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Abstract

The progressive integration of robots in everyday activities is raising the
need for autonomous machines to reason about their actions, the environ-
ment and the objects around them. Only by acquiring these capabilities,
they might improve in understanding vaguely described tasks, in reacting
to changes in their surroundings and in many more areas. The KnowRob
knowledge processing system is specifically designed to bring these compe-
tences to autonomous robots, helping them to acquire, reason about and
meaningfully store knowledge. This system, the most comprehensive of its
kind, is capable of greatly enhancing the possibilities of autonomous robots,
but research about it has only been focused on single machines indepen-
dently executing specific tasks. Sharing information and data about them-
selves with other knowledge-enabled machines in the environment, however,
would prove very useful for robots. With the help of modules leveraging
on the knowledge about their teammates, they could easily coordinate and
collaborate with other machines.

This work presents a framework for enhancing the KnowRob system
with mutual knowledge acquisition and reasoning among knowledge-enabled
robots. The first chapter presents an overview of KnowRob, together with
RoboEarth and Rapyuta, respectively a world wide web for robots and a
platform-as-a-service system for offloading robot computation to the cloud.
While being projects with very different scopes and aims, they still all col-
laborate in the task of allowing efficient knowledge-enabled robots to work
and to exchange knowledge. In the second chapter we give an overview of
the experimental setup we used, especially describing a robot model we de-
veloped for our simulations. We finally present, in the third chapter, the
architecture we propose together with a simple prototype.
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Sommario

Il progressivo coinvolgimento di robot autonomi in attivitá quotidiane sta
accrescendo la necessitá che tali macchine possano ragionare riguardo le loro
azioni, l’ambiente e gli oggetti attorno ad esse. Capire indicazioni vage o
poco accurate, e reagire prontamente a modifiche dell’ambiente circostante
sono solo alcune delle innumerevoli possibilitá che tali abilitá potrebbero
rendere immediate. Il sistema di elaborazione della conoscenza KnowRob
é stato progettato per permettere a robot autonomi di acquisire e immagazz-
inare conoscenza, e poter ragionare su di essa. Questo sistema é in grado di
migliorare notevolmente le abilitá di tali robot, ma la letteratura al riguardo
si é unicamente focalizzata sul migliorare le abilitá individuali di singole
macchine. Permettere ai robot di condividere dati e informazioni riguardo
se stessi con i loro simili presenti nello stesso ambiente, potrebbe peró riv-
elarsi estremamente utile. Con l’aiuto di moduli di controllo programmati
appositamente per utilizzare la conoscenza acquisita, puó essere facilmente
reso possibile a diversi robot autonomi coordinarsi e collaborare.

Questa tesi presenta un sistema che permette a robot autonomi equipag-
giati con il sistema KnowRob di sfruttare la mutua conoscenza per eseguire
azioni in maniera coordinata. Il primo capitolo presenta una introduzione a
KnowRob, insieme ad una breve panoramica su RoboEarth e Rapyuta,
rispettivamente un world wide web per robot e un sistema platform-as-
a-service per alleggerire i carichi computazionali piú complessi dai robot,
spostandoli in sistemi remoti. Nonostante questi ultimi due progetti ab-
biano scopi diversi da KnowRob, essi mirano comunque alla creazione di
un efficiente sistema attraverso il quale i robot possano gestire al meglio
la conoscenza. Il secondo capitolo offre una panoramica dell’impostazione
sperimentale utilizzata; in particolare, si sofferma su un modello di robot
che abbiamo creato per le nostre simulazioni. Il terzo e ultimo capitolo,
infine, suggerisce una proposta di architettura per il sistema introdotto nel
precedente paragrafo, insieme ad un prototipo dello stesso.
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Chapter 1

Introduction

Autonomous robots are expected, in the very near future, to get more inde-
pendent in managing their tasks, to become better and faster in understand-
ing the environment around them and to improve in the challenge of taking
informed decisions about their actions while performing them [Bischoff and
Guhl, 2009, Bicchi et al., 2007]. Moreover, these machines will soon be re-
quested to collaborate with non-technical staff, thus needing to interpret
vaguely described tasks and to translate abstract solutions to problems into
a real plan. Satisfying these requirements would mean for the robots to
be able to fully, precisely and appropriately parametrize control programs
given very little explicit information.

Robots cannot be expected to store all the necessary knowledge and data
in order to perform these tasks at all times. Moreover, they will soon be
requested to be able to switch between different tasks very quickly, making
it completely unfeasible to store all the potentially useful knowledge at any
given moment. They finally will not be allowed to ignore the presence of
other machines in the environment they are working in, and should even be
able to leverage on their presence in certain cases.

This work tackles the challenge of mutual knowledge exchange among
autonomous robots for coordination and collaboration purposes. In particu-
lar, these aspects are studied in the context of complex knowledge reasoning
and representation systems, whose aim is to solve many of the problems
presented in the previous paragraphs.

In this chapter we will present three projects that address three dif-
ferent areas discussed in the previous paragraphs. The first introductory
section is completely dedicated to KnowRob, the knowledge engine that
forms the basis for our work. The next two sections respectively deal with
RoboEarth, a world wide web for robots, and Rapyuta, a Platform-as-a-
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2 CHAPTER 1. INTRODUCTION

service framework for offloading heavy computations from robots.
Please note that in the remainder of this thesis we will extensively use

the basic concepts found in the Robot operating system1, in particular in
its communication and build systems. If not comfortable with ROS top-
ics and services, for example, the reader might be interested in getting a
general ROS overview before continuing to read. Many other basic com-
puter engineering’s subjects are used through the paper without previous
definition.

When citing the KnowRob system, we will refer to what described in
section 1.1. On the other hand, when talking about the KnowRob frame-
work (or the RoboEarth framework), we will refer to the whole set of
researches that has been carried on by the RoboEarth consortium2 and
by other scientists, specifically at Technische Universität München3 and at
Universität Bremen4 within the KnowRob and RoboHow European pro-
grammes. While being very diversified, the projects born from these pro-
grammes all collaborate to the implementation of autonomous intelligent
robots. The three packages discussed in this chapter form the core of this
infrastructure. Most of the illustrations about these projects found in this
work come from articles and papers published by the cited institutions.

1.1 KnowRob

KnowRob’s creators expect the ability to infer what is meant from what is
described to soon become a strong prerequisite for taskable robotic agents
[Tenorth and Beetz, 2013b]. Human communication is indeed a very laconic
and often inaccurate way to express tasks, mostly because we usually expect
our communication partners to have some commonsense knowledge. We also
usually talk with people sharing a knowledge base with us: if not, we can
still teach them the basic concepts they need to understand us. Finally,
we expect our partners to be able to reason about a given task, eventually
solving any problem that might arise or asking for help before finally giving
up. Robotic agents behaving this way will thus require both a strong body
of knowledge and a knowledge processing mechanism.

In order for control programs to respect these requirements, they have
to be written in a knowledge-enabled manner, querying the knowledge base

1ROS - http://www.ros.org
2http://www.roboearth.org/collaborators
3https://ias.cs.tum.edu/
4http://ai.uni-bremen.de/research/ias
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every time a decision has to be taken. While keeping a known structure
for the program and using known data structures for queries and responses,
robot actions will thus be bound to the robot’s own knowledge.

Having low level routines directly interfacing with the knowledge base,
it is possible to create plans that automatically adapt to the changing envi-
ronment. While the routine itself is clearly defined and doesn’t change, the
knowledge of the robot about its surroundings and the objects in it might
change: this approach allows the robot to adapt to its environment without
the need for external support. At the same time, this approach also helps
decoupling the routines from a specific environment, allowing strong code
reuse. With small modifications to object properties and inference rules, the
same code potentially works on similar tasks.

KnowRob is a knowledge processing system that allows to efficiently
acquire data from many different sources. It allows knowledge storing and
reasoning leaving to programmers the possibility to include custom mod-
ules for enhancing specific parts of the system. Strong coupling between
the reasoning system and sensors means inference can be carried on over
information that is always up to date. KnowRob provides to the robot’s
modules a knowledge base containing a complex semantic taxonomy reflect-
ing real relations between objects that can be customized to allow specific
tasks or functionality. Interface with perception modules also allow to in-
clude an environment representation in the knowledge base, allowing the
robot to reason about its surroundings.

KnowRob is part of a wider spanning project called Cognitive Robot
Abstract Machine (abbreviated CRAM), ”a software toolbox for the design,
the implementation, and the deployment of cognition-enabled autonomous
robots performing everyday manipulation activities” [Beetz et al., 2010a]. It
is divided in two main parts: the CRAM Plan Language (also called CPL)
and KnowRob itself. As this work focuses on the core infrastructure, we
decided not to dig deeper into CPL, leaving its analysis to future works.

