
University of Padua
Department of Information Engineering

Master Degree in
Computer Engineering

Design and Development of an Ontology
for Amyotrophic Lateral Sclerosis

Supervisor: Master Candidate:
Prof. Nicola Ferro Nicola Marchetti

1219363

Discussant:
Prof. Gianmaria Silvello

Academic Year 2021/2022
April 4, 2022

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a degenerative disease that
affects the nervous system, causing a progressive deterioration in the
quality of life of affected patients. The European project Brainteaser
leverages the value of Big Data, including health, lifestyle and en-
vironmental data, and Artificial Intelligence tools in order to de-
liver algorithms capable of predicting the progression of such disease.
Since Brainteaser adopts an open-science approach and considering
the trend in this field to use ontologies, i.e. models of formal rep-
resentation of knowledge, the need to develop an ontology for Amy-
otrophic Lateral Sclerosis emerged. Based on this need, in this thesis
we will present the design and development of an ontology to model
clinical data for Amyotrophic Lateral Sclerosis. In addition, we will
also present the development of a Data Mapper: a software that aims
to map clinical data on Amyotrophic Lateral Sclerosis in an RDF
(Resource Description Framework) dataset according to the ontology
developed.

ii

Sommario

La Sclerosi Laterale Amiotrofica (SLA) è una malattia degenerativa
che colpisce il sistema nervoso, causando un deterioramento progres-
sivo della qualità della vita dei pazienti colpiti. Il progetto europeo
Brainteaser sfrutta il valore dei Big Data, compresi quelli relativi alla
salute, alle abitudini di vita e all’ambiente, e gli strumenti dell’Intel-
ligenza Artificiale al fine di fornire algoritmi in grado di prevedere la
progressione di questa malattia. Dal momento che Brainteaser adotta
un approccio open-science e considerata la tendenza in questo ambito
di utilizzare le ontologie, ovvero modelli di rappresentazione formale
della conoscenza, è emerso il bisogno di sviluppare un’ontologia per la
Sclerosi Laterale Amiotrofica. Sulla base di questa necessità, in questa
tesi presenteremo la progettazione e lo sviluppo di un’ontologia che si
occupa di modellare i dati clinici della Sclerosi Laterale Amiotrofica.
Inoltre, presenteremo anche lo sviluppo di un Data Mapper: un soft-
ware che ha lo scopo di mappare i dati clinici sulla Sclerosi Laterale
Amiotrofica in un dataset RDF (Resource Description Framework) in
accordo all’ontologia sviluppata.

iv

Contents

List of Figures viii

List of Tables ix

List of Code Snippets xi

List of Acronyms xiii

1 Introduction 1
1.1 The Brainteaser project . 1
1.2 The Brainteaser Ontology . 2
1.3 Scope and organization of the thesis 4

2 State of the Art 7
2.1 The Semantic Web and Linked Data 7
2.2 RDF . 10
2.3 Ontologies and OWL . 13
2.4 SPARQL . 14
2.5 Protégé . 15
2.6 GraphDB . 17

3 Requirements analysis 21

4 Design of an Ontology for Amyotrophic Lateral Sclerosis 23
4.1 Overall design principles . 23

4.1.1 Semantic areas . 24
4.1.2 External ontologies used in the Brainteaser Ontology . . . 26
4.1.3 Brainteaser classes and properties 28
4.1.4 Named Individuals . 30

4.2 Area-by-Area . 30

v

vi CONTENTS

4.2.1 Patient . 31
4.2.2 Genetic Data . 33
4.2.3 Behaviour . 34
4.2.4 Events . 36
4.2.5 Contingencies . 37
4.2.6 Intervention and Procedure 40

4.2.6.1 Therapeutic Procedure 40
4.2.6.2 Diagnostic Procedure 42
4.2.6.3 Surgical Procedure 45

4.2.7 Anatomical Structure . 47
4.2.8 Symptoms . 47

5 Ontology and Data Mapper Development 49
5.1 Ontology Development . 49
5.2 ALS Data Mapper Development 55

5.2.1 Data Mapper overview . 55
5.2.2 Input data . 57
5.2.3 Pre-processing operations 58
5.2.4 Mapping phase . 61
5.2.5 Output files . 66
5.2.6 Data mapping example . 67
5.2.7 CSV export . 72

6 Dataset statistics 75
6.1 Turin dataset . 75
6.2 Lisbon dataset . 79
6.3 Merged dataset . 82

7 Conclusions and Future Work 85

List of Figures

1.1 The Brainteaser Ontology and its role in the overall Brainteaser
architecture. 3

1.2 The Brainteaser Ontology and the overall data flow. 5

2.1 A May 2021 snapshot of the Linked Open Data Cloud from https:
//lod-cloud.net. The cloud began in 2007 with only 12 datasets
and, in this version, has reached 1301 datasets within it. 9

2.2 An example of RDF graph from https://www.w3.org/TR/rdf11-primer/. 11
2.3 A snapshot of Protégé “Active Ontology” tab. This tab shows the

information and metrics of the ontology and also lists the ontolo-
gies imported from outside, in this case the FOAF ontology. . . . 16

2.4 A snapshot of Protégé “Entities” tab. In the class hierarchy on
the left side, the class “Acute Myocardial Infarction” is selected.
The right side shows information about the selected class. 17

2.5 A snapshot of the GraphDB “SPARQL” tab. 18
2.6 A snapshot of the “Visual graph” tool of the GraphDB “Explore”

tab. 19

4.1 The Brainteaser Ontology. 25
4.2 Patient semantic area, including the classes Patient, Person, Rela-

tive, Place, Clinical Trial, Clinical Trial Participation, and Disease
or Disorder. 34

4.3 Semantic area containing the information about a patient’s gene
and their mutations. 35

4.4 Behaviour and Lifestyle semantic area, including the subclasses
Smoking, Physical Activity and Lifestyle. 36

4.5 Events semantic area, including the class Event and its subclasses:
Protocol Event, Diagnosis, Before Onset and Onset. 38

vii

viii LIST OF FIGURES

4.6 Contingencies semantic area composed of classes Trauma and Co-
morbidity. 39

4.7 Therapeutic Procedure semantic area, sub-area of the Intervention
or Procedure area. 41

4.8 Part 1 of the Diagnostic Procedure semantic area, a sub-area of the
Intervention or Procedure area. This figure reports the subclasses
Pulmonary Function Test and Blood Test. 42

4.9 Part 2 of the Diagnostic Procedure semantic area, a sub-area of the
Intervention or Procedure area. This figure reports the subclasses
Questionnaire and clinical assessment. 43

4.10 Part 3 of the Diagnostic Procedure semantic area, a sub-area of the
Intervention or Procedure area. This figure reports the subclass
Diagnostic Imaging. 46

4.11 Surgical Procedure semantic area, sub-area of the Intervention or
Procedure area. 47

4.12 Anatomical Structure semantic area. 48
4.13 Symptoms semantic area. 48

5.1 The Brainteaser Ontology inside the Protégé “Active Ontology” tab. 50
5.2 The BO classes inside the Protégé “Entities” tab. 51
5.3 The BO object properties inside the Protégé “Entities” tab. . . . 52
5.4 The BO data properties inside the Protégé “Entities” tab. 53
5.5 The BO annotation properties inside the Protégé “Entities” tab. . 53
5.6 The BO named individuals inside the Protégé “Entities” tab. . . . 54
5.7 A snapshot of the Brainteaser Ontology in the Turtle format. . . . 55
5.8 Data Mapper architecture. 57
5.9 An example row from the “static vars” sheet of the Turin dataset. 68
5.10 An example row from the “ALSFRS” sheet of the Turin dataset. . 68
5.11 An example row from the “%FVC” sheet of the Turin dataset. . . 68
5.12 Example of RDF graph about patient static vars. 69
5.13 Example of RDF graph about patient visits. 69

List of Tables

4.1 External ontologies exploited by Brainteaser. 29

6.1 Statistics on input datasets. 76
6.2 Statistics on merged RDF datasets. 83

ix

x

List of Code Snippets

5.1 An example of use of the pandas read_excel function 58
5.2 Developed function to get the final list of IDs that need to be

mapped. 60
5.3 Initialize RDF graph function . 61
5.4 Generate URI function for the Brainteaser resources 63
5.5 An example of a mapping function 66
5.6 Function that performs the serialization of an RDF graph. 67
5.7 Serialization in Turtle format of the example RDF graph. 70
5.8 An example of a SPARQL query to get visits from the RDF dataset

of Brainteaser resources. 73

xi

xii

List of Acronyms

ALS Amyotrophic Lateral Sclerosis.

BO Brainteaser Ontology.

CSV Comma Separated Values.

EOSC European Open Science Cloud.

HTTP HyperText Transfer Protocol.

IRI International Resource Identifier.

JSON JavaScript Object Notation.

LOD Linked Open Data.

OWL Web Ontology Language.

RDF Resource Description Framework.

RDFS Resource Description Framework Schema.

TSV Tab Separated Values.

URI Uniform Resource Identifier.

W3C World Wide Web Consortium.

XML Extensible Markup Language.

XSD XML Schema Definition.

xiii

xiv

Chapter 1

Introduction

1.1 The Brainteaser project
Brainteaser is a data science project that seeks to exploit the value of Big Data,
including those related to health, lifestyle habits, and environment, to support
patients with Amyotrophic Lateral Sclerosis and Multiple Sclerosis, their family
and clinicians1. Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS)
are two chronic diseases characterized by a progressive or alternating impairment
of neurological functions (motor, sensory, visual, cognitive). The common feature
is that both these chronic diseases affect the nervous system and progressively
modify the quality of life of patients and their families in a significant way. The
Brainteaser project will integrate large clinical datasets about ALS and MS with
new personal and environmental data collected using low-cost sensors and appli-
cations. The collected data will allow the development of Artificial Intelligence
(AI) tools able to address the current needs of precision medicine, enabling early
risk prediction of disease fast progression and adverse events. The main objectives
of Brainteaser can be summarized as follows:

• Help promote predictive health care approaches and support clinicians, so
patients with ALS and MS live healthier, more fulfilling lives;

• Leverage Artificial Intelligence to enhance clinical care and help design per-
sonalized health and care pathways;

• Adopt an open science paradigm that makes the results of scientific research
accessible to all levels of society, at the same time respecting the privacy
and ownership of patient data.

1https://brainteaser.health

1

https://brainteaser.health

2 Chapter 1. Introduction

Since the Brainteaser project adopts an open-science approach, it requires, among
other things, the development of an ontology to represent all its knowledge in a
standardized way. But what precisely is an ontology?
An ontology is a formal description of knowledge as a set of concepts within a
domain and the relationships that hold between them2. Since in literature and
in reality there are no ontologies that model in a unified way both diseases, ALS
and MS, the request of the Brainteaser project is precisely to design and develop
a new ontology, called Brainteaser Ontology (see Section 1.2), which meets this
requirement.

1.2 The Brainteaser Ontology
The Brainteaser Ontology (BO) has the purpose to jointly model both Amy-
otrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS) data. Specifically,
the BO will serve multiple purposes:

• to provide a unified and comprehensive conceptual view of ALS and MS,
which are typically treated separately, allowing us to coherently integrate
data coming from the different medical partners in the project;

• to seamlessly represent both retrospective and prospective data, produced
during the lifetime of Brainteaser;

• to enable sharing and reuse of Brainteaser datasets according to Open Sci-
ence and FAIR principles.

BO is an innovative ontology based on a few basic concepts: Patient, Clinical
Trial, Disease and Event. These concepts allow us to jointly model ALS and MS
and capture the temporal dimension involved in the progression of these diseases.
Indeed, the core idea is that a Patient participates in a Clinical Trial, suffers
from some Disease, and experiences Events. These Events are different in nature
and cover a wide range of cases, such as onset, symptom, trauma, diagnostic
procedure (such as evoked potentials or ALSFRS-R tests), therapeutic procedure
(such as mechanical ventilation for ALS or disease-modifying therapy for MS),
relapse, and more. Overall, this event-based approach allows us to model ALS
and MS in a unified way, sharing concepts between these two diseases, and to
track what happens during their progression.

2https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/

https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/

1.2 The Brainteaser Ontology 3

The BO plays an important role in the overall architecture of Brainteaser, shown
in Figure 1.1. In detail, it will inform the implementation of the Brainteaser
Semantic Data Cloud, since the data contained here will be represented according
to the BO, i.e., it will be an instance of the BO. As can be seen in the Figure 1.1,
all data will be anonymized before being represented in the BO. This holds for
both the retrospective data, i.e., data already held by the clinical partners (on
the right side of the figure), and the prospective data, i.e., new data that will be
collected during the life of the project (on the left side). The data contained in
the Brainteaser Semantic Data Cloud, will also be exported in a suitable format
(e.g. CSV) and will then be used to train the AI models needed to predict the
progression of ALS and MS. Finally, a subset of the data in the Brainteaser
Semantic Data Cloud will be exported to the European Open Science Cloud
(EOSC) and will also be shared and exploited for Open Evaluation Challenges.

Figure 1.1: The Brainteaser Ontology and its role in the overall Brainteaser architecture.

The Figure 1.2 shows an overview of the entire data flow associated with the BO
and the Brainteaser Semantic Data Cloud, also in relation to the Open Evaluation
Challenges, the EOSC, and the Linked Open Data Cloud. From this image it

4 Chapter 1. Introduction

can be seen that the Brainteaser Ontology will model the following data sources:

• “Raw” anonymized data: these correspond to the retrospective and prospec-
tive data anticipated above and is divided as follows:

– Clinical data;

– Sensor/App data;

• Generated data: once trained on the above data, the AI models can be
serialized and become part of the modeled data.

– Serialized AI models;

• Evaluation Challenges data: these are based on three types of data that
become part of the modeled data:

– Evaluation Corpora: these are the training/validation/test sets that
are obtained by selecting an appropriate subset of the “raw” data;

– AI models outputs: these are the results produced by the participating
systems;

– Performance scores and statistical analyses: the results produced by
participants will be scored and then statistical analyses will be com-
puted to assess them.

To conclude, the BO will also allow all this data to be linked with the resources
already available in the Linked Open Data Cloud.

1.3 Scope and organization of the thesis

The purpose of this thesis is to design and develop the part of the Brainteaser
Ontology that deals with the management of Amyotrophic Lateral Sclerosis (ALS)
retrospective data. Subsequent to this, the other goal is to develop an ALS Data
Mapper that allows the mapping of “raw” retrospective data, coming from the
ALS partner clinics, into a structured RDF (Resource Description Framework)
graph that is compliant with the Brainteaser Ontology. In the following chapters
we will present the various steps that were required to achieve the two established
goals, in detail:

1.3 Scope and organization of the thesis 5

Figure 1.2: The Brainteaser Ontology and the overall data flow.

Chapter 2: State of the Art. In this chapter we present an introduction on Se-
mantic Web and Linked Data and a background on its technologies, namely
RDF, OWL, SPARQL. In addition, we briefly introduced the Protégé and
GraphDB software, which are respectively two useful tools for ontology de-
velopment and RDF dataset management. The combination of these tools
formed the basis for the development of the BO and the respective ALS
Data Mapper.

Chapter 3: Requirements analysis. This chapter briefly summarizes the ontology
design approach adopted, which is based on the involvement of domain
experts and partners in order to initially obtain requirements, and then to
validate the design choices and definitions in the BO.

Chapter 4: Design of an Ontology for Amyotrophic Lateral Sclerosis. In this
chapter we initially present the design principles of the BO and the external
ontologies that have been imported inside it. After this, we described in
detail the various areas that compose the BO, and the classes and properties
contained in each of these.

Chapter 5 : Ontology and Data Mapper development. This chapter covers the
development of the BO using the Protégé software and also describes the

6 Chapter 1. Introduction

development of the ALS Data Mapper that aims to ingest the retrospective
data received from the ALS clinical partners.

Chapter 6: Datasets statistics. In this chapter we briefly introduce statistics
regarding the retrospective input datasets provided to us by the clinical
partners. In addition to these, we will also present statistics on the RDF
dataset obtained by running the ALS Data Mapper.

Chapter 7: Conclusions and Future Work. This chapter presents the overall
conclusions of the thesis and the results achieved.

It is important to note that the details about the part of the BO focused on the
management of Multiple Sclerosis (MS) retrospective data will never be covered
in subsequent chapters.

