
Università degli studi di Padova

Facoltà di Ingegneria

Tesi di Laurea Magistrale in

Ingegneria Informatica

RESTful management
system for Wireless Sensor

Network devices

Relatore

Prof. Michele Zorzi

Correlatore Laureando

Dott. Angelo P. Castellani Michele Mattiuzzo

Correlatore

Dott. Moreno Dissegna

Anno Accademico 2010/2011

Alla mia famiglia,
a Veronica,

a tutti i miei più cari amici.

Abstract

The thesis has been conceived at the SigNET laboratory of the University
of Padova. The project has consisted on the design and the development of
a software system for managing the devices that compose a Wireless Sensor
Network. The created software is based on the REST architectural style,
so it has been designed to provide the access to the network functionalities
by offering web resources to the clients. The heart of the project is focused
on the management of the elaborative nodes of the network. These devices
have a direct control on the sensor nodes. The developed software runs
on them as an internal daemon, with the aim of monitoring the state of
the sensors and managing the requests of the users. The project has also
included the creation of a Web Application with which integrate the func-
tionalities provided by WebIoT, a multi-platform Web Application created
by the SigNET research group. The aim of this part of the work was mak-
ing the system transparent to the users, who can thus make requests on the
available resources through a complete web interface. All the implementa-
tion choices have been made with a particular attention to ensure high levels
of modularity, portability and scalability.

v

Contents

1 Introduction 1
1.1 Wireless Sensor Networks . 1
1.2 Internet of Things . 3
1.3 Representational State Transfer 4
1.4 Purpose of the thesis . 6
1.5 Document structure . 7

2 Related work 9
2.1 The WISE-WAI testbed . 9
2.2 WebIoT . 12
2.3 TWIST . 13
2.4 MoteLab . 15

3 Design and implementation 19
3.1 Design Principles . 19
3.2 System architecture . 20

3.2.1 Deployment . 20
3.2.2 Resources . 21
3.2.3 Information management 22

3.3 Daemon . 23
3.3.1 Employed technologies 23
3.3.2 Global view . 26
3.3.3 Implementation choices 32

3.4 WebIoT integration . 52

4 Tests and Results 57
4.1 Environment set up . 57
4.2 Parallelism degree . 59
4.3 Update delay . 61
4.4 Performance evaluation . 62

5 Conclusion 67

Bibliography 69

vii

Chapter 1

Introduction

Abstract: In this chapter are presented some concepts about the Wire-

less Sensor Networks (WSN) and the Internet of Things (IoT). Finally will

be discussed the purpose of the thesis by describing the main aims of the

project.

1.1 Wireless Sensor Networks

A Wireless Sensor Network can be defined as a network of devices, denoted

as nodes (or motes), which can sense the environment and communicate

the information gathered from the monitored field (e.g., an area or volume)

through wireless links [1]. The data is forwarded to a sink node (sometimes

denoted as controller or monitor) that can use it locally or is connected to

other networks (e.g., the Internet) through a gateway. The nodes can be sta-

tionary or moving. They can be aware of their locations or not. They can

be homogeneous or not. Monitoring and communication are performed co-

operatively by the nodes [1]. Some of the most widely used sensors that can

be applied on the nodes are able to determine the level of luminosity, tem-

perature or humidity of the environment, making possible to a large set of

applications to store and use the collected data. The nodes are also equipped

with RAM, ROM, a radio chip and a USB connector. The latter replaces

the use of batteries, so that to obtain lower costs in the management of the

power supply. The node firmware can be replaced using wired or wireless re-

programming, but by using USB it’s possible to achieve better performance.

The sinks are usually connected each other in an Ethernet-based LAN. A

1

single-sink approach to the management of the WSN is possible but, clearly,

it is not preferable to the multi-sink one, as it suffers from the lack of scal-

ability: by increasing the number of nodes, the amount of data gathered

by the sink increases and once its capacity is reached, the network size can

not be augmented [1]. In principle, a multi-sink WSN can be scalable (i.e.,

Fig. 1.1: Comparison between the SINGLE-Sink and the MULTIPLE-Sink
approaches.

the same performance can be achieved even by increasing the number of

nodes), however, a multi-sink WSN does not represent a trivial extension of

a single-sink case for the network engineer [1]. The communication among

sinks requires the development of specific protocols, made on the basis of a

suitable criterion, such as, for example, minimum delay, maximum through-

put, minimum number of hops, etc..

The nodes of a WSN can be distributed in a very wide environment, so the

implementation and evaluation of sensor network applications, middleware

and communication protocols is a very difficult task. Unfortunately, real

experiments with distributed systems like sensor networks quickly become

very cumbersome if the number of nodes exceeds a few dozens. In fact,

all the phases of the experiment: deployment of the nodes in the desired,

possibly heterogeneous and hierarchical, configuration; making changes in

the software of individual nodes; and last but not least, conducting exper-

2

iments which include both data processing and self-reconfiguration of the

network are very, very difficult without a targeted, specialized support [2].

For all but the smallest experiments a dedicated infrastructure supporting

the above listed steps is necessary. This infrastructure - from now on re-

ferred to as testbed - makes it possible to create, modify and observe the

target configuration (both hardware and software) in its whole complexity

including nodes, communication protocols, middleware and application [2].

In the world a lot of testbeds have been designed and deployed, showing

similarities and differences. In the last years even the SigNET group of the

University of Padova, within the WISE-WAI project [3], has set up a large

testbed, covering most of the department’s buildings. This testbed and some

others will be presented in Chapter 2.

1.2 Internet of Things

To date, the vast majority of Internet connections worldwide are devices

used directly by humans, such as computers and mobile handsets. The

main communication form is human-human. In a not distant future, every

object can be connected. Things can exchange information by themselves

and the number of ”things” connected to the internet will be much larger

than the number of ”people” and humans may become the minority of gener-

ators and receivers of traffic . We are entering a new era of ubiquity, we are

entering the Internet of Things era in which new forms of communication

among human and things, and things themselves will be realized [4]. The

Internet of Things is a technological revolution that represents the future

of computing and communications, and its development needs the support

from some innovative technologies [4]. Even though we can connect any-

thing does not mean things can communicate by themselves. So new smart

things should be created which can process information, self-configure, self-

maintain, self-repair, make independent decision, eventually even play an

active role in their own disposal. Things can interact, they exchange in-

formation by themselves. So the form of communication will change from

human-human to human-thing to thing-thing [4]. In this context, the re-

search focuses on finding new solutions to make things intelligent, or at

least able to store and share information. A cornerstone in this scope is

undoubtedly the RFID technology. Radio Frequency Identifiers (RFIDs)

3

were first introduced to overcome the limitations of the barcode technology

and primarily focus on tagging objects by attaching an individual identifier

to them [5]. While the original idea was to tag items for retail and logis-

tics, it is foreseen that the application of RFID tags to any object around

us will open up the possibility to develop a huge number of disruptive ser-

vices [6]. Although some privacy concerns have been raised, RFIDs have

become part of our everyday life. Despite the recent improvements in RFID

technology (e.g., in terms of miniaturization), further developments need to

be realized, especially in the areas of energy harvesting and batteries, in-

tegration into materials, and cost [6]. The Wireless Sensor Networks have

been recognized as very suitable systems for the management of these issues.

Tiny, distributed objects as they are, WSNs constitute a reasonably cheap

sensory extension to Internet-connected devices; moreover, their computa-

tional capabilities allow for further (though possibly limited) use flexibility

and functional expansion. Any kind of next-generation Internet-enabled

portable device will set up advanced interactions with the ”things” making

up the new IoT, resulting in a pervasive infrastructure of fixed and mobile

heterogeneous nodes, seamlessly providing, exploiting or sharing context-

based services and applications [7].

1.3 Representational State Transfer

The architectural style underlying the Web is called Representational State

Transfer or simply REST. REST answered the need of the Internet Engi-

neering Task Force (IETF) for a model how the Web should work. It is

an idealized model of the interactions within an overall Web-application.

Roy T. Fielding defines REST in [8] as a coordinated set of architectural

constraints that attempts to minimize latency and network communication

while at the same time maximizing the independence and scalability of com-

ponent implementations. REST enables the caching and reuse of interac-

tions, dynamic substitutability of components, and processing of actions by

intermediaries, thereby meeting the needs of an Internet-scale distributed

hypermedia system.

