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Abstract

Large scale data, from a statistically point of view, has often computational problems in the
estimation caused by the high dimension of the dataset and also statistical problems caused by
inhomogeneities (outliers, shifting distribution...) of the data.
A lot of ”usual” statistical procedures fails when the data are inhomogeneous. In this case there
are useful results in the field of robust statistic, but these methods often tend to overparameterize
the model, and sometimes can not be used because in the tipical large scale data analisys there
are relatively very few observations, compare to the parameters of the model.
The main point is the assumption of sparsity, which is really often fulfilled in high dimensional
data; in the last two decades have been developed better methods for these cases, called shrinkage
methods.
The method used in my thesis is based on the lasso (shrinkage method which use a l1-norm to
penalize the parameters), with a different penalty function to increase robustness in the estimation.



Contents

1 Maximin effect 1
1.1 Maximin effect for linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition of maximin effects . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Charaterization and robustness of maximin effects . . . . . . . . . . . . . . 2

1.2 Maximin effect for gaussian graphical model . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Basic concept of (gaussian) graphical model . . . . . . . . . . . . . . . . . . 3
1.2.2 Definition of maximin for gaussian graphical model . . . . . . . . . . . . . . 5

2 Maximin estimation 7
2.1 Regression shrinkage by penalized likelihood . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Adding a lq-norm penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Lasso and likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Lasso and soft-thresolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Maximin estimator for linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 L0-norm approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Explicit solution for maximin . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Magging estimation for linear model . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Extension to gaussian graphical model . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Neighborhood selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 L1–penalized maximum likelihood estimation . . . . . . . . . . . . . . . . . 18
2.4.3 Maximin estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 L0-norm approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.5 Magging estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Optimization problem 21
3.1 Derivative-free method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Coordinate descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 L0-norm approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Magging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Optimization function comparing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Complements 30
4.1 Dimensionality reduction in the optimization . . . . . . . . . . . . . . . . . . . . . 30
4.2 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Simulation 34

6 Conclusion 39

i



A 40
A.1 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B 42
B.1 Sampling groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.2 Optimization function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.4 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.5 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ii



Chapter 1

Maximin effect

In this chapter the definition and the properties of maximin effect for linear model and a possible
extension to gaussian graphical model will be exposed.

1.1 Maximin effect for linear model

In this section we refer to Meinshausen and Bühlmann - 2015 [14], here we have a summary from
the section 2 with the most useful topics for my thesis.

1.1.1 Definition of maximin effects

To give an intuitive definition, we will focus on a mixture model : for i = 1, ..., n

Yi = XiBi + εi (1.1)

where Yi is a real response variable, Xi ∈ Rp is a predictor variable, Bi ∈ Rp and Bi ∼ FB for an
unknown distribition FB .
The predictors are random, indipendent and identically distributed with population Gram matrix
Σ, the noise fulfills E(ε) = 0 and E(εTX) = 0 and the coefficients Bi are indipendent from Xi.
The data are inhomogeneous because Bi depend on the observations.

For a fixed regression coefficient b ∈ support(FB) ⊆ Rp we define the explained variance of
predictions with β ∈ Rp:

Vβ,b = 2βTΣb− βTΣβ (1.2)

or (under the condition E(εTX) = 0):

Vβ,b = E(‖Y ‖22/n)− E(‖Y −Xβ‖22/n)

= E(‖Xb+ ε‖2/n)− E(‖X(b− β) + ε‖2/n)

(note that E We want an effects that guarantee good performance in all possible parameters values,
especially we want maximize the minimum (respect the all possible values of the parameters) of
the explained variance, we define the maximin effect in that way:

βmaximin = arg min
β

max
b∈F

(−Vβ,b) = arg max
β

min
b∈F

(Vβ,b) (1.3)

1



1 – Maximin effect

where F = support(FB) or a smallest region of the support with probability 1− α.
With this definition we can see that the maximin effects is a parameter that represents the maxi-
mization of the objective (explained variance) under the worst possible scenario in the support of
FB .

1.1.2 Charaterization and robustness of maximin effects

Here we can show the most important theoretical proprieties of maximin effects, we begin to show
the differences and the advantages respect to the simpliest pooled effect, which is defined as:

βpool = arg min
β

EB (−Vβ,B)

The pooled effect, intuitively, is the value that maximize the average of the explained variance, the
main problem of this effect is that, for some values in the support of FB , the explained variance,
respect to these values, can be really low.

Suppose that the coefficient of the model is B = (1, η) where η ∼ U(a,6), a < 6 and the Gram
matrix is the identity: Σ = I2. Applying the definition we have that:

βpool = arg min
β

EB
(
βT I2β − 2βT I2(1, η)T

)
= arg min

β

{
β2

1 + β2
2 − 2EB (β1 + β2η)

}
= arg min

β

{
β2

1 − 2β1 + β2
2 − 2β2E(η)

}
= (1, a/2 + 3)T

instead the maximin:

βmaximin = arg min
β

max
η∈(a,6)

(
βT I2β − 2βT I2(1, η)T

)
= arg min

β

{
β2

1 + β2
2 − 2 min

η
(β1 + β2η)

}
= (1, (a)+) where (a)+ =

{
0 if a ≤ 0

a if a > 0

In Figure 1.1 there is a simulation which compare the maximin effects and the pooled effects. We
can see that the values 0 in the maximin effects has an intrinsic meaning, intuitively the effect of
β2 is 0 if β2 can assume values of different signs. It will show better in the next theorem.

Theorem 1. Assume that the predictor variables are choosen randomly from a design with full-rank
population Gram matrix Σ. Let F = support(FB). The maximin-effect is:

βmaximin = arg min
γ∈Conv(F )

γTΣγ

where Conv(A) denote the convex hull of the set of points A.
As a particular case, if 0 ∈ Conv(F ), then βmaximin = 0.

The proof is in [14]. The maximin effect parameter is the closest to the origin in the convex hull
of the support of FB .
This is the main point about the robustness of maximin: adding a new point in the dataset the
new maximin effect will have lower or equal distance to 0 than the original.
Figure 1.2 show some possible values of maximin effect respect to the support of FB .

2



1 – Maximin effect

Figure 1.1. Left panel: 10 values from an U(2,6), right panel: 10 values from U(−2,6), the full red
square is the maximin effect and the empty is his estimation with the sampled values (the estimator
will be discuss in chapter 2, in this case correspond to the sample values closer to 0, if all the
values have the same sign, instead is 0), the red full circle is the pooled effect and the empty is his
estimation, which is the mean of the values.

1.2 Maximin effect for gaussian graphical model

1.2.1 Basic concept of (gaussian) graphical model

An undirected graphical model is an useful way to represent the dipendence between random vari-
ables using an undirected graph.
A graph is a set of object called nodes which each pair of them can be connected with a link, called
edge, in our case the nodes represents the casual variables in our model, the edges the dependence
between them, if the nodes A and B are connected in the graph, it means that there is conditional
dipendence between the variables A and B.
A graph is undirected if the edges has no direction.

If the only dependence between the p variables in which we are intrested is linear, and the
variables are normal, the undirected graphical model can be represented also with a p-dimensional
multivariate normal distribution (gaussian graphical model).
There are two important results in this model.
The first is that a gaussian graphical model can be seen as a set of regressions in which each variable
is regressed on the others simultaneously, formally, we have an i.i.d. sample from the distribution
X ∼ N(0,Σ), we can consider the block:

X =

(
X1

X2

)
, Σ =

(
Σ11 Σ12

ΣT12 Σ22

)
, Θ = Σ−1 =

(
Θ11 Θ12

ΘT
12 Θ22

)
(1.4)

where X1 is a vector of dimension p − 1, X2 is a real value, Σ11 and Θ11 are a (p − 1) × (p − 1)
matrix, Σ12 and Θ12 are p− 1 vector, Σ22 and Θ22 are real values.

3



1 – Maximin effect

Figure 1.2. here we can see some proprieties of maximin effect using Theorem 1. The first panel
shows that if 0 is inside the convex hull of the support of FB (in these example FB is discrete,
and the black empty points are the values which the function can assume), βmaximin (red circle)
is 0, unlike βpool (red triangle) is different. The seconds shows the result of Theorem 1, the
maximin is the point in the convex hull which minimize the distance d(a, b) = (a− b)TΣ(a− b)
from 0. The lower panels shows the robustness proprieties of maximin, if we add a new point
in the support of FB , the maximin estimation will change only if there are some new points in
the convex hull which are closer to 0 and the maximin can not change to a value with higher
distance to 0. Note that whichever point we add to the support, βmaximin can take a value only
in the area inside the red dotted circle.

The conditional density of X2 given X1 is univariate normal with parameters:

X2|X1 ∼ N
(
ΣT12Σ−1

11 X1,Σ22 − ΣT12Σ11Σ12

)
(1.5)

4



1 – Maximin effect

In this way the linear model associated to each variable of the graphical model is

X2 = X1β + ε, where β = (ΣT12Σ−1
11 )T = Σ−1

11 Σ12

and ε ∼ N(0,Σ22 − ΣT12Σ11Σ12)
(1.6)

The other important result is the explicit relationship between the coefficients of the associated
linear models and the values of the precision matrix.
Let β = (β1, ..., βp−1)T the coefficient vector in the model (1.6), it holds that

βi = − [Θ12]i
Θ22

or more generally, if βj is the coefficient vector of the associated model Xj = X−jβ
j + ε related to

the j-th variable conditional to the others

βji = −Θi,j

Θj,j
= −Θj,i

Θj,j
(1.7)

(Meinshausen and Bühlmann - 2006 [13]).
This result implies that the variable Xi is indipendent from Xj conditionally to the other variables
if and only if the element (i, j) in the precision matrix (inverse of covariance matrix) is equal to 0:

Xi⊥⊥ Xj | Xk1 , ..., Xkp−2 , where {k1, ..., kp−2} = {1, ..., p} \ {i, j} ⇐⇒ Θi,j = 0 (1.8)

1.2.2 Definition of maximin for gaussian graphical model

The maximin effect for a gaussian graphical model can be defined in different ways, we can define
it directly in the covariance matrix or consider the ”effect” related to the correlations behind the
variables.

Proceeding straightforward in the way that has been defined in section 1.1 we can consider the
model:

Xi ∼ N(0, U) where Ui,j ∈ R, U = UT and U ∼ FU

for some distribution FU , and consider the maximin effect:

Σ̃maximin = arg max
Σ

min
U

f(U,Σ)

for some function f : R ∈ Rp2 × Rp2 → R like, for example, the likelihood.
However a definition like this does not have an intuitive connection with the correlations between
the variables, so we prefer define Σmaximin in a different way, directly related to the correlations,
using the relationship between a gaussian graphical model and a linear model showed in the pre-
vious section.

In the model (1.6) we have a maximin effect using the equation (1.3), we define Σmaximin as
the matrix which respect the p relations:

Σ12;maximin = Σ11;maximinβmaximin, (1.9)

5



1 – Maximin effect

for each block of variables as in (1.4).
Using the usual maximin definition for a linear model:

βmaximin = arg min
β

max
b∈supp(FB)

(−Vβ,b)

= arg min
β

max
b∈supp(FB)

(
βTΣ11;maximinβ − 2βTΣ11;maximinb

)
now, using the fact that β = Σ−1

11 Σ12, we can reparametrize the space supp(FB) whereas F ∗ =
Σ−1

11;maximin · supp(FB), where with the moltiplication we intend that F ∗ is the set of all values

f∗ = Σ−1
11;maximinb, for all b ∈ supp(FB). The minimization becomes:

Σ12;maximin = Σ11;maximin · arg min
β

max
Σ̃12∈F∗

(
βTΣ11;maximinβ − 2βT Σ̃12

)
(1.10)

So we haven’t an explicit definition of Σmaximin, but, as we will see in chapter 2, with an iterative
method we can estimate this matrix.
Following this method we give an extension to graphical model of the Theorem 1, using Σmaximin
and βmaximin as are defined in (1.9) and (1.10), which are the maximin effect of the associated
models (1.6), we have the following:

Theorem 2. Let X2 = X1β+ε the linear models associated to the variable X ∼ N(0,Σ). Σmaximin
is the matrix which fulfills the p relations

Σ12;maximin = Σ11;maximin

(
arg min

γ∈Conv(F∗)

γTΣ11;maximinγ

)

where F ∗ = {f∗ : f∗ = Σ−1
11 b ∀ b ∈ supp(FB)}.
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Chapter 2

Maximin estimation

Here we will show the estimation of the maximin effect defined in chapter 1, for linear and graphical
model.
The estimation is done with the empirical counterpart of the quantities defined in the previous
chapter and adding a l1-norm penalty (will be explained later) to increase sparsity.
In the first section there are the basic concepts of penalized regression by lq-norm, especially with
q = 1 (called lasso), which is the foundation of these kinds of estimation.