Chapter 2

State of the Art

2.1 The Semantic Web and Linked Data

The Semantic Web is an evolution of the World Wide Web and is based on the
standards established by the World Wide Web Consortium (W3C) [Berners-Lee
et al., 2001, Heath and Bizer, 2011]. While the traditional Web is focused on
multiple documents connected by links that have no semantic value, the goal of
the Semantic Web is to create a Web of Data by attributing semantic value to
both the data and the links that connect them, and to make these data and links
machine-readable.
In 2006, during a conference on the Semantic Web, Tim Berners-Lee coined the
term Linked Data to indicate a standard for publishing structured data using
vocabularies that can be linked and interpreted by machines1. Berners-Lee de-
scribed Linked Data as “the Semantic Web done right”2 and further added “while
the Semantic Web is the goal or the end of this process, Linked Data provides
the means to achieve that goal” [Bizer et al., 2009].
Linked Data is based on a set of rules3, known as the Linked Data Principles, for
publishing data on the Web in a way that all published data becomes part of a
single global data space:

1. Use URIs as names for things;

2. Use HTTP URIs so that people can look up those names;

1https://data.europa.eu/en/news/origin-linked-data
2https://www.w3.org/2008/Talks/0617-lod-tbl/
3https://www.w3.org/DesignIssues/LinkedData.html

7

https://data.europa.eu/en/news/origin-linked-data
https://www.w3.org/2008/Talks/0617-lod-tbl/
https://www.w3.org/DesignIssues/LinkedData.html

8 Chapter 2. State of the Art

3. When someone looks up a URI, provide useful information, using the stan-
dards (RDF, SPARQL);

4. Include links to other URIs, so that they can discover more things [Bizer
et al., 2009,Heath and Bizer, 2011].

The Uniform Resource Identifiers (URIs) and HyperText Transfer Protocol (HTTP)
are two fundamental technologies for Linked Data. While URIs provide a means
to identify any entity that exists in the world, the HTTP protocol provides a
universal mechanism to retrieve resources and information about them. URI and
HTTP are integrated by the Resource Description Framework (RDF) which is a
fundamental technology for the Web of Data. RDF provides a graph-based data
model with which to represent, describe, and link together data representing en-
tities that exist in the world (Section 2.2).
Using URIs, the HTTP protocol, and the RDF data model, Linked Data builds
directly on the general architecture of the Web. The Web of Data can therefore be
seen as an extension of the traditional Web and has many of the same properties:

• The Web of Data can contain any type of data;

• Anyone can publish data on the Web of Data;

• Entities are connected by RDF links, creating a global data graph that
enables the discovery of new data sources [Bizer et al., 2009].

An example of the application of Linked Data Principles was the Linked Open
Data (LOD) project, founded in January 2007 and supported by the W3C. The
LOD is simply a cloud that hosts a collection of datasets, published following the
Linked Data Principles.
The initial goal of the project was to launch the Web of Data by identifying
the first datasets available under open licenses, converting them to RDF, and
publishing them on the Web. Since its beginning, thanks to its open nature, the
project has grown significantly to involve large organizations in publishing their
datasets and linking them to existing datasets. The nature of the content in the
cloud is different, in fact the datasets hosted within it include for example data
about people, organizations, places, books, movies, music, drugs, reviews and so
on.
The size of the LOD project is presented in Figure 2.1, where each node in the
figure corresponds to a distinct dataset published as Linked Data. An example of

2.1 The Semantic Web and Linked Data 9

an open RDF dataset contained in the cloud is DBpedia, which is a set of RDF
triples extracted from Wikipedia info-boxes [Auer et al., 2007]. As can be seen,
DBpedia sits at the center of the cloud and, due to the fact that it provides URIs
and RDF descriptions for many common entities, it acts as a hub to which other
datasets are linked.
The LOD, in about 14 years, has recorded a remarkable growth, in fact in 2007
it hosted only 12 datasets while in the version of May 2021 has reached 1301
databases with 16283 links within it4. The growth of LOD is the real evidence
that the development of the Web of Data is actually taking place.

Figure 2.1: A May 2021 snapshot of the Linked Open Data Cloud from https://lod-cloud.net.
The cloud began in 2007 with only 12 datasets and, in this version, has reached 1301
datasets within it.

4https://lod-cloud.net/

https://lod-cloud.net
https://lod-cloud.net/

10 Chapter 2. State of the Art

2.2 RDF
The Resource Description Framework (RDF) is a W3C standard model for rep-
resenting information about resources on the Web. In recent years, RDF has
become the de-facto standard for publishing and interlinking data on the Web.
RDF allows us to make statements about resources5. The format of a statement
has the following structure:

<subject> <predicate> <object>

The subject and object represent the two resources that are in a relationship,
while the predicate represents the nature of their relationship. The relationship
goes from the subject to the object and is called, according to RDF, a property.
Due to the fact that RDF statements are composed of three elements they are
called triples. The combination of triples generates a directed graph, called RDF
graph or RDF datasets, where the subjects and objects of the triples correspond
to the nodes of the graph, while the predicates form the arcs. Figure 2.2 shows
an example of RDF graph that is derived from the following example triples5:

<Bob> <is a> <person>.
<Bob> <is a friend of> <Alice>.
<Bob> <is born on> <the 4th of July 1990>.
<Bob> <is interested in> <the Mona Lisa>.
<the Mona Lisa> <was created by> <Leonardo da Vinci>.
<the video 'La Joconde a Washington'> <is about> <the Mona Lisa>

In RDF, a resource is represented through an International Resource Identifier
(IRI), a literal value, or an blank node. An IRI identifies a resource, it can ap-
pear in all three positions of a triple, and, from a technical point of view, is a
generalization of the URI that can also contain non-ASCII characters in the IRI
character string. A literal is a string representation of a certain value which can
be associated with a datatype or a language tag. Literals may only appear in the
object position of a triple and the default value is string. Blank nodes, on the
other hand, can be used to denote resources without explicitly naming them with
an IRI and can appear in the subject and object position of a triple.
The RDF data model is typically used in combination with vocabularies, which
are collections of classes and properties that attribute semantic information to
resources. RDF provides an RDF data modeling vocabulary, called RDF Schema

5https://www.w3.org/TR/rdf11-primer/

https://www.w3.org/TR/rdf11-primer/

2.2 RDF 11

Figure 2.2: An example of RDF graph from https://www.w3.org/TR/rdf11-primer/.

(RDFS), which is a set of mechanisms for defining the semantic characteristics of
RDF data. RDF Schema uses the notion of class to specify the categories that
can be used to classify resources and the type property to declare the relationship
between an instance and its class. With RDF Schema, one can also create hierar-
chies of classes/subclasses and properties/subproperties through the subClassOf
and subPropertyOf properties. While type restrictions on subjects and objects
of particular triples can be defined through the domain and range restrictions
properties.
For even more comprehensive semantic modeling of RDF data, RDF Schema is
many times supported by the use of the OWL vocabulary (Section 2.3), while the
standard query language SPARQL (Section 2.4) is used to retrieve information
within RDF graphs.
Furthermore, RDF recommends the use of the XSD (XML Schema Definition),
which specifies how to formally describe elements in an XML document, and pro-
vides a set of 19 primitive data types (boolean, string, double, float, date, gYear,
etc.) useful for declaring datatypes associated with literals.
To be published on the Web, an RDF graph must first be serialized using one or
more RDF serialization formats. Below we present the most common serialization
formats and for each of them we give a small example, based on a small part of
the Figure 2.2. Specifically, in the examples we describe that Bob is a person and
knows Alice. To do this we use the RDF vocabulary FOAF (Friend of a Friend)

https://www.w3.org/TR/rdf11-primer/

12 Chapter 2. State of the Art

which is used to describe persons and the relationships between them. So, the
most common RDF serialization formats are:

• Turtle: a plain text and compact serialization format:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/bob#me> a foaf:Person ;
foaf:knows <http://example.org/alice#me> .

• JSON-LD: a JSON-based serialization format:

[
{

"@id": "http://example.org/bob#me",
"@type": [

"http://xmlns.com/foaf/0.1/Person"
],
"http://xmlns.com/foaf/0.1/knows": [

{
"@id": "http://example.org/alice#me"

}
]

}
]

• RDFa: a serialization format that embeds RDF triples in
HTML documents:

<div xmlns="http://www.w3.org/1999/xhtml"
prefix="

foaf: http://xmlns.com/foaf/0.1/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#"

>
<div typeof="foaf:Person" about="http://example.org/bob#me">

<div rel="foaf:knows" resource="http://example.org/alice#me">
</div>

2.3 Ontologies and OWL 13

</div>
</div>

• RDF/XML: an XML-based syntax for serializing RDF graphs:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>
<rdf:Description rdf:about="http://example.org/bob#me">

<foaf:knows rdf:resource="http://example.org/alice#me"/>
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

</rdf:Description>
</rdf:RDF>

2.3 Ontologies and OWL
An ontology is a set of precise descriptive statements about a part of the world,
usually referred to as the domain of interest or the object of the ontology6. It
includes machine-interpretable definitions of the basic concepts in the domain
and the relations among them. Some of the reasons why ontologies are developed
are:

• To share common understanding of the structure of information among
people or software agents;

• To enable reuse of domain knowledge;

• To make domain assumptions explicit;

• To separate domain knowledge from the operational knowledge;

• To analyze domain knowledge [Noy and Mcguinness, 2001].

The Web Ontology Language (OWL) is a language for expressing ontologies. The
current version of OWL, called OWL 2, was developed by the W3C and published
in a first version in 2009 and refined with a second version in 2012. OWL 2 is

6https://www.w3.org/TR/owl2-primer/

https://www.w3.org/TR/owl2-primer/

14 Chapter 2. State of the Art

therefore an extension and revision of the original version of OWL that was pub-
lished in 2004 by the W3C.
OWL 2 is a Semantic Web language designed to represent rich and complex
knowledge about things, groups of things, and relations between things. It is a
computational logic-based language such that knowledge expressed in OWL can
be reasoned with by computer programs either to verify the consistency of that
knowledge or to make implicit knowledge explicit7. OWL documents, known as
ontologies, can be published in the World Wide Web, and may refer to or to be
referred from other OWL ontologies6. In OWL 2, the statements that are made in
an ontology are called axioms. The objects are denoted as individuals, categories
as classes, and relationships as properties. Properties are further subdivided: ob-
ject properties relate objects to objects (like a person to their spouse), datatype
properties assign data values to objects (like an age to a person), while annota-
tion properties are used to encode information about the ontology (like the author
and creation date of an axiom). OWL extends the expressivity of RDFS with
additional modeling primitives. For example, OWL defines the equivalentClass
and equivalentProperty primitives, which provide powerful mechanisms for defin-
ing mappings between terms from different vocabularies, which, in turn, increase
the interoperability of datasets modeled using different vocabularies. Another
example of an OWL primitive that is very useful in the context of Web of Data
is inverseOf, which allows one to declare that one property is the inverse of an-
other, and thus strengthen the semantic value of statments [Heath and Bizer,
2011]. OWL, along with RDF and SPARQL, is part of the W3C’s Semantic Web
technology stack.

2.4 SPARQL

SPARQL is an RDF query language that is able to retrieve and manipulate data
stored in the RDF format. In 2004, the RDF Data Access Working Group, a
W3C group, released a first public working draft of the SPARQL query language.
In January 2008, SPARQL became an official W3C recommendation and one of
the key technologies of the Semantic Web. The most recent version, SPARQL
1.1, was released in 20138. Since RDF Databases are directed labeled graphs,
SPARQL is essentially a graph-matching query language. SPARQL queries are

7https://www.w3.org/OWL/
8https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/OWL/
https://www.w3.org/TR/rdf-sparql-query/

2.5 Protégé 15

composed of three parts:

1. Pattern matching: includes features of pattern matching for graphs, such
as patterns, optional parts, union of patterns, nesting, filtering values of
possible matchings, and the possibility of choosing the data source to be
matched by a pattern;

2. Solution modifiers: once the output of the pattern has been computed, allow
to modify these values by applying operators such as projection, distinct,
order, and limit;

3. Output types: a SPARQL query can return boolean values, selections of
values of the variables which match the patterns, construction of new RDF
graphs built from the matching values, and description of resources [Pérez
et al., 2009].

The result set of a SPARQL query can be serialized using one of four common
formats recognized by SPARQL, namely Extensible Markup Language (XML),
JavaScript Object Notation (JSON), Comma Separated Values (CSV), and Tab
Separated Values (TSV)9.

2.5 Protégé
Protégé is a free, open source ontology editor with full support for the OWL 2
Web Ontology Language. It was designed by Mark Musen in 1987 and has since
been developed by a team at Stanford University [Gennari et al., 2003]. The soft-
ware is the most popular and widely used ontology editor in the world10 [Musen,
2015].
Protégé supports creation and editing of one or more ontologies in a single
workspace via a completely customizable user interface. Visualization tools al-
low for interactive navigation of ontology relationships. Advanced explanation
support aids in tracking down inconsistencies. Refactor operations available in-
cluding ontology merging, moving axioms between ontologies, rename of multiple
entities, and more11.
Figure 2.3 represents the main Protege workspace, which displays the “Active
Ontology” tab by default. This tab shows an overview of the “active” ontology,

9https://www.w3.org/TR/sparql11-overview/
10https://protege.stanford.edu/shortcourse/
11https://protege.stanford.edu/products.php

https://www.w3.org/TR/sparql11-overview/
https://protege.stanford.edu/shortcourse/
https://protege.stanford.edu/products.php

16 Chapter 2. State of the Art

including metrics about its content, annotations about the ontology, and the im-
ported ontologies. The drop-down box on the toolbar shows the current active
ontology, i.e. the one where all changes occur. At the top right of the toolbar is
the Search button, which can be pressed to open the search window12.

Figure 2.3: A snapshot of Protégé “Active Ontology” tab. This tab shows the information and
metrics of the ontology and also lists the ontologies imported from outside, in this case
the FOAF ontology.

While Figure 2.4 shows the “Entities” tab, which is the most important part of
the ontology editor. From this tab, it is possible to explore all the classes, prop-
erties, and individuals of an ontology. Each tab consists of several views that
can be resized, removed, floated, split, and layered in various ways. Most views
implement hypertext navigation so that links can be followed easily regardless of
which view is used. The left view displays the hierarchies of classes or properties
and the buttons to add and remove a class/subclass or a property/subproperty.
While the right view displays the description and characteristics of the class or
property selected in the hierarchy tab. Navigating back and forth is possible with
the left and right arrow buttons in the toolbar, which act just like a web browser.
The “Search” button in the toolbar performs a global search in the loaded on-
tologies11.

12http://protegeproject.github.io/protege/getting-started/

http://protegeproject.github.io/protege/getting-started/

2.6 GraphDB 17

Figure 2.4: A snapshot of Protégé “Entities” tab. In the class hierarchy on the left side, the class
“Acute Myocardial Infarction” is selected. The right side shows information about the
selected class.

These images illustrate only the main tools of Protégé, but many other tools
and functionalities are present within it. For more information see the official
documentation at http://protegeproject.github.io/protege/.

2.6 GraphDB

Ontotext GraphDB is a highly efficient and robust graph database and knowl-
edge discovery tool compliant with W3C Standards and with RDF and SPARQL
support. GraphDB can perform instances and relationship exploration, handle
real-time queries and inferences, and derive metrics and statistics about datasets.
In this section we will focus only on two main functionalities: “SPARQL” and “Vi-
sual graph” tools. For more information on the other features of GraphDB see the
official documentation at https://graphdb.ontotext.com/documentation/free/.
Figure 2.5 shows the “SPARQL” tab, which is responsible for querying the im-
ported RDF datasets with SPARQL queries. Within this tab there is an editor
for writing the query. This is an editor that provides syntax highlighting and
namespace autocompletion for easy reading and writing. In the right part of the
editor there are also some icons that allow, for example, to save a query, to open
one that has been previously saved or to exclude from results the data that has

http://protegeproject.github.io/protege/
https://graphdb.ontotext.com/documentation/free/

18 Chapter 2. State of the Art

been inferred. The query is executed using the “Run” button and the results are
automatically displayed below the editor. The results are displayed as a table
by default (other options are Raw response, Pivot table and Google Charts) and
can be exported, through the “Download as” button, in several formats such as
JSON, XML, CSV, TSV.

Figure 2.5: A snapshot of the GraphDB “SPARQL” tab.

Figure 2.6 instead shows the tool “Visual graph” inside the “Explore” tab. This
tool allows to explore the graph of RDF data without using SPARQL. Using a
search input field, a starting resource is chosen for exploring the graph. The
graph that is displayed shows the chosen resource in the center and all links to
other resources around it. It is possible to limit the number of links displayed
(20 by default) and choose the types of classes and properties to show using the
button with the settings icon. Nodes that belong to the same class have the same
color and the size of the nodes reflects the importance of the node by RDF rank.
When a node is clicked, the drop-down menu on the right is opened with more
information about that node. In addition, each node can in turn be expanded or
collapsed, and if it is not of interest it can be hidden.
This is just one feature provided within the “Explore” tab, in fact it also allows
to explore hierarchies between classes and consult class relationships.

2.6 GraphDB 19

Figure 2.6: A snapshot of the “Visual graph” tool of the GraphDB “Explore” tab.

20

Chapter 3

Requirements analysis

As mentioned in Chapter 1, the purpose of this thesis is to design and develop
the part of the Brainteaser Ontology (BO) that deals with retrospective data on
Amyotrophic Lateral Sclerosis (ALS). The ALS part of the BO, and more gener-
ally the entire BO, was co-designed in close collaboration with medical partners
and domain experts. We used this approach to incorporate expert knowledge into
the BO and, at the same time, to validate all design choices. To this end, we
operated iteratively, producing several intermediate versions of the ontology and
discussing them with our domain experts.
As a design approach, classes and properties already defined in external ontologies
were used for the classes in the BO ontology whenever possible. Reusing exist-
ing ontologies as much as possible is generally a good practice when developing
ontologies [Noy and Mcguinness, 2001]. There are different libraries of reusable
ontology on the web, such as the one we used, namely Ontobee [Ong et al., 2017].
In detail, Ontobee allowed us to search for some existing ontology classes that we
imported into BO ontology. By reusing entities and properties already defined
in other ontologies, we are not only able to reinforce collaboration and data con-
sistency across databases, but to ensure the authority of the semantic meaning
of these resources.
New custom classes and properties were created only when it was impossible to
find their exact correspondence in some existing ontology available online or in-
cluded in OntoBee. Each of these new classes or properties were always discussed
with the medical partners to verify that these new concepts correctly represented
the corresponding real-world concepts and to ensure the semantic quality of the
ontology.