The most interesting aspect of REST, regarding the thesis project, is the

concept of ”resource”. Any information that can be named can be a resource:

a document or image, a temporal service (e.g. ”today’s weather in Los An-

4

geles”), a collection of other resources, a moniker for a non-virtual object

(e.g. a person), and so on. In other words, any concept that might be the

target of an author’s hypertext reference must fit within the definition of a

resource [8]. A resource can also be defined as a conceptual mapping to a

set of entities. Only the semantics of a resource are required to be static,

entities may change over time. For example in a version control system the

Version 1.2 always points to the same entity whereas HEADs entity changes

over time. This concept allows an author to reference a concept instead of

a single representation [9].

REST uses resource identifiers to distinguish resources. In a Web-environment

the identifier would be an Uniform Resource Identifier (URI) as defined in

the Internet RFC 2396 [10]. All REST components perform actions on repre-

sentations of resources. Representations capture the current or the intended

state of a resource and can be transferred components [9].

A representation consists of:

• a sequence of bytes (the content)

• representation metadata (describing the content)

• metadata describing the metadata (e.g. hash sums or Cache-Control)

REST is not tied to a specific data format as long as all components can

process the data. A intermediary cache, for example, does not need to know

the semantics of the data, only if the request or response is cacheable or

not. The data format of a representation is called media type. Some me-

dia types can be processed by computers, others are intended primarily for

the human reader and few can be automatically processed and viewed by a

human reader [9]. In modern Web-services a commonly used representation

is XML (Extensible Markup Language) as defined by the World Wide Web

Consortium (W3C) in [11].

The REST architectural style is suitable for developing applications for

WNSs, since the most common needs of the WSN users, like getting in-

formation on the nodes, reprogramming them or switching them on and off,

can be seen as resources that can be requested to the system.

5

1.4 Purpose of the thesis

The thesis has been conceived at the SigNET laboratory of the University

of Padova. The SigNET group is in front line in studying and developing

solutions and protocols for the WSNs. The project has consisted on the

design and the development of a software system for managing the devices

that compose a Wireless Sensor Network. The generic term ”device” has not

been chosen by chance, indeed the project intends to cover the high-level

management of all the components of a WSN, starting from the motes, go-

ing through the sink nodes and finishing with the client side.

The developed software is based on the REST architectural style, so it has

been designed to provide the access to the network functionalities by of-

fering resources to the clients. The heart of the project is focused on the

management of the sink nodes. These devices have an important relevance

in the economy of the WSNs, since they represent a sort of bridge from the

motes to the outside. The created software will be executed on them as a

daemon. Each instance is able to keep up-to-date a local list of connected

motes, which permits storing all the useful information about the motes and

their states, to share this list with the other units, to accept requests on the

available resources, to forward the requests through the network and, last

but not least, to provide clients an updating service.

The project has also included the creation of a Web Application with which

integrate the functionalities provided by WebIoT, a multi-platform Web Ap-

plication created by the SigNET research group(see Chapter 2 for further

information). The aim of this part of the work is to make the system trans-

parent to the users, who can thus make requests on the available resources

through a simple and complete interface. The Web Application is able to

interact with the daemon. Thanks to the resource offered by the sink nodes,

the clients are able to arrange requests, to manage responses and to update

their information on the WSN. The produced software will be used to facil-

itate the management of the WISE-WAI testbed, replacing and integrating

parts of the currently used system. This does not mean that it cannot be

used also to manage other kind of WSN. The aim is precisely to reach high

levels of portability, modularity and scalability, by dedicating a particular

attention to the design phase.

6

1.5 Document structure

Next chapters are organised as follows. In Chapter 2 are reported the de-

scriptions of some testbed architectures and a brief introduction to WebIoT.

All the system design and implementation aspects will be discussed in detail

in Chapter 3, while a description of the executed tests and the obtained

results is given in Chapter 4. The conclusion is given in Chapter 5.

7

8

Chapter 2

Related work

Abstract:

In this chapter are described three different testbed architectures: the WISE-

WAI testbed, which has been developed at the University of Padova and it

is where this thesis takes place, TWIST, designed and deployed at the Uni-

versity of Berlin, and finally MoteLab, developed at the Harvard University.

Within the section dedicated to the WISE-WAI testbed can also be found a

briefly introduction to the WebIoT project, which is strictly correlated to a

part of the thesis work.

2.1 The WISE-WAI testbed

The ”Wireless Sensor networks for city-Wide Ambient Intelligence (WISE-

WAI)” project [3] aims to demonstrate the feasibility of large-scale wireless

sensor network deployments, whereby tiny objects integrating one or more

environmental sensors (humidity, temperature, light intensity), a microcon-

troller and a wireless transceiver are deployed over a large area, which in

this case involves the buildings of the Department of Information Engineer-

ing at the University of Padova [12]. The overall objective of the WISE-WAI

project is precisely to exploit the potential of WSNs by designing and evalu-

ating a system architecture for a flexible, heterogeneous, and energy-efficient

network, including the specification of applications. The WISE-WAI project

also aims at deploying a wireless sensor network testbed on a large scale,

that will be employed to simulate deployments of a large number of nodes

over a wide territory [12].

9

In order to implement the above concepts and provide a flexible and recon-

figurable platform for testing algorithms and solutions for WSNs, the set up

testbed includes wireless nodes as well as networking devices that allow fast

communication with the sensors (e.g., for reprogramming purposes). Every

node is connected to the network backbone through a Universal Serial Bus

(USB) cable, which also provides power supply: this avoids battery wastage

and continuous replacements during setup and test phases. During actual

operations, however, communications take place only through the wireless

channel. The USB backbone also provides a cheap and fast way to log

data for debugging, of performing general management and of programming

nodes [12] . The WISE-WAI testbed, whose architecture is shown in figure

Fig. 2.1: The WISE-WAI Testbed architecture [12].

2.1, is composed by approximately 350 sensor nodes, which are connected,

via USB hubs, to tiny embedded computers that act as Node Cluster Gate-

ways (NCGs). The NCGs are in charge of interacting with the nodes both

in the upstream (node-to-gateway) direction, e.g., for reporting debug and

log messages, and in the downstream (gateway-to-node) direction, e.g., to

reprogram, reset, and power up or down the nodes, or to adapt the node

behavior on the fly as needed by ongoing measurement tasks. The gateways

are connected via an Ethernet backbone to a local Remote Access Gate-

way (RAG), that manages local communications within specific portions of

the network. All remote access gateways are finally connected to a central

server through Virtual Private Network (VPN) tunnels. The server is the

10

main point of access for the communication to, and the management of, the

whole WSN [12] . The NCGs, which cover the role of sink nodes, are orga-

nized hierarchically. The described architecture is scalable, easy to replicate

in case the network needs to be extended, and in addition its components

can easily be reached and replaced for maintenance. In particular, it should

be noted that the full USB 2.0-compliant hubs employed in the testbed allow

a sort of hard sensor reset, which is accomplished by powering off the port

to which the sensor is connected. Thanks to this function, the sensors need

not be manually disconnected, in case they do not respond to software reset

commands. For all these reasons, dividing the network into smaller subsets

that are managed through gateways, while using embedded PCs and USB

hubs to ease remote control, provides a better solution. In particular, NCGs

are a key component of the network hierarchy. They are small computers

of the ALIX [13] series. These computers exploit the Power-over-Ethernet

(POE) standard technology [12], they are equipped with USB interfaces,

an Ethernet socket, a CPU, RAM, a flash memory and a PCI slot. Every

ALIX is connected to 1, 2 or 4 USB hubs, which make available 4 ports.

The running Operating System is the Voyage [14] 0.5.2 distribution, where

the Linux kernel (version 2.6.26) has been patched to make available further

functionalities, as the possibility to interact with the USB hubs. Finally, the

Fig. 2.2: A Node Cluster Gateway [3].

wireless embedded sensors chosen for the testbed are the TelosB nodes [15].

TelosB is a prototyping WSN platform that comes equipped with tempera-

ture, humidity and light sensors. They can be directly connected to other

11

devices through an embedded USB port. A wireless connection is also di-

rectly available through an implementation of the ZigBee protocol stack.

