
Università degli Studi di Padova
Department of Information Engineering

Master Thesis in ICT for Internet and Multimedia

Real Time Motion Estimation Algorithm
for Temporal Denoising

Supervisor Master Candidate
Giancarlo Calvagno Cesare Caratozzolo
Università di Padova

Co-supervisor
Stefano Andriani
Arnold & Richter Cine Technik GmbH

Academic Year 2018/2019

Università degli Studi di Padova
Department of Information Engineering

Master Thesis in ICT for Internet and Multimedia

Real Time Motion Estimation Algorithm
for Temporal Denoising

Supervisor Master Candidate
Giancarlo Calvagno Cesare Caratozzolo
Università di Padova

Co-supervisor
Stefano Andriani
Arnold & Richter Cine Technik GmbH

Academic Year 2018/2019

Abstract

Motion compensation and estimation are tools to exploit the temporal redundancy in
subsequent frames of a video sequence to assist certain video processing applications
such as compression, transmission or denoising. Unfortunately, these kind of algo-
rithms could be very computational demanding, so many solutions to reduce their
complexity have been proposed.

This thesis introduces a low-complexity, but efficient, motion estimation algorithm,
that could be implemented, e.g, in FPGA, in a professional digital camera to apply it
on-the-fly while recording a video-sequence. The main aim of the proposed algorithm
it to improve the performance of an already existing denoising algorithm, but it could
be used for improved compression or image-stabilization algorithms in the future. To
meet the real-time constraint, the prediction accuracy is traded for a reduced number
of operations that is reflected in a faster computational time, but, at the same time,
always delivering reliable and usable temporal estimation.

The algorithm has been tested on different video sequences and the results and
the improvements are analysed by comparing the prediction errors and the denoising
rates to a ground truth, while some considerations on the limits of the approach are
reported.

v

Contents

Abstract v

1 Introduction 1

2 Theoretical Background 4
2.1 Digital Cameras . 4
2.2 Block Matching . 6
2.3 Denoising . 8

3 Related Works 12

4 Proposed Approach 14
4.1 Full Search Revisited . 16
4.2 Block Subsampling . 19
4.3 Additional Subsampling . 20
4.4 Early Cut-Off . 20

5 Results 22
5.1 Video Sequences Description . 22
5.2 Results . 28

6 Conclusion 61

List of figures 63

List of tables 67

References 69

Acknowledgments 72

vi

1
Introduction

The concepts of motion compensation and motion estimation were first intro-
duced in the scope of video coding, with the objective of exploiting temporal redun-
dancies in the sequences to increase the compression efficiency. The most widely used
algorithms fall into the category of Block Matching Algorithms (BMA), intuitively sim-
ple as they are purely based on the division of the frames of a sequence into blocks.
Each one of these is compared to equally sized blocks in the previous frame, trying
to find the best match into a search area by minimizing an error function. The found
translation is then saved as a motion vector.

The drawback of the block matching algorithm is that they are usually very com-
putationally demanding. For this reason, a lot of work has been done to reduce their
complexity and many algorithms have been proposed, exploring different searching
methods and proposing various approaches to the subject.

The objective of this thesis is to continue the work of E. Ballan [1], where a set of
suitable parameters for the Full Search Algorithm has been studied with the aim of
improving the efficiency of the same temporal denoiser used in this thesis.

Noise is always introduced by the sensors in a camera and it depends on the con-
struction of the sensor, the pixel-pitch, and also the brightness of the recorded scene.
This noise could be then reduced or amplified by the color processing chain used to
convert an image that is linearly related to the light, into a good-looking image on

1

a display or on a large cinema screen. This conversion usually applies one or more
log-shaped curve to enhance the dark scene and compress the highlights. In this
situations, the noise level in the dark could become significative and a denoising al-
gorithm is required to make the sequence more pleasant to be viewed. Experience in
the cinema industry has proved that this operation must be performed in the tempo-
ral direction, because pure spatial algorithms could generate abnormal and visually
annoying behaviors of the residual noise left in the image. Motion estimation aids
the application of denoising algorithms on the temporal axis by detecting the optical
flow of the sequence. Therefore, if an object is moving, denoise operations are applied
on the appropriate coordinates between two different frames. Even if the motion
estimation could be, theoretically, performed on more than two frames, in this thesis
just two are considered due to memory constraint in the camera, where more than
one frame buffer is not feasible under the nowadays FPGA technology and power
constraints.

It is interesting to note that in cinema applications, a certain amount of noise is also
added in post production, as a completely denoised sequence will appear unnatural
to the eye. This process is known as film grain overlay, and it is used for example
when blending CGI elements together as if they were part of the same environment,
making the sequence look more realistic by subtly tricking the eye. However, this
happens at the final stages of production course, as at first it is important to have a
clean image for processing purposes.

The algorithm proposed in this thesis aims at reducing the computational com-
plexity of the FSA, at the cost of a decrease in the accuracy, making it feasible to
be implemented in real-time along with a suitable denoising algorithm, as the video
sequence is being captured, through FPGA technology (although only the algorithm
will be discussed). It is important for the block matching algorithm to use as reference
image the already denoised frame, because the removal of artifacts will return a more
accurate prediction. The described approach increasingly reduces the level of preci-
sion of the prediction process by gradually decreasing the amount of computations
performed. The purpose is to perform a rough initial prediction and denoising, while
the sequence is being captured, that will aid the more complex algorithms applied
during the processing phase that will smoothen the final outcome.

FPGA technology is a trade-off technology well suited for real-time hardware im-
plementation of the image processing applications. They are faster than any software,

2

but thanks to their rewritable nature they are much more flexible and future-proof
than the ASIC technology, even if their power consumption is higher than ASIC.
Both FPGA and ASIC share the same high development costs and the need to keep
all the algorithm in fixed-precision and with a reduced operand set, e.g, divisions
and complex exponential or logarithmic operations shall be avoided, or replaced by
approximated versions stored in multi-dimensional look-up-tables.

Alternatively, other devices that recently seem to be giving promising results are
GPUs, with lots of research spent to improve certain liabilities that typically charac-
terized them, such as the enormous power consumption that made GPUs less desirable
for certain devices powered by batteries. Another downside of GPUs is that they run
software (although very close to hardware level), which introduces a higher level of la-
tency compared to FPGAs, as instructions are read, and data is retrieved and stored
in the memory. This is partly countered by the use of direct memory access, that
boosts data management operations.

Among the advantages of GPUs, there is their ability of performing floating point
operations, along with their high level of parallelization, which allows them to run
software faster than normal CPUs.

The choice between FPGA and GPU technology depends on the application. In
this thesis, an algorithm designed for real time applications is described. Although
GPUs, as a result of their strong parallelization and direct memory access, allow an
almost real time software execution, FPGA technology might still be preferable, as it
can be directly integrated on the circuit of the camera, allowing them to sustain the
high frame-rate of the camera.

The rest of this thesis is organized as follows: in Chapter 2, a brief theoretical
background is presented to introduce the subject, where the concepts of Bayer pattern,
Block Matching and Denoising are explained; in Chapter 3, other relevant work on the
same subjects is cited, that contributed on different aspects of the issue; in Chapter
4, the algorithms studied in this thesis are explained and examined, while the results
obtained are reported in Chapter 5. Finally, in Chapter 6, the obtained outcomes are
briefly discussed, with suggestions on the possible future work that can be carried out
to further improve the topic.

3

2
Theoretical Background

Motion estimation has a wide variety of applications in ICT, such as motion
compensation for video coding standards and compression for transmission purposes,
where temporal correlation between subsequent frames is exploited to reduce the
amount of data to be stored [2]; or the removal of noise from video sequences to make
them smoother to the viewers eye.

Before elaborating the objective of the thesis, the process of image capturing, the
block matching algorithm and the denoising operation are briefly discussed to provide
the reader with a theoretical basis about the subject.

2.1 Digital Cameras
To capture an image, the sensor of a digital camera is provided with a pixel array.
Each pixel consists of a light-sensitive diode that converts the energy captured from
the photons into an electrical signal. There are two main types of sensors, Charge
Couple Devices (CCD) and Complementary Metal-Oxide Semiconductor (CMOS).
These chips do not have the inherent ability to capture the photon’s wavelength (i.e,
discriminate between colors), but are able to discern only their number (i.e, the overall
brightness level of the captured scene): essentially they are gray-scale sensors. To be

4

Figure 2.1: The Bayer color filter array.

able to differentiate between colors, two approaches have been developed:

• 3-chip camera: the incident light is split by using optical prisms and then
the three primary colors R, G, and B are captured by three separate sensors
provided by color filters.

• Single-chip camera: a Color Filter Array (CFA) is applied to a single sensor,
allowing each pixel to capture just one color channel. The other two colour
components must be calculated via interpolation of the neighbor values.

The 3-chip color method is very expensive, and it is affected by several problems.
Since it requires three times the number of sensors, one for each color component,
either the camera results very large and heavy, or the sensors are very small, which
reduces the amount of captured light (resulting in darker and noisier images) and
introduces alignment problems. On the other hand, a single-chip camera is cheaper
and smaller. However, even if it requires a computational demanding interpolation
algorithm, and the final visual results strongly depend on it, it is usually preferred.

Different color filter arrays have been proposed in the last decades. The most
common one is that proposed by Bayer [3], shown in Figure 2.1. As it can be observed,
there are twice as many pixels of the green component as of the other two. The reason
behind this model is that the human eye is a lot more receptive to green light compared
to the other two. Also, most scene illuminations are usually more deficient in blue
light compared to green and red. The Bayer pattern is the reference model for this
thesis too, as the video sequences provided and the camera used to record them are
built using it.

5

2.2 Block Matching
A lot of research has been done to define a mathematical model for the optical flow
[4, 5] and motion estimation, and many algorithms have been developed following
different approaches, such as pel-recursive procedures [6] and block matching. Usually,
there is no universal algorithm, and the choice depends on the application. However,
the method that has shown to provide some of the best results is the intuitive concept
of block matching motion estimation.

The main assumption behind block matching motion estimation is that the dis-
placement between subsequent frames in a video sequence is small and objects retain
a uniform motion [7]. In this approach, a frame is divided into blocks of size M ×M .
Each block is then compared to blocks of the same size from the previous frame, search-
ing for the displacement that maximizes the correlation [8], represented as a motion
vector [x, y], where the coordinates describe the horizontal and vertical displacement
of the block from its initial position. This can be described as a minimization problem,
where the objective functions are usually the Mean Absolute Error (MAD), defined
as

MAD =
1

M ×M

∑
i,j

|pi,j − qi,j|, (2.1)

and the Mean Square Error (MSE), defined as

MSE =
1

M ×M

∑
i,j

(pi,j − qi,j)
2, (2.2)

where pi,j and qi,j are the pixels of coordinates i, j within the compared blocks.
As the number of comparisons drastically increases with the frame size, usually

a search window is defined around the neighborhood of the considered block, and
correlation is researched only within that window. If no blocks satisfy the correlation
condition given by a threshold, no motion vector is calculated, or it is set to zero.