21

22 Chapter 3. Requirements analysis

The first design phase of the BO involved all project partners and focused on
defining what types of data should be handled in the ontology. As mentioned
in Section 1.2, it emerged that the ontology needs to handle anonymized raw
data (both retrospective and prospective), data generated by the AI models, and
data from the evaluation challenges. From this point, the design of the ontology
focused on the specific part of the retrospective data. In a next step, we received
simplified samples of restrospective data from medical partners to start under-
standing their characteristics and potential issues in detail. In addition, medical
partners were elicited through forms in order to collect requirements that they
considered important for both ALS and MS diseases.
The requirements gathering and analysis phase ended up with a preliminary draft
of the BO schema. From this draft and feedback from subsequent discussion meet-
ings on the BO, new versions of the ontology were then iteratively developed until
final approval by the partners. After the approval of the BO schema, full and
anonymized retrospective data were received from the medical partners: Lisbon,
Turin and Madrid for ALS. The inspection of these complete data allowed to
further improve and refine the ontology and also to discover some problems on
the instances, related to incomplete or noisy data. In conclusion, these updates
to the BO and the solutions to address specific issues have been then discussed
and approved in one-on-one meetings with the specific medical partner.
Overall, all these iterations led to the development of the first version of the
Brainteaser ontology as well as mappers to ingest retrospective data from medi-
cal partners.

Chapter 4

Design of an Ontology for
Amyotrophic Lateral Sclerosis

In this chapter we describe more in detail the part of the ontology designed to
model the Amyotrophic Lateral Sclerosis (ALS) retrospective data according to
the co-design approach defined in Chapter 3. In particular, in the Section 4.1 we
present the principles that have guided the development of the ontology, while
in the Section 4.2 we analyze the main semantic areas and the main classes
contained in each of them. The complete documentation of the first version
of the Brainteaser Ontology is available at https://w3id.org/brainteaser/
ontology/.

4.1 Overall design principles

The Brainteaser Ontology (BO) is the result of iterative design work done in
relationship and agreement with medical partners and domain experts. As antic-
ipated in Chapter 3, after an initial phase of meetings to discuss the character-
istics of the ontology and after numerous intermediate versions of the same, the
ontology was refined once medical partners sent the definitive, anonymized ret-
rospective datasets. Regarding the part of the ontology that deals with modeling
the ALS data, the datasets were provided by three clinical institutes: “Instituto
de Medicina Molecular João Lobo Antunes” (iMM, Portugal), “Universitá degli
Studi di Torino” (UNITO, Italy), and “Servicio Madrileño de Salud” (SERMAS,
Spain). After analyzing the datasets and working together with the clinicians,
according to shared co-design principles, we refined the ontology, carefully iden-
tifying the classes and properties to be modified or added, in order to obtain

23

https://w3id.org/brainteaser/ontology/
https://w3id.org/brainteaser/ontology/

24 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

the first final version of the Brainteaser Ontology. In choosing the classes to
include in the BO, we maximized the reuse of concepts defined in ontologies and
vocabularies already available and known on the web, thus limiting the creation
of new custom classes to a minimum. In Figure 4.1 we represent the first version
of the BO as a graph where nodes are classes and edges are typed relationships
amongst the classes. Classes (nodes) represent real-world resources such as a per-
son, a visit or an anatomical part, while relationships (edges) describe how the
classes interact one with each other. It is important to note that in Figure 4.1,
all nodes with dark red color correspond to classes purely related to modeling
Multiple Sclerosis, and will not be treated in this chapter.
Overall, BO is composed of 379 classes, 76 object properties, 292 data properties,
396 named individuals and 20 annotation properties.
The complete documentation of the first version of the Brainteaser Ontology
is available at https://w3id.org/brainteaser/ontology/. Using the service
provided by the W3 Permanent Identifier Community Group, the ontology URIs
will be secure and permanent over time. In this way, anyone can reuse the BO
resources.

4.1.1 Semantic areas
The ontology is divided into eight main “semantic areas”, i.e., groups of entities
and relationships that relate to different types of concepts and aspects of our
domain. Each entity is then classified into one of the eight semantic areas. These
areas are explained in detail in Section 4.2 and are:

1. Patient: the semantic area that describes aspects of the patient, such as his
or her status, residence, relatives, diseases from which he or she is suffering,
and clinical trials in which he or she is participating;

2. Genetic Data: the information about the genetic mutations of a patient;

3. Behavior: containing information about the patient’s behavior over time,
such as smoking, physical activity, and more general aspects of lifestyle;

4. Events: classes that describe the possible events to be recorded for a pa-
tient, such as diagnosis, onset, and visits;

5. Contingencies: an area that contains classes that describe things that
may happen to the patient during his or her lifetime, such as comorbidities
and different types of trauma;

https://w3id.org/brainteaser/ontology/

4.1 Overall design principles 25

Figure 4.1: The Brainteaser Ontology.

26 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

6. Intervention and Procedure: containing classes on different types of
procedures a patient may undergo during their medical history;

7. Anatomical Structure: composed of subclasses describing different parts
of the human body;

8. Symptoms: subclasses describing symptoms of different nature that may
happen to the patients.

4.1.2 External ontologies used in the Brainteaser Ontology

The ability to reuse parts of existing ontologies to generate new ones specifically
tailored for some new application or context, while at the same time maintaining
interoperability with other datasets, is an essential concept [Hoehndorf et al.,
2015]. In the process of searching existing ontologies, the ontology repositories
can help find already defined entities and relationships suitable for modeling data
in a specific domain. To search for possible classes, belonging to the life sciences
domain, to be imported into the Brainteaser Ontology, we mainly used Onto-
Bee [Ong et al., 2017], an ontology repository where ontologies are presented as
Linked Data. Table 4.1 describes the external ontologies used in the Brainteaser
project. For each ontology, we report the prefix label used in the description of
the Brainteaser Ontology, the URL associated with the prefix, and the name of
the ontology. Among these ontologies, some of the most important ones are:

• FOAF (Friend of a Friend) [Graves et al., 2007]: an ontology describing
people, their activities and their relations to other people and objects;

• The NCI (National Cancer Institute) Thesaurus OBO Edition [Kumar and
Smith, 2005]: a reference terminology that includes broad coverage of the
cancer domain, including cancer related diseases, findings and abnormali-
ties;

• OGG (Ontology of Genes and Genomes) [He et al., 2014]: a well-known
ontology used to model Genes, their mutations and the genome of living
organisms;

• Uberon: ananatomical ontology that represents body parts, organs and
tissues in a variety of animal species, with a focus on vertebrates;

4.1 Overall design principles 27

• MAXO (Medical Action Ontology) [Carmody et al., 2019]: this ontology
provides classes to describe the majority of the procedures that can be
carried out by medical doctors while visiting or treating the patients;

• SNOMEDCT: SNOMED Clinical Terms is a collection of medical terms
providing codes, terms, synonyms and definitions used in clinical documen-
tation. It is considered one of the most comprehensive multilingual clinical
healthcare terminologies in the world;

• ATCC (Anatomical Therapeutic Chemical Classification): the ATCC On-
tology associates each ATC code with the corresponding active substance.
It is used to model the pharmacological prescription assigned to the pa-
tients. The ontology has substantially a class for each active substance;

• Unified Medical Language System (UMLS): in particular we exploited the
UMLS Metathesaurus, a large biomedical thesaurus, the biggest component
of UMLS, that is organized by concept, or meaning, and it links similar
names for the same concept from nearly 200 different vocabularies;

• ESCO: a multilingual classification that identifies and categorises skills,
competences, qualifications and occupations relevant for the EU labour
market and education. In particular, it provides a mapping to the Interna-
tional Standard Classification of Occupations (ISCO) to structure occupa-
tions;

• ICD-10: the International Classification of Diseases, in its tenth edition
(ICD-10), contains a diagnostic and procedure coding system endorsed by
the World Health Organization (WHO).

At design level, there are some cases where we imported a subset of entities
from an external ontology in order to represent taxonomies of concepts and their
rdfs:subClassOf relationships. We imported from these taxonomies only the
classes that are useful for modeling the data needed for the project, i.e. we
never imported the complete taxonomies, but only subsets of them. Some of
the principal classes that work as roots of their respective taxonomies in the
Brainteaser ontology are:

• Relative (ncit:C21480): the class represents a generic relative of a patient,
and is the root of the taxonomy containing different degrees of kinship (such
as Father, Mather, Sister, etc.);

28 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

• Occupation (esco:model#Occupation): the root class of possible occupa-
tion types of patients, established by the ESCO classification;

• Ethnic group (snomed:372148003): represents the general concept of eth-
nicity and is subclassified with the classes related to the different types of
ethnicities;

• Symptom (ncit:C4876): the root class of the taxonomy describing the
possible symptoms related to a patient;

• Gene (ogg:0000000002): root of the gene taxonomy;

• Anatomical Structure (uberon:0000061): root of the taxonomy that con-
tains the classes concerning the human body locations;

• Pharmacologic Substance (ncit:C1909): the root class of the clinical drugs
that may be prescribed to patients;

• Disease or Disorder (ncit:C2991): the root of the taxonomy with the pos-
sible diseases that a patient, or one of their relatives, may manyfest.

In addition, for every possible class imported from external (non-UMLS) ontolo-
gies, we relate each single concept in the BO to the respective concepts in the
Unified Medical Language System (UMLS) metathesaurus and the ICD-10 clas-
sification through the relations :sameAsUMLS and :sameAs_ICD10, annotation
subproperties of owl:sameAs. For example, the concept “amyotrophic lateral
sclerosis” is inherited from the MONDO ontology (mondo:0004976) and the BO
definition for this concept also reports that it is the same as umls:C0002736 in the
UMLS metathesaurus and the same as icd10:G12.2 in the ICD-10 classification.

4.1.3 Brainteaser classes and properties

Not for all the concepts of the Brainteaser project it was possible to reuse classes
from external ontologies. So for all those concepts that did not find a correspon-
dence within already defined ontologies, we created new classes that allowed us
to represent precisely the concept we needed. Some of these most relevant new
classes are:

• BeforeOnset: subclass of the class “Event” (ncit:C25499) representing
the period of time that occurred before the onset of the patient’s disease;

4.1 Overall design principles 29

prefix url ontology

foaf http://xmlns.com/foaf/spec/ Friend of a Friend
(FOAF) vocabulary

ncit http://purl.obolibrary.org/obo/
NCIT_

National Cancer
Institute thesaurus
(NCIT)

ogg http://purl.obolibrary.org/obo/
OGG_

Ontology of Genes
and Genomes (OGG)

oboInOwl http://www.geneontology.org/
formats/oboInOwl# OBO in OWL

uberon http://purl.obolibrary.org/obo/
UBERON_ Uberon

maxo http://purl.obolibrary.org/obo/
MAXO_

Medical Action On-
tology (MAxO)

omit http://purl.obolibrary.org/obo/
OMIT_

Ontology for MIRNA
Target (OMIT)

snomed http://purl.bioontology.org/
ontology/SNOMEDCT/

SNOMED Clin-
ical Terms
(SNOMEDCT)

atcc http://purl.bioontology.org/
ontology/ATC

Anatomical Ther-
apeutic Chemical
Classification

umls https://uts.nlm/nih.gov/uts/umls/
concepts/

Unified Medical
Language System
(UMLS)

esco http://data.europa.eu/esco/isco/

European Skills,
Competences, Qual-
ifications and Occu-
pations (ESCO)

icd10 http://purl.bioontology.org/
ontology/ICD10/

International Classi-
fication of Diseases,
tenth edition (ICD-
10)

efo http://www.ebi.ac.uk/efo/EFO_ Experimental Factor
Ontology (EFO)

mondo http://purl.obolibrary.org/obo/
MONDO_

Mondo Disease On-
tology (MONDO)

dcterms http://purl.org/dc/terms/ DCMI Metadata
Terms

Table 4.1: External ontologies exploited by Brainteaser.

http://xmlns.com/foaf/spec/
http://purl.obolibrary.org/obo/NCIT_
http://purl.obolibrary.org/obo/NCIT_
http://purl.obolibrary.org/obo/OGG_
http://purl.obolibrary.org/obo/OGG_
http://www.geneontology.org/formats/oboInOwl#
http://www.geneontology.org/formats/oboInOwl#
http://purl.obolibrary.org/obo/UBERON_
http://purl.obolibrary.org/obo/UBERON_
http://purl.obolibrary.org/obo/MAXO_
http://purl.obolibrary.org/obo/MAXO_
http://purl.obolibrary.org/obo/OMIT_
http://purl.obolibrary.org/obo/OMIT_
http://purl.bioontology.org/ontology/SNOMEDCT/
http://purl.bioontology.org/ontology/SNOMEDCT/
http://purl.bioontology.org/ontology/ATC
http://purl.bioontology.org/ontology/ATC
https://uts.nlm/nih.gov/uts/umls/concepts/
https://uts.nlm/nih.gov/uts/umls/concepts/
http://data.europa.eu/esco/isco/
http://purl.bioontology.org/ontology/ICD10/
http://purl.bioontology.org/ontology/ICD10/
http://www.ebi.ac.uk/efo/EFO_
http://purl.obolibrary.org/obo/MONDO_
http://purl.obolibrary.org/obo/MONDO_
http://purl.org/dc/terms/

30 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

• ALSFRS and ALSFRS-R: two different classes that are subclasses of the
“Questionnaire” class (ncit:C17048) and that represent the Amyotrophic
Lateral Sclerosis Functional Rating Scale in the “old” and “revised” versions
respectively;

• Clinical Trial Participation: class representing the fact that a patient
is participating in a clinical trial.

Overall, the number of new classes defined in the BO is much smaller than the
number of classes imported from outside, in fact we tried to define new classes
only when it was unavoidable.
Instead, the properties useful to the project, both data and object properties,
are all defined as new properties of the Brainteaser Ontology. These properties
allowed us to properly manage the various classes of the BO, both those imported
externally and those defined by us. In the BO, URIs for both new classes and
properties are prefixed with “https://w3id.org/brainteaser/ontology/schema/”.

4.1.4 Named Individuals
In some cases, for the classes of some taxonomies presented in Subsection 4.1.2
(Occupation, Ethnic Group, Anatomical Structure, etc.), when they are the range
of object properties, it is not necessary to register additional information beyond
the concept expressed by the classes themselves. For example, when record-
ing the occupation of a patient, it is necessary to know only the type of oc-
cupation, without any further information about it. The consequence is that
every time a new triple is created with an object in one of these taxonomies,
we would be forced to create a new instance. However, to avoid an explosion
in the number of instances of these classes, and due to the fact that there is
no need to model additional information about it, we decided to create named
individuals, one for each class in these taxonomies. These named individu-
als are used as objects of the corresponding object properties whenever a new
triple needs to be instantiated. In BO such named individuals are prefixed with
“https://w3id.org/brainteaser/ontology/named-individual/”.

4.2 Area-by-Area
In this section, we describe the elements that characterize each semantic area
presented in Subsection 4.1.1, in particular we focus on classes and properties

4.2 Area-by-Area 31

useful for modeling ALS data, while the MS part is not covered. We use bold
font to denote ontological classes, monospace font to represent their URIs, and
italics to represent properties. Prefixes for URIs derived from external ontologies
are defined in Table 4.1, while the base prefix of the Brainteaser Ontology is
“https://w3id.org/brainteaser/ontology/schema/”.

4.2.1 Patient

The patient semantic area, shown in Figure 4.2, contains classes and properties
to represent a patient’s personal information, relatives, places they have lived,
diseases, and participation in clinical trials.
The central element of this area is the Patient class (ncit:C16960), a subclass of
foaf:Person, which has several data properties to describe the patient’s personal
information. Some of these properties are:

• dateOfDeath (with range xsd:date): if the patient is dead, it is used to
represent the date of death;

• educationLevel (rdf:langString): a property that accepts a string (with
an associated language tag) representing the education title obtained by
the patient;

• maritalStatus (rdf:langString): a data property to indicate the patient’s
marital status;

• retiredAtDiagnosis (xsd:boolean): it accepts a Boolean value. If the value
is “True”, it indicates that the patient is retired;

• menopause (xsd:boolean): it is used to indicate the permanent cessation
of menstruation;

• alive (xsd:boolean): it indicates whether the patient is still alive (“True”
value);

• deathDueToALS (xsd:boolean): if the patient died due to the course of
the ALS disease, this property is set to “True”. For example, if the patient
died in a car accident, this property is set to “False”;

• notes (rdf:langString): it is used to add notes to the patient. It is simply
a free text box.