2.1 Regression shrinkage by penalized likelihood

Here we show a method to estimate a linear model which has better proprieties respect to the
”usual” OLS estimator under some assumptions of sparsity in the vector of coefficients. This sec-
tion is a summary from the paper Tibshirani - 1996 [17]
The sparsity assumption is useful in high dimensional setting because is often fulfills and offers
a better interpretation of the parameters, this method tends to shrink to 0 the values of some
coefficients.
There are two main reason to use shrinkage methods instead of the OLS estimator, the first is
prediction accuracy: estimation by ordinary least squares tend to have low bias but large variance,
by penalized likelihood with some additional bias we can reduce the variance and have a better
prediciton accuracy. The second reason is the interpretability of the coefficients: in high dimen-
sional setting is useful find a subset of the coefficients which contains the strongest effects, and
overlook to the (many) others.

2.1.1 Adding a lq-norm penalty

Let the usual linear model Y = Xβ + ε, where X is a n × p matrix of fixed values, β is a p-
dimensional vector and ε ∼ N(0, σ2In).
The OLS estimator minimize the residual variance, i.e. the quantities

n∑
i=1

y − p∑
j=1

βjxij

2

= ‖Y −Xβ‖22

7



2 – Maximin estimation

To increase sparsity we adding a penalty which imposes a bound to the lq-norm of the coefficients
vector, this estimator minimize

‖Y −Xβ‖22 subject to ‖β‖q ≤ t, for t > 0 (2.1)

or equivalently, by Lagrange duality, the function

‖Y −Xβ‖22 + ρ‖β‖q, for ρ > 0 (2.2)

This estimator is called lasso for the value q = 1 and ridge for q = 2.
The lasso estimator for a linear model is:

β̂lasso = arg min
β

{
‖Y −Xβ‖22 + ρ‖β‖1

}
= arg min

β

{
‖Y −Xβ‖22

}
s.t.

∑
i

|βi| ≤ t
(2.3)

where there is a bijective function from ρ to t.
Then the ridge estimator :

β̂ridge = arg min
β

{
‖Y −Xβ‖22 + ρ̃‖β‖2

}

= arg min
β

{
‖Y −Xβ‖22

}
s.t

(∑
i

|βi|2
) 1

2

≤ t̃

or more simply, by reparametrization of the penalty ρ = ρ̃ · ‖β‖2/‖β‖
2
2 and t = t̃2

β̂ridge = arg min
β

{
‖Y −Xβ‖22 + ρ‖β‖22

}
= arg min

β

{
‖Y −Xβ‖22

}
s.t
∑
i

|βi|2 ≤ t
(2.4)

In figure 2.1 we can see that the values q = 1 increase sparsity respect q = 2 because some values
of β can be shrinked exactly to 0. Precisely, more q is smaller, more sparsity increase, but for
0 ≤ q < 1 the penalty set is not convex and this lead to a problem in the optimization. So the
lasso penalty is the one which most increase sparsity in a convex set (figure 2.2).

Using a Bayesian approach we have an intresting view of the lasso estimation: we see in equation
(2.1) with q = 1, that in the lasso estimation is added the penalty term ρ

∑
|βi| to the residual

variance, each |βj | is proportional to the minus log-density of the Laplace distribution

f(βj) =
1

2b
exp

(
−|βj − a|

b

)
(2.5)

when the location parameter a = 0 [17].
The lasso estimate is the Bayes posterior mode when the prior for the coefficients βj are indipendent
Laplace distributions, with location parameter equal to 0 and scale parameter b = 1/ρ.

2.1.2 Lasso and likelihood

The results in the previous section can be easilly extended to generalized linear model. This is
useful to us because for GLM (so also for the linear model) the lasso estimate is equivalent to the

8



2 – Maximin estimation

Figure 2.1. In this plot we can see how lasso and ridge work and their difference. Respect to the
OLS estimator these methods shrink to 0 the parameters. The penalty forces the coefficients vector
to stay inside the square (for lasso) or the circle (for the ridge), the estimation is the point inside the
boundary where the value of the function is higher. The difference between lasso and ridge is how
the parameters has been shrinked to 0, in this case the estimated value for the x-axis is exactly 0
for the lasso, this is a propriety of lq-norm with q ≤ 1 and show how lasso penalty increase sparsity.

Figure 2.2. contour of equivalues of lq-norm for, from left to right, q = 0, 0.5, 1, 1.6, 2, 3. The

lq-norm is defined as ‖x‖q = (
∑
i |xi|

q)1/q when q is greather than 0, the values for q = 0 is the

limit of ‖x‖q for q → 0. The set in which ‖x‖q is less than some constant k is convex for q ≥ 1, the
contour is not derivable when q ≤ 1 in the points in which the vector has one element equal to k in
absolute values (and of course the other elements are 0).

maximum lq-penalized likelihood estimation. This method is exposed in Park, Hastie - 2007 [16].
Lasso for generalized linear model is defined as:

β̂lasso,GLM = arg min
β

{−logL(Y, β) + ρ‖β‖1} (2.6)

where L is the likelihood function.
For a linear model we have that −logL(Y, β) is proportional to ‖Y −Xβ‖2, so β̂lasso,GLM is equal

to β̂lasso in equation (2.3).

9



2 – Maximin estimation

2.1.3 Lasso and soft-thresolding

Here we show that with a single predictor, lasso estimate is a function of the OLS estimate. This
is useful because the lasso optimization can be solved efficiently with coordinate descent algoritm
(more detail in chapter 3 and in the paper Friedman Hastie Hoeffling Tibshirani, 2007 [8]).
The Lagrange form of equation (2.3), with a single predictor and standardized X, is:

β̂lasso = arg min
β

{
β2 − 2β · 1

n

∑
i

XiYi + ρ|β|

}
= arg min

β

{
β2 − 2ββ̂OLS + ρ|β|

}
where n is the number of observations.
If β > 0 the derivative of the objective function

2β − βOLS + ρ = 0

lead to the solution

β̂lasso = (β̂OLS − ρ)+ where (a)+ =

{
a when a ≥ 0

0 when a < 0

The same steps can be done if β < 0, the general solution is:

β̂lasso =


β̂OLS − ρ if β̂OLS > 0 and ρ < |β̂OLS |
β̂OLS + ρ if β̂OLS < 0 and ρ < |β̂OLS |
0 if ρ ≥ |β̂OLS |

= S(β̂OLS , ρ) = sign(β̂OLS)(|β̂OLS | − ρ)+

(2.7)

This is useful when the p predictors are uncorrelated because we can split the problem in p one-
dimensional minimizations, but also when the predictors are correlated because we can write the
objective function in (2.3) as

f(β̃) =

n∑
i=1

yi −∑
k /=j

xikβ̃k − xijβj

2

+ ρ
∑
k /=j

|β̃j |+ ρ|βj | (2.8)

which is a function of the j-th parameter. If the values of βk for k /= j are fixed the minimization
for the j-th variable has an explicit solution:

β̃j ← S

(
n∑
i=1

xij(yi − ỹ(j)
i ), ρ

)

where ỹji =
∑
k /=j xikβ̃k or equivalently

β̃j ← S

(
β̃j +

n∑
i=1

xij(yi − ỹi), ρ

)
(2.9)

[8]. This is how the lasso minimization can be implemented by coordinate descent, starting with
some values and update one by one the elements until convergence.

10



2 – Maximin estimation

2.2 Maximin estimator for linear model

In this section we want give an estimation of the quantities (1.3), for doing this, we make an
assumption in the distribution of the coefficients FB . We assume that the observations can be
divided in different (unknown) groups with the same regression coefficient, which can varies between
groups.
Formally, suppose there are G groups g = {1, ..., G} of ng observations, Ig ⊂ {1, ..., n} is the
set of observations in group g, denote Xg = XIg the ng × p submatrix of X, which rows are the
observations in g, same for Yg = YIg and εg = εIg .
The random coefficient βg is fixed in a group, the model is:

Yg = Xgβg + εg, g = 1, ..., G (2.10)

and the empirical counterpart of (1.2) (empirical explained variance) for the g-th group is:

V̂ gβ =
1

ng

(
2βTXT

g Yg − βTXT
g Xgβ

)
(2.11)

So, the natural maximin estimator is:

β̂maximin = arg min
β∈Rp

max
g=1,...,G

(
−V̂ gβ

)
or his l1-penalized version, to increase sparsity:

β̂maximin = arg min
β∈Rp

max
g=1,...,G

(
−V̂ gβ

)
+ ρ‖β‖1 (2.12)

Comparing this estimator with the theoretical quantities defined in (1.2) and (1.3)

βmaximin = arg min
β

max
b∈ supp(FB)

(−Vβ,b) where Vβ,b = 2βTΣb− βTΣβ

note that we can write the quantities 2.11 as:

V̂ gβ = 2βT Σ̂gbg − βT Σ̂gβ, where bg solve Yg = Xgbg

b and, of course, the support of FB are unknown, so in (2.11), using the models (2.10) for each
group, through Yg we obtain an estimation of b for each group, i.e. an estimation of the support
of FB .
The estimator is consistent, and objective function is convex (as is show in figure 2.3) but not
derivable.
The proprieties of this estimatior is given in [14] for different setting of the model.

2.2.1 L0-norm approximation

Can be useful to give an approximation to the maximin estimator, this is motivated because we can
solve the optimization iteratively with the weighted lasso (which is computationally faster) and,
if the approximation is good, we can find the function which is maximized to obtain the maximin
estimator. This result works only when V̂ gβ > 0 for all g.

The weighted lasso is defined as

β̂Wlasso = arg min
β

{
‖P 1/2(Y −Xβ)‖22 + ρ‖β‖1

}
(2.13)

11



2 – Maximin estimation

Figure 2.3.
convessity of
maximin objec-
tive function: in
black we can see
the curve of the
quantities −V̂ gβ for
4 different groups,
in red we have
maxg(−V̂ gβ )

where P is the n × n matrix of weights, is diagonal with elements greather or equal than 0 and∑
i,j Pi,j = tr(P ) = 1, we can relax the last assumption using the matrix αP , with α > 0 (is

relaxed the assumption of the sum of weights, the results is the same if the weights does not sum
to one, because of the function arg min), of course the penalty which guarantee the equivalence
between the two estimators (with tr(P ) = 1 and with tr(P ) /= 1) will change using the different
matrix.
Solving inside the norm in the previous equation we have

β̂Wlasso = arg min
β

{
‖P 1/2Y − P 1/2Xβ)‖22 + ρ‖β‖1

}
= arg min

β

{
n∑
i=1

−Pi,ilogL(Yi, β) + ρ‖β‖1

} (2.14)

which is the normal lasso applied to the ”weighted” variables (same as before, the penalty will
change).

The method for the approximation has an approach similar to the MM-algorithm. This obtain
a maximum of the function f(x) using iteratively function gk(x) such that gk(x) < f(x) for all x.
Let x∗ the maximum of f , we start with the values x0 such that f(x0) = g1(x0), the maximum of
g1 is x1, so we take g2 such that f(x1) = g2(x1) and maximize g2, continuing on the iterations, we
will reached x∗ in the iteration in which x∗ = maxx gk(x) for some k (can be also infinity). The
algorithm is show in figure 2.4

We will use a different approach, which does not assures the convergence, we need an approx-
imation of maxg V̂

g
β . We will show the approximation of β̂maximin in (2.12) in the case of ρ = 0.

Let write (2.12) as

β̂maximin = arg min
β

max
g=1,....G

(
−V̂ gβ

)
= arg min

β
−min

g

(
V̂ gβ

)
= arg max

β
min
g

(
V̂ gβ

)
12



2 – Maximin estimation

Figure 2.4. in the left we can see the MM algorithm for the maximization of the function f , the
function g1 is equal to f in the point x0, maximizing g1 we find x1 and the function g2, the last one
lead to the values x2, with more iteration we can find the objective x∗. In the right we show how
our approximation works, we want maximize f and find the point x∗, instead we maximize g which
dominate f and use the point x0 as an approximation of x∗, there are no iteration here, with this

method we can not find exactly x∗ (excluding the trivial case in which V̂ 1
β = ... = V̂ Gβ )

now, if xg > 0 for all g ∈ {1, ..., G}

lim
ζ→0

(∑G
g=1 x

ζ
g

) 1
ζ

G
1
ζ ·
∏G
g=1 x

1
G
i

= 1 (2.15)

the limit can be easily verified by simulation, we will give an intuitive motivation at the end of
this section.
Now, ming(xg) ≤

∏G
g=1(xg)

1/G = limζ→0(
∑
g x

ζ
g)

1/ζ/G1/ζ .
If we fix a small ζ we can write that

β̂maximin ∼ arg max
β

G−
1
ζ

(∑
g

(V̂ gβ )ζ

) 1
ζ

= arg max
β

∑
g

(V̂ gβ )ζ = arg max
β

∑
g

(V̂ gβ )ζ−1 · V̂ gβ

because G−1/ζ is a positive constant and the function x→ xζ is a strictly increasing function.
The approximate optimization can be done with the estimator

β̂l0maximin = arg max
β

∑
g

(V̂ gβ )ζ−1 · V̂ gβ − λ‖β‖1 (2.16)

which is the weighted lasso with weights proportional to the explained variance of the group in
which the observation belong to, elevated to the power ζ − 1.