TelosB nodes use the CC2420 radio chip for ZigBee-compliant communica-

tions in the 2.4 GHz band, in accordance to the IEEE 802.15.4 standard.

Their maximum transmission power is 1 mW within the 2400-2480 MHz

bandwidth. Their transmission rate of 250 kbps is foreseen to be enough to

support all wireless sensor network applications that have been considered

in the WISE-WAI project [12].

The main part oft the software produced during the thesis work is a daemon

that will be run on the NCGs. The daemon will integrate and extend the

capabilities of the testbed, providing a dynamic tool for monitoring and re-

configuring the network. The software can be thought as a distributed web

server, where the various units collaborate in order to manage the informa-

tion about the testbed status and satisfy the external requests.

2.2 WebIoT

The WebIoT project, developed by the SigNET group, aims to provide

a HTTP-based Web Application for managing testbeds. Through a GUI

(Graphical User Interface) which exploits Google Maps to create the lowest

graphical layer, the clients can see all the motes deployed in the testbed and

their spatial position. The clients, interacting with the application, can sub-

mit performance tests (such as testing the routing performance) or control

the motes, for example they can turn motes on/off or inspect the software

installed on them. It should be noted that the presence of the NCGs is com-

pletely hidden to the users, who perceive instead the network as a whole.

In figure 2.3 is reported a screenshot of the main page of Fandango, the

WebIoT release specific for the WISE-WAI testbed.

WebIoT stores the information about the WSN in a MySQL Database, to

which it connects using the JDBC (Java DataBase Connectivity) API. We-

bIoT has been developed using GWT (Google Web Toolkit) [16], which is a

powerful tool for the creation of complex web-oriented applications. GWT

allows the programmers to use the same language, i.e. Java, for developing

both the serve-side and the client-side, effectively substituting the using of

technologies as ASP, PHP, JSP or AJAX. The client-side part of the code

is automatically translated into JavaScript and HTML, while the server-

12

Fig. 2.3: Screenshot of the WebIoT Home Page.

side part is left in Java, since most of the web servers supports the JSP

technology.

2.3 TWIST

In [2] the authors describe TWIST (TNK Wireless Indoor Sensor network

Testbed), a scalable and reconfigurable testbed for wireless indoor experi-

ments with Sensor Network. TWIST is based on cheap off- the-shelf hard-

ware and uses open-source software. Figure 2.4 depicts the hardware ar-

chitecture of TWIST. The sensor nodes expose suitable hardware interfaces

that supports external powering, reprogramming, as well as out-of-band ex-

change of configuration, debug and application data. All those features are

made available by the use of the USB interface. On the software side, the

operating system running on the sensor nodes satisfies several basic require-

ments. First, it provides a suitable execution environment for the application

logic of the SUE (System Under Examination). Secondly, it supports node

configuration, instrumentation of the application code and allow for out-

13

Fig. 2.4: The TWIST’s architecture [2].

of-band communication with the super nodes over the USB infrastructure.

The adopted operating system is TinyOS [17], which provides a generic and

lightweight execution platform for sensor network applications. The testbed

sockets, seen as plain hardware, are nothing more than the points where

the USB interface of the sensor node attaches to the USB infrastructure of

the testbed. The architectural significance of these points is, however, much

greater. The sockets have unique identifiers, and their geographical position

is known and does not change over time, thus it is possible to associate the

node identifiers to the socket identifiers and hence to their geographic posi-

tion. The USB hubs give TWIST one of its most powerful capability: the

binary power-control over its ports. This makes possible to remotely turn

on and off the sensor nodes in the testbed. In order to ensure scalability

to the system, the sensor nodes are connected to super nodes, small com-

puters which support a secondary communication technology that forms the

testbed backbone. Several Python scripts run locally in the super nodes so

as to provide the various testbed functionalities, like sensor nodes program-

ming, executing power-control, collecting debug and application data, and

more. The effective management of a large number of super nodes requires

self-configuration capabilities. For the most basic system parameters like

the super node IP address and the DNS server address, TWIST relies on

the DHCP (Dynamic Host Configuration Protocol) protocol. Time synchro-

14

nization is achieved using NTP (Network Time Protocol). Because of the

limited flash memory on the super nodes, the root file-system is provided

over the network using NFS (Network File System). The server and the

control station interact with the super nodes using the testbed backbone, so

they support the same communication technology. Due to the critical role of

the server (it contains the testbed database, provides persistent storage for

debug and application data from the SUE, runs the daemons that support

the system services in the network, etc.) its hardware resources are ade-

quately dimensioned to guarantee high levels of availability. At the heart of

the server is the PostgreSQL database that stores a number of tables includ-

ing configuration data like the registered nodes (identified by the NodeIDs),

the sockets and their geographical positions (identified by the SocketIDs)

as well as the dynamic bindings between the SocketIDs and NodeIDs. The

database is also used for recording debug and application data from the

SUE. The control station, which is attached to the backbone, is in charge

of activate the Python scripts running on the super nodes. To speed up

this task the control station exploits the multithreading paradigm, creating

a separate thread for each of the super nodes. Every such thread then starts

the Python scripts on its associated super node via the ssh remote command

execution. This permits parallelizing the operations over the sensor nodes,

obtaining largely reduced execution times.

There are several common issues between the TWIST and the WISE-WAI

projects. First of all, the testbed architectures are very similar, specially

about the roles of super nodes and NCGs. Here the main difference is that

the TWIST control station functionalities, in the case of the WISE-WAI

testbed, are delegate to the server. Both the systems make use of a database

with which store the information on the sensor nodes. Furthermore, each

testbed relies on a backbone network that separates the SUE data from

those of the testbed. The principal difference might be that TWIST, unlike

the WISE-WAI project which includes the development of the WebIoT ap-

plication, does not provide users with a web-based interface to the system.

2.4 MoteLab

MoteLab, a Web-based sensor network testbed developed at Harvard Univer-

sity, is described in [18]. MoteLab consists of a set of permanently- deployed

15

sensor network nodes connected to a central server which handles repro-

gramming and data logging while providing a web interface for creating and

scheduling jobs on the testbed. MoteLab accelerates application deployment

by streamlining access to a large, fixed network of real sensor network de-

vices; it accelerates debugging and development by automating data logging,

allowing the performance of sensor network software to be evaluated offline.

Additionally, by providing a web interface MoteLab allows both local and

remote users access to the testbed, and its scheduling and quota system

ensure fair sharing. The sensor nodes are connected each other through a

Fig. 2.5: The MoteLab’s architecture [18].

Ethernet network, using Crossbow MIB-600 hardware interfaces. A central

server handles scheduling, reprogamming nodes, logging data, and provid-

ing a web interface to users. Users access the testbed using a web browser

to set up or schedule jobs and download data. MoteLab consists of several

different software components. The main pieces are:

• MySQL Database Backend : Stores data collected during experiments,

information used to generate web content, and state driving testbed

operation.

• Web Interface : PHP-generated pages present a user interface for job

creation, scheduling, and data collection, as well as an administrative

interface to certain testbed control functionality.

16

• DBLogger : Java data logger to collect and parse data generated by

jobs running on the lab.

• Job Daemon : Perl script run as a cron job to setup and tear down

jobs.

Each of the mentioned jobs consists of some number of executables and

testbed nodes, a description mapping each node used to an executable, sev-

eral Java class files used for data logging, and other configuration parame-

ters, such as whether or not to perform power profiling during the experi-

ment. Users can submit the jobs using the web interface. The job daemon

is in charge of schedule the jobs and start them when possible. During a

job execution users can access the motes via the Ethernet backbone. The

produced data are available both via the web interface and via direct con-

nections to the MySQL Database.

MoteLab shows different architectural choices than the other two tesbeds.

MoteLab sensor nodes are connected via Ethernet, thus it is not possible

to remotely manage their power supply. There are no super nodes, and the

tasks of which the TWIST control station is in charge are left to the server.

MoteLab focuses the emphasis on the web interface and the management of

the user jobs. The system is built so as to serialize the access to the testbed

resources, but on the other hand the awakening of the scheduled job is done

automatically.

The thesis project, which aims to integrate the WISE-WAI testbed func-

tionalities, tries to catch the vantages introduced by the different solutions,

reinterpreting the role of the NCGs in a dynamic way.

