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Summary 

 

The purpose of this thesis work is to analyze different state-of-art semi-supervised learning 

algorithms that has been proposed in last years. In semi-supervised learning, unlabeled data are used 

together with labeled data to provide better performance in the classification process. 

In the experimental phase, the implemented algorithms have been applied to various datasets 

usually tested in the academic research. Used datasets are real-world datasets available at UCI 

(University of California, Irvine) website. 

A second phase of the experiments consists in the fusion and combination of the analyzed 

algorithms in order to obtain a classification algorithm with good performance in each tested 

dataset. This goal represents the implementation of an algorithm with robustness properties, which 

can be used in a dataset independently from its nature, in a general purpose classifier. 
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Chapter 1  

 

Introduction 

 

 

In the current Information Age there has been an extraordinary growth of data that have been 

generated and stored in millions of data structures. Consequently, the availability of very large 

volumes of data has created a problem of how to extract useful information. 

Traditionally, data analysis techniques that have been used for such tasks include regression analysis, 

cluster analysis, numerical taxonomy, multidimensional analysis, other multivariate statistical 

methods, stochastic models, time series analysis, non-linear estimation techniques, and others. These 

techniques have been widely used for solving many practical problems.  

Statistical data analysis is primarily oriented toward the extraction of quantitative data characteristics, 

and as such has inherent limitations. For example, a statistical analysis can determine average and 

correlations between variables in data, but it cannot characterize the dependencies at an abstract and 

conceptual level, providing a causal explanation of the reasons why these dependencies exist. 

Moreover, the statistical techniques can determine the central tendency and variance of given factors, 

while regression analysis can fit a curve to a set of samples. However, these techniques can’t produce 

a qualitative description of the dataset structure and determine the dependences not explicitly 

provided in the data. 

Methods based on numerical analysis can create a classification of samples and specify a numerical 

similarity among the samples assembled into the same or different categories. This approach however 

can’t build qualitative description of the reasons behind class assignment. 
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In summary, traditional data analysis techniques facilitate useful data interpretations and can help to 

generate important insights into the processes behind the data. In efforts to satisfy the growing need 

for new data analysis tools that will overcome the limitations of traditional statistical analysis, 

researchers have turned to ideas and methods developed in machine learning. 

The last decade has experienced a revolution in terms of information availability and exchange. The 

World Wide Web and the amount of produced data is growing at an exponential rate. 

Moreover many businesses and organizations have begun to collect data regarding their own 

operations and market opportunities on a large scale. An important challenge consists in the 

“extraction” of useful information from the provided amount of data. Beyond the immediate purpose 

of tracking or archiving the activities of an organization, the collected data can sometimes represent 

an important resource for strategic planning and decisions. Research and development in this area are 

often referred to as data mining and knowledge discovery in databases (KDD) [14].  

The goal of data mining algorithms is to extract useful information from large data archives. Reached 

information can be obtained: 

 

 Directly, in the form of “knowledge” characterizing the relations between the variables of 

interest. 

 Indirectly, as functions that allow to predict, classify, or represent information in the 

distribution of the data.  

 

In the field of data mining and knowledge discovery, new techniques and algorithms have been 

developed to deal with the computational complexity deriving from the large amount of data. 

However the large availability of data can provide good performance in the classification, also 

considering unlabeled data in the training phase, using techniques called semi-supervise learning [2] 

[10]. 
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Many different approaches and algorithms have been proposed. For example techniques oriented to 

obtain robustness property (especially in the case of noisy datasets), or feature selection techniques 

which provide good performance with high-dimensional datasets [8]. 

In this thesis work, four algorithms have been implemented and analyzed, Analyzed methods have 

been published in papers distributed in the last years [6] [7] [8] [9]. Then the algorithms have been 

tested on various datasets available online in the UCI website: https://archive.ics.uci.edu/ml/machine-

learning-databases. A detailed description of datasets is illustrated in sections 4.2 and 4.3. 

The implemented algorithms regard different techniques and are described in the relative reference 

articles: 

 

 Classifier which uses a generated set of artificial samples [6] 

 Advanced technique based on semi-supervised learning [7] 

 A semi-supervised feature ranking method [8] 

 Using clustering analysis to improve semi-supervised classification [9] 

 

These different approaches are described in section 3. 

In section 4, the experiments that have been done are explained and the dataset division (labeled, 

unlabeled, validation data) is illustrated. 

 

  

https://archive.ics.uci.edu/ml/machine-learning-databases
https://archive.ics.uci.edu/ml/machine-learning-databases
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Chapter 2 

 

Machine Learning 

 

Machine Learning is the discipline that study algorithms which allow to identify patterns in data.  

Over the past years Machine Learning has become one of the most important fields of information 

technology. With the ever increasing amounts of available data, there are good reasons to believe that 

smart data analysis will become even more pervasive as a necessary component of the technological 

progress. 

Usually, major machine learning problems can be divided in three groups of problems: Association 

analysis, clustering and classification. 

  

Association Analysis: this task consists in searching for patterns that describe strong associations 

among the features.  The discovered patterns are typically represented in the form of implication rules 

between feature subsets. Because of the exponential size of its search space, the goal of association 

analysis is to extract the most interesting patterns in an efficient manner. Useful applications of 

association analysis include finding groups of genes that have related functionality, identifying web 

pages that are accessed together, or understanding the relationships between different elements of 

Earth’s climate system. 

 

Classification: it consists in the construction of a model that allows to classify records assigning 

them a label. The base form of classification has two phases: a learning phase which create a model 
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on a dataset of already classified data, and a test phase which is used to test the obtained model and 

get a measure of performance. Test phase tests the classifier built in training phase on a test set; the 

classifier assigns to any record a label and then resulting labels are compared with real classes and an 

accuracy measure is calculated. 

 

Clustering: it is the problem of dividing data in clusters, based on the attributes values. It can be used 

for group newspaper articles or website and can be similar to classification for some aspects. 

In this thesis will be used classification techniques prevalently based on the Support Vector Machine 

(SVM) classifier, so in the next this argument will be examined in depth. 

 

2.1 Classification 

 

Classification is the task of assigning a label to an input object. It’s a very common problem and it 

has many different real-world applications. Examples include detecting spam email messages based 

on the message header and content, categorizing cells as malignant or the classification of galaxies 

based upon their shape. 

To solve the classification problem, different learning algorithms have been proposed and each 

algorithm has advantage and disadvantage. Most diffused algorithms are: 

 

Decision Tree: it is very simple to implement and it has good time performance. However accuracy 

is not very high and there are more convenient learning algorithms. It consists in the constructions of 

a decision tree by progressively splitting the features values. This technique also provides in output 

an intuitive tree diagram and so it is also useful to understand the internal data structure [5]. 
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Bayesian Classifier [24]: it classifies a record estimating the probability that the sample belongs to 

each class and choosing the most probable class. However, in a dataset every sample is almost unique, 

and so it’s impossible to directly estimate the needed probability. For this reason the Bayes theorem 

is used. This theorem provides the method to estimate the posterior probability 𝑃(𝑌|𝑿) (probability 

of a class conditioned to the sample’s value) in terms of the prior probability  𝑃(𝑌) , the class 

conditional probability 𝑃(𝑿|𝑌) and the evidence 𝑃(𝑿): 

𝑃(𝑌|𝑿) =
𝑃(𝑿|𝑌) × 𝑃(𝑌)

𝑃(𝑿)
                                   (2.1) 

 

Artificial Neural Networks: it’s a network that can ‘learn’ a model of classification, changing its 

configuration. It is very used in machine learning. Analogous to human brain structure, an Artificial 

Neural Network is composed of an interconnected assembly of nodes and direct links [23]. 

 

Support Vector Machine: Support vector machine (SVM) is a technique of automatic learning for 

the classification of data. It is based on the idea of dividing the features space using a function that 

allows to separate the different classes [25]. 

 

2.2 Support Vector Machine 

 

Support vector machine (SVM) is a technique of automatic learning for the classification of data. The 

idea is to divide the features space using a function that allows to separate the different classes. 

Support Vector Machine is one of the most used techniques of classification because of its good 

performance in terms of accuracy and time consumption. This technique has shown promising 

empirical results in many practical applications, from handwritten digit recognition to text 

categorization. SVM also works very well with high-dimensional data and avoids the curse of 
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dimensionality problem. Another unique aspect of this approach is that it represents the decision 

boundary using a subset of the training samples, known as the support vectors. 

There exists different kind of SVM. Considering linearity, SVM can be divided in linear and non-

linear. Non-linear SVM is reduced to linear case using a kernel function that allows to create a space 

with more dimensions than the number of the features, so the mathematical techniques of linear case 

can be applied to the extended space. 

Moreover, considering data distribution, linear SVM can be divided in two cases: linearly separable 

and not linearly separable. In linearly separable case there exists a boundary that allows to divide the 

feature space among different classes, while this is not possible in not separable case, where is needed 

to use a soft margin approach (where the decision boundary is built considering the possibility of 

misclassifying records in training phase). This approach is useful also in separable case, in order to 

avoid overfitting. 

In the next we analyze the case of two classes. Then, when classes are more than two, there are 

algorithms that allow to reduce the problem to the two classes case. In the experiments of chapter 4, 

the one versus all approach is used. 

 

2.2.1 Linear SVM: separable case 

 

The base case of SVM is linear SVM in a separable problem, where the SVM is the optimal boundary 

that maximizes the distance between the groups of records of the same class. The goal is to found a 

function that describes the decision boundary in the space of features. In this case such boundary 

exists for hypothesis, so is used a hard margin approach that searches the optimal hyperplane dividing 

the dataset. 
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Firstly, a margin is defined as shown in Figure 2.1; the margin represents the distance from boundary 

to the nearest element of each class. Then, it’s formalized an optimization problem on the margin 

length, which will be solved using Lagrange multiplier method. 

Consider a binary classification problem consisting of 𝑁 training samples. Each sample is denoted 

by a tuple (𝑥𝑖, 𝑦𝑖)  where 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑑)  corresponds to the attribute set for the 𝑖 − 𝑡ℎ 

sample. Using conventionally {−1,1} as classes, the decision boundary will have the form:  

𝑊 ∙ 𝑥 + 𝑏 = 0   (2.2) 

Where 𝑤 and 𝑏 are the parameters which have to be determined solving the optimization problem. 

The first step consists in determine the coefficients 𝑊 and 𝑏 of (2.2). For every record, the following 

conditions must be verified: 

 𝑊 ∙ 𝑥𝑖 + 𝑏 ≥ 1     𝑖𝑓 𝑦𝑖 = 1 (2.3) 

 𝑊 ∙ 𝑥𝑖 + 𝑏 ≤ −1     𝑖𝑓 𝑦𝑖 = −1 

These conditions can be summarized in the following: 

𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1            𝑖 = 1,2, … , 𝑁             (2.4) 

As in Figure 2.1, the margin in separable case is defined as the minimum distance between elements 

of different classes (in the figure it is represented the case of a space of two features, but it is the 

analog of the case with more features). The nearest elements to the boundary are called support 

vectors of the relative class. Considering two points of different class 𝑥1 and 𝑥2, the distance between 

the hyperplanes passing on the support vectors is determined as follow. Initially the parameters 𝑊 

and 𝑏 are scaled in order to obtain hyperplanes passing on the support vectors described by the 

following equations: 

𝑊 ∙ 𝑥1 + 𝑏 = 1    (2.5) 

𝑊 ∙ 𝑥2 + 𝑏 = −1 

So 

𝑊 ∙ (𝑥1 − 𝑥2) = 2   (2.6) 
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‖𝑊‖ ∙ 𝑑 = 2 

𝑑 =
2

‖𝑤‖
 

Where 𝑑 is the distance between hyperplanes passing on the support vectors. 

 

 

 

 

 

To solve the problem of optimization of the separation, we need to maximize the margin, which 

means to minimize the function: 

𝐹(𝑥) =
‖𝑤‖2

2
    (2.7) 

Considering the boundaries (2.3). We get the following optimization problem: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  min
𝑤

‖𝑤‖2

2
  (2.8) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:  𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1 𝑖 = 1,2, … 𝑁 

 

Figure 2.1: decision boundary for SVM in linear separable case. 
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This problem is a convex optimization problem, because the objective function is quadratic. It can be 

solved with Lagrange multipliers method. 

 

Intuitively the process to use the Lagrange multipliers is the following: 

1) We construct a Lagrangian function, which takes into account the boundaries: 

𝐿𝑝 =
1

2
‖𝑊‖2 − ∑ 𝜆𝑖 ∙ (𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) − 1)                (2.9)

𝑁

𝑖=1

 

Where 𝜆𝑖 are the Lagrange multipliers and must be determined 

2) We can hypnotize 𝜆𝑖 ≥ 0 , in fact every solution with negative Lagrange multipliers can only 

increase the objective function 

3) We impose the derivatives of 𝐿𝑃 respect to 𝑤 and 𝑏 equal to zero: 

𝜕𝐿𝑃

𝜕𝑤
= 0 ⇒  𝑤 = ∑ λi ⋅ yi ∙ xi                                     (2.10)

𝑁

𝑖=1

 

𝜕𝐿𝑝

𝜕𝑏
= 0 ⇒  𝑤 = ∑ λi ∙ yi = 0

𝑁

𝑖=1

 

4) The set of inequality in the optimization problem can be replaced by equality, thanks to the fact 

that the Lagrange multiplier are greater than zero. These conditions are also called the Karush-

Kun-Tucker conditions (KKT): 

𝜆𝑖 ≥ 0     (2.11) 

𝜆𝑖(𝑦𝑖(𝑊 ∙ 𝑥𝑖 + 𝑏) − 1) = 0 

5) The problem is simplified considering the dual problem. The Lagrangian is transformed into a 

function of the Lagrange multipliers only. 

 

When the problem will be solved, only the support vectors will have a value of 𝜆𝑖 ≠ 0 and that will 

be used also to determine decision value and probability estimation in practical implementation. 
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2.2.2 Linear SVM: not separable case 

 

In not separable case we can’t define an optimization problem with a boundary that is valid for all 

records in the features space. So it’s used a soft margin approach. Soft margin approach can be applied 

also to avoid overfittng, in the case where a classifier that has a low training error can generate low 

final accuracy. Soft margin approach is represented in Figure 2.2, where boundary B1 will provide a 

better description of the class distribution respect to boundary B2, also if B2 perfectly divides the 

dataset. We need to consider soft margin in constraints inequality (2.3) in this problem. This can be 

done introducing slack variables 𝜉 ≥ 0 : 

𝑊 ∙ 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉    𝑖𝑓 𝑦𝑖 = 1    (2.12) 

𝑊 ∙ 𝑥𝑖 + 𝑏 ≤ 1 + 𝜉    𝑖𝑓 𝑦𝑖 = −1 

𝜉𝑖 ≥ 0 

This allows to consider a wide margin, which can case classification errors in some case. To avoid 

this we need to modify the object function to the following: 

𝑓(𝑤) =
‖𝑊‖2

2
+ 𝐶 (∑  ξi 

𝑁

𝑖=1

)

𝑘

                                       (2.13) 

Where 𝐶 and 𝑘 represent the cost parameters. For simplicity 𝑘 is set to 1, and 𝐶 will be chosen for 

example as better experimental choice in validation phase. If 𝐶 is set as infinity or a high value, the 

situation will be the hard margin case. 

