the night rebalancing tour problem. The second model represents an original enhancement, introducing the
capability for night tour operators to swap batteries during operations. We call this model as “Night Rebalanc-
ing Tour-Battery Swap” (NRTP-BS) model. Both models encounter challenges associated with the exponential
growth of constraints as the number of stations increases. Consequently, this thesis delves into the development
of tailor-made branch-and-cut algorithms designed to efficiently tackle this issue. The proposed solution offers
a scalable framework adept at managing extensive fleets of e-scooters and nodes across urban landscapes. This
scalability enhances operational management for companies, fostering increased public trust in e-scooter sharing
systems as a reliable daily last-mile transportation option.

1.1 Content and Contributions
The remainder of the thesis is organized as follows:

Chapter 2 presents a comprehensive literature review, highlighting the critical nature of over-saturation and
under-utilization in the context of e-scooter sharing. The review underscores the novel proposition of allowing
battery swaps during the night rebalancing tour activity, a concept that still remains largely unexplored. Addition-
ally, this chapter provides a detailed problem description to illuminate the intricacies of the issue at hand.

In Chapter 3, an exploration of existing methods and tools unfolds, shedding light on potential solution ap-
proaches for the identified problem. The chapter aims to equip the reader with a nuanced understanding of the
tools available to address the complexities of e-scooter distribution dynamics. The chapter commences by ac-
quainting the reader with the fundamental concept of mathematical programming. It then explores well-known
relevant problems like the traveling salesman and vehicle routing problems. Subsequently, we delve into various
methods applicable to mathematical programming problem-solving, including branch and bound, row genera-
tion, and cutting plane techniques. Finally, we present the reader with an introduction to CPLEX, a state-of-
the-art solver to solve mathematical programming models. In this chapter, we will also introduce the CPLEX
implementation using the Docplex library, an extension of CPLEX based on a Python API.

2

Chapter 4 delves into the meticulous decision-making process behind the mathematical model formulation
for both the Simple Night Tour and the NRTP-BS models. This section articulates the rationale behind the cho-
sen approaches, laying the groundwork for their subsequent implementation. The extension of the basic model
ends up with a new Mixed Integer Linear Programming (MILP) formulation for the NRTP-BS model, which
represents the main methodological contribution of this thesis.

The intricacies of implementing the proposedmodels inDocplex are unveiled inChapter 5. The chapter delves
into the specificmethods and frameworks thatmust be constructed to ensure the generationof accurate andmean-
ingful solutions, according to a branch-and-cut approach. It offers a detailed exploration of the technical aspects
of bringing themodels to life, including devising the required separation procedures. The full implementation of
the branch-and-cut approach to solve the proposedMILP model is another contribution of the thesis.

Chapter 6 focuses on testing the robustness of the two proposed models, providing insights into their perfor-
mance as the size increases with a higher number of stations. The analysis of the model’s scalability is scrutinized
to ascertain its effectiveness under varying conditions.

Finally, the concluding chapter synthesizes the entire research journey, offering a comprehensive recapitula-
tion of the NRTP-BS solved by Mathematical Programming based techniques. This chapter serves as a cohesive
endpoint, summarizing the key findings and contributions of the research while providing a holistic perspective
on the proposed solutions and their implications for the broader landscape of urban transportation.

3

4

2
Literature Review and ProblemDefinition

2.1 TheEvolution: BikeSharingSystemstoE-Scooter
Sharing Systems

The e-scooter sharing system ecosystem today can thrive thanks to the great contribution of its predecessor, the
conventional bike sharing system (BSS), which has already been around since 1965 [12]. One of the first known
initiatives was the “Witte Fietsenplan” (White Bicycle Plan) in Amsterdam in 1965. The idea was to have a fleet
of white bicycles that people could use and leave for others when they were done. However, these early programs
faced challenges such as theft and vandalism.

In an effort to prevent the increasing issue of bike theft, Copenhagen, Denmark, took a pioneering step by
introducing one of the earliest modern bike-sharing programs in 1995, known as Bycyklen [42]. Recognizing the
need for enhanced security measures, this program featured specially designed bicycles equipped with a built-in
lock and a coin deposit system. This innovative approach not only aimed to provide convenient and accessible
transportation but also addressed the prevalent problem of bicycle theft in urban environments. The success of
Bycyklen set a precedent, prompting other cities in Europe and Asia to adopt similar models, ushering in a new
era of bike-sharing initiatives designed to enhance user experience and curb incidents of theft.

Entering the epoch of digitalization marked a significant transformation in BSS, where traditional models saw
a revolution with the integration of cutting-edge technology. This evolution brought forth advancements such
as electronic payment systems, GPS tracking, and the implementation of smart docking stations. The infusion
of technology not only streamlined the user experience but also enhanced the overall efficiency and management
of bike-sharing networks. A pivotal moment in the timeline of modern bike-sharing initiatives occurred in 2007
when Paris introduced the groundbreaking Vélib’ system [42]. This program stands out as one of the most suc-
cessful and widely replicated bike-sharing programs globally. Vélib’ embraced a novel approach by allowing users

5

Figure 2.1: Docking stations: fixed [left][26], dockless [middle][16], hybrid [right][51].

the flexibility to pick up and return bikes at any station within the extensive network, a feature that significantly
contributed to its widespread popularity. The Vélib’ system in Paris became a trailblazer, influencing and inspir-
ing numerous cities around theworld to adopt similar technological advancements in their bike-sharing programs.
This propagation of innovative systems not only expanded the reach of bike-sharing but also laid the groundwork
for future developments in urban transportation, fostering a more sustainable and interconnected approach to
mobility in the digital age.

The influence of technology did not stop there. In the mid-2010s, a new generation of BSS emerged with
the introduction of dockless bikes. Unlike traditional systems with fixed docking stations, dockless systems al-
lowed users to locate and unlock bikes using smartphone apps, and they could be left anywhere when the ride was
complete. Companies like Ofo and LimeBike pioneered this approach [2] [15].

The advancements made over the years have contributed to the establishment of a resilient framework for
vehicle sharing systems, allowing seamless integration of electric vehicles such as e-bikes and e-scooters into the
sharing system ecosystem once they become popular in society. In fact, numerous bike-sharing systems, such as
Ridemovi in Italy, immediately incorporated electric bikes (e-bikes) and electric scooters (e-scooters) within their
framework, broadening transportation choices for users and alleviating concerns related to physical effort and
extended distances [40].

E-bike and e-scooter innovation is remarkable as it opens up cycling and scooting to a broader audience. In-
dividuals who were previously unable to ride bicycles due to steep hills and limited physical abilities can now
participate, fostering a more inclusive environment and enabling greater mobility for a wider range of people.

Since e-bikes first appeared, companies around the world have donemany trial and error to figure out themost
effective and efficient end-to-end operation [18] [48]. To begin a journey, the customer needs to first locate an
available vehicle. These available vehicles can be hosted at a fixed docking station, a dockless docking station, or a
hybrid docking station (Figure 2.1).

Fixed docking stations are designated locations with physical infrastructure, such as racks or docks, where e-
scooters are stationed and charged. The customer needs to locate the location of these docking stations in order to
begin and end their journey, resulting in organized parking, ease of access, and centralized charging infrastructure.
The drawback of this type of docking station is the decrease in flexibility for customer use. Since each e-scooter
needs to have its own rack, if a station has already reached its maximum capacity, customers who want to return
an e-scooter to that location need to find an alternative. Furthermore, the expansion of the new e-scooter station

6

will require a good amount of investment and can’t easily be moved from one location to another.
The second type of docking station is a dock-less system. Contrary to its name, this type of station actually

does not require a physical location. Users can locate, unlock, and initiate their e-scooter rides using a mobile app
without the need for physical docking points. To control the population of e-scooters within a region, companies
usually set a perimeter around the region. This way, users can park dockless e-scooters at any convenient location
within the service area. The end of a trip is marked when the user responsibly parks the e-scooter within the
allowed operational zone. However, this flexibility comes with a cost. It heavily relies on user consciousness to
park responsibly, leading to occasional breaches such as parking on sidewalks, within residential buildings, or in
locations challenging for other users to access [18].

The Hybrid type is a combination of fixed and dockless systems. Recall the dockless system concept, where
users can park anywhere within the perimeter zone. The concept is similar, but instead of having a large region,
hybrid types divide this large region into several small regions. Then, the user can choose to park or take a bike
from anywhere within any small region. This structure combines the advantages of a fixed docking system with
the added flexibility of the dockless model. Notably, there are no physical docking stations installed of this type,
simplifying operational efforts when integrating new stations. If expansion or enlargement of an existing station
is required, operators can effortlessly adjust the mapping of the respective station, resulting in a streamlined and
cost-effective expansion process. It is also possible to install several charging stations within the perimeter where
customers will get an incentive to recharge the battery upon returning the vehicle to the station. This way, the
sharing system is more self-sustainable and relies less on human intervention to maintain the population battery
level.

2.2 SuccessandScaleBringBroadResponsibility: Ad-
dressingover-saturationandunder-utilization
challengesasthee-scootersharingsystemgrows

Despite their widespread popularity, bike-sharing systems encountered a range of challenges, encompassing issues
such as theft, vandalism, maintenance concerns, and financial sustainability. The delicate balance between supply
and demand posed a persistent challenge for certain cities, resulting in instances of oversaturation and underuti-
lization of bikes. As the e-scooter ecosystem is constructed upon the foundation of the bike-sharing system, it
encounters similar challenges and issues. Striking the right equilibrium became crucial for the effective function-
ing and long-term viability of these systems, prompting ongoing efforts to address and overcome these obstacles
within the dynamic landscape of urban transportation.

In 2017-2018, China’s bike-sharing industry experienced explosive growth in a short period, with several com-
panies flooding cities with bikes [46]. This led to oversaturation, as the sheer number of bikes exceeded demand.
Many sidewalks and public spaces became cluttered with unused or broken bicycles. The intense competition
resulted in financial losses for some companies, leading to the collapse of several bike-sharing startups.

In a different part of theworld,Dallas, Texas, faced issues related toover saturationwhenmultiple dockless bike-
sharing companies entered themarket in 2017 [39]. The city experienced a proliferation of bikes, with thousands

7

scattered across sidewalks, parks, and public spaces. This not only created aesthetic and logistical problems but
also led to bikes being left in disrepair. Eventually, the city had to revise its regulations to address the oversupply
issue.

On the other hand, Seattle’s docked bike-sharing system, ProntoCycle Share, faced challenges related to under-
utilization [44]. Despite efforts to promote the service, the system struggled to attract sufficient ridership. High
operating costs and low utilization rates ultimately led to the discontinuation of the program in 2017. The city
transitioned to exploring alternative mobility options, including dockless bike sharing and e-scooters.

These cases highlight the importance of finding a balance between supply and demand in bike-sharing systems.
Oversaturation can lead to issues of space, aesthetics, andfinancial sustainability, while underutilizationmay result
in the system being economically unviable. Cities and bike-sharing operators often need to carefully plan and
manage the deployment of bikes to ensure the system’s success and integration into the urban transportation
landscape.

Numerous research efforts have been undertaken to address issues related to oversaturation and underutiliza-
tion in vehicle distribution. From a strategic point of view, comprehending customer behavior is crucial for a
more profound understanding and the identification of areas for improvement. Research found that the user
base for e-scooter and e-bike sharing vehicles is the same [1]. Therefore, in order to solve the oversaturation and
underutilization of one type of electric scooter sharing, companies need to control the combination of these two
vehicles. Furthermore, within the sameAlmannaa research, there exist subtle differences in the purposes forwhich
individuals use e-bike sharing and e-scooter sharing. Users tend to opt for e-bike sharing for daily activities, while
e-scooter sharing is favored more for recreational purposes. This information can be used to advise an e-scooter
sharing company to put a docking station close to recreational areas like parks, landmarks, and the city center. On
the other hand, e-bike sharing companies can be advised to ensure they install a docking station close to office
buildings, schools, or grocery stores.

Exploring customer behavior further becomes crucial in identifying optimal usage periods for vehicle-sharing
services. A thorough examination of shared e-scooter mobility patterns across various cities and countries reveals
a consistently observed right-skewed distribution in both trip distance and duration across all locations. The pat-
tern suggests that users prefer utilizing electric sharing vehicles for shorter distances and durations. This valuable
insight can be applied to mitigate the issue of underutilization. Effective promotional strategies, like providing
discounts for short journeys or introducing amembership schemewhere users pay for onemonth and receive free
usage for the initial 30 minutes (as demonstrated by the Vèloh company in Luxembourg), can attract both new
and returning users. Additionally, this information provides assurance to vehicle-sharing companies and city plan-
ners that their strategy of integrating electric vehicle sharing as a first and last-mile solution aligns harmoniously
with customer natural behavior.