In the following subsections, the various parts of the KnowRob system
will be analyzed in more detail. We will first describe the design rules
that the team behind this project took as paradigm. We will then proceed
discussing about the formalization used to represent the knowledge inside
robots and discuss the reasoning engine and the way it interfaces with the
outer world. We will finally discuss the various kinds of entities on which
robots can reason using the proposed system, and how abstract actions can
be transformed in actual robot movements.
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1.1.1 Design and paradigms

When developing control modules that need to interface with KnowRob,
programmers use a very traditional structures for the software. The modules
should be designed so that while the main structure of the programs remain
exactly the same, the output changes with different settings of the environ-
ment. Let us consider an example for explaining this concept very simply.
A robot is asked to put the utensils it finds on a working table at their re-
spective locations. A simple routine would first establish which objects are
on the table then, for each object, would establish its likely destination and
finally move the robot repeatedly from the table to each object’s inferred
location, in order to store it where it belongs.

In this example, the first two steps are based on the robot’s knowledge
base. The answers to the decision problems seen in the previous paragraph
are based on the robot perceptions and knowledge about the environment
wherein it moves. While the structure of the program is simple, linear and
static, the output will depend on the specific setting the robot will find
around itself.

The fact that programmers designing a plan know the structure and
type of the queries to be used brings a few advantages. First, queries can
be optimized exactly as it would be done for SQL queries; second, the infer-
ence method to be used can be tailored to the needs of each specific query,
resulting in more accurate results. Last, the internal representation for the
knowledge base could be optimized for faster answering specific recurrent
queries. Details about each of these subjects will be provided in the next
sections.

Common properties for knowledge processing systems

While describing KnowRob, Tenorth and Beetz [2013b] outline the follow-
ing nine properties, considered important for a knowledge processing system
to have in order to become a useful resource for an autonomous robot. We
propose them here as a way to help the reader understand the properties
needed by such a system to actually be effective and efficient.

1. It must provide a tell-ask service in which the robot can record expe-
rience and beliefs, and from which it can query information that was
inferred from the stored knowledge. In order to account for the non
static nature of the robot’s knowledge, the system must support up-
dates. Moreover, it has to be thought as an interactive service that
the robot can consult whenever needed.
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2. It must operate effectively and efficiently as part of the robot’s control
system. On the one hand, this means data from the various robot’s
components should be easily integrated with abstract information from
the knowledge base. On the other hand, it most importantly means
that answers to queries should be returned fast enough so as to avoid
slowing down the robot actions. As we will see in subsequent sec-
tions, this often means some inference techniques will be realistically
available only in some cases, and expressiveness will often have to be
sacrificed in favor of practical usability.

3. It must provide the difference between the information provided by a
natural task specifications and the knowledge a robot needs for success-
fully carrying out a task.

4. It has to provide an encyclopedic knowledge base that defines and spec-
ifies an appropriate conceptualization of the information needed for
autonomous robot control. While some encyclopedic knowledge bases
have been designed, as in Cyc [Lenat, 1995] and SUMO [Niles and
Pease, 2001], they usually miss important information needed by com-
mon robot manipulation tasks. As an example, the authors notice how
upper ontologies as the ones cited just before correctly specify eggs as
products of birds and fishes , but lack manipulation information such
as the fact that eggs breaks easily. Encyclopedic knowledge bases for
robots should be very rich in the way they represent actions, events,
situations, and in general event-related information.

5. It must provide the robot with self-knowledge. Given an action specifi-
cation, the robot should be able to determine whether it is able to carry
it on or if it is missing required hardware or software modules. Within
the KnowRob framework, Kunze et al. [2011] proposed a method
to combine robot’s kinematic structures with semantic annotations to
make them available to abstract reasoning. This robot representation,
called Semantic robot description language (SRDL), is used within the
KnowRob framework to ensure robots can potentially complete an
action recipe before starting to work on it.

6. It must make the robot knowledgeable about its actions. That is, it
should be able to predict the outcome of an action, and state its pre-
requisites and outcomes. Tenorth and Beetz [2012] analyze this prop-
erty in its details and explain how the KnowRob system implements
this requirement.
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7. It must make the robot capable of using its control and perception sys-
tems as knowledge sources. Most of the time, the information needed
by the inference process is already ready and usable either as part
of the control system for the robot or from the robot’s sensors. The
knowledge base needs to act as a parasite of both these systems and
to dynamically update its data as new information becomes available.

8. It needs to provide methods for (semi-)automatically acquiring and in-
tegrating knowledge from different sources. It is impossible to think of a
robot embodying all the possible knowledge about objects, actions and
places. As this kind of systems scale up, it simply becomes impossible
to store all the information needed by the robot inside a default knowl-
edge base. It is therefore necessary to equip machines with methods to
import new knowledge. The RoboEarth sytem [Waibel et al., 2011],
discussed in the next section, is one such example. Other possibili-
ties proposed by the KnowRob creators are provided by modules for
including human activity observation and interpretation [Beetz et al.,
2010b] and robot activities logged data [Mosenlechner et al., 2010] as a
knowledge source. Acquiring knowledge from the surroundings is an-
other strong trend in literature [Tenorth et al., 2010, Pangercic et al.,
2012].

9. It should exploit problem properties to make inference tractable. As
noted in point 2, a trade-off has to be made between accuracy and
speed. For some specific classes of problems though, it might be possi-
ble to exploit hard inference techniques surprisingly fast: a knowledge
base system should account for this and let programmers build queries
that leverage on these particular properties.

The world as a virtual knowledge base

In order to deal with information from external sources, the common pro-
cedure in literature is to abstract data and assert it in the knowledge base,
then only perform inference on these abstract concepts [Daoutis et al., 2009,
Lemaignan et al., 2010]. The biggest issue with this approach is that all the
relations that could possibly be of interest have to be computed at once,
because the original data is then discarded. The robot is thus only left with
qualitative information.

The approach proposed in KnowRob is substantially different, and
has been regarded as the virtual knowledge base paradigm [Tenorth, 2011].
Within the KnowRob system, data is stored as is, and no relations are
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computed in advance. Conversely, the knowledge base is free to compute re-
lations from existing data when needed and to query sensors and controllers
in case they have relevant data.

This concept is extremely important for the KnowRob system as it
allows to answer queries with the most up to date information and only
abstracting to the level that is most appropriate in the situation. This way,
the outer world can be regarded as a virtual knowledge base to which the
robot’s knowledge base can send queries in terms of perception tasks.

1.1.2 Formalizing representation

First-order logic, and Description Logic (DL) in particular, is the represen-
tational formalism that has been chosen for KnowRob. Description logic
is a family of logical languages for knowledge representation, consisting of
several dialects with different expressiveness, most of which are a decidable
subset of first-order logic. In particular, the Web Ontology Language (OWL,
Motik et al. [2009]) has to be used in the proposed system for storing De-
scription Logic formulas in an XML-based file format. The semantic web
was the first project to use OWL to represent knowledge, but the language
has ever since been used for very different projects and has been adopted by
various knowledge representation systems.

Description Logics distinguishes between the terminological knowledge,
called the TBOX and the assertional knowledge, called the ABOX. While
the TBOX defines hierarchically arranged concepts such as Table, Screw,
Moving, the ABOX contains instances of these concepts. In the KnowRob
system and in modeling knowledge for robotics applications, the ABOX
usually describes detected object instances, observed actions or perceived
events. Classes of object, actions and events are, in contrast, described by
the TBOX.

An ontology is defined as a taxonomy of concepts and the relations be-
tween them. In OWL members of the ABOX are called instances, while
members of the TBOX are called objects. Properties can be appended to
both instances and objects: in the first case to better describe an individ-
ual, in the second case to restrict the extent of a class to individual having
certain properties.

1.1.3 Storing knowledge and reasoning about it

Prolog [Sterling et al., 1986] has been chosen in KnowRob as the central
system to store and reason about knowledge. As a language combining
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Figure 1.1: KnowRob can be enhanced with custom modules implementing
specific parts of the system.

a procedural interpretation with a declarative reading, it easly allows the
programmers to inspect the content of the knowledge base. The use of
Prolog, a full fledged programming language, also allows to improve the
system’s capabilities beyond simple inference. Moreover, it makes it easy to
include different knowledge sources as external modules.