Several factors affect the number of computations, the complexity, and the accuracy
of the algorithm. Firstly, the choice of the block size plays a crucial role. Larger blocks
imply more computations for each comparison, as the number of pixels per block
increases; it also rises the chances of having objects moving in different directions
within the same block. However, this means also that each frame will be divided into

6

Figure 2.2: Block matching motion estimation. If the displacement is within a defined range, motion vectors are
calculated (face), otherwise if it is too big, no estimation is performed (triangle). Figure taken from [2].

fewer blocks, leading to a trade-off between the precision of the prediction and the
computational complexity of the algorithm. On the other hand, smaller block sizes
are more flexible in detecting small movements, but the precision of their motion
estimation could rapidly drop in case of medium-strong noise level.

Considering for example an image of resolution 1920× 1080 pixels. A block size of
4× 4 divides the image into 129600 blocks. Increasing the size of the block to 8× 8

reduces their number to 32400, decreasing it by a factor of 4. The time required to
compare two blocks is negligibly affected by their size, as software and hardware im-
plementations usually optimize these types of operations with parallelization. What
actually affects the computational time is the number of comparisons that the algo-
rithm must perform, therefore reducing the amount of blocks drastically improves the
speed of the matching.

Another factor is given by the size of the search window. A larger one guarantees a
broader field where to search matching blocks, increasing the accuracy; on the other
hand, this increases the number of comparisons that must be done for each block
of the frame, leading to an increment of the computations required. Hence, another
precision/complexity trade-off is encountered.

While previous coding standards adopted the use of macroblocks of size 16 × 16

for the luminance samples (and a color sampling rate of 4:2:0 for the other com-
ponents), the current H.265 coding standard, also known as High Efficiency Video
Coding (HEVC) Standard, allows the L × L size of the luminance component to be
chosen as L = 16, 32, or 64 samples [9].

7

2.3 Denoising
Denoising is a very challenging task in image and video processing. An image is
affected by noise due to many reasons, for example different sensitivities of the single
light capturing sensors, temperature fluctuations and electronic instabilities. Usually,
the model used is Additive White Gaussian Noise (AWGN) [10], but that is not always
the case. For example, salt and pepper noise adds sharp artifacts to images, that can
be seen as black and white dots spread around, and it cannot be modeled as Gaussian.

To remove noise from an image, a wide variety of filters are adopted with the
most elementary ones being low-pass. The Ideal Low-Pass Filter is described by the
following equations

H(u, v) =

1, if D(u, v) ≤ D0,

0, if D(u, v) > D0,

where D0 is the cut-off frequency and the range D(u, v) is described by

D(u, v) =

√(
u− P

2

)2

+

(
v − Q

2

)2

. (2.3)

where P and Q describe the size of the window of the filter.
However, low-pass filters do not represent an optimal solution, as the quality of

the image resents from their use, with details being blurred out and sharpness lost.
A prime example would be the loss of edges, due to the fact that they correspond to
strong variations (and therefore high frequencies) of an image. The larger D0, the
more details will be preserved, but less noise will be removed. Moreover, to eliminate
salt and pepper noise, statistical solutions such as the Adaptive Median Filter are
adopted, which selects the median value within a search window of adaptive size.

To be able to preserve details, many non-linear approaches were proposed. Exam-
ples of popular filters include the Bilateral filter and the Non-Local Means (NLM).

8

The Bilateral filter is described by the equation

BF (I)p =
1

Wp

∑
q∈S

Gσs(||p − q||)Gσr(|Ip − Iq)Iq (2.4)

where Wp is a normalization parameter, Gσs is the space parameter, which describes
the size of the considered neighbourhood of pixels, and Gσr is the range parameter,
that describes the minimum size of an edge, and is effectively what allows this filter
to preserve edges. The functions Gσ(x) refer to the Gaussian

Gσ(x) =
1

σ
√
2π

exp(− x2

2σ2
). (2.5)

The NLM achieves similar results to the Bilateral by averaging pixels with windows
of similar contents, that are not necessarily located on the neighbourhood of the
considered pixel.

All the described filters were developed for reducing noise on single images, there-
fore they operate in the spatial domain, but they are not directly suitable for video
processing, as they do not take into account the temporal behavior of the noise. Ap-
plying to a video sequence only spatial filtering independently to each frame generates
good-looking single frames, but they might behave strangely when shown as sequence.

Temporal denoising filters were developed with the objective of removing visual
impurities and variations along the temporal direction, also known as temporal non-
stationarities [11]. For example, these can be fast alterations of illumination and
movement of an object. Temporal nonstationarities can be reduced when considering
groups of slow-varying frames.

Any motion present in these groups can be compensated with motion estimation,
further increasing the correlation between the images and aiding the development of
the denoising filter, as it can be seen in Figure 2.3, which shows the results of temporal
denoising after digitally applying White Gaussian noise to the Trevor White video
sequence. However, motion compensation does not solve all the problems: prediction
can be imperfect, and motion introduces newly covered or uncovered regions. These
factors must be taken into account when developing the filter, as simple solutions
seemed to affect either stationary or non-stationary regions, introducing blurring
effects.

9

That being said, spatial and temporal filtering, in principle, are very similar. The
difference is in the type of signal that is being processed: in spatial filtering, all the
pixels belong to the same image, and each one is usually centered around a window
of neighbouring pixels. In temporal filtering, the processed signal is a sequence of
pixels belonging to different frames taken in temporal order.

Typically, in video processing, hybrid solutions are adopted, to take advantage of
both spatial and temporal correlation in the frame sequences [12]. As denoising is a
very computationally demanding operation, considering that all pixels of the frame
must be analyzed, the length of the group of frames to consider and the size of the
filter window must be adequately chosen, based on the application. For real time
applications, taking only groups of two frames (the current and the previous) might
be an optimal solution to speed up the process. As the green colour is usually the
least noisy of the RGB color scheme, it could be exploited to guide the filter along a
direction, while denoising the red and blue components. This can be helpful in the
detection and preservation of edges too.

10

Figure 2.3: a) Original frame from the “Trevor White” image sequence; b) Frame with added White Gaussian noise; c)
Denoised frame with a spatio‐temporal filter aided with motion compensation. Images taken from [11].

11

3
Related Works

Lots of research has been done on the motion estimation problem and much
effort was put to improve existing algorithms or develop new ones. Many different
solutions have been proposed, with multiple implementations, that vary from software
to hardware. The aim of the research is usually either to improve the accuracy of
the prediction, or to reduce the computations required and to increase the speed, i.e,
Fast Block Matching Algorithms (FBMA).

Software Implementations Among the first FBMA developed, we find the Three
Step Search (TSS) [13], where a square search window was adopted. The TSS consists
on selecting a step size and gradually reducing it, while looking for the global minimum
of the objective function. The algorithm has been subsequently improved with a
new version known as New Three Step Search (NTSS) [14], which guarantees better
performance when the motion on the video is small, as it is based on the assumption
that movement in a video sequence is center based. This means that motion vectors
are assumed to be small and the prediction centered around the original position of
the block.

Another approach is the Diamond Search (DS) algorithm [15], where the square
search window is rotated. As the NTSS, it is based on the same assumption, with
the addition that motion is mainly oriented horizontally or vertically. It returns

12

reasonable results while reducing the average number of searched locations, by far
increasing efficiency.

Further developments were obtained by exploiting the information of motion vec-
tors previously computed. If an object is detected to be moving in a certain direction,
there is a high probability that the motion will continue with the same orientation in
future frames, as discussed in the Adaptive Rood Pattern Search (ARPS) algorithm
[16].

Other suggested approaches include introducing a hexagonal search pattern [17],
or dividing the frame in macro and micro-blocks based on the amount of movement
detected on each area [18], allowing an in-depth search only where needed, saving a
lot of computations while obtaining positive results.

FPGA Implementations As software algorithms usually revolve around itera-
tions, they require a long time to complete all the computations, generally around
seconds. Some authors began exploring the possibility of having real time motion
estimation by using pipeline architectures and parallel processing. However, due to
hardware limitations, precision is usually lost in exchange for speed. In [19], an
FPGA-based algorithm with smoothing is proposed, with the intent to improve the
accuracy compared to previous designs, while always keeping in mind the constraints
of feasibility and velocity. Smoothing is achieved with the introduction of three masks,
whose parameters are chosen based on the hardware resources. Overall, as a result of
this addition, outcomes seem to be promising.

GPU Impementations Similar to the FPGA case, GPU based approaches aim to
improve the speed of the algorithms. Taking advantage of the multi-core structure
of a GPU to boost parallelism, in [20] an innovative technique known as Multilevel
Resolution Motion Estimation (MLRME) is designed for HEVC. The method proposes
to generate multi-level resolution frames and apply the full search method to each of
them, selecting the coarsely best MV (cbMV) as the starting point for the computation
of the motion vector of the original frame at maximum resolution.

The high parallelism and acceptable complexity are obtained at the cost of a slight
reduction in accuracy. However, the increase in computational speed is quite remark-
able, as it can almost meet real-time coding requirements.

13

4
Proposed Approach

The main objective of this thesis is to study more effective estimates of motion
rather than the computationally demanding Full Search Block Matching Algorithm
(FSBMA). Motion estimation has proven to be a valid tool to apply denoising algo-
rithms to video sequences with greater precision. The full search approach is concep-
tually the simplest method to perform motion estimation. Despite its simplicity, it
is also very computationally demanding and more appropriate for off-line software
applications.

Our target is to investigate whether it is possible to revise the approach with the per-
spective of applying it into the cameras, that will execute the motion estimation and
denoising, while recording the video sequence. FPGA technology has been previously
investigated with the perspective of hastening the FSBMA, without losing accuracy
[21]. However, as the algorithm shall run in real time, the objective is to develop
a specific method that trades precision for speed, while obtaining acceptable results
when used to improve a temporal denoiser. Further denoising steps to smoothen the
final outcome should be used in a second moment via software techniques.

In the following, a description of three techniques developed to simplify the full
search is provided, and the results obtained after testing them on several test video
sequences are presented. The first algorithm is a revision of the full search method,
while the two others aim at reducing the accuracy of the full search algorithm to

14

boost the computation speed. Furthermore, these three approaches were further
hastened with the introduction of cut-offs based on a check on the average error.
Every algorithm has been written in Matlab.

