
Università degli Studi di

Padova
Scuola di Ingegneria

Dipartimento di igegneria Industriale

Corso di Laurea Magistrale in Ingegneria dell'Energia Elettrica

Modelling variable loading through

machine learning prediction model for an

impact assessment concerning distribution

networks

Relatore: Laureando:
Prof. Roberto Turri Samuele Faccioni

Matricola 1156897

Correlatore:
Dr. Keith Sunderland

Anno accademico 2018-2019

Alla mia famiglia e a Claudia

Contents

0.1 Aknowledgments . xi

0.2 Ringraziamenti . xi

Abstract xiii

Abbreviations xv

1 Introduction 1

1.1 Machine Learning . 2

1.2 Three main types of machine learning 3

1.2.1 Supervised learning . 4

1.2.2 Unsupervised learning 4

1.2.3 Reinforcement learning 4

1.2.4 Classi�er . 5

1.2.5 Predictor . 5

2 Machine learning features 7

2.1 Introduction . 7

2.1.1 Quality prediction parameters: MSE and R2 7

2.2 Data pre-processing . 8

2.3 Adeline . 8

2.3.1 Optimization for a cost function 10

2.4 Linear regression . 11

2.5 SVM and SVR . 12

2.6 Decision tree and RFR . 16

2.6.1 Structure of a decision tree 16

2.6.2 Random Forest Regressor 19

3 Case of study and Data pro�le 21

3.1 Introduction . 21

3.1.1 Smart metering method and data collection 22

3.2 Network considered . 22

v

CONTENTS

4 Pre-processing data and SVR, RFR models 27

4.1 introduction . 27
4.2 Data preprocessing . 27

4.2.1 Choice of only residential ID 29
4.2.2 Add solar features . 34
4.2.3 Isolate singular customer 36
4.2.4 Lumped loading generation 39

4.3 SVR model and RFR model 42
4.4 Bench test matrix . 49

5 Simulink model 53

5.1 introduction . 53
5.2 Simulink model . 53

5.2.1 Three Phase Load Block 57

6 Matlab model 59

6.1 Matlab code . 59
6.1.1 Compute grid parameters 61
6.1.2 Matlab Plot and Graphs 63

6.2 Network losses . 65
6.2.1 Losses computation in matlab 67

7 Results 73

7.1 Bench test result . 73
7.2 Simulink and matlab result 74
7.3 SVR and RFR model results 75

8 Conclusion and futures works 83

8.1 Conclusion . 83
8.2 Future work . 83

Bibliography 85

vi

List of Figures

1.2 . 5

2.1 . 9
2.2 Learning inside a single layer ADALINE 10
2.3 Linear regression example . 11
2.4 Linear SVM, Margin and hyoerplane [20] 12
2.5 E�ects of C on out prediction 14
2.6 Kernel transformed . 15
2.7 Step of kernel method . 15
2.8 Example of decisional tree . 16
2.9 Example of decisional tree classi�caion [4] 17

3.1 Network used in the simulation [24] [25] [26] 23

4.1 Flow chart of the Pre-processing data 28
4.2 Flow chart of the �rst cleaning 30
4.3 Head of dataframe of single customer 41
4.4 Dataframe zoom of a single customer 42

5.1 Simulink model . 55
5.2 Simulink model detail . 56
5.3 Single load model . 57
5.4 Repeating sequence interpolated block 58

6.1 Power �ow �owchart . 60
6.2 Power 24 houses: each colored line is a house 64
6.3 Total power in each of four feeders: each colored line repre-

sents one feeder . 64
6.4 Power24 houses in 3D . 65
6.5 Measurement block . 66

7.1 Theoretical R2 score vs Avg error 74
7.2 Average error from simulink test 75
7.3 SVR setting . 76
7.4 SVR average score for train and test set 76

vii

LIST OF FIGURES

7.5 RFR average score for train and test set along 100 days. . . . 77
7.6 Flow chart AVG score generator, for single day and multiple

Lump, and multiple day and total Lump score 78

viii

List of Tables

3.1 Example of data . 22
3.2 Table of network values [24] [25] [26] 25

5.1 Example of output matlab matrix 58

ix

Aknowledgments

0.1 Aknowledgments

At the end of this academic pathway I would like to extend my gratitude
to Prof. Roberto Turri, for giving me the opportunity to make this inter-
national experience at the Tecnological University Dublin and to Dr. Keith
Sunderland (Assistent Head of School Electrical and Electronic Engineering
at TU Dublin) for the help he gave me and because he allowed me to work
on a topic projected into the future.

A big thank you is for my parents Renzo and IOle who have allowed me
to reach this wonderful goal, supporting me in all my choices and moments of
di�culties and to my sister Georgia who is always able to listen and ready to
help me. Special thanks are for Claudia, you have been able to understand
me and support me in di�cult moments.

Many thank at all the guys of the room 13 of the TU Dublin of Kevin
street for the beautiful moments and for the fantastic working ambient which
they made possible.

0.2 Ringraziamenti

Alla �ne di questo percorso di studi desidero porgere la mia gratitudine al
Prof. Roberto Turri, per avermi dato la possibilità di fare questa esperienza
internazionale presso la Tecnological University Dublin e al Dr. Keith Sun-
derland (capo dipartimento di ingegneria elettrica del DIT) per l'aiuto che
mi ha dato e poiché mi ha permesso di lavorare su un argomento proiettato
al futuro.

Un grande ringraziamento va ai miei genitori Renzo e Iole che mi hanno
permesso di raggiungere questo meraviglioso traguardo, appoggiandomi e
sostenendomi in ogni mia scelta e nei momenti di di�coltà e a mia sorella
Georgia per la pazienza nell'ascoltarmi e per essere sempre pronta ad aiu-
tarmi.

Un ringraziamento speciale va a Claudia per l'aiuto e il sostegno nei
momenti di�cili, lungo questa avventura.

xi

Abstract

In this thesis we will deal with the application of new machine learning tech-
nologies to an Irish power grid model. The project involves the collection,
preparation, cleaning and employement of historical load data of 4000 Irish
customers to train the SVR and RFR algorithms. The impact of forecast-
ing associated with the application of two models to and example of Irish
distribuition Network and the implementation on system losses, is analysed.
The results deriving from the two forecasting models are then compared, in-
serting them in a Simulink and matlab environment that proceeds to perform
a network power �ow. It can be seen that the SVR (Support Vector Machine)
and RFR (Random Forest Regressor) models cannot achieve an optimal er-
ror to be used without the help of training optimization algorithms and the
parameters that manage training sets. However, this technology is becoming
more and more important in the �eld of electricity grid management, helping
the control center both to manage the power peaks of a line and to increase
the protection of sensitive data obtained through the smart grid.

xiii

Abbreviations

Abbreviation Meaning

Adeline ADAptive LInear NEuron
AI Arti�cial Intelligence
AMI Advanced Metering Infrastructure
ANN Arti�cial Neural Network
CER Commision for Energy Regulation
CRU Commission for Regulation of Utilities
GA genetic Algorithm
HV High Voltage
IG Information Gain
LV Low Voltage
ML Machine Learning
MSE Mean Square Error
MV Medium Voltage
NEAT NeuroEvolution of Augmenting Topologies
PSO particle Swarm Optimization
pu Per Unit
PV Photovoltaic
RBF Radial Basis Function
RFR Random Forest Regressor
SSE Sum of Squared Errors
SST Total Squared Sum
SVM Support Vector Machine
SVR Support Vector Regressor

xv

Chapter 1

Introduction

Due to the deeper and deeper penetration of renewable energy systems in our
power grid, and as consequence of their intermittent and non-programmable
energy sources, power �ow will be highly variable, adding more di�cult to
predit them. Right now, the �nal user,thanks to the solar power generation,
could be a producer and not just a consumer; so the system needs to be able
to manage the energy and power �ows between the generation's systems
and the loads. This option is available with a smart-grid, which facilitates
the control and protection in real time even in the case of sudden non-
programmable events. Also having the possibility to collect real time data
about the state of the grid, it is possible to do a prediction of the dayly
utilized power. A prediction of the dayly power �ux, letting us to manage
better our Battery Energy Storage Systems (BESS), reducing their cost, by
minimizing the capacity of the BESS or by optimizing it's operation [1] or, as
in Australia, is usefull to choose the optimal allocation of generators[2]. The
main strenght of the smart grid is the communication and is also its weakness:
smart meters are used to collect real time data and ,after measurement, send
it to the control station which can take the proper decision, but this chain-
system is weak to cyber-attacks. The data can be tampered or attacked to
mislead the decision-making of the control station [3]. To try to defend to
this attack, ML-algorithms, as support vector machine (SVM), can be usefull
to detect the false input data injectred in the system.

The thesis work is divided into 8 chapters:

� chapter 1 : introduction to machine learning

� chapter 2 : machine learning features

� chapter 3 : case of study and data pro�le

� chapter 4 : pre-processing data and SVR, RFR models

1

CHAPTER 1. INTRODUCTION

� chapter 5 : simulink model

� chapter 6 : matlab model

� chapter 7 : results

� chapter 8 : conclusion and futures works

1.1 Machine Learning

Machine learning is a branch of Arti�cial Intelligence, which studies and
develops learning algorithms to make forecast prediction or to identify rules
inside data and build a model to explain this intrinsic feature of the dataset.
Without a human presence to detect structures and logic connections inside
a dataset, the machine learning is able to detect rules and to create models
to analyse data and to allow us to make a better idea in order to take a
better future decision. Nowadays Machine Learning is getting more and
more important also in our daylife, because it is a common tool which we
use every day, as spam mail �lter, voice or text recognition software, in the
internet reasearch motor and also is already built in car's autopilot [4].

The �rst to theorize machine learning algorithms was Arthur Samuel in 1959
[5]. At the end of the 50s researchers like Arthur Samuel, Marvin Minsky and
Frank Rosenblatt, tried to create machines that were able to learn from data,
using, as an approach, both various formal methods and the �rst embryos of
neural networks [6].

Also in the 50s, Alan Turing proposed the idea of a learning machine, that
is able to learn and therefore become intelligent. Turing's speci�c proposal
anticipates genetic algorithms [7].

For problems in both theoretical and practical data acquisition, the devel-
opment of machine learning, which was based mainly on probabilistic sys-
tems, slowed down. Only towards the end of the 90s when his objective
changed from obtaining arti�cial intelligence, therefore a machine capable of
autonomous thinking, to tackle solvable problems of a practical nature and
headed towards methods and models borrowed from statistics and theory of
probability [8].

Nowadays the �elds of use of these learning algorithms are various: they
cover from text speech recognition, to automatic driving of vehicles, to use
as automatic classi�ers in various �elds such as medical, astronomical or
software. In astronomy, machine learning algorithms are used to classify and
identify images of space celestial bodies, just as in medicine they are used
to aid in medical diagnosis, for example by helping to recognize potential
cancer cells from healthy cells [9] [10] [11].

2

CHAPTER 1. INTRODUCTION

1.2 Three main types of machine learning

Machine learning tasks are typically classi�ed into three broad categories,
depending on the nature of the "signal" used for learning or the "feedback"
available to the learning system. There three categories are: Supervised and
Semi-supervised learning, Unsupervised learning, Reinforcement learning.

In the supervised learning, the model is given examples, in the form of pos-
sible inputs and the respective desired outputs, and the goal is to extract a
general rule that associates the input to the correct output.

In the unsupervised learning, the model has the purpose of �nding a structure
in the inputs provided, without the inputs being labeled in any way.

In the reinforcement learning, the model interacts with a dynamic environ-
ment in which it tries to reach a goal (for example driving a vehicle), having
a teacher who tells him only if he has achieved the goal. Another example
is to learn to play a game by playing against an opponent.

Halfway between supervised and unsupervised learning is semi-supervised
learning, in which the "teacher" provides an incomplete training dataset, that
is, a set of training data among which there are data without the respective
desired output.

Another categorization of machine learning tasks is detected when consider-
ing the desired output of the machine learning system.

In classi�cation, the outputs are divided into two or more classes or labels
and the learning system must produce a model that assigns inputs not yet
seen to one or more of them. This is usually dealt with in a supervised
manner. Anti-spam �ltering is an example of classi�cation, where the inputs
are emails and the classes are "spam" and "not spam".

In the regression, which is also a supervised problem, the output and model
used are continuous. An example of regression is the determination of the
amount of oil present in an oil pipeline, having the measurements of the
attenuation of gamma rays passing through the conduit. Another example
is the prediction of the value of the exchange rate of a currency in the future,
given its values in recent times [12].

In clustering a set of inputs is divided into groups. Unlike in the case of
classi�cation, groups are not known before, typically making it an unsuper-
vised task. The cluster analysis, or clustering, is the assignment of a set
of observations in subgroups (clusters) so that the observations in the same
cluster are similar in certain characteristics. It is a common technique for
statistical data analysis.

3

CHAPTER 1. INTRODUCTION

1.2.1 Supervised learning

The main goal of the supervised learning algorithm is to extrapolate a model
from a set of labeled training data, which allows us carry out a prediction
with future data. The 1.1 is an exmplame of the logic behind the process.

Figure 1.1: Flow chaarft of supervised learning algorithm

The name supervised comes from the fact that we already know the output
of the training dataset, so we know the labels. After the training we have a
model which can be used to classy new data or we can chose to predict new
data output from new data input.

1.2.2 Unsupervised learning

With this type of algorithm we have not labeled data, or even unknown
structure, but the learning process is able to give us back important infor-
mation about the structure of our data without a �xed reward or a given
output. As shown before there are di�erent technique of unsupervised learn-
ing as clustering methods or multi dimensional data reduction, for clearing
the data from rumors.

1.2.3 Reinforcement learning

In the reinforcement learning the main purpose is to create a system which
can improve perfomance thanks to interactions with the enviroment. This
can be understood with an example: think about the chess game. Our

4

CHAPTER 1. INTRODUCTION

enviroment will be the chessboard. Our algorithm have to learn a series of
action to try to maximaze its reward, which in this case is the victory of the
game, using a trial-and-error approach. So in the reinforcement learning the
main purpose of the learning algorithm will be try to get the reward with
the maximum e�ciency.