13



2 – Maximin estimation

First of all, is possible to derive the connection between ρ in (2.12) and λ in (2.16), but the function
between this values depend on ρ, and also on β, G, and ζ, in the optimization we will fix a values
of the penalty like here, in the last point.

An intuitive explanation of this method is in figure 2.4.
The main problem is that we do not know how good is the optimization. Excluding the choice of
the penalty to replacing the objective with the limit we approximate minG V̂

g
β with

∏
g(V̂

g
β )1/G,

which is the same if V̂ gβ take the same values in each group, but usually do not.
In the next chapter will be exposed the computational problems of this approximation related to
the graphical model.

The intuitive relationship between the maximin estimator and the weighted lasso is that the
weights, for small ζ, are about (V̂ gβ )−1, so instead of taking the minimum explained variance
(maximin), the observations inside the group with low explained variance has high weight, so high

importance in the estimation. When this approximation works (remind, the quantities V̂ gβ have to
be higher than 0 and same, if this assumption is fulfills we still do not know exactly how close is
this result with the maximin) we can interpret maximin estimator close to the values of β which
minimize the penalized weighted likelihood (see equation (2.14)), with weights proportional to the
inverse of the explained variance in the group in which the observation belong to.

At the end of this section we give an intuitive motivation of the limit (2.15).
If the vector x has only one values higher than 0, without lose of generality suppose the first, the
limit of the numerator can be simply solved

lim
ζ→0

(
G∑
g=1

xζg

) 1
ζ

= lim
ζ→0

(
xζ1

) 1
ζ

= x1

If we have more than one values higher than 0, for example in our case, where all the values has
to be positive, the results of the limit is infinity. To see that we can write the limit as

lim
ζ→0

(
G∑
g=1

xζg

) 1
ζ

= lim
ζ→0
‖x‖ζ

as is show in figure 2.5 this limit is not finite because the distance from the point to 0 goes to
infinity if the point is not in one of the axis (in that case remains the same). Now, each xζg goes to

1 for ζ → 0, so the numerator goes to infinity with the same order of G1/ζ , by simulation is easy
to see the exact results of the limit.

2.2.2 Explicit solution for maximin

Here we follow the results in section 2.1.3 to give an explicit solution of the estimator (2.12).
We write the equation in a different way

β̂maximin = arg min
β

{
1

2
max
g

(
βT

XT
g Xg

ng
β − 2

ng
βTXT

g Yg

)
+ ρ‖β‖1

}

which is the same with a different parametrization of the penalty ρ caused by the factor 1/2, if

we have one explicative variable (p = 1) standardized, i.e. for all g Σ̂g = 1 the objective function

14



2 – Maximin estimation

Figure 2.5. we can see the contours of
equidensity for l0.5-norm in black and
for l0.3-norm in red for the values 0.5,1
and 1.5. We can see that the black
point (0,1) keeps the same distance
moving from q = 0.5 to q = 0.3, instead
the red point (0.5,0.5) increases his dis-
tance to the origin passing from 2 (with
q = 0.5) to almost 5 with l0.3-norm,
if q moving to 0 the distance of this
point increases really fast (for q = 0.1
is almost 512), becoming infinity when
q = 0. The rate is faster in high dimen-
sion (in dimension p = 5 the values of
the distance of (0.5, ...,0.5)T from the
origin is around 12.5 for q = 0.5, 106.9
for 0.3 and 4.89× 106 for 0.1)

becomes:

1

2
max
g

(
β2 − 2β

1

ng

∑
i

xi;gyi;g

)
+ ρ|β| =

1

2
max
g

(
β2 − 2ββ̂OLS;g

)
+ ρ|β| =

1

2
max
g

(
β − β̂OLS;g

)2

+ ρ|β| ={
1
2β

2 − βming β̂OLS;g + ρ|β| if β > 0
1
2β

2 − βmaxg β̂OLS;g + ρ|β| if β < 0

when β > 0 the derivative of the penalty equalized to 0 is

β −min
g
β̂OLS;g + ρ = 0 ⇐⇒ β̂maximin =

(
min
g
β̂OLS;g − ρ

)
+

(2.17)

and in the other case

β −max
g

β̂OLS;g − ρ = 0 ⇐⇒ β̂maximin =

(
max
g

β̂OLS;g − ρ
)
−

(2.18)

where the function

(a)+ =

{
a if a ≥ 0

0 if a < 0
and (a)− =

{
a if a ≤ 0

0 if a > 0

Now we try to extend the result to the general case, where p > 1 and the explicative can be
correlated. For doing this we need a objective which is a function of the j-th explicative, to try to
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2 – Maximin estimation

find an explicit solution fixing the others.
To isolate βj , note that the quadratic form βT Σ̂gβ can be write as:

(Xβ)T (Xβ) = (Xβ−j + βjXj)
T (Xβ−j + βjXj) = βT−jX

TXβ−j + β2
jX

T
j Xj + 2βjX

T
j Xβ−j

where β−j is the vector β with the j-th coordinate equal to 0.
The objective function becomes

1

2
max
g

(
1

ng

(
β−jX

T
g Xgβ−j + 2βjX

T
j;gXgβ−j + β2

jX
T
j;gXj;g − 2βT−jX

T
g Yg − 2βjX

T
j;gYg

))
+ ρ‖β‖1 =

1

2
max
g

(
V̂ gβ−j + V̂ gβj +

2

ng
βjX

T
j;gXgβ−j

)
+ ρ|βj |+ ρ

∑
h/=j

|βh|

we can not have an explicit solution because we can not write βj only outside the function max,
which is not derivable. So in a hypothetical coordinate descent approach in the optimization we
have to solve numerically each step, we will talk later that a derivative free optimization function
becomes really slow when p increase, so the results can be useful also without an explicit form
solution.

2.3 Magging estimation for linear model

Another way to estimate the maximin effect is using Theorem 1:

βmaximin = arg min
γ∈ Conv(F )

γTΣγ, where F = supp(FB)

The magging estimator is a simply weighted aggregation of an usual estimator (like β̂OLS or β̂lasso)
where the weights are a convex combination which minimize the euclidean norm of the fitted values,
formally:

β̂magging :=

G∑
g=1

pgβ̂g where p := arg min
p∈CG

∣∣∣∣∣
∣∣∣∣∣∑
g

Xβ̂gpg

∣∣∣∣∣
∣∣∣∣∣
2

,

CG :=

{
p : min

g
pg ≥ 0 and

∑
g

pg = 1

} (2.19)

and β̂g is a (simply) estimator for the group g, for example β̂g = arg minβ(‖Yg −Xgβ‖2 + ρ‖β‖1).
If the solution is not unique we choose the one which minimize ‖p‖2.
The connection with βmaximin is that using Theorem 1, if we rewrite γ as:

γ =
∑
g

pgβg =
∑
g′

pg′βg′

the equation of the theorem becomes:

βmaximin =

G∑
g=1

p0
gβg where

p0 = arg min
p∈CG

G∑
g,g′=1

pgpg′β
T
g Σβg′ = arg min

p∈CG
EX

∣∣∣∣∣
∣∣∣∣∣
G∑
g=1

pgXβg

∣∣∣∣∣
∣∣∣∣∣
2

2


we obtain the magging estimation replacing E(‖

∑
g pgXβg‖

2
2) with ‖

∑
g pgXβ̂g‖

2
2.

The magging estimator is treated with more details in Meinshausen, Bühlmann - 2014 [4].
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2 – Maximin estimation

2.4 Extension to gaussian graphical model

Following the section 1.2 we want give a maximin estimation of the covariance matrix, as is defined
in equations (1.9) and (1.10), before doing that, we show two approach to estimate the correlations
between variables in a gaussian graphical model, the first (Meinshausen, Bühlmann - 2006 [13])
can be view as an approximation of the second (Friedman, Hastie, Tibshirani - 2008 [6]) which
lead to the exact penalized maximum likelihood estimation.
As it has been said in the previous chapter a variable Xi in a gaussian graphical model is correlated
with the variable Xj conditional to the other variables if the element (i, j) in the precision matrix
Θ is not null, and the fact that Θ is symmetric it means that also the element (j, i) has to be not
null, we’ll talk later about the ”problem” of the symmetry in the estimation.

2.4.1 Neighborhood selection

This method is proposed by Meinshausen and Bühlmann, is based to the estimation of the neigh-
borhood (it will be defined later) for all variables to understand which of them is correlated to the
target variable. There are some assumptions which, if are fulfill, made the method consistent.

We define the neighborhood nea of the node a ∈ Γ as the set of all nodes b ∈ Γ \ {a} which the
correspondent variables Xb are correlated with Xa conditionally of all the remaining variables, i.e.
the neighborhood of a is all the nodes b ∈ Γ \ {a} in which the edge (a, b) ∈ E.
From a statistically point of view, the estimation of the neighborhood of a is a standard regression,
this approach solve that with the lasso. So the definition of neighborhood is:

nea = {b ∈ Γ \ {a} : βab /= 0} where

βa = arg min
β:βa=0

E

(
Xa −

∑
k∈Γ

βkXk

)2
(2.20)

and the correspondent lasso estimation is:

n̂e
ρ
a =

{
b ∈ Γ \ {a} : β̂a,ρb /= 0

}
where

β̂a,ρ = arg min
β:βa=0

(
n−1‖Xa −Xβ‖22 + ρ‖β‖1

) (2.21)

For the consistence has to be fulfilled some assumptions of high dimensionality, nonsingularity,
sparsity, magnitude of partial correlations and neighborhood stability, moreover the tuning param-
eter ρ has to be appropriate.
Note that with this method we can have different estimations of the correlation from a to b and
the correlation from b to a, where with ”correlation from, to” we mean that the estimation of the
correlation of a and b is a priori diffrent if we use the neighborhood of a or the neighborhood of b.
This can be a problem in the estimation of the edges of a graph, infact the edge set E ⊆ Γ× Γ is

E = {(a, b) : a ∈ neb ∧ b ∈ nea} (= {(a, b) : a ∈ neb ∨ b ∈ nea})

the two natural estimations

Êρ,∧ = {(a, b) : a ∈ n̂eρb ∧ b ∈ n̂e
ρ
a} (2.22)

Êρ,∨ = {(a, b) : a ∈ n̂eρb ∨ b ∈ n̂e
ρ
a} (2.23)
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2 – Maximin estimation

can be different, the last one is more conservative.
All the assumptions, the choice of the tuning parameter and all the proprieties of these estimations
are showed in detail in the paper Meinshausen, Bühlmann - 2006 [13].

2.4.2 L1–penalized maximum likelihood estimation

The method proposed in this section is described in detail in Friedman, Hastie, Tibshirani - 2008
[6], it leads to an exact l1-penalized maximum likelihood estimation of the covariance matrix (and,
by reparametrization, of the precision matrix). Is implemented by the function glasso from the
namesake package [5].
Suppose that we have an i.i.d. sample of a multivariate normal of dimension p, mean µ and
covariance matrix Σ, let Θ = Σ−1 and S the empirical covariance matrix. The partial log-likelihood
of the data (maximized respect to µ) is

log det(Θ)− tr(SΘ)− ρ‖Θ‖1 (2.24)

where tr(A) denote the trace of the matrix A and ‖A‖1 denote the sum of the absolute values of A.
The maximization problem is convex and, if the algorithm starts with a positive definite matrix,
after the all procedure the matrix remains positive definite, even if p > n [2].
For the maximization consider estimation of Σ rather than Θ = Σ−1. Let W the current estimate
of Σ, consider the partition

W =

(
W11 w12

wT12 w22

)
, S =

(
S11 s12

sT12 s22

)
where W11 and S11 are (p− 1)× (p− 1) matrix, w12 and s12 are vectors of dimension p− 1, w22

and s22 are real values.
The algorithm starts with an initial W positive definite, usually W = S + ρIp, in each step solve
the function

β̂ = arg min
β

{
1

2
‖W 1/2

11 β −W−1/2
11 s12‖22 + ρ‖β‖1

}
= arg min

β

{
1

2

(
βTW11β − 2βT s12

)
+ ρ‖β‖1

} (2.25)

and update W (the current estimate of Σ) as w12 = W11β.
Here we show that the solution of the problem (2.24) is the same of the (2.25).
W is the current estimation of Σ, so(

W11 w12

wT12 w22

)(
Θ11 θ12

θT12 θ22

)
=

(
Ip−1 0
0T 1

)
.