Figure 2.2: soft margin approach. 
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2.2.3 Non-linear SVM 

 

Non-linear SVM takes into account the case in which the boundary function used to divide the feature 

space is not linear. This can generate a better accuracy, but is more computationally expensive than 

the linear SVM. To solve the problem of determine a non-linear boundary, the data are transformed 

from the original coordinate space in 𝑋 into a new space 𝜙(𝑥), so that a linear boundary can be used 

to separate the instances in the new space. After the transformation of the space of features, the 

previous strategy can be apply to define a classification model. 

After the transformation, the linear problem will be the following: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  min
𝑊

‖𝑊‖2

2
 (2.14) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:  𝑦𝑖(𝑊 ∙ 𝜙(𝑥) + 𝑏) ≥ 1 𝑖 = 1,2, … 𝑁 

 

Which is similar to problem (2.8) except for the substitution of 𝑥 by 𝜙(𝑥). 

The dual Lagrangian problem has the following form: 

𝐿𝐷 = ∑ 𝜆𝑖 −
1

2

𝑁

𝑖=1

∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗

𝑖,𝑗

 φ(xi)φ(xj)                    (2.15) 

And finally an element 𝑧 can be classified using the function: 

𝑓(𝑧) = 𝑠𝑖𝑔𝑛(𝑤 ∙  φ(x) + b) = sign (∑ 𝜆𝑖𝑦𝑖

𝑛

𝑖=1

 φ(xi)φ(z) + b)       (2.16) 

This procedure has a high computational cost, because the multiplicative term 𝜙(𝑥𝑖) ∙  𝜙(𝑥𝑗) 

introduces non-linear terms. A strategy named Kernel Trick is adopted to simplify the non-linear 

problem. 
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Kernel trick is based on the idea that a function can be used to approximate the dot product in the 

new feature space with a product in the original feature space. A Kernel function has the following 

form 

𝐾(𝑢, 𝑣) = φ(u) ∗ φ(v)                                  (2.17) 

and commonly used functions are: 

1) Polynomial: 𝐾(𝑥, 𝑦) = (𝑥 ∙ 𝑦 + 1)𝑝 

2) Radial Basis Function: 𝐾(𝑥, 𝑦)  =  𝑒(‖𝑥−𝑦‖2𝛾) 

3) Hyperbolic tangent: 𝐾(𝑥, 𝑦)  =  tanh(𝛾 ∙ 𝑥 ∙ 𝑦 + 𝛿) 

 

It’s very important the right choice of the parameters, since this setting can influence the final 

performance. Usually these parameters are set in a validation phase. In this phase the model built on 

training set is tested on a validation set with different values of parameters and then the better 

parameter setting will be used in final experiments. 

 

2.2.4 libSVM 

 

libSVM is the MATLAB tool used in the implementation of the classification algorithms. This tool 

provides an implementation of SVM which offer also other options such as kernel choice or cost 

parameter settings. 

LibSVM provide multiclass classification. However, in this thesis work, multiclass problems will be 

reduced to two class problem and then the original multiclass problem is reconstructed with one-vs–

all approach. LibSVM solve multiclass problem using one-vs-one approach, which is more 

computationally expensive than one-vs-all, so we for simplicity adopt one-vs-all, reducing each 

dataset to the two classes’ case. 
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With LibSVM it’s possible to set the following parameters to obtain the previously described 

functions of SVM: 

 -s parameter: it defines the type of SVM: 

 0 -- C-SVC 

 1 -- nu-SVC 

 2 -- one-class SVM 

 3 -- epsilon-SVR 

 4 -- nu-SVR 

 -t parameter: define kernel function: 

 0 -- linear: u'*v 

 1 -- polynomial: (gamma*u'*v + coef0)^degree 

 2 -- radial basis function: exp(-gamma*|u-v|^2) 

 3 -- sigmoid: tanh(gamma*u'*v + coef0) 

 

We will use the default C-SVM with a cost parameter equal for both the classes. Cost factor is 

imposed trough the “–c” option. 

Normally will be used a linear kernel (default), but in some cases, as when it is needed to use different 

classifiers (diversity based approach), other kernel types are used. Kernel parameters are set trough 

“–d”, “–g” and “–r” options. 

With reference to 𝑐 parameter, in the following will be briefly introduced C-Support Vector Classifier. 

Given training vectors 𝑥𝑖 ∈ 𝑅𝑛 𝑖 = 1, … , 𝑙  and an indicator vector 𝑦 ∈ 𝑅𝑙 such that 𝑦𝑖 ∈ {1, −1} , C-

SVC [14] solves the following primal optimization problem: 

min
w,b,ξ

   
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

                                                     (2.18) 

𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:                                𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 

𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙 
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Where 𝜙(𝑥𝑖) maps 𝑥𝑖 into a higher dimensional space and 𝐶 > 0 is the regularization parameter: a 

cost parameter which intuitively determines the costs of errors in clustering. 

- c parameter will be often used in SVM classifiers to achieve better performance. 

 

2.2.5 One-vs-all approach 

 

For multiclass problem, the one-vs –all approach has been adopted. The multiclass learning problem 

is converted in binary class problems and then every sample is classified in each subproblem. Finally 

a definitive classification step assigns to each sample the class that has been more “strongly” assigned 

previously, which means “with highest decision value”. For example, in a Support Vector Machine 

implementation, the considered decision value can be reasonably the distance from the boundary to 

the sample in the features space. More precisely, the problem can be mathematically described as 

follow. 

Consider labels 𝑦,  where 𝑦𝑖 ∈ {1, … , 𝐾}  is the label of the sample  𝑋𝑖 . The one-vs-all approach 

implements the following procedure. 

For each class 𝑘 in {1, … , 𝐾}, construct a new label vector �̃� where 𝑦�̃� = 0 when 𝑦𝑖 = 𝑘 and  𝑦�̃� = 1 

otherwise. The learning algorithm is applied to the new dataset {𝑋, 𝑦�̃�} for each class 𝑘 = 1, … , 𝐾. In 

each iteration a binary problem is considered, and the score 𝑓𝑘 determined by the classifier, represent 

the “weight” of the assignment of the class 𝑘 to the sample. Then the class definitively assigned to 

the sample is determined as: 

�̂� = 𝑎𝑟𝑔 max
𝑘∈{1,…,𝐾} 

𝑓𝑘(𝑥)                                      (2.19) 
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Performance evaluation 

To determine if a machine learning model built on a training set is good or not, it is tested on a 

different set, and the values which determine the goodness of the model are calculated. 

The accuracy is the ratio between the number of records correctly classified and the total number of 

records. However, it is not a parameter which represents completely the goodness of the used model. 

In many different situation it’s necessary to consider the confusion matrix, for example in datasets 

with class imbalance problem. Moreover other measures can be used, such as ROC curve or 

contingency table. For the purpose of this thesis work only accuracy measure is reported in the results 

section. 

 

2.3 Semi-Supervised Learning 

 

Automatic learning can be divided in three types, considering the kind of data used in the learning 

process. 

 

 Supervised learning: it is a learning process that uses only labeled data (data already 

classified, often manually and so for this type of learning usually are not available large 

training sets). 

 Unsupervised learning: the learning process is applied to data which are not already 

classified. The most common case is clustering, which consists in grouping elements in 

different clusters. Examples of clustering are segmentation of customers based on similar 

buying patterns or identify similar web usage patterns. 

 The third kind of learning is Semi-Supervised Learning, which takes advantage from the 

usage of unlabeled data to improve the performance of traditional supervised learning.  
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Semi-supervised learning have been developed successfully in the last years and provides good results 

in many practical applications. The study of semi-supervised learning is motivated by two factors: its 

practical value in building better computer algorithms, and its theoretical value in understanding 

learning in machines and humans. 

Since in semi-supervised learning the training samples contains also unlabeled data, there are two 

distinct goal for machine learning: 

 Predict the labels of future test data 

 Predict labels of unlabeled instances of training samples 

These problems are called inductive semi-supervised learning and transductive learning respectively 

[10]. 

 

Definition 2.3.1: Inductive semi-supervised learning: Given a training sample {𝐱} ,{𝑋}, inductive 

semi-supervised learning learns a function 𝑓: 𝑋 → 𝑌 so that 𝑓 is expected to be a good predictor on 

future data, beyond {𝐱} 

 

Definition 2.3.2: Transductive learning: Given a training sample {𝐱} ,{𝑋}, tranductive learning 

trains a function 𝑓: 𝑋 → 𝑌 so that 𝑓 is expected to be a good predictor on the unlabeled data {𝐱}. Note 

that 𝑓 is defined only on the given training sample, and is not required to make prediction outside. It 

is therefore a simpler function respect to the one defined in inductive semi-supervised learning. 

 

There exists different model and approaches to semi-supervised learning and the usage of unlabeled 

data to improve performance of learning. A general classification of approaches that can be used 

divides them in generative models and discriminative models [2]: 

 

 Generative models: Generative algorithms try to model the class-conditional density 𝑃(𝑥|𝑦) 

by some unsupervised learning procedure. Applying the Bayes theorem we obtain 
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𝑃(𝑦|𝑥) =
𝑃(𝑥|𝑦) ∗ 𝑃(𝑦)

∑ 𝑃(𝑥|𝑦) ∗ 𝑃(𝑦)𝑦
                                           (2.20) 

Which is an useful instrument to determine 𝑃(𝑥|𝑦) when each record is almost unique (which 

is in practice every real case). 

 

 Discriminative models: Discriminative algorithms do not try to estimate how the 𝑥𝑖 have 

been generated, but instead concentrate on estimating 𝑃(𝑦|𝑥). Some discriminative methods 

even limit themselves to modeling whether 𝑃(𝑦|𝑥) is greater than or less than 0.5; an example 

of this is the semi-supervised version of support vector machine. It has been argued that 

discriminative models are more directly aligned with the goal of supervised learning and 

therefore tend to be more efficient in practice. 

 

In the next, some models and techniques of semi-supervised learning and some specific algorithms 

will be introduced. Then in Chapter 3 the papers and algorithms used for the thesis work will be 

discussed. 

 

When we work with real datasets, a very important limitation of supervised learning is the small size 

of training data. In many cases, labeled data represent records which have been manually analyzed 

and labeled, and the amount of this kind of data is often limited. 

For example, for medical auto-diagnosis applications the labeled data are related to cases of patients 

which have been examined by a specialist and a diagnosis has been provided. The amount of this kind 

of data is limited for training process. 

As can be seen simply applying a Support Vector Machine to the small set of labeled data, the 

accuracy is sensibly less than when the training set contains more labeled data. Following the protocol 

used in this thesis, the labeled data are 10% of training set, which is 80% of total data (the protocol 

will be illustrated in the next chapters). 
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However in real cases the only labeled data available are the data manually labeled, and for this reason 

they represent a relatively small quantity. The idea of semi-supervised learning is to use also 

unlabeled data, available from training set, to construct a better model of classification. 

Experimentally has been seen that this technique can provide better performance in data classification. 

In the next, some general assumptions about semi-supervised learning and its main drawbacks will 

be explained and then some base techniques (self-training, co-training and help training) and the 

algorithms used in the reference articles will be introduced. 

 

2.3.1 Assumption for Semi-Supervised Learning 

 

In many cases the semi-supervised learning techniques comport advantages respect to supervised 

learning. However there is an important prerequisite: the distribution of samples (labeled and 

unlabeled) have to be relevant for the classification problem. In other words, we could say that the 

knowledge of 𝑝(𝑥) that one gains through the unlabeled data has to carry information that is useful 

in the inference of  𝑝(𝑦|𝑥) . If this is not the case, semi-supervised learning will not yield an 

improvement over supervised learning. It might even happen that the usage of the unlabeled data 

degrades the prediction accuracy by misguiding the inference [2]. 

 

    Semi-supervised smoothness assumption: if two points 𝑥1 and 𝑥2 in a high density region are 

closed, then so should be the corresponding outputs 𝑦1 and 𝑦2. 

This Assumption follow from the smoothness assumption which say that two points close each other 

in the space of features should have the same label. Intuitively this is important to make possible a 

generalization from a finite training set to a set of possibly infinitely many unseen test cases. 

For example, if many points in the same region of features space have different labels, it’s difficult 

for a classifier (for example a SVM) to determine a boundary dividing the classes. Moreover when 
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this boundary can be found, it’s not very significant in test phase when test samples, for hypothesis, 

can be arbitrarily of one of the classes (because they are in a high density region). 

 

    Cluster Assumption: if points are in the same cluster, they are likely to be of the same class. 

This assumption is based on the idea of use unlabeled data to better define the clusters of classes. In 

this hypothesis the labeled data can be divided in clusters and unlabeled data can be used to find the 

boundary of each class more accurately. 

The cluster assumption can be easily seen as a special case of the semi-supervised smoothness 

assumption, considering that clusters are frequently defined as being sets of points that can be 

connected by short curves which traverse only high-density regions. 

The cluster assumption can be formulated as follow: 

Low density separation: The decision boundary should lie in a low-density region. 

Intuitively we can see that a decision boundary in a high density region would cut a cluster into two 

different classes. The presence of many objects of different classes in the same cluster would require 

the decision boundary to cut the cluster and then the boundary will not lie in a low density region. 

 

    Manifold assumption: this assumption is about dimension of samples. Sometimes dimensions 

describing samples are too much (high-dimensional), so it’s useful to reduce the number of 

dimensions and represent the problem in a different (low-dimensional) space (manifold). The 

manifold assumption can be summarized as follow: 

Manifold assumption: the (high-dimensional) data lie (roughly) on a low-dimensional manifold. 
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2.3.2 Semi-supervised algorithms 

 

Semi-supervised learning strategies can be divided in classes of algorithms, considering the used 

approach. For example four classes of algorithms can be defined, based on the following approaches 

[2]: 

 

 Generative models: under the name generative models we refer to architectures 

following the generative paradigm described above. However quite all SSL algorithms 

are involved in the estimation of P(x|y)  and from that derives the class probability 

estimation, instead of calculate it directly. So are classified as Generative models only 

technics strongly oriented to the determination of 𝑃(𝑥). 

 

 Low-Density separation: this class contains algorithms which try to directly implement 

the low-density separation assumption by pushing the decision boundary away from the 

unlabeled points. The most common approach to achieving this goal is to use a maximum 

margin algorithm such a Support Vector Machine considering also unlabeled data (for 

example transductive SVM). 

 

 Graph-Based Method: During last years, graph-based methods has been a very active 

area of research in semi-supervised learning. The common denominator of these methods 

is that the data are represented by the nodes of a graph, the edges of which are labeled 

with the pairwise distances of the incident nodes (and a missing edge corresponds to 

infinite distance). 
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 Change of Representation: these algorithms are not intrinsically semi-supervised, but 

instead perform a two-step learning. 

1. Perform an unsupervised step on all data, labeled and unlabeled, but ignoring 

the available labels. This can for instance, be a change of representation, or the 

construction of a new metric or a new kernel. 

2. Ignore the unlabeled data and perform supervised learning using the new 

distances, representation or kernel. 

This can be seen as direct implementation of the semi-supervised smoothness assumption, 

since the representation is changed in such a way that small distances in high-density regions 

are conserved. 

