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Abstract

Turbulent and multiphase flows have a fundamental role in the design phase not
only in the engineering field. Nowadays, the investigation of such flows is mainly
based on the numerical simulations, thanks to lower costs, times and complexity
compare to experimental investigations.

In this thesis project, multiphase flows are considered, with a generic fluid as
carrier and solid particles as secondary phase. Since dilute condition are hypothe-
sized, one-way fluid-particle coupling is used.

The flow is simulated with the Direct Numerical Simulation (DNS) implemented
in CaNS, an open-source code. For the purposes of simulating complex flow geome-
tries, an Immersed Boundary Method (IBM) is adopted, in particular an Eikonal
equation IBM is used, coupled with a Signed Distance Function.

The particles motion is simulated in parallel to the flow by solving the equations
of motion. In addition to the particle motion, also the collision over rigid bodies
is modelled. These rigid walls are modelled with the IMB, taking advantage of the
Signed Distance Function properties.

The numerical method developed for this thesis project is validate through a
qualitative comparison with results available in literature, in particular the flow
over a cylinder is tested.
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Sommario

Flussi turbolenti e flussi multifase ricoprono un ruolo fondamentale nella pro-
gettazione in ambito ingegneristico e non solo. La loro investigazione oggi si basa
principalmente su tecniche di simulazione numerica, riducendo tempi, costi e com-
plessità rispetto ad indagini sperimentali.

In questo progetto di tesi si considerano flussi multifase in cui la fase principale
è un generico fluido e la fase secondaria sono delle particelle solide. Sono state
ipotizzate condizioni diluite e pertanto viene utilizzato un modello di interazione
fluido-particella a singola via.

Il flusso è simulato tramite tecniche di Simulazione Numerica Diretta (DNS)
implementate nel codice open-source CaNS. Al fine di simulare geometrie complesse
si ricorre a tecniche di Immersed Boundary Method (IBM), in particolare viene
adottato un IBM tramite equazione Iconale e Signed Distance Function.

Il moto delle particelle viene simulato parallelamente al flusso, risolvendo le
equazioni del moto. Oltre al moto delle particelle viene modellata anche la collisione
di queste su pareti rigide modellate tramite il metodo IBM e grazie alle proprietà
della Signed Distance Function.

Il metodo numerico sviluppato per il progetto di tesi viene validato tramite
confronto qualitativo con i risultati disponibili in letteratura, in particolare viene
testato il flusso attorno ad un cilindro.
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Introduction

The numerical simulation of multiphase flows is a key problem for many indus-
trial applications like the prediction of erosion due to dust particles in jet engines
[31], [33]. Another significant field of application is the study of atmospheric phe-
nomena with the aim of modelling the atmosphere of planets like Mars, that is of
fundamental importance for the future of space explorations.

Martian atmosphere has peculiar characteristics that distinguish it form the
Earth atmosphere, starting from the very low density, and therefore a significantly
larger ratio between rock dust density and atmosphere density. Furthermore, dust
storm events on Mars are very vast and can cover large regions influencing the solar
irradiation which is one of the mechanisms that permits dust particles lifting due
to the strong temperature gradient [9].

Despite having wildly different atmosphere, Mars cloud patterns have been
found to be surprisingly Earth-like, pointing to similar formation processes. Images
from ESA Mars Express [10] reveal a particular phenomenon on Mars. They show
that the martian dust storms are made up of regularly spaced smaller cloud cells,
arranged like grains or pebbles. The same texture is also seen in clouds in Earth’s
atmosphere.

These familiar textures are formed by convection, whereby hot air rises because
it is less dense than the cooler air around it. The type of convection observed here
is called closed-cell convection, when air rises in the centre of small cloud pockets,
or cells. The gaps of sky around the cloud cells are the pathways for cooler air to
sink below the hot rising air.

On Earth, the rising air contains water which condenses to form clouds. The
dust clouds imaged by Mars Express show the same process, but on Mars the rising
air columns contain dust rather than water. The Sun heats dust-laden air causing
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it to rise and form dusty cells. The cells are surrounded by areas of sinking air
which have less dust. This gives rise to the granular pattern also seen in the image
of clouds on Earth.

Some of these storms have been observed in 2019 and analyzed by Sánchez-
Lavega et al. [28] which identified three main typologies of storms:

1. Textured dust storms with cellular or granular patterns, compact or organized
in spiral systems as in Figure 1;

2. Irregularly shaped or filamentary;

3. Flushing arc-shaped dust storms.

All these morphologies have been observed at the edge of Mars North Polar Cap.

Figure 1: Example of a textured dust storm. a and b show the evolution in two
consecutive sol, c and d show granular texture details with successive magnifications
[28].

First type storms were tracked for several days following the formation, evo-
lution, disappearing and reappearing. This storm occupied a total area of about
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4.3×105 km2. The first appear of this storm was formed by three parallel filaments
aligned with the north-south direction. At smaller scales are distinguishable regu-
larly distributed and smaller dust masses. This formation have then disappeared
and reformed as a single-band dust storm with a prominent cell pattern but with
less regularity. After this it has reformed as a spiral. The final appear of this storm
showed a compact-textured dust storm. All this shapes of the storm have similar
cellular patterns and the three filament form instead of a spiral form is triggered
by small changes in the atmospheric conditions.

The second type of storm firstly appeared as an irregular dust storm and then
evolved as filamentary storm with some more compact and denser areas with some
granular texture that suggests a mechanism of cell formation similar to the one
observed above.

The latter case showed an arc extending in a region outside the North Polar
Cap and with no polar ices. In this case no granular patterns were observed. The
curved arc shape suggests some development of cyclonic vorticity.

Different dynamical mechanisms and instabilities are involved in the formation
of these storms. The primary disturbance is the meridional temperature gradient
between the area still occupied by ice and the one where CO2 has already evap-
orated. On a large scale, spiral and filamentary formations are the result of a
baroclinic instability.

Another mechanism is dry convection at a local-scale in the Planetary Boundary
Layer during the hours of maximum insulation heating. This convection produces
the so called "Dust Devils" [32]. Dust Devils are convective vortices, similar to
the ones observed on Earth, that on Mars reach higher altitudes due to low atmo-
spheric pressure, large vertical temperature gradient (leading to thermal instability)
and absence of moisture and vegetation. These plumes are able to transport dust
particles up to altitudes of tens of kilometers triggering dust cloud formation.

Furthermore, the modelling of collision between particles and walls is a phe-
nomena to take into account for the modelling of multiphase flows and this is the
subject of this Thesis Project. The collision tracking method was implemented in
the CaNS code to work with an Immersed Boundary Method (IBM).

The IBM is a simple and efficient approach to simulate complex geometries
because it does not require the creation of complex mesh around the solid body,
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but makes use of some changes to the equations near the body boundary. The
boundaries of the immerse body could be identified with a Signed Distance Function
(SDF), which properties could be also used to model the collision of the particle
with the immersed boundary.

The thesis document begins with some theoretical background on turbulent
flows and then numerical simulation in chapter 1 and some basics about multi-
phase flows in chapter 2. Then various IBM method are described to introduce
the one used for the thesis project (chapter 3). On chapter 4 it is described
the model implemented for the collision of the particles on a rigid body. Finally
the results of the simulations and the validation of the model are presented in
chapter 5.
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Chapter 1

Turbulent Flows and Numerical
Methods

Turbulent flows can be observed frequently in our everyday life: the water in a
river, the smoke for a chimney or the water behind a boat are some examples. This
turbulent phenomena are unsteady, irregular, random and chaotic. The turbulence
appears on many different dimensional scales, if we look an image of a waterfall,
we can observe eddies from the dimensions of the order of the waterfall size itself
up to the resolution of the camera. An example is the turbulent jet in Figure 1.1,
where many different dimensional scales are observable.

Figure 1.1: Development of a turbulent flow in a jet. Different scales can be
observed [35].

Turbulent flows are important in industrial applications because their behavior
is rather different from a laminar flow, e.g. turbulent flows can transport and mix
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Turbulent Flows and Numerical Methods

fluid much more effectively than laminar flows as demonstrates by the Reynolds
experiment [27].

The ultimate object of studying turbulent flows is to obtain a theoretical de-
scription or a model of the phenomena. Due to the extreme complexity of tur-
bulence, numerical solution techniques are of dominant importance [26]. Different
approaches are possible for solving turbulent flows with different accuracy and com-
putational cost.

1.1 Turbulent Flows

The main properties of turbulent flows are presented below and are in contra-
position to laminar flows:

1. Absence of spatial symmetry and vorticity (Figure 1.2);

2. Multi-scale structure: eddies of different size (6 to 8 order of magnitude)
influencing each other:

3. Turbulent flows appear as non-deterministic due to Deterministic Chaos The-
ory: small perturbation in a point of the domain could produce huge effects
in a different position;

4. Unsteady regime with spatial irregularities;

5. Instantaneous fields have bigger fluctuations of velocity when increasing the
Reynolds number due to the presence of smaller vortexes.