Figure 1.2
Flow chart, Reinforced Learning mechanisms [4]

1.2.4 Classi�er

In the classi�cation the main purpose is to give the correct label to the new
dataset input thanks to the past observation that it has done in the training
session. The labels are discrete value, no ordered and we can have a binary
classi�cation or multiclass classi�cation. The second one is used to recognise
the written text, where we have multiple labels for each alphabet letters, so
we have a better precision in the predicted classi�cation of new written text
from di�erent people. Although, it's important to remind which the system
cannot recognise the numbers if these aren't inside our training dataset.

In this �gure is possible to see how a binary classi�er works on a bidimen-
sional dataset where each data can be assigned at one color, red or green.
With a supervised learning algorithm we can obtain a rules to divide our
data (which is represented by the linear boundary, the dashed line) and to
be able to divide also the new input data thanks their x and y values.

1.2.5 Predictor

The second type of supervised learning algorithms are the regressor analysis
algorithm, in which we have some predictive variables, our features, and one
continuos target variable, our result. The main purpuse is to �nd a corre-
lation between features and target. There are di�erent type of regression,

5

CHAPTER 1. INTRODUCTION

Figure 1.3: Example of Binary Classi�er

most common: linear-regressor, SVR, RFR. In the next chapter they will be
explained.

6

Chapter 2

Machine learning features

2.1 Introduction

In recent years a lot of di�erent machine learning process are developed for
di�erent problems.It is important to remark which every machine learning
algorithm has some advantage and some disadvantage respec to the others
[13][14].The problem now is : how to choose the best ML algorithm.
To compare the di�erent algorithms between themselves is needed a refrence
metrics; usually is used the accuracy as reference. Another important step is
to tune the algorithm parameters, an operation which is di�erent for every
di�erent problem we are going to analyse. To do it, is possibile to use a
optimization programs.

2.1.1 Quality prediction parameters: MSE and R2

The MSE (Mean Squared Error) is the mean value of the minimizing SSE
cost function.

MSE =
1

n

n∑
i=1

(y(i) − yp(i))2

It is very usefull to confront di�erent regression model, to optimize their
parametres.

Sometimes is better use a coe�cient of determination (R2) that could be saw
as a standard version of the MSE error and could give us a better model's
performance.
R2 is de�ned as:

R2 = 1− SSE

SST

7

CHAPTER 2. MACHINE LEARNING FEATURES

where SST is the total square sum SST =
∑n

i=1(y
(i) − µy)2 which is the

variance of the response. For the training dataset R2 is bounded between 0
and 1, where R2 = 1 means that the model colud perfectly rappresent the
dataset and MSE will be 0. The coe�cient of determination could be nega-
tive for the test set, in this case our model can't undestand the relationship
between the variables.

2.2 Data pre-processing

It is rare that data is already optimally shaped for our learning alogrithm,
so most of the time pre-processing work is required to have the maximum
e�ciency from our learner. Most of the ML algorithms need also that all the
input data must be standardized in a range from 0 to 1 or in the standard
normal distribuition with a mean value of zero and a variance of one. Some
features of the dataset could have a high correlation bewtween themselves,
so it maybe possible to cancel some of them with out changing the �nal re-
sult or even improving the total e�ciency of the program [4]. Moreover the
reduction of dimensionality of the input dataset reduces the necessary mem-
ory to store the dataset and reduces the training time. It is also important
split our input dataset into a training group and test group of data. The
training group is used to let our algorithm to make the prediction model,
instead the test group is used at the end of model building process, to check
the accuracy of the model when new data are given as input. In chapter 4
this topic will be studied in depth and shown.

2.3 Adeline

Studying the principles of the functioning of the human brain to apply them
to arti�cial intelligence, Warren McCullock and Walter Pitts published in
1943 a �rst simpli�ed brain cell scheme, the so-called McCullock-Pitts neu-
ron. They then tried to create a logic gate that functioned like a neuron
of the human brain, which acquires multiple input signals and when they
exceed a certain threshold begins to transmit with the next cell [15] .

A few years later, Frank Rosenblatt published the �rst concept of the per-
ceptron learning rule based on the McCullock-Pitts neuron model [16].

The author proposed an algorithm that would automatically learn the opti-
mal weight coe�cients to be multiplied with the input characteristics so as
to be able to make the decision on whether a neuron is activated or not.

8

CHAPTER 2. MACHINE LEARNING FEATURES

It can therefore be traced back to a binary classi�cation problem where there
are two classes, one 1 (positive class) and -1 (negative class).

We can then de�ne an activation function Φ(∗) is a piecewise-de�ned func-
tion, which is sometimes called the Heaviside step function:

Φ(z) =

{
1 if z ≥ θ
−1 else

it takes a linear combination of certain input values "x" and a corresponding
weight vector "ω", where "z" is the so-called network input; if the activation
of a speci�c sample "x" is greater than a certain threshold "Θ", it is possible
to make a prediction if the sample will fall into the positive or negative class
and then label it.

z can be written in a compact form like:

z = ωTx

It is thus seen in the �gure 2.1 that the input z is reduced in a binary output
by the activation function and how it can be used to discriminate between
two classes that can be separated in a linear way.

Figure 2.1
[4]

From the preception's theory one of the �rst and oldest mono neural network
born: Adeline, ADAptive LInear NEuron, it was published in the 1960 by
Bernard Widrow and Ted. it is a early single-layer arti�cial neural network
which introduces the concept of de�nition and minimization of a cost func-
tion J , which will be the bases of all the later machine learning algorithms
as SVM or ANN [17]. The next section will explain J .
The main feature of ADALINE, respect of the preceptron, is that in the
learning phase, the weights are adjusteed according to the weighted sum of
the inputs (the net).

9

CHAPTER 2. MACHINE LEARNING FEATURES

Figure 2.2: Learning inside a single layer ADALINE

In the �gure 2.2 we can see how a single layer Adaline works:

� INPUT:

1. x is the input vector

2. ω is the weight vector

3. η is the number of inputs

4. Θ some constant

� OUTPUT: y =
∑n

j=1 xjwj + θ which is the output of the model.

Here we can use the continuos output given by the linear activation function
to compute the model's error and to correct the weights instead of using the
labels of a class.

In Adaline the linear activation function is used for learning weights and
a quantizer is used to predict the classes of labels, such as the unit step
function previously seen in the preceptron.

2.3.1 Optimization for a cost function

One of the main features of supervised machine learning algorithms is to de-

�ne an objective function which will be optimized along the training process.

Usually this objective function is a cost function; for example using Adaline,

it is possible to de�ne the cost fuinction as J to learn the weights as SSE

(Sum of the Squared Errors) betweeen the true values and the calculated

values.

J =
1

2
Σi(y

(i) − φ(z(i)))2

10

CHAPTER 2. MACHINE LEARNING FEATURES

The main advantage of this function is which it is di�erential and convex,
so we can apply an optimization algorithm (as the gradient discend) to �nd
the weights which minimize the cost function.

2.4 Linear regression

The main goal of a linear regression model is try to undestand and to replicate

the relation between one characteristic (ξ) and a continuos response (variable

target y) [18]. The y is de�ned as:

y = w0 + w1x

� ω0 is the y-intercept

� ω1 is the coe�cient of the descriptive variable

If we know weights to describe the relation,correlation between the input and
the output of the variables, it will be able to predict also the response of new
descriptive variables, which aren't in the initial dataset (training dataset).
We cans ay that the wea re looking for the best linear function to interpolate
the sampling points as in the �gure 2.3.

Figure 2.3: Linear regression example

This is an example of simple linear regression with only one variable, but
is possible to extend this type or regression at a multiple linear regression,
where multiple correlated dependedent variables are predicted [19].

11

CHAPTER 2. MACHINE LEARNING FEATURES

2.5 SVM and SVR

Another exstention of the old preceptron is the SVM, Support Vector Ma-
chine, which is a supervised learning model that could be used to analyse
data for classi�cation and regression analysis. With Adaline our main goal
was minimizing the cost function, now with the SVM the main purpose is
to maximize the margin de�ned by the hyperplane and the training set.
The hyperplane is essentially a linear subspace of a dimension smaller than
one (n - 1) with respect to the space in which it is contained (n). If space
has dimension 3, its hyperplanes are the plans.

Figure 2.4: Linear SVM, Margin and hyoerplane [20]

An exmaple of margin for a linear SVM is in �gure 2.4 where is possible to
see also the Support Vectors, which are the nearest training points to the
hyperplane. In this type of algorithms is important to maximize the margin,
to reduce the overall error and avoid the over�tting e�ect.

An SVM model is a representation of the input data (examples) as points
in a space, mapped so that the input data, which are belonging at di�erent
categories, are divided by a clear gap (margin) that we want as wide as
possible. New examples are then added into the same space and predicted
to belong to a certain category according to which side of the margin the
fall.
SVM are able to do linear and non-linear prediction by using the kernel
transform, basiccaly mapping their inputs into a high-dimensional feature
spaces [21].
For the linear case is possible to write f(x) = ω · x+ b; to reach the �atness

12

CHAPTER 2. MACHINE LEARNING FEATURES

of the function is way easier to minimize the norm (‖w‖2) [21].
So this is a convex optimization problem where we have to:

minimize
1

2
‖w‖2

subject to:

� yi − ω · xi − b ≤ ξ

� ω · xi + b− yi ≤ ξ

Sometimes the convex optimization problem is not feasible or we want to
allow some errors inside it, so similar to the "Soft margin"loss function, can
be introduce the salck variables ξi and ξi

∗ to cope with otherwise infeasible
constraints of the problem. So we use the Vapnik formulation (1995):

minimize
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξi
∗)

subject to:

� yi − ω · xi − b ≤ ξ + ξi

� ω · xi + b− yi ≤ ξξi∗

� ξi,ξi
∗ ≥ 0

So now the problem is feasible with a quadratic programs (for more compelte
mathematical analysis see [21]).
The variabile ξ was introduced becasue the linearity constraints must be
mitigated for non-linear data, to allow the convergence of the system in the
case of bad classi�cated data.

13

CHAPTER 2. MACHINE LEARNING FEATURES

Figure 2.5: E�ects of C on out prediction

The �gure 2.5 shows as modifying C, we obtain di�erent compromise between
Bias and variance. The variance measures the coherence (or variability) of
the prediction of the model for a given instance of the sample if we repeat
the training of the model several times, for example, on di�erent sets of the
training dataset. We can say that the model is sensitive to the random-
ness of training data. On the contrary, the bias, the discrepancy, measures
how far the forecasts are compared to the corrected values in general, if we
reconstruct the model several times on di�erent training datasets; the bias
measures the systematic error that is not related to randomness [4].

The C variable lets us to control the penalty for a wrong classi�cation,
therefore the contant C > 0 determines the trade-o� bewteen the �atness
of the function and the amount up to which deviations larger than ξ are
tolerated. So larger C value means greater penalty of the errror.

Non-linear problems, Kernel solution

A problem can be de�ned in a space of �nite dimensions, but often it happens

that the sets to be distinguished are not linearly separable in that space. For

this reason it was proposed that the original space of �nite size be mapped

into a space with a larger number of dimensions, presumably making it easier

to �nd a separation in this new space.

To resolve non-linear problems the utilization of the kernel method is re-

quired. The kernel method's ideas consist of creating a linear combination

of the original features to map them into a higher dimensional space using

a function Φ(·) , where the data are linearly separable. The �gure 2.7 is

a graphical rappresentation of how a kernel method works: at the begging

14

CHAPTER 2. MACHINE LEARNING FEATURES

Figure 2.6: Kernel transformed

Figure 2.7: Step of kernel method

we have a bidimentional space, which becomes a tridimentional space where

the two classes are linear separable through a projection:

Φ(x1, x2) = (z1, z2, z3) = (x1, x2, x1
2 + x2

2)

This trick lets us to use a linear hyperplane to divide the two classes, even if

our original data aren't linearly separable. The main problem of this method

is that more dimensions we have, the more the computational cost raises.

To avoid it is better change the product x(i)Tx(j) into Φ(x(i))TΦ(x(j)). So

to avoid the computational cost of explicit calculation, we de�ne the Kernel

function:

k(x(i), x(j)) = Φ(x(i))TΦ(x(j))

This process is essential to allow the SVM or SVR to work: these algorithms
work by creating a linear separation between two input classes, but if the

15

CHAPTER 2. MACHINE LEARNING FEATURES

input space is not linearly separable the algorithms would not reach a result.
It is therefore necessary to use the kernel method to be able to divide them
into two groups.

One of the most used kernel function is the Radial Basis Function (kernel

RBF), which are de�ned as:

k(x(i), x(j)) = exp(−
∥∥x(i) − x(j)

∥∥2

2σ2
)

It is possible rewrite the exquation as:

k(x(i), x(j)) = exp(−γ
∥∥∥x(i) − x(j)

∥∥∥2

)

with γ = 1
2σ2 which is a free parameter that can be optimizated. If we in-

crease the γ value, we are using a decisional boundary softer. It is important
to not choose a γ value too big, to avoid to incur into over�tting of the data.

2.6 Decision tree and RFR

2.6.1 Structure of a decision tree

A decision tree is a �ow-chart structure which take decisions based on the
response of a series of question as show in �gure 2.8. The same structure is
used for the numerical cases.

Figure 2.8: Example of decisional tree

16

CHAPTER 2. MACHINE LEARNING FEATURES

Based on the training dataset features, the decision tree model learns a series
of question to de�ne (by inference) the labels of the classes. The working
schedule is easy, we give at the tree's root the input data and it will follow
the path to the leaf which gives the maximum information gain, called "IG".
In the pratical case is important to limit the depth of the tree to avoid the
over�tting phenomenon, which cause a wrong classi�cation of the new input
data.

Figure 2.9: Example of decisional tree classi�caion [4]

The information gain is a synonym for Kullback-Leibler divergence, which
is a measure of how one probability distribution is di�erent from a second
reference probability distribution [22].
So IG is de�ne as:

IG(Df , s) = I(Df)−
m∑
j=1

Ns

Nf
I(Ds)

where:

� Df and DS are father's and son's dataset

� I is a measure of impurity

� Nf is the total number of samples of the father node

� Ns is the total number of samples of the j-son node

Therefore the Information gain is the di�erence between father's impurity
and the summ of the son's impurity: so lesser impurity in the son's node

17

CHAPTER 2. MACHINE LEARNING FEATURES

means higher IG. In the binary case, there are only two sons from one father
(right and left son) so the formula is easier to compute:

IG(Df , s) = I(Df)−
Nleft

Nf
I(Dleft)−

Nright

Nf
I(Dright)

Usually are used three impurity criteria: Gini's impurity, entropy or classi-
�cation error.