 

Considering the different approaches, a Semi-Supervised Learning algorithm can combine some of 

them, or use other techniques like clustering. In the following, some popular SSL algorithms and 

basic approach to the SSL problem will be introduced. 

 

2.3.3 Self-training 

 

Self-Training is based on the idea of classifying progressively unlabeled data, adding to the pool of 

labeled data the records which have, at each step, a high ‘confidence’ in classification [8] [10]. 

In Self training a classifier is trained on an initial small amount of labeled data and is used to classify 

unlabeled data. For each classified element, is define a confidence measure which represent the 

‘validity’ of assigned label. For SVM the confidence measure is usually the probability estimation, 

or the absolute value of the distance from the boundary. Both this values can be obtained in output of 

libSVM tool. 
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The most confident elements obtained from this step are added to the labeled data with the relative 

label resulting from classification, then the classifier is re-trained on new labeled data. The process is 

iterated until unlabeled data are less than a threshold parameter. 

Self-training is characterized by the fact that the learning process uses its own predictions to teach 

itself. For this reason, it’s also called self-teaching or bootstrapping (not to be confused with the 

statistical procedure with the same name). Self-training can be either inductive or transductive, 

depending on the nature of the predictor 𝑓. 

 

 

 

 

 

 

 

This semi-supervised learning method [10] is very simple to implement and has been applied 

successfully to several natural language processing task. In [26] self-training is used for word sense 

disambiguation, e.g. deciding whether the word ‘plant’ means a living organism or a factory in a 

given context. It has been used also to identify subjective nouns [27] and classify dialogues as 

‘emotional’ or ‘non-emotional’ with a procedure involving two classifiers [28]. Self-training has also 

been applied to parsing and machine translation. In [29] self-training is applied to object detection 

systems from images, and shows how the semi-supervised technique compares favorably with a state-

of-the-art detector. 

Self-training is a very simply SSL algorithm to implement; is a wrapper method and it can be used in 

many complex algorithms. A disadvantage is, for example, that early classification errors can 

Self-training 

Input: labelled data {(𝒙𝒊, 𝑦𝑖)}𝑖=1
𝑙 , unlabeled data {𝒙𝒋}𝑗=𝑙+1

𝑙+𝑢  

1. Initially, let 𝐿 = {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑙  and 𝑈 = {𝒙𝒋}𝑗=𝑙+1

𝑗=𝑙+𝑢
 

2. Repeat 

3.          Train 𝑓 from 𝐿 using supervised learning 

4.          Apply 𝑓 to the unlabeled data instances in 𝑈 
 

Algorithm 2.1: Self-training pseudocode. 
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‘propagate’ themselves and affect final accuracy, moreover there is a problem of convergence of the 

algorithm. 

 

2.3.4 Co-training 

 

Another popular algorithm for semi-supervised learning is co-training. This algorithm was originally 

proposed in [15]. In this technique two classifiers work together to perform label propagation. The 

classic approach of co-training is to train two classifiers separately based on two sufficient and 

redundant feature subsets (views), and then recover the most confident data for each other as the new 

labeled data. For this approach, there are strong assumptions on the feature sets. 

 

Remark 2.3.1 Co-training Assumptions 

 Features can be divided into two subsets and each subset is sufficient to learn a good classifier 

 Two features subsets are conditionally independent given the class. 

 

The first assumption on features independence is quite strong, since in a general dataset features has 

some kind of correlation between each other. In order to relax this assumption, variations of the 

algorithm have been proposed: a class of algorithms of co-learning, which doesn’t need a features 

separation for the two classifiers. Two learners, or an ensemble of learners, are trained separately on 

the full feature set of the labeled training data and then labels are predicted on the unlabeled data 

separately. In the case of an ensemble of learners a majority voting is used in order to determine the 

classification of unlabeled data. 

Another variation of co-training is tri-training, proposed in [16]. In this algorithm three learners are 

used in the learning process. In detail, training data are generated by bootstrap sampling from initial 

data source. Then three hypotheses are trained based on these data. In the learning process, when two 
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learners agree with the classification of a new unlabeled sample, their prediction label will be marked 

on the unlabeled sample for the third learner. Three initial learners were updated during the tri-training 

process and the final hypothesis is determined by the majority voting. 

Co-training model has practical applications in many real world cases. For example co-training model 

was applied for the named entity classification in the natural language process. Co-training with error-

correcting output codes (ECOC) was applied for text classification. For visual detection, co-training 

has reduced the false positive rate significantly. It has also been successfully applied to email 

classification and statistical parsing [10]. 

 

2.3.5 Help training 

 

Help-training is a semi-supervised algorithm proposed in [17]. The idea of this algorithm is to use a 

classifier based on a generative model to ‘help’ a classifier which uses discriminative approach. 

Let consider the main classifier 𝐶 which is based on a discriminative approach and the classifier 𝐺 

based on a generative model. The classifier 𝐺 produces a probability density model. It tries to find 

the basic information of each class by modeling the data. In Help-Training, the classifier 𝐶 is helped 

by 𝐺 to make decisions about which samples can be labeled and added to the training set. So, at each 

iteration, the classifier 𝐺 is used to select the samples which have a high probability to belong to each 

class. These selected samples constitute the candidate samples for labeling process. The classifier 𝐶 

classifies the pre-selected samples and those that are classified with highest scores are added to the 

training set. The process is repeated until all unlabeled data are labeled. 
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2.3.6 Adaptive bootstrap 

 

Adaptive bootstrap is a supervised classification technique which train a group of different classifiers 

(usually decision tree) on different datasets constructed from the original dataset by bagging with 

replacement 𝑛 ≤ 𝑁 data, where 𝑁 is the dimension of the original dataset. Then, from this initial 

group of classifiers, a single learner it is derived combining together the classifiers. 

This technique provides good results and so it’s quite diffused. 

For the experiments of this work the MATLAB library adaboost is used, which follows the syntax: 

 

 for the training the function fitensamble is used: 

Ensemble = fitensemble(X,Y,Method,NLearn,Learners, Name,Value) 

  

Input: 

 X: data 

Y: labels 

Method: the method of classification: for classification with Ada Boost, this 

parameter is the string ‘AdaBoostM1’ 

NLearn: the number of ensemble learning cycles, i.e. the number of times the entire 

procedure will be repeated 

  Learners: the basic kind of learner, typically decision tree 

Pairs (Name, Value): define other options, for example a cost matrix. 

 Output: 

 Ensemble: the classifier built form the ensemble of learners 

 

 For prediction the function predict is used: 
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     [predict_label,scores] = predict(Ensemble,data) 

 Input: 

 Ensemble: the ensemble of classifier obtained from fitensamble 

 Data: unlabeled data 

 Output: 

 Predict_labels: predictions of the labels for input data 

 Scores: a measure relative to probability estimation 

 

2.4 Risks of Semi-Supervised Learning 

 

Empirical and theoretical results have often testify favorably to the semi-supervised learning of 

generative classifiers. However, the literature has also brought to light a number of situations where 

semi-supervised learning fails to produce good generative classifiers. 

For example, [18] reports experiments where unlabeled data degraded the performance of Naïve 

Bayes classifiers with Gaussian variables. The authors attribute such cases to deviations from 

modelling assumptions, such as outliers or “samples of unknown classes”, they even suggest that 

unlabeled samples should be used with care, and only when the labeled data alone produce a poor 

classifier. Another representative example is [30], where classifiers sometimes display performance 

degradation. The authors suggest several possible sources of difficulties: numerical problems in the 

learning algorithm, mismatches between the natural cluster in feature space and the actual labels, etc. 

In [19], labeled and unlabeled data are used to learn Bayesian network classifiers, from naïve Bayes 

classifiers to fully connected networks. The naïve Bayes classifiers display bad classification 

performance, and in fact the performance degrades as more unlabeled data are used (more complex 

networks also display performance degradation as unlabeled samples are added). 
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A last example is provided in [20]. In the described experiments outliers are added to a Gaussian 

model, producing a performance degradation of generative classifiers. 

 

2.4.1 Methodological Considerations 

 

Given a pool of labeled and unlabeled data, generative semi-supervised learning is an attractive 

strategy. However, one should always start by learning a supervised classifier with the labeled data. 

This “baseline” classifier can then be compared to other semi-supervised classifiers through cross-

validation or similar techniques. Whenever modelling assumption seem inaccurate, unlabeled data 

can be used to test modelling assumptions. If time and resources are available, a model search should 

be conducted, attempting to reach a “correct” model (that is a model where unlabeled data will be 

truly beneficial). 

An additional step consists in the comparison of the baseline classifier to non-generative methods. 

There are many semi-supervised non-generative classifiers, and there are also a significant number 

of methods that uses labeled and unlabeled data for different purposes (for example methods where 

the unlabeled data are used only to conduct dimensionality reduction). However we should warn that 

a few empirical results in the literature suggest the possibility of performance degradation in non-

generative semi-supervised learning paradigms, such as transductive support vector machine. 

 

2.4.2 Active Learning 

 

A final methodological comment concerns active learning. This technique consists in labelling 

selected samples among the unlabeled data, instead of use the entire set of unlabeled data. This option 

should be seriously considered whenever possible. In some cases has been observed that the most 

profitable usage of unlabeled data is to use these data as a pool of samples from which some samples 
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can be carefully selected and labeled. In general, we should take the score of a labeled sample to be 

considerably higher than the score of an unlabeled sample.  



31 

 

 

 

 

Chapter 3 

 

Proposed system 

 

This thesis is based on the implementation and combination of four state-of-art techniques described 

in the relative articles of reference. Then the techniques are combined together through specific 

protocols and the experiments result are shown. 

In this chapter, the used algorithms will be explained. So the algorithms and articles are presented by 

a theoretical point of view in this chapter, while in the next chapter, tests and experiments will be 

proposed.  

 

3.1 Reference Articles 

 

3.1.1 DCPE co-training for classification 

 

In [7] a method for semi-supervised classification is proposed. The idea is to use diversity of class 

probability estimation (DCPE) of two different classifiers to add progressively to labeled data the 

unlabeled data with high DCPE. This algorithm is based on the idea of co-training, which uses two 

different classifiers to evaluate ‘better’ unlabeled data which can be added to labeled data with a label 

predicted with high confidence. 
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To implement this approach two different supervised algorithms have been used: a support vector 

machine with polynomial kernel, and an implementation of adaptive bootstrap provided by MATLAB. 

The pseudocode of the algorithm is the described in Algorithm 3.1: 

 

 

 

This algorithm implements a scheme of co-training, based on the diversity of class probability 

estimation. In ensemble learning, diversity plays an important role in combining different learners. 

There exists many different approaches to use diversity in learning process. Some of the most diffused 

are: 

 

Pseudocode describing the DCPE co-training algorithm 

1: Input: 

b1 baselearningalgorithm1 

b2 baselearningalgorithm2 

L labeled data 

U unlabeled data 

2: Allocate LA = L, LB = L  

3: Use b1 to train on LA to get a classifier hA, uses b2 to train on LB to get a classifier hB  

4: Create a pool U’ by randomly choosing u data from U  

5: if size(U) ≥ u then  

6:  Use hA and hB separately to predict each data x in U’: hA(x), hB(x). Record class 

probability estimation (cpe) for each data: cpeA(x), cpeB(x) 

7:  Update LA= LA+ la , la are chose from U’, which have same prediction labels 

(hA(x)= hB(x)) and the highest class probability estimation differences between hB 

and hA: 

 𝑥 = 𝑎𝑟𝑔max
𝑥

(𝑐𝑝𝑒𝐵(𝑥) − 𝑐𝑝𝑒𝐴(𝑥)) 

8:  Update LB= LB+ lb , lb are chose from U’, which have same prediction labels 

(hA(x)= hB(x)) and the highest class probability estimation differences between hA 

and hB: 

 𝑥 = 𝑎𝑟𝑔max
𝑥

(𝑐𝑝𝑒𝐴(𝑥) − 𝑐𝑝𝑒𝐵(𝑥)) 

9:  Remove la, lb from U’ 

10:  Randomly choosing new u data from U to replenish U’ 

11:  Update hA by using b1 to train on LA, update hB by using b2 to train on LB  

12: end if 

  

Algorithm 3.1: DCPE Co-training algorithm. 
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 Diversity based on features subsets: features are partitioned in two subsets and then a base 

classification algorithm is used in each subset to determine a measure of diversity. Then co-

training algorithm is applied. This approach is also called two view co-training. 

 Random features splitting: instead of divide features in subsets, features are randomly 

selected. This approach was performed in email classification and provided results 

comparable or better than using the original and natural features partitions. 

 Use different base learning algorithms: this method establish two classifiers by applying 

two base learning algorithms on the whole features set. This kind of co-training is called single 

view co-training, since diversity is calculated on the entire features set. 

 

The implemented algorithm uses the third approach, which presents several advantages. It doesn’t 

require a feature selection and so it’s simpler and easy to implement. Moreover it doesn’t require the 

co-training assumptions to be satisfied; this means that is not necessary that each view of the dataset 

represents exhaustively the data structure, and the two view are not necessarily conditionally 

independent. This situation is very common in real cases, so this approach can be considered more 

robust for general practical applications. 

 

algorithm description 

The DCPE co-training algorithm is designed for binary classification, and can be converted to 

multiclass problem using a technique such as one-vs-all approach. 

As shown in the block diagram of Figure 3.1, from unlabeled data 𝑈 are selected 𝑢 samples (in the 

experiments is used 𝑢 = 20) to form a pool of unlabeled data 𝑈’. It’s important to note that the 

selected data are removed from 𝑈 after selection. 

Two labeled data sets are defined: 𝐿𝐴 and 𝐿𝐵. Initially they are sets equal at the entire labeled data 

set 𝐿𝐴 = 𝐿𝐵 = 𝐿. In successive iterations 𝐿𝐴   will be updated with unlabeled data with high class 

probability estimation difference from ℎ𝐵  classification to ℎ𝐴 classification and vice versa for 𝐿𝐵. 
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Then two different classifiers ℎ𝐴 and ℎ𝐵 are trained on the labeled data and are used to classify data 

in U’. Data classified whit high difference in cpe (class probability estimation) from ℎ𝐴 to ℎ𝐵 are 

added to 𝐿𝐴 and with high difference in cpe from ℎ𝐵 to ℎ𝐴 are added to 𝐿𝐵. Selected data with high 

cpe are removed from 𝑈’and 𝑈𝑝 is refill by sampling new 𝑢 data from 𝑈 and then the classifiers ℎ𝐴 

and ℎ𝐵 are retrained respectively on the new labeled data set 𝐿𝐴 and 𝐿𝐵. The process is repeated since 

there exist more than 𝑢 unlabeled data in 𝑈. 

At the end of each iteration, a classifier is trained on the total labeled data (union set of 𝐿𝐴 and 𝐿𝐵). 

This classifier is tested on validation set and its accuracy is stored. At the end of the algorithm 

execution, a graph of the performance of each classifier is constructed, varying the number of 

iterations. On this graph the best classifier is chosen using a sliding window of dimension 3, as 

described in the reference article [7]. So the validation phase is implemented considering the number 

of iterations of the algorithm as the parameter to optimize. 

 

 

 

analysis and conclusions 

There exist many different basic machine learning algorithms that provide good performance in 

different kind of dataset and learning problems. 