1.1.1 Energy Cascade and Kolmogorov Theory

The turbulent energy is associated to the eddies of a turbulent flow, but having
multi-scale eddies, it is important to define the distribution of the energy among
the different scales.

The first theory was proposed by Richardson which theorised the energy cascade
in 1922: biggest eddies transfer energy to the smallest, so the energy is injected in
the system by the biggest eddies and then dissipated by the smallest. This theory
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1.1 – Turbulent Flows

Figure 1.2: Turbulent flow around a cylinder. There is no symmetry with respect
to the streamwise axis of the cylinder [7].

has been formalised in 1941 by Kolmogorov (K41 Theory) [18], [17] and the main
results are presented below.

Let us consider a body with characteristic dimension L0 and immersed in a
flow with velocity U0, viscosity ν and Reynolds number Re = U0L0

ν
>> 1. The

dimension l represents the size of the eddy. The biggest eddies have size l0 ∼ L0,
the smallest ones have size η (Figure 1.3).

Figure 1.3: Schematic representation of the scales involved in a turbulent flow.

First it can be state that the macro-scales l ∼ l0 maintain dependence from the
geometry of the problem and the direction of the flow, instead, the micro-scales
have universal characteristics with homogeneity and isotropic properties.

Considering the biggest scales with dimension l0 ∼ L0, from experimental results
is known that ul0 ≃ 0.1÷ 0.3 · U0 ∼ U0, so

Rel0 =
ul0l0
ν

∼ U0L0

ν
>> 1 (1.1)

and the energy flux is:
kl0
τl0

∼
u3l0
l0

∼ U3
0

L0

∼ ε (1.2)
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Turbulent Flows and Numerical Methods

where kl is the kinetic energy and τl is the characteristic time of the scale l.
Hypothesis zero: For Re >> 1 and eddy scales l << l0 the turbulent flow is

locally homogeneous and isotropic. The statistics are universal and they depend at
most on ε and ν.

First hypothesis of similarity: The smallest scales η depend uniquely on
both ε and ν.

As result of this hypothesis it is possible to obtain expressions for the length η,
the characteristic speed uη and the characteristic time τη by performing a dimen-
sional analysis:

η =

(︃
ν3

ε

)︃ 1
4

(1.3)

uη = (νε)
1
4 (1.4)

τη =
(︂ν
ε

)︂ 1
2 (1.5)

From these relations it is possible to calculate the Reynolds number:

Reη =
uηη

ν
= 1 (1.6)

From this result it is clear that at the smallest scales the effect of viscosity is as
relevant as the inertia effects. Evaluating the energy dissipated it is possible to find
that:

εη ∼ ε (1.7)

and therefore all the energy is dissipated at these scales, called also Kolmogorov
dissipative scales.

Second hypothesis of similarity: The scales η << l << l0 are universal,
but do not depend on ν, thus depend only on ε.

Performing the dimensional analysis also for these inertial scales it is possible
to obtain:

ul = (εl)
1
3 (1.8)

τl =

(︃
l2

ε

)︃ 1
3

(1.9)

As before it is possible to evaluate the Re:

Rel =
ull

ν

(︃
l

η

)︃ 4
3

(1.10)
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1.2 – Numerical Techniques for Turbulent Flows

that is a high value and increases with l, so the inertial effects are dominant on the
viscosity. The energy transported by the inertial scales can be evaluated as:

εl ∼
kl
τl

∼ ε (1.11)

therefore all the energy is transported by the inertial scales.
To summarize, all the energy introduced by the biggest scales is transferred by

the inertial scales to the Kolmogorov scales where it is dissipated as schematise in
Figure 1.4.

Figure 1.4: Energy transfer through the different eddies sizes.

1.2 Numerical Techniques for Turbulent Flows

As mentioned before, turbulent flows are extremely important in industrial ap-
plications, therefore it is necessary to find some methodologies to evaluate all the
properties of the flow.

In the past turbulent flows were studied with an experimental approach, but
with the need of higher detail level and reduction of costs and time, numerical
methods play an important role.

The numerical solution of turbulent flows can be performed following two main
approaches: the direct solution of the Navier-Stokes (N-S) equations with DNS or
the modeling of the turbulence in LES and RANS [12].
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Turbulent Flows and Numerical Methods

In the DNS approach the N-S equations are solved directly on a 3D mesh
with a time-depending simulation. No models for turbulence are required, but the
computational cost is high.

RANS techniques resolve the averaged N-S equations and require a model to
describe the Reynolds stress tensor in order to close the problem. The output of
these simulations are only the average field, but the simulation time is order of
magnitude lower than DNS.

LES methods are intermediate between RANS and DNS. The biggest eddies are
directly simulated, instead the smallest and their effect on the system are modelled.

All these methods have specific performances and characteristics. Some aspects
can be considered for choosing one method rather than the others [26] for the
specific application:

• Level of description, e.g. instantaneous fields or average fields;

• Completeness, e.g. simulation parameters are or not flow dependant;

• Cost and ease of use;

• Range of applicability;

• Accuracy.

Some more details about these methodologies will be provided in the following
sections.

1.2.1 Direct Numerical Solution

The most accurate approach is to solve the Navier-Stokes equation without
any assumption and the numerical discretization in time and space as only one
approximation. If we consider incompressible flow, the equations to solve are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

#»∇ · #»

U = 0

D
#»

U

Dt
= −

#»∇p
ρ

+ ν∇2 #»

U +
#»

f

(1.12)

In Direct Numerical Solution or Direct Navier-Stokes (DNS), since no turbulence
model is used, the simulation domain must be as large as the biggest eddies. At the
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1.2 – Numerical Techniques for Turbulent Flows

same time, a good simulation must capture all the kinetic energy dissipation that
happens at the smallest scales, so the computational grid must be on the order of
the Kolmogorov scale. In particular the space discretization requirement is ∆ ≤ 2η

[12].

Figure 1.5: Example of a simulation domain for a cylinder immersed on a fluid
flow, main dimensions and grid discretization are highlighted.

It is immediately clear that the computational requirement of a DNS is huge.
Let us consider a simple domain like the one on Figure 1.5. The domain has
dimensions Lx ∼ Ly ∼ Lz ∼ L0 in the three directions and the discretizations are
∆x ∼ ∆y ∼ ∆z ∼ η. Considering the results of the K41 theory, the number of
spatial subdivision along a direction can be evaluated as:

Nx =
Lx

∆x

∝ L0

η
∝ Re3/4 (1.13)

Along the three directions, the total number of subdivisions is given by:

NTOT = Nx ·Ny ·Nz ∝ N3
x ∝ Re9/4 (1.14)

Furthermore, the time discretization must be considered. If we call T the sim-
ulation time and ∆t the time step, we can estimate the required number of time
steps:

N∆t =
T

∆t
∝ T0
τη

∝ Re1/2 (1.15)

As a consequence, the total computational cost is given by:

Computational Cost = NTOT ·N∆t ∝ Re11/4 ≈ Re3 (1.16)
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Turbulent Flows and Numerical Methods

This shows that the DNS approach is suitable only for small problems with low
Reynolds Number.

1.2.2 Large Eddy Simulation

In Large Eddy Simulation (LES), the larger turbulent structures are directly
resolved, instead the smallest scales are modelled. In terms of computational cost
this method lies between DNS and RANS, but is more reliable than RANS for flows
with significant unsteadiness.

Figure 1.6: Velocity filtering in LES. In red the filtered velocity, in blue the residual
velocity.

The basic concept of LES is the filtering of the velocity to eliminate the high
frequency fluctuations and the decomposition of the velocity in a filtered velocity ˜︁u
and a residual velocity u′′ (Figure 1.6) so that u = ˜︁u+ u′′. Two types of filtering
can be implemented:

1. Implicit filtering: the grid itself is the spatial filter. The Navier-Stokes equa-
tions are directly resolved and then some corrections are applied to take into
account the sub-grid scales that cannot be resolved;

2. Explicit filtering: a low pass filter (like Top-Hat or Gaussian filters) is applied
to the Navier-Stokes equations and then a closure model is implemented to
close the filtered LES.
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1.2 – Numerical Techniques for Turbulent Flows

The filtered Navier-Stokes equations are:⎧⎪⎪⎪⎨⎪⎪⎪⎩
#»∇ ·

#»˜︁u = 0

D
#»˜︁u

Dt
= −

#»∇˜︁p
ρ

+
#»∇ ·

(︃
2ν

→→˜︁E)︃− #»∇ ·
→→

τR

(1.17)

where τRij = ˜︃uiuj − ˜︁ui ˜︁uj is the residual stress tensor that is unknown and must be
modelled. Different models are available like the Smagorinsky model.