32 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

The Patient class inherits from the Person class the properties sex and yearOf-
Birth, which have ranges in rdf:langString and xsd:gYear, respectively. These
two properties allow the patient’s gender and year of birth to be recorded. It is
important to note that the entire date of birth is not allowed to be recorded
in order to preserve patient anonymity. In addition, the Patient class, since
it is a subclass of Person, is connected to the Place class (ncit:C25319) by
means of the object properties hasBirthplace and hasResidence. These proper-
ties respectively allow Place class instances to be linked to indicate the patient’s
place of birth and subsequent residences. The class Place is subclassed into 3
classes, namely Cities (umls:C0008848), Towns (umls:C0557750), Rural area
(umls:C0178837), which correspond to the three urbanization degrees of the DE-
GURBA classification1. In detail, for reasons of data anomization we have used
the DEGURBA classification since we do not record precise information on place
of residence or birth (e.g. zip code), but we simply indicate whether it is a densely
populated area (city) or a sparsely populated area (town or rural area). In ad-
dition, the Place class has two properties: isCurrent (xsd:boolean) to indicate
whether it is the current residence or not, and residenceYears (xsd:integer) to
record the number of years the patient has lived in that place.
Patient is also connected through the property ethnicity to the class Ethnic
group (snomed:372148003), which represents a generic ethnic group. This
class is the root of a taxonomy of ethnicities whose classes are taken from the
SNOMEDCT ontology.
To model family predisposition, we need to register the presence of the patient’s
relatives. To do so, we considered the class Relative (ncit:C21480), which
models a generic relative of a patient, and the object property hasRelative which
connects the class Patient to the class Relative. Relative, in turn, is the root
class of a taxonomy of kinship classifications such as FirstDegreeRelative, Fa-
ther and Mother, etc. (these classes are imported directly from the NCIT
ontology). A relative may or may not be a patient in the database. In the first
case, the instance of “Relative” is linked to the corresponding existing instance of
“Patient” through the property isPerson. In the other case, an instance of class
“Person” is created, and the instance of “Relative” is linked through isPerson
property to this instance. One patient or one generic person can be a relative of
more than one patient, and for this reason multiple instances of “Relative” may
be instantiated, one for each degree of kinship occurring for that patient/person

1https://ec.europa.eu/eurostat/web/degree-of-urbanisation/background

https://ec.europa.eu/eurostat/web/degree-of-urbanisation/background

4.2 Area-by-Area 33

in the database. Each of these instances will be connected through isPerson to
the corresponding instance of Patient or Person.
The class Occupation (esco:model#Occupation) represents the patient’s job.
It is the root class of a taxonomy of classes representing different types of work,
and a “Patient” instance is linked to Occupation through the property hasOccu-
pation. Person is connected through the property enrolledIn to Clinical Trial
Participation (:ClinicalTrialParticipation), representing the fact that a
patient is participating in a clinical trial. An instance of “Clinical Trial Partic-
ipation” can have a property startDate, endDate, clinicalTrialDescription, and
endReason, to indicate the start and end date and description of the clinical trial,
and the reason for leaving the clinical trial, respectively. Each instance of “Clin-
ical Trial Participation” is part of a Clinical Trial (ncit:C71104) and linked to
this class through the participate property. In turn, a clinical trial pertains to a
certain hospital, and thus the property links the class Clinical Trial to the class
Clinics and Hospitals (ncit:C19326).
A person (so both a patient and a relative who is not present in a clinical trial)
may have one or more diseases. Person is connected to Disease or Disorder
class (ncit:C2991) through hasDisease property. In addition, the class Clinical
Trial is linked to Disease or Disorder through isAboutDisease property to in-
dicate which disease is being studied in the specific trial.
Finally, an instance of class Patient can register one or more instances of class
Event (ncit:C25499) by means of the object property undergo.

4.2.2 Genetic Data

A patient may have data regarding their genetic makeup. These data are very
useful to study cases of hereditary ALS. Specifically, the inheritance of ALS is
attributed to mutations in 12 different genes, the most common of which are
SOD1, FUS and TARDBP [Andersen and Al-Chalabi, 2011].
As shown in Figure 4.3, to model this genetic data, the ontology links the class
Patient, through the property hasGene, to the class Gene (ogg:0000000002),
which is subclassified with the following types of genes: SOD1 (ogg:3000006647),
FUS (ogg:3000002521), C9orf72 (ogg:3000203228), and TARDBP (ogg:300
0023435). In addition, the instances of Gene class can have two properties: kind
and open box. The first one allows to express the type of mutation present on the
gene, while the second one allows to add more information through an unstruc-
tured text.

34 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

Figure 4.2: Patient semantic area, including the classes Patient, Person, Relative, Place, Clinical
Trial, Clinical Trial Participation, and Disease or Disorder.

4.2.3 Behaviour

In this semantic area, patient behavioral data, and in particular their evolution
over the years, are modeled through the use of classes and properties. As reported

4.2 Area-by-Area 35

Figure 4.3: Semantic area containing the information about a patient’s gene and their mutations.

in Figure 4.4, the main class of this area is Behaviour (ncit:C19683), which
has the properties startYear and endYear (both with range xsd:gYear), which
describe the start and end year of such behavior. Each instance of the Behaviour
subclasses therefore offers the possibility to register the time interval in which such
behavior was sustained. In addition, the class Event is linked to Behaviour
through the property hasRegisteredBehaviour.
Different types of behavior are modeled through the use of subclasses of the main
class Behaviour. Such subclasses are:

• Smoking (ncit:C154329): represents the patient’s smoking habit. It
has the properties packYear (with range xsd:float) and dailyCigarettes
(xsd:integer). The first property relates to a quantification of lifetime
tobacco exposure and is calculated by multiplying the number of packs of
cigarettes smoked per day by the number of years the person has smoked
(one pack-year corresponds to smoking 20 cigarettes per day for one year)2,
while the second refers to the average number of cigarettes smoked per day;

• Physical Activity (ncit:C17708): describes the physical activity usu-
ally exerted by the patient. Its properties are intensity (rdf:langString),
weeklyFrequence (xsd:integer) and activityType (rdf:langString);

• Lifestyle (ncit:C16795): acts as a container for different types of behav-
ioral information regarding the patient. Such behaviors are modeled as data
properties of the Lifestyle instance, and are: sunExposure (xsd:int), diet

2https://www.cancer.gov/publications/dictionaries/cancer-terms/def/
pack-year

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/pack-year
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/pack-year

36 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

(xsd:int), fatigue (xsd:int), sexuality (rdf:langString), femalePeriod-
StartDate (xsd:date), and menopause (xsd:boolean).

Figure 4.4: Behaviour and Lifestyle semantic area, including the subclasses Smoking, Physical Ac-
tivity and Lifestyle.

4.2.4 Events

The “Events” semantic area, represented in Figure 4.5, contains some of the
most important classes of the ontology, since one of the objectives of the ontology
itself is to model the events related to the patient and their evolution in time.
The main class in this area is Event (ncit:C25499), which describes a generic
event that can happen to a patient in a medical environment. The class Event
is characterized by the two data properties startDate and endDate (both with
range xsd:date), which describe the time period in which this event occurred.
Different types of events are represented through the use of these subclasses:

• Protocol Event (ncit:C74589): represents a planned protocol activity,
such as randomization and study completion, and occurrences, conditions,
or incidents independent of planned study evaluations that occur during
the trial (e.g., adverse events) or before the trial (e.g., medical history). Its
subclass is Patient Visit (ncit:C39564), which describes a specific type
of protocol event, i.e., a patient visit to a hospital;

• Diagnosis (ncit:C25279): represents the moment when the patient is
officially diagnosed with the disease;

4.2 Area-by-Area 37

• Onset (ncit:C25279): represents the event in which the first symptoms of
the disease first occur to the patient. The Onset, in particular, can be of
several types, which are represented as boolean properties (xsd:boolean):
limbs, bulbar, axial, and generalized. An onset may also have the property
cerebrospinalOligloconalBands (xsd:integer), which indicates, if the test
was performed, the presence of such bands in the patient’s bloodstream
and the age_onset, i.e., the age in years of the patient at the time of onset.
Onset is located in a part of the human body, and thus the event Onset
is related to the class Anatomical structure (uberon:0000061) through
the site property;

• Before Onset (:BeforeOnset): describes an event that happened before
onset, whatever its nature. The property howLong indicates how long before
onset this event happened, and can only take two string values, defining an
event that happened in the last five years, or before the last five years.

An instance of Event, in turn, can be linked to various other classes. Event is
linked to Trauma through hasTrauma property, which describes the registration
of a traumatic event that happened to the patient; to Symptom through has-
Symptom property, which describes the presence of symptoms recorded during
an event; and finally to one or more Interventions or Procedures that can be
applied to the patient, through the consist property.

4.2.5 Contingencies
The “Contingencies” semantic area, represented in Figure 4.6, contains classes
that represent “things that may happen”: occurrences that happen to the patient
that may or may not be related to the disease. They correspond to phenomena
in the patient’s body that cannot be directly planned. However, each of these
contingencies is recorded during an event and are therefore linked to the Event
class via a specific property.
The classes in this area are:

• Trauma (ncit:C3671): describes the presence of a trauma on the pa-
tient’s body. It also reports the properties traumaDate (xsd:date) and
traumaDescription (rdf:langString). The class Trauma is linked to the
class Anatomical Structure through the object property traumaArea. It
is linked to the Event during which it is registered via the hasTrauma
property;

38 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

Figure 4.5: Events semantic area, including the class Event and its subclasses: Protocol Event,
Diagnosis, Before Onset and Onset.

• Comorbidity (ncit:C16457): represents the presence of two or more dis-
eases or medical conditions in a patient. The Comorbidity is characterized
by the properties startYear and endYear (both with range xsd:gYear),

4.2 Area-by-Area 39

along with treatment (xsd:string), which reports the prescribed treat-
ment, and severity, which describes the severity of the comorbidity with a
set of string values (slight, moderate, serious, life risk). A Comorbidity
is recorded during an Event, and the two classes are linked through the
hasRegisteredComorbidity property.

Figure 4.6: Contingencies semantic area composed of classes Trauma and Comorbidity.

40 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

4.2.6 Intervention and Procedure

This semantic area contains the classes that describe the interventions made to
a patient to understand, monitor, and intervene on his or her clinical condition.
The class Event is linked to the main class of this area, Intervention or Proce-
dure (ncit:C25218), through the object property consists. This class represents
“a general activity that produces an effect, or that is intended to alter the course
of a disease in a patient”3.
Instances of the class Intervention or Procedure may have two properties:
startDate and endDate. These dates allow us to record the start and end time of
the intervention. Note that, thanks to an abuse of notation, by leaving the end-
Date empty, we can also represent interventions and procedures that are atomic
in time, i.e., are not distributed over multiple days. The ontology contains several
subclasses of Intervention or Procedure, and each of them constitutes a se-
mantic subarea depending on the nature of the procedure itself. In the following
subsections we describe in detail the features of each subarea.

4.2.6.1 Therapeutic Procedure

The Therapeutic Procedure subclass (ncit:C49236), depicted in Figure 4.7,
represents the action or administration of therapeutic agents to produce an effect
that is intended to alter or stop a pathological process. In addition to the generic
therapy represented by the same class Therapeutic Procedure, there is the
subclass Non-invasive ventilation (NIV) (ncit:C171457).
Non-invasive ventilation is an essential part of Amyotrophic Lateral Sclerosis
(ALS) treatment because it significantly improves survival, quality of life, and
cognitive performance [Morelot-Panzini et al., 2019].
All possible therapeutic procedures may involve the prescription or associated
use of one or more pharmacological substances. The administration of these sub-
stances is modeled through the use of the class Administration (ncit:C25409),
characterized by properties that describe the administration itself: administra-
tionRoute (rdf:langString), endReason (rdf:langString), dose (xsd:float),
medicineName (xsd:string), frequency (rdf:langString), measurementUnit
(xsd:string). An Administration is related to the administered substance
which is represented through the class Pharmacological Substance (ncit:C1909),
and linked through the object property isRelated. Among the possible sub-

3http://purl.obolibrary.org/obo/NCIT_C25218

http://purl.obolibrary.org/obo/NCIT_C25218

4.2 Area-by-Area 41

stances that can be administered (subclasses of Pharmacological Substance)
in the ALS domain, we have the class Agent Affecting Nervous System
(ncit:C78927) and especially its subclass Riluzole (ncit:C47704).

Figure 4.7: Therapeutic Procedure semantic area, sub-area of the Intervention or Procedure area.

42 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

4.2.6.2 Diagnostic Procedure

Diagnostic Procedure (ncit:C18020) is a subclass of Intervention or Pro-
cedure, and represents any procedure or test to diagnose and evaluate the pro-
gression of a disease or disorder. This, in turn, has many subclasses. Due to this,
we have further subdivided the graphical representation of this sub-area into sev-
eral figures to aid in readability: Figure 4.8, Figure 4.9, and Figure 4.10.

Figure 4.8: Part 1 of the Diagnostic Procedure semantic area, a sub-area of the Intervention or
Procedure area. This figure reports the subclasses Pulmonary Function Test and Blood
Test.

Starting from Figure 4.8, we see the Pulmonary Function Test (ncit:C38081).
As the name suggests, it is used to store information about pulmonary function
tests carried out on the patient. In particular, the Pulmonary Function Test
is a foundational element of ALS management, as it is used to make decisions,
including when to initiate the Non-invasive ventilation (NIV) [Lechtzin et al.,
2018]. Instances of this class have several associated properties (all with range
xsd:float), each of which corresponds to a parameter used to assess the quality
of the patient’s respiratory function (e.g., FVCabsolute, FVCrelative, etc...).
Another subclass is Blood Test (ncit:C49286), which represents a test to mea-
sure hematopoietic components and study hematological disorders. Relevant pa-
rameters assessed through a blood test are represented through the use of prop-
erties of this class (e.g., CK level (xsd:float)).
In the figure Figure 4.9, two more subclasses of Diagnostic Procedure are pre-
sented. The first is the class Questionnaire (ncit:C17048), and represents a

4.2 Area-by-Area 43

Figure 4.9: Part 2 of the Diagnostic Procedure semantic area, a sub-area of the Intervention or Pro-
cedure area. This figure reports the subclasses Questionnaire and clinical assessment.

generic questionnaire that is submitted to patients during a visit. This class is
in turn subclassified with four additional classes representing different question-
naires that are very useful in the ALS domain:

• ALSFRS (:ALSFRS): this class represent the ALS Functional Rating Scale
(ALSFRS) that is a validated rating instrument for monitoring the pro-
gression of disability in patients with Amyotrophic Lateral Sclerosis (ALS)
[Cedarbaum et al., 1999]. The ALSFRS consists of ten questions on specific
physical functions: (1) speech, (2) salivation, (3) swallowing, (4) handwrit-
ing, (5) cutting food and handling utensils, (6) dressing and hygiene, (7)
turning in bed and adjusting bed clothes, (8) walking, (9) climbing stairs
and (10) breathing.
The data properties of this class are:

– alsfrs_1,...,alsfrs_old10 (with range xsd:integer): used to store the
value of each of the ten questions that compose the ALSFRS. Each
question is rated from 4 (normal) to 0 (no ability);4;

– alsfrs-tot (xsd:integer): corresponds to the sum of all ten questions
of ALSFRS, with a maximum total score of 40 and a minimum total
score of 0;

4https://www.alspathways.com/assessing-function/

https://www.alspathways.com/assessing-function/

44 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

– bubar_subscore (xsd:integer): indicates the sum of ALSFRS ques-
tions 1, 2, and 3;

– motor_subscore (xsd:integer): reports the sum of ALSFRS ques-
tions 4, 5, 6, 7, 8, and 9;

• ALSFRS-R (:ALSFRS-R): corresponds to the revised version of the ALS-
FRS (ALSFRS-R), which, compared with the original version of the ALS-
FRS, incorporates additional assessments of dyspnea, orthopnea, and res-
piratory insufficiency [Cedarbaum et al., 1999]. In other words, the 10th
question of the ALSFRS, in the ALSFRS-R version, is split into 3 ques-
tions, namely question 10, 11, and 12.
The data properties of the ALSFRS-R class are:

– alsfrs_1,...,alsfrs_12 (with range xsd:integer): used to store the
value of each of the twelve questions that compose the ALSFRS-R.
Each question, as for the ASLFRS, is rated from 4 (normal) to 0 (no
ability)4;

– alsfrs-r-tot (xsd:integer): corresponds to the sum of all twelve ques-
tions of ALSFRS-R, with a maximum total score of 48 and a minimum
total score of 0;

– bubar_subscore (xsd:integer): indicates the sum of ALSFRS-R ques-
tions 1, 2, and 3;

– motor_subscore (xsd:integer): reports the sum of ALSFRS-R ques-
tions 4, 5, 6, 7, 8, and 9;

– respiratory_subscore (xsd:integer): stores the sum of ALSFRS-R
questions 10, 11 and 12;

• Mitos (:Mitos): this class represents the Milano-Torino ALS staging sys-
tem (ALS-MITOS), which is a tool for measuring ALS progression. The
MiToS system uses six stages, from 0 to 5 and is based on functional abil-
ity as assessed by the ALS Functional Rating Scale-Revised (ALSFRS-R),
with stage 0 being normal function and stage 5 being death [Fang et al.,
2017]. The number of the Mitos stage is stored through the mitosValue
data property (xsd:integer);

• Kings (:Kings): represent the King’s staging system for the ALS progres-
sion. It uses five stages, from 1 to 5 and is based on disease burden as

4.2 Area-by-Area 45

measured by clinical involvement and significant feeding or respiratory fail-
ure, with stage 1 being symptom onset and stage 5 being death [Fang et al.,
2017]. The associated data property kingsValue (xsd:integer) stores the
value of the King’s stage.