The index of heterogeneity, or impurity, of Gini is an index of heterogeneity
for qualitative variables. It o�ers a measure of the heterogeneity (homogene-
ity) of a statistical distribution starting from the relative frequency values
associated with the κ mode of a generic variable χ [23].
This means that if the data are distributed heterogeneously on all the κ
modes of χ (that is, if the modes have similar numbers or, in the case of
maximum heterogeneity, the same), the Gini index is high , vice versa, in
the case of a uniform frequency distribution, the index will be (low percent-
age).
The Gini index is de�ned as follows:

I = 1−
k∑
i=1

fi
2

where the fi are the relative frequencies of κ mode of χ [23]. So the impu-
rity of Gini can be considered as a criterion to minimize the probability of a
wrong classi�cation.

In the entropy criterion, the impurity is 0 if all the samples of a node belong
to the same class and it is maximum if we have a uniform distribution in
the classes. So the entropy criterion seeks to maximize mutual information
within a tree [4].
In practice, both the entropy criterion and the Gini criterion provide similar
results.

The classi�cation error is de�ned as:

IE = 1−maxp(i|t)

where p(i|t) are all non-empty classes.
This criterion is less sensitive to changes in the probability that nodes belong
to certain classes, so it is recommended for pruning branches, but not for
growing trees.

18

CHAPTER 2. MACHINE LEARNING FEATURES

2.6.2 Random Forest Regressor

The random forest is made by a decisional trees group, in which every tree
gives a prediction of the output label, and at the end the most voted label
for a speci�c input are assigned to it. Basically the random forest technique
is a combination of weak learning processes to build a stronger and more
robust �nal model, which gives a less general error and is less susceptible to
the over�tting problem.
The main advantage of the Random forest model is more resistant to input's
background rumors than the decision tree, so they need less tuning on the
parameters.
The only parameters which must be check is the number of the tree which
we are using, more trees means more accuracy, but more computational costs.

In the next chapters an SVR model and an RFR model will then be used to
try to make short-term power predictions and compare the results.
The SVR algorithm was chosen as a test, since it responds well to jobs with
short-term forecasts and can be better adapted to power forecasts, as it
manages to manage the high dimensionality of the input data, thanks to the
Kernel method. For the same reason, that is the high dimensionality of the
data, a comparison RFR is used, since it is a model that manages to manage
well even large dimensional spaces, at the cost of a higher computational
request, compared to the SVR.

19

Chapter 3

Case of study and Data pro�le

3.1 Introduction

In these last years the European Union has been a move towards smarter
electricity networks where Advanced Metering Infrastructure (AMI) has been
installed. Smart metering is an important tool to achieve the EU energy
policy goal of a modern, competitive and climate-neutral economy by 2050.
These rules de�ne three main goals: 20% cut in greenhouse gas emissions
(compared to 1990 levels),20% of the energy needs to be obtained from re-
newable sources and a 20% improvement in the energy e�ciency. These
objectives were set in 2007 by EU leaders and they are the main goals to
a sustainable and inclusive European growth for the 2050. The electronic
meters are positioned between the users and the energy distribution grids to
give back usefull information to distributors and sellers, improving the ser-
vice o�ered by suppliers and the management of the power and enrgy �ow
in the network. The smart meters allow us to create a two-way communi-
cation channel to transport data from the users to the data collection and
management center. So with this tecnology is possible to better monitoring
and control the network parameters and also give back in real time some
important data to the users as electricity tari�s and electrical parameters
[24]. This technology is particulary involved in the residential sector, be-
cause thank to smart metering is possible to extrapulate a lot of detailed
data about electricity consumption, which can be used to forecast maximum
dayly, weekly or monthly peaks of power deamnd for example.

The smart metering method was carried out by Commission for Energy Reg-
ulation (CER) between 2009 and 2010 (over the period 1st July to 31st
December); they installed smart meters in over 4000 residential houses in
Ireland.

21

CHAPTER 3. CASE OF STUDY AND DATA PROFILE

3.1.1 Smart metering method and data collection

The Commission for Regulation of Utilities (ex CER, founded in the 1999,
changed name in the 2017) is the control and regulation center for the elec-
tricity and natural gas sectors in Ireland, it is a organization which works
within the framework of national and EU energy policy which aim to create
a single European electricity market that best meets the needs of Europe's
energy consumers. The energy data were recorded with a frequency of half
hour and a series of questions are summited to the end users to de�ne their
habits. All the data are recorded as anonymus data, to protecct the personal
customer informations.

The next table report an example of how the data were collected: in the �rst
column there is the date of the year, in the second the energy value at the
corrispondent time and at the third column there is the ID of the customer.
The date is stored with a particular resolution: the �rst three numbers are
the day of the year and the last two digit are the day interval in which the
data were acquired. So a relevation done at the midnight of the �rst January
will be reported as : 001(�rst day of the year) 01(�rst interval of the day).
The data from the 00.31 till 01.00 of the same day (�rst of January) will be
stored as 00102 and so on.

time energy value ID

19501 0.958 1005

19502 0.885 1005

19501 0.999 1111

19502 0.850 1111

Table 3.1: Example of data

Therefore the data start from the 19501 of the 2012 and �nish at the 73048.
So the �rst data are from the midnight of the 14 July of the 2012 and the
last one is from 23.30 of the 31 December 2013. At these data will be joined
the ambient and the PV production data of the 2014 in Ireland.

3.2 Network considered

The generic urban model used for the simulations is shown in 3.1 and in the
Table 3.2 are reported the data used.

22

CHAPTER 3. CASE OF STUDY AND DATA PROFILE

Figure 3.1: Network used in the simulation [24] [25] [26]

23

CHAPTER 3. CASE OF STUDY AND DATA PROFILE

For the detailed description of the network, please refer to the thesis work of
the engineer Beccaria [24] [25] [26]. Below is a brief summary of the original
network layout taken from [24] [25] [26]:

1. Four of the feeders are modelled as simple lumped loads whilst the �fth
feeder is represented in full detail.

2. There is a total of 144 domestic single-phase house loads, distributed
equally between the feeder cables.

3. Three-phase and balanced loads will be considered. Neutral wire will
therefore not be considered in the model.

4. Three of the 400V feeders are represented as simple lumped loads with
only the fourth being represented in detail.

24

CHAPTER 3. CASE OF STUDY AND DATA PROFILE

Component Description Values

10kV detailed Feeder Circuit � Five feeder circuit compris-
ing 8 x 400kVA substations.
� Feeder cable comprises
1.5km of 185mm2 3 core
PICAS plus 1.5km of 95mm2

3 core PICAS
� 400KVA substations dis-
tributed equally along 3km
feeder

� 185mm2 Ca-
ble parameters:
0.164 + j0.080Ω/km
� 95mm2 Cable parame-
ters: 0.32+j0.087Ω/km

10/0.433kV Substation � Comprises one 400kVA
transformer
� Four outgoing 400V 3 phase
feeders
� ADMD of each feeder is
100kVA
� 144 customers supplied

10/0.433kV Transformer � 400kVA
� 5% impedance
� Dy11 windings
� X/R ratio of 15
� Taps set at 0% on HV side
� O� load ratio of 10/0.433kV

400V Detailed Feeder � Feeder comprises two seg-
ments of cable, 150 m of 185
mm2 CNE and 150 m of 95
mm2 CNE cable
� 36 customers distributed
evenly along each feeder
� Customers are distributed
evenly across three phases.
Overall balanced load is con-
sidered

� 185mm2 Ca-
ble parameters:
0.164 + j0.074Ω/km
(phase)
0.164 + j0.014Ω/km
(neutral)
� 95mm2 Cable parame-
ters: 0.32+j0.075Ω/km
(phase)
0.32 + j0.016Ω/km
(neutral)

Individual customers � Power factor equal to 1.0
� 30 m of service cable, 35
mm2 CNE

� Cable parameters: -
0.851 + j0.041Ω/km
(phase)
0.9 + j0.041Ω/km (neu-
tral)

Table 3.2: Table of network values [24] [25] [26]

25

Chapter 4

Pre-processing data and SVR,

RFR models

4.1 introduction

It has chosen to use Python 3.0 to write the model, to be able to use the
sktlearn library, pandas and numpy library, which allows to manage huge
chunck of data very quickly and store data into: pickle form for the Running
test and csv/xlsx form to transport the result into excel. Libraries are sets of
functions and classes that facilitate the writing of complex programs, giving
the programmer pre-fabricated packages to use to code programs.

4.2 Data preprocessing

As we so in chapter 2, before to use our dataset, is import to preprare and
shape it in the better which let us have the best accuracy on the prediction.
The process is divided into 4 main point:

1. Choice of only residential ID

2. Add solar features, as PV production, wind speed, irradiation, temper-

ature

3. Isolate singular customer

4. Lumped loading generation

27

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

Here there is a �ow chart of the process:

Figure 4.1: Flow chart of the Pre-processing data

28

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

4.2.1 Choice of only residential ID

From the total data we need to extrapolate only the residential customers to
feed the grid model. I took from the SME and Residential allocations only
the residential ID, simply loading the csv �le, and holding the ID only if in
the Code column i found 1, which means residential customer. After that i
save the clean dataframe into pickle �le, named residential ID pickle.

The Pickle is an internal Python data saving format that allows you to se-
rialize the saved data and transform it into a python expression, which can
be easily managed and manipulated using software that has access to this
language. In this way it allows to load and save large amounts of data in
less time, allowing intermediate rescue operations to be performed without
a�ecting the e�ciency of the program .

Due to the large amount of data, it is preferred let the orginal customers
�le separeted and i create a while loop system to clean simultaneously all
six group of data, just launching in parralel the following script, which is
going to read the ID inside the residential ID pickle, that was made before,
and compare it to the ID inside the energy datasets. The next �gure is a
explanetion of the �ow chart of the program, which is formed by 3 while
cycle that can select only the customers which we had selected before.

29

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

Figure 4.2: Flow chart of the �rst cleaning

The �rst block of the program is used to load the library pack.

1 #%%
2 # Load l i b r a r y
3 import pandas as pd
4 import numpy as np
5 import os
6 import time
7 import datet ime
8 # Path to s e t working d i r e c t o r y
9 PATH = "/Users /d18123388/Desktop/Codic i l avoro "

The second block load the customer �le and the residential ID pickle and
sort both matrix for the ID customers, and reset the dataframe index.

1 #%%
2

3 # Def ine the c o r r e c t A and B customers

30

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

4 # B i s the ID r e f f e r a l
5 # A are the customers
6 dfCA= pd . read_csv ("/Users /d18123388/Desktop/

proget to erasmus/Thes i s / samuele dubl in
p r o j e c t /not_clean_data/ o r i g i n / F i l e 6 . txt " , sep
=" ")

7

8 # Set d i r e c t o r y
9 os . chd i r (PATH)
10

11 dfCB = pd . read_pick le (' r e s ident i a l_ID . p i c k l e ')
12

13 #%%
14 #Re−oder matrix f o r customer_ID
15 dfCB = dfCB . sort_values (' r e s ident i a l_ID ')
16 dfCA = dfCA . sort_values (' customer_id ')
17

18 # re s e t working index
19 dfCB = dfCB . reset_index ()
20 dfCB = dfCB [[' r e s id ent i a l_ID ']]
21 dfCA = dfCA . reset_index ()
22 dfCA = dfCA . drop (' index ' , ax i s=1)

The second block is the function block: �rst are de�nited the counters, and
the indexs for matrix A (CA) and B (CB). After that, the main while-
cycle are inizialited, and another two while-cycle are initialized from it. The
�rst cycle checks if the ID in the big customer matrix are inside the reference
customer ID, which we want to hold. If it �nd it, the value on big datamatrix
are held, instead if is not found the function goes on to the next reference
index. The process goes on until the end of A matrix or B matrix (reference
matrix). At the end the new dataframe with only residential customers are
saved into pickle form, with the name that we give it in the input line at the
lunch of the program.

1

2 #%%
3 # Ask the name o f the save− f i l e
4 nome = input ("Nome de l f i l e che s t a i sa lvando ! :

")
5

6 #%%
7 # Function
8 # OP = opt i ona l
9 de f Clean_listA () :

31

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

10

11 # Set index f o r the whi l e cond i t i on
12

13 cb = in t (input (' I n s e r t ID_B=0 to s ta r t , d i g i t
0 : '))

14 ca = 0
15 pr in t (" Sta r t c l e an ing proce s s ! ")
16 counter = 4999
17 countera = 0
18 counterb = 0
19 counttot=0
20

21 whi le cb < len (dfCB) and ca < len (dfCA) :
22 # Fi r s t cond i c t i on o f f i r s t whi l e c y c l e
23 counter += 1
24 i f counter == 5000 :
25 t s = time . time ()
26 s t = datet ime . datet ime . fromtimestamp (t s) .

s t r f t ime ('%Y−%m−%d %H:%M:%S ')
27 pr in t ("Data : " + s t)
28 pr in t (" counter : " + s t r (counter))
29 counter = 0
30

31 whi le ca < len (dfCA) and dfCB [' r e s ident i a l_ID '
] [cb] == dfCA [' customer_id '] [ca] :

32 # OP: p r i n t (' Hold Value ! ')
33 ca += 1
34 countera += 1
35 counttot += 1
36 i f countera == 100000:
37 t s = time . time ()
38 s t = datet ime . datet ime . fromtimestamp (t s) .

s t r f t ime ('%Y−%m−%d %H:%M:%S ')
39 pr in t ("Data : " + s t)
40 pr in t (" counter a : " + s t r (countera) +"\ t "+s t r (

counttot))
41 countera = 0
42

43 # second cond i t i on o f the d e c i s i o n a l t r e e
44

45 whi le ca < len (dfCA) and dfCB [' r e s ident i a l_ID '
] [cb] > dfCA [' customer_id '] [ca] :

46 # OP: p r i n t (" Cleaning ! ")
47 dfCA [' customer_id '] [ca] = np . nan

32

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

48 ca += 1
49 counterb += 1
50 counttot += 1
51 i f counterb == 100000:
52 t s = time . time ()
53 s t = datet ime . datet ime . fromtimestamp (t s) .

s t r f t ime ('%Y−%m−%d %H:%M:%S ')
54 pr in t ("Data : " + s t)
55 pr in t (" counter b : " + s t r (counterb) +"\ t "+s t r (

counttot))
56 counterb = 0
57 # Brake whi l e c y c l e and go on next customer !
58 i f ca < len (dfCA) and dfCB [' r e s ident i a l_ID '] [cb

] != dfCA [' customer_id '] [ca] :
59 pr in t (" pross imo c l i e n t e ")
60 cb += 1
61

62

63 # Brake whi l e c y c l e /// Fin i shed to read the
matrix

64

65 pr in t ("End reading , going to drop Nan")
66 dfCA . dropna (thresh=3, i np l a c e = True)
67 # Save to p i c k l e the new−dataframe !
68 dfCA . to_pick le (' df '+nome+' _clean . p i c k l e ')
69 r e turn
70

71 # Cal l i ng the fucn t i on
72 Clean_listA ()
73

74 #%%
75 # Load c leaned matrix , to check i t
76 dfCA_pulita = pd . read_pick le (' df '+ nome +'

_clean . p i c k l e ')

The next script is used to join the six di�erent matrix into one Big data-
matrix, with the data of all 4000 customers from the midnight of the 13/14
July of the 2012/2013 till the 31 december of 2014.