1.2.3 Reynolds-Averaged Navier-Stokes

The Reynolds-Averaged Navier–Stokes (RANS) approach is the one with the
smallest computational cost, but is less accurate and produces only averaged fields.
In this approach the RANS equations are resolved, these equations are obtained
by applying a Reynolds averaging to the Navier-Stokes equations. The velocity
can be divided in the average and fluctuation components following the Reynolds
decomposition: u(x, t) = U(x, t) + u′(x, t). The RANS equations are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

#»∇ · #»

U = 0

D
#»

U

Dt
= −

#»∇p
ρ

+
#»∇ ·

(︃
2ν

→→
E

)︃
− #»∇· <

#»

u′
#»

u′ >

(1.18)

where <
#»

u′
#»

u′ > is the Reynolds stress tensor, which terms are unknown and need
to be model to close the problem.

Many models are available and a lot of them are based on the Boussinesq hy-
pothesis:

− < u′iu
′
j >= −2

3
kδij + 2νTEij (1.19)

Now a model for the turbulent viscosity νT must be found. Some of the models
based on this assumption are the Spalart−Allmaras (1 eq.), k−ε, k−ω, k−ω−SST
(2 eqs.) and k − kl − ω (3 eqs.).

Another approach is the Reynolds Stress model. In this case the exact transport
equation for the Reynolds stress is obtained from the Navier-Stokes equations. This
equation has some unknowns that need to be modelled, so 5 additional equations
need to be solved.
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Chapter 2

Multiphase Flows

In industrial applications many systems involve multiphase media, being them
the combination of liquids and gases, non-miscible liquids or liquids and solids.
Some examples are vapor-water mixture in cooling systems in thermal facilities,
the combustion chamber of a liquid fuel rocket engine that contains a mixture of
vaporizing droplets and combusting gases or many natural phenomena like clouds
on Earth or dust clouds on Mars.

Typically the overall medium behaves as a fluid [1] also in presence of a solid
phase, so to study these flows it is possible to use the same approach of classic fluids.
Furthermore, these flows generally have random nature and velocity fluctuation
similar to turbulent flows. Therefore, all this aspects are the base for studying
multiphase flows.

The focus aspect of multiphase flows is the definition of a model to describe the
behaviour of these flows. There are three approaches to obtain these models [2]:

• Experimentally: laboratory experiments with appropriate measurements;

• Theoretically: using mathematical equations;

• Computationally: solving the problem thanks to the computational capabili-
ties of modern computer technologies.

Frequently experiments are too expensive and the laboratory scale is too different
from the real case study that the results may be of low quality. This explains why
the theoretical/computational approaches are dominant in understanding multi-
phase flows physics.
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2.1 Modelling Multiphase Flows

A multiphase flow is a system in which multiple materials are involved. These
materials have different state of matter, different thermodynamic state or different
compounds which cannot mix. Each of this material is referred as a phase of
the system. The different phases can interact with each other exchanging mass,
momentum and energy. Two kinds of phases can be distinguished: a carrier phase
that is the most abundant phase and a dispersed phase that is less abundant and
is transported by the carrier.

Different techniques have been developed to numerically solve different typolo-
gies of multiphase flows like solid particle laden flows, droplets laden flows, immis-
cible dense system and dilute rather than dense systems. Two main categories of
numerical methods can be identified:

• Hybrid Eulerian-Lagrangian methods: Navier-Stokes equations are solved for
the carrier, Lagrangian equations are used to evolve the particle state;

• Eulerian methods: Navier-Stokes equations are solved for both the carrier
and the secondary phase

Two of the main Eulerian methods used for immiscible dense fluids are the
Volume Of Fluid (VOF) and Level-Set (LS) methods. In both of them the Navier-
Stokes equations are solved on a fixed computational grid to evolve the motion of
all the phases. The momentum equation takes into account a force to model the
surface tension at the phase interface as function of the interface curvature and the
surface tension coefficient. It is clearly necessary to take into account the different
properties of the phases and to know the position and curvature of the interface.

Figure 2.1: Graphic interpretation of the Volume Of Fluid method (left) and Level-
Set method (right).
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2.2 – Particle Laden Flows

The VOF method evolves an advection equation for the volume fraction Cs:

∂Cs

∂t
+ #»u · #»∇Cs = 0 (2.1)

In each cell of the computational grid the volume fraction is computed (Figure 2.1)
and the intensive properties are evaluated as volume fraction average on each in-
volved phase. The interface location must be reconstructed. This is the most
difficult aspect of this method. The VOF method is more accurate in terms of
mass conservation.

The LS method simplifies the interface description by introducing an auxiliary
field ϕ defined as positive in a phase, negative in the other and zero at the interface
(Figure 2.1). An advection equation for this field is evolved:

∂ϕ

∂t
+ #»u · #»∇ϕ = 0 (2.2)

With this method the interface location is immediately defined, so LS is more
accurate in reconstructing the interface.

Among the Hybrid Eulerian-Lagrangian methods, Immersed Boundary Method
(IBM) and Point-Particle Approximation are the state of the art for solid particles.

In the IBM the N-S equations are solved on a fixed grid describing the carrier
flow. The momentum equation is corrected with a fictitious force fIBM that is
applied in the proximity of the particle to impose the flow motion to follow locally
the velocity of the particle. In this way the non-slip and non-penetration BCs are
implemented and it is not necessary to have the particle surface coinciding with
the computational grid (as for classical BC by setting #»u = 0 on the node of the
particle surface).

The Point-Particle Approximation is the model used for implementing the par-
ticle tracking method object of this thesis and will be discussed in the following
paragraph 2.3.

2.2 Particle Laden Flows

In particle laden flows (also valid for droplets laden flows), it is possible to
distinguish four types of interaction among the involved phases. In particular we
can identify four coupling mechanisms (Figure 2.2):
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1. The carrier phase forces the particles in term of mass, momentum and energy;

2. The particles force the carrier phase;

3. Particles interacts with other particles via the carrier phase, e.g. lubrication
forces, wakes;

4. Direct interaction between particles, like collision or adhesion.

Figure 2.2: Scheme of the interaction between carrier and dispersed phase. The
arrows highlight the four possible couplings between the carrier and the particles.

These couplings are more or less relevant depending on the mass and volume
fraction of the dispersed phase. Volume fraction is defined as:

ϕ =
Vd
V

(2.3)

where Vd is the volume occupied by the dispersed phase and V = Vd + Vc is the
total volume of the system, that is the sum of the dispersed phase volume and the
carrier volume. In the same way we can define the mass fraction:

ψ =
md

m
(2.4)

and again md is the mass of the dispersed phase and m = md+mc is the total mass
of the system.

According tho mass and volume fraction, three main scenarios could occur
(Figure 2.3):
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2.3 – Particle Equations of Motion

1. One way coupling: it happens in very diluted conditions such that particle-
particle interaction and the effects of the disperse phase on the carrier are
negligible. Only the carrier can influence the particles (only coupling 1);

2. Two way coupling: it applies at diluted conditions. Due to the low volume
fraction, the particle-particle interaction is negligible, but the higher mass
fraction entails the need of considering the influence of the particles on the
carrier (couplings 1 and 2);

3. Four way coupling: in dense regime the volume fraction is high enough to
require to take into account the effect of the mutual interaction between
particles (couplings 1, 2, 3 and 4).

Figure 2.3: Approximate subdivision of the coupling typologies depending on mass
fraction ψ and volume fraction ϕ.

2.3 Particle Equations of Motion

To discuss the motion of a particle in a fluid we can start considering the particle
as a rigid sphere of radius rp. We assume that from a macroscopic point of view,
the finite size of the particle does not influence the flow. In a general case, also
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Multiphase Flows

including gravity force, the equation of motion of a particle can be written as [22]:

#    »

dUp

dt
= −3

4

CD

dp

(︃
ρ

ρp

)︃ ⃓⃓⃓
# »

Up −
#»

U
⃓⃓⃓ (︂

# »

Up −
#»

U
)︂
+ CL

ρ

ρp

[︂(︂
# »

Up −
#»

U
)︂
× ω

]︂
+

(︃
1− ρ

ρp

)︃
#»g

(2.5)
All the quantities with subscript p refer to particle properties, dp = 2 · rp is the
diameter of the particle, ρ and ρp are the density of the carrier and of the particle,
#»

U and
# »

Up are the velocities of the fluid and of the particle, ω is the vorticity of the
fluid. Fluid properties are intended at the position of the particle.

Figure 2.4: Drag coefficient CD as a function of Reynolds number for different
shapes [34].

