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Abstract

Challenge-response is a well-known authentication protocol often im-

plemented using encryption in upper layers. This thesis explores a

new application of this mechanism at the physical layer, specifically

in the context of drone communications. The objective is to leverage

the characteristics of the radio channel model to establish a partially

controllable channel. Instead of the verifier sending challenges to the

drone, the verifier manipulates the physical properties of the chan-

nel and the drone’s modified signal serves as the response during the

verification process.

In particular, this study focuses on power fluctuations due to shad-

owing, given an area where the drone is free to move. It will be

demonstrated that these fluctuations can be exploited to achieve the

desired partially controllable channel. Finally, the effectiveness of this

approach will be evaluated in terms of misdetection and false alarm

probability.
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Introduction

The use of drones for communications is a subject of research in several contexts,

such as Internets of Drones (IoDs) or flying ad-hoc networks (FANETs). In these

contexts, drones are organized in swarms to perform coordinated tasks. This ar-

chitecture provides a flexible communication infrastructure but also exposes the

nodes to various types of attacks. Thus, it is necessary to implement an authenti-

cation mechanism that is both reliable and efficient in terms of resources, such as

computability and energy. The authentication problem is usually addressed with

encryption mechanisms, which are expensive since they require updates of secret

keys. Other solutions for challenge-response authentication have been recently

studied, such as exploiting the so-called physical unclonable functions (PUF),

which can be leveraged to support authentication and establish a secure key for

communication. Another alternative is leveraging the signals exchanged by the

agents, in order to obtain authentication on signals at the physical layer. One

of the advantages of this solution is that a physical layer authentication (PLA)

based on this principle does not require dedicated hardware and reuses the sig-

nal processing existing in the communication devices to achieve security. In the

case of drones, or more generally in wireless communications with mobile termi-

nals, the propagation characteristics of the channel can be used to fingerprint a

message.

The idea is to leverage the shadowing realizations on different possible posi-

tions of the drone in order to obtain different channel configurations, as described

in Chapter 1. To achieve this, it is necessary to have a channel model that takes

into account the spatial differences across the map where the drone operates. In

this regard, Chapter 2 presents a simplified model sourced from the literature,

which incorporates path loss and shadowing realizations. Chapter 3 discusses

the statistics of the introduced channel model, obtained from simulations with

parameters sourced from the literature to gain insights into the distribution of

channel configurations. Lastly, Chapter 4 examines a real-case scenario, present-
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ing statistics based on experimental parameters, and demonstrates the results in

terms of misdetection probability.



Chapter 1

Partially controllable channel

1.1 Physical layer Challenge-response

authentication mechanism

A Challenge-response (CR) protocol is based on a secret shared between the two

parties in communication, called Alice and Bob, that enables Bob to ask random

questions that only Alice can answer. In this sense, a tag-based authentication

can be seen as a particular case of challenge-response, in which there is only

one question-answer pair. A more complete example of challenge-response is the

One Time Password (OTP): in this situation, the challenge changes whenever the

authentication is requested. These mechanisms are implemented with encryption

schemes and, although in a case such as the OTP the key is usually communicated

out-of-band, the mechanism still requires something to be shared. With the

physical layer CR mechanism presented here, this is not necessary.

1.1.1 Partially controllable channel

The key concept of CR PLA authentication is the partially controllable channel :

one or more characteristics of the channel can be controlled by Bob, which means

that when Alice wants to start a communication with Bob, the latter can change

the channel characteristics in order to perform a challenge to Alice. In this case,

the response is the change of the channel between Alice and Bob and therefore

the change of the signal received by Bob. Since Bob controls the channel, he can

estimate what the characteristics of the received signal should be like, then the

response can be evaluated and compared with the expected behavior and can be

considered valid if the received signal is consistent with the channel alteration

3



4 Chapter 1. Partially controllable channel

introduced by the authenticator. In this scenario, the alteration of the channel

model does not need to be known to Alice, as Bob is the only one who knows

the controllable parameters of the channel. Ideally, Alice could be completely

unaware that the authentication is happening.

Examples of partially controllable channels are [1]:

• Intelligent reflective surfaces (IRS): IRSs reflect impinging radio sig-

nals with controllable phases, providing a highly controllable channel con-

figuration with the high directivity of the signal.

• Wireless Relays: Relays receive radio signals from one direction and re-

transmit the signals in another direction using combiners and beamformers.

The relay acts as the controllable part of the channel, where the configura-

tion is a specific combination of beamformers and combiners. Also in this

case the authentication is performed using the directivity of signals.