17

18

Chapter 3

Design and implementation

Abstract:

In this chapter firstly will be described the system architecture and the de-

sign principles which have been adopted during the creation of the software.

In the following sections will be discussed all the implementation choices.

3.1 Design Principles

Within the design phase of the project have been emerged some guide lines.

They have been adopted during the implementation of the software. Here

they are discussed in a global perspective.

1. Modularity: both the daemon and the Web Application have to be

organised in a way that allows to easily add new functionalities to the

system without change the core structure. In addition, more modular

is a software more it is easy to debug and maintain, and the readabil-

ity of its code sensibly improves. A good level of abstraction for what

concerns the key-concepts of the context (e.g. ”mote”, ”sink node”, ”re-

source”, ”operation”, ”module”, ”updating service”, etc.) should make

simpler to achieve this aim.

2. Usability: interacting with the system should be simple, both in mak-

ing requests and in interpreting the responses, and the clients should

be able to access to a large set of resources. The choice of using XML

for interchanging data certainly helps to achieve this aim.

3. Scalability: it concerns the system’s capability to maintain unaltered

19

its performance when its size increases, or when it receives requests

involving a growing number of nodes. In order to reach a good level

of scalability it’s important to keep in mind the following issues:

• minimize the number of information messages the sink nodes, so

that the network traffic is limited;

• maximize the parallelism in executing the required operations;

• avoid the creation of bottlenecks.

4. Portability: it should be possible to deploy the system independently

from the sensor network and the type of the sink nodes. If the software

architecture shows a good level of modularity, then the implementation

and the integration of network-specific modules should be less difficult,

with the possibility to make the system more portable.

3.2 System architecture

3.2.1 Deployment

The purpose of the thesis has already been described in a general way in

Chapter 1, in this section it will be presented more in detail. First of all will

be discussed the system as a whole.

In Figure 3.1 it’s reported the deployment UML diagram of the final solu-

tion, where it is possible to see the various links between the components of

the system. This diagram refers to the deployment of the software within

the WISE-WAI testbed. As shown in figure, users can interact both with the

daemons, which run on ALIXes, and WebIoT, which runs on the WISE-WAI

server. The daemons are able to manage connections from several clients

and a client can connect to all the ALIXes. Clients, using the Web Appli-

cation provided by WebIoT, a web browser or any other suitable software,

make HTTP requests on the resources offered by the daemons. All the data

transmitted to or received from the daemons are in XML: this choice en-

sures a simple and standardized way to access and exploit the system. The

ALIXes are connected in an Ethernet LAN and the daemons, in order to

communicate each other, use HTTP requests on the available resources.

The logical network topology is hierarchical, it composes a tree where every

node is aware only of his children. Every sink node has a configuration file,

20

Fig. 3.1: Deployment diagram of the system.

arranged off-line before the execution of the daemon, where it can find as

the principal information the list of his children in the network hierarchy.

3.2.2 Resources

In Chapter 1 have been mentioned the resources that the clients can request

to the system, now they are listed more in detail.

1. list of motes: returns all the available information about the motes.

2. updating service: allows a client to keep itself up-to-date with respect

to the list changes.

3. on, off: allow a client to switch on/off the USB port to which the motes

are connected.

4. merge: a client can merge the information about two or more motes

to obtain a single mote; this resource is useful when, for example, a

mote is recognized both as a wireless mote and as a USB mote.

5. load firmware: allows to reprogram the motes with a new firmware.

6. set position: makes possible to specify a position information for a

mote.

21

7. serial connection: creates a direct socket connection to a mote, so it

enlarge the client-mote interaction possibilities.

Furthermore, the daemons are able to detect the connection/disconnection

of the motes; when this happens they simply update the list and commu-

nicate the change through the updating services. Another important issue

concerns the system’s behaviour after a sink node crash. In this case the

parent (if any) of the crashed node realizes what has happened, takes care

to update its information and starts trying to restore the connection. All

the implementation details about these issues can be found in Section 3.3.

3.2.3 Information management

The system maintains the information about the Wireless Sensor Network

through the management of a list of data. Every list element contains in-

formation over a mote, which in turn consist in a list of identifiers and a

list of features. Every id uniquely identifies the corresponding mote in the

network, it is composed by a (name, value) pair, where the name indicates

the type of the id (e.g. the reference number or the USB path of the mote

device) and the value is a string field. A feature, unlike an id, represents a

state or a capability of the mote, for example the power state, the loaded

firmware code or the position of the mote. Even a feature consists of a

(name, value) pair. Each sink node stores its own list, which is composed

by the data about the directly connected motes and the data got from its

children in the network hierarchy. The Web Application, which interacts

with the sink node at the top of the tree, collects and stores the information

on the global list. By exploiting the resources offered by the daemon, the

application is able to change in real-time its information about the state of

the WSN.

An important fact that deserves to be emphasized is the existence of a di-

rect link among the ”active” resources offered by the daemons (i.e. those

which require some intervention on the physical motes, unlike the ”passive”

resources) and the features of the motes. If a client makes a request on one

of those resources then it activates the execution of an operation on some

features of the involved motes, with the result of change their values and

trigger the update process.

22

3.3 Daemon

3.3.1 Employed technologies

The sink nodes have a crucial role in the management of large WSNs. Their

tasks are to create a direct interface to the motes, to store and share all the

information on them, to offer resources on which accept external requests

and to reconfigure the network after modifications or crashes. As previously

discussed, the sink nodes of the WISE-WAI testbed are connected in via

Ethernet LAN. The HTTP protocol is very suitable for the interchange of

messages over the network, especially since the aim is to create a RESTful

application. The daemon, therefore, has to perform the function of web

server, it has to accept HTTP requests recognizing the corresponding re-

sources from their URI and then send back HTTP responses. To ensure a

high level of usability all the payloads are made in XML. As far as concerns

the system scalability, there are some interesting issues to describe. First of

all, the network traffic results very limited by the adoption of Bidirectional

HTTP techniques, which enable asynchronous, ”server-initiated” communi-

cations from a server to a client as well as communications from a client to

a server [19]. The HTTP Streaming protocol can be used for interchanging

messages the sink nodes. The basic idea on which it relies is to keep a re-

quest open indefinitely. The HTTP streaming mechanism never terminates

the request or closes the connection, even after the server pushes data to the

client. This mechanism significantly reduces the network latency because

the client and the server do not need to open and close the connection [19].

The basic life cycle of an application using HTTP streaming is as follows:

1. The client makes an initial request and then waits for a response.

2. The server defers the response to a poll request until an update is

available, or until a particular status or timeout has occurred.

3. Whenever an update is available, the server sends it back to the client

as a part of the response.

4. The data sent by the server does not terminate the request or the

connection. The server returns to step 3.

The HTTP streaming mechanism is based on the capability of the server to

send several pieces of information in the same response, without terminating

23

the request or the connection [19]. Consider two sink nodes, called A and B,

where A is the parent of B within the network topology. A asks B to estab-

lish an updating service connection by requiring the corresponding resource

offered by B. The latter then responds with a HTTP Streaming connection,

which can be set up by using some specific HTTP headers. B will send

chunks of data every time happens a list modification, while A will be ready

to accept and elaborate them. In this way it is possible to reduce the number

of connections in the network, obtaining all the already discussed vantages.

The main drawback of this protocol is about the possible presence of net-

work intermediaries. The HTTP protocol allows for intermediaries (proxies,

transparent proxies, gateways, etc.) to be involved in the transmission of

a response from the server to the client. There is no requirement for an

intermediary to immediately forward a partial response, and it is legal for

the intermediary to buffer the entire response before sending any data to the

client (e.g., caching transparent proxies). HTTP Streaming will not work

with such intermediaries [19]. This problem can be bypassed by exploiting

another bidirectional HTTP protocol, the HTTP Long Polling. Also this

mechanism attempts to minimize both the latency in server-client message

delivery and the use of processing/network resources [19].The clients send

requests to the server, and the latter responds only when a particular event,

status, or timeout has occurred. Once the server sends a long poll response,

typically the client immediately sends a new long poll request. Effectively,

this means that at any given time the server will be holding open a long

poll request, to which it replies when new information is available for the

client. As a result, the server is able to asynchronously ”initiate” communi-

cation [19]. The basic life cycle of an application using HTTP long polling

is as follows:

1. The client makes an initial request and then waits for a response.

2. The server defers its response until an update is available or until a

particular status or timeout has occurred.