The drag component can be estimated for the Stokes flow (laminar and at low
Reynolds number) as [21]:

CD =
24

Rep
(2.6)

To include also higher Reynolds number, a corrected Stokes drag coefficient can be
used:

CD =
24

Rep

(︁
1 + 0.15Re0.687p

)︁
(2.7)

where the particle Reynolds number is defined as:

Rep =
dp

⃓⃓⃓
# »

Up −
#»

U
⃓⃓⃓

ν
(2.8)

20



2.3 – Particle Equations of Motion

The lift force can be neglected for small particles, instead may be not negligible
for bigger particles, so its estimation is reported. The lift force is calculated by
means of the lift coefficient CL that is a function of Reynolds number. We can
evaluate CL as [13]:

CL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLMcL
=

[︄
5.816

(︃
Srp
2Rep

)︃0.5

− 0.875
Srp
2

]︄
3

4Srp

J(ε)

2.255
for Rep < 1

CLMcL

5−Rep
4

+ CLKK

Rep − 1

4
for 1 < Rep < 5

CLKK
=

[︄
K0

(︃
Srp
2

)︃0.9

+K1

(︃
Srp
2

)︃1.1
]︄

3

4Srp
for Rep > 5

(2.9)

In Equation 2.9 it is possible to note that the lift coefficient depends on the
dimensionless parameter Srp:

Srp =

⃓⃓⃓(︂
#»

U − # »

Up

)︂
× ω

⃓⃓⃓
dp⃓⃓⃓

#»

U − # »

Up

⃓⃓⃓2 (2.10)

The term CLMcL
refers to the coefficient as evaluated by McLaughlin [23]. The

function J(ε) was introduced by McLaughlin to extend the validity of the equation
also in the case that Rep is not negligible and it depends on ε = (Srp/Rep)

0.5. The
term CLKK

is calculated as done by Kurose and Komori [19], where the coefficients
K0 and K1 are function of Rep as illustrated in Table 2.1. The lift coefficient is
linearly interpolated between the McLaughlin value and the Kurose and Komori
one in the range 1 < Rep < 5.

From now we introduce the hypothesis of small particle, so that the lift contri-
bution can be neglected and also we assume no gravitational effects. Following this
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Rep K0 K1

1 4.815 · 10−1 3.578

5 −7.830 · 10−1 1.746

10 −9.408 · 10−2 1.886 · 10−1

50 −1.141 · 10−1 1.533 · 10−1

100 −1.823 · 10−1 1.242 · 10−1

200 −4.269 · 10−1 2.455 · 10−1

300 −1.112 1.101

400 −9.983 · 10−1 9.250 · 10−1

500 −6.926 · 10−1 5.305 · 10−1

Table 2.1: Constant values for particle lift determination as presented by Kurose
and Komori [19].

consideration, the Equation 2.5 simplifies to:

d
#»

U p

dt
= −3

4

CD

dp

(︃
ρ

ρp

)︃ ⃓⃓⃓
# »

Up −
#»

U
⃓⃓⃓ (︂

# »

Up −
#»

U
)︂

= −3

4

24

Rep

(︁
1 + 0.15Re0.687p

)︁ 1

dp

ρ

ρp

⃓⃓⃓
# »

Up −
#»

U
⃓⃓⃓ (︂

# »

Up −
#»

U
)︂

= −18
ν

dp

⃓⃓⃓
# »

Up −
#»

U
⃓⃓⃓ (︁1 + 0.15Re0.687p

)︁ 1

dp

ρ

ρp

⃓⃓⃓
# »

Up −
#»

U
⃓⃓⃓ (︂

# »

Up −
#»

U
)︂

d
#»

U p

dt
=

(︁
1 + 0.15Re0.687p

)︁ (︂ #»

U − # »

Up

)︂ 18µ

d2pρp

(2.11)

In Equation 2.11 we can identify the inverse of the momentum response time
of the particle (valid for low Reynolds numbers):

τp =
d2pρp

18µ
(2.12)

The momentum response time is the time it takes for a particle or droplet to
respond to a change in velocity. More specifically, the momentum response time is
the time required for a particle, after being released from rest, to reach 63% of the
free-stream velocity [11]. In other words, this parameter is a metric of the particle
inertia.
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2.3 – Particle Equations of Motion

To better describe the inertia effects of the particle it is necessary to consider
also the characteristic time scale of the particle at a certain length scale, so another
important non-dimensional parameter is the Stokes Number:

St =
τp
τl

(2.13)

where τl = l/ul is the characteristic time of the flow, l and ul are the characteristic
length and velocity at scale l.

If St ≪ 1, the response time of the particles in the flow is much less than the
characteristic time. Therefore, the particles will have enough time to respond to
changes in flow velocity and the velocities of the particles and fluid will be nearly
equal. If St≫ 1, the particles will not have enough time to respond to the velocity
change of the fluid; furthermore, the particle velocity will not be noticeably affected
by the change in the fluid velocity.

Recalling what was discussed above, the one way coupling is adopted in the
thesis project since dispersed flow is assumed. A possible way to define if the
flow is dense or dispersed is to consider the average time between particle-particle
collision τpp [8]. If:

τp
τpp

< 1 (2.14)

the flow is dispersed, therefore particle motion is dominated by fluid forces and
the particles have enough time to respond to fluid forces before the next collision.
Instead, if:

τp
τpp

> 1 (2.15)

the flow is dense, and the particles do not have enough time to respond to fluid
forces before the next collision.

Finally, the position of the particle is obtained integrating the velocity:

d #»x p

dt
=

#»

U p (2.16)
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Chapter 3

Immersed Boundary Method

In many engineering applications are involved complex geometries that are not
easily describable with Cartesian grids. When the geometry is regular, the grid
choice is simple because the grid lines can easily follow the direction given by the
boundary. If the geometry is complicated, the choice of the gird is not predictable
a priori and depends on the adopted discretization method, e.g. an algorithm
designed for curvilinear orthogonal grids cannot be used for non-orthogonal grids
[12]. Some methods can be used to simplify the simulation of complex geometries,
among these a valuable approach is the Immersed Boundary Method (IBM).

Generally speaking, an Immersed Boundary Method is a method that simu-
lates viscous flows with immersed boundaries on a computational grid that do not
conform to the shape of these boundaries. Basically, one first has to identify cells
which are cut by wall boundaries (and possibly also their immediate neighbors) and
then has to enforce the correct wall boundary conditions at correct locations; this
leads to fix the velocity either in the cut cell, or in the ghost-cell inside of the body,
such that the velocity profile on a certain number of nodes gives the specified wall
velocity where it crosses the wall boundary. To better understand the operating
principle of an IBM, let us consider the simple example of Figure 3.1 [24].

The conventional approach (Figure 3.1a) adopts a grid that conforms to the
body. First, a surface grid is generated to describe the body boundary Γb, then
this is used as boundary condition for generating the grid in the fluid domain Ωf .
At the end the problem is solved with one among Finite Difference (FD), Finite
Volume (FV) or Finite Element (FE) method.
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Immersed Boundary Method

Figure 3.1: a) Schematic showing a generic body past which flow is to be simulated.
b) Schematic of body immersed in a Cartesian grid on which the simulation is
performed [24].

In the IBM approach we consider a Cartesian grid non-conformal to the body
(Figure 3.1b) generated with no concern about the presence of the body. Since
the grid has no boundary on the solid wall of the body, a correction is applied at
the equations in the vicinity of the body in order to take into account the boundary
conditions.

An IBM is advantageous in handling grid generation for complex geometries
compared to a traditional body conformal grid. The simulation of moving bodies
is also easier thanks to IBM since it is not necessary to recreate the entire grid at
every time step.

3.1 Boundary Condition Implementation

The key aspect of IBM is the definition of the boundary conditions. Let us
consider the Navier-Stokes equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

#»∇ · #»

U = 0

∂
#»

U

∂t
+

#»

U · #»∇ #»

U = −
#»∇p
ρ

+ ν∇2 #»

U

(3.1)

with
#»

U =
# »

UΓ on Γb (3.2)
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3.2 – Continuous Forcing Approach

We can compact the notation as:

L (U) = 0 on Ωf (3.3)

U = UΓ on Γb (3.4)

where U =
(︂

#»

U, p
)︂

and L refers to the Navier-Stokes equations. The boundary
conditions are considered by adding a forcing term to Equation 3.3. Two main
methodologies can be adopted to implement boundary conditions:

Continuous forcing approach: The forcing term fb is included in Equation 3.3
so that L (U) = fb and this equation is solved for all the domain (Ωf + Ωb).

Note that the forcing term fb =
(︂

# »

fm, fp

)︂
applies to both momentum and

pressure. The obtained equations are then discretized on the grid.

Discrete forcing approach: The Equation 3.3 is discretized on the grid and
then a correction term is applied in the cells near the immersed boundary
being [L′] {U} = {r} with [L′] the modified discrete operator and {r} the
known term associated to boundary conditions.

3.2 Continuous Forcing Approach

The continuous forcing approach works well for elastic boundaries, instead, rigid
body presents some criticality. Moreover these methods solve the Navier-Stokes
equations also inside the immersed body and this means increasing the computa-
tional cost more and more at increasing Reynolds number.

3.2.1 Flows with Elastic Boundaries

The Navier-Stokes equations are solved on the fixed Cartesian grid. The im-
mersed boundary is represented as a set of elastic fibers [25]. The position of these
fibers is expressed in a Lagrangian manner in some nodes k:

∂
#  »

Xk

∂t
=

#»

U (3.5)
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The immerse boundary effect on the fluid in managed by transmitting the fiber
stress to the surrounding fluid with a forcing term in the momentum equation:

# »

fm ( #»x , t) =
∑︂
k

# »

Fk(t)d
⃓⃓⃓

#»x − #  »

Xk

⃓⃓⃓
(3.6)

where d is a distribution function (different versions have been tested and can be
found in literature) and

#»

F are the stresses on the elastic fibers. Since the position
#  »

Xk does not coincide with the Cartesian grid, the forcing term is distributed on the
surrounding nodes (Figure 3.2).