• Swarm networks: In this case, the controllable channel is achieved with

the cooperation of multiple devices. A swarm consists of a group of drones

or a group of vehicles, whose characteristic is to be mobile. Mobility is the

controllable part of the channel since moving the devices implies changing

the channel between the parties in communication. In this case, Bob can

be considered the entire swarm, while Alice is a drone that wants to send

a message. The same concept can be applied to the situation in which one

drone communicates with a base station on the ground, which can order

the drone to move before initiating communication.

This last point is discussed in the next section.

1.2 PLA in a drone-base station communication

As mentioned, the controllable parameter in a swarm network is the position of

drones: moving a drone implies changing the Channel State Information (CSI) of

the wireless link, including parameters such as distance, fading and shadowing.

The large number of possible positions of the drone ensures a wide control space

and a high variable channel. This means that for an eavesdropper (Eve), hijack-

ing the communication is challenging due to the high variability of the channel

parameters (and thus of the challenges proposed by Bob) [2].

Here, the focus is on the variations of power attenuation introduced by the

shadowing effect. The aim is to exploit the random distribution of shadowing to
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obtain a non-predictable space-varying channel. In fact, if the path loss due to

distance can be easily predicted by an eavesdropper, the shadowing component

can only be known by those who have already mapped the channel over the space.

In an ideal situation where the base station (which is Bob in this case) knows

exactly how the shadowing is distributed, when a drone (Alice) wants to start

a communication, the base orders the drone to move to a certain point p of

the space and then transmit. Now, the base station knows what the channel

configuration in p should be, so when it receives the signal it is compared with

the estimation. If the received signal is consistent with the channel estimation,

the drone is authenticated. As it will be explained in 2.1.2, shadowing affects the

power attenuation additively with a random normal variable.

Therefore, for an eavesdropper who wants to hijack the communication, the

only way to perform the attack is to brute-force over all the possible realizations

of the shadowing. Even if the attacker (Eve) knows the statistics of shadowing

(i.e. variance and mean value) and the position of the drone (thus the path loss),

the best she can do is try to guess the channel configuration (here, the power

attenuation) over a range of values that follow a normal distribution. Based

on this, it is desirable that the range be as large as possible, in order to allow

more channel configurations while decreasing the probability of interception. The

range of attenuation over which the channel configurations will be identified will

be discussed in Chapter 3.

Besides, in a more realistic scenario, there is another factor to take into

consideration, the microscopic fading, which adds another random component

that is completely unpredictable. Although the fading effect is smaller than

shadowing, the result is that given the point p with the same hypothesis as

before, Bob cannot know the exact power of the incoming signal. Therefore, if

h(p) is the channel estimation at point p, Bob has to accept the incoming signal

even if it is in a neighborhood of the point p. The width of the neighborhood

where the signal has to be considered acceptable depends on the fading statistics

and the range of power attenuation caused by shadowing. The consequence is

that the space of attenuation has to be divided into “slots”, each of which is a

channel configuration. To gain authentication, Eve’s attack strategy is now to

guess the slot where the current channel configuration is located. She does not

need to know the exact parameters of the channel between Alice and Bob. As will

be discussed later, this fading behavior is also responsible for errors in detecting

legitimate communication as malicious, particularly when the fading realization
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is strong enough to dramatically alter the channel configuration. This implies

the need to look for a trade-off between correctly determining the identity of a

legitimate drone and the number of potential channel configurations (this will be

discussed in Chapter 4).

PLA algorithm for drone authentication To summarize, the step-by-step

algorithm for the initial channel measurements and the actual drone authentica-

tion is described here.

1. CSI measurements : Alice (drone) moves around the space and transmits

several pilot signals from different positions chosen by Bob (base station).

These transmissions are authenticated by higher-layer security mechanisms

and are used by Bob to estimate the CSI over different channel configura-

tions (i.e., positions).

2. Random configuration: Bob proposes a challenge to Alice by randomly

choosing a position over the space in which the drone has to move to be

authenticated. The specific position may not have been explored in Step

1, but the resulting CSI should be predictable based on the observations

made previously.

3. Message transmission: Alice transmits the message, and Bob estimates the

CSI from the received signal, which represents the response from Alice.

4. Channel check : If the estimated CSI matches the CSI predicted in step 2,

Bob considers Alice authenticated.

This procedure does not use pre-shared keys, except during step 1 during

channel measurement. This assumption is common also in physical-layer tag-

based authentication.