3. When an update is available, the server sends a complete response to

the client.

4. The client typically sends a new long poll request, either immediately

upon receiving a response or after a pause to allow an acceptable la-

24

tency period [19].

Clearly this mechanism introduces more overhead than HTTP Streaming,

but it has the vantage to eliminate the problem concerning the network in-

termediaries, so it is more suitable for the connections coming from outside

the system.

Another important aspect inherent to the scalability principle is the paral-

lelism. If the daemons perform their jobs in a sequential way then it is clear

that the system will not be able to achieve good performances, especially

when its size is not trivial. For this reason, the monitoring of the connected

motes and the management of the client requests are done simultaneously.

In this way, the information about the state of the network can be kept fresh

as much as possible, without interfering with the interactions of the clients.

Even the requests are performed in parallel, unless they require active re-

sources that share one or more motes, condition which imposes that they

have to be partially serialized. In order to implement the described paral-

lelism has been adopted the multithreading paradigm. Each request, service

or monitoring procedure is executed in a separate thread. Multithreading

permits sharing the data structures and the computing resources among dif-

ferent threads, so as to simplify their interaction and to better use the CPU

potential. Furthermore, it offers several techniques for manage the concur-

rency between the threads. The accesses to the shared data structures are

serialized using semaphores, while the communications between the threads

are managed by using condition variables.

As already discussed, the daemon has even the role of web server. The

programming language with which implement the software, besides being

efficient and suitable for low computational performance hardware, should

offer libraries or built-in functions able to help the programmer in doing his

job. Moreover, if there were a language that provides an integrated multi-

threading TCP (Transmission Control Protocol) web server it would really

be the top. Well, Python [20] is the solution. Python is an Object-Oriented

programming language and is based on C [21] routines, thus it combines

the advantages of a fast and low-level language with those typical of the

object-oriented paradigm. The Python libraries include a high-level frame-

work based on the use of sockets, the ”socketserver” module [20]. Within

the latter can be found various kind of server classes, based for example on

UDP (User Datagram Protocol) or TCP, and some request handler classes,

25

which are instantiated by the server in order to satisfy the client requests.

At the beginning of the thesis work the last stable Python version was the

3.1.3, but the daemon is compatible also with the 3.2.1 and 3.2.2 interpreter

versions (higher versions have not been tested).

3.3.2 Global view

Before diving into the details of the single modules, is useful to analyse the

software at a global perspective. In figure 3.2 are described the principal

designed classes and some of their connections. The UML diagram of the

classes is not meant to be an analytic discussion about the software archi-

tecture, rather it’s conceived to highlight the key-concepts of the system. In

the central part of the diagram are reported the classes for the definition

of the core data structures. The ”MoteList” attribute of the ”ListHandler”

class is the point where all the available information converge. This list is

composed by ”Mote” objects and is reachable from the other classes by the

methods of the list handler. Every mote has one or more id and some fea-

tures. Each of these is represented by a ”Field” object, indistinctly from the

fact that it is an id or a feature. The semantic separation is done within the

mote, where are defined two different lists, one for each kind of field.

The ”Resource” class abstracts the concept of REST resource. The various

types of resources are represented by extensions of this class, as reported in

figure 3.3. It is important to notice that the updating services are activated

starting from a request on the corresponding resources.

The direct interactions with the motes are done using the interface mod-

ules. As shown in figure 3.4, every interface extends the ”Interface” class,

from which it inherits a private list of motes as attribute. Every private list

will contribute to compose the global list managed by the list handler. It is

completely transparent the existence of a superstructure where all the lists

converge. In this way the various interfaces have the possibility to define

the ids and the features of their local motes. This leads to get a completely

configurable system, where the interfaces have to take care only of their own

local lists. If two or more interfaces define the same id or feature for a mote,

i.e. the mote is recognized from more than one interface, the corresponding

information is aggregated at the list handler level, obtaining a single global

mote.

26

Fig. 3.2: Daemon - UML Diagram of the classes.
27

Fig. 3.3: Implemented extensions of the ”Interface” class.

Fig. 3.4: Implemented extensions of the ”Resource” class

28

Fig. 3.5: Implemented extensions of the ”UpdatingServiceConnection” and
the ”ServiceHandler” classes

The interfaces are also in charge of monitoring the status of the motes. This

task is done by using dedicated threads. Every time the internal thread of an

interface becomes aware of a modification on a mote state, firstly it updates

its private list, then it reports what has happened to the list handler and

it updates the global list. Finally it communicates the event to the outside

through the updating services. Once these tasks have been executed, the

thread returns to its monitoring activity.

The interfaces are used also for what concerns the management of the net-

work hierarchy. Every NCG can have some children, to which it can forward

requests and from which it receives the responses and the information about

their list of motes. Within the configuration file every daemon can find

its own list of children. Once it obtains the list from parsing the file, the

daemon creates an interface for each found NCG. These interfaces use the

HTTP Streaming technique to retrieve from the children the list of motes

and the relative updates. Once the initial local list is created, the mecha-

nism of interaction with the list handler is perfectly identical to that used

by the other interfaces.

The client requests are accepted by an instance of the ”NCGWebServer”

class, which offers the functionality of web server. This class inherits some

of its properties from the Python ”socketserver.ThreadingTCPServer” class.

In figure 3.6 is reported the life cycle of a client request. Every time a request

is received from the web server, the latter creates a new thread and instanti-

ates a ”RequestHandler” object. The new thread uses the request handler to

parse the client request, obtaining the URL, the HTTP command and the

eventual payload. Once it has verified that the URL refers to an existing

29

Fig. 3.6: Life cycle of a client request.

30

resource, it instantiates the correct extension of the ”Resource” class. The

resources are divided in active and passive. The passive resources are mainly

used to get some information about the status of the system, while the ac-

tive ones permit to intervene on the physical motes. The thread in charge of

the management of an active resource instantiates the”Operation” and the

”OperationHandler” classes so that to activate the various interfaces. The

operation handler is used to create a sub-list of motes and a thread for each

of the interested interfaces. Each of these threads is used to perform the

operation on the sub-list by calling the ”perform operation” method of the

interfaces. Every time a thread finishes to execute the method it returns to

the operation handler a part of the final response, which is composed by a

set of ”mote - (code, message)” associations. The codes and the messages

overload the HTTP semantics in order to express the possible results of the

execution of an operation on a mote. The defined pairs are the following.

200 - Operation successful.

404 - Mote not found.

405 - Operation skipped.

408 - Timeout expired.

409 - The mote is busy.

410 - The mote is not reachable.

500 - Operation failure.

501 - Operation unsupported.

Every time the operation handler gets a partial response, this is returned

to the resource and then is used to build up a part of the XML final re-

sponse. Once the latter is ready, the thread sends it to the client by using

the ”send response” method of the resource. It is important to notice that,

simultaneously to the execution of the operations, the monitoring threads

of the interfaces continue to be active. Every intervention on the physical

motes is registered from these threads, which update the local and the global

lists and report all the changes to the clients of the updating services. The

module responsible to offer the methods for the XML management is called

”XMLCore”. This module has been thought as the point where grouping all

the methods for the XML creation and parsing. In this way every future

modification or extension to the current use of the XML can be done by

changing only this module, avoiding confusion and time wasting.

31

Another important feature of Python is the capability of doing dynamic

imports. This possibility is exploited by the daemon in its booting phase.

Every interface and resource module that the daemon finds in its source

folder are loaded and memorized in internal lists. This behaviour permits

adding and removing the modules without changing the code.

The designed software architecture shows high levels of modularity and

portability. The developers could theoretically adapt it to every kind of

sensor network only extending the ”Interface” and ”Resource” classes, while

maintaining the central structure. The creation of new resources permits

increasing the possibilities of interaction with the motes and the system,

while new interfaces can make the software suitable for other kind of net-

works. Furthermore, the software shows to be configurable at various levels.

First of all, the definition of the information about the motes is left to the

interfaces, which also offer the methods to intervene on them. In this way

the clients can easily access to the system in all its capabilities. Finally,

even the internal mechanism which connects the resources to the interfaces

is adaptable to the different cases. The link is made up by the ”Operation”

class, whose instances can be totally configured according to the various

necessities.