Furthermore, in a study conducted inMontreal, Canada, the effects of weather, temporal characteristics, bicy-
cle infrastructure, land use, and urban form attributes on bike rentals and returns at the station level were exam-
ined using linear mixed models [13]. The research revealed correlations between the type of day and bike rentals
and returns. Additionally, the proximity of bike-sharing stations to large public places, such as malls and uni-
versities, significantly influenced the utilization of bikes. This study offers valuable insights for vehicle-sharing
companies in determining optimal station locations to maximize vehicle utilization. With a better understanding
of the impact of weather and the type of day, companies can strategically plan their logistics. For instance, during
the rainy season, when bike sharing is less utilized, companies can adjust the number of released bikes in service to

8

maintain a balanced distribution.
Knowing user demand in advance is crucial to determining the number of bicycles in service needed to avoid

over and under distribution. Yang et al. (2016) constructed random forest models to forecast demand [47], while
Li and Zheng (2019) introduced an efficient Gaussian process regressor based on similarity for predicting the
number of bikes to be rented at various locations, including stations, clusters, and the system level [27]. In a
separate study, Kim (2021) employed random forest models to predict bike rentals and returns at the cluster level
[25]. Additionally, Kim utilized two distinct methods within a hierarchical demand prediction framework to
estimate demands at the station level.

At the operational level, addressing oversaturation and underutilization often involves implementing rebalanc-
ing operations. The fundamental concept behind rebalancing operations is to strategically relocate vehicleswithin
the system to achieve a more equitable distribution. This process guarantees that no specific location is burdened
with an excess of unused vehicles, ensuring the optimal placement of vehicles at the right location and time.

Rebalancing strategies are categorized into staff-based strategies [11] [49] and user-based strategies [36]. Staff-
based strategies involve determining routes and quantities of bikes for the fleet of vehicles responsible for rebal-
ancing. User-based strategies, on the other hand, encourage users to pick up bikes at high-inventory-level stations
and return them at low-inventory-level stations through incentives or regulations.

In the staff-based rebalancing process, a truck is utilized to transport fully charged e-bikes or e-scooters from
the depot station to locations requiring additional vehicles. For dockless and hybrid docking stations, the same
truck is employed to transfer low-battery e-scooters to the depot for charging. Tominimize vehicle idle time at the
depot, the option of charging bikes while the truck is in motion has been explored by Osorio et al. in 2021 [33].
Given the resulting varied levels of e-scooter charge, the system employs a mixed-integer program for the multi-
commodity inventory routing problem, treating the commodities as e-scooters with distinct states of charge.

Staff-based rebalancing strategies canbe further divided into static anddynamic categories based onwhen rebal-
ancing occurs. Static rebalancing happens at night with less demand and road traffic, aiming to minimize vehicle
travel time or user dissatisfaction. Specific features, such as constraints on truck visits [7]. Dynamic rebalancing,
morewidely used in large cities, efficiently addresses dynamic rebalancing problems during peak times. Objectives
include minimizing travel costs, user dissatisfaction, or deviations from target inventory levels. As computational
power continues to experience exponential growth, the e-bike sharing system has harnessed the advantages of
machine learning technology as well. In particular, reinforcement learning approaches have become increasingly
preferred for addressing rebalancing challenges [28].

With the improvement of technology, e-scooter manufacturers these days have enabled an easy-to-switch bat-
terymechanism, which gives e-scooter sharing companiesmore flexibility to deal with low-battery vehicles: charge
them or just swap the batteries as pictured in Figure 2.2. This flexibility also helps the e-scooter company bring
down the price of vehicle investment. Instead of keeping adding new scooters for about 500€/unit, companies
like Lime can upkeep their inventory by buying a couple more new batteries for about 150€/unit. On top of
bringing the investment price down, swapping batteries also reduces the vehicle’s idltime,me which increases the
usability of the vehicle, supporting citizens zipping around the city.

In 2020, Shangyao et al. introduced an innovative concept in their research [43], suggesting the implemen-
tation of battery exchange stations. Differing from conventional docking stations, these facilities empower cus-
tomers to visit and swap batteries, ensuring a seamless continuation of their journeys. An alternative strategy
involves strategically placing low-cost charging piles in appropriate locations to conserve battery charges during

9

Figure 2.2: E‐Scooter easy battery change [8]

extended trips. Consequently, the critical consideration of identifying optimal locations for electric scooter bat-
tery swapping stations, combinedwith the deployment of charging piles, emerges as pivotal for enhancing average
distance and travel time. A similar approach has also been proposed by Zhou et al. in 2023 [52]. In this model,
power-deficient batteries are replaced and subsequently charged in a central depot or street-side cabinets. The pa-
per proposes a method for modeling the system states of the Electric Bike Sharing System (EBSS), encompassing
e-bike stations and battery cabinet stations, utilizing Markov chain dynamics that consider both e-bike numbers
and battery power levels.

2.3 Research Gap, Goals, and ProblemDefinition

Extensive research efforts have been dedicated to addressing the challenges of oversaturation and underutilization
in bike-sharing systems. Some of them tackle the issue from a strategic point of view, while others tackle it from
the operational side. From the operational side, we’ve talked about the static rebalancing tour and the recent dis-
tribution at night. While research on this topic does exist, there has been limited discussion about integrating
battery swaps as an option during night tour operations. This is despite our earlier findings in the preceding sec-
tion, which conclusively demonstrated that investing in additional batteries is more cost-effective than acquiring
more e-scooter units. Moreover, the practice of battery swaps facilitates more effective rebalancing in terms of
space requirements, as a battery normally takes less space than a unit of an e-scooter. These facts enable operators
to turn a low-battery e-scooter into a fully charged one during a single cycle of night tour operation, which leads
tomore efficient night tour operation. Moreover, many operators use balancing vehicles without battery recharge
equipment, making it necessary to move already charged batteries.

Having established the need for further research into the integration of battery swaps during nighttime tour
operations, let’s deep dive into this specific type of operation. In the night tour operation, a vehicle, specifically
a truck, transports e-scooters and batteries around town, facilitating the reconfiguration of e-scooter distribution
to return it to its normal state. To support night tour operations, companies need to have a designated place that
stores fully charged e-scooters and batteries. This place is called depot. To simplify the problem, let’s focus on the
hybrid docking e-scooter (Figure 2.1), where the user has to start and end their journey from a docking station,

10

Figure 2.3: Night tour operation

but the maximum capacity of each station can easily be adjusted. Therefore, the journey of the truck can simply
be viewed as a tour of these nodes across the city.

Consider Figure 2.3, which represents the night tour operation. For demonstration purposes and without
losing generality, let’s consider that there are 5 nodes across the city and 1 supporting depot. To rebalance the e-
scooter distribution in the morning, the company will send one truck to check the vehicle availability at docking
stations across the city. The truck will start from a depot and bring enough supplies for the night. Of course,
the supplies will be subject to the availability of space in the truck. After loading the supplies, the truck will start
its journey by visiting the docking stations one by one. At the docking station, the night tour operator will act
according to the needs of that particular docking station. If it needs more e-scooters, the operator will drop more
e-scooters. If there are toomany vehicles, the operator will pick up some e-scooters so they can be better placed at
other docking stations. In the following, we list some possible operations while visiting a docking station:

• operator pick-up full-charge e-scooters;

• pick-up low-battery e-scooters;

• drop-off full-charge e-scooters;

• swap the battery of low-battery e-scooters on-board and drop them off;

• swap the battery of low-battery e-scooters on-site.

Up to this point, the night tour operationmay seem straightforward; however, a significant challenge remains:
determining where to drive and what actions to take upon arrival. While drivers could potentially navigate aim-
lessly, relying on their intuition upon reaching a station, such an approach would lead to inefficient operations.
Consider the following scenario: a truck can only accommodate one e-scooter, and there are two docking sta-
tions to be visited. Node 1 has an excess e-scooter, while Node 2 requires two e-scooters. If the driver randomly
chooses to “visit Node 2 first,” unaware that they cannot rebalance the station due to having only one e-scooter
in the truck, the operation becomes inefficient. In this scenario, the ideal solution is to visit Node 1 first, collect
the surplus e-scooter, and then proceed to Node 2 to unload all the scooters. Knowing the ideal solution ahead
of time ensures the efficiency of the operation by reducing the amount of back and forth between stations that

11

the operator has to endure. This approach allows the e-scooter company to maintain a cost-effective night tour
operation.

This thesis aims to address the critical question of “where to drive and what actions to take upon arrival” dur-
ing the night tour operation. By solving this question, we are making a great contribution to solving the over-
saturation and under-utilization of e-scooter vehicles in the system. The proposed solution involves providing
operators with a predefined set of tours based on field conditions, along with recommendations for actions to
be taken at each station before the commencement of the operation. This solution is derived from an objective
to ensure the shortest route while rebalancing the e-scooter distribution at night. We will utilize mathematical
programming techniques to translate and solve this problem, allowing a scalable solution as the ecosystem of e-
scooters increases over time. The stated problem is referred to NRTP-BS. In the subsequent Chapter 4, we will
provide a more formal statement as well as a mathematical formulation based on Mathematical Programming
techniques, namely MILP.

12

3
Methodological and Implementation Tools

In this chapter, we will step aside from the e-scooter night tour universe for a bit. We will focus on understanding
the methodologies and tools that are available in order to be able to customize a method that fits our problem
like a glove. We will see the core concept of the Traveling Salesman Problem and a branch of this, the Vehicle
Routing Problem. We will also get a deeper understanding of what an optimization problem is and how it can
be solved throughmathematical programming and, in particular, MILP. After becoming familiar withMILP, we
will explore the branch and bound algorithms that can be used to solve MILP. Moreover, we will also explore
methods that can help us expedite the runtime of the program by introducing the concepts of lazy constraint and
valid inequality (cut).

3.1 Mathematical Programming
Mathematical programming, also known as mathematical optimization, is a field of mathematics and computer
science that deals with the formulation and solution of mathematical models for decision-making problems [29].
The objective is to find the best possible solution from a set of feasible solutions, where “best” is defined based
on certain criteria or objectives. In mathematical programming, a mathematical model is created to represent the
relationships among decision variables, constraints, and an objective function. Decision variables are the variables
that the decision-maker can control, and the objective function represents the goal to be optimized (maximized
or minimized). Constraints are conditions that the solution must satisfy.

There are various types of mathematical programming, including linear programming (LP), integer program-
ming (IP), mixed-integer programming (MIP), nonlinear programming (NLP), and others [29]. The appropriate
type depends on the nature of the decision problem and the mathematical relationships involved. Solving these
mathematical models helps in making optimal decisions in various fields, such as operations research, logistics,
finance, engineering, and more.

13

Mathematical optimization is a fundamental concept that permeates various disciplines, ranging frommathe-
matics and computer science to engineering, economics, and beyond. In reality, an optimization problem refers
to the process of making something as effective or functional as possible. Bringing reality to the context of mathe-
matical modeling, an optimization problem involves identifying the best solution from a set of feasible solutions.
This ’best’ solution is often determined bymaximizing orminimizing an objective function, which represents the
quantity to be optimized. An optimization problem typically consists of the following components:

1. decision variables,

2. objective function,

3. constraints,

4. feasible region.

Decision variables in an optimization problem are the elements that the algorithm adjusts to discover the best
possible solution. Essentially, they embody the choices or decisions that are integral to the problem. To uncover
the optimal solution, an optimization problem requires a well-defined function that illustrates the relationship
between these decision variables and the desired outcome. This function, known as the objective function, serves
to quantify the success or effectiveness of the problem. Depending on the problem’s nature, the objective may
involve maximizing or minimizing this function. In practical terms, real-world constraints often come into play;
for instance, a company might have a limited fleet, or an operation may need to be completed within a specified
timeframe. These limitations are translated into the model through the introduction of constraints—conditions
thatmust bemet for a solution to be deemed feasible. Constraints essentially outline the boundaries or restrictions
on the decision variables. Lastly, the feasible region encompasses all conceivable combinations of decision variable
values that adhere to the established constraints. In essence, it is the space where a viable solution can be found.

Optimization problems can be broadly categorized into three main types: continuous, discrete, and mixed
optimization [17]. In continuous optimization, decision variables have the flexibility to assume any real value
within a defined range. This is often seen in calculus problems, such as determining the minimum of a differ-
entiable function. The second category, discrete optimization, pertains to problems where decision variables can
only adopt specific, separate values. Essentially, a discrete optimization problem introduces additional constraints
to a continuous problem. Examples include well-known problems like the Traveling Salesman Problem and the
Knapsack Problem. Lastly, mixed optimization problems involve decision variables that encompass both contin-
uous and discrete components. In other words, while one variable may take any real value, another is constrained
to integer or discrete values.

Optimization problems manifest across diverse fields, addressing unique challenges and enhancing efficiency.
In the realm of operations research, these problems tackle the optimization of resource allocation, logistics, and
scheduling. In engineering, the focus extends to design optimization, structural optimization, and fine-tuning
parameters [37]. In economics, optimization comes into play when maximizing profits, minimizing costs, and
optimizing portfolios [14]. Machine learning also leverages optimization for tasks like hyper-parameter tuning,
feature selection, and refining model performance. This wide-reaching applicability highlights the versatility of
optimization across various domains [50].

14

To better understand the optimization problem concept, let’s take a look at the following example: Consider
this integer programming problem in equation 3.1, involving an objective to maximize, three constraints, and
three non-negative integer variables.

maximize x1 + x2
subject to 2x1 + 12x2 ≤ 30

4x1 − x2 ≤ 10

x1, x2 ≥ 0

(3.1)

To solve this problem, we need to explore the feasible region and find the minimum value within the feasible
region (Figure 3.1). It’s crucial to note that the feasible set is distinct from the objective function, which outlines
the criterion for optimization in this example. Considering all values within the feasible region, the point that
maximizes the objective function is when x1 = 3 and x2 = 2. This point lies at the intersection of two of the
three constraints that are linearly independent of each other. This point is considered a corner point.