Chapter 2

Channel model

As discussed before, the first step of the PLA is the channel state information

measurement and the identification phase, in which the transmitter (i.e. the

drone) sends pilot signals in order to let the receiver estimate the channel. To do

that, the drone moves to several points in the space and sends signals. The base

station will estimate the channel state information (CSI) over these points, each of

which will have different parameters, like distance, shadowing component, carrier

frequency offset, channel impulse response and so on. These features depend on

the position of the device and the propagation environment, while having some

correlation between two different positions. This chapter focuses on the path loss

and shadowing component estimation of the radio channel over the area in which

the drone can move.

2.1 Narrowband channel model

2.1.1 Derivation of the power and attenuation equations

In this section is reported the channel model in [3].

A deterministic ray model is used to evaluate the power of the received signal in

the case of line of sight (LOS), that in the absence of obstacles between trans-

mitter and receiver. In this case it can be assumed that only one wave (ray)

propagates from the transmitter to the receiver. Under these conditions, the

channel can be modeled in terms of power and attenuation as follows.

Let PTx be the power of the signal transmitted by an isotropic antenna. At

7



8 Chapter 2. Channel model

distance d from the antenna, the power density per area is

Φ0 =
PTx

4πd2
, (2.1)

where 4πd2 is the surface of a sphere of radius d. Here, the power density decreases

with the square of the distance which means, on a logarithmic scale, that decreases

by 20 dB per decade with distance. In the case of a directional antenna, the power

density can be written as

Φ = GTxΦ0 =
PTxGTx

4πd2
, (2.2)

where GTx is the antenna gain. At the receive antenna, the available power is

given by

PRc = ΦARcηRc , (2.3)

where PRc is the received power, ARc is the effective area of the receive antenna

and the efficiency factor ηRc < 1 represents the fact that the antenna does not

capture all incident radiation. In fact, the antenna gain can be written as

G =
4πA

λ2
η , (2.4)

where A is the effective area of the antenna, λ = c/f0 is the wavelength of

the transmitted signal, f0 is the carrier frequency and η is the efficiency factor.

Combining (2.3), (2.2) and (2.4), the Friis transmission equation is obtained:

PRc = PTxGTxGRc

(

λ

4πd

)2

, (2.5)

from which can be derived the available attenuation of the medium in decibels:

(a)dB = 10 log
Ptx

PRc

= 32.4 + 20 log d|km + 20 log f0|MHz − (GTx)dB − (GRc)dB .

(2.6)

Now, assuming the gain factors GTx and GRc are fixed since they depend on

the devices used for transmitting/receiving, the attenuation that is relevant for

the study of spatial variations of the channel is the free-space path loss due to

distance, that is, in (2.6), the term:

(aPL,fs)dB = 32.4 + 20 log d|km + 20 log f0|MHz . (2.7)
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This expresses the fact that changing the position of the drone (or the position

of the receiver) in general changes the distance and hence the path loss. It is

worth noting that the name free-space refers to a propagation model where there

are no reflection and scattering phenomena and therefore the one-ray model is

applicable. In fact, the factor 20 of the logarithm of distance comes from the 2-

exponent of the distance in (2.5). A more complete model that takes into account

multipath propagation effects would be written as:

(aPL)dB = 32.4 + α10 log d|km + 20 log f0|MHz , (2.8)

where α is the path-loss coefficient. Since the drone is supposed to be in flight

and the environment is static, the model can be simplified to the case of only the

LOS component, thus keeping α = 2.

2.1.2 Shadowing effects in the channel model

This paragraph describes the shadowing -also called macroscopic fading- phe-

nomenon and its statistics, which is the main parameter that makes the medium

highly variable and enables the authenticator to select over a wide range of con-

figurations. Experimentally, it is observed that the macroscopic fading introduces

an attenuation that follows a normal distribution and, since the attenuation is ex-

pressed in decibels, the statistics of shadowing is a log-normal distribution. This

means that the attenuation due to path loss and shadowing is the sum of (2.7)

and a random variable in dB:

(aPL)dB = (aPL)dB + (ξ)dB , (2.9)

where (ξ)dB ∼ N (0, σ2
(ξ)dB

) is a normal distribution in dB scale and σ(ξ)dB is the

standard deviation of the shadowing component, usually being σ(ξ)dB ∈ [4, 12].

The actual value of σ(ξ)dB depends on the amount of environmental data taken into

account by the model. An important result that enables the channel estimation

through the space is the Gudmundson model, which gives the correlation of the

shadowing components between two receivers at distance ∆:

r(ξ)dB(∆) = σ2
(ξ)dB

e
−

|∆|
Dcoh , (2.10)

where Dcoh is the coherence distance, i.e., the distance in space within the fading

effect is strongly correlated. The value of coherence distance is proportional to
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the wavelength, which is in turn inversely proportional to the (carrier) frequency.