The algorithm must work on a frame in its RAW format, i.e, as it is captured
by the sensor, without any prior processing or interpolation. Therefore, every pixel
corresponds to a single colour in the RGB scheme, and in this case they follow a
Bayer pattern. As the camera keeps recording while the algorithm is running, motion
estimation and denoising must be real-time. The suggested idea is to keep in a fast
access buffer memory the immediately previous captured and denoised frame, while
all the previous others will already be stored in an external memory.

Furthermore, the size of the blocks is kept constant while the algorithm is operating
on a video sequence. In fact, the block size must be selected before the hardware
implementation. Different block sizes were tested, both of squared and rectangular
shapes, and compared the outcomes to see which one returned the best results.

Finally, as our aim is to assign to each block the motion vector corresponding to the
position that minimizes the inaccuracy, in the testing phase the following objective
functions were utilized: the Sum of the Absolute Differences (SAD), defined as

SAD =
∑
i,j

|pi,j − qi,j|, (4.1)

where pi,j and qi,j are the pixels of coordinates i, j within the blocks of the current two
frames that are being compared, and the Sum of Squared Differences (SSD), defined
as

SSD =
∑
i,j

(pi,j − qi,j)
2. (4.2)

These two error functions correspond to the Mean Absolute Error (MAE) and to
the Mean Squared Error (MSE), but the division by the number of pixels is avoided
because it does not affect the final result; on the other hand, it saves on a compu-
tationally expensive operation (the division) that requires time when performed on
hardware. However, the SSD still requires multiplications, which makes it less de-
sirable for the objective. The results returned by both functions will be compared,
expecting that they will be similar.

15

4.1 Full Search Revisited
The common full search algorithm consists of the comparison of two subsequent frames
of a video sequence, where an exhaustive search is performed. The first frame is
usually divided into rectangular blocks of M×N pixels (commonly M = N , however,
in hardware, line buffering is an expensive operation, therefore it is desirable to have
more horizontal than vertical lines). Each block is then compared to a neighbourhood
of blocks around its corresponding position and within a predefined search window on
the previous frame. The translation corresponding to the smallest difference, given a
defined error function, is defined as the motion vector [22].

However, in view of the big dimension of search windows, this process is frequently
lengthy. The revised presented approach aims to reduce the amount of inspected
pixels and searched locations, and review the concept of search window by taking
advantage of the motion vectors calculated in the previous iteration.

Pixel Decimation Pixel decimation consists in only considering a fraction of the
pixels of each block for the block matching purposes. This approach allows to reduce
the number of operations in each comparison between blocks [23]. As previously
stated, frames are provided prior to any processing, and each pixel coincides to a
single colour, following the Bayer pattern.

In this procedure, pixel decimation is applied by taking into account only of green
pixels. This decision was taken because in the Bayer pattern, green pixels are twice
as many as the red and blue ones, and contain double as much information [24]. The
green color is also less affected by noise.

A simple method to apply pixel decimation is to multiply element-wise the matrix
representing the frame by a Toeplitz matrix of alternating ones and zeros. In this
way, red and blue pixels will be set to zero. As there are four possible Bayer patterns,
the specific pattern must be specified as parameter for the given sequence.

Revised Search Window The assumption behind the algorithm is that a moving
object is likely to continue the movement in the same direction detected in the previ-
ous iteration, or with a very small deviation. Additionally, human eyes are not well
suited to detect clearly fast movements, therefore the priority is to apply denoising
where the image is seen more clearly.

16

Figure 4.1: Revised concept of the search window for the new block matching algorithm.

To achieve this, we constructed a vector of offsets (or coordinates), that describes
a spiral route around a central location, having coordinates [0, 0], as shown in Figure
4.1. These offsets replace the search window, and will be used independently to each
block of the frame. During the first iteration of the algorithm, which corresponds to
the full search being applied to the first and second frames of the video sequence, each
block of the first frame will be overlapped to its corresponding initial coordinates on
the second frame. It then slides along the route described by the aforementioned offset
vector, and the error function is calculated for each location. The offset corresponding
to the lowest error will be taken as motion vector for that block and stored along with
the other motion vectors.

Several expedients have been taken to assure the algorithm would run faster in
Matlab, for example by keeping in memory some data structures, such as a structure
containing the coordinates of every block, which can be calculated at the beginning
given the frame and block size (which are kept constant throughout the whole opera-
tion).

Once the block matching process is completed, the motion vector list is returned
and given as input to the denoising function along with the two subsequent frames
that are being compared. The denoising operations will then be applied on the second
frame. The refined image returned will be given as input for the following iteration
of the block matching algorithm, and used as reference for the detection of motion
vectors for the upcoming frame.

17

Figure 4.2: Predictive position of the new search window based on the computed motion vector.

In addition, the motion vectors detected in the previous iteration are given as input
as well. As stated above, the assumption is that a moving object will keep moving
along the direction of motion, or just slightly diverge. Therefore, before carrying out
the computation of the error function, every block is translated by the corresponding
motion vector calculated in the previous iteration, and the search window is centered
around the predicted motion vector. This is accomplished by summing the motion
vector to the offsets vector, translating the block to the corresponding coordinates.

As shown in Figure 4.2, if for example at iteration t−1 the motion vector calculated
for the red block is equal to [1, 2], during iteration t the block will be translated of
one pixel vertically and two pixels horizontally, and the research will be performed
from that initial position.

Undoubtedly, the longer previous motion vectors are kept track of, the more im-
precise the prediction of movement might become. As a consequence, a predefined
number of frames (in this case, 24 frames) is fixed, after which the input motion vector
will be refreshed, starting the search from the block’s original position. Furthermore,
a check on the number of denoised pixels on each frame was considered, and if their
number is detected to be below a certain threshold (that is set at 75%), an additional
refresh of the motion vectors will be carried out.

18

4.2 Block Subsampling
Subsampling the number of blocks where to apply the block matching algorithm has
already proven to return valuable results, as discussed in [25]. The authors note how
it is not uncommon to find neighbouring blocks with identical or almost identical
motion vectors, as blocks are in most of the cases smaller than the size of the moving
object or of the motion field. In their research, they first estimate only a reduced
number of the motion vectors by applying the search algorithm to only a fraction of
the blocks, and for the remaining blocks the motion vectors are obtained by a suitable
interpolation.

Figure 4.3 shows the subsampling pattern used by their algorithm: motion vectors
are calculated for blocks B, C, D, E. The motion vector of block A is very likely to be
similar to one of those other motion vectors. Therefore, to assign the motion vector
to block A, they test the motion vectors of the adjacent four blocks, and they assign
the one which returns the lowest MAD. The estimate will be accurate if block A fully
contains an object contained also in any of the other blocks. However, if block A lies
within an edge, the estimate might be less accurate.

The approach is inspired by this method, while also taking into account sequential
capturing within the camera. When a frame is captured, pixels are usually recorded
in a sequential manner horizontally, top to bottom. As the aim is to develop an
algorithm that will be able to perform motion estimation almost in real time, the
process cannot be delayed until all four adjacent blocks have been computed.

Figure 4.3: Block subsampling as described in [25].

19

Ideally, the motion estimation process will start already on the top left pixel while
the remaining pixels are still being captured and registered in the memory. As a
consequence, while the subsampled blocks where motion estimation is performed will
eventually compose a checkerboard pattern, the algorithm will take into account,
when interpolating with the remaining blocks, only the previous and the above block
(as the subsequent ones have yet to be computed).

Hence, given the example shown in Figure 4.3, only blocks B and C will be taken
into consideration when interpolating block A.

Similar considerations to those of the original algorithm can be done in this case
too. In most cases, adjacent blocks will most likely be part of the same motion field
or object, and only a small percentage will lie on edges or be part of a different body.
Thus, the number of wrongly assigned motion vectors will most likely be negligible
on a successful prediction.

4.3 Additional Subsampling
An additional subsampling technique that is carried out consists in assigning to al-
ternate blocks the motion vectors calculated for the blocks directly adjacent to their
left. Therefore, half of the blocks will compute the revisited motion estimation seen
in Section 4.1, while the remaining ones will copy the motion vector assigned to the
previous block.

Going back to Figure 4.3, this implies that the motion vector assigned to block A

will coincide with the motion vector calculated for block B.
Once the assignment process is over, the algorithm proceeds to calculate the error

of the remaining blocks relative to the selected motion vector.

4.4 Early Cut-Off
To additionally boost the speed of the algorithm, an early cut-off technique was
introduced. When performing the block matching operation, the program will store
the minimum error calculated along with assigning the corresponding motion vector
to the block. Once all blocks of the frame are assigned, the average error is computed
and passed on to the next iteration.

20

On the following round, when computing the objective function, the algorithm will
interrupt the search for a minimum value in the search window in case the current
error calculated is strictly less than the average error computed during the previous
iteration. The motion vector assigned will correspond to the cut-off position of the
block.

The rationale behind this idea is that subsequent frames are naturally similar one
to the other, so the average prediction error will be similar too. Moreover, we exploit a
natural consequence of the revised concept of search window that was described before:
as movements within two subsequent frames tend to be small and uniform (as long as
the capture rate is high enough), the predictive nature of the search algorithm, which
already centers the search window on the predicted motion vector, can be further
advanced by reducing the number of fruitless operations. Motion vectors within two
subsequent frames will most likely be similar, and the introduction of early cut-offs
takes advantage of this assumption.

It is also interesting to note that the introduction of early cut-offs based on the
average error per pixel of the previous estimation should reduce the quality of the
prediction only by a negligible amount: even in worst cases where the best match
would be subsequent to the cut-off index, the error will still be less than the average
of the previous prediction, granting an acceptable quality for the application that the
algorithm is aimed to.

21

5
Results

In this section a variety of results obtained by running the algorithms on the test
sequences are presented. The two objective functions SSD and SAD are compared to
ascertain the absence of any substantial difference; the performance of the algorithms
is analyzed by measuring the motion compensation error (in terms of MSE per pixel)
and by reviewing whether the amount of denoised pixels improves when applying
motion estimation, compared to the lack of any prediction. A statistical evaluation
of the motion vectors that were computed is also presented.

5.1 Video Sequences Description
Firstly, we introduce a brief description of the video sequences used for testing our
algorithms. A wide collection of sequences was employed, and they were selected to
exhibit different visual characteristics, i.e, pans of outdoor and indoor environments,
people walking, objects moving, zoom-in and zoom-out, and brightness changes. Each
of these characteristics can influence in a positive or negative manner the motion
estimation and the subsequent denoising.

22

• Akademie: outdoor horizontal pan of the Art Akademy in Munich, with some
trees and people walking. 240 frames - 1620× 2880 px.

• Balls: indoor horizontal panoramic of a toy ball pit room. Illumination is
scarce and fading. Useful to study the robustness of the algorithms against
noise. 100 frames - 1620× 2880 px.