Simpler and less expressive representations such as RDF [Beckett and
McBride, 2004] or OWL-lite (practically, a simplified version of OWL), allow
much faster and efficient reasoning, but do not ensure the possibility to
express more complex relations. Cycl [Matuszek et al., 2006] and Scone
[Fahlman, 2006], on the other hand, are example of knowledge representation
languages the can potentially model everything that can be expressed in
natural language, with the drawback of very poor support for automated
inference. Prolog has been chosen, among this other representations, as a
language of medium expressiveness.

The central KnowRob component is the knowledge representation sys-
tem, that provides the mechanisms to store and query information about
object classes, instances and their properties. The open-source library SWI
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Prolog [Wielemaker et al., 2012] is used for this purpose. The KnowRob
ontology and its rules are represented in this core system.

Extensions of the system fall into three different categories:

• additional knowledges - When new classes or properties are needed,
custom OWL files can be included in the system. This way KnowRob
can deal with novel application fields. New measurement units can also
be included as additional knowledge.

• knowledge acquisition modules - As stated in point 8 within the list
of paradigms of subsection 1.1.1, any knowledge base should be able
to provide ways to enhance its knowledge. Custom modules can be
included in the KnowRob system for filling the knowledge base with
both information extracted from other sources and from the robot’s
control system.

• extensions of the reasoning system - Modules providing different infer-
ence techniques or simply adding procedures for specific tasks can be
programmed and interfaced through Prolog.

As we have just seen, the central store for the robot’s knowledge is the
SWI Prolog system. While additions might be made to the knowledge itself
in the form of custom ontologies, the core storage system cannot be changed.
On the other side, KnowRob allows different inference engines to be used.
Leveraging on such an hybrid system architecture, it allows selected queries
to be answered using specific techniques. While systems able to combine
multiple inference methods into one exist [Getoor and Taskar, 2007], they
cannot guarantee the soft real-time constraints (see point 2, page 2) given
by a knowledge base system.

Most DL resoners mantain a fully classified knowledge base in mem-
ory. While maintaining an up-to-date memory state makes these reasoner
efficient, it’s computationally impossible for robots to update their knowl-
edge base at the needed frequency, as this operation can require significant
time for large knowledge bases. KnowRob takes this into account and
uses Prolog as its default inference system for this reason. OWL statements
are internally represented as Prolog predicates (thanks to the SWI Prolog
library), to which common Prolog inference can be applied. Since the search-
based inference in Prolog is not affected by changes in unrelated parts of
the knowledge base, it can be kept up to date with minimum overhead.

Inference techniques different from the previous one can be added to
the base system integrating external modules or libraries when requested
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Figure 1.2: Perception systems can interface to the knowledge base in two
different ways. In the upper part, the schema represent an on-demand per-
ception system, that can be invoked by the reasoning engine; in the bottom,
a continuous perception system keeps storing object perceptions. Both sys-
tems produce the same results and store the same kind of representation
into the system.

by specific tasks. As a simple example, probabilistic inference can be used
when uncertain information has to be represented, as first-order logic can
leverage on a great expressiveness but misses this kind of probabilistic rep-
resentation. Statistical relational models [Getoor and Taskar, 2007], well
suited to describe uncertain information, can become very hard, often in-
tractable, when they get too big and contain complex relations among a
great number of instances. Programmers thus have to only specify inside
selected queries that this inference technique has to be used, they have to
write and train the model, and finally select an appropriate inference algo-
rithm. In KnowRob, the implementation of these such models is realized
by integrating the ProbCog library5.

5http://ias.in.tum.de/research/probcog
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1.1.4 Interfacing perception

Perception systems, particularly for machines powered by ROS, may work
in two distinct ways:
on-demand if the communication with the knowledge base is performed

synchronously, using a request-response scheme. The perception sys-
tem works as a server, receiving requests, and the knowledge base
sends perception queries when needed, as the client;

continuous if the communication is performed asynchronously, with the
knowledge base subscribing to a specific topic on which detections by
the perception system are published.

The earlier case is managed in KnowRob using computables. Computa-
bles are of two kinds: computable classes are able to create instances of the
classes they are associated with —their target classes— while computable
properties compute relations between instances. Computable properties are
moslty used to extract information from existing data associated with the
instances in the knowledge base. On the other hand, computable classes
are used to call specific on-demand robot perception systems when answers
about the environment are needed.

Continuous perception is managed using external modules that simply
listen to the published perceptions and add them, into the knowledge base,
to the appropriate instance. The difference in the way these two systems
work and the similarities in the way the data they produce is treated can
be found in figure 1.2

1.1.5 Representing knowledge

Up to now, we only discussed the theoretical foundations on which the
KnowRob system is built. In the next few paragraph actions, object models
and environment models will be discussed. These three data types, organized
in a topological structure, are the operational foundations of KnowRob,
and every customized application has to be built using them.

Actions and tasks

Lists of actions to be executed, specified with their properties, are called ei-
ther action specifications or action recipes. In OWL, a class can be defined
restricting a specific property to have a specific value, a specific range of
values, a specific cardinality and so on; these such classes are called restric-
tions. Restrictions can be combined to form complex classes by intersection,
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Figure 1.3: Different kinds of environment maps are treated in the same
way if they provide a structured OWL file containing data about the map’s
type and properties. The describedInMap property links the description of
an environment to the actual maps.

union or complement. Action specifications in KnowRob are defined as in-
tersections of restrictions over the subAction property, with each restriction
specifying one of the subactions making up the actual action specification.
The ordering with which the restrictions are written in the OWL file does
not imply any actual ordering, so that an action specification must also
intersect restrictions on the orderingConstraints properties to ensure that
subAction properties can be given a specific ordering.

Custom actions specified as objects of the subAction properties are usu-
ally themselves intersections of known action classes and restrictions over
some of their properties. While the KnowRob ontology presents around
130 actions that can be readily used to build action recipes, new ones can
very easily be added writing customs OWL files.

Objects

Objects in KnowRob’s ontology represent everything that is neither an
action nor an environment model. Multiple inheritance within the Web
ontology language allows to account for the different aspects of an object.
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In order to better specify particular classes, restrictions on properties are
sometimes used as well. Object recognition models are not stored by the
knowledge base itself, but their presence, and the robot’s ability to recognize
specific objects, can be stored in the KnowRob reasoning system.

Articulation models are also taken into account, and programmers can
leverage on specific queries to solve problems involving boxes and containers
that have to be opened using such models.

Environment models

In order to allow inference over elements of the environment, maps should be
written in OWL as well. Semantic maps constist of localized object instances
and can be both reasoned upon and updated by the robot perception system.
An important note has to be made about the possibility for the knowledge
storage system to provide other kinds of environment models even though
it cannot reason about them. Each map has to be composed of an OWL
description of its type and properties and, optionally, a binary file. While
semantic maps are completely described in the OWL file, 2d occupancy grids
and vSLAM key-frame maps, for example, are bounded to their binary data
file and are treated as black boxes by the system, that nonetheless knows
about them and can provide them upon request. This approach reflects the
similar behavior of which object recognition models are subjects. Figure 1.3
illustrates this structure.

1.1.6 Executing action specifications

It should first be noted that no actual code nor any package is provided
directly with the KnowRob system in order to implement action specifica-
tions’ execution. While other modules within the KnowRob infrastructures
are supposed to provide some of the functionality described in the rest of
this section, their use is, in our opinion, not always clear and straightfor-
ward. The architecture illustrated in the remainder of this section has to be
implemented completely by the keen programmer.

As a first step before executing an action recipe, the robot has to check
whether its current software and hardware assets correspond to what is
needed to complete the task. For this purpose, SRDL files — cited before in
section 1.1.1 — can be used. The matching process, that should be imple-
mented by the programmer, should check for all the recipe requirements to
be available on the robot, and only go on with the actual execution in case
all needs are satisfied.
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Figure 1.4: A high level overview of the interaction between the different
parts of a system involved in transforming action recipes in actual robot
movements.

KnowRob provides a few different methods for retrieving subactions
for a given action specification. These calls are discussed in the system’s
documentation and will not be proposed here. Programmers, anyway, still
have to autonomously choose how to implement the gap between these ab-
stract actions classes returned by the Prolog system and actual physical
robot movements. Every action can be recursively decomposed in order to
get to the atomic actions that, when executed one after the other, will result
in the intended goal. On the other hand, they could be left as they are if the
abstraction level is considered deep enough. No fixed level of granularity is
set at which transition from abstract to physical should take place.