The sub-gradient of the partial penalized log-likelihood, evaluates in the maximum is

W − S − ρ · Γ, (2.26)

where Γij ∈ sign(Θij), i.e. Γij = sign(Θij) if Θij /= 0, else Γij ∈ [−1,1].
In the upper right block we can write the previous equation

w12 − s12 − ρ · γ12 = 0.

Then we have that the sub-gradient in the minimum of the equation (2.25) is

W11β − s12 + ρ · ν = 0, (2.27)
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where ν ∈ sign(β).
In [6] is shown that if (W,Γ) solves (2.26), then (β, ν) = (W−1

11 w12,−γ12) solves (2.27).

If W11 = S11 the solution β̂ is the lasso estimate for the pth variable respect to the others, and
this is like the approach showed in the previous section, which do not lead a penalized maximum
likelihood estimation.
Note that in this approach we haven’t the problem of symmetry of the covariance matrix, because
the current estimation W start symmetric (because S is) and in each step is updated w12 and
consequently wT12, so in each iteration of the algorithm the current estimation remain symmetric.
The steps of the algorithm can be:

1. Start with W = S + ρI

2. For each j = 1, ..., p consider the j-th column (and the correspondent j-th row) as the last
in W and S, solve the equation (1.10) and update w12 = W11β,

3. Continue until convergence.

2.4.3 Maximin estimation

Here we give an extension to maximin using an approach similar to section 2.3.2, but first we
briefly show an approach like the section 2.3.1 to understand the main problem of this method.
The extension of equation (2.21) is:

n̂e
ρ
a;maximin =

{
b ∈ Γ : β̂a,ρb;maximin /= 0

}
where

β̂a,ρmaximin = arg min
β:βa=0

(
n−1 max

g

(
‖Xa −Xβ‖22

)
+ ρ‖β‖1

)
This approach does not lead to an estimation of the covariance matrix. With equation (1.7) if we
know the elements Θi,iwe can find the precision matrix, but is not a real estimation because we
get a matrix which is not symmetric.
If we are intrested only to find the neighborhood (i.e. only where the correlation exist or not) we
can obtain symmetry using an estimator like (2.23), but this method does not give an estimation
of the ”maximin quantities”.
Also note that this method is not the empirical counterpart of the definition of maximin for
a graphical model given in section 1.2.2: the objective function is the empirical counterpart of
βTΣ11β − 2βT Σ̃12, not of βTΣ11;maximinβ − 2βT Σ̃12, which is the one we have used in equation
(1.9).
We can obtain an estimation of Σmaximin using an algorithm similar to the one in the previous
section (Friedmann, Hastie, Tibshirani approch) replacing the loss function L(β) with the ”usual”

maximin loss Lmaximin(β) = maxg=1,...,G(−V̂ gβ ), so replace:

w12 = W11 · arg min
β

{(
βTW11β − 2βT s12

)
+ ρ‖β‖1

}
with the equation:

w12;maximin = W11 · arg min
β

{
max

g=1,...,G

(
βTW11β − 2βT s12;g

)
+ ρ‖β‖1

}
(2.28)

Following this approach we start with a matrix W = S + ρI as our current estimation of
Σmaximin, instead of Sg = XT

g Xg/ng, in equation (2.12) we use our current estimator W . The
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estimation of βmaximin now is

β̂maximin = arg min
β

{
max

g=1,...,G

(
βTW11β − 2βT s12;g

)
+ ρ‖β‖1

}
, (2.29)

where s12;g = XT
g Yg/ng, the estimator of Σ12;maximin in equation (1.7) is:

w12,maximin = W11β̂maximin (2.30)

As in the step 2. and 3. of the algorithm in section 2.3.2, updating the rows and columns of W
and repeating the cycle until convergence, we get the estimation

Σ̂maximin = W and Θ̂maximin = W−1 (2.31)

2.4.4 L0-norm approximation

Same as linear model, to approximate the estimator (2.29), which leads to the estimation of the
quantities defined in section 1.2.2, we need to replace the values

V̂ gβ = 2βT s12;g −
1

ng
βTXT

g Xgβ

with
2βT s12;g − βTW11β

both in weights and penalty. The problems of this approximation is the same as the linear model,
moreover (it will be discuss better in the next chapter) when the vector s12,g is close to 0, i.e. the
target variable in this step of the algorithm have low correlations with the others, the estimate of
the quantities 2βT s12;g − βTW11β are often (more than linear model scenario) negative.

2.4.5 Magging estimation

As in the previous sections to give a magging estimation of Σmaximin we replace the estimator
(2.19) for linear model

β̂magging :=

G∑
g=1

pgβ̂g where p := arg min
p∈CG

∣∣∣∣∣
∣∣∣∣∣∑
g

Xβ̂gpg

∣∣∣∣∣
∣∣∣∣∣
2

with the estimator for graphical model:

w12;magging := W11 ·
G∑
g=1

pgβ̂g where p := arg min
p∈CG

∣∣∣∣∣
∣∣∣∣∣∑
g

W̃11β̂gpg

∣∣∣∣∣
∣∣∣∣∣
2

,

CG :=

{
p : min

g
pg ≥ 0 and

∑
g

pg = 1

} (2.32)

where W̃11 is the Cholesky decomposition of the current estimator of Σ11;maximin: W11 = W̃T
11W̃11.

As in section 2.3, we have the connection with βmaximin and Σmaximin for gaussian graphical model
defined in equation (1.9), using Theorem 2 with γ =

∑
g pgβg =

∑
g′ pg′βg′ we have:

Σ12,maximin = Σ11,maximin ·
G∑
g=1

p0
gβg where p0 = arg min

p∈CG

G∑
g,g′=1

pg, pg′β
T
g Σ11;maximinβg′

which is the theoretical counterpart of (2.32).
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Chapter 3

Optimization problem

Here we show some approach to the optimization, we will talk about the conditions which has to be
fulfilled for the convergence in the optimization. We’ll talk also about the computational time of
these methods, which in graphical model case, more than linear model, is really important, cause
the optimization is reached cycling through the parameters until convergence, and each cycle is
composed by p optimizations in p− 1 dimensions.

3.1 Derivative-free method

The objective function (2.28) is convex but not everywere derivable, so in the optimization we can
not use methods which involve the gradient of the function. For a derivative-free optimization
there are the function nmk and hjk in R library dfoptim [18]. We can use these function in the
optimization, but these are really slow in high dimension because the computational time increase
more than linearly with respect the number of parameters.

I have used the function nmk, which using the simplex method of Nelder and Mead [15], all the
results in this section are taken from that paper.
This algorithm, in a minimization in p parameters uses a simplex (generalization of a triangle in
more than two dimensions) of p + 1 dimensions, and move the polytope in the opposite direction
respect to the vertex in which the value of the function is higher.
Let y(Pk) the value of the function y in the k-th vertex, define Ph = arg maxPi y(Pi) and Pl =
arg minPi y(Pi) the vertex in the higher and lower values of the function respectively, let P̄ the
centroid of {P1, ...Pp+1}, the minimization is done by three operations.
A reflection of Ph is the operation:

P ∗ = (1 + α)P̄ − α(Ph), where α > 0

P ∗ is in the line which pass trought Ph and P̄ , in the opposite direction respect to the last
one. If y(Pl) < y(P ∗) < maxi /=h y(Pi) we replace Ph with P ∗ and start with a new simplex.
If y(P ∗) < y(Pl) is the new minimum, so expand the simplex in this direction with the second
operation.
An expansion in the direction of P ∗ lead to the point

P ∗∗ = γP ∗ + (1− γ)P̄ , where γ > 1

If y(P ∗∗) < y(Pl) replace Ph by P ∗∗ and restart, else the expansion failed, so replace Ph by P ∗

and restart.
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If the reflection fails (y(P ∗) > maxi /=h y(Pi)), define a new Ph = min(Ph, P
∗) and use the contrac-

tion:
P ∗∗ = βPh + (1− β)P̄ , where 0 < β < 1

if y(p∗∗) < min(y(Ph), y(P ∗)) replace Ph with P ∗∗ and restart, else we have a failed contraction,
replace all Pi by (Pi + Pl)/2 and restart.
The three operations are show in figure 3.1.

The algorithm will be over when the standard error of the function
(∑

i(y(Pi)− y(P̄ ))2/p
)1/2

is

Figure 3.1. In the left we can see a reflection from the point Ph to the point P ∗, seeing that the
reflection is successfull in the second figure we can see the correspondent expansion to P ∗∗. In the
right we can see the contraction to P ∗∗ after a failed reflection

lower than a pre-fixed value.
This method give a more precise optimization if the slope close to the minimum value of the function
is high, if not the precision is worse. This is not a big problem because usually in statistics we have
a low slope close to the minimum if the parameter has an high variance, so has no sense obtain a
too precise value related to the variance.
The method will lead to a good optimization if the simplex become relatively small only close to
the minimum.
In figure 3.2 we have the flow diagram of the algorithm.

In our algorithm for using a non-derivative optimization method we simply use the function
nmk inside a cycle for minimize respect to β the equation (2.29) and find β̂maximin, and after that
trasform it in the estimation of the covariance matrix using the equation (2.30) w12;maximin =

W11β̂maximin.
A possible way to implement a cycle in R using this optimization is in the appendix B.

3.2 Coordinate descent

Usually in lasso and his extension, the optimizations by coordinate descent are used. These methods
converge to a global minima if the objective function is convex and derivable, but the assumption
of derivability can be relaxed in some cases.
Thess methods minimize a p-dimensional function through smaller (usually univariate) optimiza-
tions in each dimension. The simpliest pseudo-code of a coordinate descent method can be:

1. start with some values {x0
1, ..., x

0
p} and fix the tollerance parameter δ > 0

2. in the i-th iteration all the parameters are updated by the univariate optimization:

xij = arg min
xj

(
xi1, ..., x

i
j−1, xj , x

i−1
j+1, ..., x

i−1
p

)
3. stop if maxj(|xkj − x

k−1
j |) < δ
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Figure 3.2. flow diagram of the algorithm, this figure is from Nelder and Mead, 1965 [15]

We can see in the code that these methods are useful if the smaller optimizations in point 2 can
be performed really fast.
In section 2.1.3 we have seen that the lasso has a close form for the univariate optimization of the
j-th parameter, fixed the others, this is why this method works really well in that case.
We have seen in chapter 2 that we can not find an explicit solution for the univariate optimization,
like the lasso, so each step have to be solved numerically, but the main problem is that this method
converges if the non-derivable objective function f can be written as:

f(β) = g(β) +
∑
i

hi(βi) (3.1)

where g is convex and derivable and the functions hi are convex. So, the method converges if the
non-derivable part of the penalty can be splitted in univariate functions of the parameters [8].
In equation (2.29) the non-derivable part is −2 maxg(β

T s12;g) + ρ‖β‖1, which is not separable
because the function maxg(βs12,g) can not be splitted in a sum of univariate functions, so the
convergence is not assured.
In figure 3.3 we can see how the non-derivable part of the objective function can be a problem in
these methods.

3.3 L0-norm approximation

In this method the optimization is done by weighted lasso, which (see equation (2.13)) is the ”usual”
lasso estimator with reweighted variables, as we see in the previous section, this optimization can
be done by coordinate descent because the non-derivable part of the function, now, is separable.
To obtain the estimation we need to minimize the function∑

g

(V̂ gβ )ζ−1(−V̂ gβ ) + λ‖β‖1 (3.2)
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Figure 3.3. here we
can see what the vi-
olated condition of
derivability can cause
(as we have said, the
condition can be re-
laxed in some ways
so that what happens
in this example is not
possible). In this case
the algorithm does not
reach the minimum
of the function (red
triangle), because in
the point stop, in each
direction following the
axis, the objective func-
tion become higher, so
the algorithm converges
but not in the minima
(neither local) of the
function.

which, for the linear model, is the same of minimize

− 2

n

n∑
i=1

piYi(Xβ)i +
1

n

n∑
i=1

pi(Xβ)2
i + λ‖β‖1 (3.3)

the weights pi are proportional to (V̂ giβ )ζ−1, where gi is the group in which observation i belong to
(the function glmnet does not need that the weights sum to 1, only need that weights are greather
or equal than 0).
The former equation can be write as

− 2

n
βTXTPY +

1

n
βTXTPXβ + λ‖β‖1 (3.4)

where the matrix P is diagonal and Pi,i = pi.
The weights depend on ζ and β, for the first, note that we have derived this using the limit for
ζ → 0, so in the optimization function we can fix a small value of ζ, like 0.01. For the fact that
weights are function of β, we can find them iteratively using this algorithm:

1. start with uniform weights (for example equal to 1), i.e. start with P = In

2. minimizing (3.4) to obtain β̂par

3. update the weights as Pi,i = (V̂ gi
β̂par

)ζ−1

4. repeat 2. and 3. until convergence, at the end the estimator is β̂l0maximin = β̂par

For linear model we can use in point 2. the function glmnet, from the namesake library [7].