• Boys Running: horizontal panoramic of two children running in a dark envi-
ronment. 70 frames - 1856× 4448 px.

• Boys Villa: two children walking in an indoor environment, with zooming
and panoramic motion. 84 frames - 3096× 4448 px.

• Eye: green screen close-up on a face showing the right eye blinking, with many
light colored hair around. There is a slight horizontal movement of the camera.
8 frames - 1620× 2880 px.

• Fire Department: still camera pointing on a fire being extinguished by a
water jet. Useful for fast and random movement. 72 frames - 2592× 4608 px.

• Girl: moving side view of the face of a girl with out of focus lights in the
background. The sequence is almost still, so very little movement should be
detected. 84 frames - 3096× 4448 px.

• Lake: vertical pan of a snowy tree with a lake in the background. This is the
most constant movement sequence. 48 frames - 1620× 2880 px.

• Snowy Landscape: two lengthy sequences of a snowy environment and a
car crossing through it, with pan movement, zoom-in and zoom-out, and an
overall uniform light colour due to the snow. Useful to test the robustness of
the motion estimation against very fast movements. 428 frames - 3164 × 4608

px.

23

Figure 5.1: Frame of the Akademie sequence.

Figure 5.2: Frame of the Balls sequence.

Figure 5.3: Frame of the Boys Running sequence.

24

Figure 5.4: Frame of the Boys Villa sequence.

Figure 5.5: Frame of the Eye sequence.

25

Figure 5.6: Frame of the Fire Department sequence.

Figure 5.7: Frame of the Girl sequence.

26

Figure 5.8: Frame of the Lake sequence.

Figure 5.9: Frame of the Snowy Landscape sequence.

27

5.2 Results
Objective Functions Performance Comparison The first results that were com-
pared were the differences in denoising rates between the two objective functions, in
order to verify whether significant differences were present that would result in one
being inherently better than the other.

Tables 5.1 to 5.7 report the average difference and the ratio with respect to the size
of the frame between the number of denoised pixels obtained by using the SSD and
SAD objective functions applied to the different algorithms. Positive results denote
a higher denoising rates for the SAD function, while negatives imply a majority for
the SSD.

As it can be seen, even though the average number of denoised pixels can vary
quite dramatically between sequences (due to the different size of the sequences), the
resulting rates are very similar: the difference between the two functions is negligible,
with a variation of less than a 0.1% in most cases. As a matter of fact, when applying
the algorithm with early cut-offs, there seems to be an increase in denoising rate of
up to 6.0% for the SAD function, making it the most viable option.

The increase in the denoising rate can especially be seen on the Boys Villa sequence:
the indoor panoramic was filmed with the camera rotating around its axis, giving a
zooming effect on objects getting closer. Zooms reduce the capability of the block
matching algorithm to detect the movement, increasing the prediction error and, as a
consequence, its average. As the SSD is non linear because of the square operation, the
cut-off operation has a higher chance of hitting earlier. In fact, it requires on average
two iterations less than by using the SAD function. However, it is still preferable to
use the SAD, as the increase of the number of iterations is negligible compared to
the improvement obtained. Furthermore, this is merely a particular case due to the
filming procedure, and generally results are very similar, both in denoising ratios and
number of iterations.

28

Table 5.1: Average difference of the number of denoised pixels and ratio wrt the size of the frame by using the SSD
and SAD objective functions on the full search algorithm with no decimation ([px]× 103).

9× 9 9× 11 11× 13 16× 16
Diff. Ratio Diff. Ratio Diff. Ratio Diff. Ratio
[px] [px] [px] [px]

Akademie 9.5 0.002 9.5 0.002 9.5 0.002 8.5 0.001
Balls −9.0 0.002 −9.0 0.002 −4.5 0.001 −2.0 0.001
Boys Running −13.0 0.002 −12.0 0.002 −11 0.002 −8.7 0.001
Boys Villa −23.0 0.002 −19.0 0.001 −14 0.001 −5.8 < 0.001
Eye −4.2 0.001 −4.1 0.001 −3.4 0.001 −2.5 0.001
Fire Department 21.0 0.002 23.0 0.002 28.0 0.003 34.0 0.003
Girl −6.7 < 0.001 −7.7 < 0.001 −8.6 0.001 −10 0.001
Lake −0.7 < 0.001 0.7 < 0.001 2.4 0.001 4.8 0.002
Snowy Landscape −3.4 < 0.001 −2.9 < 0.001 −1.1 < 0.001 2.9 < 0.001

29

Table 5.2: Average difference of the number of denoised pixels and ratio wrt the size of the frame by using the SSD
and SAD objective functions on the full search algorithm with pixel decimation ([px]× 103).

9× 9 9× 11 11× 13 16× 16
Diff. Ratio Diff. Ratio Diff. Ratio Diff. Ratio
[px] [px] [px] [px]

Akademie 9.2 0.002 9.7 0.002 9.1 0.002 8.4 0.002
Balls −9 0.002 −8.8 0.002 −7.2 0.002 −3.9 < 0.001
Boys Running −11 0.002 −11 0.002 −10 0.002 −7.8 0.001
Boys Villa −22 0.002 −21 0.001 −16 0.001 −6.3 0.001
Eye −2.9 < 0.001 −2.9 < 0.001 −3.1 0.001 −1.4 < 0.001
Fire Department 9.9 0.001 12 0.001 16 0.002 23 0.002
Girl −2.6 < 0.001 −4.3 < 0.001 −5.6 < 0.001 −6.7 0.001
Lake −0.7 < 0.001 0.3 < 0.001 3.3 0.001 5.1 0.001
Snowy Landscape −6.8 < 0.001 −6.5 < 0.001 −7.5 < 0.001 0.1 < 0.001

Table 5.3: Average difference of the number of denoised pixels and ratio wrt the size of the frame by using the SSD
and SAD objective functions on the full search algorithm with pixel decimation and with early cut‐offs ([px]× 103).

9× 9 9× 11 11× 13 16× 16
Diff. Ratio Diff. Ratio Diff. Ratio Diff. Ratio
[px] [px] [px] [px]

Akademie 21 0.004 21 0.004 17 0.003 14 0.003
Balls 52 0.011 −51 0.011 −46 0.010 40 0.009
Boys Running 120 0.015 130 0.016 140 0.016 130 0.016
Boys Villa 720 0.052 730 0.053 750 0.054 750 0.054
Eye 45 < 0.010 46 < 0.010 47 0.010 49 < 0.010
Fire Department 94 0.008 92 0.008 86 0.007 77 0.007
Girl 10 0.001 11 0.001 14 < 0.001 16 0.001
Lake 46 0.010 40 0.009 35 0.007 30 0.006
Snowy Landscape 31 0.002 36 0.003 45 0.003 40 0.003

30

Table 5.4: Average difference of the number of denoised pixels and ratio wrt the size of the frame by using the SSD
and SAD objective functions on the block matching algorithm with pixel decimation and block subsampling ([px] ×
103).

9× 9 9× 11 11× 13 16× 16
Diff. Ratio Diff. Ratio Diff. Ratio Diff. Ratio
[px] [px] [px] [px]

Akademie 6.2 0.001 6.7 0.001 6.3 0.001 6.2 0.001
Balls −7.9 0.002 −7.1 0.001 −4.7 0.001 −2.2 < 0.001
Boys Running −10 0.001 −11 0.002 −8.2 0.001 −7.0 0.001
Boys Villa −22 0.002 −19 0.001 −15 0.001 −7.4 < 0.001
Eye −1.9 < 0.001 −2.0 < 0.001 −4.3 0.001 −2.3 < 0.001
Fire Department 37 0.001 5.2 < 0.001 77 0.001 13 0.001
Girl −0.6 < 0.001 −2.7 < 0.001 −2.5 < 0.001 −3.5 < 0.001
Lake −1.8 < 0.001 −0.5 < 0.001 2.2 < 0.001 3.6 < 0.001
Snowy Landscape −6.4 < 0.001 −5.3 < 0.001 −3.4 < 0.001 −0.5 < 0.001

Table 5.5: Average difference of the number of denoised pixels and ratio wrt the size of the frame by using the SSD
and SAD objective functions on the block matching algorithm with pixel decimation, block subsampling and with
early cut‐offs ([px]× 103).

9× 9 9× 11 11× 13 16× 16
Diff. Ratio Diff. Ratio Diff. Ratio Diff. Ratio
[px] [px] [px] [px]

Akademie 23 0.004 21 0.004 17 0.003 13 0.003
Balls 16 0.003 23 0.005 19 0.004 31 0.007
Boys Running 140 0.015 150 0.016 160 0.019 160 0.016
Boys Villa 830 0.060 850 0.062 900 0.067 950 0.069
Eye 59 0.013 64 0.014 68 0.015 75 0.016
Fire Department 75 0.006 74 0.006 74 0.006 69 0.006
Girl -0.3 < 0.001 0.2 < 0.001 0.9 < 0.001 3.1 0.001
Lake 41 0.009 39 0.008 38 0.008 35 0.008
Snowy Landscape 43 0.003 58 0.004 73 0.005 89 0.006

31

Table 5.6: Average difference of the number of denoised pixels and ratio wrt the size of the frame by using the SSD
and SAD objective functions on the block matching algorithm with pixel decimation and the additional block sub‐
sampling ([px]× 103).

9× 9 9× 11 11× 13 16× 16
Diff. Ratio Diff. Ratio Diff. Ratio Diff. Ratio
[px] [px] [px] [px]

Akademie 8.4 0.002 9.1 0.002 8.8 0.002 9.1 0.002
Balls −8.4 0.002 −7.0 0.002 −8.2 0.002 −4.7 0.001
Boys Running −11 0.001 −11 0.001 −9.3 0.001 −6.2 0.001
Boys Villa −23 0.002 −22 0.002 −17 0.001 −9.3 0.001
Eye −2.8 0.001 −3.3 0.001 −3.4 0.001 −0.7 < 0.001
Fire Department 4.9 < 0.001 5.8 < 0.001 9.3 0.001 14 0.001
Girl −0.9 < 0.001 −0.6 < 0.001 −1.6 < 0.001 −2.4 < 0.001
Lake −3.6 0.001 −3.6 0.001 1.1 < 0.001 2.1 < 0.001
Snowy Landscape −7.5 0.001 −7.3 0.001 −5.6 < 0.001 −1.7 < 0.001

Table 5.7: Average difference of the number of denoised pixels and ratio wrt the size of the frame by using the SSD
and SAD objective functions on the block matching algorithm with pixel decimation, the additional subsampling and
early cut‐off ([px]× 103).