The approach suggested [Beetz et al., 2010a, Tenorth and Beetz, 2013b]
by the KnowRob creators is to translate the action recipe into a CRAM
plan and write a CRAM executive module for taking care of the transition
with the help of the CRAM plan language cited before. A second, simpler
method is to use the providedByMotionPrimitive property to clearly state
which robot routine should be used to carry on that action [Tenorth et al.,
2012]. Potentially, only a few motion primitives could be needed, as using
robot routines for moving the robot base and arms should suffice for most
machines.
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Figure 1.5: A high level overview of the RoboEarth’s three-layered archi-
tecture.

1.2 RoboEarth

This section describes RoboEarth, a worldwide open-source platform that,
in the words of the creators, “allows any robot with a network connection
to generate, share and reuse data” [Waibel et al., 2011]. The RoboEarth
project addresses the reuse and sharing of knowledge among autonomous
robots, with the goal of fostering code and data reuse among different ma-
chines [Tenorth and Beetz, 2013a].

RoboEarth allows robots to share reusable knowledge independent
from their hardware and configuration. In the idea of the developers, on
being assigned a specific task a robot can download both the action recipe
and the objects that are needed to carry on the task from the RoboEarth
database. The robot can then ground the independent data to its own con-
figuration and execute the task. Finally, the robot may upload its knowledge
back to RoboEarth, allowing other robots to benefit from a wider experience.

1.2.1 The three-layered architecture

The core of RoboEarth’s architecture is a server layer that holds the
database. It stores reusable data in the form of actions (i.e., action recipes),
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environments (e.g., semantic maps, occupancy grid maps) and objects (e.g.,
images, point clouds, models), and it is accessible through common web
interfaces. These kinds of objects, the same described in subsection 1.1.5
are returned to queries coming from lower levels.

The second layer is composed of generic components, part of the robot’s
control software, whose goal is to query the web interface for action recipes
and for the objects needed to carry them on, and transform them in ac-
tual robot actions. KnowRob can be made part of this layer by allowing
RoboEarth to be one of the external knowledge sources. When KnowRob
needs a specific object model, for example, it can simply include the call to
the RoboEarth database in its query and obtain the appropriate result in
case it exists. Sensing and mapping, for example, might also be part of this
layer.

The third layer is robot specific, and provides a standard interface to a
robot’s specific, hardware-dependent functionalities. Programmers needing
to reproduce the same action recipes on different robots only have to repro-
duce the functionalities in the third layer across different robots, while the
rest of the architecture can remain unchanged.

1.2.2 KnowRob integration

Figure 1.4 explains what the RoboEarth architecture looks like after in-
tegration with KnowRob. The execution engine, a custom module able to
communicate with both KnowRob and with the robot’s services, is an im-
plementation of the executor described in subsection 1.1.6. As KnowRob
is directly connected to the RoboEarth database, it can query for missing
elements such as semantic maps or object recognition models. Moreover, it
can query for assets it cannot manage, such as occupancy grids or images,
that it will treat as black boxes directly passing them to the executor, that
will then forward them to the correct robot module.

1.3 Rapyuta

Myiazaki’s castle in the sky gave its toponym for this project, also more tra-
ditionally named RoboEarth Cloud Engine (RCE). Unlike for the movie’s
castle, lost among the clouds and full of robots, the aim of Rapyuta is to
provide a Platform-as-a-service for running heavy computations for robots
in the cloud and, at the same time, connecting them easily and efficiently
[Hunziker et al., 2013].
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Computing power is a key enabler to solve many of the challenges the
robotic world is facing right now, and complex reasoner such as KnoRob,
analyzed in section 1.1, are a clear example of modules requiring great com-
puting power while serving robots in ways that could not be imagined before.
Anyway, using on-board power sources to perform this kind of computation
could lead to much shorter battery life, thus reducing operating duration
and increasing costs. Most of the heavy tasks carried on by robots are any-
way not bound to be executed on the robot itself, and don’t have strong
real-time requirements. They could thus be easily carried on in a cloud in-
frastructure [Hu et al., 2012], with requests and results being transported
back and forth through a wireless network.

Rapyuta is based on an elastic computing model that dynamically al-
locates secure computing environments for robots on the cloud. Each robot
can count on a virtual counterpart, or clone, to which it can delegate com-
putation. These environments are implemented using Linux Containers6,
which provide isolation of processes and system resources within a single
host. Computing environments in Rapyuta are set up to run any pro-
cess that is a ROS node, and all processes within a single environment
communicate with each other using ROS inter-process communication. No
modifications are needed on the packages by developers.

These environments are tightly interconnected, allowing robots to share
some of their services and information with the other robots. Rapyuta’s
communication protocols are split into three parts. The internal communi-
cation protocol covers all communications between the Rapyuta processes.
The external communication protocol defines the data transfer between the
physical robots and the cloud infrastructure on which Rapyuta is running.
Last, communications between the Rapyuta system and the nodes running
inside the containers are carried on using ROS, as stated before.

Rapyuta is also shipped with all the necessary controller modules which
take care of establishing containers, nodes inside them and set up communi-
cations. New robots connecting to the system have to provide an extensive
configuration in order to run correctly, but the use of ROS communication
infrastructure and the fact that nodes do not need any modifications to
run in the containers makes it very easy to dislocate heavy computations in
cloud-based containers.

6http://lxc.sourceforge.net/





Chapter 2

Experimental setup

While the very first goal has been to thoroughly study the KnowRob and
RoboEarth frameworks, we soon realized a realistic experimental setup
was needed to understand the full potential of the various analyzed modules.
As our aim has specifically been to understand how multiple robots might be
enabled to collaborate, we decided to use a simulator in order to compensate
for our lack of physical equipment. Moreover, we had to find a meaningful
goal for out work. Before proceeding with our proposal, we give here a
general overview of the setup we used while designing and developing our
system.

We decided to use the RoCKIn competition as an example setting. An
overview of the reasons for this choice will be provided in the next sec-
tion. We choose Kuka’s YouBot as the robot for our experiments, as done
by most of the competitors in the more famous RoboCup, in the @Work
[Kraetzschmar et al., 2013] section. The description of the YouBot model
we designed is provided in the second section below. The final section gives a
general overview of the set up we used to program and test our collaboration
framework with knowledge-enabled robots.

2.1 RoCKIn @Work

RoCKIn is “a EU-funded project aiming to foster scientific progress and
innovation in cognitive systems and robotics through the design and im-
plementation of competitions” [Ahmad et al., 2013]. As the laboratory in
which we carried out our experiment is involved in the design of the first
edition of this event, we had direct access to proposals and ideas circulating
around this new project.

19
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The first characteristic that caught our attention was the project’s con-
sideration for general solutions to the challenge problems. In the proposed
challenges, general soluions should score better than approaches that work
only in narrowly defined contexts. As we have seen in the introductory
chapter, the two main goals of the KnowRob framework are to allow phys-
ically different robots to share information and to enable robots to quickly
obtain new knowledge about diverse tasks. Solving a challenge using the
tools described in chapter 1 would thus be the perfect fit, favoring a very
general and broad approach over a more specific solution.

Another aspect of the challenge that we found very important is that
proposed problems look very similar to tasks that a human would be given,
like cooking pasta in a restaurant’s kitchen or dealing with package returns
in a warehouse. Once again we have seen in the previous chapter that the
aim of the whole KnowRob infrastructure is demonstrating that robots can
be allowed to participate in this kind of works, usually performed by humans
alone.

As the design of the competition is still in a very early stage, we also
identified the possibility to propose the inclusion of a problem involving a
coordination challenge to the list of proposed ones. This would allow to prove
the architecture proposed in the following chapter during a real competition,
with all the consequences that such a commitment would provide.

We would finally like to stress the fact that our goal with this work
has not been to completely code a program able to succeed in one of the
challenges proposed by the RoCKIn team. Conversely, we analyzed the
competition as a way to obtain enough background to purposefully decide
which robot to use and how to set up our ROS environment. Moreover, this
work is thought as a single part of a much wider effort in setting up a system
to take part in the competition.

2.2 A simple YouBot simulation

The YouBot, produced by KUKA, is a small mobile manipulator. Its arm is
mounted on a mobile base and has five degrees of freedom. The base moves
thanks to four mechanum wheels, allowing it to translate in any direction.
It by default hosts a small plate, that can also be replaced with a second
arm. Both the arm and the plate are independently mounted on the base
and can be replaced and exchanged as needed. Figure 2.1 shows the default
YouBot setup.