Formally, a corner point is a point that lies on the boundary of many linearly independent constraints. This
point is a point of interest for us because of Lemma 1 stated in [41].

Lemma 1. A line is a set L = {r+ λs : λ ∈ R} where r, s ∈ Rn and s ̸= 0. Let P = {x : aTi x ≤ bi∀i}. Suppose
P does not contain any line. Suppose the LP max {cTx, x ∈ P} has an optimal solution. Then some extreme point is
an optimal solution.

Guaranteed by this lemma, the journey of finding the extreme point of the optimization problem has now
narrowed down a lot from considering all the points that exist in the feasible region (the amount is normally
infinitewhen thedecisionvariable is continuous) to a couple of cornerpoints in the feasible region. Inour example,
we have four corner points:

1. x1 = x2 = 0, objective function= 0
2. x1 = 2.5, x2 = 0, objective function= 2.5
3. x1 = 0, x2 = 2.5, objective function= 2.5
4. x1 = 3, x2 = 2, objective function= 5

By analyzing the objective function value from the 4 corner points, it can be concluded that the solution to
the problem in 3.1 is indeed 5, when x1 = 3 and x2 = 2. Based on Lemma 1, an efficient-in-practice algorithm to
solve problems formulated a an LP has been devised, the simplex algorithm.

3.2 Travelling Salesman and Vehicle Routing Prob-
lem

The Traveling Salesman Problem (TSP) is a classic optimization problem in the field of combinatorial optimiza-
tion [3]. First formulated in the 1800s, the TSP involves finding the shortest possible route that visits a set of cities
and returns to the original city.

15

Figure 3.1: Feasible region for optimization problem stated in equation 3.1

Figure 3.2: Shortest Path. Source: [23]

The Shortest Path problem is finding the quickest route through a map without the constraint of visiting all
of the cities, like in TSP. Consider it like figuring out the fastest way to travel between two cities in a web of
interconnected cities. This problem stands out as a specific type within the broader transshipment challenge. In
this specialized scenario, there’s a single starting point and a single destination, each with an equal demand (let’s
say, 1 unit).

Take Figure 2.3 as an example. Imagine each node on the map as a city and the connecting lines as roads. The
travel time for each road is explicitly mentioned. Now, we introduce the variable x(i, j), which equals to 1 if the
road between cities i and j is part of the shortest route and 0 if it is not. We can now formulate the Shortest Path
Problemas an ILP.Theprimary objective is tominimize the overall travel time. Similar to other networkproblems,
we can interpret the constraints as flow conservation principles. Each city has its own constraints, emphasizing
that precisely one road should be selected into and out of each city. Despite discussing the x variables in terms of
0–1 values, we can treat them as continuous. This is because the formulation of the shortest path problem has the
integrality property, that is, the corner points of the feasible region of its LP relaxation take integer values. The
simplex algorithm is thus sufficient to find an optimal solution.

The Traveling Salesman Problem (TSP) is classified as NP-hard because it belongs to a class of computational

16

problems that are at least as hard as the hardest problems inNP (nondeterministic polynomial time) [10]. In other
words, the difficulty of solving the TSP increases rapidly with the size of the problem, and no known algorithm
can guarantee a solution in polynomial time for all instances of the problem (unless P = NP). This NP-hard
problem has applications in various domains, including logistics, transportation, and manufacturing. Over the
years, researchers have proposed numerous algorithms to address different aspects of the TSP, ranging from exact
algorithms to heuristics and meta-heuristics.

Even the TSP can be formulated as an ILP, using variables similar to those of the shortest path problem. In
this case, the integrality property does not hold. Early solutions to the TSP involved exact algorithms such as the
branch-and-bound method, which systematically explores the solution space to find the optimal solution [38].
However, with the growing complexity of real-world instances, heuristics like the nearest neighbor and farthest
insertion algorithms, or metaheuristics like genetic algorithms and neighborhood search gained popularity for
providing reasonable solutions in shorter computational times.

The Vehicle Routing Problem (VRP) is another significant problem in logistics and transportation. It extends
the TSP by introducing a fleet of vehicles (in the capacitated version), aiming to serve a set of customers with
known demands [6]. The primary objective is to minimize the total travel cost or time while satisfying capacity
constraints and visiting all customers. Numerous variants of the VRP exist, each posing unique challenges and
requiring tailored solutions. In the literature, researchers have explored various methods to tackle the VRP, in-
cluding exact algorithms like branch and bound [23], metaheuristics such as simulated annealing, tabu search
[4] and hybrid approaches that combine multiple techniques. The choice of the most appropriate method often
depends on the specific characteristics of the VRP instance at hand.

Recalling the night tour operation problem discussed in Chapter 2 and the explanation of VRP, a notable sim-
ilarity emerges between these two concepts. Both aim to determine the optimal route, with a focus onminimizing
distance. In the night tour operation problem, the question is posed: “What is themost efficient tour, considering
the shortest distance, for the night tour operation?” On the other hand, theVRP, in general, addresses the broader
challenge of “finding the shortest possible routes that visit a set of cities and return to the original city, given a fleet
of vehicles with limited capacity, with the objective of serving a set of customers with known demands.” Drawing
on this similarity, we intend to approach the solution of the night tour operation problem by casting it as a vehicle
routing problem.

3.3 Branch and Bound
Now that we have established that we are dealing with a vehicle routing problem, one method that can be used
to solve this is the branch and bound method. It is a general algorithmic technique that was crafted to solve com-
binatorial optimization problems, including the TSP and VRP and, more generally, MILP models. This divide-
and-conquer approach systematically divides the problem into smaller sub-problems, solves them individually,
and combines their solutions to obtain the global optimum. In the context of the TSP and VRP, researchers have
utilized the branch-and-bound method to explore the solution space efficiently, pruning branches that cannot
lead to an optimal solution.

The effectiveness of branch and bound lies in its ability to discard partial solutions that are provably worse
than the best-known solution, thereby reducing the search space and improving computational efficiency [31].

17

Figure 3.3: Branch and bound example. Source: [23]

However, the success of branch and bound depends on the problem’s characteristics, and its performance may
vary across different instances.

To help the reader understand how this concept can be applied to solve MILP models, let’s take a look at the
following example (equation 3.2). The branch and bound operation of this problem is summarized in Figure 3.3.

maximize x+ y+ 2x

subject to 7x+ 2y+ 3z ≤ 36

5x+ 4y+ 7z ≤ 42

2x+ 3y+ 5z ≤ 28

x, y, z ∈ Z+

(3.2)

The initial node in the branch-and-bound tree corresponds to theLP relaxation of the original IPmodel. InLP
relaxation, the integral variables are treated as continuous variables. Solving the LP relaxation provides an upper
bound for the original IP problem; in this instance, the bound is eleven and five elevenths. Currently, the lower
bound is negative infinity.

Since the solution in this case is fractional, the algorithm persists in the tree search to discover an integer solu-
tion. In the branch-and-bound process, the algorithm selects a variable to branch on, such as x and introduces two
constraints to create two sub-problems. These constraints are based on the relaxed value of x, specifically, one and
three elevenths. In one sub-problem, xmust be less than or equal to one, and in the other, xmust be greater than
or equal to two to eliminate the fractional solution. While IP2 yields another fractional solution, IP3 produces an

18

integer solution. This integer solution of value 10 becomes the new lower bound for the original maximization
problem, representing the best current solution.

The algorithmcontinues its iterations, generating new sub-problems andpruning infeasible ones. For instance,
from IP4, two sub-problems emerge based on the fractional value of z. IP4 provides another fractional solution,
and IP3 is pruned as it is infeasible. This process continues, creating sub-problems and refining solutions. The
optimal solution reported is the integer solution with the best objective value found first, as in the case of IP6.

3.4 OptimizationTechniques inLinearProgramming
As theVRP is a generalization of the TSP, it inherits theNP-hard nature of the problem. Consequently, a cutting-
edge technique is essential to obtain solutions despite the continuously increasing scale of the problem. This
method assists in facing the complexity of the problem, considering the constraints of limited computational
power. It enables a frugal allocation of resources, ensuring more efficient problem-solving while avoiding unnec-
essary resource bottlenecks. Within the realm of optimization techniques, this thesis will specifically concentrate
on the RowGeneration method and on the Cutting Plane method. These approaches will be employed to create
a scalable solution and expedite the computational process to solve MILP formulation of TSP-like and VRP-like
problems.

3.4.1 RowGenerationMethod
A first useful tool to address this challenge is the implementation of the Row Generation Method. This opti-
mization technique, commonly employed in linear programming, proves effective in tackling large-scale problems
characterized by a considerable number of constraints [35]. The row generationmethod retains all variables from
the master problem but initially employs only a subset of constraints. Gradually, it verifies whether the generated
solution indeed satisfies all the constraints of the problem. If not, it will add more constraints to the problem
until no further constraints are violated, hence an optimal solution has been found.

The row generation method steps can be summarized as the following:

1. Initial Integer Master Problem: Formulate the problem with a subset of constraints. Then, solve the
problem to obtain an initial solution.

2. Identify Violated Constraints: Examine the initial solution to identify constraints that are violated (not
satisfied).

3. Add Violated Constraints: Add some of the identified violated constraints to the initial integer master
problem.

4. Reoptimize: Solve the current Integer Master problem to obtain a new solution. Repeat the process of
identifying and adding violated constraints until no violation exists, hence an optimal solution is achieved.

This iterative process continues, gradually including more constraints to the problem, until the optimal solu-
tion for the entire VRP problem is found. When the number of constraints is not tractable, the RowGeneration
Method allows the problem to be solved more efficiently by dynamically adding constraints based on the current
solution’s characteristics. Following the definition adopted by CPLEX [20], the solver that we will use in this
thesis, the constraints that are not included by the Integer Master Problem are informally called lazy constraints.

19

3.4.2 Cutting Plane and Valid Inequalities
Cutting-planemethod is employed for solvingMILPproblems by iteratively solving LPproblems and refining the
feasible region until an optimal integer-feasible solution is achieved. The central idea is to add constraints, known
as cutting planes, that tighten the feasible region without excluding the optimal integer solution. To this end,
we introduce a distinction of the constraints between “necessary” constraints and valid inequalities. Necessary
constraints cannot be removed from the formulation, as otherwise further unfeasible integer solutions would
appear in the feasible region. Valid inequalities can be removed from the set of constraints without affecting the
set of integer solutions in the feasible region. The step-by-step procedure while implementing cutting plane can
be summarized as follows:

1. Initialization: Begin with a formulation including all necessary constraints and only a subset (in case
empty) of valid inequalities, and consider its linear relaxation (RelaxedMaster Problem)

2. Solving the valid Relaxed Master Problem: Solve the Relaxed master problem to obtain a solution that
may not satisfy all valid inequalities.

3. Identifying Violated Valid Inequalities: Identify valid inequalities that are violated by the solution ob-
tained from the master problem.

4. AddingCuttingPlanes: Introduce cuttingplanes corresponding to the violated valid inequalities to tighten
the feasible region.

5. Iterative Refinement: Repeat steps 2-4 iteratively until no violated inequalities are identified.

It is important to highlight that the introduced cuts during each iteration serves the primary purpose of nar-
rowing down the feasible region. In the other word, if this method is going to be used, it is crucial to ensure that
the IntegerMaster Problem can still be solved effectively even in the absence of this particular cut. Thismeans that
a (further) procedure to deal with the integrality of some variables (e.g. branch and bound) is still needed at the
end of the process (unless the class of inequalities considered during separation are able to characterize the convex
hull of all integer feasible points). The purpose of incorporating this cut is to expedite the convergence of the
integer-aware procedure, e..g., by improving the bounds from linear relaxation in a branch-and-bound approach.

3.4.3 IntegratingRowgenerationandCuttingplaneprocedures
The cutting-planemethod and row generationmethod plays two disctinct roles, each designed to address specific
challenges in solving MILP problems. For visualization, refer to Figure 3.4. Both subfigures present examples of
the feasible region in a two-variable integer linear programming scenario. Given the current Integer Master Prob-
lem, the polygon outlined in black represents the feasible region of the linear program relaxation, also known as
the linear hull or LP hull. This is achieved by relaxing the integrality restrictions while adhering to all functional
constraints and variable bounds. The blue dots within the polygon denote integer points, signifying feasible so-
lutions that satisfy the integrality restrictions. The blue polygon, recognized as the integer hull or IP hull, is the
smallest convex set that encompasses all integer-feasible solutions. Notably, the IP hull is consistently a subset of
the LP hull. Assuming a linear objective function, the optimal solution to the current Integer Master Problem
lies at one of the vertices of the IP hull, each of which corresponds to integer points. Additionally, as evident from
the graph, the cutting plane does not eliminate any potential integer solutions, as the number of integer points

20

Figure 3.4: Cutting Plane (left) vs Row Generation method (right)

within the IP hull remains unchanged post-cut. Conversely, upon the application of row generation cuts, some
integer blue points are no longer included in the set of integer feasible solutions.

3.4.4 Separation Procedures
Both row generation and cutting plane methods require to identify violated constraints or violated valid inequal-
ities. To these end, constraint or cut separation algorithms have to be devised.