Figure 3.2: Transfer of the forcing from boundary point k to surrounding fluid
nodes. The forcing is distributed in the shaded region [24].

3.2.2 Flows with Rigid Boundaries

To describe rigid boundaries, a first possibility is to follow the arguments done
for elastic boundary, but assuming really high stiffness. A second approach is to
consider the boundary linked to an equilibrium position with a spring [20] which
force is:

# »

Fk(t) = −k
(︂

#  »

Xk −
#  »

Xk
e(t)

)︂
(3.7)

where k is the spring constant and
#  »

Xk
e is the equilibrium position of the boundary

Lagrangian point. High values of k are prone to stability problem, instead, low
values of k cause an undesired residual elasticity of the boundary.

A generalization of the above is implemented modelling the forcing term as [14]:

# »

Fk(t) = α

∫︂ t

0

#»u (τ) dτ + β #»u (t) (3.8)
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3.3 – Discrete Forcing Approach

where α and β are chosen to represent correctly the boundary conditions. From a
physical point of view Equation 3.8 represents a damped oscillator.

3.3 Discrete Forcing Approach

Discrete forcing methods apply the boundary conditions directly on the dis-
cretized equations. These methods best reproduce the immersed boundary and
do not introduce stability issues. Since Navier-Stokes equations and the equation
for the boundary are uncoupled, there is no need to solve the flow field inside the
immerse boundary, saving computational cost.

3.3.1 Indirect Boundary Conditions Imposition

Imposing boundary conditions indirectly permits to extract the forcing term
from a first attempt solution of the problem [15]. We can consider the discretized
solution of Navier-Stokes equation ignoring the presence of the immersed boundary:
[L] {U∗} = 0. This equation is solved at each step and {U∗} in the predicted
velocity. The forcing term is defined as:

{f ′
b
} ≈ {r}+ [L] {U∗} − [L′] {U∗} = {r} − [L′] {U∗} (3.9)

where:
{r} = {UΓ}d

⃓⃓⃓
#  »

Xk − #»x i,j

⃓⃓⃓
(3.10)

[L′] = [L] + ([I]− [L]) d
⃓⃓⃓

#  »

Xk − #»x i,j

⃓⃓⃓
(3.11)

This approach is advantageous since no input parameters need to be specified
by the user. On the other hand, the forcing still extends to the fluid region due
to the presence of the distribution function d and this method is sensible to the
numerical solution technique adopted.

3.3.2 Direct Boundary Conditions Imposition

Direct BC imposition is advantageous at high Reynolds number when a good
boundary layer estimation is desired, so when local accuracy is of fundamental
importance. This is done by modifying the computational stencil near the immersed
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Immersed Boundary Method

boundary. Different methods have been developed and these can be divided into
two main families discussed below.

Ghost-Cell Finite-Difference Approach

First, a Ghost cell is a cell within the immersed body that has at least a neigh-
bour cell in the fluid domain (cell G in Figure 3.3). For each ghost cell, an inter-
polation scheme is implemented to include the immersed boundary. For example a
bilinear (or trilinear in 3D) scheme for a generic variable ϕ is:

ϕ = C1x1x2 + C2x1 + C3x2 + C4 (3.12)

where the four Ci coefficients depend on the value of ϕ at nodes F1, F2 and F3

in the fluid domain and on B2 (or B1) on the immersed boundary. Note that
in Figure 3.3, points P1 and P2 are points on the boundary with the x and y

coordinate of the ghost node, B1 is a node in the midway between P1 and P2 and
B2 in the node along the normal direction from G to the boundary.

Figure 3.3: Representation of the characteristic points in the vicinity of the im-
mersed boundary for the Ghost-cell approach [24].

For higher accuracy, in particular at high Reynolds with sparse grid, higher-
order interpolation schemes should be adopted like, for example, a linear-quadratic
interpolation respectively in the tangential and normal direction to the boundary.
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3.3 – Discrete Forcing Approach

Independently form the interpolation scheme used, the value at the ghost node
is given by: ∑︂

i

ωiϕi = ϕG (3.13)

where ωi are known coefficients function of the geometry. This equation is the one
applied in the vicinity of the immersed boundary and simultaneously solved with
the Navier-Stokes equations for the fluid.

Cut-Cell Finite-Volume Approach

The cut-cell approach is necessary to guarantee a strict observance of conserva-
tion laws in the vicinity of the immersed boundary. The control volume is created
following these steps (see Figure 3.4-Left as reference):

1. Cells of the Cartesian grid that are cutted by the IB are identified to determine
the intersection between these;

2. Cutted cells which center is within the fluid are reshaped discarding the por-
tion lying in the solid;

3. Pieces of cut cell which centre is in the solid are absorbed by the neighbouring
cells.

As a result a trapezoidal control volume is obtained.

Figure 3.4: Left: Finite volume cell near the immersed boundary with face fluxes
highlighted. Right: interpolation stencil for fsw, red boxes mark the six nodes for
the stencil [36].
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The finite-volume discretization scheme need the knowledge of the flux integrals
(mass, convective and diffusive) and pressure gradients on cell faces. The approach
[36] is to express a generic variable ϕ with a two-dimension polynomial interpolation
and evaluate fluxes f based on this interpolation. For example the flux fsw in
Figure 3.4-Right can be evaluated as:

ϕ = C1x1x
2
2 + C2x

2
2 + C3x1x2 + C4x1 + C5x2 + C6 (3.14)

where Ci are unknown coefficients function of ϕ in the six stencil nodes. An equation
similar to Equation 3.13 is solved for fsw. The same process can be used to
evaluate fe and fi.

3.4 Signed Distance Function

The Signed Distance Function (SDF) is a mathematical instrument that is useful
to identify the immersed boundary and will be of fundamental importance in the
IBM method discussed in section 3.5.

Let us consider a body Ω with boundary ∂Ω immersed in a generic domain.
The Signed Distance Function is the orthogonal distance of a given point #»x to
the boundary of a subdomain Ω in a generic domain, with the sign determined by
whether or not #»x is in the interior of Ω. Hence the SDF ϕ is defined as [37]:

ϕ( #»x ) =

⎧⎪⎨⎪⎩
d( #»x ) #»x ∈ Ω

0 #»x ∈ ∂Ω

−d( #»x ) #»x /∈ Ω

(3.15)

where d( #»x ) is the minimum distance of #»x form ∂Ω:

d( #»x ) = min
#»x p∈∂Ω

|| #»x − #»x p|| (3.16)

An example of SDF for a circumference in a 2D space is presented in Figure 3.5.
Some properties of the sign distance function will be useful in the continuation:

Eikonal equation If Ω is a subset of the Euclidean space Rn with smooth bound-
ary, then the signed distance function is differentiable almost everywhere, and
its gradient satisfies the eikonal equation:⃓⃓⃓

#»∇ϕ
⃓⃓⃓
= 1 (3.17)
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3.5 – Eikonal Equation Method

Figure 3.5: SDF of a circumference with origin in x = 3.0[m] and y = 1.25[m] and
radius r = 0.375[m]. The black line is the circumference.

Normal direction If the boundary of Ω is of class Ck for k ≤ 2 then d is Ck on
points sufficiently close to the boundary of Ω. In particular, on the boundary
f satisfies:

#»∇ϕ( #»x ) = #»n ( #»x ) (3.18)

where #»n is the inward (pointing positive values of ϕ) normal vector field. The
signed distance function is thus a differentiable extension of the normal vector
field.

3.5 Eikonal Equation Method

The method illustrated in this section [6] is the one used for the simulations
object of the thesis project. This method can be classified as a Discrete Forcing,
Direct Boundary Condition Imposition, Cut-Cell Approach IBM. This method uses
the Signed Distance Function to identify the position and the direction normal to
the immersed boundary. The Eikonal Equation Method has some advantages:

• It is easy to implement;

• It is easy to apply for complex 3D geometries;

• It requires no additional time step restrictions;

• It is very easy to implement in parallel codes.
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First, we recall the governing equation of the problem i.e. the Navier-Stokes
equations for incompressible flows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ui
∂xi

= 0

∂ui
∂t

+
∂uiuj
∂xj

+
1

ρ

∂p

∂xi
=
∂τij
∂xj

(3.19)

In vector form become:
#»
#»˜︁I ∂ #»q

∂t
+

# »

F e
i

∂xi
=
∂

#  »

F v
i

∂ #»xi
(3.20)

where:

#»q =

{︄
p
#»u

}︄
;

# »

F e
i =

⎧⎨⎩ ui
#»uui +

p

ρ

⎫⎬⎭ ;
#  »

F v
i =

{︄
0

τij

}︄
(3.21)

#»
#»˜︁I =

⎡⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (3.22)

This IBM uses the SDF to simply identify which nodes are in the fluid domain
and which are in the immersed body and therefore need a different treatment.