In case of graphical model, as in the others optimization methods, we need to consider the
current covariance estimation W .
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First of all, consider again the linear model case, the lasso estimation

β̂lasso = arg min
β

{
βT · (XTX) · β − 2βT · (XTY ) + λ‖β‖1

}
= f(X,Y )

= g

(
XTX

n
,
XTY

n

)
can be view both as a function of X and Y or a function of S and XTY/n. The same for the
weighted lasso:

β̂Wlasso = arg min
β

{
βTXTPXβ − 2βTXTPY + λ‖β‖1

}
= g

(
XTPX

n
,
XTPY

n

)
= g

(
SP ,

1

n

(
P

1
2X
)T

P
1
2Y

) (3.5)

where SP is the weighted empirical covariance matrix (i.e. the covariance of the weighted variables).
Since we consider the influence of the weights in P , we have an ”usual” lasso estimation of the
weighted variables, our approximate estimator of Σmaximin, following Friedman, Hastie, Tibshirani
approach, have to be the common estimation WP .
We need to split the dataset in block, like (1.4), where the target variable is X2, the algorithm of
a cycle is:

1. start with WP = S

2. using WP
11, find the estimation of wP12:

(a) start with P = In

(b) evaluate β̂par = g
(
WP

11, X
T
1 PX2/n

)
, with g in (3.5)

(c) update the weights as Pi,i =
(
n−1
gi β̂

T
parX

T
1;giX2;gi − β̂TparWP

11β̂par

)ζ−1

for i = 1, ..., n,

gi ∈ {1, ..., G} is the group in which the i-th observation belong to

(d) repeat (b) and (c) until convergence

3. update WP as wP12 = WP
11β̂par

4. change the target variable and repeat from 2. for all the variables

For the optimization in 2.(b) we can use the function lassoshooting from the namesake library
[1], which can use as input (for the linear model) the quantities XTX and XTY instead of X and
Y . In our case (see equation (3.5)) we have to give as input the quantities nWP

11 and XT
1 PX2.

In chapter 2 we talked about the statistical problem of this method, which is that do not lead
to the maximum of the original objective function. Considering that the maximum is reached only
in the trivial case, in which all the empirical explained variances is equal, the approximation will
be better if the variances are similar in all groups.
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The other problem is that the approximation works only if all the values are higher than 0, but
if there is almost no correlation between the target variable and the others, the values inside the
brackets in step 2.(c) can be less than zero. Considering that the power is negative, we can not
find the weight in this case. So this method can not be use in a tipical high dimensional analysis,
because does not work well with the sparsity assumption.
An example of the code is in the appendix B.

3.4 Magging

To find the weights in the magging estimator defined in the equation (2.32) we need to minimize
the function ∣∣∣∣∣

∣∣∣∣∣∑
g

W̃11β̂gpg

∣∣∣∣∣
∣∣∣∣∣
2

where p ∈ CG

this is a quadratic problem with constraint CG (is a QP in standard form). To solve this, we use
solve.QP from library quadprog [3], this function use the method of Goldfarb and Idnani (1982)
[10], which is a projection type dual algorithm.

First of all a quadratic problem (QP) is:

min
x∈Ω

q(x) =
1

2
xTHx+ dTx (3.6)

where Ω is a set of linear constraints:

aTi x = bi for i ∈ E and aTi x ≥ bi for i ∈ I (3.7)

The p × p matrix H is symmetric, the QP problem are convex if H is positive definite and Ω is
convex, this lead to a global minimum. We will focus in convex QP problem.
The problem is called in standard form:

min
x∈Rp

q(x) =
1

2
xTHx+ dTx s.t. aTi x = bi for i ∈ E , x ≥ 0 (3.8)

if ai = 1 and bi = 0 for all i ∈ I.

The KKT conditions of (3.6) are

AEx = bE , AIx ≥ bI (feasibility)

∇q(x) = ATE π +ATI z (stationarity)

z ≥ 0 (nonnegativity)

z · (AIx− bI) = 0 (complementarity)

(3.9)

where π and z are vectors of Lagrange multipliers associated to the constraints. The variable x is
called primal variable, the vectors π and z are called dual variables [20].

Let’s define the active set in the solution:

A(x∗) =
{
i ∈ E ∪ I : aTi x

∗ = bi
}

(3.10)

which represents the active constraints in the minimum. If A(x∗) is known the solution of the full
problem (3.6) is the same of the reduced

min
x

1

2
xTHx+ dTx s.t. aTi x = bi for i ∈ A(x∗) (3.11)
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An active set method is an iterative way to estimate the active set at the solution. Given a
feasibility point x0 (x0 respect the constraints (3.7)), active set method compute a sequence of
feasible iterates xk+1 = xk + αksk such that q(xk+1) ≤ q(xk), where sk is a nonzero direction
vector, αk ≥ 0 is the step length.
Starting from x0 ∈ Ω, we choose a set W so that E ⊂ W ⊂ A(x0), solve the reduced QP

min
s
q(x0 + s) s.t AW(x0 + s) = bW (3.12)

where AW is the matrix of gradients of the constraints.
If the solution is s = 0, x0 could be the full solution (has to respect the first order conditions), if
it does not change the set W.
If s /= 0, determine α ≤ 1 the maximum values where the iteration x1 = x0 + αs ∈ Ω, if α = 1 we
are in a solution, if not, we have a new constraint not included in W, we have to update this set
and going in (3.12), the iterations are over until the solution of (3.12) is s = 0 [12].

A projection method with respect of the ”usual” active set method, has the advantage that
in each iteration many constraints can change, it is based on project the gradient of the function
evaluate in the current point in a subset of Ω which represents the active constraints in that point.
More formally, we are in the point xk ∈ Ω, the set which respect the active constraints is

Ωk = {xk +N(Ak)}

whereN(Ak) is the null space of Ak, the full-rank matrix of gradients of the set of active constraints.
Let q′k the gradient of q evaluate in xk, to minimize the function q from xk we want move following
the direction given by −q′k, i.e. minimize xk − αq′k respect to α, but normally, for each α /= 0 we
will not be anymore in Ωk, so we project the gradient in N(Ak) and solve the problem

min
α
q(xk − αPN(Ak)q

′
k) s.t. xk − αPN(Ak)q

′
k ∈ Ω (3.13)

where PN(Ak) = I −ATk (AkA
T
k )−1Ak is the projection operator. The disadvantage of this method

is the computation of PN(Ak) [12].

A dual method is a way to solve the QP problem in standard form (3.8) by his dual:

min
w,z∈Rp,π∈Rm

qD(w, π) =
1

2
wTHw − bTE π s.t. Hw −ATE π − z = −c, z ≥ 0 (3.14)

where m is the number of equalities constraints
If the solution of (3.14) is bounded, and H is positive definite, the solution of (3.14) w∗ = x∗ is
also a solution of (3.8) [20].

Back to the magging estimator, first of all we find the group estimate β̂g for all g, we can use
the function glmnet (from the namesake package [7]) to find a lasso estimate, then to solve (2.32)
we use a QP algorithm with the vector d in (3.6) equal to 0 and H = BTW11B, where B is the

(p− 1)×G matrix where the g-th column is the estimate β̂g.
For the constraint set CG we use the (G+ 1)×G matrix

A =

(
1
IG

)
and the (G + 1) vector b = (1,0, ...,0)T . We set in the function that the first constraint is an
equalities and the others are inequalities.
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So the optimization solves the quadratic function:

(p1 p2 ... pg)


β̂T1
β̂T2
...

β̂TG

W11(β̂1 β̂2 ... β̂G)


p1

p2

...
pG

 s.t


1 1 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1



p1

p2

...
pG

 ≥


1
0
0
...
0

 (3.15)

where the first constraint (
∑
i pi) is an equalities (set in the function the imput meq=1).

For an example of the code in a cycle see the appendix.

3.5 Optimization function comparing

In this section we compare the results using a derivative free optimization (which uses the maximin
estimation in section 2.4.3) and the magging estimation (section 2.4.5).

First of all let’s talk about time, we compare the methods using the same dataset and groups
divisions. We evaluate the time using different number of groups G and especially different dimen-
sions p.
To do this, we set a tollerance ε between the current iteration and the previous, the cycle con-
tinues until convergence, i.e. the maximum difference between the current estimation in the k-th
iteration W (k) and W (k−1) is lower than the tollerance, in each step is useful print this difference
to understand how the algorithm converge, we fix also a maximum number of iterations.
The pseudocode is:

1. set W (0) as W (1) − 0.5 · 1, where 1 is the matrix with all elements equal to 1.

2. while maxi,j |[W (k)]i,j − [W (k−1)]i,j | > ε (if we haven’t reached the maximum number of
iterations) obtain the (k + 1)-th estimation W (k+1) and compare it with the previous one.

We see that the maximin estimator has worst computationally proprieties than magging, is
slower and has problems of convergence also in low/moderate dimension. Even the magging es-
timator has some problem of convergence, it happens when the lower eigenvalue of the matrix
(β̂1, ..., β̂G)TW11(β̂1, ..., β̂G) is close to 0, but it happens rarely when the values of G and ρ are too
low respect the dimensions p. Before beginning a cross validation (section 4.2) it’s useful to check
the convergence for the lower values of G and ρ, if the algorithm converges in this case, will do it
also for the higher values of G and ρ.
Usually the problem of convergence in high dimension with low values of (G, ρ) do not disturb us,
because in high dimension we need a penalty, when ρ is too low the estimator has worst statistical
proprieties, because the coefficients are not shrinked enough.
In table 3.1 we have a time comparison between non derivative and quadratic optimization for
different values of groups in low dimensions (p = 8 and p = 16 with 5 groups), we measure also
the time of magging optimization in higher dimensions.
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ε = 0.01, maximin ε = 0.01,magging ε = 0.05, maximin ε = 0.05,magging

p = 8 :

G = 5 3.74 (3), 5.25 (4) 0.76 (12), 0.62 (10) 2.68 (2), 2.81 (2) 0.37 (6), 0.27 (4)

G = 20 27.85 (10), 29.43 (12) 1.61 (7), 1.69 (7) 5.36 (2), 8.87 (3) 0.93 (4), 0.92 (4)

G = 40 nc, nc 2.25 (5), 2.24 (5) 14.62 (3), 19.39 (4) 1.80 (4), 0.97 (3)

p = 16 :

G = 5 nc, nc 2.64 (20), 1.97 (15) 77.57 (5), 46.64 (3) 1.31 (10), 1.49 (11)

G = 20 4.47 (11), 4.91 (11) 4.10 (9), 3.67 (8)

G = 40 9.56 (11), 9.50 (11) 6.31 (7), 7.03 (7)

p = 32 :

G = 5 4.72 (16) 2.72 (10)

G = 20 12.37 (13) 8.85 (9)

G = 40 12.63 (7) 10.80 (6)

p = 64 :

G = 5 9.66 (14) 6.31 (9)

G = 20 22.31 (10) 18.00 (8)

G = 40 36.80 (9) 29.41 (7)

p = 128 :

G = 5 29.81 (15) 21.97 (11)

G = 20 59.32 (10) 46.95 (8)

G = 40 81.25 (8) 60.97 (6)

p = 256 :

G = 5 127.70 (17) 842 (11)

G = 20 238.64 (12) 166.39 (8)

G = 40 254.73 (8) 188.02 (6)

Table 3.1. time comparing between derivetive free optimization (maximin) and quadratic (mag-
ging) for different values of dimensions p, number of groups G and tollerance ε, for each case we
measure maximin and magging optimization for two simulated dataset. The time are in seconds
and inside the round brackets there are the number of cycle to reach the convergence, the values
nc indicate the non convergence of the optimization. We stop the comparison at p = 16 and
G = 5 because at that point seems clear the superiority of magging estimation method. The
other rows are the time measured for magging estimator in higher dimensions, we see that with
higher groups the optimization is reached in less cycle, i.e. the convergence is more stable, even
if the time for each cycle is higher.
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Complements

4.1 Dimensionality reduction in the optimization

A first improvement in the optimization can be reached using the sparsity assumption, the fol-
lowing theorems are an adaptation to maximin of the theorem 1 and 2 from the paper of Witten,
Friedman, Simon [19] for the graphical lasso problem.