1 #%%
2 # Import l i b r a r y pack
3 import pandas as pd
4 import os
5

33

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

6 #%%
7 # Set working path
8 PATH = "/Users /FX504GE − EN069T/Desktop/Codic i

l avoro / p a r t i a l p i c k l e "
9

10 os . chd i r (PATH)
11

12 #%%
13 # Load the f i r s t s t a r t i n g c l ean dataframe
14 df_tot = pd . read_pick le (' d fF i l e1_c l ean . p i c k l e ')
15

16 # Cyle For to merge the c l ean p i c k l e
17 f o r numb in range (2 , 7) :
18 df_pick l e = pd . read_pick le (' d f F i l e '+s t r (numb)+'

_clean . p i c k l e ')
19 df_tot = pd . concat ([df_tot , d f_pick le] ,

ignore_index =True)
20

21 #%%
22 # Saving the t o t a l matrix
23 df_tot . to_pick le (' df_tot . p i c k l e ')
24

25 #%%
26 # Check o f the Big−datamatrix
27 df = pd . read_pick le (' df_tot . p i c k l e ')

4.2.2 Add solar features

Now to add more features to the data i took PV generation data from (metti
da dove lo hai preso.. chiedere a Keith). The PV solar dataset strats from 1
january (2014), so i align the solar data con the right bigdata matrix, which
starts from 13 July.

1 #%%
2 # Load l i b r a r y
3 import pandas as pd
4 import os
5 # Set working path
6 PATH1 = "/Users /d18123388/Desktop/ proget to

erasmus/Thes i s / samuele dubl in p r o j e c t /
not_clean_data/ o r i g i n "

7

8 #%%

34

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

9 # Def ine the func t i on
10 de f preprocess_Solar_matr ix () :
11

12 # Load PV s o l a r matrix
13 os . chd i r (PATH1)
14 df1 = pd . read_csv ("Solar_Power_Matrix . csv " , sep

=' , ')
15

16 # Hold the data o f one year
17 df1 = df1 . l o c [: 1 7 5 1 9]
18

19 # Se l e c t and Extract the l a s t 8200 va lue s
20 # of PV s o l a r matrix
21 df8200 = df1 . l o c [9 3 1 0 :]
22

23 # Merge the data to c r e a t e
24 # one and ha l f year o f s o l a r data
25 df = pd . concat ([df8200 , df1] , ignore_index =

True)
26

27 # Change comma with dot , to trans form data
28 # to f l o a t form in next s e c t i o n !
29 df = df . s tack () . s t r . r ep l a c e (' , ' , ' . ') . unstack ()
30 df . to_pick le ("Solar_matrix . p i c k l e ")
31 r e turn
32

33 # Launch the func t i on
34 preprocess_Solar_matrix ()

Now is time to merge the two dataframe to create the �nal matrix. First
part of the script loads the two dataframes. The second block changes the
value of solar matrix in �oat type number (spiegazione di cosa sono). The
last block joins the two dataframes, using their index, into a bigger one, the
�nal dataframe, with 8 columns : time', 'energy target variable', 'tamb', 'vs',
'GF', 'Tc', 'neta c','PV power'.

1

2 #%%
3 # Set the new d i r e c t o r y
4 PATH ="/Users /d18123388/Desktop/Codic i l avoro "
5 os . chd i r (PATH)
6

7 #Load the big datamatrix
8 df_energy = pd . read_pick le (" p a r t i a l p i c k l e /

35

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

energy_tot_in_day . p i c k l e ")
9 df_Solar = pd . read_pick le ("Solar_matrix . p i c k l e

")
10

11 #%%
12 # change in f l o a t the value o f s o l a r matrix !
13 df_Solar . tamb = df_Solar . tamb . astype (f l o a t)
14 df_Solar . vs = df_Solar . vs . astype (f l o a t)
15 df_Solar .GF = df_Solar .GF. astype (f l o a t)
16 df_Solar . Tc = df_Solar . Tc . astype (f l o a t)
17 df_Solar . neta_c = df_Solar . neta_c . astype (f l o a t)
18 df_Solar . power = df_Solar . power . astype (f l o a t)
19

20 #%%
21 # Combine the two datamatrix
22 d f_ f ina l = df_energy . j o i n (df_Solar)
23 d f_ f ina l . to_pick le (" Fina l t o t a l matrix /

Final_Datamatrix . p i c k l e ")
24 d f_ f ina l . to_csv (" Fina l t o t a l matrix /

Final_Datamatrix . csv " , sep=' , ')

This matrix can be used to generate a single Lumped customer which should
represent the total load which the transformer sees at the Low Voltage side.

4.2.3 Isolate singular customer

As now, we have a Big datamatrix with all 4225 customers in one big
dataframe which cover one and half year of energy consumption and solar
production and ambiental data, as temperature, irrandiance, wind speed.
The next program takes 144 random customer, from the residential ID
dataframe, and extrapolates them to makes single customer dataframe and
datamatrix.
First the program load the working library with the working directory; after
that it load the Big datamatrix, with all customers and all datas, and set
the customers as index for the dataframe . To extrapolate 144 random cus-
tomers, �rst i create a new vector �lled with the numbers from 0 to 4225.
After a shu�e this vector is set as the new index or the residential matrix
and then all the dataframe is sorted by the new index, so i shu�ed the resi-
dential ID.
Done this process, the program takes the �rst 144 rows of the dataframe,
and save it into a pickle wich is the customers ID pickle.

1 #%%
2 # Load the matrix

36

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

3 import os
4 import pandas as pd
5 import random
6 import numpy as np
7 PATH = ("/Users /FX504GE − EN069T/Desktop/Codic i

l avoro / p a r t i a l p i c k l e ")
8 os . chd i r (PATH)
9

10 # Load Big datamatrix
11 df = pd . read_pick le ("Big_datamatrix . p i c k l e ")
12

13 #%%
14 # Stru t tu ra r e l ' e s t r a z i o n e de i customer ! !
15 # se t customers as index
16

17 df . set_index ("customer_id" , i np l a c e=True)
18 df . head ()
19

20 #%%
21 #−−−−>>> Sect i on used to generate the 144

customers to do the t e s t !
22

23 # generare 144 customers , con ID = 1002 − 7443
, ma randomico

24

25

26 # Load r e s i d e n t i a l ID
27 df_customers = pd . read_pick le ("Resident ia l_ID .

p i c k l e ")
28 # re s e t o r i g i a l index
29 df_customers . reset_index (i np l a c e = True)
30

31 # Generate a vec to r from 0 to 4224
32 ar r = np . arange (4225)
33 # Shu f f l e the generated vector , to have random

order
34 np . random . s h u f f l e (a r r)
35

36 # transform my vecto r in to a dataframe
37 df_arr = pd . DataFrame (ar r)
38 # jo i n the new column with customers dataframe ,
39 # to trans form l a t e r in i t s index
40 df_customers = df_customers . j o i n (df_arr)
41

37

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

42 # Drop unneeded column
43 df_customers = df_customers [["ID" , 0]]
44

45 # se t the new index and so r t the matrix by i t
46 df_customers . set_index (0 , i np l a c e = True)
47 df_customers . sort_index (i np l a c e = True)
48

49 # Take the f i r s t 144 customers
50 df_customer = df_customers . l o c [: 1 4 4]
51

52

53

54 #crea t e a p i c k l e o f the dataframe o f the random
customers

55 os . chd i r (PATH)
56 df_customer . to_pick le ("df_customer_ID . p i c k l e ")

The second block is the function which: reads the customers in the customer
ID pickle, reads the Big datamatrix, extrapolates one by one the customers
of the customer ID pickle, and after join the single customer dataframe with
the PV solar data, saves them into a speci�c folder.

1

2 #%%
3 # Load customers l i s t to ex t rapu l a t e
4 #th e i r annual energy comsuption
5 df_customers = pd . read_pick le ("df_customer_ID .

p i c k l e ")
6

7 # Def ine the func t i on
8 de f Customer_generator () :
9 # se t the f o r cy c l e
10 f o r ID in df_customers [' ID '] :
11

12 # Extrapo late the s i n g l e customer Dataframe
13 df_customer_ID = df . l o c [f l o a t (ID)]
14

15 # Reset the index o f the new df and prepare to
j o i n i t

16 df_customer_ID . set_index (" time" , i np l a c e=True)
17 df_customer_ID . reset_index (i np l a c e = True)
18 df_customer_ID . sort_values (" time" , i np l a c e =

True)
19 df_customer_ID . reset_index (i np l a c e = True)

38

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

20 df_customer_ID = df_customer_ID [. . .
21 . . . [" time" , " energy_target_var iab le "]]
22

23 # Load PV s o l a r dataframe
24 os . chd i r ("/Users /FX504GE − EN069T/Desktop/

Codic i l avoro / Fina l t o t a l matrix ")
25 df_Solar = pd . read_pick le ("Solar_matrix . p i c k l e "

)
26

27 # Join the dataframes
28 df_ID = df_customer_ID . j o i n (df_Solar)
29

30 # Save the r e s u l t
31 os . chd i r ("/Users /FX504GE − EN069T/Desktop/

Codic i l avoro /Customer matrix ")
32 df_ID . to_pick le ("df_customer_" + s t r (ID) + " .

p i c k l e ")
33 r e turn
34

35 #%%
36 # Launch genera to r
37 Customer_generator ()

4.2.4 Lumped loading generation

To match the requirements od the simulink model, it is necessary to cluster
six by six the 144 customer into 24 lumped loads. This program �rst loads
the library pack and the customer ID pickle with the ID list which we made
before; after that it uses a double for cycle, to read the ID, load six customer
dataframe, joins them toghether, sets index and sorts for "time" column to
summ by time the data. At the end, it resets the original index and save the
lumped loads into a selected folder.

1 #### Group 144 customers in 24 ####
2

3 #%%
4 # Load pack l i b r a r y
5 import os
6 import pandas as pd
7

8 #%%
9 # Set working d i r e c t o r y
10 PATH = ("/Users /FX504GE − EN069T/Desktop/Codic i

39

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

lavoro / p a r t i a l p i c k l e ")
11 os . chd i r (PATH)
12

13 # Load customers ID
14 df_customers = pd . read_pick le ("df_customer_ID .

p i c k l e ")
15

16 #%%
17 # Cycle to produce the Lumped customer matrix
18 # grouped by 6
19

20 # Make an empty matrix
21 df = pd . DataFrame ()
22

23 # Set t i ng counter s
24 Counter0 = 0
25 Counter1 = 6
26

27 # Set a double f o r c y c l e
28 f o r NUM in range (1 , 25 , 1) :
29

30 f o r x in range (Counter0 , Counter1 , 1) :
31

32 # BLock to load matrix
33 ID = df_customers ["ID"] [x]
34 os . chd i r ("/Users /FX504GE − EN069T/Desktop/

Codic i l avoro /Customer matrix ")
35 df_summ = pd . read_pick le ("df_customer_" + s t r (

ID) + " . p i c k l e ")
36

37 # Join the d i f f e r e n t dataframe in group o f 6
38 df = pd . concat ([df , df_summ] , ignore_index =

True)
39

40 # Inc r ea s e the counter
41 Counter0 = Counter0 + 6
42 Counter1 = Counter1 + 6
43

44 # Sort data per time !
45 df . sor t_values (' time ' , i np l a c e=True)
46 df . reset_index (i np l a c e = True)
47 df . drop (' index ' , ax i s=1 , i np l a c e =True)
48

49 # Sum by time columns

40

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

50 df_tot = df . groupby (" time") . sum()
51 df = pd . DataFrame ()
52

53 # Reset index , to get " time"
54 df_tot . reset_index (i np l a c e = True)
55

56 # Save i t
57 os . chd i r ("/Users /FX504GE − EN069T/Desktop/

Codic i l avoro /Customer matrix /Lump Customer"
)

58 df_tot . to_pick le ("Lump_" + s t r (NUM) + " . p i c k l e "
)

At the end of this process, i have 24 lumped loading which i can use as input
data to feed my prediction models.
Here there is an example of the �nal result:

Figure 4.3: Head of dataframe of single customer

In the next �gure 4.4 there is a zoom of the 4.3; where you can better see the
dataframe structure of individual customers. The �rst column represents the
index, automatic assigned by python, while the subsequent ones are reserved
for the actual data of the customer.
In order there are: detection date, environment temperature, wind speed,
irradiance, solar panel cell temperature, solar panel e�ciency, panel power
output and �nally the energy consumed at the time of detection.

41

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

Figure 4.4: Dataframe zoom of a single customer

4.3 SVR model and RFR model

I built a single script in which i have both model,SVR and RFR, and giving
to it a input dataframe, let us select the training and test day, giving as
result a comparison between the output of the two model, with their score
value, R2, and MSE, Mean Square Error.
First of all the program loads the working library.