3.3.3 Implementation choices

In this section will be described the functioning of the principal internal

mechanisms of the daemon. This analysis aims to deepen the discussion

about the role of the different classes, showing and giving reasons for deci-

sions taken.

Mote and Field.

The abstraction of the concept of mote has lead to the definition of the

”Mote” and ”Field” classes. To identify a mote there are more than one

ways, then is useful to store for each mote a list of ids. A mote have also

some peculiarities, like the power state, the loaded firmware or the geo-

graphic position. These are called features and are memorized in a specific

list for each mote. Both the ids and the features are (name, value) pairs:

their structures are identical, only their roles are different. This represents

the motivation to the fact that they are all modelled with the same class,

called ”Field”. Every field, besides have a name and a value, has a list of

(interface, level) tuples. As already said, the ids and the features of a mote

32

are defined by the interfaces from which it has been recognized. Since two

or more interfaces could identify the same mote, every field of the motes in

the global list can potentially be indicated by more than one interface, so it

is necessary to store them all. When this happens there could be a conflict

in the attribution of the field value. This is managed with applying the

following simple concept: the last valid value is the correct value (the field

should have the same value for every interface). When a mote stops to be

recognized by an interface, the latter will be eliminated from the involved

lists. When the list ofan id becomes empty the id is removed from the list

of its mote. The features, instead, are not removed. This permits not losing

the related information if other interfaces continue to recognize the mote.

When the list of the ids of a mote becomes empty, then it means that it is

no longer recognized by any interfaces, so the mote can be removed from

the global list. The level associated to every interface is used when a client

makes a request on an active resource that involves a feature. Only the in-

terfaces that offer a method with which satisfy the request can be included

in the list. The level value defines the usage priority of an interface, so that

to chose the best when two or more of them are in list. The lower is the

level value the higher is the priority.

A mote, besides the two described lists, offers two semaphores with which

is possible to manage the thread concurrency on it. The data semaphore is

used to serialize the read/write accesses to the mote attributes, while the

operation semaphore has the function to ensure that only one operation can

be executed on the mote at a time (for example there could be a ”power on”

request at the same time of a ”power off” one). The ”Mote” class also pro-

vides some static methods, including ”merge motes” and ”split motes”. The

first method is used to join two or more motes into one. This can be useful

when two or more interfaces identify the same physical mote but there are

no common pieces of information. The users, which are aware of the situa-

tion, can use a dedicated resource to execute the merge. The second method

instead tries to divide a mote into distinct motes, i.e. motes recognized from

distinct sets of interfaces.

List Handler.

The list handler stores the global list of the motes and offers methods with

which intervene on it. Furthermore, it defines a semaphore for the manage-

ment of the concurrency over the list and it maintains the references to the

33

updating service handlers. The interfaces, which are not aware of the status

of the global list, are in charge of interacting with the list handler in order to

keep updated the information on the motes. Every interface, when its local

list of motes undergoes a change, calls the correct method of the list handler

and thus updates the global list. The available methods are the following.

1. add motes: it accepts a list of motes; if a mote in the list shares at

least an id with one mote already present in the global list, then the

new mote is merged with the global one, else it is simply added to the

global list.

2. remove motes: it accepts a list of motes; every received mote is firstly

individuated in the global list, secondly the reference to the calling

interface is removed from each field of the found global mote. If the

list of the ids of the global mote becomes empty, the mote will be

eliminated.

3. update id: it accepts a list of (id, new value) tuples; firstly for each id

is searched the corresponding mote, then, once found, is executed the

update.

4. update feature: it accepts a list of (list of ids, feature, new value)

tuples; in this case the interface has to indicate all the ids of the

mote in order to identify it. This is required to manage an eventual

simultaneous change on the value of an id.

5. merge/split motes: these methods are used to explicitly merge some

motes into one or obtain as many as possible distinct motes starting

from a mote that is the result of a previous merge.

All the described methods return the XML data associated to the events

which they represent. These data are collected by the interfaces and then

used to report the events to the outside. The list handler offers other im-

portant methods with which interact with the global list or get a link with

the updating service handlers. These methods are:

1. get list: returns the whole global list.

2. get mote from id: accepts an id and returns, if any, the corresponding

global mote.

34

3. get feature interfaces: accepts an id and the name of a feature, returns,

if it finds the mote and the feature, the list of the interfaces that define

the feature.

4. report list update: accepts a string which is delivered to the updating

service handlers in order to send data to the requesting clients.

5. stop services: stops all the updating service connections.

As already discussed, the role of the list handler is central in the economy of

the system, since it permits aggregating and managing all the information

about the motes.

XML Core.

The ”XMLCore” module includes all the methods for the management of the

XML data. The methods are called from the other classes for the following

purposes. Parsing of:

i) the payloads of the client requests;

ii) the updating data received from other daemons;

iii) the operation response data;

iv) the position information about a mote.

XML creation starting from:

i) a list of motes;

ii) a list of ids;

iii) the results of an operation;

iv) the modifications to a list of motes after the happening of an event;

v) the position information about a mote.

Furthermore, the module offers methods for specific needs of other classes.

Even though the XML is used by the daemon in various contexts, the struc-

ture of the XML data maintains a good level of uniformity. Here are shown

some illustrative examples of how some XML data are organized.

35

Response to a request on the ”list” resource:

<?xml version="1.0" encoding="UTF-8"?>

<mote_list>

<mote>

<ids>

<reference level="0">XBOW0000@127.0.0.1</reference>

<usb_path level="0">2-2.1@127.0.0.1</usb_path>

</ids>

<features>

<usb_power level="0">on</usb_power>

<firmware level="0">None</firmware>

<position level="0">None</position>

</features>

</mote>

<mote>

<ids>

<reference level="0">XBSM7XGM@127.0.0.1</reference>

<usb_path level="0">2-2.4@127.0.0.1</usb_path>

</ids>

<features>

<usb_power level="0">on</usb_power>

<firmware level="0">None</firmware>

<position level="0">None</position>

</features>

</mote>

</mote_list>

Data produced as result of the disconnection of a mote:

<?xml version="1.0" encoding="UTF-8"?>

<mote_list>

<mote>

<event type="3">

<ids>

<reference>XBSM7XGM@127.0.0.1</reference>

<usb_path>2-2.4@127.0.0.1</usb_path>

</ids>

<old_feature>

<usb_power level="0">on</usb_power>

</old_feature>

<new_value>off</new_value>

</event>

</mote>

<mote>

36

<event type="1">

<old_id>

<reference>XBSM7XGM@127.0.0.1</reference>

</old_id>

</event>

</mote>

</mote_list>

Response to a request on the ”usb power off” resource:

<?xml version="1.0" encoding="UTF-8"?>

<mote_list>

<mote>

<id>

<reference>XBT0HG7N@192.168.0.4</reference>

</id>

<result>

<code>200</code>

<message>usb_power:off</message>

</result>

</mote>

</mote_list>

When level value is specified next to the name of a field it refers to the level

of the highest priority interface which supports the field.

NCG Web Server and Request Handler.

Python offers a set of modules that implement various kinds of server. The

more suitable for the daemon is the ”ThreadingTCPServer” class of the

”socketserver” package. The TCP protocol, since it is connection-oriented,

permits to keep opened the HTTP Streaming connections. Furthermore,

”ThreadingTCPServer” founds the management of the client requests on the

multitheading paradigm. ”ThreadingTCPServer”inherits its properties from

the ”TCPServer” class, which in turn extends the ”BaseServer” class. The

principal attributes which ”ThreadingTCPServer” inherits from the super

classes are the server address (IP, port) and the socket object where accept

the requests. The most important inherited methods are:

1. server bind, activate and close: these are used to bind the socket to

the server address, to start the socket listening and to close it when

the server is shutdown.

2. serve forever: until the shutdown request is not forwarded to the server

37

it waits for connections on the socket; when a request arrives it acti-

vates the ”handle request” method.

3. handle request: firstly it gets the parameters of the connection, as

the dedicated socket and the client address; secondly it calls the ”pro-

cess request” method that instantiates a request handler giving it the

obtained parameters as arguments.