Figure 3.1 DCPE Co-training block diagram. 
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Most popular learning algorithms are such as Naive Bayes, neural networks, k-nearest neighbor, 

decision tree, and others. An advantage of using a co-training technique is that it can compare two 

different algorithms, and eventually can reveal performance differences in the usage of different pairs 

of algorithms for a specific dataset or learning problem. So it can be useful to investigate the ensemble 

learning approach with algorithms that approach data classification from different perspectives. 

Moreover, since diversity plays a critical role in ensemble learning methodology, the DCPE Co-

training approach can also have an essential impact on the co-training based algorithms. 

The major advantages and positive aspects of DCPE Co-training approach can be summarized as 

follow: 

 

 DCPE co-training does not need the sufficient and redundant views (features subsets) of data 

set. The diversity of different learning algorithms is used to do label propagation. This can 

simplify the model and the implementation and, as said above, the single view co-training 

doesn’t require the satisfaction of the Co-training Assumptions (Remark 2.3.1). 

 A theoretical analysis can show how DCPE Co-training can achieve higher classification 

accuracy in co-training process. It can be proved that 

Theorem 3.1.1: In the process of co-training, when the recovered data (with predicted labels) 

in i-th iteration have relatively smaller noise compared with labeled data, the learning 

hypothesis can achieve lower error. 

 Competitive results among classical supervised learning methods and semi-supervised 

learning method (co-training, self-training and tri-training) are obtained on binary UCI data 

sets. 

 In the co-training process, the disagreement between two classifiers can be used for improving 

the final hypothesis. In DCPE Co-training method, is established the diversity between two 

classifiers, which shares similar property with disagreement-based co-training (a co-training 

approach proposed in [21]). 



36 

 

 

The key idea of this approach is to use the classification diversity from different learners for label 

propagation. It is a kind of ensemble learning approach based on the diversity of classifiers. The 

experimental results provided in [7] demonstrates that the proposed approach can achieve competitive 

results when it is compared with supervised learning methods and semi-supervised learning methods 

(co-training, self-training, and tri-training). 

 

3.1.2 Using clustering analysis to improve semi-supervised 

classification 

 

In the reference article [9] is proposed an algorithm which uses semi-supervised clustering combined 

with a traditional supervised SVM to classify data. 

Clustering is, in its simplest interpretation, an unsupervised learning technique. It is the classical 

unsupervised problem. It consists in the division of samples in distinct clusters, considering their 

distribution in the space of features. Typically these data are not labeled, for example data can be 

relative to webpages which need to be grouped by similar argument. In this case the possible 

arguments of pages are not known a priori, or the argument itself is not important for the learning 

purpose. Moreover there could be webpages not classified of a specific argument, and they must be 

grouped for similar topic of discussion. 

The corresponding version of semi-supervised clustering is based on the fact that there are also 

labeled data in the dataset, and so these data must be considered in the clustering process. In the 

algorithm proposed in [9], the labeled and unlabeled data are firstly elaborate in a semi-supervised 

learning way through semi-supervised clustering, labels are assigned to unlabeled samples and 

unlabeled samples classified with high confidence are take into account. Then labeled data obtained 
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at the previous step are classified with a supervised SVM. Then the process is iterated updating the 

sets of labeled and unlabeled data. 

In particular the ideas underling this approach of analysis are the following: 

 

 As unlabeled data may contain crucial information about the data space, clustering methods 

is used to reveal the underlying data space structure and to improve the training efficiency of 

the classifier.  

 Labeled data are used to guide the clustering process through semi-supervised clustering 

methods.  

 Newly labeled data are used not only to update the classifier (as in Self-training), but also to 

better guide the semi-supervised clustering methods. 

 

The algorithm used to implement clustering is Semi-Supervised Fuzzy C-Mean (SSFCM), the semi-

supervised version of Fuzzy C-Mean (FCM), a popular clustering algorithm. 

 

semi-supervised fuzzy c-mean 

As said before, SSFCM is the semi-supervised version of FCM. Fuzzy C-Means (FCM) is one of the 

most popular unsupervised clustering methods. In comparison to hard clustering, FCM provides an 

additional conceptual enhancement by allowing a data point to be assigned to different classes with 

various membership degrees. In this way, the patterns can be treated in a more reasonable way and 

the algorithm is capable of identifying eventual ‘‘outliers’’. 

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, 𝑥𝑖𝜖ℝ𝑑 be a dataset of size 𝑛 and dimension 𝑑. Let’s consider a problem of 

clustering where 𝑐 is the number of classes and 𝑉 represents the set of prototypes associated with 

classes (prototypes are labeled samples chosen for each class). 

The fuzzy c-mean solution of the problem consists in determining the partition matrix 𝑈  which 

minimize the following objective function: 
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min ℑ𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚

𝑛

𝑗=1

𝑐

𝑖=1

∥ 𝑥𝑗 − 𝑣𝑖 ∥2                                (3.1) 

The superscript 𝑚 is the degree of fuzziness associated with the partition matrix. 𝑈 is a partition 

matrix whose element 𝑢𝑖,𝑗 indicates the membership degree of the data point 𝑥𝑗 to class 𝑖 and satisfies 

two conditions: 

0 ≤ 𝑢𝑖𝑗 ≤ 1                                                               (3.2) 

∑ 𝑢𝑖𝑗 = 1
𝑐

𝑖=1
 

Finally 𝑑𝑖𝑗 =∥ 𝑥𝑗 − 𝑣𝑖 ∥2 expresses the distance between 𝑥𝑗 and 𝑣𝑖. 

Semi-Supervised version of FCM clustering is based on the idea of use labeled data to improve the 

performance of clustering. Labeled data can be used for choosing the prototype 𝑣𝑖 and to provide 

additional information to the learning problem. Considering labeled data, the objective function to 

minimize assumes the following form: 

min ℑ𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚

𝑛

𝑗=1

𝑐

𝑖=1

∥ 𝑥𝑗 − 𝑣𝑖 ∥2+ ∑ ∑ 𝑢′𝑖𝑗
𝑚

𝑛′

𝑗=1

𝑐

𝑖=1

 ∥ 𝑥′𝑗 − 𝑣𝑖 ∥2          (3.3) 

Where the second term take into account the labeled data. Labeled data are 𝑋′ = {𝑥′1, 𝑥′2, … , 𝑥′𝑛} 

where 𝑥′𝑖𝜖ℝ𝑑. The partition matrix 𝑈’ defines the membership degree of each predicted value to each 

class 1, … , 𝑐 and must satisfy the following constraints 

0 ≤ 𝑢𝑖𝑗 ≤ 1                                                                (3.4) 

∑ 𝑢𝑖𝑗 = 1
𝑐

𝑖=1
 

𝑢′𝑖𝑗 ≥ 𝑢′
𝑘𝑗 ,    ∀𝑘 ∈ {1,2, … , 𝑐} {𝑖}⁄ ,    𝑗 = 1,2, … , 𝑛′   𝑖𝑓 𝐿(𝑥′

𝑗) = 𝑖 

Respect to the supervised case, an additional constraint is added. This constraints means that, for 

labe1ed data, the membership degree of the effective class 𝑖 must be higher than the membership 

degree of each other class 𝑗 = 1 … 𝑐, 𝑗 ≠ 𝑖 . 

Applying the Lagrange multiplier method we obtain the following equations for the optimal solution: 
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For data prototypes: 

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗 + ∑ 𝑢′𝑖𝑗
𝑚𝑥′𝑗

𝑛′
𝑗=1

𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚 + ∑ 𝑢′𝑖𝑗

𝑚𝑛′
𝑗=1

𝑛
𝑗=1

                                       (3.5) 

 

For unlabeled data point 𝑥𝑗: 

𝑢𝑖𝑗 =
1

∑ (
𝑑𝑖𝑗

𝑑𝑙𝑗
)

2/(𝑚−1)
𝑐
𝑙=1

                                             (3.6) 

For labeled data point 𝑥′𝑗 

𝑢′𝑖𝑗 =
1

∑ (
𝑑′𝑖𝑗

𝑑′𝑙𝑗
)

2/(𝑚−1)
𝑐
𝑙=1

                 𝑖𝑓 𝐿(𝑥′
𝑗) = 𝑖                          (3.7) 

min {𝑢′𝑖𝑗 ,
1−𝑢′𝑖𝑗

∑ (
𝑑′𝑘𝑗

𝑑′𝑙𝑗
)

2/(𝑚−1)
𝑐
𝑙=1,𝑙≠𝑖

}, ∀𝑘 ∈ {1,2, … , 𝑐}/{i},  if 𝐿(𝑥′
𝑗) = 𝑖 

 

 

proposed algorithm 

The algorithm proposed in [9] is essentially a framework for semi-supervised classification where a 

semi-supervised clustering process (SSFCM) is integrated into Self-training. 

In the first phase, semi-supervised clustering uses both labeled and unlabeled data in the learning 

phase and assigns a label to unlabeled data, with the correspondent confidence degree (a measure of 

class probability estimation). Unlabeled data classified with higher level of confidence are selected 

for the supervised learning phase, while others values are left in the unlabeled set. 

In the second phase, a supervised SVM is trained on labeled data and high-confidence classified 

unlabeled data with relative labels (provided by the first phase). The SVM is tested on the same 
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dataset used for learning, and data classified with high confidence are definitely added to labeled set, 

while other data are discarded and reinserted in the unlabeled set. 

The two phase process is repeated until the unlabeled data are less than a parametric threshold. A 

diagram of the algorithm is represented in Figure 3.2. Then in the following the algorithm is presented 

in a more detailed way. 

 

 

 

Figure 3.2 block diagram for Clustering and SVM algorithm. 

Algorithm 3.2: Semi-supervised fuzzy c-means. 

SSFCM + SVM Pseudocode 

Input: labeled dataset L(0) , unlabeled dataset U(0)  

Output: SVM classifier 

Method:  

1. Initialize the dataset L=L(0) and U=U(0), threshold values: ε1, ε2, N  

2. Repeat until |U|≤N  

– Estimate the membership degree using SSFCM for unlabeled data  

– Select a dataset T1 where each sample xj has high certainty of belonging to one 

class. 

– Train the SVM with L – Compute the output f(x) of the SVM for the selected 

dataset T1  

– Select a dataset T2 where the output of each sample x by the SVM has high values. 

– Update the current labeled set 𝐿 ← 𝐿 ∪ 𝑇2 

– Update the current unlabeled set 𝑈 ← 𝑈 − 𝑇2 

– Reduce the value of ε1 if T2=∅  

3. Label the remaining unlabeled data with the trained SVM, if U≠ ∅   

4. Retrain the SVM  
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In this implementation is important to note the thresholds 휀1 and 휀2. They represent the threshold for 

confidence respectively in the clustering semi-supervised classification and in the SVM supervised 

phase. When 𝑇2 is empty, the value of 휀1 is reduced of 0.05, as described in the reference article [9]. 

This guarantee the convergence of the algorithm (since there is a value of threshold 휀1 that allows to 

add enough element to labeled set) and the while loop will terminate. 

 

3.1.3 A semi-supervised feature ranking method with ensemble 

learning 

 

This article [8] presents a method to determine a ranking of features, based on their importance in 

learning algorithm. 

The proposed framework is based on semi-supervised learning, more precisely it uses a simple but 

efficient and easy to implement Self-training approach. 

Feature selection consists in selecting a subset of relevant features, which achieves a better 

performance in accuracy for many learning problems with a large number of features.  

Feature selection techniques provide three main benefits when constructing predictive models: 

 

 Improved model interpretability: in many cases there is a large number of features and 

many of them are irrelevant or almost irrelevant for the purpose of classification. However is 

not known which features are irrelevant and which not, so it may be useful a feature ranking 

algorithm 

 Shorter training times: training time is linear or exponential correlated to the number of 

features (it depends on the learning algorithm); so, reducing the number of features, the 

learning time can be considerably decreased. 
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 Reduced generalization error by reducing overfitting: overfitting is a common problem in 

many datasets, especially datasets with a high number of features. These datasets contain 

redundant information that must be ‘weighted’ in some way to permit to learning algorithm 

to consider only important features. 

 

Feature selection is also useful as part of the data analysis process, as it shows which features are 

important for prediction, and how these features are related. 

As machine learning, also feature selection problem can be classified considering the kind of used 

data: 

 

 Supervised feature selection algorithms rely on measures that take into account the class 

information. A well-known measure is information gain, which is widely used in both feature 

selection and decision tree induction 

 Unsupervised feature selection is more difficult to deal with than supervised feature 

selection.  However, it is a very useful tool when the majority of data are unlabeled. 

Dy and Brodley [22] define the goal of feature selection for unsupervised learning as: 

« To find the smallest feature subset that best 

uncovers “interesting natural” groupings 

(clusters) from data according to the chosen 

criterion. » 

Unsupervised feature selection can provide good performance, since great quantity of data are 

unlabeled. 

 Semi-supervised t is the approach that uses both labeled and unlabeled data and is the 

approach used in the algorithm proposed in [8]. Since there is a large number of unlabeled 

data and a small number of labeled instances, it is reasonable to use unlabeled data to form 

http://en.wikipedia.org/wiki/Overfitting


43 

 

some potential clusters and then employ labeled data to find those clusters that can achieve 

both locality-based and class-based separations. 

 

proposed algorithm 

The algorithm consists in a novel semi-supervised features ranking algorithm, termed as semi-

supervised ensemble learning guided feature ranking (SEFR). 

The algorithm ranks features through an ensemble framework, in which a feature relevance is 

evaluated by the relative accuracy evaluated using both labeled and unlabeled data. The algorithm 

consists principally of two strategies: 

 

 A combination of both data resampling (bagging) and random subspace strategies to generate 

an ensemble of semi-supervised classifiers which permit the exploration of distinct views of 

inter-pattern relationships.  

 An extension of the Random Forest permutation importance measure [32], using the labeled 

and unlabeled data together; it is proposed to measure feature relevance.  

 

A ranking of all features is finally obtained with respect to their relevance in all obtained semi-

supervised classifiers. 

 

In details, the SEFR algorithm follows these steps: 

 Select with replacement 𝑚  samples from 𝑈  to form 𝑈𝑏𝑎𝑔  and 𝑛  from 𝐿  to form  𝐿𝑏𝑎𝑔 . 

Remaining samples forms respectively 𝑈𝑜𝑜𝑏 and 𝐿𝑜𝑜𝑏 (out-of-bound samples). 

 From features set 𝐹 select randomly  √|𝐹| features. 

 Until 𝑈𝑏𝑎𝑔 is not empty or there are no ‘high confidence’ classified unlabeled data, select the 

samples with highest score classified by 𝜙 (the base learning algorithm received in input). 
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This process is similar to Self-training approach, in fact in each iteration high confident 

samples are added to 𝐿𝑏𝑎𝑔 and so they influence confidence threshold calculation (see 

selectMostConfident algorithm). 

 Determine 𝐿’ and 𝑈’ as high confidence classified samples in 𝐿𝑜𝑜𝑏 and 𝑈𝑜𝑜𝑏. 

 For each feature 𝑓 in 𝐹’, perform a random permutation of its values in 𝐿’ and 𝑈’ and classify 

“permuted” samples. If the classification label is different from the real (or high confidence 

classified) label, increment 𝑖𝑚𝑝(𝑓). 𝑖𝑚𝑝(𝑓) represent the inverse importance rank of feature 

𝑓. 