We now focus on a methodological tool that will be useful to separate violated constraints in the TSP context,
which is relevant for this thesis. As we will detail in Chapter 4, MILP formulation for TSP-like problems often
contain the so-called subtour elimination constraints, aimed at guaranteeing that the solution depicts an hamilto-
nian cycle. The separation of these constraints can be seen as amax-flow problem.

The Max-flow problem can be roughly stated as follows. We consider a network made of several points con-
nected by links. Each link has a limit on the maximum amount of traffic it can handle. Given an origin point and
a destination point, the max flow problem asks for determining the maximum amount of traffic that can leave
the origin and reach the destination by flowing through the network and without exceeding the link capacities.
The problem canmodel different optimization requests arising inmany context, such as, transportation planning,
communication network design, resource allocation.

Among thedifferentmethodsproposedby literature to solve themax-flowproblem,we recall theFord-Fulkerson
algoroithm [9]. It’s a clever strategy thatworks stepby step, gradually increasing the flowuntil it hits themaximum.
To really make this algorithm click, we also need to understand the concept of residual graph.

Consider a network with a feasible flow. The residual graph, as illustrated in Figure 3.5, serves as a graphical
representation indicating areas where additional flow can be accommodated. The existence of a path from the
source to the destination in this graph signifies the potential for additional flow. Each edge on this graphical
representation is associated with a numerical value, akin to the available capacity on a road after a certain volume
has been transported. This numerical value is referred to as the residual capacity, representing the remaining
capacity that can be utilized for further flow.

At the outset of the algorithm, we initiate with an empty flow, and the residual map mirrors the original map
since, initially, no flow has transpired, rendering every route unobstructed. To identify a viable path for increased

21

Figure 3.5: [Top] Network Flow yielding the maximum flow. [Bottom] The residual graph

flow, two approaches can be employed: a breadth-first search (BFS) [19] or a more direct route through a depth-
first search (DFS) [45]. In this particular instance, the breadth-first search (BFS) methodology is adopted. Not
only does BFS determine the existence of a path from the source to the destination, but it also maintains a record
of the traversal process. Employing this route map, we ascertain the maximum flow that can be directed along
the path by inspecting the minimum capacity encountered. Subsequently, we augment the overall flow with this
newly ascertained flow amount.

In the course of determining the maximum flow, the graph is updated along the way. The procedure involves
subtracting the transmitted amount from the capacities along the path and increasing the capacities on the reverse
routes. The residual graph serves as a concealed instrument for identifying avenues where additional flow can be
accommodated, and the algorithm serves as a systematic guide to incrementally enhance the flow until reaching
the maximum capacity. For a practical demonstration of this process, refer to Figure 3.5.

From the source (s), there is a path that connects s to the sink (t), namely [s -> 1 -> 2 -> t]. The current flow
of the patch chosen (highlighted in blue) is 3 units. Considering the original capacity and the amount of capacity
left, we will end up with the residual graph shown in the bottom part of Figure 3.5. Since there is no more path
that can connect s to t, it can be shown that the currentmaxflow number is already the absolutemax flow number
for the network.

3.4.5 Branch-and-cut
The branch-and-bound, row generation, and cutting plane procedures can be integrated into a method to ef-
fectively solve MILP models with a very large number of necessary constraints and/or valid inequalities. The

22

procedure is called branch-and-cut: it is essentially the branch-and-bound algorithm where the solution of linear
relaxation at each node iteratively considers the constraints and/or the cut separation procedure to identify vio-
lated necessary constraints and/or violated cuts. Weobserve that, here, the separation of bothnecessary constraints
(“lazy constraints”) and valid inequalities (cuts) runs after the solution of the current Relaxed Master Problem,
which may be fractional or integral. By definition, if we deal with an integer solution, no valid inequality is vio-
lated, hence the cut separation procedure is not run. On the contrary, an integer solutionmay violate some of the
necessary constraints that are not included in the current Relaxed Master Problem; hence, the “lazy-constraint”
separation procedure has to be run.

3.5 Mathematical Programming Implementation in
Docplex

So far, we have seen how powerful mathematical programming is and its wide range of applications to solve real-
world problems. To effectively harness the capabilities of mathematical programming, optimization solvers play a
crucial role. An optimization solver is a computational tool or piece of software designed to find the best solution
to a mathematical optimization problem programmatically. The main goal of an optimization solver is to system-
atically explore the solution space to identify the optimal solution, which could be the maximum or minimum
value of an objective function [30]. The objective function represents the quantity to bemaximized orminimized,
and it is subject to certain constraints, which are conditions that the solution must satisfy.

Optimization solvers use various algorithms and techniques to search through the feasible solution space ef-
ficiently. They can handle linear programming (LP), integer programming (IP), mixed-integer programming
(MIP), quadratic programming (QP), nonlinear programming (NLP), and other types of optimization problems.
One prominent solver in this domain is CPLEX. IBM ILOGCPLEXOptimization Studio, commonly known as
CPLEX [24], stands out as a robust optimization solver widely used for addressing LP,MILP, and even quadratic
programming (QP) problems. Developed by IBM,CPLEX offers a comprehensive set of tools and algorithms for
solving complex optimization challenges. Its versatility and efficiency make it a preferred choice for tackling real-
world problems.

CPLEX provides seamless integration with many programming languages, including C and Python, offer-
ing flexibility in implementing mathematical programming solutions. In C, developers can leverage the CPLEX
Callable libraries, a set ofAPIs and libraries that enable efficient interactionwithCPLEX solvers. This integration
allows for the formulation and solution of optimization problems using theC programming language. Moreover,
Python users can benefit from the CPLEX Python API, which facilitates the incorporation of CPLEX capabil-
ities within Python scripts. The ‘Docplex’ library, an extension of CPLEX based on the Python APIs, further
streamlines the integration process, making it convenient for Python developers to construct and solve optimiza-
tion models using familiar Python syntax.

Utilizing CPLEX within Python brings several advantages. Python’s readability and simplicity make it an ac-
cessible language for a broader audience, and its extensive ecosystem of libraries enhances its functionality. By
combining the power of CPLEX with the ease of Python, users can seamlessly transition from problem formula-
tion to solution, all within a Python environment.

23

To apply mathematical programming, it’s essential to have the Docplex library installed and a valid license for
the application [24]. To gain insight into the structure of the complex, we can examine the implementation of the
problem, as illustrated in (3.1).

1. Problem Formulation: Define your decision variables, objective function, and constraints using theDoc-
plex modeling language. For example:

from docplex.mp.model import Model

Create a model
model = Model(name='IntegerProgrammingExample')

Define decision variables
x1 = model.continuous_var(name='x1')
x2 = model.continuous_var(name='x2')

Define objective function
model.maximize(x1 + x2)

Define constraints
model.add_constraint(2 * x1 + 12 * x2 <= 30)
model.add_constraint(4 * x1 - x2 <= 10)
model.add_constraint(x1 >= 0)
model.add_constraint(x2 >= 0)

2. SolverConfiguration: Configure the solver settings. Docplex allows you touse theCPLEXsolver, which
is a powerful optimization engine.

model.print_information()
model.solve().display()

3. Solution Retrieval: Retrieve and inspect the solution. The following is the return result upon calling the
display function. We can see that the optimal solution is 5, where x1 = 3 and x2 = 2. Aligned with the
solution yielded from corner point method.

Model: IntegerProgrammingExample
- number of variables: 2
- binary=0, integer=0, continuous=2

- number of constraints: 4
- linear=4

- parameters: defaults
- objective: maximize
- problem type is: LP
solution for: IntegerProgrammingExample
objective: 5.000
status: OPTIMAL_SOLUTION(2)
x1 = 3.000

24

x2 = 2.000

CPLEXmainly adopts a branch-and-cut approach to solveMILP problems. In this context, it provides mech-
anisms to integrate the separation procedures for constraints and cuts in the branch-and-cut schema. The basic
tool is the “callback”mechanism, that can be seen as a customizable procedure that is called by theCPLEXbranch-
and-cut schema. Relevant to this thesis are the “users cut callback” [21] and the “lazy constraint callback” [22].
They are both called at the end of the solution of every Relaxed Master Problem. The former is normally used
to separate cuts violated by fractional solutions, and the later is used to separate necessary constraints. We will
further detail the use of these callbacks in Chapter 5, devoted to the implementation of theMILPmodels devised
in this thesis.

25

26

4
Mathematical Formulation for the

Rebalancing Tour Problem

In this chapter, we will translate the business problem as stated in Chapter 2 in a mathematical formulation, in
order to solve it pragmatically. As often happens in mathematical modeling, we will start with the simplified
version of the problem, and add more complexity incrementally. The first model will focus on the case where e-
scooters company can only drop/pick up e-scooters during the night tour operation (neglecting battery concept).
The purpose of having this model is to familiarize reader to the night tour problem without having to deal with
excessive complication. Once the reader becomesmore familiar with the concept, we will addmore complexity to
the model allowing the scenario of operator swapping batteries during a night tour operation.

4.1 Simple Night TourModel

The simple night tour model presented in this sction is inspired by Dell’Amico [11] model and solely changes the
object from bikes to e-scooter. This model is a state-of-the-art benchmark model because it has been proven that
it works with various testing.

We will start the model formulation with the objective function. Since we have established that the night tour
route can be represented with graph, the terms docking station, stations, and nodes will be used interchangeably
from this point on wards. Moreover, in Chapter 2, we have covered that the cost of operation is reflective to
the distance of the tour. Therefore, to minimize the cost of night tour operation, one can simply minimize the
distance traveled during the operation. Let binary variable xij = 1 represent a situation when a truck travels from
node i to j and cij is a given distance between node i and j. Objective function of the first model can be written as
equation 4.1 given V is the set of the network nodes including the depot whereas Vs is the set of network nodes

27

representing the stations and excluding the depot.

min
∑
i∈V

∑
j∈V

cijxij (4.1)

Let’s consider the e-scooters night rebalancing problem under the following operational assumptions:

1. all nodes must be visited and can only be visited once;

2. a truck departs from and arrives at the same depot;

3. the truck only transports full-charge e-scooters. That means, operator will neglect any low-battery e-
scooter

4. each truck transports up to a maximum number of e-scooters available in the depot;

5. for each station, we are given:

• the initial number of full-battery e-scooters on ground before rebalancing;

• the required balanced number of full-battery e-scooters on ground after rebalancing;

6. when a truck visits a station, it can make any of the following operations:

• pick-up full-charge e-scooters;

• drop-off full-charge e-scooters;

7. e-scooters cannot be charged on-board.

In order to ensure that these operational assumptions are satisfied, they will be translated into set of constraint
in the model. The first and second assumption can be written as (4.2) and (4.3) respectively. Given m is the
number of available trucks for the night tour operation, equation 4.4 regulate the number of trucks that will be
used.

∑
i∈V

xij = 1,∀j ∈ V∑
j∈V

xij = 1,∀i ∈ V
(4.2)

∑
j∈Vs

x0j =
∑
i∈Vs

xi0. (4.3)

∑
j∈V

x0j ≤ m (4.4)

Unlike assumption 1 and 2, assumption 3 needs to be stated in order to simplify the operation. This kind of
assumption does not directly translate tomathematical constraint, but help themodel to shape another constraint.

28

Suppose assumption 3 is omitted, the model now have to have more variables to represent commodity in the
vehicle. For example, it is possible to divide the battery into 2 groups: low battery and full charge. It may not look
like a big deal, but imagine there are a lot of nodes in the city. The size of the model will sensibly grow by having
an additional variable. Model needs to calculate the changes of variable in each node and make sure it does not
violate other constraint.

Assumption 4 is needed to ensure that the night tour has a realistic solution. A company must have limited
number of e-scooter. Without this assumption, model could generate a solution such as to bring a thousand e-
scooters from the depot even though the company only have one hundred e-scooters in total. To translate this
requirement, new variable θi is introduced to represent the number of e-scooters in the truck after leaving station
i, or the depot if i = 0. Thus, assumption 4 can be written as (4.5).

0 ≤ θ0 ≤ number of e-scooters in depot (4.5)

Since the model is given both the initial and the required number of full-battery e-scooters, the needs of each
station can be computed.

Suppose qi = ideal number of e-scooters in station i− number of e-scooters in station i denote the deviation
of station i. When qi > 0, it means station i need qi e-scooters so operator need to drop-off qi e-scooter. On the
other hand, when qi < 0 , it means station i has too many e-scooters. Therefore, operator need to pick up qi
e-scooters.

While traversing the stations, company needs to ensure the capacity of the truck is not overfill. This implies
that themodel needs to keep track the load of the truck on each station. Suppose a truck is going from station i to
station j, the load of the truck at station j is depending on qj. This relationship can be translated as the following:

θj = (θi − qj)xij, i ∈ V, j ∈ Vs

These two equations are needed to ensure that when a truck is traveling from i to j, xij = 1, θj = θi − qj.
However, these constraints are non-linear. To deal with this situation, we can apply linearization method by
applying “BigM”method [5]. The “BigM” represents a large positive number, and it’s used to make constraints
conveniently redundant or not, depending on the value of some variables. The linearized versionof the constraints
represented in equation 4.6.