The laboratory that hosted our experiments at University of Padua does
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Figure 2.1: KUKA’s YouBot equipped with a single arm and a plate.

not own any YouBot. It has thus been impossible to carry out any actual
experiment during the development process. Anyway, even having the pos-
sibility to work with one physical machine would not have been enough,
since our goal was to understand robot coordination. Gazebo is the offi-
cial robot simulator for the ROS platform, but the only YouBot Gazebo
model we could find1 is out of date and not usable with the latest version
of the simulator. As KUKA provides the three-dimensional meshes2 for the
robot, we decided to work for a few weeks rebuilding the obsolete model and
equipping it with up to date navigation and teleoperation modules.

We used the git version control system to keep track of our work on the
YouBot model, that we organized in a package called youbot ros tools. All
the code and the documentation can be found online3, and change proposals
can be submitted by anyone. As stated before, the model has been coded
under ROS Hydro Medusa and Gazebo 1.9. The package is divided in five
parts, each of which deals with a very specific section of the simulation. The
following list describes the various implemented sections of the model, while
implementation details and more information about each part’s specific con-
tent can be found in the following sections.

1https://github.com/WPI-RAIL/youbot description
2http://www.youbot-store.com/youbot-developers/
3https://github.com/micpalmia/youbot ros tools
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Figure 2.2: A Gazebo simulation showing two robots in an empty room.
The blue layer is a graphical representation of the laser signal.

youbot description is the core of the model. It is programmed in self-
contained modules, that can be composed in different ways to set up
various robot configurations. The wheels are included in the simula-
tion but their physics is not taken into account because of the many
challenges posed by simulating this kind of wheels. Gazebo’s ros pla-
nar move plugin, however, allows the robot to move in all directions as
if mechanum wheels were actually operating. A simple Hokuyo laser
is attached to the front of the robot by default. The plugins for con-
trolling the base and for managing the laser data are the only ones
included into the model by default.

youbot gazebo only contains utility launchers for spawning the robot model
inside a new Gazebo environment. The simulated map for an empty
room is also included.

youbot control contains the configuration for the arm controllers and the
utility launchers for the appropriate plugin setup.

youbot teleop provides a simple script for remotely operating the robot
once the model and the controllers have been started. Methods are
provided to move the base, the arm and the gripper. The base can be
moved using commands that require translation values relative to the
robot’s current position. The arm and the gripper, on the other hand,
can also be moved passing values indicating the absolute position of
the joints.
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youbot 2dnav contains the configuration for the YouBot to work with the
ROS navigation stack. The default launcher starts a map server with
the default empty room map, the amcl localization module and the
move base module.

Xacro4 (from XML Macros) is an XML macro language. It allows to
write concise robot models in an improved XML syntax that automatically
expands customized expressions after compilation. The Xacro compiler pro-
duces URDF files, that Gazebo can read. The content of the youbot gazebo
module is almost entirely written using this language. Xacro allows to in-
clude Gazebo-specific tags to specify the plugins to be used on particular
parts of the model, such as done for the base movement or for the laser
scanner.

The laser equipped by default on the robot is an Hokuyo URG-04LX-
UG01. A number of other sensors (Asus Xtion, Microsoft Kinect and life-
cam) are usually used on competition robots, and the code to include them
is ready to be used in the public repository.

The empty room map model for Gazebo has been created with the build-
ing construction tool in Gazebo’s graphical editor itself. It is included in the
youbot gazebo module together with the corresponding occupancy grid. The
grid has been automatically obtained running the slam gmapping5 package,
providing simultaneous localization and mapping, while the robot was be-
ing manually moved around in the simulated room using the youbot teleop
module. Having both the room simulated in Gazebo and its occupancy grid
available for robots allows the youbot 2dnav module to work properly.

While the Gazebo model can be used for the physical simulation, the
occupancy grid is a component used by robot’s modules. In particular, the
move base plugin, the default ROS package for providing robot navigation,
requires the amcl module to be running on the robot as well. This lat-
ter module is a probabilistic localization system for robots moving in 2D,
and requires a map of the environment to be available. As the move base
package is the core of our youbot 2dnav module, having both the simulated
environment and he occupancy grid is necessary in order to be able to use
the proposed navigation module with the simulated robot.

4http://wiki.ros.org/xacro
5http://wiki.ros.org/slam gmapping
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Figure 2.3: The empty room occupancy grid overlayed with the current
approximate positions for two YouBot robots. This map was corresponds
to the setting of figure 2.2. Positions are represented as a cloud of arrows
beacuse of the probabilistic nature of the localization module.

2.3 Multi-robot setup

This section will analyze the setup we used while developing and testing our
proof of concept. Since the implementation of our prototype is the subject
of the next chapter and has not yet been discussed in its details, we will
forcibly have to anticipate some decisions that will be explained in chapter
3. We will discuss how multiple simulated robots can be run in the same
environment, and how they can be allowed to communicate with each other.
We will also discuss more precisely about how we set up a reasoner for each
machine.

We have seen in the introductory chapter that a robot having to exe-
cute generic tasks and to reason about requests can be equipped with an
execution engine powered by the KnowRob system and enhanced with an
ecosystem of custom modules and plugins that enable specific functionality.
RoboEarth and Rapyuta, while being themselves completely autonomous
projects, can be considered as part of this wide KnowRob ecosystem. While
bringing undisputed benefits, anyway, these modules make the development
and testing process slower and more complex, adding different layers of func-
tionalities that are not strictly requested in a simple prototype such as the
one described in this work. We thus decided to only use KnowRob in our
implementation, leaving the addition of other modules to later works on the
subject.

All of the packages discussed in the previous paragraphs have default
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launchers, very easy to customize. They all start the corresponding nodes,
topics and services in the namespace specified at launch time. Each names-
pace represents a single robots. For a full set up, each module has to be
started once in each namespace. This is a very elegant way to deal with
multiple robots in a simulated environment, as it allows the complete sepa-
ration of the simulated machines while maintaining all the communications
local. This way, it is possible to easily establish inter-robot communication
without setting up other packages.

Communication between robots, with this setup, does not need any ad-
ditional module and can be implemented using default ROS services and
topics. We would anyway like to stress the fact that in a competition sce-
nario our suggestion would be to use the power provided by the Rapyuta
platform presented in section 1.3. This would allow greater autonomy time
for the robots, faster processing of hard real time tasks, that would have
more resources available, and easy communication.

The json prolog ROS module is the core of any smart robot built with
KnowRob. It takes as input the name of a ROS package and starts a
KnowRob reasoner that can be queried passing Prolog queries to a specific
ROS service. It automatically loads the init.pl file provided in the pro-
log folder in the specified package. This file usually contains directives for
parsing OWL files containing project-specific knowledge and prolog custom
rules.

We noted before that a single KnowRob reasoner is thought as the
knowledge storage for one single robot. It contains information about ob-
ject positions, recognition models etc. relative to one single machine and, if
configured, it can be directly connected to its sensors. For this purpose, the
json prolog package also has to be started for each and every robot, passing
the appropriated namespace at launch time. At any given time, the number
of active reasoner is the same as the number of working robots.

Our very simple setup of the init.pl file used to customize the reasoner
engine will be discussed in the next chapter, together with the rest of the de-
tails regarding the architecture we proposed and the simple implementation
we delivered.





Chapter 3

Design and implementation

After describing the projects and the frameworks we decided to test, and
discussing the way we set up the simulation, this chapter will continue with
our suggestions about how collaboration and coordination can be made pos-
sible by mutual knowledge exchange in a system that uses the KnowRob
system to guide knowledge-enabled machines.

In the following sections, we will first briefly discuss previous experiments
of this kind within these systems —or better, the lack of such experiments—
and the motivations that brought us to producing this thesis. Second, we
will state the hypotheses behind our work. We will then explain the general
architecture of a system leveraging on KnowRob to offer knowledge about
other machines in the same environment to robot control software. Fourth,
we will give an overview of a simple implementation, the issues it presented
and the problems it posed. The closing section will finally propose a set of
enhancements that would make the proposed system more robust, efficient
and elastic; the possibility to relax some hypotheses will also be discussed.

3.1 Motivation

Knowledge representation and sharing among autonomous robots, along
with studies about reasoners for robots, come a long way from the early
days of robotics [Nilsson, 1984]. A number of articles about the different
aspects of the problem have been written in past years, and the subject is
now starting to get attention and consideration in the scientific community,
as artificial intelligence is being applied more and more to robotics. Tenorth
and Beetz [2013b], in section 11, presents a thorough literature review on
the subject. As we have seen in section 1.3, systems that efficiently share
information among cloud-powered robots have also been successfully imple-
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mented, and ROS even provides this as a basic functionality, without the
need for additional packages to be installed and configured.