In general, Dcoh can be approximated as:

Dcoh = kλ = k
c

f0
, k > 0 , (2.11)

where k is a coefficient that depends on the environment. For example, values

of coherence distance at a base station range from 3λ to 20λ, respectively in an

urban area with many obstacles and a flat rural area.

The spatial correlation between shadowing components is essential for channel

estimation and thus for authentication accuracy. Therefore, based on the coher-

ence distance and standard deviation parameters, a space model of macroscopic

fading will be presented in the following section.

2.2 Discrete-space model of shadowing

Shadowing is a random variable that depends on both time and space. In this

simplified model, a static channel with respect to time is considered, which means

that shadowing across the space will be studied given a realization in time. The

parameter that expresses the correlation between shadowing across space is the

coherence distance, which is the basis for the model of shadowing spatial distri-

bution in the following [3].

The model is generated with an algorithm that essentially produces values of

(ξ)dB[n] on a grid made by points n, correlated according to (2.10), starting from

independent and identically distributed complex Gaussian samples across the

same points. The operator that generates the shadowing from the Gaussian noise

is a convolution between the noise and a filter with characteristics dependent on

the Gudmundson model.

Let the coordinates of the discrete (2D) space be:

c = (c1, c2) = (n1A, n2A) = (n1, n2)A, (n1, n2) ∈ S ⊂ Z
2, (2.12)

where A is the step size (i.e. the distance between adjacent points). Given

the autocorrelation function r(ξ)dB(∆), where

∆ =
√

c21 + c22 = A
√

n2
1 + n2

2 , (2.13)
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The power spectral density of the autocorrelation is1:

P(k) = DFT2

[

r(ξ)dB(A
√

n2
1 + n2

2)

]

k ∈ S , (2.14)

and the filter can be calculated as:

Hsh(k) = K
√

P(k) and hsh(n) = DFT−1
2 [Hsh(k)] , (2.15)

where K is such that hsh has unit energy

∑

n∈S

|hsh(n)|2 =
1

N1N2

∑

k∈S

|Hsh(k)|2 = 1. (2.16)

This can be obtained by the normalization:

hsh(n) =
ĥsh(n)

√

∑

n∈S |ĥsh(n)|2
(2.17)

where

ĥsh(n) = DFT−1
2

[

Ĥsh(k)
]

and Ĥsh(k) =
√

P(k) (2.18)

A complex i.i.d Gaussian noise is generated on the space S as

w(n) ∼ CN (0, σ2
(ξ)dB

), n ∈ S (2.19)

Then, the shadowing component (ξ)dB[n] is obtained by the convolution

(ξ)dB[n] =
∑

p∈Sh

hsh(p)w(n− p), n ∈ S, (2.20)

where hsh(p) is the filter in (2.17).

1
DFT2 indicates the 2-Dimensional Discrete Fourier Transform
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Chapter 3

Simulation of the channel model

This chapter presents the results of the channel simulation. The channel has been

modeled on a square area of 225 m2,following the procedure of Chapter 2 with

the following parameters:

• step size A = 0.15

• Carrier frequency f0 = 1800 MHz

• Coherence distance Dcoh = 10λ ≈ 1.67 m

• standard deviation of the shadowing component σ(ξ)dB = 6 dB

• Path-loss coefficient α = 2

• Base station distance db = 100 m.

The last point refers to the distance from the base station, assumed to be on

the ground, and the center of the square. The actual distance between the base

station and the points on the space can be obtained from this distance and the

distance of the points from the center:

dx =
√

d20 + d2b (3.1)

where x = (x1, x2) is a point on the area and d0 =
√

x2
1 + x2

2 is the distance of x

from the origin.

13



14 Chapter 3. Simulation of the channel model

3.1 Shadowing simulation

The shadowing is generated as described in Section 2.2 with the parameters spec-

ified in the previous section. The grid on which the shadowing is generated is

shown in Figure 3.1.

Figure 3.1: Space grid

The shadowing component has been simulated on this grid and the contour

plot in Figure 3.5 shows the amplitude (in dB) of one realization of the shadow-

ing on the space, while the module in Decibel of the filter hsh(n) used for the

computation of (2.20) is plotted in Figure 3.3.