θj ≥ θi − qj −M(1− xij), i ∈ V, j ∈ Vs

θi ≥ θj + qj −M(1− xij), i ∈ V, j ∈ Vs.
(4.6)

Now that the model already tracks the updated load along the tour, we can regulate the load of the truck at all
times. When a truck visits a node j, from operational perspective, the truck load can be as low as 0, which is when
truck does not have any more e-scooters to drop-off. On the other hand, the load of the truck can be as high as
its maximum capacity C. To make the bound tighter, we can benefit from the fact that θj = θi − qj. Hence, the

29

Figure 4.1: Example of sub tour

lower and upper bounds of the load can be written as equation 4.7.

max(0, qj) ≤ θj ≤ min(C,C+ qj), j ∈ V (4.7)

To ensure that truck reached all thenodes upondeparture from thedepot, weneed to add continuity constraint
(equation 4.8) to the model. Consider Figure 4.1 which contain example of a sub-tour. Suppose depot represent
by node 0, it can be seen that in this tour, truck will never reach station 3 and 4 causing station 3 and 4 remain
unbalanced at the end of night tour operation. In optimization terms, this continuity condition is also known as
sub-tour elimination constraint.

∑
i∈S

∑
j∈S

xij ≤ |S| − 1, S ⊆ Vs, S ̸= ∅ (4.8)

Now that readers have the reasoning behind the model, we summarize objective function and constraint for

30

the Simple Night TourModel.

min
∑
i∈V

∑
j∈V

cijxij∑
i∈V

xij = 1,∀j ∈ V∑
j∈V

xij = 1,∀i ∈ V

∑
j∈Vs

x0j =
∑
i∈Vs

xi0∑
j∈V

x0j ≤ m

0 ≤ θ0 ≤ number of e-scooters in depot

θj ≥ θi − qj −M(1− xij), i ∈ V, j ∈ Vs

θi ≥ θj + qj −M(1− xij), i ∈ V, j ∈ Vs.

max(0, qj) ≤ θj ≤ min(C,C+ q), j ∈ V∑
i∈S

∑
j∈S

xij ≤ |S| − 1, S ⊆ Vs, S ̸= ∅

xij ∈ {0, 1}

(4.9)

4.2 AnIllustrativeExampleofSimpleNightTourModel

In this section, we will see how themodel works by utilizing simple dummy data. Assumewe are presented with a
specific logistical challenge involving three stations, the distances between pairs of these stations, deviations from
a standard route, and the availability of a single service vehicle (equation 4.10). The primary objective here is to
identify themost efficient route that can adequately address the requests and demands of these stations. This task
is not only about minimizing travel distance but also about planning the use of the service vehicle to fulfill station
requirements.

To simplify the problem for illustrative purposes, we make the assumption that the distances between stations
are symmetrical. In other words, if the distance between station A and station B is represented as d(s1, s2), it is
assumed to be equal in both directions, d(s1, s2) = d(s2, s1). This symmetry simplifies the route calculation and
aids in providing a clear example. However, it’s essential to recognize that in real-world scenarios, various factors
such as road constraints, traffic conditions, or road quality may result in different distances between stations de-
pending on the direction of travel. These complexities are often considered in more advanced route optimization

31

models to ensure accurate and practical solutions.

S = 1, 2, 3

V = 0, 1, 2, 3

m = 1

d(0, 1) = d(1, 0) = 2km

d(0, 2) = d(2, 0) = 4.5km

d(0, 3) = d(3, 0) = 3km

d(1, 2) = d(2, 1) = 3.5km

d(1, 3) = d(3, 1) = 2.5km

d(2, 3) = d(3, 2) = 1km

q1 = 4

q2 = −6

q3 = −8

C = 20

θ0 ≤ 10

(4.10)

By carefully considering all the different ways stations can be visited, we end up with a total of six potential
routes that cover all the stations. For simplicity of demonstration purposes, we will restrict the model to always
pick-up 10 e-scooters from the depot. Table 4.1 summarized the cost associated with each route. This thorough
approach enables us to explore and assess every possible order in which the stations can be visited, giving us a
complete picture of the available route choices.

This in-depth analysis of these routes not only helps us finding the most efficient and cost-effective options
but also deepens our understanding of how stations interact and the best way to visit them. It provides us with
valuable insights to make well-informed decisions and optimize our routes in this specific situation.

The computations presented reveal that among the considered routes, route1, route2, route4, and route6
emerge as feasible options. In contrast, route3 and route5 prove to be unfeasible since they result in the vehi-
cle load exceeding the capacity threshold. Consequently, the optimal choice for the night route is route1 due
to its exceptional cost-efficiency, boasting the minimum cost among all the feasible routes, represented by cost1,
amounting to 9.5 kilometers.

It’s worth noting that the complexity of manual calculation grow significantly as we are dealing with more sta-
tions, since the number of possible tours to visitn stations isn!. Therefore, wewill see how to build an automation
tool that can generate the solution, given the model (4.9) and its inputs (4.10), in Chapter 5.

32

Route Number Route θ Cost (km) Is feasible?
1 [0,1,2,3,0] [10,6,12,20,20] 9.5 Yes
2 [0,1,3,2,0] [10,6,14,20,20] 10 Yes
3 [0,2,3,1,0] [10,16,24,20,20] 10 No, because θ2 > C
4 [0,2,1,3,0] [10,16,12,20,20] 13.5 Yes
5 [0,3,2,1,0] [10,18,24,20,20] 9.5 No, because θ2 > C
6 [0,3,1,2,0] [10,18,14,20,20] 13.5 Yes

Table 4.1: Route permutation and its associated cost

4.3 Night Rebalancing Tour Problem with Battery
Swaps (NRTP-BS)

The second model is formulated with two goals. The first one is to allow battery swap during night tour oper-
ation. Company found this option is necessary since it can save them operation cost. Furthermore, in practical
situations, achieving a perfectly rebalanced distributionmay not always be feasible. Instead of declaring a solution
infeasible, we aim to offer the company ”the next best” solution, which is the second goal of our enhanced model.
Let sj represent the number of e-scooters that are either in excess (if positive) or missing at station j after the night
tour operation. Wewill refer to this variable as the imbalance variable. To encourage themodel not to generate im-
balanced solutions unnecessarily, even when a perfectly balanced solution is achievable, we will add the absolute
value of the imbalance variable into the objective function, combined with a positive unit penalty Pj ∈ [0,PMAX]

where PMAX is the maximum penalty allowed. This penalty reflects our inclination to prioritize either achiev-
ing a well-balanced distribution as the tour outcome or opting for shorter routes, even if it means accepting an
imbalanced result. As the unit penalty approaches zero, the model becomes more adaptable in accommodating
imbalanced solutions. In contrast, by setting the penalty closer to PMAX, the model places a stronger emphasis on
attaining a balanced outcome, even at the cost of prolonging the night tour operation.

The objective function for this model can be written as equation 4.11.

min
∑
j∈Vs

Pj|sj|+
∑
i∈V

∑
j∈V

cijxij (4.11)

As for the operational assumptions, the same operational assumptions in the previous model will be re-used
with slight modification:

• In assumption 3, we allow truck to carry more than just full-charge e-scooter, but also low-battery e-
scooters, and full charge batteries;

• in assumption 5, we get more additional information:

– the initial number of low-battery e-scooters on ground before rebalancing;

– the final desired number of full-battery e-scooters on ground after rebalancing;

33

• in assumption 6, there are more variation to the operation:

1. pick-up full-charge e-scooters;

2. pick-up low-battery e-scooters;

3. drop-off full-charge e-scooters;

4. swap the battery of low-battery e-scooters on-board and drop them off;

5. swap the battery of low-battery e-scooters on-site.

The first 4 model constraints introduced in the Simple Night Tour model (equation 4.2 - equation 4.4) and
sub tour elimination constraint (4.8) will be added into the Battery Swap model constraints. Nonetheless, the
battery swap model discussed in this chapter will be constrained to the use of only one truck. This constraint
is introduced to maintain simplicity and avoid overwhelming readers with a potentially extensive growth in the
number of variables. For instance, if we were to consider a scenario involving three trucks, the complexity would
escalate significantly. Not only would there be an increase in the number of variables due to the different types
of loads—full charge e-scooters, low battery e-scooters, and spare batteries—but we would also need additional
variables to track the quantity of each load in each truck. Consequently, for the sake of simplicity and clarity, we
have opted to restrict the model to a single truck.

Let qj be the ideal number of full-battery e-scooters that needs to be dropped off from station j (picked up,
if negative) to achieve the desired number after rebalancing. Moreover, let wF

j be the number of full-battery e-
scooters that operator needs to drop off (if positive, pick up if negative) in order to rebalance the station j. Let wL

j

be the number of low batter e-scooters to drop-off at station j after swapping their batteries (operation 4). Lastly,
let wB

j be the number of battery swaps for low battery e-scooters that are already at station j (operation 5). The
night tour operation at station j then can be stated as equation 4.12.

qj + sj = wF
j + wL

j + wB
j ,∀j ∈ Vs

wL
j ,wB

j , yLj ≥ 0,∀j ∈ Vs
(4.12)

In reality, operator canpick up asmuch as full battery e-scooters that exist in the station anddropoff asmuch as
full battery e-scooters that exists in the truck (equation 4.14). Let Fj and Lj be the number of full battery and low
battery e-scooters that presents in station j. Furthermore, let θFj , θ

L
j , and θ

B
j be the number of full-charge e-scooter,

low-battery e-scooter, and full charge spare battery on board after visiting node j respectively. These variables will
always have value greater than 0 (equation 4.13). Operator can also pick up as much as low battery e-scooters that
exist in the station (equation 4.15). Another alternative to rebalance the station is to swap low battery e-scooters
with full charged battery (operation 4 and 5). Operator can opt for this choice as much as long as we still have
full-charged spare battery in the truck (equation 4.17). Moreover, to ensure that the station is not cluttered with
low battery e-scooters, operator can pick up low battery e-scooters yLj at station j (operation 2).

θFj , θ
L
j , θ

B
j ≥ 0,∀j ∈ V (4.13)

34

wF
j ≥ −Fj,∀j ∈ Vs

wF
j ≤ θFi +M(1− xij),∀i ∈ V, j ∈ Vs

(4.14)

wL
j ≤ θLi +M(1− xij),∀i ∈ V, j ∈ Vs (4.15)

wL
j + wB

j ≤ θBi +M(1− xij),∀i ∈ V, j ∈ Vs (4.16)

yLj + wL
j ≤ Lj,∀j ∈ Vs (4.17)

To ensure that the truck is not overloaded, we need to keep track the truck load throughout the operation.
When leaving the depot, a truck can load asmuch as full charged e-scooter, low charge e-scooter, and spare battery
that exist in the depot (equation 4.18). The progression of full battery e-scooter, low battery e-scooter, and spare
battery in the truck at every station can be described by equation 4.19, 4.20, and 4.21, respectively.

θF0 ≤ F0, θL0 ≤ L0, θB0 ≤ B0 (4.18)

θFj ≥ θFi − wf
j −M(1− xij),∀i ∈ V, j ∈ Vs

θFj ≤ θFi − wf
j +M(1− xij),∀i ∈ V, j ∈ Vs

(4.19)

θLj ≥ θFi − wL
j + yLj −M(1− xij),∀i ∈ V, j ∈ Vs

θLj ≤ θFi − wf
j + yLj +M(1− xij),∀i ∈ V, j ∈ Vs

(4.20)

θBj ≥ θBi − wL
j − wB

j −M(1− xij),∀i ∈ V, j ∈ Vs

θBj ≤ θBi − wL
j − wB

j +M(1− xij),∀i ∈ V, j ∈ Vs
(4.21)

We are nowmanaging twodistinct load types in the truck: battery and e-scooter. Thus, it is essential to consider
two distinct truck’s maximum capacity. We will represent the maximum e-scooters capacity in the truck as C and
the maximum battery capacity as CB. Additionally, we must establish upper bounds for these variables to ensure
that the truck is not overloaded (equation 4.22 and 4.23).

θFj + θLj ≤ C,∀j ∈ V (4.22)

θBj ≤ CB,∀j ∈ V (4.23)

In conclusion, this model is defined by the objective function outlined in equation 4.11, along with a set of

35

constraints ranging from equation 4.2 - 4.4, and from Equation 4.12 - 4.23. These equations collectively shape
the framework for addressing the intricate challenges of our problem, guiding us toward optimized solutions that
balance the operation and battery requirements effectively.

Now that reader have the reasoning behind themodel, we summarize objective function and constraint for the
NRTP-BS model in Figure 4.2.

4.4 An Illustrative Example of Battery SwapModel
Forbetter clarity of theNRTP-BSmodel, let us revisit the previous illustrative example (as represented inEquation
4.10) and apply the battery swapmodel. To achieve this, we will make a slight adjustment to the original situation
by declaring demand of each station, the number of full and low battery e-scooters that exist in each station, also
the the unit penalty on each station (4.24).

C = 10

CB = 10

F0 = 10

B0 = 10

q = [0, 4,−6,−8]

Full battery e-scooters in each station = [0, 6, 16, 18]

Low battery e-scooters in each station = [0, 0, 0, 0]

scneario 1 : P = [0, 0, 0, 0]

scneario 2 : P = [10, 10, 10, 10]

(4.24)

In this specific case, battery swap model is using 46 unique variables, whereas the simple night tour is only
using 21 variables. It is important to highlight that, both models dealing with the same number of nodes, they
both employ 16 variables to depict the connections between these nodes. Notably, the basicmodel only requires 5
variables to characterize the station load at each location, while the battery swapmodel utilizes a more substantial
30 variables for this purpose. This example already demonstrates that the increased flexibility offeredby the battery
swap model comes at the cost of higher computational resources and complexity.