While the second is the class Clinical Assessment (maxo:0000487), which rep-
resents a measurement performed in a clinical setting using clinician’s observa-
tions and instrument data to inform patient care and research5. Some of the most
important data properties associated with this class for the ALS domain are:

• bmi (xsd:integer): used to store the Body Mass Index (BMI) value, that
is a value derived from weight and height of a patient;

• Height (xsd:float): indicates the height in meters of the patient;

• Weight (xsd:float): represents the weight in kilograms of the patient;

• moreThan10PercentWeightloss (xsd:boolean): stores the value “True” if
the patient has lost more than 10% of his usual weight;

• prelaventUMN, prevalentLMN, mixedMN (xsd:boolean): indicates, for
ALS disease, the loss of function of upper motor neurons (prelaventUMN),
lower motor neurons (prevalentLMN), or both (mixedMN).

The last image in this subsection, Figure 4.10, contains the class Diagnostic
Imaging (ncit:C16502). With this class we refer to various techniques for visu-
alizing the inside of the body to help understand the cause of a disease or injury,
and thus confirm a diagnosis. Doctors also use it to see how a patient’s body
is responding to treatment for a fracture or disease. To Diagnostic Imaging
is linked the class Anatomical Structure, through the object property area,
to indicate which area of the body is involved in the procedure. The subclasses
of Diagnostic Imaging are Magnetic Resonance Imaging, also known as
MRI (ncit:C16809), characterized by properties that describe its results, and
Positron Emission Tomography, also known as PET (ncit:C17007).

4.2.6.3 Surgical Procedure

The class Surgical Procedure (ncit:C15329) describes a generic surgical pro-
cedure performed on a patient. As seen in the Figure 4.11, its subclasses are:

5http://purl.obolibrary.org/obo/MAXO_0000487

http://purl.obolibrary.org/obo/MAXO_0000487

46 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

Figure 4.10: Part 3 of the Diagnostic Procedure semantic area, a sub-area of the Intervention or
Procedure area. This figure reports the subclass Diagnostic Imaging.

• Percutaneous Endoscopic Gastrostomy (PEG) (ncit:C10604): a
procedure in which a flexible feeding tube is placed through the abdominal
wall and into the stomach, allowing nutrients, fluids and medications to be
placed directly into the stomach, thus bypassing the mouth and esophagus6;

• Tracheotomy (or tracheostomy) (ncit:C15341): an opening surgically
created through the neck into the trachea to allow direct access to the
breathing tube7;

• Cerebrospinal fluid examination (CSF Analysis) (ncit:C173272):
the analysis of the cerebrospinal fluid, a clear, colorless liquid found the
the brain and spinal cord, acting like a cushion against sudden impact or
injury to the brain or spinal cord8. This class is characterized by the data
properties cerebrospinalFluid (xsd:string) and lymphocytes (xsd:float)
which describe aspects of the test results.

6https://digestivehealth.ws/our-services/peg/
7https://www.hopkinsmedicine.org/tracheostomy/about/what.html
8https://medlineplus.gov/lab-tests/cerebrospinal-fluid-csf-analysis/

https://digestivehealth.ws/our-services/peg/
https://www.hopkinsmedicine.org/tracheostomy/about/what.html
https://medlineplus.gov/lab-tests/cerebrospinal-fluid-csf-analysis/

4.2 Area-by-Area 47

Figure 4.11: Surgical Procedure semantic area, sub-area of the Intervention or Procedure area.

4.2.7 Anatomical Structure

This area, shown in Figure 4.12, contains the class Anatomical Structure
(uberon:0000061) which is the root of a taxonomy containing classes represent-
ing parts of the human anatomy used throughout the ontology (for example
Limbs, Bone Spine, etc.).
At the design level, to avoid creating new instances of a certain location every time
it is required, we define a named individual for each of the required anatomical
structures: all resources that need to be associated with one or more anatomical
structures will point to the same named individual.
In the Brainteaser Ontology, the Anatomical Structure class is the range of
the following object object properties: site (connecting the Onset class), trau-
maArea (connecting the Trauma class), area (connecting the Diagnostic Imag-
ing class), surgicalArea (connecting the Surgical Procedure class), and symp-
tomArea (connecting the Symptom class).

4.2.8 Symptoms

The Symptoms semantic area, shown in Figure 4.13, contains classes describing
the symptoms that may happen to a patient and be registered during an event.
The class Event is connected to the main class of this area, Symptom (ncit:C4876),
through the hasSymptom object property. The Symptom class, in turn, is con-
nected to the Anatomical Structure class through the symptomArea property,
allowing to specify the area associated with a specific symptom.
The resources will rarely be of type Symptom, as it is too general to describe
any real features of the patient’s disease course. Among Symptom subclasses,

48 Chapter 4. Design of an Ontology for Amyotrophic Lateral Sclerosis

Figure 4.12: Anatomical Structure semantic area.

we list the Fever (ncit:C3038), Nervous System Finding (ncit:C36280) and
its subclass, the Fasciculation (ncit:C34606). These symptoms are among the
most relevant concerning the diseases modeled in this ontology.

Figure 4.13: Symptoms semantic area.

Chapter 5

Ontology and Data Mapper
Development

In this chapter, in Section 5.1 we show the development of the Brainteaser On-
tology using the Protégé software (introduced in Section 2.5) according to the
graphical representation of the ontology given in Section 4.2. While in Section 5.2
we present the development of the ALS Data Mapper, which is a software that
deals with mapping retrospective clinic data into an RDF dataset, in accordance
with BO.

5.1 Ontology Development

Developing an otology using a classic text editor is not such an intuitive and
quick process. For this reason, to develop the Brainteaser Ontology we used the
Protégé software. As explained in Section 2.5, Protégé is an ontology editor that
allows the development and management of ontologies in a very simple and clear
way. Thanks to its intuitive graphical interface, it clearly speeds up the ontology
creation process and helps minimize possible creation errors.
Figure 5.1 shows the main Protégé workspace, enclosed in the “Active ontol-
ogy” tab, with the Brainteaser Ontology open within it. Through this tab,
specifically in the “Ontology header” view, we defined the base IRI of the BO
(https://w3id.org/brainteaser/ontology/schema/) and ontology metadata
such as title (with the dc:title property), description (dc:description), au-
thors (dc:creator), rights (dc:right), and version (owl:versionInfo). While
the view “Ontology imports” of the tab “Active ontology”, allows to import ex-
ternal ontologies. In our case, we imported the entire FOAF ontology.

49

https://w3id.org/brainteaser/ontology/schema/

50 Chapter 5. Ontology and Data Mapper Development

Figure 5.1: The Brainteaser Ontology inside the Protégé “Active Ontology” tab.

Instead, the Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5 show different sub-tabs
of the “Entities” tab, which is the most important part of Protégé where it is pos-
sible to manage classes, properties and individuals. In particular, the Figure 5.2
shows the “Classes” tab. Here we imported the single classes from the external on-
tologies and created all those new classes we defined. For each class, in the “Anno-
tation” view, we reported the label (rdfs:label), the comment (rdfs:comment),
and, if present, the possible synonyms (oboInOwl:hasExactSynonym) and refer-
ence to IDC-10 and UMLS ontologies (:sameAs_ICD10 and :sameAsUMLS, anno-
tation subproperties of owl:sameAS). While in the “Description” view we have
defined for each class if it has equivalent classes (Equivalent To) or if it is sub-
class of another class (SubClass Of). Finally, in the “Class hierarchy” view, as
the name suggests, the hierarchical structure of the ontology classes is shown,
which is at the same time navigable. This view is useful to verify that the classes
are related in the correct way.
The example shown in the Figure 5.2 shows the class ncit:C49286 which has
been assigned the label “Hematology Test”, the description “A laboratory test
to measure hematopoietic components and investigate hematologic disorders in
a blood sample. [Definition Source: NCI]”, the synonym “Blood Test” and the
reference to umls:C0018941. In addition, we specified that it is a subclass of
“Diagnostic Procedure” (ncit:C18020).

5.1 Ontology Development 51

Figure 5.2: The BO classes inside the Protégé “Entities” tab.

The Figure 5.3 presents the “Object properties” tab which includes all the object
properties defined in the ontology. These are the properties that are responsible
for linking the various classes in the ontology. As we can see, this image is similar
to the “Classes” tab, in fact it presents the “Object property hierarchy” view to
show the hierarchy of the various object properties and the “Annotations” and
“Description” views to enter the information and properties of the defined object
property. For each object property, in the “Annotations” view, we assigned a
label (rdfs:label) and a comment (rdfs:comment), while in the “Description”
view we defined its domain and range (Domains and Ranges). In addition, there
is also another view, called “Characteristics” which allows to add a characteristic
to the selected object property.
In the example in Figure 5.3, we defined an object property with IRI “https://
w3id.org/brainteaser/ontology/schema/hasAdministration”, label “hasAd-
ministration”, comment “When a therapeutic procedure involves the administra-
tion of pharmacologic substances.”, domain the class “Therapeutic Procedure”
(ncit:C49236) and range the class “Administration” (ncit:C25409).
The Figure 5.4 presents the “Data properties” tab. Here, as the name suggests, it
is possible to find all the data properties of the ontology, i. e., all those properties
that assign data values to resources. This tab is almost the same of the “Object
properties” tab, the only thing that changes is that the range of data properties is

https://w3id.org/brainteaser/ontology/schema/hasAdministration
https://w3id.org/brainteaser/ontology/schema/hasAdministration

52 Chapter 5. Ontology and Data Mapper Development

Figure 5.3: The BO object properties inside the Protégé “Entities” tab.

a datatype, and not a class as for the object properties. What we said for object
properties is also valid for data properties, in fact we assign to each data property
a label (rdfs:label) and a comment (rdfs:comment) in the “Annotation” view,
while through the “Description” view we define the domain and the range of the
selected property (Domains and Ranges).
The Figure 5.4 shows an example of a data property with IRI “https://w3id.
org/brainteaser/ontology/schema/Albumin_level”, label “Albumin level”,
comment “A quantitative measurement of albumin present in a sample [defined in
grams per deciliter (g/dL)].”, domain the class “Hematology Test” (ncit:C49286)
and range the datatype xsd:float.
The Figure 5.5 instead shows the “Annotation properties” tab, which includes
all those properties that allow us to encode information about the ontology. In
particular in this tab we have imported the following annotation properties from
external ontologies: dcterms:title, dcterms:description, dcterms:creator,
used to add the title, description and creators of the ontology, and oboInOwl:has
ExactSynonym used to store the possible synonyms of a class (as in the exam-
ple of Figure 5.2, the class “Hematology Test” has synonym “Blood Test”).
Here we have also defined two new annotation properties: :sameAsUMLS and
:sameAs_ICD10, used to add reference to the UMLS and ICD-10 ontologies.
For these two annotation properties, we also added a label and a comment

https://w3id.org/brainteaser/ontology/schema/Albumin_level
https://w3id.org/brainteaser/ontology/schema/Albumin_level

5.1 Ontology Development 53

Figure 5.4: The BO data properties inside the Protégé “Entities” tab.

(rdfs:label and rdfs:comment) in the “Annotation” view and defined that they
are both subproperties of owl:sameAs (Superproperties) in the “Description”
view.

Figure 5.5: The BO annotation properties inside the Protégé “Entities” tab.

Finally, in the Figure 5.6 we show the tab “Individuals”, where we have defined

54 Chapter 5. Ontology and Data Mapper Development

the named individuals of some classes, according to what is explained in the
Subsection 4.1.4. It is important to remember that named individuals have a
different IRI prefix than classes and properties, and it is: “https://w3id.org/
brainteaser/ontology/named-individual/”. For each named individual we
have associated a label (rdfs:label) through the “Annotation” tab and we have
defined its type (Types) in the “Description” tab. In the example in Figure 5.6
we see defined the named individual with IRI “https://w3id.org/brainteaser/
ontology/named-individual/abdominal_fascia”, label “abdominal fascia” and
type the class “abdominal fascia” (uberon:0013493).

Figure 5.6: The BO named individuals inside the Protégé “Entities” tab.

As final note, Protégé allows to save the developed ontology in multiple formats
(RDF/XML, Turtle, JSON-LD, etc.); a snapshot of the Brainteaser ontology in
Turtle format opened with a text editor is shown in Figure 5.7. This image is not
only intended to show the representation of the ontology in the Turtle format,
but also to emphasize the fact that, in the development of an ontology, the use
of an ontology editor like Protégé represents a real advantage over a development
done using a classic text editor.

https://w3id.org/brainteaser/ontology/named-individual/
https://w3id.org/brainteaser/ontology/named-individual/
https://w3id.org/brainteaser/ontology/named-individual/abdominal_fascia
https://w3id.org/brainteaser/ontology/named-individual/abdominal_fascia

5.2 ALS Data Mapper Development 55

Figure 5.7: A snapshot of the Brainteaser Ontology in the Turtle format.

5.2 ALS Data Mapper Development
In this section we present the development of the ALS Data Mapper: a software
that aims to map restrospective data of ALS clinics into an RDF dataset, all in
accordance with the Brainteaser Ontology. Specifically, in the Subsection 5.2.1
we present some general concepts about the development of the Data Mapper and
in the Subsection 5.2.2 we explain the characteristics of the input data provided
by the clinics. The Subsection 5.2.3 covers the cleaning operations on the input
data, called pre-processing operations, while in the Subsection 5.2.4 we present
the mapping phase. In the Subsection 5.2.5 we illustrate the files returned in
output from the Data Mapper and in the Subsection 5.2.6 we present an example
of data mapping. Finally, in the Subsection 5.2.7 we explain how it was possible
to export in CSV the mapped data.
All the source code is available at https://bitbucket.org/brainteaser-health/
mappers/src/master/ALS/.

5.2.1 Data Mapper overview

The ALS data mapper is the part of our software architecture dedicated to map-
ping retrospective clinical data of ALS patients, provided by partner clinics, into a
structured RDF graph compliant with our ontology. The retrospective data come

https://bitbucket.org/brainteaser-health/mappers/src/master/ALS/
https://bitbucket.org/brainteaser-health/mappers/src/master/ALS/

56 Chapter 5. Ontology and Data Mapper Development

from different clinics, each of which has adopted its own notation and standards
for representing and managing knowledge. So two different clinics can assert the
same knowledge in two different ways, depending on their data management sys-
tem. Due to this, diffrent data mappers are needed to map data from different
sources in order to standardize all the knowledge provided by clinical partners
and structure it according to a graph-based model.
To reach this goal we designed a modular architecture (shown in the Figure 5.8)
that in the first phase involves the creation of a dedicated module, called Data
Mapper, for each partner clinic in order to correctly map its input data into an
RDF graph. In detail, each Data Mapper reads the respective dataset as input,
performs some pre-processing operations to clean the data, and then maps the
read input data into an RDF graph. In this way, a single RDF graph is built for
each dataset. Next, we merge the single graphs into a global RDF graph and as
final step we serialize this graph in different formats (Turtle, RDF/XML, JSON-
LD). In addition, there is also a module to export data in CSV format from the
RDF graph. Such data in CSV is useful for teams involved in developing Artifi-
cial Intelligence algorithms for prediction purposes.
Each new resource that is introduced into the graph is identified by the URI
prefix “https://w3id.org/brainteaser/ontology/resource/” plus a unique local ID
generated during the mapping phase. Data Mappers are completely developed
using the Python programming language because it allows us to use many useful
libraries for our purposes and allows us to write the code in a compact and fast
way. The libraries/modules used for Data Mapper development are:

• pandas: for input data manipulation;

• rdflib: for managing and serializing RDF graphs;

• uuid: for generating UUID codes for resource IDs;

• mmh3: for hashing the resource IDs;

• csv: for writing data into a CSV file;

• pathlib: for managing the file path;

• datetime: for managing dates;

• tabulate: for writing data in tabular format into txt files;

• sys: for redirecting standard output to a file.

5.2 ALS Data Mapper Development 57

Figure 5.8: Data Mapper architecture.

5.2.2 Input data

The anonymized retrospective datasets of ALS patients are provided in files with
.xlsx extension by the “Instituto de medicina molecolare João Lobo Antunes”
(iMM, Portugal), “Universitá degli Studi di Torino” (UNITO, Italy), and “Servi-
cio Madrileño de Salud” (SERMAS, Spain).
These datasets are generally structured as follows:

• A “static vars” sheet that includes:

– Personal data;

– Before onset data;

– Onset data;

– Diagnosis data;

– Surgical and therapeutic procedures;

– Clinical assessment data;

– Diseases and disorders;

– Gene mutations;

• “ALSFRS” sheet that includes data from the ALSFRS/ALSFRS-R ques-
tionnaire;

• “%FVC” sheet that includes data of the pulmonary function test;

58 Chapter 5. Ontology and Data Mapper Development

• “OWD vars” sheet (only for iMM and SERMAS) that includes:

– Blood test data;

– Smoking behavior data;

– Trauma and surgery data;

In Data Mappers, the input reading of datasets in xlsx format is done by exploiting
the read_excel function of the pandas library. In the Code Snippet 5.1 we present
an example of how we used this function.