Then, the path loss is calculated on the space as in (2.7) with distance as in

(3.1) for each point. As Figure 3.6 shows, the path loss does not vary widely in

the space. In fact, since the base station is ideally placed at 100 meters away

from the origin, the horizontal d0 component in (3.1) has little effect on the total

distance and thus on the path loss (refer to Figure 3.2). Numerically, the distance

dxf
between the furthest point from the center and the base station is

d0 =
√
7.52 + 7.52 = 10.6 m =⇒ dxf

=
√

1002 + d20 = 100.56 m
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And the path loss in xf is:

(aPL,fs(xf ))dB = 32.4 + 20 log dx|km + 20 log f0|MHz = 77.554 dB

while the path loss in the origin is

(aPL,fs(0))dB = 32.4 + 20 log db|km + 20 log f0|MHz = 77.505 dB.

Indeed, the instance in Figure 3.6 results from the sum of the path loss component

and the shadowing component. The shape of the amplitude does not change much

compared to that in Figure 3.5, except for the shift of ≈ 77 dB due to the path

loss.

Figure 3.2: Visual representation of the space: on the ground is the base station, and the drone
moves within a square area at a height of db.
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Figure 3.3: 20 log10 |hsh(n)|

Figure 3.4: Path loss
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Figure 3.5: Shadowing attenuation

Figure 3.6: Attenuation due to path loss and shadowing
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3.2 Channel statistics

The previous section showed how to simulate a channel model when shadowing

occurs, but since this is a random variable that changes over time and depends on

the environment, it is necessary to have a statistical idea of how the channel may

vary with different realizations1 of shadowing. As mentioned in Section 1.2, the

goal is to obtain a range of power attenuation in which the channel configurations

can be identified, which can be expressed as:

(R)dB = (amax)dB − (amin)dB (3.2)

where
(amax)dB = max

x∈S
a(x)

(amin)dB = min
x∈S

a(x)

and a(x) is obtained from (2.9).

Before going into detail, a few considerations can be made. First, as seen in

the previous section, when the vertical component of the distance is much larger

than the horizontal component, the path loss changes slightly across the space

and the shadowing has the highest impact on (R)dB. However, even if the base

station stays at the same distance in each realization, the shadowing component

always varies and so does the value of (R)dB. Moreover, (amax)dB and (amin)dB

depend on the single realization, which means that during the initial phase of

the protocol (the CSI measurements) these values need to be identified to fully

exploit the channel.

With this in mind, using the simulation presented in Section 3.1 a statistic of

(R)dB has been generated. Figures 3.7 and 3.8 show, respectively, the probability

density function (PDF) of the shadowing and the PDF of the range (R)dB across

1000 realizations.

The mean value (R)dB is:

(R)dB =
1

M

M
∑

i=1

(Ri)dB = 9.14 dB (3.3)

where (Ri)dB is the range value of the i-th instance of the model.

1Here, with the term realization is intended both shadowing realization in the same envi-
ronment (e.g. the same city) at different times and realization in different environment where
the shadowing parameters (as variance) are assumed to be the same.
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Figure 3.7: PDF of the shadowing across 1000 realizations

Figure 3.8: Empirical PDF of (R)dB over 1000 realizations.



20 Chapter 3. Simulation of the channel model

On distribution of the range (R)dB

The empirical PDF in Figure 3.8 displays a long-tailed distribution, possi-

bly skewed, which is not easily described by a closed form. The range (R)dB is

a random variable described by (3.2), where (amax)dB and (amin)dB represent the

maximum and minimum values, respectively, of a set of correlated random Gaus-

sian variables. A literature search was conducted to find a suitable formulation

for the PDF of this range, but no similar findings were discovered.

To gain insight into the variability of this range across different realizations, sev-

eral simulations were performed. The mean value of (R)dB was calculated as a

function of the map’s size. This approach aims to explore how (R)dB may vary

as the space available for the drone to perform authentication expands. As dis-

cussed in Chapter 4, the misdetection probability is a function of the attenuation

range and therefore, in order to achieve a desired misdetection probability, the

appropriate choice of the map’s size is crucial.

The scatter plot in Figure 3.9 shows the mean value and the 10th percentile of

(R)dB calculated on a square area with a side length of L ∈ [1, 100] meters and a

coherence distance of Dcoh = 1.67m, as in the previous simulations. The function

decreases as L increases. This behavior is attributed to the relatively small value

of the coherence distance compared to the map size. Specifically, the shadowing

spatial correlation exponentially decreases with 1
Dcoh

(see Equation 2.10). This

means that the variation of the range across different realizations is less affected

by the realization of shadowing, as its peaks and troughs tend to stabilize when

the map size is beyond a certain threshold. In fact, beyond some value of L,

the dominant factor contributing to the increase of (R)dB becomes the path loss

rather than the shadowing.