We will not delve into the laborious manual calculation of all possible combinations of variable values, that
here significantly includes also the setting for node-operations related variables. Instead, we shed light on the
significant impact of the penalty parameter. In this example of scenario 1, we have chosen to prioritize shorter
distances even if it results in a slight imbalance in e-scooters distribution. Lets explore an additional scenario to
illustrate this concept.

In the first scenario, where we prioritize minimizing the distance (Pj = 0), we opt for a route that starts at the
depot, carrying 4 fully charged e-scooters, drop 4 fully charge e-scooters in station 1, then does nothing while visit
station 2 and 3. This choice results in a night tour spanning 3.5 kilometers. From an operational perspective, at
least in the analysed case, the proposed solution this approachmakes sense. It does not compromise the customer

36

Figure 4.2: MILP formulation for the NRTP‐BS

37

experience because userswill find fully stocked e-scooters at the stations the nextmorning. This not only enhances
the user experience but also bolsters marketing efforts by instilling trust through the visible availability of ample e-
scooters. Nevertheless, we stress that this is a lucky situation and,moreover, havingmore scooters thanneededmay
cause other operational issues from, e.g., the operator perspective (this is why we also penalize excess e-scooters).

Furthermore, consider a different perspective—favoring a balanced distribution, even if it means taking a
longer night route. In scenario 2 where Pj = 10, the best solution involves a route that begins at the depot
with 4 full e-scooters, stopping at station 1 to drop-off 4 full charged e-scooters, proceeding to station 2 to pick
up 6 full charged e-scooters, and finally visiting station 3 to collect 8 e-scooters. This example proves that, even
at the cost of traveling greater distances, we can achieve a perfectly balanced e-scooters distribution. This can
be particularly valuable in situations where we need to place e-scooters in less secure areas, aiming to release as
few e-scooters as possible while still meeting user demand. In essence, the unit penalty here plays a pivotal role
and can be strategically employed based on the specific use case, providing a versatile tool for addressing varying
operational needs.

38

5
Models Implementation in Docplex

The goal of this chapter is to tackle and resolve the optimization problems presented in Chapter 4: the “Simple
Night Tour Model” and the “NRTP-BS.” These models are designed to assist an e-scooter company in optimiz-
ing their night tour operations. To achieve this, we will leverage the capabilities of IBM Decision Optimization
CPLEX, using the interface “Docplex”. By using this API, wewill write Python code to formulate and solve these
complex optimization problems.

Docplex offers an efficient and accessible means to address a broad spectrum of optimization tasks, including
linear programming, mixed-integer linear programming, quadratic programming, and more. Its power lies in its
user-friendly Python interface, which allows for the straightforward creation of decision variables, the definition
of objective functions, and the addition of constraints. As highlighted in Chapter 2, with Docplex’ natural, alge-
braic syntax for expressing optimization models, both experts and those new to mathematical optimization can
effectively define and solve real-world problems.

5.1 Implementationof the SimpleNightTourModel
This section presents the pseudo-code for implementing the simple night tour model. In Chapter 4, we have
discussed that model presented in equations 4.9 and Figure 4.2 contains subtour elimination constraints whose
number grows exponentially with the number of stations. This fact makes the problem not directly tractable. In
order to overcome this issue, we will implement the row generation method presented in Chapter 3. The flow of
this algorithm is summarized in Figure 5.1.

However, with an increasing number of stations, the cost of recalculating the solution rises when a subtour is
detected within the current optimal solution. Under the hood, Docplex utilizes the branch and bound method
while solving the problem, as elaborated in Section 3.5. By leveraging this observation, we can enhance the algo-
rithm’s efficiency to separate the infeasible solution earlier. The idea is to create a separation mechanism at each

39

Figure 5.1: Simple Night Tour with row generation implementation flow

40

branch-and-bound node as soon as a new integer-feasible solution is found. In Docplex, this can be done by uti-
lizing the callback class, namely LazyConstraintCallback. It is a subclass of the more general CplexCallback class,
which provides a framework for implementing various types of callbacks in CPLEX. To ensure that constraint
(4.8) is respected in the final solution in a branch-and-cut fashion, the callback invokes a separation procedure to
identify the violated constraints. The lazy constraint callback is used to process solutions that satisfy the integral-
ity requirement. We can take advantage of this property to devise a separation procedure that works on a graph
where tours or subtours can be directly identified. First, the algorithm needs to translate the current solution into
a readable tour. This process can be done by following the following steps:

1. Analyze the solution of variable x.

2. Build a route by examining the key of variable xwhere xij = 1.

3. Start by finding jwhere x0j = 1. This jwill be the next station the truck will head to.

4. Repeat the same step until xj0 = 1. This indicates the last station before the truck returns to the starting
station.

After the algorithm obtained a readable cycle, it should identify weather this cycle violates the subtour elimi-
nation constraint or otherwise. In case of violation, we will tell the model to never generate this solution again by
adding the current configuration solution as an additional model constraint. The code for the subtour separation
step can be formulated as follows:

if len(route) < self.num_stations +2:
print('Subtour exists. Recalculating the tour')
bad_tour = 0
for i in range(len(route)-1):

bad_tour += self.x[route[i], route[i+1]]
converted = self.linear_ct_to_cplex(bad_tour <= len(route)-2)
self.add(converted[0] , converted[1],converted[2])
self.lazy_ct+=1

When a cycle contains no subtour, the route’s length will be equivalent to the number of stations plus 2. For
instance, if there are 3 stations, and the generated route is 0− > 1− > 2− > 3− > 0, this specific route doesn’t
encompass any subtours, as evidenced by its length being 5, which is equal to 3 (number of stations) plus 2. In
the event of a subtour exists, we need to add a constraint into the lazy constraint pool to avoidmodel generate the
same solution in the next iterations. The additional constraint will take the form described in equation 5.1. For
example, if there are 3 stations and the generated route is only 0− > 1− > 0, a subtour is identified. Therefore,
we will include the constraint x[0, 1] + x[1, 0] <= 1 in the pool of lazy constraints.

n∑
i=0,j=0

xij ≤ length of subtour− 2 (5.1)

In summary, the flow of implementation for the Simple Night Tour with “LazyConstraintCallback()” is illus-
trated in Figure 5.2.

41

Figure 5.2: Simple Night Tour with LazyConstraintCallback implementation flow

42

Figure 5.3: Snapshot of the generated result

To better understand the implementation process in Docplex, let us revisit the same example discussed in sec-
tion 4.2. After declaring the variables, constraint, and objective function according to themodel, we can solve the
model by invoking the following command. The snapshot of the result is presented in figure 5.3.

During the optimization of mathematical programs by ILOGCPLEX, numerous underlying processes occur
behind the scenes. Throughout the optimization process, CPLEX constructs the branch-and-bound tree with
the linear relaxation of the original problem at the root and subproblems to optimize at the nodes of the tree.
CPLEXupdates its progress in optimizing the original problem in a node log filewhile building and traversing this
tree. In the given example, CPLEX achieved the optimal objective function value of 9.5 km by exploring 0 nodes
and performing 14 cumulative iterations to solve the generated subproblems. Notably, to reach the final solution,
CPLEXautonomously added various general-purpose cutswithout requiring user-specific configurations. In this
instance, these six cuts include implied bound cuts, mixed-integer rounding cuts, zero-half cuts, lift and project
cuts, and Gomory fractional cuts; no user cuts were defined. Beyond determining the route, we can also derive
suggested actions at each station by considering the θ variable. For this example, the suggested action is to bring
4 full charge e-scooters from the depot, drop 4 off at station 1, pick pick-up 6 full-battery e-scooters at station 2,
and finally pick-up 8 full-battery e-scooters at station 3. This recommendation aligns with the solution generated
in chapter 4.2. The overall time taken to solve this example was 0.01 seconds.

43

5.2 Implementation of NRTP-BS

NRTP-BS model is formulated to allowmore operational choice during the night tour operation. However, this
flexibility comes with the caveat that this model requires many more variables and constraints in comparison to
the Simple Night Tour model. To address this issue, we try to improve the efficiency of the branch-and-cut ap-
proach implemented by CPLEX by separating the subtour elimination not only when solutions are integral but
even when the solution of the current Relaxed Master Problem is fractional. In this way, we can anticipate the
addition of relevant constraints at the early stages of the process and, overall, save computational resources (see
[34]). To this end, we use the “users cut callback” mechanism to invoke a specialized separation procedure able to
identify violated subtour elimination constraints even if the current solution contains fractional values. Mirror-
ing CPLEX, doplex provides a mechanism to seamlessly incorporate the cutting planemethod into the algorithm
through the UserCutCallback(). This callback will be used within the cut loop that CPLEX calls at each node of
the branch and cut algorithm. It will be called once after CPLEX has ended its own cut generation loop so that
the user can specify additional cuts to be added to the cut pool.

Upon calling the users cut callback mechanism, there is a possibility that the current solution contains frac-
tional values. Therefore, no route can be identified by the subtour elimination procedure that has been explained
in Section 5.1. To address this challenge, we can revisit themaxflow problem explained in Chapter 3. By consider-
ing the solution at the current node, we build a network where nodes correspond to stations (including depots),
and each arc (i, j) has a capacity of xij. We then explore all possible pairs of source and sink among the number of
stations. In each iteration, we check if the maxflow is less than 1. If maxflow is less than 1, it indicates the presence
of a node that is not connected to other nodes.

We observe that subtour elimination can be seen as a connectivity requirement, asking for a flow of at least one
between any two pairs of nodes in the graph. According to the max-flow min-cut property, this is equivalent to
saying that, for any partition of the node set N into two subsets S and Ns = N \ S, the sum of the capcities on
the arcs from any node in S to any node inNS must be at least one. This in turn means that subtour elimination
constraints (4.8) can be equivalently stated as follows:

∑
i∈S,j∈N\S

xij ≥ 1,∀S ⊂ VS, S /∈ ∅ (5.2)

We can utilize the residual information from the maxflow to identify nodes that lack connections to others.
Consider the example of Figure 4.1, a subtour in this example here includes nodes 0, 1, 2, and 5, forming the set
S, and henceNS contains nodes 3 and 4. Consequently, the added constraint is essentially the inverse of how we
identify the subtour. For the given example, the added constraint is x[0, 3] + x[0, 4] + x[1, 3] + x[1, 4] + x[2, 3] +
x[2, 4] + x[5, 3] + x[5, 4] ≥ 1. We want to emphasize that the provided separation procedure also works with
fractional variables, in which case a subtour is not directly visible on the corresponding network.

When there is no (5.2) identified as violated, the solution at the current node is considered as a candidate.
However, unlike in the row generation procedure depicted in Figure 5.2, we can not immediately infer that this
solution is the final solution. The algorithm still needs to find the integer solution, and furthermore, this inte-
ger solution needs to be checked to determine if the generated tour contains a subtour or not, by invoking the
LazyConstraintCallback. In general, since we have conducted an extensive separation process while solving the

44

relaxed integer problem, we usually converge to the final solution by the time LazyConstraintCallback is invoked.
Nevertheless, this process does not completely eliminate the possibility of a subtour existing in this situation. It is
important to note that the implementation of LazyConstraintCallback in this problem can stand alone, while the
implementation of UserCutCallback requires LazyConstraintCallback to ensure that no subtour is contained in
the final solution.

The implementation flow that processes a branch-and-bound node with use of LazyConstraintCallback and
UserCutCallback for Battery Swap model is summarized in Figure 5.4.

45

Figure 5.4: CutCallback+LazyConstraintCallback flow in NRTP‐BS

46

6
Computational Experiments

To identify the critical factors in our model, we will perform sensitivity analysis on the docplex implementations
of the Simple Night Tour and the NRTP-BS presented in Chapter 5. To this end, we have tested our models on
synthetic instances and we analyze the computational results in terms of achieved optimal solution and required
running times. In the chapter, we describe how we created the test benchmark and the results of our analysis.