The KnowRob system seems, from our research, to be the most com-
prehensive knowledge representation and reasoning system available to the
scientific community now. As mentioned before, some experiments have
been carried on to test its capabilities both by the consortium of universi-
ties that is working on designing and building it and by other institutions.
Among these experiments, anyway, we have not been able to find any test
involving robots with mutual knowledge about each others existence. The
only test we could find in which two different robots were operating in the
same environment [Beetz et al., 2011] did not seem to consider any kind of
mutual consideration between robots.

The knowledge representation system and the reasoner discussed in chap-
ter 1 are built to only serve one single machine, and we have discussed some
of the reasons for this before. But could the problem of mutual knowledge
be solved designing a single knowledge representation and reasoning system
serving multiple robots? Designing and implementing a platform of this
type would pose many difficult choices and implementation problems. As
an example, should perceptions be stored in one single world representation
or should each robot use its own, or both? Communication problems affect
the system described in the previous chapters, but robots can always reason
on the knowledge they obtained before being disconnected, even when they
are offline. On the other hand, what would happen to robots that completely
depend on a central reasoning engine to work? A centralized reasoning sys-
tem from which the robots could have to disconnect would make the single
clients completely useless when offline. It seems very likely that a system of
this kind would not be the best implementation choice.

Even though the reasoning system only serves one robot, this does not
mean that independent and autonomous machines should ignore each other.
First, being aware of the presence of other robots can avoid collisions and
result in better coordination. Second, complex systems could leverage on
this knowledge in order to solve problems that cannot be solved by one
robot alone, to ask for help avoiding any human intervention and so on. For
these reasons, we think that meaningfully representing the presence of other
robots in the environment would greatly enhance the possibilities available
to each of them.

Modern robot coordination algorithms require each machine to know
the current positions and final goals for each and all of the robots involved
[Boscolo, 2012]. With this data, each robot can autonomously navigate
to the goal without colliding with coworkers. Robots keeping a semantic
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representation of their teammates in their reasoning engine could obtain
these information with very little effort, when needed.

3.2 Hypotheses

In section 2.3 we expressed the motivations that led us not to directly use
RoboEarth and Rapyuta in this project. While the hypothesis presented
there form a valid starting point, a few others are needed before continuing
with the sections about architecture and implementation.

Robots can usually move different parts of their structure. They usually
can move their base, but they sometimes can also move an arm or two, maybe
even more. Using these parts, they can operate at different heights, towards
specific directions, doing different things. The YouBot, after moving from
one point to another, could for example start picking up objects and putting
them on its plate. All of these movable parts can interfere with other robot’s
components in the environment. For the sake of our proof of concept, we
decided to stick with base movements only. We will be thus practically only
using the base of the YouBot without its arm. As a direct consequence, the
only possible action recipes are the ones only made up of navigation tasks.
We also avoided having coincident goal positions for different machines, but
this is a very weak hypothesis and could easily be removed.

Equipping robots with knowledge not just about their environment but
also about their coworkers would allow action recipes to contain directives
directly involving other robots. Since this would open a completely new field
of possibilities, we decided not to proceed in this direction. Future works
might consider studying the consequences to this improvement.

Finally, we decided to start with a known set of robots: in our experi-
ments, each machine has a unique identifier and all of the robots in the same
environment know each others’ unique names.

A direct consequence of the hypotheses expressed in section 2.3 is that
machines have no limit on computation, and power consumption is not an
issue. While these and many other problems could be solved in a real setup
using RoboEarth and Rapyuta, we would like to stress the fact that we
preferred to complete a very essential prototype showing our approach in a
simple and linear way instead of using all possible additional packages. This
way, we avoided cluttering the project with functionalities that would make
it hard to identify the real contributions brought by the design presented in
the next sections.
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3.3 Architecture

It should be clear by now that a system storing and reasoning about other
robots in a semantic way has to be divided between a group of modules
adding semantic features to incoming knowledge and meaningfully storing
it, and another group of modules using this knowledge to avoid collisions
with other machines in the same environment.

The execution engine and the KnowRob system itself (recall figure 1.4)
are the only parts of the system we can manipulate in order to achieve our
goal. In particular, the coordination modules has to be made part of the
earlier, while custom modules for the latter have to be programmed in order
to integrate knowledge into the reasoning system as it becomes available.

With our hypotheses and restrictions, the only situation in which robots
may be requested to coordinate with each other would be during movement
from one location to another. Normally, in this case, the execution engine
would simply call the appropriate actionlib service, that would carry on the
task without further interaction with the knowledge base. Our approach
to coordination is to implement the execution engine so that it will query
KnowRob for other robot’s data before actually moving the machine.

Obviously, some new semantic entities and properties will be needed to
store useful information in the system. The types of data about other robots
could span from simple mechanical data such as the position of their joints
or their position in space to more high level information such as the task
they are currently executing or their current state relatively to some motion
parts (e.g., still or moving). This knowledge can be obtained by the robots
using sensors or directly receiving it over the network through specific topics.
These approaches can also be combined to obtain a more robust system.

In a system implementing this architecture, any single robot has to con-
tinuously broadcast information about its state. It also needs to subscribe
to the same broadcasts from other robots in order to update its reasoning
system. Some types of information could also be obtained from sensor data.
One or multiple modules, integrated with the KnowRob system, should
take care of transforming other robot’s data into meaningful information to
be stored in the knowledge base.

Changes in the current world state, detected by the aforementioned com-
ponent, should also be promptly communicated to interested modules, such
as the coordination one. For this purpose, these modules shall publish a
service hook to be called whenever a change is recorded in the world state.
While this is a very implementation-dependent feature, we believe that leav-
ing to the logger module the task to wake up interested modules is the best
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way to deal with this problem; querying the knowledge base is quite fast
and efficient, but a busy wait on interesting features mostly appears as a
waste of computational resources.

This description purposefully left out the core part of the execution en-
gine, the program transforming action recipes into actual robot movements.
As stated before, in our system the only kind of actions allowed to robots
are the ones of type Navigation-Translation event. With this constraint, the
only purpose of the core execution module is to call the coordination module
with the parameters directly taken from the actions list. The coordination
engine would then take care of querying the reasoning system calling the
navigation server, returning the control to the execution module only when
the task has been completed. Such a system does not pose any interest-
ing design challenges and has already been described in literature [Marcato,
2012, Beetz et al., 2011]. We will thus avoid dealing with it in the remainder
of this thesis.

3.4 Implementation

In the previous section we discussed the proposed architecture at a very high
level. While this is necessary to clarify all aspects of the proposed infrastruc-
ture, developing a working prototype is very useful in various different ways.
First, it helps correcting ingenuous errors in the design process. Moreover,
it allows to clarify the design itself, both while in the process and in further
iterations. Finally, it is a rather accurate proof of the fact that the proposed
architecture works as expected.

A simple proof of concept implementing the described architecture is
forcibly bound to a specific coordination algorithm. Specific enhancements
to the knowledge base and the actual implementation of the coordination
algorithm necessarily have to be tailored to a defined routine that machines
can follow when multiple robots want to move at the same time.

In the remainder of the section we will first present the very simple and
näıve algorithm we used for our implementation. Second, we will describe
our enhancements to the default knowledge base. Finally, we will describe
the two parts of the ROS package we implemented, following the directives
expressed in section 3.3.

The result of the work described in this section is available on-line in an
open source repository. As the json prolog library, used to connect external
modules to the KnowRob reasoner, is still using the rosbuild system, we
could not create a catkin package. We thus had to stick with the old build
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system as well. Documentation and more details on the actual use of the
package can be found online in the same repository.

3.4.1 A näıve coordination algorithm

Very accurate coordination algorithms are now available to the scientific
community [Pagello et al., 1999, Kowalczyk, 2001]. They vary in the pa-
rameters they require as inputs, and produce as output optimal paths for
robots to avoiding collisions. The max-sum multi-robot coordination algo-
rithm, for example, solves this problem efficiently and without the need for
a central server to calculate the trajectories [Boscolo, 2012]. We conversely
decided to implement a very naive algorithm for collaboration in order to be
able to concentrate on the implementation of the rest of the infrastructure
instead of focusing on the coordination algorithm itself, not the center of
this work.