As a result, as the area increases, the impact of shadowing diminishes, while

(R)dB becomes more sensitive to the path loss, resulting in wider extremes of

(R)dB. However, the growth attributed to path loss is less pronounced compared

to that caused by shadowing. This concept is better illustrated in Figure 3.10,

which presents the same scatter plot with the coherence distance increased by a

factor of 10 (this exaggerated value has been deliberately chosen to emphasize

this fact). The plot demonstrates that a larger coherence distance (which depends

on the transmission frequency) results in more correlated values of (amax)dB and

(amin)dB, leading to a narrower overall range width. On the other hand, increas-

ing the size of the map beyond a certain threshold appears to yield a higher value

of (R)dB; however, this gain is primarily driven by the path loss due to distance,
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which is deterministic. As a result, a more deterministic relationship between

(R)dB and the drone’s position could potentially provide attackers with insights

on how to carry out more effective attacks. Therefore, if it is possible to select

the frequency and the spatial dimensions it could be beneficial to seek a trade-off

between the transmission frequency and the size of the map.
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Figure 3.9: Mean value of (R)dB varying L and Dcoh = 1.67m . The area covered is given by
A = L2.

Figure 3.10: Same as Figure 3.9 but with Dcoh = 16.7m.



Chapter 4

Performance analysis in a real-case

scenario

The previous chapter presents the simulation of the radio channel and the statis-

tics of the attenuation caused by shadowing, using parameters taken from the

literature. As demonstrated, one parameter that strongly influences the distri-

bution of (R)dB is the coherence distance. As observed, when Dcoh is calculated

using (2.11), the path-loss quickly dominates the growth of (R)dB, resulting in

a more deterministic channel as the map size increases. Moreover, this behavior

is independent of the path-loss due to distance, meaning that it generally holds

true even for smaller drone altitudes.

In fact, [4] demonstrates that there is no clear relationship between the co-

herence distance and the drone altitude. However, based on the experimental

data gathered during the research, it is evident that, compared to the previous

simulations, the real-case shadowing standard deviation is smaller while it is more

correlated. In particular, [4] shows that in an urban environment, at an altitude

of approximately 20 meters, the shadowing standard deviation barely reaches the

value of σ(ξ)dB = 2.5 dB, decreasing even further when increasing the drone height

above the rooftop level. Additionally, the coherence distance at this altitude lies

around the value of 10 meters.

Based on these results, new simulations has been performed keeping the pa-

rameters as in [4], thus:

• Dcoh = 10 m;

• σ(ξ)dB = 2.5 dB;

• drone height db = 20 m;

23
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• carrier frequency f0 = 1800 Mhz.

Furthermore, these experimental parameters allow for estimation of the ef-

fectiveness of the authentication system in a real scenario.

4.1 Channel profile and authentication path

As discussed before, a lower altitude of the drone leads to a more path-loss depen-

dent channel map. Consequently, the extremes of (R)dB, (amin)dB, and (amax)dB

are more likely to be situated, respectively, around the origin (i.e., over the base

station) and close to the borders of the map. The probability of this event is

influenced by the shadowing standard deviation, as a more variable shadowing

distribution implies that the channel profile could deviate significantly from the

path-loss shape.

Another important consideration is the power consumption of an authentica-

tion process. When the drone undergoes authentication, it has to move around

the space and this implies power usage. Given a channel realization, the mean

power usage is also influenced by the position of (amin)dB and (amax)dB, as they

define the amplitude of (R)dB and, ultimately, the number of channel configura-

tions. For this purpose, the fact that the extremes are found more probably in

certain points of the space helps in determining the average power consumption

in different realizations, although this entails a slightly more predictable channel.

This situation can be advantageous or disadvantageous depending on whether

power consumption or security is of greater concern. As expected, this fact in-

sights that to improve the effectiveness of the challenge-response, more power

usage is needed.

For simplicity, in this study, it is considered the case in which the drone moves

along this authentication line. Considering one authentication line instead of all

possible channel configurations over the space makes it easier for the drone to

locate the ”challenge” sent by the station, while considering all possible channel

configurations, since every attenuation value between (amin)dB and (amax)dB can

be found on this line. However, this solution is not optimal from the power

consumption point of view, and further investigations are needed in order to

minimize the power usage during the authentication process. Figures 4.1a and

4.2a show two realizations of the channel and the channel profile along S.
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(a) Channel shape over the space

(b) Channel profile over the line S

Figure 4.1: Channel characteristics
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(a) Channel shape over the space

(b) Channel profile over the line S

Figure 4.2: Channel characteristics

Now, given a drone position s(t) on the line at time t, when the base station

requests an authentication process, it challenges the drone to move in a random1

position s(t+1). The authentication path p = |s(t+1) − s(t)| is what determines the

power consumption during the authentication process.