6.1 Instance benchmark
In order to generate the instances, we will build a generic function that can create a randomized dataset given a
number of stations. The key components of the dataset include a distance table (d), representing the distances
between stations, and simulated data specifying the number of fully charged scooters, the demand for scooters,
and the required rebalancing quantity at each station. The distance table is populated symmetrically with random
distances between stations, excluding self-distances (i.e., from a station to itself). A large value (108) is used to
represent self-distances, thus eliminating the possibility of self-visits. Subsequently, the function generates pre-
requisite data for each station. It computes the initial number of fully charged scooters F at each station, sets
a uniform demand of 8 scooters for all stations, and calculates the required rebalancing quantity Q to meet the
demand. The final step involves creating an object of a data class using the generated distance table d, simulated
demand data sim, F andQ. The explained steps are summarized in the following algorithm:

def dummy_data_gen_new(num_stations,print_log=0):
```
Function to generate dummy data
Input: Number of station
Output: A class of data consist of distance table, number of full,low,

47



needs and penalty in each station.
```
d= pd.DataFrame(np.zeros([num_stations+1,num_stations+1]))
for i in range(0,num_stations+1):

for j in range(i,num_stations+1):
if i != j:

temp=random.uniform(0,1)*5
d[i][j]=temp
d[j][i]=temp

else:
d[i][j]=100000000 #this is a trick to eliminate self visit (0,0)

#Generating simulation random data
Q=[0] #ideal number of full battery escooter that should be picked up

#to achieve the desired number after rebalancing
F=[0] #number of full battery scooters at node j BEFORE rebalancing
demand = [0] #need for every station

for i in range(1,num_stations+1):
F.append(int(random.uniform(0,1)*5))
demand.append(8) #for the moment the needs for all station are the same
Q.append(demand[i]-F[i])

sim = pd.DataFrame(list(zip(F,demand,Q)),
columns=['F','demand','Q'])

data = data_class(d,sim,F,Q)
return data

Examining the generated data, d[i][i] for all station i represents the self distance. In reality, this value is 0.
However, considering the objective functions in the Simple Night Tour and NRTP-BS (equations 4.1 and 4.11),
setting d[i][i] = 0may prompt the algorithm to prefer self-visit rather than visiting other node. Therefore, rather
than assigning adistanceof 0 to the same station, opting for a substantially larger value compared toother distances
discourages the algorithm from selecting x[i][i] = 1. Moreover, concerning the distance between other stations,
we will generate a random number between 0 and 5, following a normal distribution. The normal distribution
is selected to replicate the distance of docking station around the city. Some of the stations will be close to each
other, due to more popular demand, and some of the stations are quite far apart with each other. Regarding the
e-scooter situation at each station, the variables F and Lwill denote the number of full and low-battery e-scooters
present in a station, respectively. The values for these variables will vary randomly within the ranges from 1 to 5
and 1 to 8, respectively.

48

Figure 6.1: [Left] Growth of Number of Variables vs Number of Station. [Middle] Average 10 Run Time per Station for
Simple Night Tour docplex implementation. [Right] Average Number of cuts per 10 run per station for Simple Night Tour
docplex implementation.

6.1.1 Results on the Simple Night Tour Experiment

By analyzing the mathematical model for the Simple Night Tour, it can be inferred that the growth of binary
variables accelerates significantly as the number of stations increases (O(n2)). This main growth is driven by the
binary variables xij whereas the variable θ grows linearly (O(n)). To investigate the computational implications
of this phenomenon, a sensitivity analysis will be performed by varying the number of stations in relation to the
docplex implementation with integer separation method incorporated through the LazyConstraintCallback, ac-
cording to the schema presented in Figure 5.2. Throughout this analysis, we will monitor the growth of variables,
runtime, and the number of added subtour elimination constraints as we increment the number of stations. To
account for the inherent randomness in the dataset, the experiment will be repeated 10 times for each number of
stations, ensuring a comprehensive understanding of themodel’s natural behavior. The sensitivity analysis ranges
from the number of stations being 1 to 10. The experiment was carried out on aMacBook Pro equipped with an
Apple M1 Pro chip and 32 GB of RAM.

As illustrated in Figure 6.1 (left), our analysis is aligned with the evidence indicating that an increase in the
number of stations corresponds to quadratic increment in the number of variables. This observation is further
reflected in Figure 6.1 (middle), where the average runtime for solving the Simple Night Tour model exhibits
an exponential growth. While this poses a scalability concern for the e-scooter company, a closer examination
reveals that the runtime for an individual problem remains relatively fast, clocking in at less than 1 second per
iteration, at least in the instances that we tested up to 10 stations. Furthermore, we are interested to figure out
what is the contributing operation that halt the run time as the number of station grows. Evidently, with the
expanding number of stations, we need to domore separation operationwhile docplex conducting its branch-and-
cut operation. Taking a closer look, when the number of station equal to 10, docplex runs the integer separation
method almost 350 times.

This sensitivity analysis serves as a cautionary note, indicating that wemust carefully manage runtime expecta-
tionswhendealingwith a substantial number of stations. In this experiment, the number of e-scooters in question
does not exert an influence on the runtime. Additionally, as previously highlighted in the model formulation, the
Simple Night Tour model is designed to generate only a perfectly balanced solution, lacking variables to address
system imbalances. Consequently, we need to augment the code to handle instances where the model produces
infeasible solutions. This occurrence could arise from insufficient e-scooters to rebalance the distribution or a
truck capacity insufficient to accommodate the required load.

49

6.1.2 Results onNRTP-BS Experiment
To enable themodel to give us the next-best-solution, wewill pivot our experiment into theNRTP-BS.As detailed
in Chapter 4, in addition to allow for demand imbalances, this model introduces the flexibility for operators to
exchange low-battery scooterswith extra batteries transported from the depot, rather thanphysically swapping the
low-battery e-scooters for fully charged ones. However, this flexibility comes at a cost, as the number of variables
to manage is higher compared to the Simple Night Tour model, given the same number of stations.

In this experiment, we explore two different methods to programmatically solve the model: one utilizing only
integer separationmethod implementedusingLazyConstraintCallback, and the other combining the integer sepa-
ration with fractional separation implemented using LazyConstraintCallback and CutCallback, respectively. As
depicted in Figure 6.2, the overall performance of the method that employs both CutCallback and LazyCon-
straintCallback outperforms the method that only employs LazyConstraintCallback as the number of stations
increases. This can be attributed to the nature of the problem: as the number of stations grows, the solution
space becomes larger. CutCallback facilitates faster convergence by adding more guardrails to the model at ear-
lier stages, even when integer solutions are not yet available. Without CutCallback, the model needs to wait for
integer solutions coming from the linear relaxation, which, in the worst case, may require solving to integrality
at the currentMaster Problem, before validating the solution for subtour elimination constraints. Implementing
CutCallback allows us to identify infeasible solutions early, and add some relevant constraints earlier, resulting in
an overall faster runtime.

Furthermore, Figure 6.3 reveals that when utilizing only LazyConstraintCallback in the model, fewer sepa-
ration problem is conducted. This is because we need to wait for the model to find the integer solution first.
For instance, when the number of stations is 100, solving the NRTP-BS with only LazyConstraintCallback per-
formed around 580 integer separation problem on average. However, when combining LazyConstraintCallback
andCutCallback, the number of integer and fractional separationproblemcombined increases tomore than 1000.
Therefore, combining this observation with the runtime analysis, we argue that the abundance of fractional sep-
aration problem help the algorithm to reduce the solution space by cutting infeasible early from the search tree.
Since there is less solution to explore, the algorithm can find the optimal solution quicker.

Diving deeper, in the combinedmethod, since fractional separation procedure has been conducted, algorithm
does not have to performmany integer separation anymore. However, as evident in the cases where the number of
stations is 6 and 19, sometimes the integer-generated solution still contains a subtour. This examples confirm that
while fractional separationproblemcan aid the algorithm in converging to the solution faster, it does not guarantee
that the generated route satisfies all necessary constraints without deploying the integer separation problem.

50

Figure 6.2: Average 3 run time per station for NRTP‐BS

51

Figure 6.3: Average number of Separation Process for NRTP‐BS

52

7
Conclusions

In this thesis, we have reviewed the existing literature on the implementation of e-scooter sharing systems in soci-
ety. Through this review, a prominent challenge in the field has been identified: the issue of over-saturation and
under-utilization of e-scooters. One proposed solution involves implementing a night tour operation to rebalance
e-scooter distribution. However, a notable gap in the literature lies in the limited discussion of night tour opera-
tions that allow swapping e-scooter batteries rather than the entire units. This thesis aims to address this gap by
introducing a novel model that facilitates battery swaps during night tour operations. The anticipated outcome
of this model is to provide actionable insights for night tour operators, guiding them on where to drive and what
actions to take at each station during the operation.

To model this complex problem, we present two distinct mathematical programming models: the Simple
NightTourmodel and theNRTP-BSmodel. The firstmodel draws inspiration from thework ofDell’Amico [11]
on bicycle rebalancing problems, functioning as a benchmarkmodel. The secondmodel represents an original en-
hancement, introducing the capability for night tour operators to swap batteries during operations. Bothmodels
contain subtour elimination constraints, the quantity of which becomes significant with an increasing number of
stations. This characteristic makes the problem not directly tractable. Although the row generation method of-
fers a solution to dynamically add this constraint, the computational cost rises significantly when recalculating the
solution if a subtour is detected at the conclusion. To enhance the efficiency of the model algorithm, we propose
a separation method that can identify early whether the solution at the current node within the branch-and-cut
process contains a subtour or not, instead of waiting until the end of the tree to check if the solution contains a
subtour.

During the separation procedure, we have two options at a node level: conducting it once the integral solution
has been found or conducting it once the fractional solution has been found. InDocplex, the former method can
be implemented by utilizing the LazyConstraintCallback whereas the latter can be implemented by utilizing Cut-
Callback. Both methods provide flexibility by dealing with subtour constraints dynamically without generating
them in advance. However, using CutCallback alone does not fully guarantee the absence of subtours in the final

53

solution since the solution might be fractional. Therefore, CutCallback needs to be paired with LazyConstraint-
Callback to check if the integer solution found contains a subtour or otherwise.

To further analyze the proposed model, we have done a sensitivity analysis on both of the models against a
systetic dataset ranging from a 1 number of stations to 100. The experiment is repeated three times at each station
to ensure that we capture the general behavior of the model and not just a lucky coincidence because of the gener-
ated dataset. With these numerical experiments, we have observed that both models can finish the run in under 2
seconds for 25 stations. However, as the number of stations grows, the NRTP-BS needs up to 23 minutes to find
the optimal solution. When both callbacks are incorporated into the model, CutCallback effectively addresses
the separation problem, resulting in the faster addition of the necessary LazyConstraint. Deploying both types
of cuts has proven to expedite algorithm runtime. This is especially true as the number of stations grows. At the
largest number of stations in this experiment, 100, the runtime gap is as wide as 5 minutes during the sensitivity
analysis.

In order to enhance this research, a thorough comprehension of the inner mechanisms of Docplex is required.
Beside user-defined cuts, the solver dynamically introduces various cuts to the model during the solving process.
A deeper insight into these processes enables us to strategically introduce additional cuts to tighten the formula-
tion to the integer convex hull, thereby accelerating the algorithm’s convergence. A critical takeaway from this
experience underscores the significance of diligently reviewing the documentation provided by the solver’s de-
veloper. Different versions may demand distinct implementation approaches, highlighting the need for careful
consideration and adaptation to specific solver specifications. Another enhancement that can be made is to apply
the NRTP-BS model against real e-scooter data to further validate the model.

54

References

[1] Mohammed Almannaa, Huthaifa Ashqar, Mohammed Elhenawy, MahmoudMasoud, and A. Rakotoni-
rainy. A Comparative Analysis of E-Scooter and E-Bike Usage Patterns: Findings from the City of Austin,
TX. 06 2020.

[2] Steve Annear. A new bike-share company, OFO, is rolling into cities
near Boston. https : / / www . bostonglobe . com / metro / 2017 / 09 /
27 / new-bike-share-company-ofo-rolling-into-cities-near-boston /
nRnVY7Tdz0PYc1gSFWtNhL, September 27 2017. Boston Globe. Retrieved December 3rd, 2023.

[3] David L. Applegate, Robert E. Bixby, Vasek Chvátal, andWilliam J. Cook. The Traveling Salesman Prob-
lem: A Computational Study. Princeton University Press, 2007.

[4] Gulay Barbarosoglu andDemetOzgur. ATabu SearchAlgorithm for the Vehicle Routing Problem. Com-
puters and Operations Research, 26(3):255–270, 1999.

[5] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997.

[6] Kris Braekers, Katrien Ramaekers, and Inneke Nieuwenhuyse. The Vehicle Routing Problem: State of
the Art Classification and Review. Computers and Industrial Engineering, 99, 12 2015.

[7] Teobaldo Bulhões, Anand Subramanian, Güneş Erdoğan, and Gilbert Laporte. The static bike relocation
problem with multiple vehicles and visits. European Journal of Operational Research, 264(2):508–523,
2018.

[8] Nick Carey and Paul Lienert. E-scooters Fall Head Over Wheels with Battery
Swapping. https : / / www . reuters . com / business / autos-transportation /
e-scooters-fall-head-over-wheels-battery-swapping-2022-03-24/, March 24 2022.
Retrieved December 3rd, 2023.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. MIT Press andMcGraw-Hill, second edition, 2001.

[10] Vladimir Deineko and Alexander Tiskin. One-sided monge TSP is NP-Hard. pages 793–801, 11 2006.

[11] Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Stefano Novellani. The bike sharing rebal-
ancing problem: Mathematical formulations and benchmark instances. European Journal of Operational
Research, 237(1):252–263, 2014.

[12] Paul DeMaio. Bike-sharing: History, impacts, models of provision, and future. Journal of Public Trans-
portation, 12(4):3, 2009.