1 #%%
2 # Library
3 import warnings
4 import os
5 import pandas as pd
6 import numpy as np
7 from sk l e a rn . p r ep ro c e s s i ng import

StandardSca ler
8 from sk l e a rn import preproce s s ing , svm ,

mode l_se lect ion
9 from sk l e a rn . p r ep ro c e s s i ng import

StandardSca ler
10 from sk l e a rn import preproce s s ing , svm ,

mode l_se lect ion
11 from sk l e a rn . ensemble import

RandomForestRegressor
12 from sk l e a rn . met r i c s import r2_score ,

mean_squared_error

42

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

13 import matp lo t l i b . pyplot as p l t
14 from matp lo t l i b import s t y l e

After that, it loads the working directory for the next steps.

1 #%%
2 # FIRST BLOCK: qua l i t y o f l i f e t o o l s
3 warnings . f i l t e rw a r n i n g s (" i gno re ")
4

5 # Set working d i r e c t o r y
6 # cod i c i l avoro
7 Codic i_lavoro= "/Users /FX504GE − EN069T/Desktop

/Codic i l avoro "
8

9 # Fina l t o t a l matrix
10 Final_matrix = "/Users /FX504GE − EN069T/Desktop

/Codic i l avoro / Fina l t o t a l matrix "
11 # Customer matrix
12 Customer_matrix = "/Users /FX504GE − EN069T/

Desktop/Codic i l avoro /Customer matrix "
13 # Lump Customer
14 Lump_customer= "/Users /FX504GE − EN069T/

Desktop/Codic i l avoro /Customer matrix /Lump
Customer"

Here the program loads the selected matrix and is required that the desired
output must be set as the last column of the datafrtame. Then i de�ned
the function to make the predictions. When launched, it asks to select the
training day and the target prediction day, by giving in input a number,
knowing which 0 = 14 july 2013*; is also required to return how many
columns do the dataframe have. The input line command transforms the
selected number in the correct time-index frame and extrapulates the selected
training day and target day.

1 #%%
2 # SECOND BLOCK: Extract the df from the

o r i g i n a l matrix
3 os . chd i r (Final_matrix)
4 df = pd . read_pick le ("Final_DatamatrixV2 . 0 .

p i c k l e ")
5

6 #−−− > se t the column o f the p r ed i c t i on as the
l a s t column !

7 df = df [[' time ' , ' tamb ' , ' vs ' , 'GF ' , 'Tc ' , '
neta_c ' ,

43

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

8 ' power ' , ' energy_target_var iab le ']]
9

10 #%%
11 ###
12 # Def ine func t i on
13

14 de f Ja rv i s_pred i c t i on () :
15

16

17 ' ' ' Set the input comand f o r the cho i s e o f the
day o f t r a i n i n g and pred i c t ed day ' ' '

18

19 td = in t (input (" S e l e c t t r a i n i n g day : "))
20 gg = td *48
21 pd = in t (input (" S e l e c t t e s t day : "))
22 ggp = pd*48
23

24 ' ' ' X and y f o r t r a i n i n g with 70% rule , and
these are the r e f e r e n c e to a l l day t r a i n ' ' '

25 # se t how much column do you have in the matrix
?

26 cc = in t (input ("How much column do you have ? : "
))

27 X = df . i l o c [gg : (gg + 48) , 0 : (cc − 1)] . va lue s
28 y = df . i l o c [gg : (gg + 48) , (cc − 1) : cc] . va lue s
29

30 # step 4 −−> ext ra c t Xp, yp f o r a a l l day
t r a i n i n g with X, y and a a l l−day p r ed i c t i on
with Xp, yp

31

32 Xp = df . i l o c [ggp : (ggp + 48) , 0 : (cc − 1)] . va lue s
33 yp = df . i l o c [ggp : (ggp + 48) , (cc − 1) : cc] . va lue s

Now the program transforms our dataframe into a vector and only for the
SVR is applyed a scaling function to the data.

1 # step 5 −−> transform X and y with
s t anda r s c a l i n g to have X_svr and y_svr ,

2 # fo r X_rfr and y_rfr j u s t use a copy o f X and
y , and same f o r Xp, yp

3

4 ' ' ' For X ' ' '
5 X = np . array (X)
6 X_svr = prep ro c e s s i ng . s c a l e (X)

44

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

7 X_rfr = X
8

9 ' ' ' For Xp ' ' '
10 Xp = np . array (Xp)
11 Xp_svr = prep ro c e s s i ng . s c a l e (Xp)
12 Xp_rfr = Xp
13

14 ' ' ' For y ' ' '
15 y_svr = prep ro c e s s i ng . s c a l e (y)
16 y_rfr = y
17

18 ' ' ' For yp ' ' '
19 yp_svr = prep ro c e s s i ng . s c a l e (yp)
20 yp_rfr = yp

Here,are set the two predictor model, taken from the library. The SVR
model is a standard model, meanwhile the random forest is choose with a
number of 1000 decisional tree, using a mean square error decisional criteria,
"random state" and njobs is set to parallelize the training process using all
the possible cores of the computer.

1 # FOURTH BLOCK: SVR and RFR ana l y s i s
2 # step 1 −−> c a l l the SVR e RFR
3

4 svr = svm .SVR()
5 r f r = RandomForestRegressor (n_estimators=1000 ,
6 c r i t e r i o n='mse ' ,
7 random_state=1,
8 n_jobs=−1)
9

10 svr_day = svm .SVR()
11 rfr_day = RandomForestRegressor (n_estimators

=1000 ,
12 c r i t e r i o n='mse ' ,
13 random_state=1,
14 n_jobs=−1)

Now the program prepares the training set and the test set, thank tomodelselection
line, where it's chosen the names of SVR and RFR variables, have to divide
the two sets by the test size value, which usually is set to 80% train and 20%
test. To try to control the over�tting e�ects, in this case the SVR is set to
70%-30%, meanwhile the RFR is set to 60%-40%.

1 # step 2 −−> de f i n e t ra in−set , t e s t−set , c ros s−
va l i d a t i o n func t i on

45

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

2 # Al l e r t : we need to do i t only f o r 70%
tra in ing−day and 30% pred i c t i on , i f we use
a l l−day we don ' t need

3

4 ' ' ' X_svr and y_svr are sca l end ! ' ' '
5 X_train_svr , X_test_svr , y_train_svr ,

y_test_svr = model_se lect ion .
t r a i n_t e s t_sp l i t (X_svr , y_svr , t e s t_s i z e
=0.3)

6

7 ' ' ' X_rfr and y_rfr could be used without
s c a l i n g ' ' '

8 X_train_rfr , X_test_rfr , y_train_rfr ,
y_test_rfr = model_se lect ion .
t r a i n_t e s t_sp l i t (X_rfr , y_rfr , t e s t_s i z e
=0.4)

The next section launchs the �t function to train the two models. For the
�rst block i train the model with the splitted data, as saw before, instead
the second block is a �t using all the day data to train the two models, in
oder to have a all day training set and after that going to use another day
as test set. Basically is a 50%-50% train and test size, with the double all
total data, so instead of using a 48× 8 dataframe, is used 96× 8 dataframe.

1 # step 3 −−> f i t the two models with day data ,
so 48 element each

2

3 ' ' ' For 70%−30% f i t ' ' '
4 svr . f i t (X_train_svr , y_train_svr)
5 r f r . f i t (X_train_rfr , y_train_rfr)
6

7 ' ' ' For a l l−day f i t , i s use t h e i r r e s p e c t i v e
X_svr , y_svr and X_rfr , y_rfr as t r a i n s e t
! ! ! ' ' '

8 svr_day . f i t (X_svr , y_svr)
9 rfr_day . f i t (X_rfr , y_rfr)

The next section use the train data and test data to do the prediction and
save them into new vector, to do later a score test.

1 # step 4 −−> pred i c t the output array
2

3 ' ' ' t r a i n s e c t i o n pred i c t i on , 70%−30% day (f o r
the r f r i s 60%−40%, to con t r o l o v e r f i t t i n g) ,
us ing t r a i n s e t ' ' '

46

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

4 y_svr_train_pred = svr . p r ed i c t (X_train_svr)
5 y_rfr_train_pred = r f r . p r ed i c t (X_train_rfr)
6

7 ' ' ' t e s t s e c t i o n pred i c t i on ,70%−30% day (f o r
the r f r i s 60%−40%, to con t r o l o v e r f i t t i n g) ,
us ing t e s t s e t ' ' '

8 y_svr_test_pred = svr . p r ed i c t (X_test_svr)
9 y_rfr_test_pred = r f r . p r ed i c t (X_test_rfr)
10

11 ' ' ' t r a i n s e c t i o n p r ed i c t i on with a l l−day
t r a i n i n g s e t ' ' '

12 yp_svr_train_pred = svr_day . p r ed i c t (X_svr)
13 yp_rfr_train_pred = rfr_day . p r ed i c t (X_rfr)
14

15 ' ' ' t e s t s e c t i o n p r ed i c t i on with a l l−day t e s t
s e t ' ' '

16 yp_svr_test_pred = svr_day . p r ed i c t (Xp_svr)
17 yp_rfr_test_pred = rfr_day . p r ed i c t (Xp_rfr)

Here the program, use the predictions and the real data, to extract the meean
square error of the prediction, which is scaled, and the score of the model.

1 # step 5 −−> Error an a l y s i s by MSE and R^2
2

3 ' ' ' SVR accuracy : MSE, mean square e r ro r , R^2
f o r SVR, t r a i n on 70%, p r ed i c t i on on 30% of
the day ' ' '

4

5 pr in t ('SVR−MSE t r a i n (70−30) : %.3 f , t e s t : %.3 f '
% (

6 mean_squared_error (y_train_svr ,
y_svr_train_pred) ,

7 mean_squared_error (y_test_svr , y_svr_test_pred)
))

8

9 pr in t ('SVR−R^2 t r a i n (70−30) : %.3 f , t e s t : %.3 f '
% (

10 r2_score (y_train_svr , y_svr_train_pred) ,
11 r2_score (y_test_svr , y_svr_test_pred)))
12

13 ' ' ' RFR accuracy : MSE, mean square e r ro r , R^2
f o r RFR, t r a i n on 70%, p r ed i c t i on on 30% of
the day ' ' '

14

47

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

15 pr in t ('RFR−MSE t r a i n (70−30) : %.3 f , t e s t : %.3 f '
% (

16 mean_squared_error (y_train_rfr ,
y_rfr_train_pred) ,

17 mean_squared_error (y_test_rfr , y_rfr_test_pred)
))

18

19 pr in t ('RFR−R^2 t r a i n (70−30) : %.3 f , t e s t : %.3 f '
% (

20 r2_score (y_train_rfr , y_rfr_train_pred) ,
21 r2_score (y_test_rfr , y_rfr_test_pred)))
22

23 ' ' ' SVR accuracy : MSE, mean square e r ro r , R^2
f o r SVR, t r a i n on a l l−day , p r ed i c t i on on a l l
−day ' ' '

24

25 pr in t ('SVR−MSE t r a i n (a l l−day) : %.3 f , t e s t : %.3
f ' % (

26 mean_squared_error (y_svr , yp_svr_train_pred) ,
27 mean_squared_error (yp_svr , yp_svr_test_pred)))
28

29 pr in t ('SVR−R^2 t r a i n (a l l−day) : %.3 f , t e s t : %.3
f ' % (

30 r2_score (y_svr , yp_svr_train_pred) ,
31 r2_score (yp_svr , yp_svr_test_pred)))
32

33 ' ' ' RFR accuracy : MSE, mean square e r ro r ,R^2
f o r RFR, t r a i n on a l l−day , p r ed i c t i on on a l l
−day ' ' '

34

35 pr in t ('RFR−MSE t r a i n : %.3 f , t e s t : %.3 f ' % (
36 mean_squared_error (y_rfr , yp_rfr_train_pred) ,
37 mean_squared_error (yp_rfr , yp_rfr_test_pred)))
38

39 pr in t ('RFR−R^2 t r a i n : %.3 f , t e s t : %.3 f ' % (
40 r2_score (y_rfr , yp_rfr_train_pred) ,
41 r2_score (yp_rfr , yp_rfr_test_pred)))

At the end, the program plots the residual between the real data and the
predicted data, to give back an idea of how is distribuited the error.

1

2 p l t . s c a t t e r (y_rfr_train_pred ,
3 y_rfr_train_pred − y_train_rfr ,

48

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

4 c=' black ' ,
5 marker=' o ' ,
6 s=35,
7 alpha =0.5 ,
8 l a b e l=' Train ing data ')
9 p l t . s c a t t e r (y_rfr_test_pred ,
10 y_rfr_test_pred − y_test_rfr ,
11 c=' l i g h t g r e e n ' ,
12 marker=' s ' ,
13 s=35,
14 alpha =0.7 ,
15 l a b e l=' Test data ')
16

17 p l t . x l ab e l (' Pred ic ted va lue s ')
18 p l t . y l ab e l (' Res idua l s ')
19 p l t . l egend (l o c=' upper l e f t ')
20 p l t . h l i n e s (y=0, xmin=−10, xmax=50, lw=2, c o l o r=

' red ')
21 p l t . xl im ([−10 , 5 0])
22 # pl t . t ight_layout ()
23 #pl t . s a v e f i g (' s l r_ r e s i d u a l s . png ' , dpi=300)
24 p l t . show ()
25

26 r e turn
27

28 #Cal l the func t i on
29 Ja rv i s_pred i c t i on ()

A the end we have a day-ahead prediction which can be used to �ll our power
matrix and make a power �ow analysis with the help of matlab and simulink.
Now it's important try to understand how much impact the accuracy of the
prediction on the grid's losses.

4.4 Bench test matrix

The main aim of this project is to see how the accuracy of the predction
model a�icts the total grid's losses, to understand how much accured must
be our prediction to �t the minimum requirement for the grids. It is impor-
tant to understand if the prediction could be dangerous for the grid health
and for the power supply sistem.
To analyse these points i recovered the model built by Ing. Beccari, who
built a simulink model to test the impact on battery energy storage sistem

49

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

into the network. For convenience it will be re-used the same simulink model
to do the power �ow analysis.

To try to understand how the R2 impacts on the total losses error in our
grid, i made a bench test matrix, to have a wide range of R2 of one day.
Down below there are the scripts that make the bench test matrix to use
into matlab and simulink model.
First section is a utility section for coding.