The mean power consumption is then related to the mean distance traveled by

the drone during several authentication processes in a specific environment. The

1For now, the term ”random” indicates that the position is chosen with an independent
uniformly random distributed variable. In other words, the base station randomly chooses a
point on the line with no regard for the current position of the drone or preference for attenuation
values.
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plots in Figures 4.3 and 4.4 provide insights into the average size of the line S and

the average authentication path length as the map size increases. In particular,

the plot in Figure 4.4 is generated by simulating a random process in which the

base station, for each realization2, randomly picks 1000 attenuation values along

the line S and orders the drone to move from one position s(t−1) to another s(t)

consecutively. The plots show a linear dependency of the authentication line S

on the size L of the map.

Figure 4.3: Mean value of the authentication line S

2For every size of L (from 1 to 100 meters), 5000 realizations have been generated
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Figure 4.4: Mean value of the authentication paths length s(t) − s(t−1)

In Figure 4.5, the mean value and the 10th percentile of (R)dB are shown,

as in the simulations of the previous chapter. At first glance, it may seem unex-

pected that in this case the value of (R)dB is larger than in the previous simula-

tions, despite the shadowing being more correlated and having a smaller standard

deviation. In reality, this result can be attributed to the fact that with a lower al-

titude, the path-loss distance over the points in the area varies more significantly

compared to Figure 3.4.3

3Referring to Figure 3.2, since db is much smaller than in the previous case, for higher values
of L, the distance d0 plays a more significant role in the total distance, leading to a greater
distance-dependent (R)dB .
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Figure 4.5: channel statistics with parameters taken from [4]

4.2 Misdetection probability estimation

As discussed in Section 1.2, when the drone is positioned at a certain location, it

experiences a particular path-loss and shadowing realization. These parameters

define the channel configuration that the base station expects to encounter during

communication with the drone. Ideally, these parameters are also what Eve

needs to guess in order to hijack the communication. However, the base station

actually receives a signal that fluctuates around this channel configuration due to

fading effects. This implies that in order to correctly authenticate the drone, it is

necessary to have an interval (I)dB around its channel configuration within which

authentication is considered valid. Since fading is a random variable, there can be

a case where the drone transmits but the base station receives a signal strongly

attenuated which will fall outside the interval (I)dB, leading the station to reject

the message as malicious, even if the transmitter is legitimate. This event, called

false alarm, is (virtually) inevitable. What can be done is to limit the occurrence

of false alarm by choosing the minimum width of (I)dB that guarantees a certain

probability of false alarm (PFA).

At the same time, the misdetection probability is the probability of consid-
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ering a transmission sent by the attacker as valid4. Assuming that Eve has no

other information available, the attack consists of randomly choosing over all the

channel configurations. From her perspective, these configurations encompass all

possible values contained in (R)dB, as it is assumed that she does not know the

width of (I)dB (otherwise, Eve could significantly reduce the attack complexity

by choosing attenuation values distanced by (I)dB).
The width of (I)dB is determined by choosing a value for PFA and depends on

fading and other noise sources that cause errors at the receiver. As an initial ap-

proximation, this effect can be represented using an additive white Gaussian noise

(AWGN) channel, where noise is added to the signal transmitted by the drone.

The transmitted signal reaches the receiver with an attenuation determined by

the drone’s position, expressed in decibels as given by (2.9).

The signal at the receiver can be written as

s =
1

√

Ap

x+ n (4.1)

where x represents the signal transmitted by the drone, n is the noise intro-

duced, and Ap denotes the linear attenuation at a point p, defined as:

Ap = 10
(Ap)dB

10 (4.2)

where (Ap)dB is the attenuation calculated using (2.9) for the specific point of

interest. This model also enables a straightforward estimation of attenuation

across space by transmitting various known pilot signals and computing the mean

power of the received signal. The base station will estimate the attenuation

Ap, introducing a certain error that depends on the noise standard deviation.

Specifically, the estimated attenuation can be expressed as:

Âp = Ap + wA (4.3)

where wA is the estimation error, which is modeled as a random Gaussian distri-

bution with a standard deviation σA and zero mean.