55

https://www.bostonglobe.com/metro/2017/09/27/new-bike-share-company-ofo-rolling-into-cities-near-boston/nRnVY7Tdz0PYc1gSFWtNhL
https://www.bostonglobe.com/metro/2017/09/27/new-bike-share-company-ofo-rolling-into-cities-near-boston/nRnVY7Tdz0PYc1gSFWtNhL
https://www.bostonglobe.com/metro/2017/09/27/new-bike-share-company-ofo-rolling-into-cities-near-boston/nRnVY7Tdz0PYc1gSFWtNhL
https://www.reuters.com/business/autos-transportation/e-scooters-fall-head-over-wheels-battery-swapping-2022-03-24/
https://www.reuters.com/business/autos-transportation/e-scooters-fall-head-over-wheels-battery-swapping-2022-03-24/

[13] Ahmadreza Faghih-Imani, Naveen Eluru, AhmedM. El-Geneidy,Michael Rabbat, andUsamaHaq. How
land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Mon-
treal. Journal of Transport Geography, 41:306–314, 2014.

[14] Christian Fries. Mathematical Finance: Theory, Modeling, Implementation. Wiley, 2007.

[15] David Garrick. Dockless bike sharing arrives in San Diego on Thursday. https :
/ / www . sandiegouniontribune . com / business / growth-development /
sd-fi-bikeshare-20180215-story.html, February 15 2018. San Diego Union-Tribune. Re-
trieved December 3rd, 2023.

[16] Mauro Giacon. Padova. Monopattini, stop al parcheggio selvaggio: sanzione a chi li lascia dove non si
può. https://www.ilgazzettino.it/nordest/padova/monopattini_sharing_parcheggio_
selvaggio_multa_app-7321764.html, 2023. Retrieved November 19th, 2023.

[17] Nicholas I. M. Gould. An Introduction to Algorithms for Continuous Optimization. 2000.

[18] Adriana Heldiz. San Diego Explained: Why Dockless Bikes Are Everywhere,
year = 2018. https : / / www . voiceofsandiego . org / topics / news /
san-diego-explained-why-dockless-bikes-are-everywhere/, March 8. Voice of San
Diego. Retrieved December 3rd, 2023.

[19] Jason Holdsworth. The Nature of Breadth-First Search. Technical Report 99-1, James Cook University,
Australia, 02 1999.

[20] IBM. CPLEXLazyConstraintCallback Documentation. https://www.ibm.com/docs/en/icos/12.
10.0?topic=classes-cplexcallbackslazyconstraintcallback. Retrieved December 3rd, 2023.

[21] IBM. Cut Callback. https : / / www . ibm . com / docs / en / icos / 20 . 1 . 0 ? topic =
legacy-cut-callback. Retrieved December 3rd, 2023.

[22] IBM. docplex.mp.model Module. https : / / ibmdecisionoptimization . github . io /
docplex-doc/mp/docplex.mp.model.html. Retrieved December 3rd, 2023.

[23] IBM. Beyond Linear Programming - IBM Decision Optimization Tutorials. https : / /
ibmdecisionoptimization.github.io/tutorials/html/Beyond_Linear_Programming.html,
Retrieved December 3rd, 2023.

[24] IBM. IBM Decision Optimization CPLEX Modeling for Python Documentation. https://
ibmdecisionoptimization.github.io/docplex-doc/getting_started_python.html, Re-
trieved December 3rd, 2023.

[25] K. Kim. Investigation on the effects of weather and calendar events on bike-sharing according to the trip
patterns of bike rentals of stations. Journal of Transport Geography, 66:309–320, 2018.

[26] KnotCity. KnotCity - Docking is the new black. https://www.knotcity.com/en/, 2023. Retrieved
November 19th, 2023.

[27] Y. Li and Y. Zheng. Citywide Bike Usage Prediction in a Bike-Sharing System. IEEE Transactions on
Knowledge and Data Engineering, 32(6):1079–1091, 2019.

56

https://www.sandiegouniontribune.com/business/growth-development/sd-fi-bikeshare-20180215-story.html
https://www.sandiegouniontribune.com/business/growth-development/sd-fi-bikeshare-20180215-story.html
https://www.sandiegouniontribune.com/business/growth-development/sd-fi-bikeshare-20180215-story.html
https://www.ilgazzettino.it/nordest/padova/monopattini_sharing_parcheggio_selvaggio_multa_app-7321764.html
https://www.ilgazzettino.it/nordest/padova/monopattini_sharing_parcheggio_selvaggio_multa_app-7321764.html
https://www.voiceofsandiego.org/topics/news/san-diego-explained-why-dockless-bikes-are-everywhere/
https://www.voiceofsandiego.org/topics/news/san-diego-explained-why-dockless-bikes-are-everywhere/
https://www.ibm.com/docs/en/icos/12.10.0?topic=classes-cplexcallbackslazyconstraintcallback
https://www.ibm.com/docs/en/icos/12.10.0?topic=classes-cplexcallbackslazyconstraintcallback
https://www.ibm.com/docs/en/icos/20.1.0?topic=legacy-cut-callback
https://www.ibm.com/docs/en/icos/20.1.0?topic=legacy-cut-callback
https://ibmdecisionoptimization.github.io/docplex-doc/mp/docplex.mp.model.html
https://ibmdecisionoptimization.github.io/docplex-doc/mp/docplex.mp.model.html
https://ibmdecisionoptimization.github.io/tutorials/html/Beyond_Linear_Programming.html
https://ibmdecisionoptimization.github.io/tutorials/html/Beyond_Linear_Programming.html
https://ibmdecisionoptimization.github.io/docplex-doc/getting_started_python.html
https://ibmdecisionoptimization.github.io/docplex-doc/getting_started_python.html
https://www.knotcity.com/en/

[28] Li, Yexin and Zheng, Yu and Yang, Qiang. Dynamic bike reposition: A spatio-temporal reinforcement
learning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery&DataMining, KDD ’18, page 1724–1733, New York, NY, USA, 2018. Association for Com-
putingMachinery.

[29] TomMagnanti and Jim Orlin. Applied Mathematical Programming. https://web.mit.edu/15.053/
www/AppliedMathematicalProgramming.pdf. Retrieved December 3rd, 2023.

[30] Microsoft. Define and solve a problem by using Solver. https://support.microsoft.com/en-us/
office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040.
Retrieved December 3rd, 2023.

[31] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell. Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization,
19:79–102, 2016.

[32] United Nations. Resolution adopted by the General Assembly on 25 September 2015. United Nations
General Assembly, 2015. A/RES/70/1.

[33] Jesus Osorio, Chao Lei, and Yanfeng Ouyang. Optimal rebalancing and on-board charging of shared elec-
tric scooters. Transportation Research Part B: Methodological, 147:197–219, 2021.

[34] M. W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAMReview, 33:60–100, 1991.

[35] A. Burak Paç. Row generation techniques for approximate solution of linear programming problems.
2010.

[36] Julius Pfrommer, JosephWarrington, Georg Schildbach, andManfredMorari. Dynamic Vehicle Redistri-
bution and Online Price Incentives in Shared Mobility Systems. IEEE Transactions on Intelligent Trans-
portation Systems, 15(4):1567–1578, August 2014.

[37] Thomas Pogiatzis. Application of mixed-integer programming in chemical engineering. PhD thesis, 2013.

[38] R. Radharamanan and L.I. Choi. A branch and bound algorithm for the travelling salesman and the
transportation routing problems. Computers and Industrial Engineering, 11(1):236–240, 1986.

[39] Leif Reigstad. The Rise and Fall of Dockless Bike-Sharing in Dallas. https://www.texasmonthly.
com/news-politics/rise-fall-dockless-bike-sharing-dallas/, 2018. Retrieved December
3rd, 2023.

[40] Ridemovi. Wishing You an Electric 2022. https : / / www . ridemovi . com /
whishing-you-an-electric-2022/. Retrieved December 3rd, 2023.

[41] Alexander Schrijver. Theory of Linear and Integer Programming. JohnWiley and Sons, 1998.

[42] Susan Shaheen et al. Bikesharing in Europe, theAmericas, andAsia: Past, Present, and Future. Transporta-
tion Research Record, 2143(1):159–167, 2010.

57

https://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf
https://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf
https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040
https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040
https://www.texasmonthly.com/news-politics/rise-fall-dockless-bike-sharing-dallas/
https://www.texasmonthly.com/news-politics/rise-fall-dockless-bike-sharing-dallas/
https://www.ridemovi.com/whishing-you-an-electric-2022/
https://www.ridemovi.com/whishing-you-an-electric-2022/

[43] Chih-Kang Lin Shangyao Yan and Zong-Qi Kuo. Optimally locating electric scooter battery swapping
stations and battery deployment. Engineering Optimization, 53(5):754–769, 2021.

[44] Andrew Small. What Doomed Seattle’s Pronto Bike-Share Program. https://www.bloomberg.com/
news/articles/2017-01-31/what-doomed-seattle-s-pronto-bike-share-program, January
31 2017. Retrieved December 3rd, 2023.

[45] Robert Tarjan. Depth-first search and linear graph algorithms. In 12th Annual Symposium on Switching
and Automata Theory (swat 1971), number 12, pages 114–121, 1971.

[46] Qiang Wei. China’s bike-sharing industry braces for explosive growth. http://en.people.cn/n3/
2017/0305/c90000-9186008.html, 2017. Retrieved December 3rd, 2023.

[47] Z. Yang, J. Hu, Y. Shu, P. Cheng, J. Chen, and T. Moscibroda. Mobility Modeling and Prediction in
Bike-Sharing Systems. In Proceedings of the 14th Annual International Conference onMobile Systems, Ap-
plications, and Services, MobiSys ’16, pages 165–178, 2016.

[48] Resty Woro Yuniar. Are China’s bike-sharing services oversharing? https://www.scmp.com/
week-asia/business/article/2113028/are-chinas-bike-sharing-services-oversharing.
Retrieved December 3rd, 2023.

[49] Marco Zanetti. OptimizationModels for Bike Sharing Systems. Master’s thesis, Padova University, 2015.

[50] Jiawei Zhang. Gradient Descent based Optimization Algorithms for Deep Learning Models Training.
IFM Lab Tutorial Series, 1, 2019.

[51] Yaoming Zhou, Zeyu Lin, Rui Guan, and Jiuh-Biing Sheu. Dynamic battery swapping and rebalancing
strategies for e-bike sharing systems. TransportationResearch Part C: Emerging Technologies, 111:328–347,
2020.

[52] Yaoming Zhou, Zeyu Lin, Rui Guan, and Jiuh-Biing Sheu. Dynamic battery swapping and rebalancing
strategies for e-bike sharing systems. Transportation Research Part B: Methodological, 177:102820, 2023.

58

https://www.bloomberg.com/news/articles/2017-01-31/what-doomed-seattle-s-pronto-bike-share-program
https://www.bloomberg.com/news/articles/2017-01-31/what-doomed-seattle-s-pronto-bike-share-program
http://en.people.cn/n3/2017/0305/c90000-9186008.html
http://en.people.cn/n3/2017/0305/c90000-9186008.html
https://www.scmp.com/week-asia/business/article/2113028/are-chinas-bike-sharing-services-oversharing
https://www.scmp.com/week-asia/business/article/2113028/are-chinas-bike-sharing-services-oversharing

Acknowledgments

Iwould like to expressmydeepest gratitude tomy supervisor, Prof. LuigiDeGiovanni, for his continuous support,
guidance, and patience throughout my thesis journey.

Heartfelt appreciation goes to my family, the KDaheng Team, and the Spenard Family, whose unwavering
support and boundless love have made me feel that I am never alone in this journey. It’s truly a privilege to have a
well-rounded, unconditional support.

To all my friends around the world—Padova, Luxembourg, Indonesia, everywhere—thank you for always
believing in me, so it was not hard to convince myself that I could finish school while working at the same time.
I acknowledge this is borderline impossible. I would only recommend this to everyone with a brave soul and a
strong desire to always keep learning.

To Italy, thank you for giving me a chance and welcoming me with an open arm. Thank you to the Ministry
of Foreign Affairs (MAECI) for the scholarship which enable me to go to this prestigious school and contribute
my thoughts on this great topic.

At this moment, I extend my gratitude to everyone who has contributed to my growth. Each of you holds a
unique place in my heart, and I am humbled by the connections we share. Thank you.

For God, the Nations, and our beloved almamater.

59

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Content and Contributions

	Literature Review and Problem Definition
	The Evolution: Bike Sharing Systems to E-Scooter Sharing Systems
	Success and Scale Bring Broad Responsibility: Addressing over-saturation and under-utilization challenges as the e-scooter sharing system grows
	Research Gap, Goals, and Problem Definition

	Methodological and Implementation Tools
	Mathematical Programming
	Travelling Salesman and Vehicle Routing Problem
	Branch and Bound
	Optimization Techniques in Linear Programming
	Row Generation Method
	Cutting Plane and Valid Inequalities
	Integrating Row generation and Cutting plane procedures
	Separation Procedures
	Branch-and-cut

	Mathematical Programming Implementation in Docplex

	Mathematical Formulation for the Rebalancing Tour Problem
	Simple Night Tour Model
	An Illustrative Example of Simple Night Tour Model
	Night Rebalancing Tour Problem with Battery Swaps (NRTP-BS)
	An Illustrative Example of Battery Swap Model

	Models Implementation in Docplex
	Implementation of the Simple Night Tour Model
	Implementation of NRTP-BS

	Computational Experiments
	Instance benchmark
	Results on the Simple Night Tour Experiment
	Results on NRTP-BS Experiment

	Conclusions
	References
	Acknowledgments