We choose to implement a very näıve algorithm as the baseline for our
prototype. The algorithm is described in the remainder of this paragraph,
while a pseudo-code implementation can be find in the listing for algorithm
3.1. Each robot needs to be associated with a unique priority value, known
to all other robots as well. Only one robot at a time is allowed to move
in the shared environment at any given moment. The robot with the high-
est priority expressing the request to navigate always have to be granted
permission to move, even at the cost of robots with lower priorities having
to be left waiting. These requirements are respected without the help of a
controlling authority, and all the machines in the environment respect these
rules in a completely distributed manner. The algorithm allows each robot
to assess in a completely autonomous way its right to move.

Being able to obtain the state of its teammates at any given moment,
any single robot can decide whether its time to move has come or not. The
information needed for each machine by this particular algorithm is only
limited to the navigation state of the particular machine. Each robot can
be still, standing in its position and not expressing the desire to move, or
moving, navigating in the environment or waiting to do so1. The next section
will describe how these states can be represented in the robot’s knowledge
base and how the algorithm is implemented within the KnowRob system.

1These last two situations could be divided in two different states, but as we limit the
cardinality of robots moving at the same time to one it is straightforward that the only
machine actually moving at any given time is the robot with state moving and the highest
priority.
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self.stop()
self.rightToMove← true

movingRobots← query(type = robot ∩ status = moving)
for robot ∈ movingRobots do

if robot.priority < self.priority then
self.rightToMove← false
break;

end

end
if self.rightToMove then

self.move(goal)
end

Algorithm 3.1: Näıve coordination — Whenever a goal is assigned to
a machine, or a change in the status of another robot is detected, this
algorithm is triggered. self refers to the robot itself, the query methods
refers to the KnowRob system. The robot first stops (in case it was
moving), then assesses its own right to move, and only proceeds if it is
allowed to.

3.4.2 Knowledge base custom classes and properties

The KnowRob system comes with a very essential knowledge base. Users
willing to implement specific modules on top of the system or use robots for
any specific task have to write their own ontologies. In section 2.3 we stated
that KnowRob starts up reading a single Prolog file. In our case, the file
only contains a single directive for including a custom ontology and adding
its statements to the default one. Such a custom ontology is defined in a
OWL file, and its content is defined below.

As seen in section 1.1.6 when discussing about action recipes execution,
actions are transformed into actual robot movements by the execution en-
gine, that calls the appropriate actionlib service for each action type. The
default ontology, anyway, does not contain any way to define which action-
lib service should be called for a specific action entity when transforming
it into actual robot movement. The idea behind the lack of this feature is
that a CRAM executor should be invoked to implement action recipes, and
action entities should be transformed into actual robot movements during
this stage. As we decided not to go into the details of CPL, a solution on
this side was needed.

Since the only allowed action for our robots is moving to one specific
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Listing 3.2: The GoToPoint class

1 <owl:Class rdf:about=”&move;GoToPoint”>
2 <rdfs:subClassOf rdf:resource=”&knowrob;Translation−LocationChange”/>
3 <rdfs:subClassOf>
4 <owl:Class>
5 <owl:intersectionOf rdf:parseType=”Collection”>
6 <owl:Restriction>
7 <owl:onProperty rdf:resource=”&move;providedByMotionPrimitive”/>
8 <owl:hasValue rdf:resource=”&move;move base”/>
9 </owl:Restriction>
10 <owl:Restriction>
11 <owl:onProperty rdf:resource=”&move;destXValue”/>
12 <owl:cardinality rdf:datatype=”&xsd;decimal”>1</owl:cardinality>
13 </owl:Restriction>
14 <owl:Restriction>
15 <owl:onProperty rdf:resource=”&move;destYValue”/>
16 <owl:cardinality rdf:datatype=”&xsd;decimal”>1</owl:cardinality>
17 </owl:Restriction>
18 </owl:intersectionOf>
19 </owl:Class>
20 </rdfs:subClassOf>
21 </owl:Class>

point from the current location, we defined a GoToPoint class, subclass of the
Translation-LocationChange action from KnowRob. Every and each action
included in an action recipe valid in our implementation will thus have to
be a subclass of this class. We also defined the providedByMotionPrimitive
property, and bound all subclasses of our GoToPoint to have move base as a
value for this property. The code for the class can be found in listing 3.2.
With this setup, the move base service is set up to be called whenever an
action of type GoToPoint has to be transformed by the execution engine.

In this specific listing, resources are appended to a prefix that can either
be &move; or &knowrob;. In XML syntax, these prefixes are a shorthand
notation that avoid having to write the full domain to which a resource be-
long to. While the knowrob keyword refers to the default ontology, move
references the custom ontology we designed. While the instances of the
GoToPoint class have a very strict bound on the value of the providedByMo-
tionPrimitive property, the only bound on the other two custom properties,
destXValue and destYValue is cardinality. Naturally, a single instance of this
class should only have one single goal, giving these properties a cardinality
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Listing 3.3: Possible states for robots

1 <owl:Class rdf:about=”&move;MovingStatus”/>
2

3 <owl:Class rdf:about=”&move;Still”>
4 <rdfs:subClassOf rdf:resource=”&move;MovingStatus”/>
5 </owl:Class>
6

7 <owl:Class rdf:about=”&move;Moving”>
8 <rdfs:subClassOf rdf:resource=”&move;MovingStatus”/>
9 </owl:Class>

of one.
The other classes we added to the improved ontology are quite straight-

forward. The YouBot class, subclass of Robot, can be instantiated so that
pose data can be attached when needed. We also added the hasRobotId
property for robots, so that the execution engine could establish id and
priority2 of the various robots instantiated in the knowledge base. The al-
gorithm described in subsection 3.4.1 also requires the state of the robots to
be represented in the reasoning system. We thus added the isInMovingSta-
tus property to the Robot class, and listing 3.3 shows the definitions for the
range of possibilities this property can be set to. As noted in the previous
section, Still refers to machines standing in their position and not expressing
their need to move. If a robot is Moving, on the other hand, it expressed its
desire to move and if it has the highest priority among its teammates can
actually do so.

3.4.3 Algorithms and data structures

We developed a simple system implementing the architecture described in
section 3.3 in order to both clarify its structure while we were designing
it and show its effectiveness. Because of these reasons and of the limited
amount of time available, we kept the implemented infrastructure very sim-
ple. The resulting prototype, programmed completely in Python, is divided
into two modules. A first module can be considered part of the KnowRob
core system and its aim is to log all data coming from other robots. The
second module, on the other hand, ensures smooth coordination among the
various machines in the environment using the simple algorithm proposed.

2During our tests, we set identifiers to be in the form name + unique number. Robots
with a lower id number have higher priority.
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Figure 3.1: The internal architecture is represented here for two robots
sharing data about themselves with their teammate, using the design pro-
posed in this chapter. The /odom and /status topics are published by the
base controller and by the coordination modules respectively. The logger
grounds this knowledge and stores it in the knowledge base, triggering the
/status update service when needed. Only relevant modules and connections
are displayed.

In our proof of concept, all robots publish two ROS topics in order to
allow other machines to stay up to date about their respective state:

/odom messages are automatically published by the Gazebo plugin for the
control of the base. They are of the standard Odometry type and
are produced at a rate that can be adjusted when programming the
simulation.
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/status has custom type Status, defined as a single string. Robots publish a
message on this topic whenever they change their state with regard to
base movement. The possible options corresponds to the ones defined
in listing 3.3.

The first module, the logger, requires as input the identifiers of the robots
involved in the simulation and its own identifier. It first waits for the reason-
ing engine to be up and running. Immediately afterwards, it subscribes to
both the /odom and the /status topics. Upon registering the first informa-
tion received, it creates a new YouBot instance in the knowledge base and
associates it to the right identifier. After this first step, all data received
is logged and automatically associated with this instance as soon as it is
received. Upon receiving messages on the topic regarding the moving sta-
tus of other robots, after updating the related property for the appropriate
instance, the logger also calls the /status update service advertised by the
coordination module described in the next paragraph.

The coordination module is built on top of the move base action library.
It provides a /goal service, of custom type Goal, to which the x and y values
representing the goal to be reached have to be passed3. The module also
provides an empty service (i.e., it does not require any input and does not
return any value) called /status update that has to be called by the logger
upon updating the robots’ status as seen in the previous paragraph. Finally,
the module advertises the /result topic on which it publishes a message on
completing the current goal and the /status topic, on which it advertises
changes in the navigation state as discussed before.