1 ##### Creat ion Benchtest f o r l o s s e s a n a l y s i s
#####

2

3 #%%
4 import os
5 import pandas as pd
6

7 from sk l e a rn . met r i c s import r2_score
8 import warnings
9

10 #%%
11 # FIRST BLOCK: qua l i t y o f l i f e t o o l s
12 warnings . f i l t e rw a r n i n g s (" i gno re ")
13

14 # cod i c i l avoro
15 Codic i_lavoro= "/Users /FX504GE − EN069T/Desktop

/Codic i l avoro "
16 # Fina l t o t a l matrix
17 Final_matrix = "/Users /FX504GE − EN069T/Desktop

/Codic i l avoro / Fina l t o t a l matrix "
18 # Customer matrix
19 Customer_matrix = "/Users /FX504GE − EN069T/

Desktop/Codic i l avoro /Customer matrix "
20 # Lump Customer
21 Lump_customer= "/Users /FX504GE − EN069T/

Desktop/Codic i l avoro /Customer matrix /Lump
Customer"

The second section loads the lumped load energy values and stores them into
one dataframe, 25730x24, where each column is a lumped load energy along
the all year and half.

1 #%%
2 os . chd i r (Lump_customer)
3

4 df = pd . read_pick le ("Lump_1. p i c k l e ")

50

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

5 df = df [[" energy_target_var iab le "]]
6

7 f o r NUM in range (2 ,25) :
8 pr in t (NUM)
9 df_jo in = pd . read_pick le ("lump_"+ s t r (NUM) + " .

p i c k l e ")
10 df_jo in = df_jo in [[" energy_target_var iab le "]]
11 df_jo in . rename (columns = {"

energy_target_var iab le " : "energy_lump_" +
s t r (NUM) } , i np l a c e = True)

12

13 df = df . j o i n (df_jo in)
14

15 #%%
16 os . chd i r (Final_matrix)
17

18 df . to_pick le ("Benchtest_matrix_complete . p i c k l e "
)

The next section isolates a single day of the year; in this case the �rst day
inside our matrix, so the 14 July.

1 #%%
2 df1 = df . l o c [: 4 7]
3 df1 . to_pick le ("Benchtest_matrix_true_value .

p i c k l e ")

The section below loads the Original Bench test dataframe, which will be
used to do the accuracy test later, and sum and subtracts a percentage of
their value, starting from 1% up to 10%.

1

2 #%%
3 df = pd . read_pick le ("

Benchtest_matrix_true_value . p i c k l e ")
4 df1 = df
5

6 f o r NUM in range (1 ,11) :
7

8 df = df − df . mul t ip ly (NUM/100)
9 df1 = df1 + df1 . mul t ip ly (NUM/100)
10 os . chd i r ("/Users /FX504GE − EN069T//Desktop/

Codic i l avoro /Benchtest ")
11 df . to_pick le ("Benchtest_acc_−%"+ s t r (NUM) +" .

p i c k l e ")

51

CHAPTER 4. PRE-PROCESSING DATA AND SVR, RFR MODELS

Now using the true values of the original dataframe, the programs computes
the R2 values of the di�erent new Bench test matrices and save them into
pickle and xlsx.

1 #%%
2 # ca r i c a r e matr ice vera , e s t r a r r e una colonna

ve t t o r e
3 # usare vera a s i n i s t r a e qu e l l a mod i f i ca ta a

de s t ra
4 # r2_score (vett_vero , vett_benchtest)
5

6 os . chd i r (Final_matrix)
7 df = pd . read_pick le ("

Benchtest_matrix_true_value . p i c k l e ")
8 df = df [[" energy_target_var iab le "]]
9

10 f o r NUM in range (1 ,11) :
11 os . chd i r ("/Users /FX504GE − EN069T//Desktop/

Codic i l avoro /Benchtest ")
12 df1 = pd . read_pick le ("Benchtest_acc_+%" +s t r (

NUM) + " . p i c k l e ")
13 df1 = df1 [[" energy_target_var iab le "]]
14 pr in t (s t r (NUM))
15 pr in t (r2_score (df , df1))

1 ACC = r2_score (df , df1) * 100
2 df1 = pd . read_pick le ("Benchtest_acc_−%" +s t r (

NUM) + " . p i c k l e ")
3 df1 . to_pick le ("Benchtest_acc="+ s t r (' { 0 : . 2 f } ' .

format (ACC))+ " . p i c k l e ")
4 df1 . to_csv ("Benchtest_acc="+ s t r (' { 0 : . 2 f } ' .

format (ACC))+ " . csv " , index = False)
5 df1 . to_excel ("Benchtest_acc=" + s t r (' { 0 : . 2 f } ' .

format (ACC)) + " . x l sx ")

At the end of the process there are 20 test matrix to use into matlab and
simulink model to see the impact of the prediction accuracy on the grid
losses.

52

Chapter 5

Simulink model

5.1 introduction

This study regarding the impact of forecasts, created by ML algortims, on
variable loads was developed using Matlab and a part of Simulink, Simscape
Electrical (formerly SimPowerSystems and SimElectronics).
It provides component libraries for modelling and simulating electronic, mecha-
tronic, and electrical power systems. It includes models of semiconductors,
motors, and components for applications such as electromechanical actua-
tion, smart grids, and renewable energy systems. In this case it was used
to analyse the transmission and distribution of electrical power at the grid
level.

5.2 Simulink model

The simulink grid is show in �g 5.1. The �gure represents the network gen-
eral model and con�guration of the �gure 3.1.
The model used for the power�ow test is borrowed from [24]: the matlab
script "Losses with out battery" and the associated simulink model are used.
In the model properties part there is a window to initialize the model func-
tions, using Matlab scripts, containing "mat" format vectors to use as input
in the simulation.
For model simulations are used phasor type simulation with a 48 seconds
of time simulation. It's been chosen this time setting to match the input
data setting, which are one value of power every 30 minutes, so 48 relevation
for a day. So the time interval between the samples are �xed as Ts = 2·10−3.

Starting from the left side of the �gure, it is possible to identify the 38 kV

53

CHAPTER 5. SIMULINK MODEL

power source, the HV/MV transformer and �ve derived feeders. Four feed-
ers are represented as Lumped loads, meanwhile the �fth is described in full
detail.
Regarding the blocks containing the line values, a Three-Phase Series RLC
branch block was used where an RL branch type was selected and it is as-
sumed that only balanced loads are presented.

In the �gure 5.2 is shown a single feeder in detail.

54

CHAPTER 5. SIMULINK MODEL

Figure 5.1: Simulink model

55

CHAPTER 5. SIMULINK MODEL

Figure 5.2: Simulink model detail

56

CHAPTER 5. SIMULINK MODEL

5.2.1 Three Phase Load Block

In �gure 5.2 a feeder is shown in detail: from the left there is a MV/LV
transformer between two three phase measurement blocks. after that there
are another measurement block, which is usefull if we are goning to set a
battery after our transformer.
These �Three-Phase V-I Measurement� block is used to measure instanta-
neous three-phase voltages and currents in a circuit. When connected in
series with three-phase elements, it returns the three phase-to-ground or
phase-to-phase peak voltages and currents. Moreover we can chose if we
want per unit (pu) values or volts and amperes.
In this case the phase-to-ground voltage measure was chosen.The output val-
ues of voltage and current will be reprocessed to obtain the total power of
the feeder and let us doing losses analysis.

Figure 5.3: Single load model

In Figure 5.3 a single load of the feeder is represented: negative and zero-
sequence currents are not simulated, the three load currents are therefore
balanced, even under unbalanced load voltage conditions.
This block implements a three-phase, three-wire dynamic load whose active
power P and reactive power Q vary as function of positive-sequence voltage.
The active and the reactive power of the block are given by external input,
using matlab vector de�ned as [P,Q].
To do it is used the "Repeating Sequence Interpolated" block shown in �gure
5.4. Based on the values in �Vector of time values� and �Vector of output val-
ues� parameters the block gives back to us a periodic discerete time sequence.
In the Vector of output values, the power data from our input datamatrix
are called, so if we want to change the input to make more analysis,it's only
necessary to change the Matrix with all power values in matlab script, which
we saw before.

57

CHAPTER 5. SIMULINK MODEL

Figure 5.4: Repeating sequence interpolated block

The Vector of time values rappresent the 48 half hours of the day, which for
convenience and ease of calculation they are represented as 48 seconds.
For all the calcuation a cosϕ = 1 has been assumed for all loads, so the
"multiplex vector signal" block takes in input the active power signal and
the reactive power signal, which is set to zero.
The output of the "Dynamic Load" block are three signals:

1. positive-sequence voltage in per unit [pu]

2. active power, P, in Watt [W]

3. reactive power, Q, in vars

These values are reported into a matlab variable,which can be an array,
timeseries or a structure. The block writes to the output �le incrementally
and if the output �le already exists when the simulation starts, the block
overwrites the �le.
In our case, we chosen the array format to �ll a matrix; in the table 5.1
is shown an example: So in the �rst row there is the istant time of data

t1 t2 ... tend
V1−1 V1−2 ... Vend
P1−1 P1−2 ... Pend
Q1−1 Q1−2 ... Qend

Table 5.1: Example of output matlab matrix

collection; in the other rows there are the active, reacative power and the
voltage values in each load.

58

Chapter 6

Matlab model

6.1 Matlab code

Down below is shown the matlab code (originaly made by Ing. Beccari,
modi�ed for the goal of this thesys [24]) to load the customers csv matrix
into matlab enviroment and to compute the total input power of the grid,
which will be sent to the simulink model.

Brie�y the power �ow process can be represented as in �g. 6.1.

59

CHAPTER 6. MATLAB MODEL

Figure 6.1: Power �ow �owchart

60

CHAPTER 6. MATLAB MODEL

6.1.1 Compute grid parameters

This code section loads the Benchtest matrix storing as "ehousetot matrix".
After that the energy is transformed into power and then converted into
Watt from KW. At the end there is the summ of the total power absorbed
by the feeders.

1 %% Load the Benchtest matrix or the other t e s t
matrix

2 ehousetot = x l s r e ad (" Benchtest_true_value . x l sx
") ;

3

4 phousetot=ehousetot / 0 . 5 ; %to obta in the power I
d i v id e by 0 .5 because each value

co r r i spond to h a l f an hour [kW] .
5

6 phousetotW=phousetot *(10^3) ;%THIS IS THE POWER
IN kW TO USE IN SIMULINK MODEL

7 % I have to f i nd the power peak in each f e e d e r s
. They are s i z e d on 100kVA

8

9 % ADMD
10 p f e ed e r t o t=ze ro s (48 ,4) ;
11 k=0;
12

13 f o r i i =1:4
14 p f e ed e r t o t (: , i i)=phousetot (: ,1+k)+phousetot

(: ,2+k)+phousetot (: ,3+k)+phousetot (: ,4+k)+
phousetot (: ,5+k)+phousetot (: ,6+k) ;

15 k=k+6;
16 end
17

18 col_max=max(p f e ed e r t o t) ;

Below there is the plotting section where are shown the dayly power trends.

1 %% Plot
2 h= [1 : 4 8] ' ;
3

4 f i g u r e (3)
5 hold on
6 box on
7 g r id on
8 p lo t (h , phousetot)
9 x l ab e l (' Hal f hours day ') ;

61

CHAPTER 6. MATLAB MODEL

10 y l ab e l ('P [kW] ') ;
11 t i t l e ('Power 24 houses mix with 3 and 4

bedrooms [kw] ') ;
12

13 f i g u r e (4)
14 hold on
15 box on
16 g r id on
17 p lo t (h , p f e ed e r t o t)
18 x l ab e l (' h a l f hours day ') ;
19 y l ab e l ('P [kW] ') ;
20 t i t l e ('Power to t in each o f f our f e e d e r s [kw] ')

;
21

22 f i g u r e (5)
23 hold on
24 box on
25 g r id on
26 f o r j j =1:24
27 p lo t3 (h , j j * ones (l ength (phousetot (: , j j)) , 1) ,

phousetot (: , j j)) ;
28 %rota t e
29 end
30 x l ab e l (' Hal f hours day ') ;
31 y l ab e l ('P [kW] ') ;
32 t i t l e ('Power 24 houses mix with 3 and 4

bedrooms [kw] ') ;
33

34 %% Find power to t to i n s e r t the s e tpo i n t
35 totP=sum(phousetotW , 2) ; % Power to t LV houses [

W]
36 s e tpo i n t=mean(totP) ; % s e tpo i n t
37

38 s e t p o i n t s i n g l e h ou s e=mean(phousetotW , 1) ;
39 s e t p o i n t t o t=sum(s e t p o i n t s i n g l e h ou s e) ;
40

41 x l sw r i t e (' phousetotW ' , phousetotW) ;
42 x l sw r i t e (' p f e ed e r t o t ' , p f e ed e r t o t) ;
43 x l sw r i t e (' totP ' , totP) ;
44 save (' AA_HouseSelection_Day196 ' , ' phousetotW ' , '

totP ' , ' s e t po i n t ') ;

62

CHAPTER 6. MATLAB MODEL

6.1.2 Matlab Plot and Graphs

There are 3 main graph wich show us the power �ow during the day:

1. In the �gure 6.2 we can see the power absorbed by the 24 cumulative
blocks during a sisngle day.

2. To better understand the 24 power cumulative blocks in the �gure 6.4
is shown in 3D representation

3. In the �gure 6.3 is represented the LV grid part which consist of four
feeders and this graph depicts the sum of the total load in each feeder
(in each feeder there are 6 cumulative loads). These values will be
useful in the losses considerations

63

CHAPTER 6. MATLAB MODEL

Figure 6.2: Power 24 houses: each colored line is a house

Figure 6.3: Total power in each of four feeders: each colored line represents
one feeder

64

CHAPTER 6. MATLAB MODEL

Figure 6.4: Power24 houses in 3D

6.2 Network losses

Is important to make a power �ow analysis of the grid, to understand the
impact of our prediction on the lossess error.

The network losses are directely proportional to the square of the current
and power losses cause production of heat which increase the temperature
on the feeders, so lifetime and reliability of the system decrease if the losses
increase.
Considering the period of simulation, T, as 48 seconds it is possible to write
the network losses as :

Loss =
T∑
t=1

R(t) · I(t)2

In the considered Simulink model, using measurement block (�gure 6.5) is
possible to get the power by MV and LV side;therefore we can obtain the
power losses as subtraction between the two values. Knowing the Voltage
and Current values, this block can calculate the active and reactive power
(P and Q) and P can be imported into Matlab as �le.mat to allowing the
next calculations.