The first step is to obtain the solution inside the body by finding the steady
state solution (with respect to a pseudo time τ) of the equation:

∂ #»q

∂τ
= n̂ · #»∇ #»q (3.23)

By doing so, the solution in the fluid near the body is propagated inside the
immersed body. The solution is extrapolated in few cells inside the body and this
is sufficient to enforce the boundary conditions.

The extrapolated solution must be adapted to enforce the boundary conditions
on the body surface before the flux computation. Two different procedures exist
for the no-slip and free-slip conditions.

• No-slip condition The velocities in the nodes with ϕ > 0 are modified as:

#»u → − #»u (3.24)
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3.5 – Eikonal Equation Method

• Slip condition The velocities in the nodes with ϕ > 0 are locally modified as:

#»u → #»u − 2 (n̂ · #»u ) n̂ (3.25)

Once this procedure is performed, the flux is computed as normally done with
finite difference or finite volume method. In this way we can obtain the correct
Eulerian flux on body interface

#»˜︁f i+1/2 (between #»p i and #»p i+1, see Figure 3.6 as
reference). Finally the flux is extrapolated or interpolated in the position #»p i+1/2

through the value at position #»p i−1/2:

#»

f i+1/2 =
#»

f i−1/2 +∆x

#»˜︁f i+1/2 −
#»

f i−1/2

∆x/2 + dx
(3.26)

where ∆x is the distance between point #»p i and #»p i+1 and dx is the distance from
#»p i and the intersection of the body with segment [ #»p i,

#»p i+1]. The term dx can be
computed as:

dx =
−ϕi

ϕi+1 − ϕi

∆x (3.27)

A similar approach is adopted also for viscous fluxes.

Figure 3.6: Scheme of the computational grid for Eikonal method [6].
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Chapter 4

Collision Model

The main focus of this thesis project is the implementation of a collision model
for the impact of solid particles on rigid wall described with a Signed Distance
Function and to be coupled with the Eikonal IBM.

The collision model has been implemented on an open source DNS solver in
FORTRAN90/95. The particle motion is described with the equation illustrated
in section 2.3, then the collision is implemented to change particle velocity when
the impact with a rigid body is detected. All the details of the particle tracking
method are reported in the following sections.

Figure 4.1: Simple example of particles evolution over a cylinder. The velocity field
is a generic field in steady condition.
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Collision Model

A first basic example of this implementation is given in Figure 4.1, where the
particle trajectory is computed, instead, the flow field is a generic given steady field
to simplify the problem and obtain a first validation of the collision model.

4.1 CaNS Solver

The collision model has been implemented in an open source code for massively-
parallel numerical simulations of turbulent flows: the Canonical Navier-Stokes
(CaNS) [4].

CaNS uses a second-order, finite-difference pressure correction scheme, where
the pressure Poisson equation is solved with the method of eigenfunction expan-
sions. This approach allows for very efficient FFT-based solvers in problems with
different combinations of homogeneous pressure boundary conditions.

The numerical algorithm implemented in CaNS solves the Navier-Stokes equa-
tions for incompressible, Newtonian flows with unit density:⎧⎨⎩

#»∇ · #»

U = 0

∂
#»

U

∂t
+

#»

U · #»∇ #»

U = − #»∇p+ ν∇2 #»

U
(4.1)

These equations are solved in a structured Cartesian grid. Standard second-
order finite-difference schemes are used for spatial discretization over staggered
grids to avoid pressure-velocity decoupling. The equations a coupled through a
pressure-correction method. The time integration is performed with a low-storage,
three-step Runge-Kutta (RK3) scheme. The substeps of the Runge-Kutta method
are:

#»

U ∗ =
#»

U k +∆t
(︂
αk

#    »

ADk + βk
#    »

ADk−1 − γk
#»∇pk−1/2

)︂
(4.2)

∇2p∗ =

#»∇ · #»

U ∗

γk∆t
(4.3)

#»

U k =
#»

U ∗ − γk∆t
#»∇p∗ (4.4)

pk+1/2 = pk−1/2 + p∗ (4.5)

where
#    »

AD = − #»

U · #»∇ #»

U + ν∇2 #»

U ,
#»

U is the predicted velocity and p∗ is the correction
pressure. The method has three stages, so k = 1, 2, 3; where k = 1 is the time
step n and k = 3 is the time step n+1. The coefficient of the Runge-Kutta scheme,
αk and βk are given in Table 4.1 and γk = αk + βk.
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4.2 – Particle Motion

k αk βk

1 8/15 0

2 5/12 −17/60

3 3/4 −5/12

Table 4.1: Coefficients of low-storage, three stage Runge-Kutta scheme.

4.2 Particle Motion

The motion of the particles in the fluid domain is computed thanks to the
equations discussed in section 2.3:⎧⎪⎪⎨⎪⎪⎩

d
#»

U p

dt
=

(︁
1 + 0.15Re0.687p

)︁ (︂ #»

U − #»

U p

)︂ 1

τp
d #»x p

dt
=

#»

U p

(4.6)

From the first we obtain the particle velocity and from the second the particle
position at a given time step.

These equations are evolved in time domain with a Runge-Kutta scheme. In
particular a low storage Runge-Kutta scheme is implemented in CaNS to reduce
the memory required.

4.3 Collision

Once the particle motion is defined, we want to model the collision of a parti-
cle with an Immersed Boundary that is represented with a SDF. The collision is
modelled under some hypothesis:

• The collision is a pure elastic collision;

• The wall where the particle collides is locally assumed as a flat plate;

• The particle is assumed to be a mass point, so no rigid body and moment of
inertia effects are considered.

Despite being modelled as a mass point, the particle is characterised by a radius.
This is necessary to avoid the particle to remain blocked in the vicinity of the
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Collision Model

immersed boundary (or vibrate around this position) where the velocity is near
zero. Therefore the radius is considered to activate the collision before this situation
could happen and the collision is calculated when any point of the particle enter
the Immersed Boundary.

The procedure to model the particle collision after the collision is detected, can
be subdivided into three main steps:

I. Definition of the direction normal to the Immersed Boundary at the position
of the collision;

II. Particle shift to take into account the real time at which the collision happens
between two computational time steps;

III. Inversion of the velocity component normal to the Immersed Boundary.

All these steps are discussed in detail in subsection 4.3.1, 4.3.2 and 4.3.3.

4.3.1 Normal Direction to Immerse Boundary

The first step necessary to model the collision is to identify the normal direction
at the point of the collision on the Immersed Boundary. To do this we can take
advantage of the properties of the SDF. In particular we know that the gradient
of the SDF in a certain point is equal to the normal direction to the field in that
point. Therefore, if #»p = {xp, yp, zp}T is the position of the collision, we have:

n̂( #»p ) =
#»∇ϕ( #»p ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ϕ

∂x
∂ϕ

∂y
∂ϕ

∂z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎨⎪⎩
n1

n2

n3

⎫⎪⎬⎪⎭ (4.7)

Implementation

The position #»p of the particle at the collision is known by the solution of the
particle equations of motion. Now we need to find some support points where eval-
uating the SDF in order to perform the derivative with a finite difference scheme.

In detail, considering the x direction, we perform the interpolation of the SDF
at two points (Figure 4.2):

ϕ (xi+ , yp, zp) = ϕ (xp + δ, yp, zp) = ϕ+
i (4.8)
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4.3 – Collision

Figure 4.2: Schematic example of a 2D case for the evaluation of the direction
normal to the immersed boundary.

ϕ (xi− , ypzp) = ϕ (xp − δ, yp, zp) = ϕ−
i (4.9)

where δ is a small displacement. Thanks to the SDF evaluated on these two points
it is possible to evaluate the gradient of the Signed Distance Function along the x
direction. Using a centered first derivative finite difference stencil we obtain:

n1(
#»p ) =

∂ϕ

∂x
( #»p ) =

ϕ+
i − ϕ−

i

2δ
(4.10)

The same for the other directions:

n2(
#»p ) =

∂ϕ

∂y
( #»p ) =

ϕ+
j − ϕ−

j

2δ
(4.11)

n3(
#»p ) =

∂ϕ

∂z
( #»p ) =

ϕ+
k − ϕ−

k

2δ
(4.12)

In this way we have identified the direction normal to the immersed boundary at
the location of the collision. This information will be fundamental in the following
step of the collision model.

4.3.2 Particle Offset

As said before, the collision is identified when the particle has yet entered the
immersed boundary, therefore at that time the particle should have yet changed
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its trajectory due to the collision. We need to take into account this effect related
to the finite time discretization used to solve the problem, indeed, we know the
particle position at the time step ti and ti+1, but not at the exact time at which
the collision happens t∗ (Figure 4.3). To do this, we move the particle outside the
immersed body of a distance equal to the particle penetration. This assumption is
valid only for elastic collision.

Figure 4.3: Temporal evolution of particle position with respect to the immersed
boundary. Times ti and ti+1 are two simulation time steps, t∗ is the unknown time
at which the particle collides with the body.