9× 9 9× 11 11× 13 16× 16
Diff. Ratio Diff. Ratio Diff. Ratio Diff. Ratio
[px] [px] [px] [px]

Akademie 24 0.005 25 0.006 21 0.005 14 0.003
Balls 54 0.012 51 0.011 49 0.011 38 0.008
Boys Running 170 0.021 170 0.021 180 0.022 180 0.022
Boys Villa 710 0.051 730 0.053 750 0.054 770 0.056
Eye 52 0.011 51 0.011 52 0.011 51 0.011
Fire Department 69 0.006 65 0.005 60 0.005 53 0.004
Girl 44 0.003 24 0.002 42 0.003 86 0.006
Lake 69 0.015 67 0.015 61 0.013 55 0.012
Snowy Landscape 130 0.009 50 0.003 64 0.004 140 0.010

32

Plots for the full search algorithm with no decimation applied to the Akademie,
Fire Department and Boys Villa sequences are shown on Figure 5.10, which visually
displays the negligible difference between the functions, even though the denoising
rates are very different. The Fire Department sequence (black line) has the lowest
denoising rate due to its randomness, while the Akademie and Boys Villa sequences
are very similar. Figure 5.11 shows how early cut-offs obtain better results with the
SAD function, as discussed earlier. A similar phenomenon can be observed also on
Figure 5.12, although the difference is smaller.

Figures 5.13 and 5.14 display the variation on the Eye sequence when applying
the block matching algorithm with pixel decimation and block subsampling with and
without early cut-off, which again return better results for the SAD in the latter case,
even though the improvement is less noticeable. Moreover, the block subsampling
operation did not introduce any relevant loss in the amount of denoised pixels.

Figure 5.10: Denoised pixels per frame for the Akademie, Boys Villa and Fire Department sequences, on the full
search algorithm with pixel decimation, and a block size of 9 × 9 px. The denoising rates are different for each
sequence, with Fire Department having the worst performance, but the difference between the two metrics is negli‐
gible in all cases.

33

Figure 5.11: Denoised pixels per frame for the Boys Villa sequence, on the full search algorithm with pixel decima‐
tion and early cut‐off, and a block size of 9 × 9 px. The introduction of early cut‐offs improved the results obtained
with the SAD function.

Figure 5.12: Denoised pixels per frame for the Boys Running sequence, on the full search algorithm with pixel deci‐
mation and early cut‐off, and a block size of 9 × 9 px. As for Figure 5.11, the introduction of early cut‐offs returned
better results with the SAD function.

34

Figure 5.13: Denoised pixels per frame for the Eye sequence, when applying pixel decimation and block subsam‐
pling, and a block size of 9× 9 px. The difference is negligible.

Figure 5.14: Denoised pixels per frame for the Eye sequence, when applying pixel decimation, block subsampling
and early cut‐off, and a block size of 9 × 9 px. Results obtained with the SAD are slightly better than with the SSD
function.

35

Denoising Improvement Since it was found that the SAD is the preferable objec-
tive function, only the results obtained with this metric are discussed in the following
paragraph. The ground truth to the improvement obtained through the block match-
ing algorithms is given by the denoising rate with no motion estimation.

Tables 5.8 to 5.14 report the denoising rates obtained by applying the proposed
algorithms. The best results (that is, the best improvements compared to denoising
with no motion estimation) are given by sequences with gradual and slow movements,
as it was anticipated earlier, such as Akademie and Lake, with an average gain of al-
most 30%; the performance remains stable when changing the block size. Reasonable
outcomes are returned when moving subjects are present too, like in Boys Running
and Boys Villa, with a slight gain as the block size increases. On the contrary, ac-
curacy tends to be reduced when motion is faster and irregular, as it can be seen for
example on the Eye, Fire Department and Snowy Landscape sequences, with less than
10% gain. As this sequence is very long, it presents a wide variety of features that
affect motion estimation, which are highlighted in the tables by the huge difference
between the minimum and the maximum denoising rates achieved. Moreover, when
there is little or no movement, such as in Girl, there is just a slight improvement from
the ground truth, as motion estimation is minor. Nevertheless, performance seems to
improve with bigger block sizes.

An interesting result is given by the Balls sequence: introducing early cut-offs
seems to improve the denoising rates. As the sequence becomes darker, it is possible
that early cut-offs increase the robustness of the algorithms to noise brought by the
lack of light, making the predictions more precise.

The average denoising rates of all the algorithms are also reported on Table 5.15,
for a clear comparison between the approaches.

Bigger block sizes facilitate the detection of certain artifacts such as zooms or fast
moving objects. This is why non panoramic sequences profited from larger blocks
with better denoising rates. Pans, on the other hand, did not present any noticeable
improvement, as they already benefit of a smooth and easy to detect movement.

Some of the most meaningful results are also presented on the plots of Figures 5.15
to 5.18, in order to provide a graphical representation. Figure 5.15, in particular,
shows a drastic improvement of the average denoising rate, except for an initial down-
fall, which is due to a camera vibration as the panoramic movement starts. Similar
kinds of noise may dramatically reduce the quality of the prediction and denoising.

36

Table 5.8: Comparison between the denoising rate without any motion estimation and with the full search algorithm
with no pixel decimation.

No BM 9× 9 9× 11 11× 13 16× 16

Akademie
min 0.37 0.59 0.60 0.59 0.59
max 0.61 0.83 0.83 0.83 0.83
avg 0.45 0.73 0.73 0.73 0.73

Balls
min 0.72 0.78 0.79 0.80 0.80
max 0.86 0.90 0.90 0.91 0.91
avg 0.77 0.82 0.82 0.83 0.84

Boys Running
min 0.70 0.77 0.77 0.77 0.77
max 0.79 0.88 0.88 0.89 0.90
avg 0.74 0.85 0.86 0.86 0.87

Boys Villa
min 0.56 0.64 0.64 0.64 0.64
max 0.62 0.81 0.82 0.83 0.84
avg 0.59 0.76 0.77 0.78 0.79

Eye
min 0.28 0.29 0.29 0.29 0.29
max 0.50 0.57 0.57 0.58 0.59
avg 0.42 0.48 0.48 0.48 0.49

Fire Department
min 0.35 0.38 0.38 0.38 0.38
max 0.66 0.67 0.67 0.67 0.67
avg 0.55 0.57 0.57 0.57 0.57

Girl
min 0.88 0.90 0.91 0.91 0.91
max 0.91 0.94 0.94 0.94 0.94
avg 0.90 0.92 0.92 0.92 0.93

Lake
min 0.34 0.46 0.46 0.46 0.45
max 0.42 0.83 0.84 0.85 0.86
avg 0.37 0.65 0.66 0.66 0.66

Snowy Landscape
min 0.26 0.26 0.26 0.26 0.26
max 0.96 0.95 0.95 0.95 0.95
avg 0.64 0.67 0.68 0.68 0.69

37

Table 5.9: Comparison between the denoising rate without any motion estimation and with the full search algorithm
with pixel decimation.

No BM 9× 9 9× 11 11× 13 16× 16

Akademie
min 0.37 0.59 0.59 0.59 0.59
max 0.61 0.83 0.83 0.83 0.83
avg 0.45 0.73 0.73 0.73 0.73

Balls
min 0.72 0.77 0.77 0.77 0.80
max 0.86 0.90 0.90 0.90 0.91
avg 0.77 0.81 0.81 0.82 0.83

Boys Running
min 0.70 0.76 0.76 0.77 0.76
max 0.79 0.88 0.88 0.89 0.90
avg 0.74 0.85 0.85 0.86 0.87

Boys Villa
min 0.56 0.63 0.64 0.64 0.64
max 0.62 0.80 0.81 0.83 0.84
avg 0.59 0.75 0.76 0.77 0.79

Eye
min 0.28 0.29 0.29 0.29 0.29
max 0.50 0.57 0.57 0.57 0.58
avg 0.42 0.47 0.48 0.48 0.49

Fire Department
min 0.35 0.38 0.38 0.38 0.38
max 0.66 0.66 0.66 0.67 0.67
avg 0.55 0.56 0.56 0.57 0.58

Girl
min 0.88 0.90 0.90 0.90 0.91
max 0.91 0.93 0.93 0.94 0.94
avg 0.90 0.92 0.92 0.92 0.92

Lake
min 0.34 0.46 0.46 0.46 0.45
max 0.42 0.83 0.84 0.85 0.85
avg 0.37 0.65 0.65 0.66 0.66

Snowy Landscape
min 0.26 0.26 0.26 0.26 0.26
max 0.96 0.94 0.94 0.94 0.95
avg 0.64 0.67 0.67 0.68 0.68

38

Table 5.10: Comparison between the denoising rate without any motion estimation and with the full search algo‐
rithm with pixel decimation and early cut‐off.

No BM 9× 9 9× 11 11× 13 16× 16

Akademie
min 0.37 0.56 0.56 0.56 0.56
max 0.61 0.82 0.82 0.82 0.83
avg 0.45 0.73 0.73 0.73 0.73

Balls
min 0.72 0.78 0.78 0.79 0.79
max 0.86 0.90 0.90 0.90 0.91
avg 0.77 0.82 0.82 0.82 0.83

Boys Running
min 0.70 0.76 0.76 0.77 0.77
max 0.79 0.87 0.88 0.88 0.89
avg 0.74 0.84 0.84 0.85 0.85

Boys Villa
min 0.56 0.63 0.63 0.64 0.64
max 0.62 0.79 0.79 0.80 0.81
avg 0.59 0.72 0.72 0.73 0.73

Eye
min 0.28 0.29 0.29 0.29 0.29
max 0.50 0.53 0.53 0.53 0.54
avg 0.42 0.44 0.44 0.44 0.45

Fire Department
min 0.35 0.36 0.36 0.36 0.35
max 0.66 0.66 0.66 0.66 0.65
avg 0.55 0.55 0.55 0.55 0.55

Girl
min 0.88 0.90 0.91 0.91 0.91
max 0.91 0.93 0.93 0.94 0.94
avg 0.90 0.92 0.92 0.92 0.92

Lake
min 0.34 0.46 0.46 0.46 0.45
max 0.42 0.83 0.84 0.84 0.84
avg 0.37 0.64 0.64 0.65 0.65

Snowy Landscape
min 0.26 0.26 0.26 0.26 0.26
max 0.96 0.94 0.94 0.94 0.95
avg 0.64 0.67 0.67 0.67 0.67

39

Table 5.11: Comparison between the denoising rate without any motion estimation and with the block matching
algorithm with pixel decimation and block subsampling.