Upon receiving a new goal, the coordination module sets the state of the
robot as Moving and publishes this information on the appropriate topic,
thus indirectly updating the knowledge base of all other robots as well. It
then queries KnowRob for the list of machines currently moving and decides
whether the goal should be passed to the actionlib server and actually exe-
cuted or not. In either cases, receiving a status update fires a reassessment
of priorities, and the robot can either be kept moving, started or stopped,
depending on the previous state. When the result for the current navigation
task is received from the actionlib server, an update on the robot state topic
is published containing the keyword Still. The rest of the robots can thus
reassess their own priorities and move on with their suspended tasks.

Figure 3.1 represents the implementation discussed in this section, only
representing the communication paths and modules useful to describe it.

3We only used x and y values for the goal instead of a complete pose message for
simplicity.
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Topics are represented as arrows going from the publisher to the subscriber,
and the /status update service is represented as a dot coming out of the
responsible module. The graph only represents two robots, but the same
structure is valid for multiple machines

3.4.4 Results

It is not very easy to uniquely test a design proposal of this kind and hope
to find meaningful results showing its correctness. Moreover, finding useful
metrics requires a very long time for this kind of systems, especially because
implementation of analogous platforms is required for comparison. The pro-
posed architecture shows one way to allow knowledge-enabled machines to
obtain and use knowledge about their teammates, thus fostering coordina-
tion and collaboration in systems implemented using this technology. As
this seems to be the first and only proposal for implementing coordination
in these systems, it should be considered as a simple (and working) starting
point, but should not be taken as a robust or full fledged implementation.

We tested our prototype both in an automated and a manual manner,
in order to assess all possible situations. We first equipped two simulated
robots with different action recipes that would make them move around the
empty room with continuous risk of collision. Robots behaved as expected
and did not have any problem in communicating their state or grounding
the received knowledge.

In order to push the limits imposed by using fixed action recipes, we
also manually tested our proof of concept manually calling the ROS services
provided by the collaboration module described in section 3.4.3. These calls
correspond to the calls that would be made by the execution engine. These
experiments also showed that the architecture is working as expected and
does not seem to present any particular issue.

3.5 Possible improvements

The hypotheses in section 3.2 strongly restricted the span of our proposal
and implementation. While this restriction was needed to focus more clearly
over a specific problem and its solution, removing some of the hypotheses
would result in a more complete and interesting system. In the remainder
of this section, the most relevant improvements will be discussed.
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Configuration

In our proof of concept, we embedded in the program’s code the list of topics
to which the robot had to subscribe. Each robot involved in the simulation
published the same data. They also only notified the coordination module
upon receiving updates on a specific topic. This made it very hard to quickly
edit the configuration for the module, with the source code actually having
to be modified to change the configuration.

This problem can be solved with relatively little efforts by designing a
simple way to configure the module before launching it. Passing parameters
to the program at launch time might not be a feasible option. A probably
better option would be to set up a configuration file containing all the infor-
mation needed by the module: the identifiers of the robots involved and the
robot’s own name, the topics published by each of the robots involved and
how to map them to semantic knowledge, the modules to be updated when
receiving updates from specific topics, as done for the coordination module
in the proposed system.

Multiple algorithms

The proposed solution simply considered one single algorithm as the only
possibility. Our naive algorithm is called whenever a movement goal is given
to the robot, and it takes care of managing priorities querying the knowledge
base when needed.

Allowing the presence of multiple coordination algorithms on the robots
would be hard but certainly very interesting. Robots, advertising the dif-
ferent options they have, could be able to establish which algorithm to use,
together with the machines they have to coordinate with. Unlike for the
previous improvement, this would require careful considerations and a com-
pletely new design.

Not just translation

Obtaining and storing knowledge about other robots allows many other
kinds of interaction in addition to the translation events described in this
chapter. In order to keep the prototype simple and straight to the point we
only allowed the coordination module to deal with this kind of interactions,
but this does not mean it is the only possibility. We devise two important
improvements that could be made.

First, robots should be allowed to coordinate with each other while using
any movable part of their body. The could, for example, find themselves
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working with utensils next to each other at the same desk. This could lead
to very dangerous collisions between the two arms if mutual presence was
not taken into account. Second, more complex algorithms could leverage on
knowledge about other machines, evaluating the respective capabilities, in
order to ask for help on tasks it cannot complete for some reason.

This is for sure, out of the three, the most complex of the improvements.
Its implementation is not only bound by issues with the design of such
a complex system but also by the perception of such a system in society
and in common working environments. KnowRob and the RoboEarth
environment in general seem to open many possibilities and allow processes
that we could not even think of before, but advances in technology also
require society to be ready for change. We will discuss this issue after
analyzing the conclusions of our work in the next chapter.



Conclusions

In this thesis we presented a proposal for the design of a system allowing
multi-robot coordination and collaboration among knowledge-enabled ma-
chines. We first presented KnowRob, RoboEarth and Rapyuta, three
projects regarding different aspects of knowledge reasoning, representation
and sharing, all contributing to the goal of empowering robots that can,
without fear of exaggeration, be considered smart. We proceeded with a
short explanation of the material we needed to actually present our work.
The architecture of the proposed system and the design of a simple prototype
finally compose the third chapter.

During the first phase of our research, we focused on studying and analyz-
ing the KnowRob framework, trying to understand how the many different
projects developed around it are connected and integrated. While starting
to study this very vast body of knowledge, we realized that the amount of
work produced on the subject was definitely too vast to be analyzed in its
entirety. We thus only proceeded in deeply studying and testing the three
projects presented in the introduction.

In order to be able to carry on our first tests, we also started developing
the YouBot model presented in the second chapter. As both ROS and
Gazebo are still in a somewhat early development stage, we encountered
many problems while developing the package. In particular, the lack of
clear documentation posed quite a hard challenge, that we fortunately faced
and overcame with the help of the helpful online community.

While busy with our research in the Intelligent autonomous systems
(IAS) laboratory at the University of Padua, a team of students and re-
searchers started thinking about participating in the RockIn @Work com-
petition. This interest was mostly fostered by the participation of a student
to a workshop organized by the universities that are currently designing the
challenge. After listening and debating about the outcome of the workshop,
we decided to use the challenge as the background for our work, as explained
in chapter 2.

41
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Having a clear view of the structure of KnowRob and being able to carry
on experiments with realistic simulations, we could finally tackle the task
of allowing robot coordination and collaboration through mutual awareness.
We designed the architecture proposed in the third chapter while imple-
menting the corresponding prototype, quickly iterating between design and
development to obtain the best result we could.

As noted at the end of the previous chapter, the developed proof of
concept is very simple. It can only be used to demonstrate that the approach
suggested in chapter 3 works. It is nonetheless a very important proof of the
fact that mutual knowledge can be used for coordination and collaboration
during task execution. Future works might start from the notes of section
3.5, but many other are the possibilities to enhance what already done.
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universitá, specialmente Marina, Edoardo, Federica e Renato che, ognuno
in maniera differente e probabilmente in modo inconsapevole, hanno reso i
primi tre anni particolarmente interessanti e che, in quel periodo, mi hanno
aiutato a cambiare tante cose di me che non mi piacevano.

I would also like to thank the people that made my year in Cork an
unforgettable one. First, the lads and lassies of the UCC Canoe Club, one of
the craziest bunch of students I have ever met. Just to cite the most innocent
of my memoirs, I’ll not forget spending St. Patrick’s day kayak surfing in
the ocean. Second, the people of the Choir Society, that despite needing
some time to acquaint themselves with my presence (in typical Irish style)
resulted to be the most interesting Irish friends I’ve met, and appreciated
my R pronunciation as nobody had done before. Last but not the least,
thanks to all the other international students: the excitement of meeting
new people and embarking with them on any kind of incredible adventures
is something I’ll never forget. Citing you all would take the whole page, but
you know who you are: thank you from the bottom of my heart.

47



48 ACKNOWLEDGMENTS

It still feels incredible, but IBM also needs its own paragraph in these
acknowledgments. Paul, Tony, Laura, you taught me what it means to really
work in a team, to be responsible for what you do, for the code you write,
for the designs you propose, and for this I can only be grateful. When I
came back to Cork at the beginning of the summer and nobody was there I
felt I made the wrong decision, but you made me change my mind from day
one. Thank you to Ian, Eric, Nathalia, Anthony and Ken, for supporting
us and leading us through the three months to a wonderful expo in Nice.
Thank you for giving us this opportunity. A special thank to William, for
the sincerity with which he discussed with me.

Meriterebbero ognuno un paragrafo, alcune persone che negli ultimi anni
sono state particolarmente importanti. Alberto, per esserci sempre, per es-
sere una persona incredibile. Chris, per aver passato dei momenti bellissimi
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di quello degli studi universitari, non possono mancare a questa lista. Sono
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