65

CHAPTER 6. MATLAB MODEL

Figure 6.5: Measurement block

So the equation will be:

ptransfloss = pmeasuredMV side − plV sidemeasured

pfeedersloss = plV sidemeasured −
24∑
n=1

Pn

where:

1. ptransfloss are the losses of the transformer, computed as the di�erece
between MV and LV power measured along the side of the transformer.

2. pfeedersloss are the losses in the feeders, which are computed as the di�er-
ence between the power measured on the LV side of the transformer
and the total load power. The total load power is calculated as total
unique lumped load.

At each interval the losses are measured and sent to matlab work space in
the form of matlab matrix . He matrix has one column for time sampling
and the second column stores the power values.
The results are then transformed in Energy losses by the integration of power
losses during the time.
With this formula energy are calculeted:

Eloss = ∆t

T∑
t=1

ptloss

where ∆t is the lenght of the sampling time (half an hour here), T is the
total number of intervals (48) and ptloss is the amount of power losses at the
istant t.

66

CHAPTER 6. MATLAB MODEL

6.2.1 Losses computation in matlab

Down below there is the script to compute the energy and power losses using
matlab.
The �rst part of the script recalls the active, reactive and time values from
Simulink model to create 24 matrix (n × 3). The �rst colum has the time
values from the sampling, the second column has the active power and the
thrid column has a list of values about zero, which are the rappresentation
of the null reactive power.
To obatain a single summ vector, the ptot vector, the values of the column
relative of the active power are summed toghether.
AT the end the �rst column are extrapolated to use it later for the plotting.

1 %% Losses
2 c l e a r a l l
3 c l o s e a l l
4

5 %From Simulink , I import the va lue s o f the f i l e
. mat

6 f o r n=25:48
7 f i l ename=s p r i n t f ('VPQ%0.5g .mat ' ,n) ;
8 S(n)=load (f i l ename) ; %i t i s a s t r u c t . I have to

convert i t in a matrix
9 end
10 cc=s t r u c t 2 c e l l (S) ;
11 aa=ce l l 2mat (cc) ;
12 %s i z e (aa)
13 bb=permute (aa , [2 1 3]) ; % to obta in va lue s in

column and not in rows
14

15 % The f i s t column i s the time , second the
vo l tage , th i rd the Active Power and

16 % the four th r e a c t i v e power
17 % I need to ex t r a c t the th i rd column o f each

matrix and sum toghether to
18 % have the t o t a l power absorbed from the 24

houses .
19 p=ze ro s (l ength (bb) ,24) ;
20 f o r m=1:24
21 p (: ,m)=bb (: , 2 ,m) ; %This va lue s are the same o f

phousetotW [W] pre sent
22 % HouseSelection_Day196 s c r i p t
23 end
24

67

CHAPTER 6. MATLAB MODEL

25 %i want the power to t on LV s i d e . I sum the 24
column o f each row

26 ptot=sum(p , 2) ; %POWER TOT OF THE 24 HOUSES
27 time=bb (: , 1) ; %vecto r o f the time . to p l o t use

t h i s va lue

Plotting code for Total Power LV.

1

2 %% Total power in LV s i d e
3 f i g u r e (1)
4 hold on
5 g r id on
6 box on
7 p lo t (time , ptot)
8 xlim ([1 4 8]) ;
9 x l ab e l ('Time [h a l f hours] ') ;
10 y l ab e l ('Power [W] ') ;
11 t i t l e (' Total Power LV s i d e Summer day [W] ')

To compute the transformer losses as di�erence of the power upstream and
downstream, the script uses the values from the measurement blocks set to
the right and left side of the MV transformer.

1

2 %% Power measured upstream the t rans fo rmer
3 dd=load ('P_ut .mat ') ;
4 ee=s t r u c t 2 c e l l (dd) ;
5 f f=ce l l 2mat (ee) ;
6 pt=f f ' ; %transponsed matrix to obta in two

columns : the f i r s t i s the time and
7 % the second i s the power
8 p_ut=pt (: , 2) ; %POWER UPSTREAM THE TRANSFORMER:

ex t r a c t the second column o f the power
9 %upstream the t rans fo rmer
10

11 %p_ut=p_ut (3265 : end) ;
12

13 f i g u r e (2)
14 hold on
15 g r id on
16 box on
17 p lo t (time , p_ut)
18 xlim ([1 4 8]) ;
19 x l ab e l ('Time [h a l f hours] ') ;

68

CHAPTER 6. MATLAB MODEL

20 y l ab e l ('Power [W] ') ;
21 t i t l e (' Power Measured MV s id e Transformer [W] '

) ;
22

23 %% Power measured downstream the t rans fo rmer
24 gg=load ('P_dt .mat ') ;
25 hh=s t r u c t 2 c e l l (gg) ;
26 kk=ce l l 2mat (hh) ;
27 pot=kk ' ; %transponsed matrix to obta in two

columns : the f i r s t i s the time and
28 % the second i s the power
29 p_dt=pot (: , 2) ; %POWER DOWNSTREAM THE

TRANSFORMER: ex t r a c t the second column o f
the power

30 %downstream the t rans fo rmer
31

32 f i g u r e (3)
33 hold on
34 g r id on
35 box on
36 p lo t (time , p_dt)
37 xlim ([1 4 8]) ;
38 x l ab e l ('Time [h a l f hours] ') ;
39 y l ab e l ('Power [W] ') ;
40 t i t l e (' Power Measured LV s i d e Transformer [W] '

) ;
41

42 %% Losses c a l c u l a t i o n
43 %% Losses t rans fo rmer
44 p_tl=p_ut−p_dt ; %POWER LOSSES OF THE

TRANSFORMER
45

46 f i g u r e (5)
47 hold on
48 box on
49 g r id on
50 p lo t (time , p_tl) ;
51 xlim ([1 4 8]) ;
52 x l ab e l ('Time [h a l f hours] ')
53 y l ab e l ('Power [W] ')
54 t i t l e ('Power Losses Transformer [W] ')
55

56 f i g u r e (6)
57 hold on

69

CHAPTER 6. MATLAB MODEL

58 box on
59 g r id on
60 area (time , p_tl) ;
61 e n e r g y l o s s e s t r a s f =(trapz (time , p_tl)) /2 ;
62 xlim ([1 4 8]) ;
63 x l ab e l ('Time [h a l f hours] ')
64 y l ab e l ('Power [W] ')
65 t i t l e (' Energy Losses Transformer [Wh] ')
66 e n e r g y l o s s e s t r a s f %Energy l o s s e s in the

t rans fo rmer

As shown before, for the feeders losses are used the di�erence LV side trans-
former power and the total power of the loads. Now, to compute the energy
losses, is used the "trapz" matlab command, to calculate the area through
the integral of the in�nitesimal trapezoids.

1 %% Losses f e e d e r s
2 p l t=p_dt−ptot ; % POWER LOSSES FEEDERS
3

4 f i g u r e (7)
5 hold on
6 g r id on
7 box on
8 p lo t (time , p l t) ;
9 xlim ([1 4 8]) ;
10 x l ab e l ('Time [h a l f hours] ') ;
11 y l ab e l ('Power [W] ') ;
12 t i t l e ('Power Losses Feeders [W] ') ;
13

14 f i g u r e (8)
15 hold on
16 box on
17 g r id on
18 area (time , p l t) ;
19 en e r gy l o s s e s=(trapz (time , p l t)) /2 ;
20 xlim ([1 4 8]) ;
21 x l ab e l ('Time [h a l f hours] ')
22 y l ab e l ('Power [W] ')
23 t i t l e (' Energy l o s s e s Feeders [Wh] ')
24 en e r gy l o s s e s %Energy l o s s e s in the f e e d e r s
25

26 %% Total l o s s e s = f e e d e r s + trans f o rmer s
27 t o t a l o s s e s=p_tl+p l t ; %TOTAL LOSSES FEEDERS+

TRANS

70

CHAPTER 6. MATLAB MODEL

28 e n e r g y l o s s e s t o t=en e r gy l o s s e s+e n e r g y l o s s e s t r a s f
29 e n e r g y l o s s e s t o t
30 Dayly_losses = sum(t o t a l o s s e s , 1) ;
31

32 f i g u r e (9)
33 hold on
34 g r id on
35 box on
36 p lo t (time , t o t a l o s s e s)
37 xlim ([1 4 8]) ;
38 x l ab e l ('Time [h a l f hours] ') ;
39 y l ab e l ('Power [W] ') ;
40 t i t l e (' Power t o t a l l o s s e s (Feeders+Transformer

) [W] ') ;

The next block compute the Voltage values and plots them.

1 %% Voltage va lue s
2

3 f o r n1=1:24
4 f i l ename1=s p r i n t f ('V%0.5g .mat ' , n1) ;
5 S1 (n1)=load (f i l ename1) ; %i t i s a s t r u c t . I have

to convert i t in a matrix
6 end
7 cc1=s t r u c t 2 c e l l (S1) ;
8 aa1=ce l l 2mat (cc1) ;
9 bb1=permute (aa1 , [2 1 3]) ;
10

11 v=ze ro s (l ength (bb1) ,24) ;
12 f o r m=1:24
13 v (: ,m)=bb1 (: , 2 ,m) ; % VOLTAGE OF EACH LOAD
14 end
15

16 %v=v (3265 : end) ;
17

18 f i g u r e (10)
19 hold on
20 box on
21 g r id on
22 p lo t (time , v) ;
23 xlim ([1 4 8]) ;
24 x l ab e l ('Time [h a l f hours] ')
25 y l ab e l (' Voltage [pu] ')
26 t i t l e (' Voltage o f each load [pu] ')

71

CHAPTER 6. MATLAB MODEL

E�ciency of the grid.

1 %% Find e f f i c i e n c y
2 % ep s i l o n=pout/pin=sum(t o t a l load) /sum(l o s s e s

upstream trans fo rmer)
3 e p s i l o n t r a s f=sum(p_dt) /sum(p_ut) % TRANSFORMER

EFFICIENCY IN A DAY
4 e p s i l o n f e e d e r s=sum(ptot) /sum(p_dt) % FEEDERS

EFFICIENCY
5 e p s i l o n g r i d=sum(ptot) /sum(p_ut) % EFFICIENCY

FEEDERS+TRANSF
6 p e r c e n t a g e f e e d e r s l o s s e s=sum(p l t) /sum(ptot)
7 p e r c e n t a g e t r a n s f l o s s e s=sum(p_tl) /sum(ptot)
8

9 save (' AA_LossesWithoutBattery ' , ' time ' , ' ptot ' , '
p_ut ' , ' p_dt ' , ' p_tl ' , ' v ' , ' p l t ' , . . .

10 ' e n e r g y l o s s e s ' , ' e n e r g y l o s s e s t r a s f ' , '
e n e r g y l o s s e s t o t ' , ' e p s i l o n g r i d ' , ' e p s i l o n t r a s f
' , . . .

11 ' e p s i l o n f e e d e r s ' , ' p e r c e n t a g e f e e d e r s l o s s e s ' , '
p e r c e n t a g e t r a n s f l o s s e s ') ;

72

Chapter 7

Results

7.1 Bench test result

To understand how the R2 score can be used to �gure out the total losses
error of the simulink network, �rst i used this script (down below) to �nd
a correlation between R2 and average total dayly error. Here i track only
a surplus of an hypotetic estimation of the predicted value, because is the
wrost case for the grid, when we have more power demanded and losses, than
we expect.

1 os . chd i r (Final_matrix)
2 df = pd . read_pick le ("

Benchtest_matrix_true_value . p i c k l e ")
3 df = df [[" energy_target_var iab le "]]
4

5 f o r NUM in range (1 ,11) :
6 os . chd i r ("/Users /FX504GE − EN069T//

Desktop/Codic i l avoro /Benchtest ")
7 df1 = pd . read_pick le ("Benchtest_acc_+%"

+s t r (NUM) + " . p i c k l e ")
8 df1 = df1 [[" energy_target_var iab le "]]
9

10 pr in t (s t r (NUM))
11 pr in t (r2_score (df , df1))
12 ACC = r2_score (df , df1) * 100
13 pr in t (s t r (ACC))
14

15 df1 = pd . read_pick le ("Benchtest_acc_−%"
+s t r (NUM) + " . p i c k l e ")

16 df1 . to_pick le ("Benchtest_acc="+ s t r ('

73

CHAPTER 7. RESULTS

{0 : . 2 f } ' . format (ACC))+ " . p i c k l e ")
17 df1 . to_csv ("Benchtest_acc="+ s t r (' { 0 : . 2

f } ' . format (ACC))+ " . csv " , index =
False)

18 df1 . to_excel ("Benchtest_acc=" + s t r ('
{ 0 : . 2 f } ' . format (ACC)) + " . x l sx ")

This script gives back the excel values of the �gure 7.1.
Down below there are the rappresentation of the average error value in rela-
tion at the R2 score. As show in �gure 7.1 the error has a linear correlation
with the R2 score: the more the score drops, the more the error raises. It
is interesting notice that to have an error in module equal to 10% we must
have an R2score = 0.9588, or 95.88%.

Figure 7.1: Theoretical R2 score vs Avg error

It is important to check these result with the simulink model and the losses
estimation matlab script.

7.2 Simulink and matlab result

I run the matlab and simulink model with the di�erent benchtest matrix to
analyse the grid losses, and see if they match the expectations of the previous

74

CHAPTER 7. RESULTS

test.

As shown in the �gure 7.2 the trend of the graph is almost linear, as within
the test in simulink bench test matrices with + or - a certain percentage of
error were tested. These matrices have a di�erent R2 score, but have the
same percentage error, which are represented by the �at areas of the graph.
Overall considering the machine error, as approximations, the results on the
�gure 7.2 is quite similar to the �gure 7.1.

Figure 7.2: Average error from simulink test

So having traced the error trend with respect to our R2 score, let's analyze
the results obtained from the forecast models.