”ThreadingTCPServer” overrides the ”process request” method in order to

handle every request in a different thread. The ”NCGWebServer” class, as

already said, extends ”ThreadingTCPServer”. When the NCG web server is

created it imports the packages of the interfaces and the resources. Python

permits specifying the eventual code that has to be executed during the

importing of a package. This possibility is very useful since, combined with

the folder and files exploration routines, every module in the packages can

be identified and imported dynamically. The references to the resources and

the interfaces are maintained by the NCG web server in two dictionaries

(i.e. associative arrays). After parsing the configuration file, the NCG web

server instantiates the list handler and activates the interfaces. Once the

initial discovery of the motes is completed, the server binds the socket to its

address and becomes ready to serve clients. Every time the server receives

a request, it instantiates the ”RequestHandler” class. The latter extends

the ”http.server.BaseHTTPRequestHandler” class, which provides the the

basic tools for handling the requests. Its principal attributes are the client

address, the http command, the request path (URL) and two file object,

one open for reading and positioned at the start of the optional input data

part and one open for writing. Once the request handler has been instanti-

ated by the server, the ”handle one request” method is activated in order to

verify the availability of the required resource and, if so, instantiate the cor-

responding class. If the resource is not found the request handler sends back

to the client the 404 HTTP code (”Not Found”). Notice that it is possible

to get the resource name from the URL parameter, as specified by REST.

When the response data become ready, the request handler calls the ”send

response” method and then it closes the connection.

Resources.

Every extension of the ”Resource” class represents a REST resource which

can be required from the clients. The URLs which identify the resources

38

are composed by the IP address of the server, a slash character and the re-

source name (e.g. http://10.1.128.1:8000/list). The ”Resource” class defines

the basic properties of the resources. The principal attributes, besides the

reference to the request handler from which it has been instantiated, are the

HTTP command (e.g. GET, POST, etc.) and a list of XML lines. This

list is used to accumulate the partial XML responses which will be used to

create the final response. The HTTP command is set up by the request

handler according to the client request. The main methods of the class are

the following.

1. handle request: it activates, if any, the method associated to the spec-

ified HTTP command called ”do <command>()”. Not all the HTTP

commands are accepted by all the resources, since for some of them

would be meaningless. For example, the resource ”list” accepts only

the GET command, while the resources which require a payload ac-

cept only the POST command. These methods are implemented by the

extension classes of ”Resource”. If the method associated to the com-

mand is not available, the HTTP ”501 - Not implemented” response

will be sent to the client.

2. handle partial response: it receives in input the data resulting from the

execution of an operation and, by calling a method of the”XMLCore”

module, it obtains the XML data with which it fills the ”xml lines”

attribute.

3. read payload: it reads the eventual payload of the request and then it

returns it as a string.

4. get mote list: it parses the request payload and it returns the involved

motes of the global list.

5. send response: it is used to join the XML lines into a single string and

then to send it to the client.

The classes that define the various resources have only to implement the

methods in response to the different HTTP commands. The implemented

resources are the following.

1. list: it interrogates the list handler to get the global list of the motes,

it creates the XML response and then it sends it to the client.

39

2. list of interfaces: it returns the list of the names of the interfaces that

the server has instantiated.

3. <interface name>/local list: it returns the local list of the specified

interface.

4. streaming subscribe/unsubscribe: these resources are used to han-

dle the HTTP Streaming connections. The subscription implies the

creation of a new ”HttpStreamingServiceConnection” object, which is

then added to the list managed by the ”HttpStreamingConnection-

Handler” instance. When the server receives a ”streaming unsubscribe”

request the eventual open connection is closed and removed from the

list.

5. long polling subscribe/unsubscribe: these resources are used to han-

dle the HTTP Long Polling connections. The mechanism is similar

to the one used for the HTTP Streaming, with the difference that a

long polling connection is closed as soon as a response is sent to the

client. The latter thus has to forward a new subscribe request ev-

ery time it receives data. The classes created for the management of

the HTTP Long Polling are ”HttpLongPollingServiceConnection” and

”HttpLongPollingConnectionHandler”.

6. merge/split motes: users can merge the information about many motes

to obtain a single mote. This makes sense when the same physical mote

is recognized by two or more interfaces, but the list handler is not

aware of the situation. This occurs when the interfaces do not share

any information on the mote, thus it is not possible to automatically

combine them. Users can also split the information on a mote into a

set of distinct motes. These resources uses the list handler methods in

order to intervene on the global list and to report the change to the

clients of the updating services.

7. add/remove motes: the daemon offers to the users a dedicated interface

(called ”user interface”) with which specify fake motes (this can be

useful during the tests but it also can be used, combined with the

merge resource, to add fields to the real motes). These resources use

the methods of the user interface and then report the list modifications

to the clients of the updating services.

40

8. usb power on/off: these resources permit controlling the USB power

supply of the motes, switching on and off the ports of the hubs. Once

the list of the mote ids given by the client is read from the request

payload, the resources call the list handler methods to get the list

of the interested motes. For each mote is selected the interface with

the highest priority (the lower level) and it is associated to the id

specified in the payload. The list of (id, interface) pairs is then used

as a parameter of the ”Operation” object that encapsulates the client

request. The operation handler takes charge of the operation and

activates the interfaces. Finally, when the ”xml lines” list is completely

filled, the resources compose the response and send it to the client.

9. set position: the users can change the spatial position information of

the motes. The position is treated as a feature supported by several

interfaces. This permits the information to be maintained in memory

when a part of the interfaces stops to recognize the mote. The resource

sets the position feature both of the local motes (i.e. the motes internal

to the local lists of the interfaces) and of the global mote, then it

reports the change to the clients of the updating services.

Updating Services.

The Bidirectional HTTP techniques, as already discussed, represent very

suitable mechanisms to provide clients with updating services. A client,

in order to subscribe to a service, has only to require the correspond-

ing resource. Each connection is treated in a separate thread, so the up-

dating services work in parallel. The ”BaseUpdatingConnection” class de-

fines the properties shared between the two alternatives. The attributes in

common are the client address and the threading management variables,

while the shared methods are ”stop connection” and ”send response and

header”. The ”HttpStreamingServiceConnection” and ”HttpLongPollingSer-

viceConnection” instances are maintained in a list internal to the corre-

sponding handler. The latter are instantiated by the list handler using the

”HttpLongPollingConnectionHandler” and the ”HttpStreamingConnection-

Handler” classes. The handlers offers some useful methods:

1. subscribe connection: this method is used by the resources to add the

new connection to the list or renew the existent one.

41

2. unsubscribe connection: it removes from the list a connection and it

closes it.

3. send data to all: activates the ”send data” method of all the connec-

tions in the list.

4. stop all connections: activates the ”stop connection” method of all the

connections in the list.

Follows now a description of the implementation of the two different tech-

niques.

• HTTP Streaming: every streaming connection object execute the fol-

lowing internal routine: 1 send to the client the HTTP response code

and the headers; 2 while the service is not closed: 2.1 wait for data; 2.2

if there are available data then send a chunk to the client; 3 send the

closure chunk. Every time the ”report list update” method of the list

handler is called, the streaming handler receives the request to forward

the update through the connections. This mechanism ensures that as

soon as a chunk is available this is sent to the clients. The HTTP

headers have a particular relevance, since they are the tool with which

specify the type of connection. The most important header is the

”Transfer-Encoding” one, which is set to the value ”chunked”. This

tells to the client that the transferring of the response is done a chunk

at a time, as the HTTP Streaming requires. When a new stream-

ing connection is created, the first chunk that will be sent represents

the complete list of motes. This ensures that the initial information

is the latest as possible. If a connection comes from a client already

subscribed, the old connection is replaced by the new one.

• HTTP Long Polling: every long polling connection remains in wait-

ing until a response is available. When this happens, the response is

sent to the client and the connection is closed. The long polling han-

dler, unlike the streaming handler which uses a simple list, maintains

a dictionary where the keys are the client addresses and the values are

(long polling connection, list of partial responses) tuples. This makes

the handler able to distinguish the old clients from the new ones, since

their addresses are already registered in the dictionary. The dictionary

42

permits also memorizing the data which become available while a reg-

istered client has yet to restore the connection. When the new request

arrives the stored data are joined and sent as a single response. The

first response to a new client is the whole global list, as in the case of

the HTTP Streaming.

Operation and Operation Handler.