The process is repeated 𝑛𝑏𝑎𝑔𝑠 times to provide different views of data (𝐿𝑏𝑎𝑔, 𝑈𝑏𝑎𝑔) and features (𝐹’). 

𝐿𝑏𝑎𝑔 and 𝑈𝑏𝑎𝑔 are drawn with replacement (bagging) from original labeled data set 𝐿 and unlabeled 

dataset 𝑈. Moreover 𝑛𝑏𝑎𝑔𝑠 is chosen considering the following formula: 

 

𝑛𝑏𝑎𝑔𝑠 = 5 ∗ 𝑐𝑒𝑖𝑙 (
log(α)

log (1 − 1/√𝑝
)                                     (3.8) 

 

Where 𝑝 is the number of features. This formula ensures that each feature is drawn at least five times 

at a confidence level of 𝛼 =  0.01. The pseudocode of the algorithm is represented in Algorithm 3.4. 

 

confidence measure 

An important factor that affects the performance of any semi-supervised algorithm is how to measure 

the confidence of the labeling of an unlabeled sample, which determines its probability of being 

selected. 

In [8] the proposed confidence measure is a normalized value of the membership degree in output of 

the base classifier (for SVM implemented in libSVM, it corresponds to the decision value). 

The score 𝑠𝑖(𝒙) of a sample 𝒙 for a class 𝑖 is normalized as follows: 
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𝑝�̂�(𝑥) =
𝑠𝑖(𝒙)

∑ 𝑠𝑖(𝒙)𝑐
𝑖=1

                                               (3.9) 

 

The value 𝑝�̂�(𝑥)  can be considered an estimation of the conditional probability  𝑝(𝑖|𝑥) . This 

confidence measure is based on the probabilistic interpretation of scores. 

The process to determine confidence in semi-supervised learning involves both labeled and unlabeled 

data. Consider the learning dataset 𝒟 = {𝒙𝑖}𝑖=1
𝑙+𝑢 containing labeled data 𝒙𝒊, 1 ≤ 𝑖 ≤ 𝑙 and unlabeled 

data 𝒙𝒋, 𝑙 + 1 ≤ 𝑗 ≤ 𝑢. 

Firstly the labeled data are used to determine a base classifier and evaluate the confidence level of 

unlabeled data. The classifier is mathematically represented as 𝜙: 𝒟 ⟼ {1,2, … , 𝑐} × [0,1] which 

associates to any element 𝑥 in dataset 𝒟 a label 𝑦(𝑥) and an estimation of probability 𝑝(𝑦(𝑥)|𝑥). The 

probability estimation represents the confidence measure. For labeled data probability estimation is 

define equal to 1. Moreover is defined the set of misclassified labeled data: 

 

𝒟≠ = {𝒙𝒊| 𝑦�̂� ≠ 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑙}   (3.10) 

 

And for each label 1 ≤ 𝑖 ≤ 𝑐 is defined the dataset (subset of labeled data): 

 

𝒟𝑖 = {𝒙𝒋| 𝑦�̂� = 𝑖 , 1 ≤ 𝑗 ≤ 𝑙}.   (3.11) 

 

The intersection of (3.10) and (3.11) is the set of misclassified data of class 𝑖. In order to evaluate 

most confidently classified labeled data, considering the classifier constructed using the base learning 

algorithm, the following quantity is define: 

 

                                                                𝑝�̂�
∗ = max{𝑝�̂�|𝒙𝒋 ∈ 𝒟≠ ∩ 𝒟𝑖 ,1 ≤ 𝑗 ≤ 𝑙}  (3.13) 
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Where 𝑝�̂�
∗ is an estimation of the maximal value of the probabilities  𝑝(𝑖|𝒙) among all misclassified 

data of class 𝑖: 𝒟𝑖 ∩ 𝒟≠. Quantity 𝑝�̂�
∗
is used as a tolerance threshold for the labeling strategy of 

unlabeled data: unlabeled record 𝒙𝑖 is labeled with its predicted label 𝑦𝑖  if the corresponding class 

probability estimation 𝑝�̂� is greater than 𝑝�̂�
∗
. The pseudocode of the algorithm used to determine most 

confident unlabeled data is shown in Algorithm 3.3. A similar method is also used to find most 

confidently labeled data, using the same principle of the threshold 𝑝�̂�
∗
. 

 

 

 

 

Algorithm 3.3 Select Most Confident unlabeled data. 

SelectMostConfident - Pseudocode 

Input: D, L, U, 𝜙 

Output: U’ 

Method: 

(�̂�, �̂�) = 𝜙 (D (L ∪ U)); 

 𝐿≠ = {𝑙 ∈ 𝐿; 𝑦�̂� ≠ 𝑦𝑙}; 

U’ = ∅ ; 

for c = 1 : nc  do 

Lc = { l ∈ L; yl = c}; 

𝐿𝑐
≠ = 𝐿≠ ∩ 𝐿𝑐; 

if 𝐿𝑐
≠ ≠  𝜙  then 

τ = max�̂�(𝐿𝑐
≠); 

end 

else 

τ = 0; 

U> = {u ∈ U; �̂�𝑢 > τ }; 

if isempty(admissInds) then 

Uc = { u ∈ U; �̂�𝑢 = c}; 

Uc> = U> ∩ Uc; 

U’ = U’ ∪ Uc>; 

end 

end 
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SEFR - Pseudoocode 

Input: D, L, U, F= {f1,…,fp}, nbags, BaseLearn, 𝜙 

Output: F, imp 

Method: 

Imp = 0; 

for i = 1:nbags do 

Lbag= bootstrap sample from L; 

Ubag= bootstrap sample from U; 

Loob = L\Lbag;  Uoob = U\Ubag; 

Randomly draw √|𝐹|features from F to form F’; 

 

/* Labeling by self-training */ 

 

while Ubag ≠ ∅ do 

U’ = selectMostConfident (D (Lbag ∪ Ubag; F’), Lbag, Ubag, 𝜙); 

if  U’ = ∅ then 

break; 

end 

Lbag = Lbag ∪ U’; 

Ubag = Ubag \ U’; 

end 

 

/* Feature importance measures */ 

 

 Apply 𝜙 to D (Loob ∪ Uoob, F’); 

 Select the well classified samples in Loob to form L’; 

 U’ = selectMostConfident (D (Loob ∪ Uoob, F’), Loob, Uoob, 𝜙); 

 Define y as the predicted labels of L’ ∪ U’; 

 

for each f 𝜖 F’ do 

Randomly permute f in D to form permD; 

Apply 𝜙 to permD(L’∪ U’, F’); 

Define yp as the predicted labels of L’∪ U’; 

Increase imp(f) by the number of mismatches between y and yp; 

end 

end 

Rank the features f according to imp(f) and return both F and imp; 

 

Algorithm 3.4 semi-supervised feature ranking. 
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3.1.4 Single Classifier-based Multiple Classification Scheme 

 

Normally in many problems of pattern recognition, different classifiers perform differently and 

provide different accuracy values. So it’s useful to test different classification algorithms on the 

dataset and select the one with better performance. 

However, it has recently become common practice to use more than one classifier rather than a single 

one for pattern recognition tasks. In order to have a pool of classifiers with different errors, it is 

advisable to create diverse classifiers. To achieve this, the classifiers are grouped together into what 

is known as an Ensemble of Classifiers (EoC), and the approach that uses multiple classifiers to 

enhance classification accuracy is known as a Multiple Classifier System (MCS). 

 

ensemble of classifiers (EoC) 

One of the issues that is critical to the success of an EoC routine is the need for diversity in ensemble 

creation. For an EoC to perform well, errors produced by every classifier must be relative to different 

data points; so, when the EoC outputs are combined, most of the errors committed by classifiers will 

cancel each other out, and so the overall EoC will achieve a more accurate recognition rate. This 

property is referred to as the diversity of an ensemble. 

To generate multiple data subsets there exists several methods which generate diversity. Diffused 

methods are: 

 

 Bootstrap: it consists in generate new points from the existing samples in dataset. These 

points are generated for example duplicating existing samples. 

 Random subspacing: this method creates various classifiers using different subsets of 

features to train them. Because problems are represented in different subspaces, different 

classifiers develop different borders for the classification. 
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 Bagging: Bagging generates different classifiers by randomly selecting subsets of samples 

from training set. Intuitively, selecting different subsets of data, it’s expected a “diversity” in 

the classifiers that will be generated, and consequently in the classification of test samples. 

 

Many EoCs are based on a two steps strategy: firstly an ensemble of different classifiers is generated, 

and subsequently is determined an optimal subset of these classifiers. More in detail is used a process 

consisting in these phases: 

 Multiple data subsets are generated 

 Multiple classifiers are trained with corresponding data subsets 

 Adequate classifiers need to be selected from the pool of trained classifiers 

 

 

 

The three-step process of overproduction and selection has, in fact, become a standard process in 

MCS, and its embedded complexity is accepted as an unavoidable cost. Moreover there are some 

problems related to the diversity measure. For example there is no a universal definition of diversity. 

Furthermore, it has been observed in many recent studies that clear correlations between ensemble 

Figure 3.3 Three steps strategy in EoC approach. 
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accuracy and diversity measures cannot be found in any of the existing diversity measure [33] [34] 

[35] [36]. 

An important step of an EoC based approach is the fusion of classifiers previously obtained. 

Considering that each classifier generates a boundary (for example consider a SVM as classifier), the 

fusion phase consists in the identification of a new boundary by applying a fusion function, that is a 

combination of the different boundaries drawn by different classifiers, as shown in Figure 3.4. 

 

 

 

As can be seen in Figure 3.4, it can be difficult to achieve the oracle with a limited number of 

classifiers using a linear fusion function. Moreover, ensemble of classifiers approach presents other 

drawbacks and issues to be resolved, such as: 

 

 The possibility of extracting diversity from a dataset directly without training multiple 

classifiers. 

 Complexity reduction for the MCS, due to the omission of multiple classifier training and 

classifier selection. 

(b) Boundary drawn 

by classifier B 
(a) Boundary drawn 

by classifier A 

(c) Combined boundary 

obtained from fusion 

function 

(d) True boundary 

(oracle) 

Figure 3.4 Illustration of a boundary change by applying a classifier combination: dark circles 

represent samples from one class, and empty rectangles represent samples from another class; lines 

represent boundaries drawn by classifiers: (a) boundary drawn by classifier A; (b) boundary drawn 

by classifier B; and (c) new boundary created by combining the boundary from (a) and the 

boundary from (b), represented by a solid black line. 



51 

 

 The feasibility of multiple classifications without multiple classifiers by using diversity. 

 The extent to multiple classifications using diversity without multiple classifiers can improve 

classification accuracy. 

 The design of a Multiple Classification Scheme that is not constrained by either a classifier 

boundary or the number of classifiers. 

 

The Algorithm described in this section is a new approach to classification problem with an ensemble 

of classifiers. Instead of use multiple classifiers, it uses a single one and creates in the dataset some 

new samples ‘generated’ from original dataset. Using a single classifier, it achieves multiple 

classification and so benefits from the logic of a multiple classification scheme without repetitive 

classifier training and without classifier selection. 

 

proposed algorithm 

The method proposed in [6] is based on the idea of the generation of some artificial samples from 

training set. These samples are called pseudo points and introduce diversity in data. Then the new 

dataset is used to train a classifier. Given a test sample and some training samples, proposed method 

divides the training samples into two groups: one containing reference samples, and the other 

containing evaluation samples. Different reference samples are used to generate different pseudo test 

data points, each of which constitutes a different combination of an original test sample and some 

reference samples (Figure 3.5). In a second phase evaluation samples are used to select adequate 

reference samples for pseudo test data point generation. 

Using the approach described above, in the following named SMCS (Single classifier-based Multiple 

Classification Scheme), diversity in dataset is introduced from the original training set using different 

reference samples to create pseudo points. In Figure 3.5 is represented a schematic view of the process 

of SMCS. 
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In the next paragraph, will be illustrated some advantages of SMCS respect to Multiple Classification 

Scheme (MCS), which represent an approach based on an ensemble of classifiers. 

Initially, considering how the diversity in classification is generated, it can be notice that MCS 

benefits from the fact that each classifier has a different perception of how a test sample should be 

classified. Because the decision boundary calculated by each classifier is different, there is diversity 

among decision boundaries drawn by different classifiers. Given that classifiers make different errors 

on different test samples, diversity can actually help to improve classification accuracy. So, in the 

MCS, one of the core issues is to generate, select and combine multiple classifiers, such that the 

combined decision boundary is better than any existing single boundary. 

Figure 3.5 Schematic representation of phases of SMCS algorithm. 
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The SMCS algorithm tries to find a decision boundary with the potential to be close to the oracle and 

not constrained by an existing classifier boundary or the number of classifiers. The design of SMCS, 

must consider the fact that a decision boundary drawn by a classifier might never be optimal. For this 

reason, instead of refining several existing decision boundaries by combining them together, SMCS 

tries to explore and make use of information in the neighborhood of a single decision boundary. In 

this way, this approach looks for diversity that is already present in the neighborhood, rather than 

trying to benefit from diversity embedded in different classifiers. Consequently, diversity is extracted 

not from diverse decision boundaries, but from diverse pseudo test data points. 

The core issue is then to adequately generate, select, and combine multiple pseudo test data points 

for a test sample, rather than generating, selecting, and combining multiple classifiers. The proposed 

SMCS approach focalize on three principal problems: 

 

 How extract diversity from a dataset directly without training multiple classifiers? 

 Can multiple classification without multiple classifiers enhance classification accuracy? 

 How can SMCS performance be compared with MCS performance? 

 

algorithm description 

Firstly the training set 𝑿 is divided in 𝑁 reference samples 𝑿𝒓 = {𝑥1, 𝑥2, … , 𝑥𝑁} and 𝑀 evaluation 

samples 𝑿𝒆 = {𝑥1, 𝑥2, … , 𝑥𝑀}. A single classifier 𝐶𝑥 is trained and is considered a single test point 𝑥�̃�. 

The mechanism involves the creation of 𝐾 pseudo test data points �̂�𝒕 = �̂�1,𝑡, �̂�2,𝑡, … , �̂�𝐾,𝑡   , which 

would result in 𝐾 corresponding classification outputs �̂�1,𝑡, �̂�2,𝑡, … , �̂�𝐾,𝑡 after being classified by 𝐶𝑥. 

The purpose of this mechanism is to generate �̂�𝒕, such that the combination of classification outputs 

on these 𝐾 pseudo test data points �̂�𝑡 will be as close to the true class label 𝑦𝑡 as possible. Note that:  

 

�̂�𝑡 = 𝑔(�̂�1,𝑡, �̂�2,𝑡, … , �̂�𝐾,𝑡)    (3.14) 
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where 𝑔(∙) is a classification combination function, such as majority voting. 

There exist many way to calculate the pseudo points: a pseudo test data point can be generated as a 

combination of a test sample and a reference sample, or as a combination of a test sample and several 

reference samples. It can be generated in a deterministic way, or with some random factor. In this 

implementation, as in the reference article [6], pseudo data points are generated from test sample and 

reference samples considering the features value and calculating an average between features value 

of test sample 𝑥𝑡  and reference sample 𝑥𝑟. 