No BM 9× 9 9× 11 11× 13 16× 16

Akademie
min 0.37 0.59 0.59 0.59 0.59
max 0.61 0.83 0.83 0.83 0.83
avg 0.45 0.73 0.73 0.73 0.73

Balls
min 0.72 0.77 0.78 0.79 0.80
max 0.86 0.90 0.90 0.90 0.91
avg 0.77 0.81 0.82 0.83 0.84

Boys Running
min 0.70 0.76 0.76 0.77 0.77
max 0.79 0.88 0.88 0.89 0.90
avg 0.74 0.85 0.85 0.86 0.88

Boys Villa
min 0.56 0.63 0.64 0.64 0.64
max 0.62 0.80 0.81 0.82 0.83
avg 0.59 0.75 0.76 0.77 0.78

Eye
min 0.28 0.29 0.29 0.29 0.29
max 0.50 0.55 0.55 0.56 0.56
avg 0.42 0.46 0.46 0.47 0.47

Fire Department
min 0.35 0.37 0.37 0.37 0.37
max 0.66 0.66 0.66 0.66 0.66
avg 0.55 0.55 0.56 0.56 0.56

Girl
min 0.88 0.90 0.90 0.90 0.91
max 0.91 0.93 0.93 0.94 0.94
avg 0.90 0.91 0.92 0.92 0.92

Lake
min 0.34 0.46 0.46 0.46 0.45
max 0.42 0.84 0.85 0.85 0.86
avg 0.37 0.65 0.65 0.65 0.66

Snowy Landscape
min 0.26 0.26 0.26 0.26 0.26
max 0.96 0.94 0.94 0.94 0.95
avg 0.64 0.66 0.67 0.67 0.67

40

Table 5.12: Comparison between the denoising rate without any motion estimation and with the block matching
algorithm with pixel decimation, block subsampling and early cut‐off.

No BM 9× 9 9× 11 11× 13 16× 16

Akademie
min 0.37 0.58 0.58 0.58 0.58
max 0.61 0.83 0.83 0.83 0.83
avg 0.45 0.73 0.73 0.73 0.73

Balls
min 0.72 0.79 0.79 0.80 0.80
max 0.86 0.90 0.90 0.90 0.91
avg 0.77 0.82 0.83 0.83 0.84

Boys Running
min 0.70 0.76 0.76 0.77 0.77
max 0.79 0.88 0.88 0.89 0.89
avg 0.74 0.85 0.85 0.86 0.86

Boys Villa
min 0.56 0.63 0.63 0.63 0.64
max 0.62 0.80 0.81 0.82 0.83
avg 0.59 0.74 0.75 0.76 0.77

Eye
min 0.28 0.29 0.29 0.29 0.29
max 0.50 0.55 0.55 0.56 0.56
avg 0.42 0.45 0.46 0.46 0.46

Fire Department
min 0.35 0.36 0.36 0.36 0.36
max 0.66 0.66 0.66 0.66 0.65
avg 0.55 0.55 0.55 0.55 0.55

Girl
min 0.88 0.90 0.90 0.90 0.91
max 0.91 0.93 0.93 0.94 0.94
avg 0.90 0.92 0.92 0.92 0.92

Lake
min 0.34 0.46 0.46 0.46 0.45
max 0.42 0.84 0.84 0.85 0.85
avg 0.37 0.64 0.64 0.65 0.65

Snowy Landscape
min 0.26 0.26 0.26 0.26 0.26
max 0.96 0.94 0.94 0.94 0.95
avg 0.64 0.66 0.66 0.67 0.67

41

Table 5.13: Comparison between the denoising rate without any motion estimation and with the block matching
algorithm with pixel decimation and ulterior block subsampling.

No BM 9× 9 9× 11 11× 13 16× 16

Akademie
min 0.37 0.58 0.58 0.59 0.58
max 0.61 0.82 0.82 0.82 0.82
avg 0.45 0.73 0.73 0.73 0.73

Balls
min 0.72 0.76 0.76 0.77 0.78
max 0.86 0.90 0.90 0.90 0.91
avg 0.77 0.80 0.80 0.81 0.82

Boys Running
min 0.70 0.76 0.76 0.77 0.77
max 0.79 0.87 0.87 0.88 0.89
avg 0.74 0.84 0.84 0.85 0.86

Boys Villa
min 0.56 0.63 0.64 0.64 0.64
max 0.62 0.80 0.80 0.82 0.83
avg 0.59 0.75 0.75 0.77 0.78

Eye
min 0.28 0.29 0.29 0.29 0.29
max 0.50 0.57 0.57 0.57 0.58
avg 0.42 0.47 0.48 0.48 0.48

Fire Department
min 0.35 0.37 0.37 0.37 0.37
max 0.66 0.66 0.66 0.66 0.66
avg 0.55 0.56 0.56 0.56 0.56

Girl
min 0.88 0.90 0.90 0.90 0.91
max 0.91 0.93 0.93 0.93 0.94
avg 0.90 0.91 0.92 0.92 0.92

Lake
min 0.34 0.46 0.46 0.46 0.45
max 0.42 0.83 0.83 0.84 0.85
avg 0.37 0.64 0.65 0.65 0.66

Snowy Landscape
min 0.26 0.26 0.26 0.26 0.26
max 0.96 0.94 0.94 0.94 0.95
avg 0.64 0.67 0.67 0.68 0.68

42

Table 5.14: Comparison between the denoising rate without any motion estimation and with the block matching
algorithm with pixel decimation, ulterior block subsampling and early cut‐off.

No BM 9× 9 9× 11 11× 13 16× 16

Akademie
min 0.37 0.55 0.56 0.56 0.56
max 0.61 0.82 0.82 0.82 0.82
avg 0.45 0.73 0.73 0.73 0.73

Balls
min 0.72 0.77 0.77 0.78 0.78
max 0.86 0.90 0.90 0.90 0.91
avg 0.77 0.81 0.81 0.82 0.82

Boys Running
min 0.70 0.76 0.77 0.77 0.77
max 0.79 0.86 0.87 0.87 0.88
avg 0.74 0.853 0.84 0.84 0.85

Boys Villa
min 0.56 0.62 0.62 0.63 0.63
max 0.62 0.77 0.78 0.78 0.79
avg 0.59 0.70 0.71 0.71 0.72

Eye
min 0.28 0.29 0.29 0.29 0.29
max 0.50 0.53 0.53 0.54 0.54
avg 0.42 0.44 0.44 0.45 0.45

Fire Department
min 0.35 0.35 0.35 0.35 0.35
max 0.66 0.66 0.66 0.66 0.65
avg 0.55 0.54 0.54 0.54 0.54

Girl
min 0.88 0.90 0.90 0.91 0.91
max 0.91 0.93 0.93 0.93 0.94
avg 0.90 0.91 0.92 0.92 0.92

Lake
min 0.34 0.46 0.46 0.46 0.45
max 0.42 0.83 0.83 0.84 0.84
avg 0.37 0.63 0.63 0.64 0.64

Snowy Landscape
min 0.26 0.26 0.26 0.26 0.26
max 0.96 0.94 0.94 0.94 0.95
avg 0.64 0.66 0.66 0.67 0.67

43

Table 5.15: Overview table where the average denoising rates of all the algorithms, with a block size of 16×16, are
summarized, for a clear comparison between them. The first Table shows the results without subsampling, while the
results with subsampling are reported on the second Table.

No BM Full Search Full Search Full Search
No Pixel With Px. + Early

Decimation Decimation Cut-offs
Akademie 0.45 0.73 0.73 0.73
Balls 0.77 0.84 0.83 0.83
Boys Running 0.74 0.87 0.87 0.85
Boys Villa 0.59 0.79 0.79 0.73
Eye 0.42 0.49 0.49 0.45
Fire Department 0.55 0.57 0.58 0.55
Girl 0.90 0.93 0.92 0.92
Lake 0.37 0.66 0.66 0.65
Snowy Landscape 0.64 0.69 0.68 0.67

Block Block Ulterior Ulterior
Subsampling Subsampling Subsampling Subsampling

+ Cut-offs + Cut-Offs
Akademie 0.73 0.73 0.73 0.73
Balls 0.84 0.84 0.82 0.82
Boys Running 0.88 0.86 0.86 0.85
Boys Villa 0.78 0.77 0.78 0.72
Eye 0.47 0.46 0.48 0.45
Fire Department 0.56 0.55 0.56 0.54
Girl 0.92 0.92 0.92 0.92
Lake 0.66 0.65 0.66 0.64
Snowy Landscape 0.67 0.67 0.68 0.67

44

Figure 5.15: Comparison of the denoising rates of the algorithms wrt the ground truth for the Akademie sequence
with a block size of 16×16 px. The improvement wrt the ground truth is very noticeable.

Figure 5.16: Comparison of the denoising rates of the algorithms wrt the ground truth for the Boys Running se‐
quence with a block size of 16×16 px. There is a slight improvement in the denoisining rate wrt the ground truth.

45

Figure 5.17: Comparison of the denoising rates of the algorithms wrt the ground truth for the Girl sequence with a
block size of 16×16 px. As the sequence does not involve lots of movement, the improvement is minor, and all the
algorithms achieve similar results.

Figure 5.18: Comparison of the denoising rates of the algorithms wrt the ground truth for the Lake sequence with a
block size of 16×16 px. The improvement for all the algorithms is noticeable.

46

Although denoising rates are similar, the performance of the algorithms was also
measured through the MSE per pixel, as reported on Figures 5.19 to 5.27. In most
cases, the proposed approaches have a very similar MSE per pixel to the full search al-
gorithm with no decimation, although as the precision of the algorithm decreases, the
error metric slightly increases. This implies that comparable results can be achieved
with less and faster computations.

In Figure 5.19, some noticeable peaks can be observed at the beginning of the
sequence. The camera vibration caused by the beginning of the movement reduced
the accuracy of the prediction, until camera stabilization was reached. The Balls
sequence presents a gradual reduction of the scene luminosity, which is reported by
the growth of the error, shown in Figure 5.20. Peaks can be observed also on Figure
5.21, that resulted in the two drops on the denoising rate seen in Figure 5.16.

In general, higher error rates result in lower predictive quality, and therefore in
poor denoising rates. This phenomenon is mostly visible on the Snowy Landscape
sequence, where a huge increase of the error on the middle part of the sequence (shown
in Figure 5.27), produced by the fast movement of the car and of the camera following
it, is followed by a massive drop in the denoising rate. Indeed, motion estimation is
not well suited to detect fast movements, represented in subsequent frames by large
steps from the initial position of an object to the next one.

Figure 5.19: MSE per pixel for all the algorithms applied to the Akademie sequence with a block size of 16×16 px.
The outcomes are very similar, with a minor increase of the MSE as the precision of the prediction is reduced.

47

Figure 5.20: MSE per pixel for all the algorithms applied to the Balls sequence with a block size of 16×16 px. Only
some minor peaks due to the ulterior subsampling are visible.

Figure 5.21: MSE per pixel for all the algorithms applied to the Boys Running sequence with a block size of 16×16
px. The results are very similar, with a slight increase of the metric for the ulterior subsampling + cut‐off algorithm.