Implementation

First we identify the position on the surface of the particle to evaluate how deep
the particle has penetrated the immersed body:

#»pr =
#»p − rn̂ (4.13)

where #»p is the position of the particle center, #»pr is the position on the particle
surface along the normal direction and r is the radius of the particle.

On this position we interpolate the SDF which identifies the magnitude of the
particle penetration on the solid body:

ϕr = ϕ( #»pr) (4.14)

Since with an elastic collision only the velocity normal to the impact surface is
modified, the position along the tangential direction does not need to be revised.
Instead, the position along the normal direction must be changed, but since the
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4.3 – Collision

normal direction velocity has the same magnitude and opposite sign, we can trans-
late the particle to have the #»pr position symmetric to the immersed boundary along
the normal direction.

Looking at Figure 4.4, we can notice that the distance between #»pr and the
position on the immersed boundary along the normal direction is: ϕrn̂. So we have
to move the particle two times this distance along the normal direction, so the
position of the particle after the collision is:

#»p = #»p old + 2ϕrn̂ (4.15)

Figure 4.4: Detailed representation of the procedure to move the particle at the
correct position after the collision is detected.

4.3.3 Velocity Change after the Collision

In this work we assume elastic collision, so the kinetic energy of the particle
is conserved. As said before we assume the wall to be locally flat, therefore the
velocity component parallel to the surface is unchanged and the normal compo-
nent has opposite sign after the collision (Figure 4.5). Since point mass particles
are assumed, there is no need to take into account rotational motion and related
phenomena.
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Figure 4.5: Velocity vector before and after the collision of a mass point on a rigid
flat wall.

Implementation

To implement the collision, it is necessary to find the normal and the tangential
components of the velocity with respect to the body surface in order to manipulate
them as illustrated above for the elastic collision.

Figure 4.6: Tangent, Normal and Binormal reference system centered on a generic
point of a cylinder. Tangent versor and Binormal versor define a plane tangent to
the surface of the cylinder.

First, it is necessary to identify the tnb (Tangent, Normal and Binormal) ref-
erence system locally at the position of the collision (Figure 4.6). The normal
versor n̂ has yet been defined in subsection 4.3.1. The tangential versor t̂ can be
found using one of the following:

#»
t =

⎧⎪⎨⎪⎩
t1

t2

t3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
n1

n2

n3

⎫⎪⎬⎪⎭×

⎧⎪⎨⎪⎩
1

0

0

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
0

n3

−n2

⎫⎪⎬⎪⎭ , or (4.16)
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#»
t =

⎧⎪⎨⎪⎩
t1

t2

t3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
n1

n2

n3

⎫⎪⎬⎪⎭×

⎧⎪⎨⎪⎩
0

1

0

⎫⎪⎬⎪⎭ , or
#»
t =

⎧⎪⎨⎪⎩
t1

t2

t3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
n1

n2

n3

⎫⎪⎬⎪⎭×

⎧⎪⎨⎪⎩
0

0

1

⎫⎪⎬⎪⎭ (4.17)

The three versions are used as a function of the normal versor n̂ in order to avoid
singularity in calculating t̂. Then the tangential vector must be normalized. Let us
consider the first case Equation 4.16:

t̂ =
1√︁

t21 + t22 + t23

⎧⎪⎨⎪⎩
0

n3

−n2

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
0

n3/A

−n2/A

⎫⎪⎬⎪⎭ (4.18)

where A =
√︁
n2
2 + n2

3.
Now the binormal versor can be found:

#»

b =

⎧⎪⎨⎪⎩
b1

b2

b3

⎫⎪⎬⎪⎭ = t̂× n̂ =

⎧⎪⎨⎪⎩
n2
2 + n2

3

−n1n2

−n1n3

⎫⎪⎬⎪⎭ (4.19)

and by normalizing it we have:

b̂ =
1√︁

b21 + b22 + b23

⎧⎪⎨⎪⎩
n2
2 + n2

3

−n1n2

−n1n3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
A/B

−n1n2/AB

−n1n3/AB

⎫⎪⎬⎪⎭ (4.20)

where B =
√︁
n2
1 + n2

2 + n2
3, but since n̂ is a versor with unitary norm it is B = 1.

Now we want to project the velocity in the tnb reference system. After this the
normal component of the velocity is explicit, so its sign is changed. Finally, with
the base change matrix we bring again the velocity to the global reference system.

However, it is interesting to note that by doing all these calculations analytically,
a very simplified form of this procedure can be obtained. First, we introduce the
velocity in the global reference system:

#»

U xyz =

⎧⎪⎨⎪⎩
U1

U2

U3

⎫⎪⎬⎪⎭ (4.21)

and its projection on the tnb reference system:

#»

U tnb =

⎡⎢⎣ t1 t2 t3

n1 n2 n3

b1 b2 b3

⎤⎥⎦
⎧⎪⎨⎪⎩
U1

U2

U3

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
U2
n3

A
− U3

n2

A
−U1n1 − U2n2 − U3n3

U1A− U2
n1n2

A
− U3

n1n3

A

⎫⎪⎪⎬⎪⎪⎭ (4.22)
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where the velocity component in the normal direction Utnb(2) has yet been inverted.
The base change matrix is:

R =

⎡⎢⎣t1 n1 b1

t2 n2 b2

t3 n3 b3

⎤⎥⎦ (4.23)

and therefore the velocity after the collision is
#»

U post = R
#»

U tnb:

#»

U post =

⎧⎪⎪⎨⎪⎪⎩
−n1 (U1n1 + U2n2 + U3n3) + U1A

2 − U2n1n2 − U3n1n3

−n2 (U1n1 + U2n2 + U3n3) + U2
n2
3

A2 − U3
n2n3
A2 − U1n1n2 + U2

n2
1n

2
2

A2 + U3
n2
1n2n2

A2

−n3 (U1n1 + U2n2 + U3n3)− U2
n2n3
A2 + U3

n2
2

A2 − U1n1n3 + U2
n2
1n2n3

A2 + U3
n2
1n

2
3

A2

⎫⎪⎪⎬⎪⎪⎭
(4.24)

Equation 4.24 can be strongly simplified by noting that:√︂
n2
1 + n2

2 + n2
3 = 1 =⇒ n2

1 + n2
2 + n2

3 = 1 (4.25)

The steps to simplify Equation 4.24 are omitted for conciseness, but the final
result is:

#»

U post =

⎧⎪⎨⎪⎩
U1 − 2n1 (U1n1 + U2n2 + U3n3)

U2 − 2n2 (U1n1 + U2n2 + U3n3)

U3 − 2n3 (U1n1 + U2n2 + U3n3)

⎫⎪⎬⎪⎭ (4.26)

As a result of all these calculations, it is clear that for the evaluation of the ve-
locity after the elastic collision of the particle, Equation 4.26 is sufficient. Hence,
it is not necessary to evaluate tangent t̂ versor and binormal b̂ versor and it is
not necessary to change two times the reference system, having a reduction of the
computations necessary to evaluate the velocity after the collision.
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Chapter 5

Simulations and Results

In this chapter we want to illustrate some results obtained from simulations
carried out with the code discussed in chapter 4. First a preliminary validation
of the collision is illustrated with a simplified model for two case studies. Then the
results of complete flow-particle simulations are illustrated and are compared with
some results available on literature in order to validate the proposed model.

Figure 5.1: Validation of the collision model on a ramp under uniform steady flow.
The dotted blue line illustrates the theoretical direction of the particle right after
the collision. The two arrows represent the velocity of the particle at the time step
before (

#»

U ) and after (
#»

U post) the collision. The trajectory of the particle is colored
according to its velocity. The shaded area is the rigid body, i.e. the ramp.
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5.1 Validation through Simplified Simulations

In order to have a first validation of the collision model implemented, a simplified
2D simulation has been performed. In particular we simulated a ramp tilt of 45◦

with respect to the flow direction. The flow is not simulated, but we assumed a
simplified steady, uniform velocity field in order to have the particle impacting the
ramp with a velocity parallel to x axis and so the expected velocity direction after
the collision is parallel to the y axis.

As we can see in Figure 5.1, the velocity after the collision
#»

U post computed
with this simplified code is exactly superimposed to the theoretical direction. In
this particular case, since the collision is elastic and due to the simple geometry,
the theoretical direction of the particle velocity after the collision is clearly along
the y axis. We consider as reference the velocity right after the collision, since later
the particle is influenced by the flow velocity and the trajectory is deviated.

Figure 5.2: Potential flow around the cylinder used for a simplified validation of
the collision model.

As a second test, we simulated with the same approach the collision on a cylinder
in a 2D space (i.e. on a circumference). Also in this case we considered a steady
flow, in particular the potential flow over the cylinder (Figure 5.2) and only the
particle motion equations are evolved over this flow.

In this case, the direction of the particle after the collision is not obvious. The
theoretical direction is evaluated by computing the angle between the velocity and
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5.2 – Model Validation

the direction normal to the cylinder and then applying a rotation of the velocity
about two time this angle.