Theorem 3. If it’s know that the precision matrix Θ is block diagonal, the maximin problem can
be solved with separate optimization for each block, using the correspondent block of the empirical
covariance matrix S.

Theorem 4. Let P1, ..., PK a partition of the p variables, if

max
g
|Si,i′;g| ≤ ρ,∀i ∈ Pk, i′ ∈ Pk′ with k /= k′

then the solution of maximin problem can be solved in a diagonal block structure.

The proofs is given in the appendix A.
These theorems are useful because we can split the p dimensional problem in smaller optimization
respectively of p1, ..., pI parameters, with

∑
i(pi) ≤ p.

This is useful because if a variable is in absolute value less correlated than ρ respect all the
other variables in all G empirical covariance matrix can be excluded from the problem, also, the
optimization time is not linear respect p, so if we can is better split the problem to decrese the
computational cost.
We need an algorithm to find the partition given the empirical covariance matrix S1, ..., SG. We
introduce some other concepts in the graph theory.
A path from X1 to X2 is a sequence of edges which connects the node X1 with X2, the length of
a path is the number of edges crossed for moving from X1 to X2 (or vice versa) in a determinate
course.
The adiacency matrix A of an undirected graph is a matrix that has value 0 in the position (i, j)
if there isn’t an edge between the nodes Xi and Xj , otherwise has value 1 (of course Ai,i = 0 for
all i).
The matrix An is symmetrical for each value of n ∈ N \ 0, and the value [An]i,j represents the
number of possible paths of length n from the node Xi to the node Xj (note that a diagonal
element of An can be greather than 0).
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The variable Xi and Xj are indipendent if does not exist a path between them, more formally:

for i /= j, Xi⊥⊥ Xj ⇐⇒ [An]i,j = 0 ∀ n ≥ 1 ⇐⇒

[
p∑

n=1

An

]
i,j

= 0 (4.1)

Note that we do not need to evaluate and sum the matrix An with n > p because all the paths from
Xi to Xj of length greather than p have to contain a smaller path between these two variables.
An algorithm to find the groups, using this formula, can be:

1. evaluate the matrix Smax, where Smaxi,j = maxg |[Sg]i,j |

2. the adiacency matrix is A, where Ai,j = 1 if Smaxi,j > ρ, else Ai,j = 0

3. evaluate the matrix A∗ = I +A+A2 + ...+Ap

4. scanning all the rows [columns] we can find the groups, which are formed by the columns
[rows] of the element greather than 0, note that in A∗ we have sum also the identity matrix
for find the groups composed by isolate variables

An improvement of this algorithm can be done in the step 3, if p is big that step can be really slow
because we have to do at list p− 1 matrix moltiplications for find A∗.
When p is high, can be used the function expm from the namesake library [11], this function takes
as imput a matrix M and evaluates its exponential, defined as

expm(M) =

∞∑
i=0

M i

i!
, where M0 = I, (4.2)

in a faster ways.
Since for all n the elements of An are greather or equal than 0[

I +

p∑
n=1

An

]
i,j

= 0 ⇐⇒

[ ∞∑
i=0

Ai

i!

]
i,j

= 0

so in the step 3 of the algorithm we can replace A∗ with expm(A).

4.2 Cross validation

In all optimization methods that we have discuss the penalty ρ is unknown, so we need to choose
a value from the data. Moreover, if also the groups of observations are unknown, we need to learn
also G.
In the general case (the groups in which observations belong to are unknown) we need a bi-
dimensional cross validation, where the parameters are (ρ,G), the penalty and the numbers of
groups, we will see that there are other problems.

For now let’s focus in linear model case, the maximin quantities are defined to isolate the
common effect in all the possible scenario, i.e. the effect in the worst possible case (see Figure 1.2),
in Meinshausen Bühlmann - 2015 [14] maximin effect is characterized in another way:

βmaximin = arg max
β

E
(
‖Xβ‖22

)
s.t. min

b∈supp(FB)
E
(
(Xβ)T (Xb−Xβ)

)
≥ 0 (4.3)
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We can see that the maximin effect is the coefficient that maximizes the prediction imposing that
remain positively correlated with the residual, so we can under-explain a signal, never over-explain.
This is a problem in the cross validation because the values that minimize the prediction error over-
estimate the maximin quantities (i.e. the penalty in the estimator tend to be too small), in [14] is
showed a possible way to implement cross validation.
The procedure to evaluate the maximin estimator is based on split randomly the test set in g
groups (the values g has to be previously fixed), as the maximin is the value which maximize the
explained variance in the worst possible scenario, we use to evaluate the estimate (with a prediction

error) the group in which the empirical explained variance (evaluated in β̂maximin obtained with
the training set) is lower. The algorithm can be:

1. split the dataset in two blocks randomly without replacing. The first block is the training
set, the second the test set

2. split the training set in G groups and evaluate β̂maximin, this estimation depends on G and
the penalty ρ

3. split the test set in g groups and evaluate the empirical explained variance (equation (2.11))

in β̂maximin for all the groups in the test set, call gmin the group in which V̂β̂maximin is lower

4. obtain a prevision for the elements in group gmin, evaluate the prediction error respect some
norm

5. repeat 2. - 4. for different values of G and ρ

6. repeat 1. - 5. various time, average the prediction errors obtained with different training and
test set

The parameter g has to be chosen in advance and has to remain constant over all the algorithm,
higher values of g intuetivelly give better estimations of the worst scenario (there are more ex-
plained variances to choose the worst one), but give worst estimations of the variance in all the
scenarios. In [14] is suggest to choose g as big as possible but the groups have to be at least a few
hundred of observations.
In 1 the sampling scheme is uniformly without replacing, in 2. and 3. the split depends of the
scenario in which the data are from. If we have cronological observations we have to split the two
half-samples in blocks of consecutive observations, if we are in a mixture model scenario we have
to split randomly without replacing inside each group, but with replacing behind the groups (this
method allows to increase g without shrink too much the number of observations).

In case of graphical model we have an additional problem, we haven’t a response variable in
which evaluate the prediction error, we need to cycling predict all the variables using the others as
explicative (see models (1.6)), or (if the dimension p is too high) choose some variables in which
evaluate the prediction error, we can choose these randomly or not, if we have a group of variables
in which we are more intrested.
The choosed variables have to remain constant in all the procedure, with a cross-validation as in
the previous algorithm we obtain a prediction of all the intrested variables (we fix null column
in the prediction for the not-intrested variables), the matrix error is the difference between the
observed data and the prediction in the column correspondent to the intrested variables, we have
a measure of the error evaluating the norm (fixed a priori) of this matrix.

More preciselly, in each step we obtain a forecast (which depend on G and ρ) on the tar-
get variable in group gmin, let’s call Xp1 , Xp2 , ..., Xpi the variables in which we are intrested,
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{p1, p2, ..., pi} ⊆ {1, ..., p}.
Let’s call X

gj
pj the observed variables in the group gj ∈ {1, ..., g}, fixed G and ρ, let’s the target

variable the j-th, we obtain a prevision X̂
gmin;j

j (note that the group in which the explained vari-
ance is lower depend on the target variable, gmin is not the same group for all the variables), then

we evaluate the error in the matrix with j-th column X
gmin;j

j − X̂gmin;j

j if j is in {p1, p2, ..., pi},
instead the column is the null vector.
The error is the norm of this matrix, doing this method for some values of (ρ,G), we have an
estimation of the error for various number of groups and penalties, the estimation is better if we
repeat the whole procedure with different training and test set and average the error.
The main problem of this method is that, especially in high dimension, can be really slow because,
considering the whole procedure, we have to compute f · nG · nρ magging optimization, where nG
and nρ are the lengths of the paths of the number of groups and the penalty function in which we
are intrested to evaluate the error, f is the number of repetition of the procedure. Then we need to
evaluate f ·nG ·nρ ·g · i empirical variances (i is the number of variables in which we are intrested),
and obtain the prediction of f ·nG ·nρ ·ng · i values, where ng is the number of observations in the
test groups.
A possible implementation is showed in appendix B.

As we have said the error is evaluated using a matrix norm, now we give an intuitive definition
and discuss a bit some norms.
A matrix norm is an extension of a ”usual” vector norm, there are two main extensions.
The induced lp-norm of the m× n matrix A corresponding to the vectorial lp-norm is the value

‖A‖p,ind = sup
x/=0

‖Ax‖p
‖x‖p

(4.4)

which has not an explicit solution in general, the more used induced norms are:

1. ‖A‖1,ind = maxj (
∑
i |aij |)

2. ‖A‖∞,ind = maxi

(∑
j |aij |

)
3. ‖A‖2,ind = maxi(si(A)), where si(A) is the i-th singular values of A

Another way to define a matrix norm is consider a matrix A as a m · n-dimensional vector with
components aij , and simply using as a norm the ”usual” vectorial lp-norm. Is called Schatten norm
the values

‖A‖p,Sch =

min{m,n}∑
i=1

(si(A))p

 1
p

(4.5)

where si(A) is the i-th singular values of A.
The more used Schatten norm are:

1. ‖A‖F := ‖A‖2;Sch =
√∑

i

∑
j |aij |2 =

√
tr(ATA), called Frobenius norm

2. ‖A‖∗ := ‖A‖1;Sch = tr
(
(ATA)1/2

)
, called nuclear norm
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Chapter 5

Simulation

In this chapter we show some simulations with generated datasets to show the main advantages
and problems of this method, in each simulation we will compare the method with the estimation
obtained with the empirical covariance matrix.

The first simulation is in ”low” dimension to show better how magging estimator works, the
sparse graph in the right represents the variable X = (X1, ..., X8)T with precision matrix

Θ =



1 0 0 0 0 0 0 0
0 1 −0.8 0 0 0 0 0
0 −0.8 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0.5 0 0
0 0 0 0 0.5 1 0.5 0
0 0 0 0 0 0.5 1 0
0 0 0 0 0 0 0 0


for the normal values, and for the outliers

Θout =



1 0 0 0 0 0 0 0
0 1 −0.8 0 0 0 0 0
0 −0.8 1 0 0 −0.3 0 0
0 0 0 1 0 0 −0.5 0
0 0 0 0 1 0.5 0 0
0 0 −0.3 0 0.5 1 0.5 0
0 0 0 −0.5 0 0.5 1 0
0 0 0 0 0 0 0 0


The n = 2000 observations are sampled from a N(0,Θ−1) with probability π = 0.8 and a N(0,Θ−1

out)
with probability 1− π.
We use a cross validation (section 4.2) for the parameters G and ρ between the values (2,3,4,5,10,20)
and (0.01,0.02,0.04,0.08,0.16,0.32) respectively, we evalute the estimations in g = 15 test groups,
for the whole variables and using the Frobenius norm. The estimated errors are:

24.08 24.25 23.95 23.86 23.73 24.19
23.88 23.78 23.92 23.90 23.85 24.16
24.45 24.29 24.04 24.21 23.81 24.30
24.37 24.28 24.13 23.91 23.92 24.28
24.41 24.44 24.17 23.55 23.82 24.18
24.80 24.79 24.80 24.65 24.27 24.85
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where the columns are the values of penalty, the rows of groups. We have similar values, but the
best one is in position (5,4), so the parameter that we will use are (G, ρ) = (10,0.08) it’s useful
show also the optimization with parameters (G, ρ) = (3,0.02), which is close to the second one
lower.
The two estimated matrix (after the trasformation as correlation matrix) are

Θ̂(10,0.08) =



1.00 −0.01 0.00 0.00 0.00 0.00 0.00 0
−0.01 1.00 −0.63 −0.01 0.01 0.00 0.00 0
0.00 −0.63 1.00 −0.01 0.01 −0.01 0.01 0
0.00 −0.01 −0.01 1.00 0.02 −0.01 0.00 0
0.00 0.01 0.01 0.02 1.00 0.28 0.00 0
0.00 0.00 −0.01 −0.01 0.28 1.00 0.49 0
0.00 0.00 0.01 0.00 0.00 0.49 1.00 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1



Θ̂(3,0.02) =



1 0.00 0.00 0.00 0.00 0.00 0.00 0
0 1.00 −0.72 0.00 0.00 0.00 0.00 0
0 −0.72 1.00 −0.03 0.00 −0.10 0.03 0
0 0.00 −0.03 1.00 0.00 −0.04 0.02 0
0 0.00 0.00 0.00 1.00 0.43 −0.03 0
0 0.00 −0.10 −0.04 0.43 1.00 0.49 0
0 0.00 0.03 0.02 −0.03 0.49 1.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 1


We can see that the second estimation may be better to estimate Θ, but is definitely worst if we
are intrested to find the correlations more than estimate them.
Number of groups and penalty shrink to 0 the values, the true correlations values are shrinked to
0 more in the first case, but the bias is not enough to shrink too much the true correlations to 0,
i.e. even with higher penalty we find the true correlations.
The others values with higher penalty are correctly shrinked to zero, the improvement is especially
for the outliers, as we can see especially for the one in position (3,6).
Intuitively a signal in all the observations remains in all G groups, instead an erratic signal goes
in different frequency to the various groups and, chosing the group which explain less, the erratic
signal is skrinked more to 0 than the true. With higher G we have more unstable estimate, but
we hope that the distortion to zero is higher for the outliers, so the ”only” estimated correlations
are real.
Cross validation maximizes the prediction with respect to some norms, if some couple of parame-
ters has similar prediction error can be useful to choose the higher.
Of course in a real dataset we do not know Θ, so after the choice of (G, ρ) (after the cross valida-
tion), we have to suppose that these parameters are the best for the optimization.