1 staticVars = pd.read_excel(lisbonPath , sheet_name="Static Vars",
index_col="REF", parse_dates=["Birth_year"], na_values=[" ", "NA"
, "NaT"])

Code Snippet 5.1: An example of use of the pandas read_excel function

In particular, this function converts the excel sheet indicated in sheet_name (e.g.
“Static Vars”) contained in the input file (which has a precise path, such as
lisbonPath in our case) into a pandas DataFrame, which is a table-like structure.
The parameter index_col is used to define a column of the excel sheet as index
of the DataFrame (in the example the column with label “REF”), while the use
of parse_dates inside the function read_excel allows to parse an integer/string
value as datetime (e.g. “Birth_year”). Moreover through na_values it’s possible
to declare some non-null values as null (for example “NA”), and this feature is
really useful because it already allows to exclude some values that wouldn’t be
useful in the mapping phase. So this is the function we used to read in input all
those excel sheets useful for mapping purposes.

5.2.3 Pre-processing operations

Since we do not have the certainty that the data read in input and saved in
the respective DataFrame are perfectly correct, we have identified the need to
perform pre-processing operations, which are operations that try to clean all
those data that are dirty. In other words, it is a matter of verifying that the data
is consistent with its domain and therefore eliminating all data that does not
meet this requirement. These operations are performed using pandas tools, such
as the iterrows function to scan the DataFrame row by row, the loc to access
a group of rows or columns, or the isna function to check for null values in cells,
and Python operators, such as arithmetic, comparison, logical and membership
operators to perform operations on some subsets of data. We also used the csv

5.2 ALS Data Mapper Development 59

module to create new CSV files from the DataFrames generated with the input
datasets. In detail, the pre-processing operations are the following:

1. Get correct ALSFRS-R tests: this is an operation that aims to return
in output a new CSV file containing only all those ALSFRS-R tests that
are correct. In other words, starting from the DataFrame relative to the
input excel sheet “ALSFRS”, we exclude duplicate tests, tests per patients
whose dates are not in the correct sequence and tests with missing data
(for the purposes of the project we also eliminate the “old” version of the
ALSFRS tests). In this way we obtain a new dataset in CSV format with
all the complete ALSFRS-R tests (i.e. those that have all the answers
to the twelve questions and the date of the test). The correctness of the
score/subscore sums of these tests is not checked at this stage, but will
be checked during the mapper phase, with possible correction in case of
wrong sums. The new CSV files will then be read as input with the pandas
function read_csv, which works the same way as the read_excel function
presented in Subsection 5.2.2;

2. Get correct pulmonary function tests: is an operation similar to the previous
one, described in item 1. The purpose of this operation is to analyze the
DataFrame corresponding to the input excel sheet “%FVC” and eliminate
all those tests that are duplicated, tests per patient that are not in the
correct sequence with respect to the dates, and tests that are missing the
date or the result. This will create a new CSV file containing all those
pulmonary function tests with all the correct data. This CSV file will then
be read as input with the function read_csv of pandas;

3. Check “static vars” dates: this operation analyzes the onset date, the di-
agnosis date and, if the patient is dead, the death date. In detail, it must
be verified that the dates are not null and that the onset date precedes
the diagnosis date and, in turn, that the diagnosis date precedes the death
date (if the patient is dead). At the end of this operation the list of patient
IDs that satisfy the following requirements is returned in output. Thus the
patients with null dates will be eliminated;

4. Get patient IDs with ALSFRS-R tests: with this operation we obtain the
list of IDs of patients who have undergone at least one ALSFRS-R test;

5. Check “static vars” procedures: this pre-processing operation concerns NIV

60 Chapter 5. Ontology and Data Mapper Development

(Non-invasive ventilation), PEG (Percutaneous endoscopic gastrostomy)
and Tracheotomy events. In detail for each patient with at least one ALS-
FRS test (the list of IDs computed in item 4) it is checked that if they
have at least one of these events (NIV, PEG or Tracheotomy) the date of
these events is greater than the date of the first ALSFRS-R and, if the
patient died, less than the date of death. From this operation, the list of
patient IDs who have the events that meet this requirement or who have
not experienced these events is returned as output;

6. Check date of death with date of last visit: with this operation we want
to make sure that, in dead patients, the date of death is the date after
any other event. To do this we verify that the date of last visit is less
than the date of death, where the date of last visit is calculated by taking
the maximum date between the ALSFRS-R and pulmonary function tests.
This operation returns the ID list of patients who are alive or have death
as the last event;

7. Get patient IDs to be mapped: this operation, as shown in Code Snip-
pet 5.2, must perform the intersection of the lists of IDs obtained in items
3, 4, 5 and 6. This will output the final list of patient IDs to be mapped,
which contains all those subjects that passed the checks explained above
and therefore have a portion of correct data.

1 def getCorrectPatient(staticVars , alsfrs , fvc,
patientWithCorrectDateList , patientWithALSFRS ,
patientWithCorrectEvent , patientAliveOrWithCorrectDeath):

2 # initialize list
3 correctList = []
4 incorrectList = []
5 # counter for ALSFRS and FVC
6 alsfrsCounter = 0
7 fvcCounter = 0
8 # get unique IDs from staticVars
9 idStaticVars = staticVars.index.unique()

10 # compute the intersection between four groups
11 for value in idStaticVars:
12 if (value in patientWithCorrectDateList) and (value in

patientWithALSFRS) and (value in patientWithCorrectEvent) and (
value in patientAliveOrWithCorrectDeath):

13 correctList.append(value)
14 else:

5.2 ALS Data Mapper Development 61

15 incorrectList.append(value)
16 # get the ALSFRS number for these patients
17 for value in correctList:
18 alsfrsCounter += len(alsfrs.loc[alsfrs.index == value])
19 fvcCounter += len(fvc.loc[fvc.index == value])
20 # ...
21 # return the list
22 return correctList

Code Snippet 5.2: Developed function to get the final list of IDs that need to be mapped.

These are generally the main pre-processing operations, but they are not the only
ones, in fact even in the mapping phase checks are made on individual data to
verify that they are consistent with their domain.
Furthermore, all the functions developed to perform all these pre-processing op-
erations return in output, precisely in a log file, all those visits and patients who
have been excluded from the mapping phase.
In conclusion, these pre-processing operations are essential to avoid mapping
those individuals who have fundamentally flawed data or who do not have suffi-
cient visits or data for the purposes of the project. Some results obtained from
this pre-processing phase are shown in the Chapter 6.

5.2.4 Mapping phase

The Data Mappers after performing the pre-processing operations described in
the Subsection 5.2.3, proceed to initialize the RDF graph on which to append
the RDF triples generated during the data mapping. As can be seen in the
Code Snippet 5.3, we defined a utility function, called initializeGraph, to create
the RDF graph (via the Graph class of rdflib) and associate with it a set of
namespaces, i.e. the URI prefixes of the external ontologies used, using the bind
function of rdflib.

1 def initializeGraph():
2 # create the graph
3 graph = Graph()
4 # bind the imported namespaces (from rdflib.namespace) to a

prefix for more readable output
5 graph.bind("foaf", FOAF)
6 graph.bind("xsd", XSD)
7 graph.bind("rdfs", RDFS)
8 graph.bind("rdf", RDF)

62 Chapter 5. Ontology and Data Mapper Development

9 # get vars from namespaces.py by excluding python vars (e.g.
__init__) and bind the other namespaces

10 namespaceList = vars(ns).items()
11 for x in (namespaceList):
12 if not(x[0].startswith('__') or x[0].startswith('_') or x[0]

== ('Namespace')):
13 # bind the other namespaces to a prefix for more

readable output
14 graph.bind(str(x[0]), x[1])
15 # return the updated graph
16 return graph

Code Snippet 5.3: Initialize RDF graph function

Once the RDF graph has been initialized, the Data Mappers proceed to read the
DataFrames row by row through the pandas function iterrows. For each row
of a DataFrame, we first check that its ID is included in the list of IDs to be
mapped obtained in the preprocessing phase (Subsection 5.2.3), and if this check
is successful we use a set of mapping functions to map all the data contained in
the DataFrame.
Before presenting the mapping functions in detail, we first show two fundamental
functions used within them. The first is a function we defined that allows gener-
ating the URIs of resources that are entered into the RDF graph. This function
is shown in Code Snippet 5.4 and presents two different ways of generating the
URIs of resources:

• For all the resources that already have an ID in the DataFrame, this
ID is initially concatenated with two strings, one relating to the clinic
to which it belongs and one relating to the type of resource. This al-
lows to avoid collisions between IDs of different clinics. The string result-
ing from the concatenation will then be hashed using the hash128 func-
tion of the mmh3 library, which performs a 128-bit hashing. This ID
is then converted to hexadecimal (hex) and appended to the URI prefix
“https://w3id.org/brainteaser/ontology/resource/” (ns.BTO_resource). Fi-
nally, the resulting string, i.e. the one composed of the URI prefix plus the
hexadecimal ID, is used as an input parameter for the constructor of the
URIRef class of rdflib, which has the task of generating the URI of the
resource;

• On the other hand, for those resources that do not have an original ID,
we use the function uuid4 of the uuid library to generate a random UUID

5.2 ALS Data Mapper Development 63

(Universally Unique IDentifier). To standardize the way resource IDs are
represented, we perform the same steps as in the previous point. In a few
words, we execute the function hash128 to hash the UUID and transform
the obtained value into hexadecimal. Finally the URI is generated using
the class URIRef class of rdflib on the string consisting of the URI prefix of
the Brainteaser resources plus the obtained hexadecimal UUID.

So, at each execution of the Data Mapper the function generateURI will generate
the same URI for all those resources that originally have an ID. While a resource
that does not have an ID will have a different URI each time the Data Mapper
is executed, this is due to the fact that the URI is generated randomly.

1 def generateURI(hospitalName = None, className = None, resourceId =
None):

2 if (hospitalName != None and className != None and resourceId !=
None):

3 # create the uri related to an entity for which we have an
id in the original dataset

4 # in this way in the future we can obtain again its uri id
by calling this function

5 elementURI = str(hospitalName)+"_" + str(resourceId) + "_"+
str(className)

6 elementURI = URIRef(ns.BTO_resource[hex(int(mmh3.hash128(
elementURI , signed=False , seed=42)))])

7 else:
8 # if in the original dataset we don't have an id for the

resource we randomly generate it on the fly
9 elementURI = URIRef(ns.BTO_resource[hex(int(mmh3.hash128(str

(uuid.uuid4()), signed=False , seed=42)))])
10 # return the generated URI
11 return elementURI

Code Snippet 5.4: Generate URI function for the Brainteaser resources

The other important function used within the mapping functions is the add func-
tion of the rdflib library, which is responsible for adding RDF triples to the RDF
graph. For example in the Code Snippet 5.5 it is possible to see that the function
add has been used to add the triple that attributes the type of the instance (in our
example the class “Diagnosis”), the triple that has as object a literal (to append
the diagnosis date to the instance via the data property “startDate”), and also
the triple that has as object another instance (to connect the instance of type
“Patient” to the instance of type “Diagnosis” via the object property “undergo”).

64 Chapter 5. Ontology and Data Mapper Development

The variety of input data required the development of different functions to cor-
rectly map all of this data. Furthermore since some data are represented dif-
ferently from clinic to clinic we need to develop different versions of the same
mapping function. So, for each type of data represented with the same standard
for all clinics we have a common mapping function for all Data Mappers (Turin,
Lisbon, Madrid), while for each type of data represented differently by each clinic
we have developed different functions in order to standardize the way in which
these data are mapped.
Based on the structure of input data presented in Subsection 5.2.2 we proceed to
describe in a general way some developed mapping functions, subdividing them
according to the DataFrame on which they work:

• “Static vars” DataFrame:

– addPatient: which creates an instance of the “Patient” class (using its
original ID) on which all its information will then be appended;

– addClinicalTrial: used to add the patient’s clinical trial information;

– addBirthYear: used to store the year of birth of a patient;

– addGender: allows to record the sex of the patient;

– addEthnicity: used to map the patient’s ethnicity to the corresponding
named individual of the “Ethnic Group” class;

– addPatientStatus: function whose purpose is to save the status (alive
or dead) of the patient and, if this patient is dead, to record the date
of death;

– addDiagnosis: this is the function presented in Code Snippet 5.5. It
is responsible for adding the “Diagnosis” event with its date to the
patient;

– addOnset: function that maps all data referring to the “Onset” event,
such as age (in years) at onset, date, type and location of onset;

– addHeightWeightWeightloss: used to map the patient’s weight and
height data that are usually collected at the first visit;

– addBeforeOnset: for recording all information/events that occurred
before the onset, such as weight before the first symptoms;

– addRelative: used to add information about the patient’s family his-
tory with respect to ALS disease;

5.2 ALS Data Mapper Development 65

– addOccupation: used to map the patient’s occupation to the corre-
sponding named individual in the “Occupation” class;

– addRetiredAtDiagnosis: for indicating whether the patient was retired
at the time of diagnosis;

– addNIV, addTracheostomy, addPEG: function that stores information
about NIV, PEG, and Tracheotomy procedures performed on the pa-
tient;

– addSmoking: if the patient is a smoker, this function stores that be-
havior;

– addDisease: allows to map all diseases of the patient to the corre-
sponding named individual of class “Disease or Disorder”;

– addGene: used to save information about genetic mutations that have
occurred on a patient;

• “ALSFRS-R” DataFrame:

– addQuestionnaire: this function, in addition to checking and correct-
ing any incorrect sums, maps data of ALSFRS-R tests undertaken by
the patient;

• “%FVC” DataFrame:

– addSpiro: function that allows to record the results of pulmonary tests
performed by the patient;

• “OWD vars” DataFrame:

– addBloodTest: used to map all blood test values performed at diagnosis
on the patient;

– addTraumaAndInterventionLast5Years and addTraumaAndIntervention-
MoreThan5Years: for appending all information about the patient’s
trauma and surgeries that occurred before onset (in the previous five
years or more);

– addSmokingOWD: function that adds some information about the
patient’s smoking behavior, such as start and end year, number of
cigarettes per day etc.

66 Chapter 5. Ontology and Data Mapper Development

1 def addDiagnosis(graph , patientID , patientURI , dateOfDiagnosis):
2 # initialize the diagnosis event with 999 for those who do not

have the date of diagnosis
3 diagnosis = '999'
4 # check if date is not null
5 if not pd.isna(dateOfDiagnosis):
6 # get diagnosis URI
7 diagnosis = utils_als.generateURI()
8 # add diagnosis to graph
9 graph.add((diagnosis , RDF.type, classes.diagnosis))

10 # add start date to diagnosis
11 graph.add((diagnosis , ns.BTO_schema['startDate'], Literal(

dateOfDiagnosis.date(), datatype=XSD.date)))
12 # link diagnosis to the patient
13 graph.add((patientURI , ns.BTO_schema['undergo'], diagnosis))
14 else:
15 print('[WARNING] Date of diagnosis not given for patient ID:

%s, (Cannot add the diagnosis to the patient!)' % (patientID))
16 # return the updated graph and the diagnosis URI
17 return graph , diagnosis

Code Snippet 5.5: An example of a mapping function

To conclude, it is important to explain that all mapping functions, through the
use of the pandas library tools and Python operators (arithmetic, comparison,
logical and membership), check if the data they are going to map is consistent
with its domain (for example, in Code Snippet 5.5 it is checked that the date of
diagnosis is not null). If the check is positive the data is effectively mapped, but
if it is negative the corresponding error is written in the log file. In this way all
possible errors due to this phase are gathered in the log file.

5.2.5 Output files
The Data Mapper execution ends with the serialization of the RDF graph ob-
tained in the previous mapping phase. The serialization is done by means of the
serializeGraph function (shown in the Code Snippet 5.6) developed as a utility
function. This function exploits within itself the serialize function of the li-
brary rdflib, which allows to serialize a graph RDF in multiple formats. Through
its input parameter “format” it is possible to declare which format of serialization
to use. In this way at the end of the serialization we obtain in output a file with
the declared format. In our Data Mapper we have mainly used three serialization
formats, that is Turtle, RDF/XML and JSON-LD.

5.2 ALS Data Mapper Development 67

1 def serializeGraph(graph , savePath , serializationType):
2 print("----- start serialization (" + str(serializationType) +

") -----")
3 with open(savePath , 'w', encoding="utf -8") as file:
4 file.write(graph.serialize(format=serializationType))
5 print("----- end serialization (" + str(serializationType) + ")

-----")
6

Code Snippet 5.6: Function that performs the serialization of an RDF graph.

So the output files returned by the ALS Data Mapper at the end of the execution
are the following:

• three different files for each clinic with extensions .ttl, .rdf, and .json that
come from the serialization of the RDF dataset in Turtle, RDF/XML, and
JSON-LD formats;

• three different files with extensions .ttl, .rdf and .json concerning the “merged”
RDF dataset obtained by merging the RDF datasets of the different clinics
and serialized in Turtle, RDF/XML and JSON-LD formats;

• a log file with a .txt extension for each clinic, containing data from pre-
processing operations and errors that occurred in the mapping phase.