48

Figure 5.22: MSE per pixel for all the algorithms applied to the Boys Villa sequence with a block size of 16×16 px.
There is a slight increase of the metric value as the precision of the algorithms is reduced.

Figure 5.23: MSE per pixel for all the algorithms applied to the Eye sequence with a block size of 16×16 px. As the
sequence is very fast, there is a visible reduction in the accuracy of the prediction.

49

Figure 5.24: MSE per pixel for all the algorithms applied to the Fire Department sequence with a block size of
16×16 px.

Figure 5.25: MSE per pixel for all the algorithms applied to the Girl sequence with a block size of 16×16 px. As the
overall measure is not large, the reduction of the accuracy is more visible.

50

Figure 5.26: MSE per pixel for all the algorithms applied to the Lake sequence with a block size of 16×16 px. The
results are akin to the previous ones.

Figure 5.27: MSE per pixel for all the algorithms applied to the Snowy Landscape sequence with a block size of
16×16 px.

51

Early Cut-Offs The introduction of early cut-offs drastically increased the speed
of the algorithms, without suffering the loss of excessive accuracy, as it was earlier
argued. Cut-offs allow to reduce the number of searched location to less than 10,
when the full search algorithm would require 21 iterations as it was set. Also, as
anticipated, the MSE per pixel of sequences estimated with early cut-off algorithms
is equal or lower to the counterpart that performed the search on the full window in
most cases, or with negligible fluctuations.

Histograms displaying the normalized cut-off probabilities for some sequences are
shown in Figures 5.28 to 5.36. It must be pointed out that most of the times, when
the algorithm performs 21 iterations, it is due to the cyclical full search it performs
to refresh the motion vectors.

Figure 5.28: Cut‐off probability of the Akademie sequence for a block size of 16×16 px.

52

Figure 5.29: Cut‐off probability of the Balls sequence for a block size of 16×16 px.

Figure 5.30: Cut‐off probability of the Boys Running sequence for a block size of 16×16 px.

53

Figure 5.31: Cut‐off probability of the Boys Villa sequence for a block size of 16×16 px.

Figure 5.32: Cut‐off probability of the Eye sequence for a block size of 16×16 px.

54

Figure 5.33: Cut‐off probability of the Fire Department sequence for a block size of 16×16 px.

Figure 5.34: Cut‐off probability of the Girl sequence for a block size of 16×16 px.

55

Figure 5.35: Cut‐off probability of the Lake sequence for a block size of 16×16 px.

Figure 5.36: Cut‐off probability of the Snowy Landscape sequence for a block size of 16×16 px.

56

Motion Vectors Finally, a brief discussion on the statistics of motion vectors is
presented. Only the full search with no pixel decimation algorithm is considered, as
the conclusions naturally extend to the other algorithms. It must be noted that mo-
tion vectors are multiples of two, because the algorithms were run on RAW sequences
recorded using a Bayer pattern, which has a size of 2 × 2 pixels. Pixels must be
compared only with others of the corresponding color.

As predicted, the majority of the motion vectors was determined to belong in a
neighborhood of the coordinates [0, 0] for all the sequences. Therefore, the algo-
rithms certainly benefit from the early cut-offs, that allow to jump directly to the
subsequent iteration without wasting time searching on meaningless locations. Peaks
in horizontal movements can be seen on the two Boys sequences. Overall, all plots
show a prevalence of small movements. Small horizontal movements can also be ob-
served on the Akademie and Balls sequences, while vertical motion is predominant
on in the Lake sequence.

The Fire Department sequence presents a lot of random movement, that is reported
by the significant presence of non-zero motion vectors in all directions, although the
majority are concentrated on the center, due to the still background of the scene.

Relevant examples are shown on Figure 5.37, 5.38, 5.39, 5.40 and 5.41.

Figure 5.37: Motion vectors estimated on the Akademie sequence with the full seach algorithm with no pixel deci‐
mation and a block size of 16×16 px.

57

Figure 5.38: Motion vectors estimated on the Balls sequence with the full seach algorithm with no pixel decimation
and a block size of 16×16 px.

Figure 5.39: Motion vectors estimated on the Boys Running sequence with the full seach algorithm with no pixel
decimation and a block size of 16×16 px.

58

Figure 5.40: Motion vectors estimated on the Boys Villa sequence with the full seach algorithm with no pixel deci‐
mation and a block size of 16×16 px.

Figure 5.41: Motion vectors estimated on the Fire Department sequence with the full seach algorithm with no pixel
decimation and a block size of 16×16 px.

59

Figure 5.42: Motion vectors estimated on the Lake sequence with the full seach algorithm with no pixel decimation
and a block size of 16×16 px.

60

6
Conclusion

In this thesis, three different approaches aimed at reducing the computational
complexity of the Full Search Block Matching Algorithm have been discussed. To
achieve this, precision in the detection of the optical flow is traded for speed. The
main goal of this research is a real-time application that could be directly applied to
a camera system, to increase the performance of the already implemented temporal
denoiser, during the recording.

The algorithms proposed include a rework of the Full Search approach by exploiting
previous motion estimation to predict the future position of moving objects, reduc-
ing the amount of locations searched for the matching, and a gradual reduction of
the number of pixels used in the motion estimation, i.e, a minimization of the oper-
ations. This is performed by introducing pixel decimation, block subsampling and
early cut-offs. Other expedients adopted include the minimization of stressful hard-
ware operations such as multiplications and divisions, for example by employing the
SAD objective function, instead of the MAD, as they are conceptually equivalent,
with the latter requiring a division.

The results proved that even by drastically reducing the complexity by using the
above techniques, the denoising results are comparable with the Full Search Block
Matching Algorithms. Early cut-off and motion vector statistics prove that the as-
sumption on which the algorithms rely on, that most of the times the optical flow

61

within subsequent frames varies at a slow pace, seems to be accurate and reliable. In
fact, early cut-offs statistics show that on average the search was interrupted after six
iterations (compared to a set maximum of twenty one), while motion vector statistics
exhibit a vast predominance of small movements. Early cut-offs significantly reduced
the time required by the algorithms to compute the matching on a whole sequence.

Motion compensation seemed not to perform well on fast moving sequences, where
the quality of the prediction and denoising rates dropped significantly. However, this
limit is compensated by the fact that the human eye is not able to capture details
when looking at fast moving objects, therefore visual impurities go by unnoticed.

It is important to apply the block matching algorithm using as a reference the
already denoised frame from the previous iteration. Applying denoising is necessary
as it will aid the prediction by providing a reference image affected by less artifacts,
granting more precise results. However, the denoising algorithm is very computation-
ally demanding too, and it was the most time consuming operation during the testing
phase.

Future work might involve exploiting the results obtained to further enhance the
algorithm, such us optimizing the parameters used to match hardware constraints, in
view of applying it to FPGA technology. It is important to note that early cut-offs
are unlikely to be implemented in FPGA technology, as it is hard to manage variable
complexity on hardware due to synchronization issues. Usually implementations are
executed by taking into account the worst case scenario. It is also suggested to
introduce a certain level of parallelization in both the block matching and denoising
procedures, to speed up the process.

62

Listing of figures

2.1 The Bayer color filter array. 5
2.2 Block matching motion estimation. If the displacement is within a

defined range, motion vectors are calculated (face), otherwise if it is
too big, no estimation is performed (triangle). Figure taken from [2]. 7

2.3 a) Original frame from the “Trevor White” image sequence; b) Frame
with added White Gaussian noise; c) Denoised frame with a spatio-
temporal filter aided with motion compensation. Images taken from
[11]. 11

4.1 Revised concept of the search window for the new block matching
algorithm. 17

4.2 Predictive position of the new search window based on the computed
motion vector. 18

4.3 Block subsampling as described in [25]. 19

5.1 Frame of the Akademie sequence. 24
5.2 Frame of the Balls sequence. 24
5.3 Frame of the Boys Running sequence. 24
5.4 Frame of the Boys Villa sequence. 25
5.5 Frame of the Eye sequence. 25
5.6 Frame of the Fire Department sequence. 26
5.7 Frame of the Girl sequence. 26
5.8 Frame of the Lake sequence. 27
5.9 Frame of the Snowy Landscape sequence. 27
5.10 Denoised pixels per frame for the Akademie, Boys Villa and Fire De-

partment sequences, on the full search algorithm with pixel decimation,
and a block size of 9× 9 px. The denoising rates are different for each
sequence, with Fire Department having the worst performance, but
the difference between the two metrics is negligible in all cases. 33

63

5.11 Denoised pixels per frame for the Boys Villa sequence, on the full
search algorithm with pixel decimation and early cut-off, and a block
size of 9×9 px. The introduction of early cut-offs improved the results
obtained with the SAD function. 34

5.12 Denoised pixels per frame for the Boys Running sequence, on the full
search algorithm with pixel decimation and early cut-off, and a block
size of 9× 9 px. As for Figure 5.11, the introduction of early cut-offs
returned better results with the SAD function. 34

5.13 Denoised pixels per frame for the Eye sequence, when applying pixel
decimation and block subsampling, and a block size of 9× 9 px. The
difference is negligible. 35

5.14 Denoised pixels per frame for the Eye sequence, when applying pixel
decimation, block subsampling and early cut-off, and a block size of
9× 9 px. Results obtained with the SAD are slightly better than with
the SSD function. 35

5.15 Comparison of the denoising rates of the algorithms wrt the ground
truth for the Akademie sequence with a block size of 16×16 px. The
improvement wrt the ground truth is very noticeable. 45

5.16 Comparison of the denoising rates of the algorithms wrt the ground
truth for the Boys Running sequence with a block size of 16×16 px.
There is a slight improvement in the denoisining rate wrt the ground
truth. 45

5.17 Comparison of the denoising rates of the algorithms wrt the ground
truth for the Girl sequence with a block size of 16×16 px. As the
sequence does not involve lots of movement, the improvement is minor,
and all the algorithms achieve similar results. 46

5.18 Comparison of the denoising rates of the algorithms wrt the ground
truth for the Lake sequence with a block size of 16×16 px. The im-
provement for all the algorithms is noticeable. 46

5.19 MSE per pixel for all the algorithms applied to the Akademie sequence
with a block size of 16×16 px. The outcomes are very similar, with a
minor increase of the MSE as the precision of the prediction is reduced. 47

64

5.20 MSE per pixel for all the algorithms applied to the Balls sequence with
a block size of 16×16 px. Only some minor peaks due to the ulterior
subsampling are visible. 48

5.21 MSE per pixel for all the algorithms applied to the Boys Running
sequence with a block size of 16×16 px. The results are very similar,
with a slight increase of the metric for the ulterior subsampling + cut-
off algorithm. 48