The next simulations will be in higher dimension, so we evaluate the results with respect to
the generating matrix using some matrix norms, different norms can lead to different results and
we need to choose it also for the cross validation function.
There are not a right norm to use, we utilize the most common.

For the second simulation we keep n = 2000 observations but in dimension p = 50 and proba-
bility of outliers 1− π = 0.2. We sample the correlations controlling the maximum frequency (we
need a sparse graph) with a parameter s < 1, the maximum number of edges is emax = p(p/2 −1),
we fix the maximum number of correlations is s · emax for the normal values, the outliers have
others additional correlations, again we set a parameter sout.
Now we have s = 0.10 and sout = 0.30, the normal correlations are sampled from a U(−0.4,0.4)
and rounded at the first decimal, the erratic correlations are from U(−0.1,0.1) and are rounded
to the second decimal (the precision matrix, which in our case is a correlation matrix, has to be

35



5 – Simulation

positive definite).
Again we have choose to the parameters by cross validation, the procedure is moderately slow,
so we have slightly modified the function to give us the error evaluated with Frobenius norm and
infinity norm for the same optimizations, the errors are the average of 5 full procedures, with paths
for G equal to 2,4,8,16,32 and for ρ equal to 0.02,0.04,0.08,0.16,0.32, the groups in the test set are
g = 15 and we evaluated the prediction in 25 variables sampled before than the procedure starts.
The results of the errors are:

42.24 41.67 41.46 41.50 43.31 47.46
42.88 42.09 41.92 41.34 43.01 47.04
44.13 43.39 42.64 41.74 43.11 46.59
44.42 43.58 42.94 42.81 43.68 46.28
44.80 44.53 44.22 44.05 44.27 46.48




28.67 27.60 27.92 28.50 28.72 31.92
29.54 28.73 27.80 27.88 28.58 30.00
30.76 30.11 29.85 27.91 29.13 29.90
30.17 28.72 28.35 28.69 29.05 30.68
29.81 30.82 29.97 30.22 29.20 30.67


evaluated respectively with the Frobenius norm and the infinity norm. The best set of parameters
with the Frobenius are (G, ρ) = (4,0.16), with the infinity are (G, ρ) = (2,0.04), we evaluate the
results of the optimization with this two couples of parameters and the result with the maximum
likelihood estimation using the matrix Θ̂MLE = corr(S−1) (the estimation obtained with the
standardized precision matrix, same as the others, we generated from a correlation matrix, so we
trasform all the estimations in to that).
We use all the norm defined in section 4.2, and the results are:

‖Θ̂(4,0.16) −Θ‖F = 1.39 ‖Θ̂(2,0.04) −Θ‖F = 0.70 ‖Θ̂MLE −Θ‖F = 1.17

‖Θ̂(4,0.16) −Θ‖∞ = 0.86 ‖Θ̂(2,0.04) −Θ‖∞ = 0.58 ‖Θ̂MLE −Θ‖∞ = 1.19

‖Θ̂(4,0.16) −Θ‖2 = 0.44 ‖Θ̂(2,0.04) −Θ‖2 = 0.23 ‖Θ̂MLE −Θ‖2 = 0.40

‖Θ̂(4,0.16) −Θ‖∗ = 8.14 ‖Θ̂(2,0.04) −Θ‖∗ = 4.04 ‖Θ̂MLE −Θ‖∗ = 6.64

we see that using (G, ρ) = (2,0.04) we have way better results than the other cases for all norm,

in this case Θ̂(2,0.04) lead to a better estimation of Θ.
As we have said in the previous simulation, higher penalty and number of groups conduct to
biased estimation of the correlations, so a worst estimation of Θ, but can be useful to identify
better the true correlations if there are outliers. To evaluate this we fix a threshold in which the
higher values are set to 0, both in the theoretical matrix Θ and in the estimates Θ̂ to compare
the ”low” correlations between the estimates and the theoretical. We fix the threshold as 0.05 (is
an arbitrary value, we haven’t a procedure to set it) and define the matrix A∗ where the generic
element a∗i,j = ai,j if ai,j < 0.05, instead a∗i,j = 0.
The evaluated norm are:

‖Θ̂∗(4,0.16) −Θ∗‖F = 0.94 ‖Θ̂∗(2,0.04) −Θ∗‖F = 0.56 ‖Θ̂∗MLE −Θ∗‖F = 1.09

‖Θ̂∗(4,0.16) −Θ∗‖∞ = 0.54 ‖Θ̂∗(2,0.04) −Θ∗‖∞ = 0.49 ‖Θ̂∗MLE −Θ∗‖∞ = 1.09

‖Θ̂∗(4,0.16) −Θ∗‖2 = 0.30 ‖Θ̂∗(2,0.04) −Θ∗‖2 = 0.18 ‖Θ̂∗MLE −Θ∗‖2 = 0.34

‖Θ̂∗(4,0.16) −Θ∗‖∗ = 4.89 ‖Θ̂∗(2,0.04) −Θ∗‖∗ = 3.16 ‖Θ̂∗MLE −Θ∗‖∗ = 6.24

we see that in the low correlations Θ̂(4,0.16) is better than Θ̂MLE , but remains worst than Θ̂(2,0.04),
even if the difference between the errors in the two estimators is lower.
In figure 5.1 is show the theoretical and the estimated model.

The last simulation is with p = 200, Θ really sparse, with normal correlations sampled in
{−0.4,−0.3, ...,0.4}. After the sampling there are 81 correlations in {±0.1,±0.2,±0.3,±0.4}. Same
as before there are outliers in proportion 1−π = 0.20, in this case the ”outliers graph” is the same
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Figure 5.1. this is the theoretical and the estimated correlations for the graphical model in sim-
ulation 2. The black solid line are the edges of the theoretical graph, the red dashed lines are the

estimated ones using Θ̂(2,0.04) and 0.05 as threshold, i.e. there is a black solid line from variable

Xi to Xj if Θi,j > 0, there is a red dashed line if [Θ̂(2,0.04)]i,j ≥ 0.05. As we see, the errors in
the estimate are not too much, considering that some true correlations are ±0.1. We have 8 false
negative (true dependence not estimated) in 94 correlations and 5 false positive.
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as the normal with some more edges with high correlations, more precisely the outliers observations
are generated from a matrix with the same 81 correlations as the normal, plus 9 high correlations,
set to 0.6.
The graph is really sparse, the ”normal” has 81 edges where the maximum is 19800, the ”wrong”
one has 90 edges.
By cross validation (the procedure is really slow), the best values for the parameters seems (G, ρ) =
(2,0.2). This values, for the estimation of Θ, lead to a better results than using the empirical
covariance matrix, the norm ratio

‖Θ̂(2,0.2) −Θ‖
‖Θ̂MLE −Θ‖

are 0.47, 0.21, 0.81 and 0.37 respectively for Frobenius, infinity, induced l2 and nuclear norm, but
this results are because the low values (there are a lot because the matrix is really sparse) are
shrinked to 0, so the numerator in the norm ratio is low because the low values balance the bias
in the high values.
If we check the theoretical correlations and the estimates we see that the values where |Θi,j | = 0.4

have an average estimates (all the elements are taken in absolute values) of 0.23 for Θ̂(2,0.2) and

0.39 for Θ̂MLE , the values where |Θi,j | = 0.3 has 0.12 and 0.31 respectively for Θ̂(2,0.2) and Θ̂MLE ,
the values where |Θi,j | = 0.2 are 0.03 and 0.20, the outliers (the original correlation was 0.6) have

values 0.11 for Θ̂(2,0.2) and 0.24 for Θ̂MLE .
In this case the maximum likelihood estimator (with an opportune threshold to cut to 0 the lower

values) is better than the magging estimator to eliminate the effect of the outliers. Θ̂(2,0.2) give an
estimation of the erratic correlations which is similar to the estimation when the true correlations
is 0.3, instead Θ̂MLE shrink the outliers as an estimated correlation of 0.25 (which is the estimation
when the true correlation are 0.25).
Look at as magging/maximin shrink the coefficients to 0 we see that the more the coefficient as
low, the more is shrinked (0.4 is shrinked to 0.23, 0.2 is shrinked to 0.03), so this method can be
useful when the outliers haven’t high correlations.
The previous simulation was better for maximin estimator than the last one, the outliers correla-
tions was more (almost three times the right one) but not elevated (were from 0 to 0.1 in absolute
values, instead the right correlations were from 0.1 to 0.4 in absolute values).
This is a behaviour similar to the lasso, which is used in high dimension because shrink a lot the
low coefficients and keep the moderate/high (see section 11 of Tibshirani - 1996 [17]), the penalty
function doing the same with the outliers, so maximin estimation with l1 norm works well when
we have moderate/high true correlations (which are not shrinked too much) and a large number
of erratic low correlations.
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Chapter 6

Conclusion

In this thesis, starting from maximin effect for linear model [14], I have given a possible extension
to gaussian graphical model, focusing in the correlations between the variables. This lead to a
precision matrix where the (i, j)-th element is the maximin linear correlation effect between the
variables Xi and Xj .
In the second chapter is given the corresponding estimation, following the approach of the graphical
lasso [6] as extension to the lasso for linear model [17]. However, the optimization is computation-
ally problematic because we have to solve it using a derivative free method, which is really slow
and, in our case, has some problems to converge. I tried to solve it using an approximation, which
works well in the linear model case, but definitivly not in graphical models, so I have extended
the idea of magging estimation (introduced for the maximin estimation for linear model in high
dimension [4]) to graphical model also in low/moderate dimension. Magging estimation works
really well in our case.
The ways to implement the optimization are showed in chapter 3, where there are also a brief
explanation of all the optimization methods used in the thesis.
In chapter 4 there is an improvement of the algorithm which can be used in high dimension, that
follows the improvement for the graphical lasso algorithm [19]. There is also a possible way to
implement cross validation in two dimension (the parameters that have to be learned from the
data are the number of groups G and the penalty ρ), in case of graphical model there is not a
response variable, so we evaluate the prediction ciclically, fixing a variable used as response, with
the others as explicative, the method is really slow in high dimension.
Finally, in chapter 5, there are two simulations in which maximin works well, compared to the
maximum likelihood estimation, and a estimation when does not.

For the future, can be evaluated the proprieties of the maximin estimation using different
penalty, such as ridge or other extensions (see [8]), In fact we have seen in the simulations that
maximin with l1-norm shrink to 0 the coefficients in a similar way of the lasso estimation, which
can be not good in some cases (like in the third simulation, in chapter 5).
Also, can be useful derive the function that the estimator maximize, because, if is function of
the likelihood, maximin effect can be extend to generalized linear model. Moreover in a bayesian
approach, as the lasso correspond to the posterior mode when the coefficients are indipendent with
prior Laplace distributions, can be derived the prior information which lead to a posterior mode
equal to the maximin estimator.
Find the function maximized by the estimator is useful especially in graphical model, to derive
some analytically methods to evaluate the prediction error (such AIC or BIC) to replace, or at list
improve the cross validation, that is really slow.
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Appendix A

A.1 Proof of Theorem 3

Without loss of generally we can proof the theorem in the simpliest case, with 2 blocks.
Using the fact that the inverse of a block diagonal matrix is another block diagonal matrix, eval-
uated the inverse of each block,

Θ =

(
Θ(1)

Θ(2)

)
=⇒ Σ =

(
Σ(1)

Σ(2)

)
and the estimations of Σ are:

S =

(
S(1)

S(2)

)
, W =

(
W (1)

W (2)

)
.