Figure 5.3: Validation of the collision model on a cylinder under potential flow.
The dotted blue line illustrates the theoretical direction of the particle right after
the collision. The two arrows represent the velocity of the particle at the time step
before (

#»

U ) and after (
#»

U post) the collision. The trajectory of the particle is colored
according to its velocity. The shaded area is the rigid body, i.e. the cylinder.

The result of this test can be observed in Figure 5.3, again the numerical
result for the velocity after the collision is overlapped to the theoretically expected
direction.

5.2 Model Validation

To have a better validation of the model, we performed some simulations cou-
pling the CaNS code with the Eikonal IBM and the collision model. So in these
simulations the flow field is solved with the pressure-correction method implemented
in CaNS, the immerse body is described with the IBM approach and the collision
is modelled as discussed in section 4.3.

These simulation has been made on a parallelepipedon shaped domain with a
cylinder as Immersed Boundary. The cylinder has diameter D = 0.2 [m] and is
located at a distance 5D from the inlet. The domain has dimensions 40D along x,
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24D along z and D/13 along y (Figure 5.4). The domain is discretized with 256

nodes along x direction, 4 nodes along y direction and 128 nodes along z direction.
Each face of the domain has been set with a periodic boundary condition and a
forcing velocity has been activated to maintain the fluid motion. All the particle
are seeded at the begin of simulations with a random position and zero velocity.
The number of particles introduced in the domain is so that diluted condition are
guaranteed.

Figure 5.4: Domain dimensions adopted for the validation simulations.

The simulation is set up with a Reynolds number Re = 150, the undisturbed
velocity is

#»

U 0 = {1,0,0}T and therefore, the viscosity is:

ν =
DU0

Re
= 0.001333 [m2/s] (5.1)

We are interested in simulating different Stokes numbers to understand the effect
of different particle inertia in the particle trajectory. We simulated four different
scenarios varying the Stokes number: St = 0.5; St = 1; St = 2.8 and St = 33.5.
In these simulations we assume always the same densities for the fluid and for the
particles: ρf = 1.3 [kg/m3] and ρp = 3510 [kg/m3] and so ρr = ρp/ρf is fixed.
Thus to change the Stoke number we have to change the radius of the particles rp,
indeed:

St = τp
1

τl
=

d2pρp

18ρfν

U0

D
(5.2)

rp =
1

2

√︄
18νD

ρrU0

√
St (5.3)

The radius used for the simulations are reported in Table 5.1
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St rp

0.5 4.7140452079 · 10−4

1 6.6666666667 · 10−4

2.8 1.1155467020 · 10−3

33.5 3.8586123009 · 10−3

Table 5.1: Simulated radius corresponding to the different Stokes numbers.

All these settings have been chosen to replicate the simulations performed by
Schuster [29] to have some references and to validate the model. However these
simulations have some differences in the implementation that must be taken into
account when observing the results. The main differences between our simulations
and the ones by Schuster are:

• We consider diluted condition, instead the reference is in dense condition;

• We consider elastic collision, the reference considers inelastic condition;

• We neglect the effects of the particle on the fluid, the reference considers
these;

• We seed the particles at the beginning of the simulation, the reference seeds
particles on the inlet at every iteration.

All these aspects have an influence on the results. Since we assume diluted
condition, it is not necessary to consider the collision between particles, instead in
dense condition it is necessary to consider also this phenomena, indeed this is done
by Schuster.

The difference about the elastic/inelastic collision has an impact due to the
influence on the rebound of the particle after the collision and also the energy of
the particle after the collision is different since elastic collisions are conservative
and inelastic collisions are non-conservative.

The influence of the particles on the fluid has a significant impact on the results.
This is not considered in our code since we assume a one-way coupling, but is
implemented on the Schuster code. This difference gets bigger by increasing the
Stokes number as will be clear later.
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Moreover, Schuster seeds the particle at the inlet at each time step and takes
the results when the turbulence is completely established. Due to some limitation
of our code this is not possible, so we take the results after few time steps. This is
necessary because the particle are all seeded simultaneously at the beginning of the
simulation, and due to the periodic boundary condition, when exiting the domain
at the bottom the particle enter again at the inlet with unchanged velocity and y

and x position. This mean that the particle reentering into the domain have been
influenced by them previous history, changing the results.

The results about the particle distribution around the cylinder obtained by
Schuster in the reference paper are illustrate in Figure 5.5.

Figure 5.5: Snapshot of particle positions and vorticity field at fluid Reynolds
number Re = 150. St = 0.5: top/left; St = 1: top/right; St = 2.8: bottom/left;
St = 33.5: bottom/right [29].

First, let us consider the results for St = 0.5 (Figure 5.6a). The flow vorticity
field is very similar between our simulations and the reference one, this because
these low inertia particle are not effective in modifying the flow. In term of particle
distribution we observe in both cases a uniform distribution over the flow domain,
also in the vortex regions.

Looking at the results for St = 1 (Figure 5.6b) we note again that the flow is
not influenced by the presence of the particle and the vorticity field is unchanged
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5.2 – Model Validation

(a) St = 0.5

(b) St = 1

Figure 5.6: Particle position and normalized flow vorticity (ωyD)/U0 for two dif-
ferent Stokes numbers.
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(a) St = 2.8

(b) St = 33.5

Figure 5.7: Particle position and normalized flow vorticity (ωyD)/U0 for two dif-
ferent Stokes numbers.
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with respect to the St = 0.5 case. We can observe that the particles distribution is
not homogeneous as before over the whole flow domain, but some lacks of particles
appear in the vortex region.

Simulations at higher Stokes number show some differences, mainly due to the
fact that high inertia particles can affect significantly the flow field. Looking at the
results for St = 2.8 (Figure 5.7a) and St = 33.5 (Figure 5.7b) it is clear that
the vorticity field is completely different, therefore it is not suitable to compare the
results for the particle motion.

Figure 5.8: Snapshot of particle positions and vorticity field at fluid Reynolds
number Re = 100. (a) St = 1; (b) St = 5; (c) St = 16; (d) St = 56 [30].

Higher Stokes number are more similar to the results obtained by Shi [30] and
reported in Figure 5.8. These simulations consider a one-way coupling for particle-
flow interaction, so the flow field is not influenced by the particles and is independent
from the Stokes number, but also in this case an inelastic collision is considered.
For these high Stokes numbers the regions without particles are larger since the
particles are less influenced by the fluid, so the vortex regions have no particles.

At high Stokes numbers is possible to observe the bow shock particle clustering.
This can be noted at St = 33.5 form Schuster simulations (Figure 5.5) and also
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Figure 5.9: Particle velocity magnitude and flow velocity magnitude for St = 33.5.
Color scale for particle velocity, gray scale for flow velocity.

for St > 5 in Shi simulations (Figure 5.8). The bow shock is a concentration
of particles originating near the body and extending upstream of the cylinder.
The bow shock forms due to the presence of particles bounced after the collision
increasing the local density of the particles.

Due to the lower density of particles in our simulations, this phenomena is more
difficult to be noted, indeed Shi solved the problem on a 3D domain and then
projected all the particles on a single plane, since the statistics are independent on
the z direction, making this phenomena clearly visible. However, looking at the
snapshot of particle velocity in Figure 5.9 it is possible to observe the presence of
the bow shock. In our results the bow shock is more distant form the cylinder due
to the fact that we do not consider any inelastic rebound coefficient.
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Chapter 6

Conclusions

The main focus of this thesis project is the implementation of a model to describe
the collision of a solid particle on a rigid wall described with a SDF. The basis of
this code is the open source DNS solver, CaNS, over which some modules have
been added to obtain the final implementation. In particular we added the SDF
to identify the immersed boundary, the Eikonal IBM to solve the flow over an
immersed body and the particle module to describe particle motion and to model
the collision.

This code is promising for its ease of implementation and flexibility. It showed
a good stability and with the possibility of being massively parallelized is very
fast. This code also opens the possibility of being extended including other features
making it able to solve more complex and more realistic flows, for example including
inelastic collision or more complex coupling mechanisms between the carrier and
the particles.

Despite being a new implementation, the code shows good results from a quali-
tative point of view. The flow configuration that we solved proposes results similar
to what is possible to find in literature for different values of the Stokes num-
ber. The results obtained are comparable with the references in terms of particles
distribution over the vortexes, dependence on the Stokes number and bow shock
formation.
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6.1 Outlook

This code still requires some improvements and further validation, also from a
quantitative point of view. After this, it is possible to implement inelastic collision
to obtain faithful to reality results. This can be done by taking into account a
restitution coefficient on both normal and tangential velocities to model the energy
loss due to the collision [3] [16].

Another improvement is the implementation of the particle influence on the
carrier, so to obtain a two-way coupling. Considering also the mutual interaction
between particles it could be possible to implement a four-way coupling. These
would allow to extend the validity of the code also for higher particles mass fraction
and volume fraction (i.e. for dense systems).

Actually this code solves directly the Navier-Stokes equations, but it could be
possible to implement a LES approach to solve more complex problems in reason-
able time although a lower accuracy. Following this path a WM-LES approach
could be taken into account to further reduce the computational cost [5].
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