For example, if each data point has 𝐿 feature, the feature 𝑙 of the generated pseudo test data point 

�̂�𝑖,𝑡 will simply be a weighted average of the same feature of the test sample �̃�𝑖,𝑡 and the corresponding 

feature of reference sample 𝑥𝑖: 

 

                                        �̂�𝑖,𝑡,𝑙 = 𝛼𝑥𝑖,𝑙 + (1 − 𝛼)�̃�𝑡,𝑙           1 ≤ 𝑙 ≤ 𝐿 , 0 ≤ 𝛼 ≤ 1  (3.15) 

 

where �̂�𝑖,𝑡,𝑙   indicates the value of the feature  𝑙 of the generated pseudo test data point �̂�𝑖,𝑡.  𝑥𝑖,𝑙 

indicates the value of the feature  𝑙  of the reference sample 𝑥𝑖  and �̃�𝑡,𝑙  indicates the value of the 

feature 𝑙 of the test sample �̃�𝑖,𝑡 . Also note that 𝛼 controls the noise and diversity in pseudo test data 

points: the larger it is, the greater the diversity and the noise. 

 

However not every pseudo data point generated by test sample and reference samples will be 

considered a valid point to add to the dataset. To determine which point will be adequate for 

classification, evaluation samples will be used to determine good reference sample to use. In 

particular the algorithm implements the following steps: 
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1) For every reference sample, use the 𝑀  evaluation samples to determine if it’s good for 

classification. With the procedure used to determine pseudo point, find the pseudo points 

relative to the reference sample and each evaluation sample and use classifier 𝐶𝑥 to classify 

the pseudo points. If the classification of this pseudo data point has the same label as the 

evaluation sample, then this [evaluation sample–reference sample] pair is regarded as valid; 

otherwise, it is regarded as invalid. 

2) Assign weight to reference samples. For a given test sample, we find the 𝑚 nearest evaluation 

samples. Then, to every reference sample is assigned a weight based on its validity with 

respect to these 𝑚  evaluation samples, which is obtained as the sum of the relatives 

[evaluation sample–reference sample] valid pairs. Weight represents the “goodness” of the 

reference sample in the dataset. 

3) Select reference samples and generate pseudo test data points. A threshold for the reference 

samples is defined, and only reference samples with weights higher than that threshold are 

selected for pseudo test data point generation. 

 

identify valid [evaluation sample–reference sample] pairs 

Between each reference and evaluation sample, a pseudo data point is generated considering equation 

(3.14) and then a validity measure 𝑣𝑖,𝑘 is defined for each [evaluation sample �̃�𝑘– training data point 

𝑥𝑖 ] pair, 1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑖 ≤ 𝑁 and the validity is set to 1 for correct classification and to 0 for 

incorrect classification: 

 

𝑣𝑖,𝑘 = 1,       𝑖𝑓 �̂�𝑖,𝑘 = 𝑦𝑘    (3.16) 

𝑣𝑖,𝑘 = 0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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assign weight to reference samples 

Given a test sample �̃�𝑡, consider the nearest 𝑚 evaluation samples to be trustworthy for this test 

sample, noting that  𝑚 ≪ 𝑀 . 𝑚 evaluation data points are then used to evaluate the fitness of 

reference samples for the test sample �̃�𝑡. The weight of a reference sample 𝑥𝑖 is assigned as follow: 

𝑤𝑖 = ∑ 𝛿𝑖,𝑘𝑣𝑖,𝑘                                                                (3.17)

𝑚

𝑘=1

 

 

where 𝑣𝑖,𝑘 is a validity measure of the [evaluation sample �̃�𝑘– reference sample 𝑥𝑖] pair, and 𝛿𝑖,𝑘 is a 

weighting adjustment based on distance or other factors. In this work, as in the reference paper [6], 

the weighting adjustment 𝛿𝑖,𝑘 is defined as: 

𝛿𝑖,𝑘 =
𝑑(�̃�𝑘, �̃�𝑡) + 𝑑(�̃�𝑘, 𝑥𝑖)

𝑑(�̃�𝑡, 𝑥𝑖)
                                                  (3.18) 

 

where 𝑑(∙) indicates an Euclidean distance function, �̃�𝑘  is an evaluation sample, 𝑥𝑖  is a reference 

sample, and �̃�𝑡 is a test sample. 

 

select reference samples and generate pseudo test data points 

Given a test sample �̃�𝑡, only the nearest 𝑛 reference samples are evaluate for the test sample. Is also 

defined a threshold 𝜃. Therefore, the selection criterion for reference samples is: 

𝑖𝑓 𝑤𝑖 ≥  𝜃           𝑠𝑖 = 1                                         (3.19) 

𝑒𝑙𝑠𝑒                      𝑠𝑖 = 0 

 

where 𝑠𝑖 is the selection decision on reference sample 𝑥𝑖. The threshold 𝜃 is defined as: 

 

𝜃 = ρ max{𝑤𝑖}         0 < 𝜌 ≤ 1                                 (3.20) 
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combine multiple classification outputs 

Consider pseudo data points relatives to test point �̃�𝑡  : �̂�𝑖,𝑡 , 1 ≤ 𝑖 ≤ 𝐼  where 𝐼  is the number of 

generated pseudo points. At each pseudo data point is assigned a label �̂�𝑖,𝑡. Then the label assigned 

to test point �̃�𝑡 is determined using a fusion function 𝑔 of labels of pseudo points: 

 

�̂�𝑡 = 𝑔(�̂�1,𝑡, �̂�2,𝑡, … , �̂�𝐼,𝑡)                                            (3.21) 

 

In the code implementation of this thesis work, function g is calculated considering labels of pseudo 

points, weighted with their decision value (a measure of distance from the boundary provided by 

libSVM). 
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SMCS - Pseudoocode 
Input: labelled data, test sample 

Output: label of test sample: �̂�𝑡 

Method: 

Define reference dataset 𝑋𝑟 = {𝑥1, 𝑥2, … , 𝑥𝑁},  evaluation dataset �̃�𝑒 = {�̃�1, �̃�2, … , �̃�𝑀} and a test sample �̃�𝑡 

Define pseudo data point generation function 𝑓: �̃�𝑡 ↦  �̂� 

 

Train a single classifier 𝐶𝑋 using all reference samples and evaluation samples 

 

Identify valid [evaluation sample–reference sample] pairs: 

for all evaluation samples �̃�𝑘 : 𝑘 = 1, … , 𝑀 do 

for all reference samples �̃�𝑖 ∶ 𝑖 = 1, … , 𝑁 do 

Generate pseudo data point  �̂�𝑖,𝑘  with function 𝑓 and reference sample  𝑥𝑖  for evaluation sample �̃�𝑘  

Classify pseudo data point  �̂�𝑖,𝑘 with classifier 𝐶𝑋: 

if Classification output  �̂�𝑖,𝑘 of pseudo data point  �̂�𝑖,𝑘 equals the class label �̃�𝑘 of evaluation 

sample �̃�𝑘 then 

Set validity 𝑣𝑖,𝑘 of [evaluation sample �̃�𝑘 –reference sample 𝑥𝑖] pair to be 1 

else 

Set validity 𝑣𝑖,𝑘 of [evaluation sample �̃�𝑘 –reference sample 𝑥𝑖] pair to be 0 

end if 

end for 

end for 

 

Assign weight to reference samples for test sample �̃�𝑡 : 

for all reference samples 𝑥𝑖 ∶ 𝑖 = 1, … , 𝑁 do 

Initialize 𝜔𝑖  of reference sample 𝑥𝑖 to be 0 

for Nearest 𝑚 evaluation samples from test sample �̃�𝑡 , 𝑥𝑘: 𝑘 = 1, … , 𝑁 do 

Evaluate the weight of reference samples 𝑥𝑖  for test sample �̃�𝑡 : 

if validity 𝑣𝑖,𝑘 of [evaluation sample �̃�𝑘 –reference sample  𝑥𝑖] pair equals to 1 then 

Increase the weight  𝜔𝑖 of reference samples 𝑥𝑖 : 𝜔𝑖 = 𝜔𝑖 +  𝛿𝑖,𝑘 𝑣𝑖,𝑘 

end if 

end for 

end for 

 

Select reference samples and generate pseudo test data points: 

for Nearest 𝑛 reference samples from test sample �̃�𝑡 , 𝑥𝑖 ∶ 𝑖 = 1, … , 𝑛 do 

if the weight 𝜔𝑖  of reference samples 𝑥𝑖 is greater than the threshold 𝜃 then 

Generate a pseudo test data point  �̂�𝑖,𝑡 for test sample �̃�𝑡 based on reference sample 𝑥𝑖: 

 

 �̂�𝑖,𝑡 = 𝑓(�̃�𝑡 , 𝑥𝑖 ) 

 

Classify pseudo data point  �̂�𝑖 with classifier 𝐶𝑋, and store the classification output  �̂�𝑖 

end if 

end for 

 

Apply a fusion function 𝑔 to combine multiple classification 

outputs: �̂�𝑡 = 𝑔({�̂�𝑖,𝑡}) 

Return combined classification output  �̂�𝑡 as final result. 

Algorithm 3.5 semi-supervised features ranking. 



59 

 

 

 

 

Chapter 4 

 

Experimental results 

 

In this chapter it will be analyzed the structure of tests for the developed algorithms based on the 

reference articles discussed in Chapter 3. The chosen datasets for this tests will be described in section 

4.2 and will be compared to datasets used for the experiments in the various articles, especially the 

paper [7] “DCPE co-training for classification” which will be also used as reference framework for 

experimental dataset and division into training set, test set and validation. In the chapter will be also 

presented the validation protocol (a 5 fold cross validation) and its implementation, the approach to 

multiclass problem (using one vs all approach to reduce the multiclass problem to binary class case) 

and the comparison schema for comparing the developed algorithm performance to a baseline 

supervised method (a Support Vector Machine). 

An important result will be the high performance of semi-supervised learning (also in its simplest 

base form of self-training) respect to supervised learning. The limited number of labeled data, makes 

desirable the use of unlabeled data to generate a classifier, and this can greatly improve the 

performance, as will be seen in experimental results of test 3. 

The programs are implemented in MATLAB® 2013a on Windows 7® home premium 64 bit. 
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4.1 Used configuration framework for data 

 

The adopted configuration for tests is the framework described in [7] in paragraph 4.1. 

As a framework for test experiments is used a data division as shown in Figure 4.1. Original dataset 

is divided in two distinct subsets respectively for training (80%) and for testing (20%). A protocol of 

5-fold cross validation is adopted. In this protocol the process of training and test is repeated 5 time 

on 5 different folds.  

Each fold is divided in test set and training set; training set is again splitted randomly into three 

groups: validation set (10%), labeled data (10%) and unlabeled data (80%). The resulting data 

structure, which will be used for experiment, has the form illustrated in Figure 4.2. In each iteration 

of cross validation process, is considered a row of structure represented in Figure 4.2, which is a fold 

of distinct elements of the dataset. 

Each sampling phase is realized without resampling, obtaining as results sets of different data 

distribution, which can simulate different datasets of the same kind. 

Finally it’s important to note that sampling is implemented maintaining the original class distribution 

of the entire dataset. The sampling process that mantain the class distribution can be implemented 

respectively whit resampling (not used in this phase of dataset splitting) and without resampling. 

 

Figure 4.1 Data splitting schema used for experiments. 
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4.1.1 Validation phase 

 

The validation data is used to test the classifier obtained with the tested algorithms, in each step of 

cross validation. 

The variable to optimize depends on the used classification algorithm. In the executed tests, the 

algorithms which are subject to cross validations are the features ranking algorithm, the DCPE 

algorithm and the clustering-based algorithm. In these cases the variable to optimize in validation 

phase are respectively the following: 

 The number of features to consider. 

 The number of iterations. 

 Threshold 휀1, as described in paragraph 3.1.2. 

In DCPE algorithm, the threshold  휀1  represent the confidence level of the semi-supervised 

classification with clustering-based fuzzy c-mean algorithm. This threshold is progressively 

incremented in validation phase and the value which provides better performance is selected for tests. 

The validation methods implemented are described in the reference articles presenting the algorithms 

discussed above:  

[8] A semi-supervised feature ranking method with ensemble learning  

[7] DCPE co-training for classification 

[9] Using clustering analysis to improve semi-supervised classification. 

Figure 4.2 the datasets splitting for cross validation. Each line contain the data of relative fold. 
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4.2 Datasets 

 

Datasets considered for experiments are the datasets available on the internet websites of UCI 

(University of California, Irvine) in the archive dedicated to machine learning: 

http://archive.ics.uci.edu/ml/, commonly used in many research experiments. 

Tested datasets are quite all datasets used in experiments in [7] (section 4). For some technical 

problems, yeast dataset is not used because it has a problematic class imbalance, which not allows to 

divide datasets maintaining class distribution. For the tests proposed in this thesis work, this problem 

has not be managed and for simplicity dataset yeast is not used. 

Similarly, dataset Letter, consisting of features describing black-and-white rectangular pixel displays 

as one of the 26 capital letters in the English alphabet, has not been used for consumption time 

problems. Due to the high number of classes (26, one for each possible letter), the one-vs-all 

conversion from multiclass to binary problem causes an high computing time consumption and so, 

for practical reasons, this datasets is not tested in the experimental phase. 

The used datasets are listed in Table 4.1, specifying for each dataset the number of samples, the 

features dimension and the class distribution. These dataset’s characteristics will be take into account 

when considering class imbalance problem. The datasets source also specify which attribute is 

continuous, but we do not consider this parameter in data elaboration. 

In Table 4.2 is reported a brief description of datasets and the link to UCI website where used data 

are available. 

  

http://archive.ics.uci.edu/ml/
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Dataset name Total size Number of 

attributes 

Number of 

classes 

Class distribution 

Tictactoe 

 

958 9 2 ∽65.3% positive 

 

Vowel 

 

990 10 10 Equally distributed 

Car 

 

1728 6 4 Unacc     1210    ( 70.023 %)  

acc           384     ( 22.222 %)  

good        69       ( 3.993 %)  

v-good     65       ( 3.762 %)  

 

Credit 

 

690 15 2 + 307 (44.5%) 

- 383  (55.5%) 

Ionosphere 

 

351 34 2 g:126 

b:225 

Pendigits 

 

3498 16 10 0:  363 

1:  364 

2:  364 

3:  336 

4:  364 

5:  335 

6:  336 

7:  364 

8:  336 

9:  336 

Pima 

 

768 8 2    0            500 

   1            268 

Segmentation 

 

2100 19 7 300 instances per class. 

Sonar 

 

208 60 2 M (metal cylinder)       111  

R (rock)                           97 

Australian 

 

690 14 2 + 307 (44.5%)   

- 383 (55.5%)  

WPBC 

 

198 34 2 Nonrecur 151 

Recur    47 

 

  

Table 4.1 Datasets used in experiments. 



64 

 

Dataset name Brief description  link 

Tictactoe 

 

Binary classification task on possible 

configurations of tic-tac-toe game 

https://archive.ics.uci.edu/ml/datasets

/Tic-Tac-Toe+Endgame 

Vowel 

 

Speaker independent recognition of 

the eleven steady state vowels of 

British English using a specified 

training set of lpc derived log area 

ratios. 