The equation

W11 · arg min
β

{
1

2
max
g

(
βTW11β − 2βT s12,g

)
+ ρ‖β‖1

}
become(

W (1)

W (2)

)
11

· arg min
β

{
1

2

(
β(1)Tβ(2)T

)(
W (1)

W (2)

)
11

(
β(1)

β(2)

)
+

−min
g

((
β(1)Tβ(2)T

)( 0

s
(2)
12,g

))
+ ρ

(
‖β(1)‖1 + ‖β(2)‖1

)}

which is equal to(
W (1)

W (2)

)
11

· arg min
β

{
1

2

(
β(1)TW (1)β(1) + β(2)TW

(2)
11 β

(2)
)

+ min
g
β(2)T s

(2)
12,g + ρ(...)

}
=

(
W (1)

W (2)

)
11

· arg min
β(1),β(2)

{
f
(
β(1)

)
+ g

(
β(2)

)} (A.1)

where

f(x) =
1

2
xTW (1)x+ ρ‖x‖1

g(x) =
1

2
xTW

(2)
11 x+ min

g
xT s

(2)
12;g + ρ‖x‖1
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The former minimization can be solved separately for β(1) and β(2):

β̂(1) = arg min
β(1)

{
f
(
β(1)

)}
= 0

β̂(2) = arg min
β(2)

{
g
(
β(2)

)}
where the first is equal to 0 because the function f is always positive, except in 0, in which f is
equal to 0. So (A.1) become (

W (1)

W (2)

)
11

(
0

β̂(2)

)
=

(
0

W
(2)
11 β̂

(2)

)

this conclude the proof: the optimization for the last column, if Θ is block diagonal does not
depend from the first block.

A.2 Proof of Theorem 4

the equation

W11 · arg min
β

{
1

2
max
g

(
βTW11β − 2βT s12,g

)
+ ρ‖β‖1

}
using the fact that ming β

T s12;g = βT s12;g∗ for some unknown group g∗ ∈ {1, ..., G}, can be write
as:

W11 · arg min
β

{
1

2
βTW11β − βT s12,g∗ + ρ‖β‖1

}
this is the usual equation of the graphical lasso problem.
Theorem 2 in [19] prove that |Si,j;g∗| ≤ ρ =⇒ Wi,j;glasso = 0.
Considering that g∗ is in {1, ..., G}, if |Si,j;g| ≤ ρ ∀g, i.e. maxg |Si,i′;g| ≤ ρ, than Wi,j;maximin = 0.
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Appendix B

In this chapter are showed some codes of the algorithms in chapter 3 and 4.
Some modifications of the codes are write as comments.

B.1 Sampling groups

If the groups of variables are unknown we sample from the dataset X:

n<-nrow(X)

G<-50

ng<-trunc(n/G)

# ng <-15

X_gr <-array(dim=c(G,ng,p))

# S_gr <-array(dim=c(G,p,p))

for(i in 1:G) {

sample_values <-sample ((1:n),size=ng)

X_gr[i,,]<-X[sample_values ,]

# S_gr[i,,]<-t(X[sample_values ,])%*%X[sample_values ,]/ng

}

The data are organized in array, sampled without replacing inside a group, with replacing bethween
groups, like in [14]. If we need also the empirical covariance matrix for the groups we can remove
the comments in rows 6 and 11.
The current estimation W start as the sum of the empirical covariance S and the matrix ρIp,
because is not singular also in the case in which n < p:

S<-t(X)%*%X/n

rho <-0.3

W<-S+rho*diag(p)

B.2 Optimization function

Here is showed the cycle which use the algorithm in section 3.1 for the optimization, the function
nmk is in the library dfoptim [18].

obj <-function(beta ,W,X,pos=1,rho) {

vett <-rep(NA,times=G)

for(i in 1:G) vett[i]<- t(beta )%*%t(X[i,,-pos ])%*%X[i,,pos]

t(beta )%*%W[-pos ,-pos ]%*% beta + -(2/ng)*min(vett) +rho*sum(abs(beta))
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}

cycle.nmk <-function(Start ,W,X,rho) {

cl <-rep(NA ,ncol(W))

for(i in 1:p) {

a<-nmk(par=solve(Start[-i,-i])%*% Start[-i,i], fn=function(x)

obj(x,W,X,pos=i,rho))

cl[i]<-a$convergence
W[-i,i]<<-W[i,-i]<<-W[-i,-i]%*% a$par

# print(i)

}

return(cl)

}

The optimization using l0-norm (section 3.3) is done by the cycle

cycle.ire <-function(WP ,X,rho ,zeta =0.01 ,tol=.001 , maxit =100) {

G<-dim(X)[1]

ng <-dim(X)[2]

p<-dim(X)[3]

n<-G*ng

X.tot <-{}

c.p<-array(NA ,dim=c(G,p-1,p))

conv <-rep(NA,p)

for(i in 1:G) {

X.tot <-rbind(X.tot ,X[i,,])

for(j in 1:p) c.p[i,,j]<-t(X[i,,-j])%*%X[i,,j]

}

for(j in 1:p) {

P<-diag(n)

par <-rep(1,p-1)

parm1 <-rep(0,p-1)

i<-1

while(max(abs(par -parm1))>tol & i<= maxit) {

parm1 <-par

par <-lassoshooting(XtX=n*WP[-j,-j],XtY=t(X.tot[,-j])%*%P%*%X.tot[,j],

lambda=rho)$coefficients
Pgr <-sapply (1:G,function(x) t(par )%*%c.p[x,,j]/ng)

Pgr <-(Pgr -t(par )%*%WP[-j,-j]%*% par*rep(1,G))^(zeta -1)

for(k in 1:n) P[k,k]<-Pgr[(k -1)%/%G+1]

i<-i+1

}

conv[j]<-i

WP[j,-j]<<-WP[-j,j]<<-WP[-j,-j]%*% par

}

return(conv)

}

For this function is needed the library lassoshooting [1].
The array c.p has all the cross products of the dataset, we create it because in this way we need
to evaluate the various cross products one time.
Here we need all the datasets in a matrix, we join the groups as (XT

1 , X
T
2 , ..., X

T
G)T in row 10. This

is useful also in row 24: as we know that the dataset (X.tot) is ordered by consecutive groups we
can easily put in the matrix P the correspondent weights in Pgr.
Here the vector conv has the number of iterations to optimize each dimension of the matrix, we
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have reached convergence if all the elements in conv are lower than maxit.
Finally, the magging optimization is:

cycle.magging <-function(W,X,rho) {

A<-rbind(rep(1,G),diag(1,G))

b<-c(1,rep(0,G))

d<-rep(0,G)

B<-matrix(NA,p-1,G)

for(i in 1:p) {

for(g in 1:G) B[,g]<-as.vector(glmnet(X[g,,-i],X[g,,i],

family =" gaussian",lambda=rho ,intercept=F)$beta)
H<-t(B)%*%W[-i,-i]%*%B+rho*diag(G)

w<-solve.QP(H,d,t(A),b,meq =1) $solution
W[-i,i]<<-W[i,-i]<<-W[-i,-i]%*% apply(B%*% diag(w),1,sum)

# print(i)

}

}

This function needs the libraries glmnet [7] and quadprog [3].

B.3 Estimation

Now we show for the magging how obtain the estimate W , we need to repeat the cycle until
convergence

Wminus1 <-W-.5

i<-1

while(max(abs(W-Wminus1 )) >0.01 & i <=100) {

Wminus1 <-W

cycle.magging(W,X_gr ,rho)

# print(max(abs(W-Wminus1 )))

i<-i+1

}

Theta.est <-diag(diag(solve(W))^ -.5)%*% solve(W)%*% diag(diag(solve(W))^ -.5)

# View(round(solve(W),2))

View(round(Theta.est ,2))

In this case the tollerance is fixed as 0.01.
After the estimation W of Σmaximin, we can obtain the estimation of the precision matrix Θmaximin

as W−1. We are intrested to the correlations between the variables, so we trasform this matrix as
a correlation matrix.

B.4 Dimensionality reduction

Here there are an example of how implement the algorithm in section 4.1.

Atot <-partial <-A

for(i in 2:p) {

partial <-partial %*%A

Atot <-Atot + partial

}

Atot <-Atot+diag(p)
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and to extract the groups from this matrix:

groups <-matrix(0,p,p)

remaining.var <-(1:p)

while(length(remaining.var)>0) {

row <-min(which(apply(groups ,1,sum )==0))

gr <-which(Atot[remaining.var[1],]>0)

groups[row ,]<-c(gr,rep(0,times =(p-length(gr))))

for(j in 1: length(gr)) {

remaining.var <-remaining.var[-which(remaining.var==gr[j])]

}

}

B.5 Cross validation

The function to implement the algorithm in section 4.2 is

magging.cv <-function(X,rep ,rho ,groups ,g,pp ,normpar=c(1,2),tol =0.01,

maxit =100) {

n<-nrow(X)

p<-ncol(X)

error <-array(NA ,dim=c(rep ,length(groups),length(rho )))

for(f in 1:rep) {

Z<-sample (1:n,trunc(n/2))

ng<-trunc(trunc(n/2)/g)

X2<-array(NA,c(g,ng ,p))

for(i in 1:g) X2[i,,]<-X[-Z,][ sample (1: trunc(n/2),ng),]

for(G in groups) {

nG <-trunc(trunc(n/2)/G)

X1 <-array(NA ,c(G,nG ,p))

for(i in 1:G) X1[i,,]<-X[Z,][ sample (1: trunc(n/2),nG),]

for(rh in rho) {

W<-t(X[Z ,])%*%X[Z,]/ trunc(n/2)+rh*diag(p)

Wminus1 <-W-.5

j<-1

while(max(abs(W-Wminus1))>tol & j<= maxit) {

Wminus1 <-W

W<-cycle.magging(W,X1,rh,G)

j<-j+1

}

Th <-diag(diag(solve(W))^ -.5) %*% solve(W) %*% diag(diag(

solve(W))^ -.5)

hatX <-obsX <-matrix(0,ng,p)

for(i in pp) {

hatbeta <- -Th[-i,i]
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gmin <-which.min(sapply (1:g,function(x) expvar(hatbeta ,X2[x,,-i],

X2[x,,i])))

hatX[,i]<-X2[gmin ,,-i]%*% hatbeta

obsX[,i]<-X2[gmin ,,i]

}

error[f,which(groups ==G),which(rho==rh)]<-matrix.norm(induced=normpar [1],

q=normpar [2],hatX -obsX)

}

}

print(f)

}

return(list(meanerror=apply(error ,c(2,3),mean),

maxerror=apply(error ,c(2,3),max)))

}

where the parameters are the dataset X, rep is how many times we repeat the procedure with
different training and test set, to obtain better estimations of the errors, rho is now a vector of
possible values for the penalty ρ, groups is a vector of possible values for the number of groups, g
is the number of groups from the test sample in which evaluate the explained variance, pp is the
parameters in which evaluate the prediction error, norm are the parameters to choose the matrix
norm to evaluate the prediction error, tol and maxit are the parameters for the convergence of
the optimization cycle.
Is used a function to evaluate some possible matrix norms:

matrix.norm <-function(induced=1,q,A) {

if(induced ==1) {

if(q==1) return(max(apply(abs(A),2,sum )))

if(q==" inf") return(max(apply(abs(A),1,sum )))

if(q==2) return(max(svd(A)$d))
}

else {

if(q==" max") return(max(abs(A)))

else return ((sum(svd(A)$d^q))^(1/q))
}

}

which evaluate some matrix norms defined in section 4.2, particularly the induced l1, l∞, l2 - norms
if the parameter induced is equal to 1, instead the function evaluate the Schatten lq-norm (set
q=2 for the Frobenius norm, q=1 for the nuclear norm). If induced is not equal to 1 and q="max"

is evaluate the norm ‖A‖max = maxi,j(aij) (it is not a Schatten norm).
In magging.cv is used also a function to evaluate the quantities (2.11):

expvar <-function(beta ,X,Y) {

1/nrow(X)*(2*t(beta )%*%t(X)%*%Y-t(beta )%*%t(X)%*%X%*% beta) }

and a function for the cycle slightly different than the one in section B.2

cycle.magging <-function(W,X,rho ,G) {

WW <-W

A<-rbind(rep(1,G),diag(1,G))

b<-c(1,rep(0,G))

d<-rep(0,G)

B<-matrix(NA,p-1,G)
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for(i in 1:p) {

for(g in 1:G) B[,g]<-as.vector(glmnet(X[g,,-i],X[g,,i],

family =" gaussian",lambda=rho ,intercept=F)$beta)
H<-t(B)%*%WW[-i,-i]%*%B+rho*diag(G)

w<-solve.QP(H,d,t(A),b,meq =1) $solution
WW[-i,i]<-WW[i,-i]<-WW[-i,-i]%*% apply(B%*% diag(w),1,sum)

}

return(WW)

}
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