To conclude, an example of an RDF dataset serialized in the Turtle format is
shown in the Code Snippet 5.7 of the Subsection 5.2.6.

5.2.6 Data mapping example

In this subsection we present an example of data mapping performed on a patient
taken from the Turin dataset. In the Figure 5.9 we present the patient’s row
related to the “static vars” sheet, while the Figure 5.10 and Figure 5.11 represent
an ALSFRS-R test and a pulmonary function test taken from the “ALSFRS”
and “%FVC” sheets, respectively. This is a patient that has passed all the checks
done in the pre-processing phase and therefore is effectively a patient that can be
mapped. So, using the ALS Data Mapper of Turin, which exploits the mapping
functions defined in Subsection 5.2.4, we proceed to map all its data in the RDF
graph.
The resulting RDF graph obtained from the mapping phase is shown in the
Figure 5.12 and Figure 5.13. We decided to split the graph representation into

68 Chapter 5. Ontology and Data Mapper Development

Figure 5.9: An example row from the “static vars” sheet of the Turin dataset.

Figure 5.10: An example row from the “ALSFRS” sheet of the Turin dataset.

Figure 5.11: An example row from the “%FVC” sheet of the Turin dataset.

5.2 ALS Data Mapper Development 69

Figure 5.12: Example of RDF graph about patient static vars.

Figure 5.13: Example of RDF graph about patient visits.

70 Chapter 5. Ontology and Data Mapper Development

two images for reasons of limited space on the page and to make these images
more readable. However the node colored in red inside the two images represents
the same resource “Patient” and therefore it is possible to imagine it as a single
graph.
If we look at the two images in more detail, it is possible to see that the Figure 5.12
contains the graph obtained by mapping the data in Figure 5.9, i.e. the data
related to the “static vars” sheet. While figure Figure 5.13 illustrates the graph
obtained by mapping the data contained in Figure 5.10 and Figure 5.11, i.e., the
data related to the “ALSFRS” and “%FVC” sheets.
It is important to state that the “DateOfDiagnosis” and “DateOf1stSymptoms”
in the Figure 5.9 are given as the 15th day of the month, but for project reasons
both dates are mapped to the first day of the month. In fact looking at the graph
in the Figure 5.12 it is possible to see that these dates have been changed.
Finally, in the Code Snippet 5.7, we present the serialization of the RDF graph,
seen as a union of the Figure 5.12 and Figure 5.13, in the Turtle format.

1 @prefix BTO_ni: <https://w3id.org/brainteaser/ontology/named -
individual/> .

2 @prefix BTO_resource: <https://w3id.org/brainteaser/ontology/
resource/> .

3 @prefix BTO_schema: <https://w3id.org/brainteaser/ontology/schema/>
.

4 @prefix MAXO: <http://purl.obolibrary.org/obo/MAXO_ > .
5 @prefix NCIT: <http://purl.obolibrary.org/obo/NCIT_ > .
6 @prefix OGG: <http://purl.obolibrary.org/obo/OGG_> .
7 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax -ns#> .
8 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
9

10 BTO_resource:0x6666d08290747abe4fc826f7ac476b41 a NCIT:C16960 ;
11 BTO_schema:alive false ;
12 BTO_schema:dateOfDeath "2004-02-03"^^xsd:date ;
13 BTO_schema:enrolledIn BTO_resource:0

xfccacb146e25445fde2d877425104862 ;
14 BTO_schema:ethnicity BTO_ni:Caucasian ;
15 BTO_schema:hasDisease BTO_ni:Amyotrophic_Lateral_Sclerosis ;
16 BTO_schema:hasOccupation BTO_ni:Health_professionals ;
17 BTO_schema:sex "Female"^^rdf:langString ;
18 BTO_schema:undergo BTO_resource:0

x5ab09722a30d4de03814450c6625c01e ,
19 BTO_resource:0x8b3a199db184988dd2c02bd1b41a16f6 ,
20 BTO_resource:0xb01c41720b596c996c874eb043b78863 ,
21 BTO_resource:0xb62ee4b6efdb470c9b54c4c665aaa8b1 ,

5.2 ALS Data Mapper Development 71

22 BTO_resource:0xd3c3e69a51f6dc74feb15cea76a55240 ,
23 BTO_resource:0xf1e680a22ece6255f13ce2757cbe4447 ;
24 BTO_schema:yearOfBirth "1947"^^xsd:gYear .
25

26 BTO_resource:0xfccacb146e25445fde2d877425104862 a BTO_schema:
Clinical_Trial_Participation ;

27 BTO_schema:clinicalTrialDescription "This is the retrospective
clinical trial of the patient 0x6666d08290747abe4fc826f7ac476b41
"^^rdf:langString ;

28 BTO_schema:endDate "2004-02-03"^^xsd:date ;
29 BTO_schema:partecipate BTO_ni:ClinicalTrial_ALS_Turin_1 ;
30 BTO_schema:startDate "2002-09-15"^^xsd:date .
31

32 BTO_resource:0x5ab09722a30d4de03814450c6625c01e a NCIT:C74589 ;
33 BTO_schema:consists BTO_resource:0

x4ce3987bc5c599ff7a3e7e9e581d84c0 ;
34 BTO_schema:startDate "2002-09-15"^^xsd:date .
35

36 BTO_resource:0x4ce3987bc5c599ff7a3e7e9e581d84c0 a BTO_schema:ALSFRS -
R ;

37 BTO_schema:alsfrs -r-tot 45 ;
38 BTO_schema:alsfrs_1 3 ;
39 BTO_schema:alsfrs_10 4 ;
40 BTO_schema:alsfrs_11 4 ;
41 BTO_schema:alsfrs_12 4 ;
42 BTO_schema:alsfrs_2 4 ;
43 BTO_schema:alsfrs_3 3 ;
44 BTO_schema:alsfrs_4 3 ;
45 BTO_schema:alsfrs_5 4 ;
46 BTO_schema:alsfrs_6 4 ;
47 BTO_schema:alsfrs_7 4 ;
48 BTO_schema:alsfrs_8 4 ;
49 BTO_schema:alsfrs_9 4 ;
50 BTO_schema:bulbar_subscore 10 ;
51 BTO_schema:motor_subscore 23 ;
52 BTO_schema:respiratory_subscore 12 .
53

54 BTO_resource:0x8b3a199db184988dd2c02bd1b41a16f6 a NCIT:C15220 ;
55 BTO_schema:startDate "2002-09-01"^^xsd:date .
56

57 BTO_resource:0xb01c41720b596c996c874eb043b78863 a NCIT:C39564 ;
58 BTO_schema:consists BTO_resource:0

xded05bf03f250485ae2f2f07f2827fb2 ;
59 BTO_schema:startDate "2002-09-15"^^xsd:date .

72 Chapter 5. Ontology and Data Mapper Development

60

61 BTO_resource:0xded05bf03f250485ae2f2f07f2827fb2 a MAXO:0000487 ;
62 BTO_schema:Height "1.58"^^xsd:float ;
63 BTO_schema:Weight "60.0"^^xsd:float ;
64 BTO_schema:moreThan10PercentWeightloss false .
65

66 BTO_resource:0xb62ee4b6efdb470c9b54c4c665aaa8b1 a NCIT:C25279 ;
67 BTO_schema:age_onset "53.96236746478172"^^xsd:float ;
68 BTO_schema:axial false ;
69 BTO_schema:bulbar false ;
70 BTO_schema:consists BTO_resource:0

x947927a14d7205efa215cd3498ae067e ;
71 BTO_schema:generalized false ;
72 BTO_schema:limbs true ;
73 BTO_schema:site BTO_ni:upper -distal -right -limb ;
74 BTO_schema:startDate "2001-01-01"^^xsd:date .
75

76 BTO_resource:0x947927a14d7205efa215cd3498ae067e a MAXO:0000487 ;
77 BTO_schema:mixedMN true ;
78 BTO_schema:prevalentLMN false ;
79 BTO_schema:prevalentUMN false .
80

81 BTO_resource:0xd3c3e69a51f6dc74feb15cea76a55240 a BTO_schema:
Before_Onset ;

82 BTO_schema:consists BTO_resource:0
x9a7b7511dd55d9468298e5782e2b01d2 .

83

84 BTO_resource:0x9a7b7511dd55d9468298e5782e2b01d2 a MAXO:0000487 ;
85 BTO_schema:Weight "60.0"^^xsd:float .
86

87 BTO_resource:0xf1e680a22ece6255f13ce2757cbe4447 a NCIT:C74589 ;
88 BTO_schema:consists BTO_resource:0

x24438cb6a6960c94ab63d9dfcc49fdb9 ;
89 BTO_schema:startDate "2003-01-28"^^xsd:date .
90

91 BTO_resource:0x24438cb6a6960c94ab63d9dfcc49fdb9 a NCIT:C38081 ;
92 BTO_schema:FVCrelative "103.7"^^xsd:float .

Code Snippet 5.7: Serialization in Turtle format of the example RDF graph.

5.2.7 CSV export
In Subsection 5.2.1, specifically in Figure 5.8, we presented the software archi-
tecture of the Data Mapper, which involved developing a module capable of

5.2 ALS Data Mapper Development 73

exporting data in CSV format from the RDF graph. For the development of this
module we used the query function of the rdflib library, which allows to query
the RDF graph through SPARQL queries.
Unfortunately, the current version of rdflib is not optimized to run complex
SPARQL queries and also does not implement all SPARQL constructs such as
“IF” and “EXISTS”. In addition, running a SPARQL query that does not have
the above constructs takes too much time to output the results.
We solved this problem by using GraphDB (see Section 2.6). GraphDB is one
of the best RDF graph databases that allows to create a repository on which
to import serialized RDF datasets, and run SPARQL queries on them in an ef-
ficient way, through its “SPARQL” tool shown in Figure 2.5. The “SPARQL”
tool of GraphDB presents an editor in which it is possible to write or copy and
paste ready-made queries, such as the one contained in Code Snippet 5.8. This
SPARQL query, when executed on a serialized RDF dataset of Brainteaser, al-
lows to output visits data regarding ALSFRS-R and pulmonary function tests.
Once a query is executed, GraphDB allows the results to be exported in multiple
formats including CSV format, which is the useful format for AI models.
To conclude, we can say that compared to the architecture presented in Figure 5.8
we can see the “CSV export” module moved from the RDF Graph Builder to the
“Serialization” module. This is due to the fact that the execution of SPARQL
queries to get the data in CSV are performed on the serialized RDF datasets.

1 PREFIX BTO_schema: <https://w3id.org/brainteaser/ontology/schema/>
2 PREFIX NCIT: <http://purl.obolibrary.org/obo/NCIT_ >
3 SELECT ?id ?date_spiro ?fvcValue ?date_alsfrs_r ?alsfrs_r_tot_score

?bulbar_subscore ?motor_subscore ?respiratory_subscore ?q1 ?q2 ?
q3 ?q4 ?q5 ?q6 ?q7 ?q8 ?q9 ?q10 ?q11 ?q12 WHERE {

4 {
5 # Spiro
6 SELECT ?id ?date_spiro ?fvcValue WHERE {
7 ?idURI a NCIT:C16960 ;
8 BTO_schema:undergo ?eventURI .
9 ?eventURI a NCIT:C74589 ;

10 BTO_schema:startDate ?date_spiro ;
11 BTO_schema:consists ?testURI .
12 ?testURI a NCIT:C38081 ;
13 BTO_schema:FVCrelative ?fvcValue .
14 bind(substr((str(?idURI)), 48) as ?id)
15 } ORDER BY ?id ?date_spiro
16 }

74 Chapter 5. Ontology and Data Mapper Development

17 UNION
18 {
19 # ALSFRS -R
20 SELECT ?id ?date_alsfrs_r ?alsfrs_r_tot_score ?bulbar_subscore ?

motor_subscore ?respiratory_subscore ?q1 ?q2 ?q3 ?q4 ?q5 ?q6 ?q7
?q8 ?q9 ?q10 ?q11 ?q12 WHERE {

21 ?idURI a NCIT:C16960 ;
22 BTO_schema:undergo ?eventURI .
23 ?eventURI a NCIT:C74589 ;
24 BTO_schema:startDate ?date_alsfrs_r ;
25 BTO_schema:consists ?qRURI .
26 ?qRURI a BTO_schema:ALSFRS -R ;
27 BTO_schema:alsfrs -r-tot ?alsfrs_r_tot_score ;
28 BTO_schema:bulbar_subscore ?bulbar_subscore ;
29 BTO_schema:motor_subscore ?motor_subscore ;
30 BTO_schema:respiratory_subscore ?respiratory_subscore ;
31 BTO_schema:alsfrs_1 ?q1 ;
32 BTO_schema:alsfrs_2 ?q2 ;
33 BTO_schema:alsfrs_3 ?q3 ;
34 BTO_schema:alsfrs_4 ?q4 ;
35 BTO_schema:alsfrs_5 ?q5 ;
36 BTO_schema:alsfrs_6 ?q6 ;
37 BTO_schema:alsfrs_7 ?q7 ;
38 BTO_schema:alsfrs_8 ?q8 ;
39 BTO_schema:alsfrs_9 ?q9 ;
40 BTO_schema:alsfrs_10 ?q10 ;
41 BTO_schema:alsfrs_11 ?q11 ;
42 BTO_schema:alsfrs_12 ?q12 .
43 bind(substr((str(?idURI)), 48) as ?id)
44 } ORDER BY ?id ?date_alsfrs
45 }
46 }ORDER BY ?id ?date_alsfrs_r ?date_spiro

Code Snippet 5.8: An example of a SPARQL query to get visits from the RDF dataset of
Brainteaser resources.

Chapter 6

Dataset statistics

The purpose of this chapter is to show some statistical data on datasets pro-
vided by ALS partner clinics. For each of these datasets we will present both
some general statistic data related to their content and the results obtained after
performing the pre-processing operations presented in the Subsection 5.2.3. The
latter results are intended to show how many patients were actually mapped to
the respective RDF datasets and how many had to be discarded due to some
unmet requirements. In this chapter we will focus in particular on the Turin
(Section 6.1) and Lisbon (Section 6.2) datasets, for which the development of
the respective Data Mapper has been completed, while the Madrid dataset is not
taken into account as the development of the corresponding Data Mapper is still
in progress. Finally, in Section 6.3, we present the statistical data obtained on
the merged RDF dataset.

6.1 Turin dataset

The statistic data regarding the dataset provided by the “Universitá degli Studi
di Torino” (UNITO, Italy), our clinical partner, are represented in the Table 6.1.
This table presents the total number of patients, some general statistical data on
patient characteristics, and the total number of ALSFRS-R tests and pulmonary
function tests contained within the dataset. In detail, the Turin dataset con-
tains 3257 patients, 15006 ALSFRS-R tests and 2890 pulmonary function tests.
On these patients and visits, the pre-processing operations described in Sub-
section 5.2.3 were performed, which led to obtaining additional statistical data
indicating which patients satisfied certain requirements and which did not. It is
important to note that the statistical data obtained from the pre-processing op-

75

76 Chapter 6. Dataset statistics

Turin Dataset Lisbon Dataset

Total Patients 3257 1562

Gender
1781 Male 884 Male

1476 Female 678 Female

Ethnicity
3248 Caucasian 1530 Caucasian

7 African 27 African

2 Asian 5 Asian

Birth Year 1906 - 1990 1991 - 2022

Diagnosis Year 1995 - 2018 1994 - 2021

Patient status
564 Alive 561 Alive

2693 Death 999 Death1

Total ALSFRS/ALSFRS-R 15006 7446

Total PFT2 2890 2631
1 Two patients do not present status
2 Pulmonary Function Tests

Table 6.1: Statistics on input datasets.