Note: used data are in  the form of 

reformulated vowel-context, available 

at the link, provided by Peter Turney, 

peter@ai.iit.nrc.ca 

https://archive.ics.uci.edu/ml/machin

e-learning-

databases/undocumented/connectioni

st-bench/vowel/vowel-context.data 

Car 

 

Derived from simple hierarchical 

decision model, this database may be 

useful for testing constructive 

induction and structure discovery 

methods. 

https://archive.ics.uci.edu/ml/machin

e-learning-databases/car/car.data 

Credit 

 

credit card applications; good mix of 

attributes 

  

https://archive.ics.uci.edu/ml/machin

e-learning-databases/credit-

screening/crx.data 

Ionosphere 

 

Classification of radar returns from 

the ionosphere 

https://archive.ics.uci.edu/ml/machin

e-learning-

databases/ionosphere/ionosphere.dat

a 

Pendigits 

 

Digit database from 44 writers https://archive.ics.uci.edu/ml/machin

e-learning-

databases/pendigits/pendigits.tes 

Pima 

 

From National Institute of Diabetes 

and Digestive and Kidney Diseases. 

https://archive.ics.uci.edu/ml/machin

e-learning-databases/pima-indians-

diabetes/pima-indians-diabetes.data 

Segmentation 

 

Image data described by high-level 

numeric-valued attributes, 7 classes 

  

https://archive.ics.uci.edu/ml/machin

e-learning-

databases/image/segmentation.test 

Sonar 

 

The task is to train a network to 

discriminate between sonar signals 

bounced off a metal cylinder and those 

bounced off a roughly cylindrical rock. 

https://archive.ics.uci.edu/ml/machin

e-learning-

databases/undocumented/connectioni

st-bench/sonar/sonar.all-data 

Australian 

 

Credit card applications. This database 

exists elsewhere in the repository 

(Credit Screening Database) in a 

slightly different form. 

https://archive.ics.uci.edu/ml/machin

e-learning-

databases/statlog/australian/australia

n.dat 

WPBC 

 

Prognostic Wisconsin Breast Cancer 

Database 

https://archive.ics.uci.edu/ml/machin

e-learning-databases/breast-cancer-

wisconsin/wdbc.data 

  

Table 4.2 Datasets used in experiments: description and link. 
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4.3 Prepruning and considerations 

 

4.3.1 Initial Datasets Elaboration 

 

Initially datasets have been downloaded from the UCI website in txt extension. 

Data were converted from original text document to a valid format for MATLAB input. Text lines 

have been delated or commented (inserting “%” character at the beginning of the line). 

Then, using a simple script in Java, categorical attributes represented by letters has been converted in 

a numerical representation. This operation introduced an order in the feature space that was not always 

implied from the previous representation with letters. This was not considered a problem since 

categorical values of attributes are considered separately. 

Some datasets presents missing values. The samples containing missing values was deleted from 

datasets since, for the purpose of this thesis work, performance in presence of missing values or a 

robust model of classification are not take into account. Tests of the algorithms considering missing 

values could be a future development of the approach to machine learning presented in this thesis. 

Finally in some datasets such as WPBC has been necessary to delete attributes that aren’t useful for 

classification, since they don’t add information regarding data. 

For example the ID attribute has been deleted because other attributes and label are totally 

independent from it. Another example is the first attribute in vowel dataset in contextual form. This 

attribute concerns about the usage for training or test in previous experiments and is uncorrelated with 

label and data. 
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4.3.2 Data Normalization 

 

Datasets attributes has to be normalized for an efficient classification using libSVM. For the 

normalization each attribute is reported in the [-1,1] interval. The classes are also reduced to the 

integer 0, … , 𝑐  where 𝑐  is the number of classes. The pseudocode used to normalize data is the 

following: 

 

 

 

The normalized values are determined in accord with the following formula: 

 

𝐴𝑖
𝑁 =

𝐴𝑖 − min 𝐴𝑗

max 𝐴𝑗 − min 𝐴𝑗
                                   (4.1) 

 

Where 𝐴𝑖
𝑁

 is the normalized attribute value of record 𝑖, 𝐴𝑖 is the attribute 𝐴 of record 𝑖, and max 𝐴𝑗  

and min 𝐴𝑗  represent respectively the maximum and minimum value of the attribute 𝐴 among all 

records 𝑗 = 1, … , 𝑁 where 𝑁 is the number of considered records. 

Algorithm 4.1: pseudocode for normalization. 

Normalization pseudocode 

Input: A: arbitrary array 

Output: NA: normalized array 

Method: 

1. M= maximum value in A 

2. m= minimum value in A 

3. for each element A(i) in A 

4. NA(i)=(A(i)-m)/(M-m) 

5. end 
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It’s important to notice that training set and test set are normalized separately. This is important for 

the coherence in the training set and test set definition: indeed, training set can’t be used to modify 

test set in any way and vice versa. 

 

4.3.2 Considerations and details about datasets 

 

In this paragraph, some characteristics of tested datasets will be shown in more detail. In particular, 

referring to the class imbalance problem and overfitting: 

 

 Tictactoe: This database encodes the complete set of possible board configurations at the end of 

tic-tac-toe games, where "x" is assumed to have played first.  The target concept is "win for x" 

(i.e., true when "x" has one of 8 possible ways to create a "three-in-a-row"). Interestingly, this 

raw database gives a stripped-down decision tree algorithm (e.g., ID3) fits.  However, the rule-

based CN2 algorithm, the simple IB1 instance-based learning algorithm, and the CITRE feature-

constructing decision tree algorithm perform well on it [31]. 

 Vowel: Speaker independent recognition of the eleven steady state vowels of British English 

using a specified training set of derived log area ratios. In the used form, data has been 

contextualized: implicit in the original data is contextual information on the speaker's gender and 

identity. In the contextualized file (used for this thesis work), the speaker's gender and identity 

have been added as new features [31]. 

 Car: Car Evaluation Database was derived from a simple hierarchical decision model. Because 

of known underlying concept structure, this database may be particularly useful for testing 

constructive induction and structure discovery methods. It presents also class imbalance 

characteristic [31]. 
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 Credit: This file concerns credit card applications. All attributes, names and values have been 

changed to meaningless symbols to protect confidentiality of the data. This dataset is interesting 

because there is a good mix of attributes: continuous, nominal with small numbers of values, and 

nominal with larger numbers of values.  There are also a few missing values [31]. 

 Ionosphere: The dataset consists in parameter measured by radar that investigated the 

ionosphere. 

Received signals were processed using an autocorrelation function whose arguments are the time 

of a pulse and the pulse number.  There were 17 pulse numbers for the Goose Bay system.  

Instances in this dataset are described by 2 attributes per pulse number, corresponding to the 

complex values returned by the function resulting from the complex electromagnetic signal. 

The high number of features can cause an overfitting problem in some learning algorithm [31]. 

 Pendigits: The dataset consists in a collection of 250 samples from 44 writers. The samples 

written by 30 writers are used for training, cross-validation and writer dependent testing, and the 

digits written by the other 14 writers are used for writer independent testing. This dataset is also 

available in the UNIPEN format. The original dataset available online is composed of two parts: 

one for training and one for test, containing digits from two separated set of writers. In this thesis 

work, the considered dataset is only the test one [31]. 

 Pima: It contains data about diabetes outbreak in Pima Indian population. Several constraints 

were placed on the selection of these instances from a larger database.  In particular, all patients 

here are females at least 21 years old of Pima Indian heritage.  This dataset presents also a class 

imbalance problem, since the number of samples of positive class is about half of the ones with 

negative class [31]. 

 Segmentation: The instances were drawn randomly from a database of 7 outdoor images.  The 

images were segmented to create a classification for every pixel. Each instance is a 3x3 region 

[31]. 
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 Sonar: Each pattern is a set of 60 numbers in the range 0.0 to 1.0.  Each number represents the 

energy within a particular frequency band, integrated over a certain period of time.  The 

integration aperture for higher frequencies occurs later in time, since these frequencies are 

transmitted later during the chirp. The number of features is very high and so the risk of 

overfitting is relevant [31]. 

 Australian: This dataset is similar to Credit dataset and concerns credit cards approval for 

Australian citizens [31]. 

 WPBC: Each record represents follow-up data for one breast cancer case.  These are consecutive 

patients seen by Dr. Wolberg since 1984, and include only those cases exhibiting invasive breast 

cancer and no evidence of distant metastases at the time of diagnosis. This dataset presents a 

class imbalance: the “recur” class is about one third of “nonrecur” class [31]. 

 

4.4 Tests schemas 

 

In this section, the tests that have been effected, the structures of algorithms and how they are 

combined together will be presented. In particular in test 5 the DCPE and clustering-based algorithm 

are used, instead that with SVM as base classifier (test 4), with an implementation of Single Classifier-

based Multiple Classification Scheme presented in [6]. Test 1 and test 2 consist in dividing the 

datasets, normalizing them and applying a baseline SVM classifier. The accuracy of SVM will be 

used as baseline for later comparison. Test 3 is an application of feature selection in a semi-supervised 

implementation [11], which allows also to see the Self-training performance. Test 4 consists in the 

test of DCPE and clustering-based learning algorithms with the base classifiers (SVM, ADABoots 

and Semi-Supervised Fuzzy c-Means). 

 



70 

 

4.4.1 Test 1   

 

Initial test consists in the initial step of import datasets in MATLAB, normalization of attributes and 

standardization of classes. 

For each dataset, the samples are divided in training set and test set following the protocol described 

in section 4.1. It’s important to specify that data has been elaborated using a normalization function, 

as described in paragraph 4.3.2, and a selection function which respects class distribution, as said in 

paragraph 4.1. 

 

It’s important to note that, for practical aspects, the sampling maintaining the class distribution can’t 

be used in that datasets which have not enough elements of any class. Since the smallest subset 

considered (validation set or labeled data set) is composed of 8% of the total samples, the number of 

elements in each class has to be more then 13 to guarantee that each subset has at least an element of 

each class. This is the reason why yeast dataset is not considered in experiments. 

 

4.4.2 Test 2  

 

Test 2 consists in the baseline test. In this test, the classification of test set data is experimented using 

labeled. 

Unlabeled and validation data are not used in the baseline classification, because the mean of this 

analysis is to compare advanced techniques proposed in Chapter 3 to a standard supervised learning 

classification. Since baseline is supervised, it can’t use unlabeled data and has to reduce its learning 

set to labeled data (which has a limited size, considering the dataset division). 

For the SVM in this baseline test, the following libSVM parameters are used: 
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 - g 1 : 𝛾 in the kernel function is set to 1. 

 - c 100 : a cost parameter is used, also to limit inaccuracy due to class imbalance in 

multiclass problem with one-vs-all approach. 

 -t 2 : kernel function is of radial basis type. 

 

In this section it’s important to notice the implementation of one-vs-all approach, which is used to 

convert a multiclass classification problem into a binary class one. This approach has already been 

explained in 2.2.5. For the practical implementation, is used a for loop, in which iteratively labels are 

set to 0 if the classes are different from 𝑖, while if classes are equal to 𝑖 is set to 1. Then in each loop 

the classifier is built using the training set, and the test samples are classified. To each test sample is 

also assigned a decision value. In this case of a simple SVM, the decision value is equal to the distance 

from the sample to the boundary. This value is provided by libSVM library. The decision values are 

progressively inserted in a matrix 𝑀 = 𝑘 ∗ 𝑐 , where 𝑘 is the number of test samples and 𝑐 the number 

of classes. The final class assigned to the test sample is the class associated to the column of 𝑀 

relative to 𝑥 with the highest value. 

The Algorithm 4.1 shows the pseudocode for test 2 program, while Algorithm 4.3 describes the 

implementation of one-vs-all approach. Results of the baseline classification with cross validation are 

presented in Table 4.3. 

 

BASELINE classification script 

 

Datasets= (𝑑𝑎𝑡𝑎𝑠𝑒𝑡1, … 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑛) 

 Insert in the cell arrays Data and Labels the samples in each dataset 

For each dataset 

 Apply DivideDataset and obtain the structure of Figure 4.2 

 Results= TestSVM(Labelled set, Test set) 

End 

Save Results 

Algorithm 4.2 script used for the baseline tests. 
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BASELINE one-vs-all approach – TestSVM.m 

 

Input: training set, test set 

Output: Accuracy, decision values, confusion matrix 

 

Decision_values_final=∅ 

Accuracy=∅ 

confusion matrix=∅ 

Predict_labels=∅ 

For each class 𝑖 = 1, … 𝑐 

 𝑙𝑎𝑏𝑒𝑙(𝑖) = 𝑖 are substituted with 1 , 𝑖 = 1, … , 𝑛 

 𝑙𝑎𝑏𝑒𝑙(𝑖) ≠ 𝑖 are substituted with 0 , 𝑖 = 1, … , 𝑛 

 

 Train SVM 𝜙 on test set 

 (predict_label, decision_value_temp) =svmpredict (test set, 𝜙 ) 

 Decision_values (:,i)= decision_value_temp 

End  

Predict_labels(i) is set to the max index of column of Decision_values(i,:) 

Decision_values_final(i) is set to the maximum value of Decision_values(i,:) 

For each test sample 𝑥𝑖 

 If (Predict_labels(i) = 𝑙𝑎𝑏𝑒𝑙(𝑖)) 

  Increment Accuracy 

End  

For each class couple (𝑖, 𝑗), 𝑖, 𝑗 = 1, … , 𝑐 , 𝑖 ≠ 𝑗 

 for each test sample 𝑥𝑘 

  if (label(k)=i and predict_labels(k)=j) 

increment confusion_matrix(i,j) 

 end 

end  

Algorithm 4.3 baseline classification with one-vs-all approach. 
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Dataset name Baseline SVM accuracy  

Tictactoe 0.7179 

Vowel 0.5111 

Car 0.8921 

Credit 0.8124 

Ionosphere 0.6522 

Pendigits 0.9775 

Pima 0.6868 

Segmentation 0.9257 

Sonar 0.6800 

Australian 0.8175 

WPBC 0.9214 

 

 

4.4.3 Test 3 

 

In this test phase, the purpose is to apply feature selection and see how accuracy can be increased 

considering a smaller number of features. 

Moreover, after the selection of the optimal features, a semi-supervised learning algorithm is applied 

(in this implementation, the Self-training algorithm is used, as described in reference article [8]). The 

classification with semi-supervised learning is also described in the original algorithm proposed in 

paper [8] “A semi-supervised feature ranking method with ensemble learning”. This classification 

Table 4.3 Results of baseline SVM. 
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technique, as widely explained in section 2, can generally increase the performance of the classifier 

considering also unlabeled data, which are more than labeled data (following the protocol of data 

division, presented in [7] and explained in section 4.1, the unlabeled data are 80% of training set, 

while labeled data are only 10% of training data). 

Following the schema described in test 2 (paragraph 4.4.2), the following steps are applied: 

 

1. Cross validation loop. 

2. One-vs-all implementation. 

3. Features ranking algorithm (for binary problem). 

 

The schema in Figure 4.3 represents a diagram of function calls. 

Feature selection test phase consists of two phases: initially the best features are selected following 

the procedure described in section 3.1.3. In the second phase the validation data are classified using 

Self-training and both labeled and unlabeled data, but considering only the optimal number of features.  

This test provides in output the optimal subset of features. 