The magnitude of σA ultimately determines the width of the (I)dB interval

(or, in the linear scale, the amplitude of I, which is a power level ratio). In fact,

in this model, PFA is directly related to the distribution of wA. For example, to

achieve PFA ≈ 0.05, I should correspond to the 95% confidence interval, centered

4Refer to (4.6) and (4.7) for formal definitions.
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in Ap, which can be obtained as follows:

I = 2σA ·Q−1

(

PFA

2

)

(4.4)

where Q is the complementary error function of the normal distribution. The

confidence interval is independent of the drone’s position (i.e., independent of

the chosen CSI within the R interval of power attenuation) if it is assumed that

the noise introduced by the receiver is not dependent on the current channel

configuration. This fact results in a PMD that is easily obtainable from the ratio

between the rangeR of possible channel configurations and the confidence interval

I of a single CSI. A direct relationship between PMD and PFA can be established:

PMD =
I
R =

2σA

R ·Q−1

(

PFA

2

)

(4.5)

The Figure 4.6 shows the relationship between PMD and PFA on the mean value

of (R)db.

Figure 4.6: PMD as a function of PFA calculated on the mean value of E [(R)db] = 24.83 dB of
map with size L = 100 m
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Now that the two error probabilities, PMD and PFA, have been derived, the

authentication problem can be addressed as a binary hypothesis testing scenario,

with each probability having a closed-form expression. Formally, H0 represents

the situation in which Alice transmits a legitimate message, while H1 corresponds

to the attack scenario, where Eve attempts to impersonate Alice.

Using this notation, PMD, PFA, the probability of detection PD, and the

probability of correct non-detection PC can be defined as follows:

PMD = (Âe ∈ I | H1) =
I
R =

2σA

R ·Q−1

(

PFA

2

)

(4.6)

PFA = (Âp /∈ I | H0) = 2Q

( I
2σA

)

(4.7)

PD = (Âe /∈ I | H1) = 1− PMD (4.8)

PC = (Âp ∈ I | H0) = 1− PFA (4.9)

Where Âe is the attenuation value guessed by Eve (there is no dependency

on the specific point p because, as explained later, Eve can execute the attack

even without knowledge of the drone’s position).



Conclusions

This thesis proposes a new authentication mechanism for drone communications,

based on the drone’s position and the corresponding shadowing effects. The

mechanism leverages the characteristics of the channel at different positions. To

achieve this, the protocol initiates an initial phase of channel measurements,

during which the drone traverses the space to identify the maximum and minimum

attenuation values induced by shadowing and path-loss. Afterward, when Alice

intends to transmit a message, Bob challenges her by selecting a position in space.

He then estimates the channel characteristics at the given position and compares

the estimation with the actual received signal.

The study considers a suboptimal scenario in which Bob selects points that

lie along the line connecting the extreme attenuation values across space. While

this approach enables the utilization of all attenuation values between the maxi-

mum and minimum, it is not efficient in terms of power consumption and further

investigations are required in this regard. Once the drone is in the given posi-

tion, Bob accepts the authenticity of the transmitted message only if the received

signal falls within a certain range around the estimated value. The width of this

range (I)dB is influenced by fading and other potential sources of errors at the

base station.

To assess the effectiveness of this mechanism, numerous simulations have

been conducted. Initially, the channel model and shadowing effects have been

simulated using the model outlined in [3]. Statistical insights into the attenuation

range (R)dB have been obtained by varying shadowing parameters, coherence

distance, drone height, and map size.

Moreover, to provide insights on power consumption, the average distance

between (amin)dB and (amax)dB has been found for different map sizes. This is

complemented by the average drone path length for the authentication process,

considering the base station’s random selection of positions along the authenti-

cation line.
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Lastly, by modeling the estimation error at the base station as an AWGN

channel, a closed-form expression has been derived for the width of the interval

(I)dB. This, in turn, establishes a direct relationship between the probabilities

of misdetection (PMD) and false alarm (PFA).
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gensen, “Validation of large-scale propagation characteristics for UAVs within

urban environment,” 2019 IEEE 90th Conference on Vehicular Technology

(VTC), September 2019.

35


	Contents
	Introduction
	Partially controllable channel
	Physical layer Challenge-response authentication mechanism
	Partially controllable channel

	PLA in a drone-base station communication

	Channel model
	Narrowband channel model
	Derivation of the power and attenuation equations
	Shadowing effects in the channel model

	Discrete-space model of shadowing

	Simulation of the channel model
	Shadowing simulation
	Channel statistics

	Performance analysis in a real-case scenario
	Channel profile and authentication path
	Misdetection probability estimation

	Conclusions
	References