6.1 Turin dataset 77

erations are taken from the log file generated as output by Data Mapper. Based
on the subdivision of the pre-processing functions presented in Subsection 5.2.3,
we proceed to describe the statistical data obtained:

1. Get correct ALSFRS-R tests:

Total number of ALSFRS/ALSFRS-R: 15006
Number of correct ALSFRS-R: 14979
Number of incorrect ALSFRS/ALSFRS-R: 27 (duplicated ALSFRS-R)

This operation allowed us to identify 14979 correct ALSFRS-R tests com-
pared with 15006 total, since 27 tests were duplicates;

2. Get correct pulmonary function tests:

Total number of Spiro: 2890
Number of correct Spiro: 2873
Number of incorrect Spiro: 17 (duplicated Spiro)

Through this operation, as happened for the ALSFRS-R tests, 17 duplicate
pulmonary function tests were detected, so the total number of correct tests
is 2873. In the log file we have used the term “Spiro” to refer to pulmonary
function tests, so the two terms can be considered equivalent;

3. Check “static vars” dates:

Number of patients with onset/diagnosis/death (if patient is
dead) in the correct sequence: 3255↪

Number of patients with onset/diagnosis/death (if patient is
dead) not in the correct sequence: 2↪

The function detected 3255 patients meeting the following requirement:
dateOfOnset ≤ dateOfDiagnosis ≤ dateOfDeath (if the patient is dead).
So only 2 patients out of a total of 3257 have onset/diagnosis/death not in
the correct order;

4. Get patient IDs with ALSFRS-R tests:

Number of patients with at least one ALSFRS-R: 1990

With this operation, we obtained the patients who had at least one ALSFRS-
R test performed (1990). Unfortunately, 1267 patients of 3257 have never

78 Chapter 6. Dataset statistics

had an ALSFRS-R test and are therefore excluded from the next mapping
step;

5. Check “static vars” procedures:

Number of patients with at least one ALSFRS-R: 1990
Number of patients with no events (NIV and PEG and

Tracheostomy): 784↪

Number of patients with events (NIV or PEG or Tracheostomy)
after the first ALSFRS-R and before the date of death:
1099

↪

↪

Number of patients with no events (NIV and PEG and
Tracheostomy) + Number of patients with events (NIV or
PEG or Tracheostomy) after the first ALSFRS-R and before
the date of death: 1883

↪

↪

↪

Number of patients with incorrect events (NIV or PEG or
Tracheostomy): 107↪

This operation is performed on patients who have at least one ALSFRS-
R (1990), since it must verify that: dateOfFirstALSFRS-R ≤ eventDate
(NIV/PEG/Tracheostomy) ≤ dateOfDeath (the second comparison is per-
formed only if the patient is dead). The results obtained show that 1099
patients meet the requirement and 784 patients have no event (NIV and
PEG and Tracheostomy). The patients in these two sets (1883 in total) are
exactly those subjects who should be mapped, while the 107 patients who
do not meet the requirement should be discarded;

6. Check date of death with date of last visit:

Number of patients with at least one ALSFRS-R: 1990
Number of alive patients: 282
Number of patients with date of death >= date of last visit:

1677↪

Number of alive patients + Number of patients with date of
death >= date of last visit: 1959↪

Number of patients with date of death < date of last visit:
31↪

Number of patients with invalid status: 0

6.2 Lisbon dataset 79

With this operation we want to obtain all those patients (among those with
at least one ALSFRS-R) who are alive (282), or have death as the last event
(1677). This operation is necessary to avoid mapping those patients who
have a visit after death, which in reality is unfeasible. So from the data
obtained we see that 31 patients do not meet this requirement;

7. Get patient IDs to be mapped:

Number of patients: 3257
Number of patients with correct data: 1854 (total ASLFRS-R:

14413, total Spiro: 2514)↪

Number of patients with incorrect data (excluded from
mapping): 1403↪

This final function has the task of intersecting all the corrected patient
sets obtained in the previous pre-processing operations in order to obtain
the final list of patients to be mapped. For the Turin dataset we see that
1854 are the patients that will be mapped, while 1403 are excluded from the
mapping. In addition 14413 ALSFRS-R tests and 2514 pulmonary function
tests will also be mapped, which correspond to the tests performed on the
1854 patients.

6.2 Lisbon dataset
The Lisbon dataset was provided to us by the “Instituto de medicina molecolare
João Lobo Antunes” (iMM, Portugal), which is one of the three clinical partners
for ALS. The statistical data concerning the Lisbon dataset are shown in the Ta-
ble 6.1, where there are the total number of patients, some general statistical data
on their characteristics, and the total number of ALSFRS-R tests and pulmonary
function tests contained in the dataset. In detail, within the Lisbon dataset there
are 1562 patients, 7446 ALSFRS-R tests, and 2631 pulmonary function tests. As
also explained in the Section 6.1, the pre-processing operations (described in the
Subsection 5.2.3) were performed in order to obtain additional statistical data
indicating which patients could be mapped and which could not. It is important
to note that the statistical data of the pre-processing operations that we are going
to present below are taken from the Lisbon log file. Following the subdivision of
the preprocessing functions presented in Subsection 5.2.3, we proceed to describe
the obtained statistical data:

80 Chapter 6. Dataset statistics

1. Get correct ALSFRS-R tests:

Total number of ALSFRS/ALSFRS-R: 7446
Number of correct ALSFRS-R: 7050
Number of incorrect ALSFRS/ALSFRS-R: 396 (1 test with wrong

dates in the sequence and 395 test with missing data)↪

This operation allowed us to identify 7050 correct ALSFRS-R tests and 396
incorrect tests, as they had missing data or had the dates not in the correct
sequence;

2. Get correct pulmonary function tests:

Total number of Spiro: 2631
Number of correct Spiro: 2580
Number of incorrect Spiro: 51 (missing data)

Through this operation, 2580 correct pulmonary function tests and 51 tests
with missing data were identified. In the log file we have used the term
“Spiro” to refer to pulmonary function tests, so the two terms can be con-
sidered equivalent;

3. Check “static vars” dates:

Number of patients with onset/diagnosis/death (if patient is
dead) in the correct sequence: 1530↪

Number of patients with onset/diagnosis/death (if patient is
dead) not in the correct sequence: 32↪

The function was able to detect 1530 patients who met the following rule:
dateOfOnset ≤ dateOfDiagnosis ≤ dateOfDeath (if the patient died). So,
32 patients out of a total of 1562 have onset/diagnosis/death not in the
correct order;

4. Get patient IDs with ALSFRS-R tests:

Number of patients with at least one ALSFRS-R: 1383

With this operation, we obtained that 1383 patients had at least one ALSFRS-
R test performed. So, 179 patients of 1562 have never had an ALSFRS-R
test and are therefore excluded from the next mapping step;

5. Check “static vars” procedures:

6.2 Lisbon dataset 81

Number of patients with at least one ALSFRS-R: 1383
Number of patients with no events (NIV and PEG and

Tracheostomy): 29↪

Number of patients with events (NIV or PEG or Tracheostomy)
after the first ALSFRS-R and before the date of death:
677

↪

↪

Number of patients with no events (NIV and PEG and
Tracheostomy) + Number of patients with events (NIV or
PEG or Tracheostomy) after the first ALSFRS-R and before
the date of death: 706

↪

↪

↪

Number of patients with incorrect events (NIV or PEG or
Tracheostomy): 677↪

This operation is performed on patients who have at least one ALSFRS-
R (1383), since it must verify that: dateOfFirstALSFRS-R ≤ eventDate
(NIV/PEG/Tracheostomy) ≤ dateOfDeath (the second comparison is per-
formed only if the patient is dead). The results obtained show that 677
patients meet the requirement and 29 patients have no event (NIV and
PEG and Tracheostomy). These patients (706 in total) are exactly the
subjects that should be mapped. Unfortunately there are 677 patients who
should be discarded;

6. Check date of death with date of last visit:

Number of patients with at least one ALSFRS-R: 1383
Number of alive patients: 483
Number of patients with date of death >= date of last visit:

900↪

Number of alive patients + Number of patients with date of
death >= date of last visit: 1383↪

Number of patients with date of death < date of last visit: 0
Number of patients with invalid status: 0

With this operation we want to obtain all those patients (among those
with at least one ALSFRS-R) who are alive (483), or have death as the last
event (900). This operation is necessary to avoid mapping those patients
who have a visit after death, which in reality is unfeasible. Thus, in this
dataset all 1383 patients meet the requirement;

82 Chapter 6. Dataset statistics

7. Get patient IDs to be mapped:

Number of patients: 1562
Number of patients with correct data: 705 (total ASLFRS-R:

4698, total Spiro: 1652)↪

Number of patients with incorrect data (excluded from
mapping): 857↪

This final function has the task of intersecting all the corrected patient sets
obtained in the previous pre-processing operations in order to obtain the
final list of patients to be mapped. For the Lisbon dataset we have that
705 are the patients that will be mapped, while 857 are excluded from the
mapping because they are patients with incorrect data. In addition, 4698
ALSFRS-R tests and 1652 pulmonary function tests will be mapped, which
correspond to the tests performed on the 705 patients.

6.3 Merged dataset
To conclude we want to present some statistical data on the merged version of
the serialized RDF dataset, which was obtained by merging the Turin and Lisbon
RDF datasets. This merging operation resulted in a total of 2559 patients. where
1854 are from the Turin dataset and 705 are patients from the Lisbon dataset. In
the same way, the 14413 ALSFRS-R and 2514 pulmonary function tests of Turin
were combined with the 4698 ALSFRS-R and 1652 pulmonary function tests of
Lisbon, thus obtaining a total of 19111 ALSFRS-R and 4166 pulmonary function
tests.
All these statistics and additional patient-related information of the merged RDF
dataset are presented in the Table 6.2.

6.3 Merged dataset 83

Merged Dataset

Total Patients 25591

Gender
1387

1172 Female

Ethnicity
2541 Caucasian

15 African

3 Asian

Birth Year 1912 - 1993

Diagnosis Year 1995 - 2021

Patient status
400 Alive

2159 Death

Total ALSFRS/ALSFRS-R 191112

Total PFT4 41663

1 1854 from Turin, 705 from Lisbon
2 14413 from Turin, 4698 from Lisbon
3 2514 from Turin, 1652 from Lisbon
4 Pulmonary Function Tests

Table 6.2: Statistics on merged RDF datasets.

84

Chapter 7

Conclusions and Future Work

The Brainteaser Ontology (BO) has the purpose to jointly model both Amy-
otrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS) data. In this thesis,
the goal was firstly to design and develop the part of the BO that deals with
retrospective data management for Amyotrophic Lateral Sclerosis (ALS). Both
the ALS and MS parts of the BO were co-designed in close collaboration with
medical partners and domain experts. We used this approach to incorporate ex-
pert knowledge into the BO and, at the same time, to validate all design choices.
To this end, we operated iteratively, producing several intermediate versions of
the ontology and discussing them with our domain experts. After receiving and
analyzing the anonymized retrospective data from the partner clinics, we re-
fined the final details of the BO and the resulting version was approved by the
domain experts. This last developed version became the first official version
of the BO (Brainteaser Ontology v1.0), which documentation can be found at
https://w3id.org/brainteaser/ontology.
Subsequently to this, the second goal was to develop the ALS Data Mapper that is
responsible for mapping the retrospective data provided by the ALS partner clin-
ics into a structured RDF graph compliant with the Brainteaser Ontology. Since
the retrospective data comes from different clinics (Turin, Lisbon and Madrid),
each of them using their own notation and standards for knowledge management,
it was necessary to develop a modular architecture with several Data Mappers,
one for each ALS clinic, with the aim of unifying all the knowledge provided by
the partners and collecting it in a single RDF graph.
The complete development of the Turin and Lisbon data mappers allowed us to
map their retrospective datasets, obtaining in output the first RDF dataset of
Brainteaser resources. This RDF dataset is obtained by merging the Turin and

85

https://w3id.org/brainteaser/ontology

86 Chapter 7. Conclusions and Future Work

Lisbon RDF datasets and contains within it 2559 patients and 23277 visits (19111
ALSFRS-R and 4166 Pulmonary Function Tests).
The merged RDF dataset was then imported on GraphDB and queried with
SPARQL queries, in order to export two datasets in CSV format: one containing
the patients data and one containing the visits data. At the moment these CSV
datasets are used by teams involved in AI modeling, and they are already avail-
able for the first Open Evaluation Challenge which is focused on predicting the
ALS progression.
The source code of the Data Mappers, the serialized RDF datasets in different
formats (Turtle, JSON-LD, RDF/XML) and the CSV datasets are available at
https://bitbucket.org/brainteaser-health/mappers/src/master/ALS/.
As future work, it will be necessary to finish the development of the Madrid
Data Mapper in order to map its data as well and thus complete all the part
related to retrospective data. Then it will be necessary to start developing a
new version of the ontology for the integration with the prospective data, and a
Data Mapper for mapping them. In conclusion the Brainteaser Ontology and the
Brainteaser resources will be integrated with the EOSC (European Open Science
Cloud) services.

https://bitbucket.org/brainteaser-health/mappers/src/master/ALS/

References

[Andersen and Al-Chalabi, 2011] Andersen, P. M. and Al-Chalabi, A. (2011).
Clinical genetics of amyotrophic lateral sclerosis: what do we really know?
Nature Reviews Neurology, 7(11):603–615.

[Auer et al., 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,
R., and Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001).
The semantic web. Scientific american, 284(5):34–43.

[Bizer et al., 2009] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked
Data: The Story so Far. International Journal on Semantic Web and Infor-
mation Systems, 5:1–22.

[Carmody et al., 2019] Carmody, L. C., Zhang, X. A., Vasilevsky, N. A.,
Mungall, C. J., Matentzoglu, N., and Robinson, P. N. (2019). Medical Ac-
tion Ontology (MAxO). Proceedings of the 10th International Conference on
Biomedical Ontology (ICBO 2019).

[Cedarbaum et al., 1999] Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C.,
Hilt, D., Thurmond, B., Nakanishi, A., Group, B. A. S., complete listing of the
BDNF Study Group, A., et al. (1999). The ALSFRS-R: a revised ALS func-
tional rating scale that incorporates assessments of respiratory function. Jour-
nal of the neurological sciences, 169(1-2):13–21.

[Fang et al., 2017] Fang, T., Al Khleifat, A., Stahl, D. R., Lazo La Torre, C.,
Murphy, C., LicalS, U.-M., Young, C., Shaw, P. J., Leigh, P. N., and Al-
Chalabi, A. (2017). Comparison of the King’s and MiToS staging systems for
ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18(3-
4):227–232.

87

88 REFERENCES

[Gennari et al., 2003] Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso,
W. E., Crubézy, M., Eriksson, H., Noy, N. F., and Tu, S. W. (2003). The evo-
lution of Protégé: an environment for knowledge-based systems development.
International Journal of Human-computer studies, 58(1):89–123.

[Graves et al., 2007] Graves, M., Constabaris, A., and Brickley, D. (2007). Foaf:
Connecting people on the semantic web. Cataloging & classification quarterly,
43(3-4):191–202.

[He et al., 2014] He, Y., Liu, Y., and Zhao, B. (2014). OGG: a Biological On-
tology for Representing Genes and Genomes in Specific Organisms. In ICBO,
pages 13–20. Citeseer.

[Heath and Bizer, 2011] Heath, T. and Bizer, C. (2011). Linked data: Evolving
the web into a global data space. Synthesis lectures on the semantic web: theory
and technology, 1(1):1–136.

[Hoehndorf et al., 2015] Hoehndorf, R., Schofield, P. N., and Gkoutos, G. V.
(2015). The role of ontologies in biological and biomedical research: a func-
tional perspective. Briefings in bioinformatics, 16(6):1069–1080.

[Kumar and Smith, 2005] Kumar, A. and Smith, B. (2005). Oncology ontology
in the NCI thesaurus. In Conference on Artificial Intelligence in Medicine in
Europe, pages 213–220. Springer.

[Lechtzin et al., 2018] Lechtzin, N., Cudkowicz, M. E., de Carvalho, M., Genge,
A., Hardiman, O., Mitsumoto, H., Mora, J. S., Shefner, J., Van den Berg,
L. H., and Andrews, J. A. (2018). Respiratory measures in amyotrophic lat-
eral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration,
19(5-6):321–330.

[Morelot-Panzini et al., 2019] Morelot-Panzini, C., Bruneteau, G., and Gonzalez-
Bermejo, J. (2019). NIV in amyotrophic lateral sclerosis: the ’when’ and ’how’
of the matter. Respirology, 24(6):521–530.

[Musen, 2015] Musen, M. A. (2015). The protégé project: a look back and a look
forward. AI matters, 1(4):4–12.

[Noy and Mcguinness, 2001] Noy, N. and Mcguinness, D. (2001). Ontology De-
velopment 101: A Guide to Creating Your First Ontology. Knowledge Systems
Laboratory, 32.

REFERENCES 89

[Ong et al., 2017] Ong, E., Xiang, Z., Zhao, B., Liu, Y., Lin, Y., Zheng, J.,
Mungall, C., Courtot, M., Ruttenberg, A., and He, Y. (2017). Ontobee: a
linked ontology data server to support ontology term dereferencing, linkage,
query and integration. Nucleic acids research, 45(D1):D347–D352.

[Pérez et al., 2009] Pérez, J., Arenas, M., and Gutierrez, C. (2009). Semantics
and complexity of SPARQL. ACM Transactions on Database Systems (TODS),
34(3):1–45.

	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	The Brainteaser project
	The Brainteaser Ontology
	Scope and organization of the thesis

	State of the Art
	The Semantic Web and Linked Data
	RDF
	Ontologies and OWL
	SPARQL
	Protégé
	GraphDB

	Requirements analysis
	Design of an Ontology for Amyotrophic Lateral Sclerosis
	Overall design principles
	Semantic areas
	External ontologies used in the Brainteaser Ontology
	Brainteaser classes and properties
	Named Individuals

	Area-by-Area
	Patient
	Genetic Data
	Behaviour
	Events
	Contingencies
	Intervention and Procedure
	Therapeutic Procedure
	Diagnostic Procedure
	Surgical Procedure

	Anatomical Structure
	Symptoms

	Ontology and Data Mapper Development
	Ontology Development
	ALS Data Mapper Development
	Data Mapper overview
	Input data
	Pre-processing operations
	Mapping phase
	Output files
	Data mapping example
	CSV export

	Dataset statistics
	Turin dataset
	Lisbon dataset
	Merged dataset

	Conclusions and Future Work