Then the test set is classified with a Self-training approach, which constructs a classifier using labeled 

and unlabeled data. This classification of test set is executed considering only the optimal features 

subset. 
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results of test 3 

Results show how accuracy varies increasing the number of selected features. Graph are drawn 

calculating the mean of the cross validation steps. Then the results in terms of final accuracy on test 

set are provided in Table 4.4. 

  

Figure 4.3 schema of test 3. 
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Dataset name Baseline SVM accuracy

  

SERF accuracy 

Tictactoe 0,7042 0,7842 

Vowel 0,5394 0,9091 

Car 0,8827 0,9848 

Credit 0,8031 0,8450 

Ionosphere 0,6551 0,8870 

Pendigits 0,9772 0,9934 

Pima 0,7289 0,7566 

Segmentation 0,9167 0,9548 

Sonar 0,6650 0,7650 

Australian 0,8058 0,8263 

WPBC 0,9339 0,9607 

 

 

Table 4.4 Results of SEFR approach classification. 

Figure 4.4 Graph of validation phases in SEFR algorithm. 
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Graphs in Figure 4.4 show how accuracy vary progressively expanding the feature subset, considering 

in each iteration an increased number of features in ranking order. Since a 5-time cross validation is 

applied, graph are the result of an average of the 5 iterations of the test. 

Red line, indicated as “fs test” in the legend is the average (of the 5 cross validation) of the resulting 

tests on test set with the optimal features subset, determined in the validation phase. 

Finally the green line is the baseline SVM resulting accuracy on test set. It is calculated using only 

labeled data in the learning phase. 

It’s important to notice that results of feature selection algorithm (“fs test”) are determined applying 

semi-supervised learning with the Self-training approach. For this reason, as you would expect, 

accuracy is usually significantly higher than the baseline reference. 

 

conclusions 

One of the first things that can be noticed from the validation graphs is that some of them follow an 

increasing trend with the enlargement of the selected features (in particular pendigits, segmentation 

and vowels dataset). As regards the datasets related to this kind of graph, it can be concluded that 

feature selection has not a real positive effect in the classification procedure, and the (eventually 

significant) accuracy increment in the final test on test set respect to the baseline SVM test is due to 

the semi-supervised classification. The advantages of semi-supervised learning are widely treated in 

machine learning literature, and are more evident when the difference between the size of labeled and 

unlabeled data is considerable, as in the protocol used in these tests. 

Feature selection is more interesting in datasets like sonar or ionosphere. In these cases the graphs 

have a non-monotonic trend, with a peak in the corresponding optimal features subset. Then, adding 

features, the performance degrades. This can be considered an overfitting effect, in which too many 

features are not useful for the classification of data. In these cases feature selection is useful because 

permits to identify the most important features and to avoid overfitting. The datasets which present 

this problem have a large number of features (sonar has 60 features while ionosphere 36). Feature 
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selection represents an automatic way for the selection of useful features in datasets with the above 

described overfitting problem. 

 

4.4.4 Test 4  

 

Test phase 4 has consisted of test of DCPE approach [7] and clustering-based classification [9], after 

the application of the feature selection algorithm described in section 3.1.3. In this test, the used 

protocol is the same used for each experiment, as described in section 4.1. In the next the results will 

be presented in terms of accuracy of these two classification algorithms. 

 

results of test 4 

 

Dataset name Baseline SVM accuracy  DCPE 

accuracy 

Tictactoe     0.7116 0.7189 

Vowel     0.4970 0.4980 

Car     0.8886 0.8833 

Credit     0.7969 0.8016 

Ionosphere     0.6493 0.7333 

Pendigits     0.9746 0.9752 

Pima     0.6987 0.7211 

Segmentation     0.9181 0.9233 

Sonar     0.6800 0.6450 

Australian     0.7942 0.7985 

WPBC     0.9571 0.9304 

 

 

 

 

 

 

Table 4.5 Results of DCPE with features selection. 
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Dataset name Baseline SVM accuracy

  

Clustering-based accuracy 

Tictactoe 0.7074 0.7042 

Vowel 0.4879 0.4394 

Car 0.8857 0.8483 

Credit 0.7969 0.8326 

Ionosphere 0.6957 0.7855 

Pendigits 0.9694 0.9627 

Pima 0.7224 0.7579 

Segmentation 0.9200 0.8971 

Sonar 0.6650 0.7250 

Australian 0.8102 0.8336 

WPBC 0.9357 0.9393 

 

 

conclusion 

This experiment consists in the implementation of two classifiers which use semi-supervised 

techniques to classify test data. The classifiers are applied after a feature selection phase similar to 

the test 3 experiment. The feature selection, as can be expected, provides the best results in ionosphere 

and sonar datasets, as in test 3. For the other datasets, the performance is in many cases comparable 

with the baseline SVM approach. 

As can be noticed, ionosphere dataset is the once with the better performance respect to the baseline, 

in both DCPE and clustering-based classification. This is due to the previous phase of feature 

selection; in fact, as seen in paragraph 4.3, feature selection drastically increases the accuracy in this 

dataset, which is otherwise subject to overfitting. 

The clustering-based classifier has a good accuracy in sonar dataset. As said before, in this dataset 

the feature selection phase has a very good effect, due to the high number of features and the 

motivations explained in previous sections. So, good results could be expected from semi-supervised 

techniques. However, DCPE algorithm hasn’t good performance on this dataset. This can be due to 

the different model of classification between DCPE and Self-training (used for the feature selection). 

Table 4.6 Results of clustering-based classification with features selection. 
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In other words, features’ importance for the classification with Self-training is substantially different 

from the one related to the DCPE approach, for what regards the sonar dataset. 

DCPE is an approach of semi-supervised learning based on diversity in the data and so it can provide 

good performance in these datasets which present a diversity in the wrong classified data. For 

example it has good performance in the pima dataset. This dataset presents an optimal features subset 

different from the total features set. The reason of the high accuracy result can also be due to the 

internal structure of the dataset, which can be more reliable to a diversity based approach. Moreover 

this result is similar to the result presented in [7] relatively to the pima dataset, which provides an 

error of 0.297 or 0.322 (depending on the used algorithm, if it is Nearest Neighbor or K-Nearest 

Neighbor). This means that feature selection has a limited effect on this dataset and the better 

performance respect to the baseline SVM classification is due to DCPE approach. 

Clustering-based algorithm presents a more significant difference in accuracy performance. Using 

feature selection, this algorithm has a good accuracy in ionosphere and sonar datasets, as can be 

expected from the graphs of feature selection (Figure 4.4). It also has a higher accuracy in other 

datasets: Credit, Pima and Australian. This algorithm has instead a sensibly low accuracy respect to 

the baseline SVM in Vowel, Car and Segmentation. As can be observed, the clustering-based 

classification has more variable accuracy results respect to DCPE approach, which has usually similar 

performance to the baseline. This means that clustering is influenced by the dataset internal structure 

more deeply than the diversity-based algorithm. 

In conclusion performance of clustering-based algorithm relies on the used dataset more than DCPE 

algorithm, so it can be necessary to previously test the performance of clustering and compare them 

with the baseline approach for every tested dataset. 
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4.4.5 Test  5 

 

In test 5, DCPE and clustering-based classification are implemented using the SMCS classifier 

described in [6] as base classifier, instead of SVM. Moreover, a features selection phase is previously 

applied, as in test 4. In previous test, the base classifier used for clustering was a SVM with the radial 

basis function kernel: 𝑒−(𝛾|𝑢−𝑣|2), with a gamma factor of 0.007 and a cost factor of 100, providing 

in output probability estimation. Expressed in the MATLAB syntax of libSVM, it is represented by 

the following option string: 

' -g 0.07 -c 100 -t 2 -b 1' 

In this test, instead, the baseline classifier is a classifier built as described in [6], with the generation 

of pseudo points and using the principles of single classifier based multiple classification scheme 

described in section 3.1.4. 

For DCPE based approach, it is also used the SMCS algorithm instead of SVM, and adaboost 

algorithm as second classifier (as in test 4). 

 

results of test 5 

Dataset name Baseline SVM accuracy

  

DCPE accuracy 

Tictactoe 0.6705 0.6768 

Vowel 0.4980 0.5000 

Car 0.9037 0.8903 

Credit 0.7829 0.7194 

Ionosphere 0.6812 0.7101 

Pendigits 0.9769 0.9625 

Pima 0.6882 0.6987 

Segmentation 0.9176 0.9100 

Sonar 0.6450 0.6150 

Australian 0.8131 0.7664 

WPBC 0.9393 0.8821 

 

 

 

Table 4.7 Results of DCPE using SMCS base classifier and features selection. 
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Dataset name Baseline SVM accuracy

  

Clustering-based accuracy 

Tictactoe     0.7011     0.6558 

Vowel     0.4848     0.1101 

Car     0.8862     0.6552 

Credit     0.7953     0.5209 

Ionosphere     0.6783     0.6174 

Pendigits     0.9510     0.1268 

Pima     0.7053     0.6474 

Segmentation     0.9381     0.1500 

Sonar     0.6600     0.4900 

Australian     0.7883     0.6044 

WPBC     0.9357     0.6518 

 

 

 

conclusions 

The semi-supervised algorithms DCPE tested using as base classifier the algorithm proposed in [6] 

provides different accuracy values respect to the test 4 (with SVM as base classifier).  

DCPE classifier has good performance respect to the baseline test in pima an ionosphere datasets, 

like in the test 4. However the results are generally worse than in the test 4, where SVM is used as 

base classifier. From this test can be concluded that DCPE algorithm combined with SMCS approach 

[6] does not provide good performance, generally in every testes dataset. 

Clustering-based classification has bad accuracy performance in each tested dataset. In every case the 

accuracy of clustering-based classifier is lower than the baseline. In some cases the accuracy is 

drastically reduced to the level of a random classifier. This is evident, for example, in the vowel 

dataset, where the high number of classes reduces considerably the accuracy. The accuracy has low 

levels in other datasets too; also in the ones with a good feature selection result, as sonar or ionosphere. 

In segmentation and pendigits datasets the accuracy has very low values. These values can be due to 

some problem of compatibility with the algorithms in the relative datasets. It is important to note that 

these datasets analysis is computationally more expensive than in the other cases. This is due to the 

Table 4.8 Results of clustering-based learner using SMCS base classifier 

and features selection. 
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high number of samples and classes of segmentation and pendigits, combined with the complexity of 

the combination of different algorithms (SMCS, DCPE/clustering-based classification, feature 

selection). 

In conclusion, it can be noticed that DCPE and clustering-based semi-supervised classification 

doesn’t achieve good performance when combined with the classification algorithm proposed in [6]. 

This can be due to the relatively small amount of labeled data, that doesn’t provide good performance 

in SMCS classification. 
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Chapter 5 

 

Conclusions 

 

As an overall conclusion, considering feature selection, we can notice that accuracy in every dataset 

obtained in test 3 is higher than the accuracy resulting from the other tested semi-supervised learning 

algorithms. 

A reason for high accuracy results of test 3 respect to the other SSL algorithms, applied after a feature 

selection phase, can be the usage of Self-training as classification algorithm in test 3. Since feature 

selection is implemented following a Self-training strategy, it is expected to have good performance 

when classification is provided by Self-training algorithm. In other words we can say that the ranking 

of features provided by Algorithm 3.4 is strongly related to the Self-training classification, while, 

with other SSL algorithm, the optimal feature subset is not exactly the one provided by feature 

selection procedure described in paragraph 3.1.3. This results can be confirmed by good accuracy of 

DCPE or clustering-based algorithm tested in stand-alone mode, which is similar to the results 

provided in reference articles [7] and [9]. For what concerns clustering-based classification, must be 

noticed that protocol used for data analysis is different respect to the one used in the article, since in 

this thesis work, the protocol of data division proposed in [9] has been adopted for each test. 
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From the comparison of feature selection results and accuracy provided by methods in test 4, it can 

be concluded that the feature selection pattern described in section 3.1.3 is correlated to the SSL 

algorithm on which it is based (in this case the Self-training algorithm).  

Finally, it can be concluded that features ranking algorithm described in [8] is a good instrument, 

useful to determine if the number of features is too high and might cause overfitting problem. 

However, as shown by results relative to sonar dataset in Table 4.4, it is not sure that feature selection 

would provide a better accuracy in datasets with a large number of features foe every classification 

algorithm. 

Feature selection, normally, can sensibly increase accuracy in classification in high dimensional 

datasets (notice that the two SSL tested algorithms have high performance for what regards 

ionosphere and sonar datasets. Table 4.4 and 4.5). Despite that, it is useful to test the SSL algorithm 

in a stand-alone phase before to use feature selection. This is important because there could be 

problems of compatibility between the rank of features provided by the ranking algorithm and the 

Semi-supervised classifier used in the learning and test phases. 

An alternative approach could consist in the implementation of an ad-hoc feature ranking algorithm, 

specifically based on the model of the used SSL classifier. For example in the case of DCPE, instead 

the features ranking calculated with the approach based on Self-training described in [8], optimal 

features subset can be determined with an feature ranking algorithm based on DCPE classifier. 

Therefore, feature selection with Self-training results to have the best performance in the analyzed 

datasets. However, in a generic dataset, the problems of Self-training described in the end of section 

2.3.3 may occur. For example there could be problems of algorithm convergence, or early 

classification errors can propagate themselves and affect performance. Despite that, this methods was 

effective and has a quite low time consumption. 

Another relevant conclusion is that, from executed tests, the best SSL method results to be DCPE 

classification with feature selection. This technique provides in many datasets better results than the 

baseline classifier (Table 4.5). A lower accuracy respect to base SVM is obtained in sonar and WPBC 
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datasets. For what regards sonar dataset, the possible causes of the low accuracy have been already 

discussed in section 4.4.4. From Table 4.6, it can be noticed that clustering based algorithm has a 

good accuracy for sonar dataset, sensibly higher than the baseline classifier. 

The results of test 4 have been computationally expensive, especially the clustering based learner. 

This can be a drawback in many applications that need to dynamically classify data, such as analysis 

of web usage patterns or, in general, classification of data which change dynamically. 

Finally we have taken into account the fusion of SSL techniques with SMCS approach, described in 

section 3.1.4. Results of this experiment are sensibly worse than previous tests, so it can be concluded 

that the usage of SVM as base classifier for DCPE and clustering based algorithms provides better 

performance than SMCS. 

SMCS has good performance if tested in a stand-alone implementation. The fact that performance 

are lower if inserted in a more advanced SSL algorithm may be related to the presence of an additional 

classifier (the second classifier in DCPE co-training and Semi-Supervised Fuzzy c-mean clustering). 

In the algorithms iterations, the SMCS classifier uses the samples progressively labeled. For the 

structure of SMCS, which generate pseudo-points from existing samples, an initial error, caused by 

previous classification, can propagate itself in the pseudo-points generation phase and affect the 

overall accuracy. This effect is more evident in the clustering based results (Table 4.8), where the 

accuracy is considerably reduced respect to the baseline classifier. Finally, can be concluded that 

SMCS model doesn’t provide good performance if combined with SSL techniques analyzed in this 

thesis work. 

As a conclusion about the final results obtained in the tests, we can observe the good performance of 

feature selection and the importance of this method in order to avoid overfitting in some specific 

datasets (ionosphere and sonar). Moreover the DCPE and clustering based algorithm (section 3.1.1 

and 3.1.2) have good performance if applied to the optimal feature subset obtained with the feature 

selection algorithm (section 3.1.3).  
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