7.3 SVR and RFR model results

Here there are some comparison between SVR and RFR prediction. They
use the same input matrix and they are going to predict the same interval
of time, �rst a train-test along the same day, second the train using the day
before the wanted one as a train set and as test set the target day. This
choice is due to the short prediction interval which we are looking for [27].
The main important point in this article is that, we need good input data,
not a large quantity. More data we have, better will be generaly, but in our
case, if we want to predict a single day, we must give a single day training
set to the models, to allow them to correctly understand the structure of the
incoming data.
With the setting shown in �gure 7.3, i run the SVR and RFR along 100
times, changing the target day time after time using as input dataset the
Lumped custom matrix wich has a structure equal at 4.3.
The structure of the matrix is the same, but the column of power loads

75

CHAPTER 7. RESULTS

changes, being inclusive of 24 dwellings instead of just one.
The training time is de�ned as the day before the prediction.

Figure 7.3: SVR setting

For the SVR the results are shown in �gure 7.4. The main problem in this
case is the over�tting of the model: the model is quite good to understand
the correlation inside the training set, but has a lot of problem when we give
as input new data. To overcome this problem is possible modify the C value,
trying to raise the test prediction but losing some all overall precision.

Figure 7.4: SVR average score for train and test set

76

CHAPTER 7. RESULTS

The same test was carried out with the RFR model in �gure 7.5

Figure 7.5: RFR average score for train and test set along 100 days.

A worse problem of over�tting occurs in the case of the RFR model. As you
can see in the �gure 7.5, the model seems to be able to give excellent an-
swers during the training phase, marked as average score control, but fails in
the test phase where it even has negative con�dence values. These negative
values mean that the model is not able to judge the quality of its forecast.
Also in this case, it is necessary to optimize the RFR parameters using other
algorithms, such as genetic algorithms.

For the RFR is important to take note about how long is the training time
respect the SVR: SVR training time 1 day prediction is 1 seconds, instead
for the RFR is 11 seconds, to run the program shown in the script down
below, explained by the Flow chart in the �gure 7.6.

77

CHAPTER 7. RESULTS

Figure 7.6: Flow chart AVG score generator, for single day and multiple
Lump, and multiple day and total Lump score

1 # i n i z i a l i z e the counter
2 s t a r t = in t (input (" s t a r t i n g day (minimum = 1) :

"))
3 stop = in t (input (" stop day (max = 365) : "))
4 # se t the s co r e day matrix f o r a l l the day

pred i c t ed
5 df_score_tot = pd . DataFrame (index = range (s ta r t

, stop) , columns=["Day" , 'AVG_R^2_score_control
' , 'AVG_R^2_score_target '])

6

7 t s = time . time ()
8 s t = datet ime . datet ime . fromtimestamp (t s) .

s t r f t ime ('%Y−%m−%d %H:%M:%S ')
9 pr in t ("Time s t a r t : " + s t)
10 f o r DD in range (s ta r t , stop) :
11 # de f i n e t r a i n i n g day as t a r g e t day − 1
12 td = DD − 1
13 gg = td *48
14 # targ e t day i s the f i r s t input
15 target_day = DD

78

CHAPTER 7. RESULTS

16 ggp = target_day *48
17 # cc = in t (input ("How much column do you

have? (Lump matrix = 8) : "))
18 # columns on our matrix
19 cc = 8
20

21 # sto r i n g matrix , 3 columns : lumped customer ,
s c o r e o f the cont ro l , s c o r e o f the
p r ed i c t i o n

22 df_store_data = pd . DataFrame (index = range
(1 ,25) , columns=[' Lumped_customer ' , 'R^2
_score_control ' , 'R^2_score_target '])

23

24 f o r NUM in range (1 ,25) :
25 # load the matrx
26 df = pd . read_pick le ("lump_"+ s t r (NUM) + " .

p i c k l e ")
27 df = df [[' time ' , ' tamb ' , ' vs ' , 'GF ' , 'Tc ' , '

neta_c ' , ' power ' , ' energy_target_var iab le ']]
28

29 # s e l e c t the input // Train ing value
30 # X s c a l i n g
31 X = df . i l o c [gg : (gg + 48) , 0 : (cc − 1)] . va lue s
32 X = np . array (X)
33 X_train = prep ro c e s s i ng . s c a l e (X)
34

35 # y s c a l i n g
36 y = df . i l o c [gg : (gg + 48) , (cc − 1) : cc] . va lue s
37 y_train = prep ro c e s s i ng . s c a l e (y)
38

39 # s e l e c t the input // Target v laue
40 # Xp s c a l i n g
41 Xp = df . i l o c [ggp : (ggp + 48) , 0 : (cc − 1)] . va lue s
42 Xp = np . array (Xp)
43 X_test = pr ep ro c e s s i ng . s c a l e (Xp)
44

45 # yp s c a l i n g
46 yp = df . i l o c [ggp : (ggp + 48) , (cc − 1) : cc] . va lue s
47 y_test = pr ep ro c e s s i ng . s c a l e (yp)
48

49 # Train e t e s t s e t
50 # X_train_svr , X_test_svr , y_train_svr ,

y_test_svr = model_se lect ion .
t r a i n_t e s t_sp l i t (X_svr , y_svr , t e s t_s i z e

79

CHAPTER 7. RESULTS

=0.3)
51

52 # SVR c a l l i n g and f i t t i n g
53 svr = svm .SVR()
54 svr . f i t (X_train , y_train)
55

56 # Pred i c t i on // con t r o l s e c t i o n and ta r g e t
57 y_control= svr . p r ed i c t (X_train)
58 y_target = svr . p r ed i c t (X_test)
59

60

61 # con t r o l s c o r e
62 MSE_control = mean_squared_error (y_train ,

y_control)
63 r2_score_contro l = r2_score (y_train , y_control)
64

65 # r e s u l t s co r e
66 MSE_target = mean_squared_error (y_test ,

y_target)
67 r2_score_target = r2_score (y_test , y_target)
68

69 # Pr int ing s e c t i o n f o r debug mode
70 # pr in t ("Lump_" +s t r (NUM))
71 # pr in t ("MSE con t r o l day p r ed i c t i o n = "+

s t r (MSE_control))
72 # pr in t ("R^2 con t r o l day p r ed i c t i on = "+

s t r (r2_score_contro l))
73 # pr in t (

)
74 # pr in t ("MSE ta rg e t day p r ed i c t i on = "+

s t r (MSE_target))
75 # pr in t ("R^2 ta r g e t day p r ed i c t i o n = "+

s t r (r2_score_target))
76

77 #f i l l the df_store
78 df_store_data [' Lumped_customer '] [NUM] = "Lump_"

+s t r (NUM)
79 df_store_data ['R^2_score_control '] [NUM] =

r2_score_contro l
80 df_store_data ['R^2_score_target '] [NUM] =

r2_score_target
81

82 # df_store_data . to_pick le ("

80

CHAPTER 7. RESULTS

Score_SVR_matrix_day="+s t r (target_day)+".
p i c k l e ")

83 # df_store_data . to_excel ("
Score_SVR_matrix_day="+s t r (target_day)+".
x l sx ")

84

85 # end f i r s t i cyc l e , s t a r i n g the second one
86 df_store_data = df_store_data [["R^2

_score_control " , "R^2_score_target "]]
87

88 # make the average s co r e va lue s f o r the day
89 df1 = df_store_data . sum() / l en (df_store_data)
90

91 df_score_tot ["Day"] [DD] = DD
92 df_score_tot ['AVG_R^2_score_control '] [DD] = df1

[0]
93 df_score_tot ['AVG_R^2_score_target '] [DD] = df1

[1]
94 # end cyc l o f o r
95 df_score_tot . to_pick le (" Score SVR matrix from "

+s t r (s t a r t)+" to " +s t r (stop) +" day . p i c k l e "
)

96 df_score_tot . to_excel (" Score SVR matrix from "+
s t r (s t a r t)+" to " +s t r (stop) +" day . x l sx ")

97 df_score_tot . sum() / l en (df_score_tot)
98

99 #clock senso r
100 t s2 = time . time ()
101 s t2 = datet ime . datet ime . fromtimestamp (t s2) .

s t r f t ime ('%Y−%m−%d %H:%M:%S ')
102 pr in t ("Time end : " + st2)

For our main goal, the short term prediction is better to use the SVR, so we
are able to make a more complex model which can update itself more times
per day for example, using a di�erent way to predict the data.
If we take one day, and split it into training and test set, our script will be
able to use the data of the day before and also of the current day of the
prediction to do the forecast. Basically it is possible to use the 70% and
30% rules. Splitting the all data set into, a 70% training set and 30% test
set. So we are going to predict a shorter time window, but we can rerun our
simulation, more times along the day, being able to predict all the day using
the incoming data from the smart metering.

81

CHAPTER 7. RESULTS

Also the understanding of the data could be improved by having more input
data, having a higher sampling frequency, so as to have peaks that are not
too di�erent from each other and to make easier the training work for the
models.

82

Chapter 8

Conclusion and futures works

8.1 Conclusion

Combining the information from the Simlunk model and the score test, it is
important to notice that only prediction over R2 = 0.95 to have an average
error egual at 10% and to remain inside the Voltage limits of the grid for
stability.
Moreover the SVR model suits better for short time prediction than the RFR
model, which use more computational time to get similar performances.
It's also important to notice that with an higher frequency sampling of en-
ergy values, is possible to raise the accuracy of the models.
These results agree with the literature, where we have seen in recent years,
that to improve SVR it is appropriate to associate them with optimization
systems such as genetic algorithms, PSO. These algorithms in combination
can help our model during the training phase and signi�cantly improve the
�nal R2 score [28] [29].

8.2 Future work

This study can be the base, for an future test on a GA-SVR model, o even
more so�sticated machine learning algorithm, as NEAT model. It is possible
to try to do the load forecast prediction for all the next year to make the
estimation network losses of all the years.
These algorithms, once re�ned, can be used for both long and short term
forecasts, even in �elds such as recyclable energies, where the importance of a
good prediction of the generated power is essential for a correct management
of the power�ow.

83

Bibliography

[1] D. S. B. Nimat Shamim Dr. Anitha Subburaj,Model Predictive Control

Analysis for the Battery Energy Storage System. 2017.

[2] V. A. Irena Koprinska Rohen Sood, Variable Selection for Five-Minute

Ahead Electricity Load Forecasting. 2010.

[3] I. M. Q. M. H. M. Rehan Nawaz Muhammad Awais Shahid, �Machine
learning based false data injection in smart grid�, IEEE,

[4] R. Sebastian, Machine Learning with Python (Data Science). 2015.

[5] A. L. Samuel, �Some studies in machine learning using the game of
checkers�, IBM Journal of reasearch and development, 1959.

[6] M. H. B. Widroe, Ed., Adaptive switching circuits, 1960.

[7] A. Turing, Ed., Computing machinery and intelligence, 1950.

[8] P. Langley, The changing science of machine learning. 2011.

[9] Lee, Ed., Automatic speech recognition: the development of the SPHINX,
1989.

[10] D. Pomerleau, Ed., Alvinn: An autonomous land vehicle in a neural

network, 1989.

[11] F. U. M. D. S. Weir N., �Automated star/galaxy classi�cation for dig-
itized poss-||�, Astronomical Journal v. 109,

[12] C. M. Bishop, �Machine learning and pattern recognition�, Clarendon
press, 2006.

[13] D. Wolpert, The Lack of A Priori Distinctions Between Learning Al-

gorithms. 1996.

[14] D. W. e W.G. Macready, No Free Lunch Theorems for Optimization.
1997.

[15] W. P. W. S. McCulloch, �A logical calculus of the ideas immanent�,
The bulletin of mathematical biophysics, 1943.

[16] F. Rosenblatt, �The preceptron a perceiving and recognizing automa-
ton�, Cornell Aeronautical Laboratory, 1957.

85

BIBLIOGRAPHY

[17] W. et al., �Adaptive �adaline� neuron using chemical �memistors��,
Stanford Electron. Labs., 1960.

[18] D. A. Freedman, �Statistical models: Theory and practice�, Cambridge

University Press., 2009.

[19] C. W. F. Rencher Alvin C., Methods of multivariate analysis, wiley

series in probability and statistics, 2012.

[20] S. Dey, Ed., Implementing a soft margin kernelized support vector ma-

chine binary classi�er with quadratic programming in R and Python,
2018.

[21] B. S. Alex J. Smola, �A tutorial on support vector regression�, Statistics
and Computing, 2003.

[22] S. Kullback, Information Theory and Statistics. 1959.

[23] A. Tarsitano, Measuring the asymmetry of the Lorenz Curve. 1988.

[24] L. Beccari, �A study of the impact of integrating energy storage and pv
systems into domestic distribution networks in ireland�, master thesy's
work, Università degli studi di Padova.

[25] The impact of small scale embedded generation on the operating param-

eters of distribution networks, in Power P. B.D. of Trade Industry, Ed.,
2003.

[26] P. P. B., �Cost and bene�ts of embedded generation in ireland�, SEi,
2004.

[27] T. L. Qian Zhang, �A svm and variable structure neural network
method for short-term load forecasting�, IEEE, 2010.

[28] P. T. Amit Kumar, �Hybrid ga � svr technique for contingency screen-
ing in power system�, IEEE, 2012.

[29] W. S.-w. Ju Yi-feng, �Village electrical load prediction by genetic al-
gorithm and svr�, IEEE, 2010.

86

	Aknowledgments
	Ringraziamenti
	Abstract
	Abbreviations
	Introduction
	Machine Learning
	Three main types of machine learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Classifier
	Predictor

	Machine learning features
	Introduction
	Quality prediction parameters: MSE and R2

	Data pre-processing
	Adeline
	Optimization for a cost function

	Linear regression
	SVM and SVR
	Decision tree and RFR
	Structure of a decision tree
	Random Forest Regressor

	Case of study and Data profile
	Introduction
	Smart metering method and data collection

	Network considered

	Pre-processing data and SVR, RFR models
	introduction
	Data preprocessing
	Choice of only residential ID
	Add solar features
	Isolate singular customer
	Lumped loading generation

	SVR model and RFR model
	Bench test matrix

	Simulink model
	introduction
	Simulink model
	Three Phase Load Block

	Matlab model
	Matlab code
	Compute grid parameters
	Matlab Plot and Graphs

	Network losses
	Losses computation in matlab

	Results
	Bench test result
	Simulink and matlab result
	SVR and RFR model results

	Conclusion and futures works
	Conclusion
	Future work

	Bibliography