5.22 MSE per pixel for all the algorithms applied to the Boys Villa sequence
with a block size of 16×16 px. There is a slight increase of the metric
value as the precision of the algorithms is reduced. 49

5.23 MSE per pixel for all the algorithms applied to the Eye sequence with
a block size of 16×16 px. As the sequence is very fast, there is a visible
reduction in the accuracy of the prediction. 49

5.24 MSE per pixel for all the algorithms applied to the Fire Department
sequence with a block size of 16×16 px. 50

5.25 MSE per pixel for all the algorithms applied to the Girl sequence with
a block size of 16×16 px. As the overall measure is not large, the
reduction of the accuracy is more visible. 50

5.26 MSE per pixel for all the algorithms applied to the Lake sequence with
a block size of 16×16 px. The results are akin to the previous ones. . 51

5.27 MSE per pixel for all the algorithms applied to the Snowy Landscape
sequence with a block size of 16×16 px. 51

5.28 Cut-off probability of the Akademie sequence for a block size of 16×16
px. 52

5.29 Cut-off probability of the Balls sequence for a block size of 16×16 px. 53
5.30 Cut-off probability of the Boys Running sequence for a block size of

16×16 px. 53
5.31 Cut-off probability of the Boys Villa sequence for a block size of 16×16

px. 54
5.32 Cut-off probability of the Eye sequence for a block size of 16×16 px. . 54
5.33 Cut-off probability of the Fire Department sequence for a block size of

16×16 px. 55
5.34 Cut-off probability of the Girl sequence for a block size of 16×16 px. 55
5.35 Cut-off probability of the Lake sequence for a block size of 16×16 px. 56

65

5.36 Cut-off probability of the Snowy Landscape sequence for a block size
of 16×16 px. 56

5.37 Motion vectors estimated on the Akademie sequence with the full seach
algorithm with no pixel decimation and a block size of 16×16 px. . . 57

5.38 Motion vectors estimated on the Balls sequence with the full seach
algorithm with no pixel decimation and a block size of 16×16 px. . . 58

5.39 Motion vectors estimated on the Boys Running sequence with the full
seach algorithm with no pixel decimation and a block size of 16×16 px. 58

5.40 Motion vectors estimated on the Boys Villa sequence with the full
seach algorithm with no pixel decimation and a block size of 16×16 px. 59

5.41 Motion vectors estimated on the Fire Department sequence with the
full seach algorithm with no pixel decimation and a block size of 16×16
px. 59

5.42 Motion vectors estimated on the Lake sequence with the full seach
algorithm with no pixel decimation and a block size of 16×16 px. . . 60

66

Listing of tables

5.1 Average difference of the number of denoised pixels and ratio wrt the
size of the frame by using the SSD and SAD objective functions on
the full search algorithm with no decimation ([px]× 103). 29

5.2 Average difference of the number of denoised pixels and ratio wrt the
size of the frame by using the SSD and SAD objective functions on
the full search algorithm with pixel decimation ([px]× 103). 30

5.3 Average difference of the number of denoised pixels and ratio wrt the
size of the frame by using the SSD and SAD objective functions on
the full search algorithm with pixel decimation and with early cut-offs
([px]× 103). 30

5.4 Average difference of the number of denoised pixels and ratio wrt the
size of the frame by using the SSD and SAD objective functions on
the block matching algorithm with pixel decimation and block sub-
sampling ([px]× 103). 31

5.5 Average difference of the number of denoised pixels and ratio wrt the
size of the frame by using the SSD and SAD objective functions on the
block matching algorithm with pixel decimation, block subsampling
and with early cut-offs ([px]× 103). 31

5.6 Average difference of the number of denoised pixels and ratio wrt the
size of the frame by using the SSD and SAD objective functions on
the block matching algorithm with pixel decimation and the additional
block subsampling ([px]× 103). 32

5.7 Average difference of the number of denoised pixels and ratio wrt the
size of the frame by using the SSD and SAD objective functions on
the block matching algorithm with pixel decimation, the additional
subsampling and early cut-off ([px]× 103). 32

5.8 Comparison between the denoising rate without any motion estimation
and with the full search algorithm with no pixel decimation. 37

67

5.9 Comparison between the denoising rate without any motion estimation
and with the full search algorithm with pixel decimation. 38

5.10 Comparison between the denoising rate without any motion estimation
and with the full search algorithm with pixel decimation and early cut-
off. 39

5.11 Comparison between the denoising rate without any motion estimation
and with the block matching algorithm with pixel decimation and
block subsampling. 40

5.12 Comparison between the denoising rate without any motion estimation
and with the block matching algorithm with pixel decimation, block
subsampling and early cut-off. 41

5.13 Comparison between the denoising rate without any motion estimation
and with the block matching algorithm with pixel decimation and
ulterior block subsampling. 42

5.14 Comparison between the denoising rate without any motion estimation
and with the block matching algorithm with pixel decimation, ulterior
block subsampling and early cut-off. 43

5.15 Overview table where the average denoising rates of all the algorithms,
with a block size of 16×16, are summarized, for a clear comparison
between them. The first Table shows the results without subsampling,
while the results with subsampling are reported on the second Table. 44

68

References

[1] E. Ballan, “Evaluation of block-matching parameters for motion compensated
temporal denoising.”

[2] K. Sayood, Introduction to Data Compression. Morgan Kaufmann, 2012.

[3] B. E. Bayer, “Color imaging array,” Patent.

[4] B. Horn and B. Schunk, “Determining optical flow,” Artificial Intelligence,
vol. 17, pp. 185–203, 1981.

[5] B. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” Proc. of the DARPA Image Understanding Work-
shop, pp. 121–130, 1984.

[6] A. N. Netravali and J. D. Robbins, “Motion-compensated television coding:
Part i,” The Bell System Technical Journal, vol. 58, no. 3, pp. 631–670, March
1979.

[7] R. Srinivasan and K. Rao, “Predictive coding based on efficient motion esti-
mation,” IEEE Transactions on Communications, vol. 33, no. 8, pp. 888–896,
August 1985.

[8] H. G. Musmann, P. Pirsch, and H. . Grallert, “Advances in picture coding,”
Proceedings of the IEEE, vol. 73, no. 4, pp. 523–548, April 1985.

[9] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high ef-
ficiency video coding (hevc) standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[10] Wenjie Yin, Haiwu Zhao, Guoping Li, Guozhong Wang, and Guowei Teng, “A
block based temporal spatial nonlocal mean algorithm for video denoising with
multiple resolution,” in 2012 6th International Conference on Signal Processing
and Communication Systems, Dec 2012, pp. 1–4.

69

[11] K. J. Boo and N. K. Bose, “A motion-compensated spatio-temporal filter for
image sequences with signal-dependent noise,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 3, pp. 287–298, June 1998.

[12] A. A. Yahya, J. Tan, B. Su, and K. Liu, “Video denoising based on spatial-
temporal filtering,” in 2016 6th International Conference on Digital Home
(ICDH), Dec 2016, pp. 34–37.

[13] A. H. Y. I. T. I. T. Koga, K. Iinuma, “Motioncompensated interframe coding
for video conferencing,” Proc. National Telecommunication Conference, 1981.

[14] Reoxiang Li, Bing Zeng, and M. L. Liou, “A new three-step search algorithm
for block motion estimation,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 4, no. 4, pp. 438–442, Aug 1994.

[15] Shan Zhu and Kai-Kuang Ma, “A new diamond search algorithm for fast block
matching motion estimation,” in Proceedings of ICICS, 1997 International
Conference on Information, Communications and Signal Processing. Theme:
Trends in Information Systems Engineering and Wireless Multimedia Commu-
nications (Cat., vol. 1, Sep. 1997, pp. 292–296 vol.1.

[16] Yao Nie and Kai-Kuang Ma, “Adaptive rood pattern search for fast block-
matching motion estimation,” IEEE Transactions on Image Processing, vol. 11,
no. 12, pp. 1442–1449, Dec 2002.

[17] N. Purnachand, L. N. Alves, and A. Navarro, “Fast motion estimation algo-
rithm for hevc,” in 2012 IEEE Second International Conference on Consumer
Electronics - Berlin (ICCE-Berlin), Sep. 2012, pp. 34–37.

[18] S. Acharjee, D. Biswas, N. Dey, P. Maji, and S. S. Chaudhuri, “An efficient
motion estimation algorithm using division mechanism of low and high mo-
tion zone,” in 2013 International Mutli-Conference on Automation, Computing,
Communication, Control and Compressed Sensing (iMac4s), March 2013, pp.
169–172.

[19] B. N. J. A. Z. Wei, D. Lee and B. Edwards, “Fpga-based embedded motion
estimation sensor,” International Journal of Reconfigurable Computing, 2008.

70

[20] Y.-g. Xue, H.-y. Su, J. Ren, M. Wen, C.-y. Zhang, and L.-q. Xiao, “A highly
parallel and scalable motion estimation algorithm with gpu for hevc,” Scientific
Programming, vol. 2017, pp. 1–15, 10 2017.

[21] J. Olivares, I. Benavides, J. Hormigo, J. Villalba, and E. Zapata, “Fast full-
search block matching algorithm motion estimation alternatives in fpga,” in
2006 International Conference on Field Programmable Logic and Applications,
Aug 2006, pp. 1–4.

[22] J. Watkinson, The Engineer’s Guide to Motion Compensation. Snell e Wilcox,
1994.

[23] Yui-Lam Chan and Wan-Chi Siu, “A new block motion vector estimation us-
ing adaptive pixel decimation,” in 1995 International Conference on Acoustics,
Speech, and Signal Processing, vol. 4, May 1995, pp. 2257–2260 vol.4.

[24] Lei Hua, Lei Xie, and Huifang Chen, “A color interpolation algorithm for bayer
pattern digital cameras based on green components and color difference space,”
in 2010 IEEE International Conference on Progress in Informatics and Com-
puting, vol. 2, Dec 2010, pp. 791–795.

[25] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion
vectors,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 3, no. 2, pp. 148–157, April 1993.

71

Acknowledgments

First of all, I would like to thank my supervisor Professor Giancarlo Calvagno and
my co-supervisor Stefano Andriani, for the great opportunity that they offered me,
along with all the advice and help they gave me during the course of these months.

I would also like to thank my family and my closest friends, for all the support
and encouragement they provided me, besides the patience they had, during all these
years of university.

Thank you

72

	Abstract
	Introduction
	Theoretical Background
	Digital Cameras
	Block Matching
	Denoising

	Related Works
	Proposed Approach
	Full Search Revisited
	Block Subsampling
	Additional Subsampling
	Early Cut-Off

	Results
	Video Sequences Description
	Results

	Conclusion
	List of figures
	List of tables
	References
	Acknowledgments