The active resources, in order to forward the client requests to the inter-

faces, instantiate both the ”Operation” and the ”OperationHandler” classes.

The operation is completely configurable, since its principal role is to be an

information container. The principal attributes of an operation are: a name,

the HTTP command of the request, a timeout value, the client address, an

”additional data” field and a list of mote ids. Each id in this list is associ-

ated to an interface, which is the one with the higher priority that supports

the feature involved in the operation. The attributes are all set up by the

resource which, as soon as the operation is ready, calls the ”handle opera-

tion”method of the operation handler. A brief description of the functioning

of this method can be found in Section 3.3.2, now it is discussed more in

detail. First of all, the thread which is performing the method creates a

new operation object for each interface that is associated to at least a mote

id. Every id is then added to the corresponding operation’s list. For each

interface is then created a new thread (called ”sub-thread” from now on)

with which activate the ”perform operation” method of the interface. While

the sub-threads execute, the main thread remains in waiting on a condition

variable. Each time a sub-thread returns from the interface’s method it adds

its part of the response to a dedicated list and it wakes the main thread.

The latter then retrieves the data and calls the ”handle partial response”

method of the resource. The partial responses provided by the sub-threads

are nothing but the dictionaries containing the operation results. Once all

the sub-threads have finished their tasks the ”handle operation” method

returns and the main thread can proceed with the management of the re-

sponse.

Interfaces.

The modularity and portability of the developed software are granted from

the concept of interface. The interfaces are instantiated by the server during

the booting of the system. The server waits until the interfaces communi-

cate that their discovery phases are completed. This mechanism ensures

43

that when the server starts to accept the external requests the list of motes

is already formed and available. The ”Interface” class defines the common

attributes and methods that the various interfaces will inherit. The principal

attributes are the following.

1. list of motes: every interface stores its own list of motes. This leads to

get some advantages. Firstly, during a monitoring cycle the compari-

son between the old information and the new one is done locally, i.e.

without involving the global list. This fact implies that every interface

can work in parallel with respect to the others, thus the creation of

bottlenecks is avoided. The global list will be engaged only when oc-

curs a local list modification. Secondly, the interfaces are not aware of

the existence of the others, so the developers can focus the attention

on the internal mechanisms, without worrying about the global func-

tioning of the system. Finally, when an operation requires to intervene

on a set of motes, the modifications to the global motes can be done

separately from those on the local motes, reducing the time in which

the global list semaphore is engaged.

2. credit and weight of the operations: every interface defines a weight for

each supported operation. The weights are chosen in the real interval

[0,1] and their values are maintained by each interface in an apposite

dictionary. This information is used to limit the number of parallel

threads that can run at the same time. The interfaces are provided

with an initial amount of credit equal to one. Every time a thread

wants to execute an operation on a mote, it has to get a quantity of

credit equal to the weight of the operation. When the credit is no

longer available, the threads have to wait until the others finish their

execution and free their share. This mechanism actually permits to

control the parallelism degree of the operative threads, making pos-

sible to find the system configuration that permits to get the best

performance.

3. stop event: these attribute is used by the server in order to stop the

activities of the interfaces.

The ”Interface” class offers several useful methods. Here are described the

most relevant.

44

1. discovery: this method is used to create the initial list of motes and

report to the server that the interfaces are ready. The interfaces can

override this method according to their internal mechanisms.

2. perform operation: this method is called by the sub-threads which

have been activated by the operation handler. The method receives

the operation object and, after the operation execution, returns the

dictionary of the results. The keys of this dictionary are the mote

objects and the values are the (code, message) pairs. The ”perform

operation” method is composed by the following steps:

1 set up a timer which defines the available time to execute the op-

eration (the timeout value can be obtained from the operation);

when the timer expires stop all the pending activities and set the

results of the remaining motes to ”408 - Timeout expired”;

2 check if the interface implements the required operation;

2.a if the method that implements the operation (from now on called

”operative method”) does not exist then set all the mote results

to ”501 - Operation unsupported”;

2.b if the operative method exists then continue to step 3;

3 create a dictionary where each key is represented by a local mote

chosen between those involved by the operation and each value

is a (mote id, global mote) pair; the id is the one specified in the

operation’s list and the mote is the related one in the global list;

4 check the value of the operation weight;

4.a if the operation weight is zero then the operation is performed

as a whole by the sub-thread; in this case the operative method

requires in input the operation object, the list of the involved

motes and the dictionary created during the execution of step 3;

once its execution is finished, it returns the response dictionary

and an eventual list of (mote, feature, new value) tuples; the

latter will be used to update the global motes;

4.b if the operation weight is greater than zero:

4.b.1 create a thread for each of the interested motes;

4.b.2 each thread tries to get a quantity of credit equal to the weight

of the operation;

45

4.b.3 when a thread obtain the needed credit it tries to acquire the

operation semaphore of the global mote: if it succeeds then it

continues to step 4.b.4, else it sets the mote result to ”409 - The

mote is busy”;

4.b.4 each thread calls the operative method, executes the operation,

gives back its credit share and reports the operation result; in this

case the operative method requires in input only the operation

object and the local mote; once its execution is finished, it returns

the (code, message) response and the eventual (mote, feature,

new value) tuple;

4.b.5 create the response dictionary starting from the single tuples;

5 update the global list if necessary;

6 return the response dictionary;

It is important to highlight the difference between the steps 4.a and

4.b. In the first one, the thread executes the operative method directly

on the whole list of motes, while in the second one it creates a set

of new threads. This implies that the interfaces has to implement

the operative method according to the weight of the corresponding

operation.

3. get credit: the calling thread specifies the amounting of credit that it

needs; if the amounting is available, the method decrements the credit

value and returns, else the thread waits until another frees its share.

4. return credit: the caller gives back its credit share and notifies the

credit availability to all the waiting threads.

5. handle single mote: this method is used to perform the operation on

a single mote. It is called by the threads created at step 4.b.1 and it

implements the steps from 4.b.2 to 4.b.4.

6. set mote position: the information about the position of a mote, unlike

the data obtained from the interfaces, comes directly from the users.

This implies that all the interfaces that support the associated feature

have to store the same value. The ”set mote position” method is thus

made available for all the interfaces.

46

The following paragraphs describe the implemented interfaces.

MoteLs.

The interface called ”MoteLs” is in charge of the management of the USB-

connected motes. The interface owes its name to the Perl script used to

recognize the motes. The monitoring is continuously done by an internal

dedicated thread. When the thread notices a mismatch between the state

of the motes and the stored information, it modifies the local list and it

reports the change to the list handler. Furthermore it forwards the XML

data obtained by the list handler to the clients of the updating services. The

interface makes available the methods to perform the operations of turning

on and off the ports of the USB hubs that control the power supply of the

motes. Other operative methods, like the reprogramming of the motes, can

be easily added in future. The principal attributes that the interface defines

are the following. The base attributes, as previously said, are inherited from

the ”Interface” class.

1. polling interval: it sets how frequently the internal thread has to exe-

cute the monitoring of the motes.

2. known USB hubs: the daemon maintains a text file in which it stores

the ”productId” and the ”vendorId” parameters of the USB hubs that

implement the power management functionality. These ids are stored

in a list of tuples.

3. mote-port dictionary: this dictionary is used to memorize the asso-

ciations between the motes and the USB ports to which they are

connected. The information about the known USB hubs is used to

recognize if a mote can be remotely switched on and off or not. If be-

tween an ALIX and a connected mote there are some intermediaries,

these could not provide this functionality. In this case the associated

port is set up as the port of the last known hub. If the mote is not

connected through a known hub, the interface will not support the

management of the power supply for it.

The main methods implemented by the interface are the following.

1. execute motels: this method is used to execute a Perl script which

searches through the registered devices if there are connected motes

47

and then it creates and returns the retrieved information. This script

has been developed as a part of the old management software.

2. create new mote: each mote recognized from the script has to be

registered in the list. This method retrieves further information about

the mote, as the USB port to which is connected, and returns the

”Mote” object with all the parameters set up. The tuple (”MoteLs”, 0)

is also added to the list of (interface, level) tuples of every field of the

mote, except for the fields that can not be modified by the interface.

For example, if the mote is not connected to the ALIX using a known

USB hub, the feature named ”usb power” will not be supported by the

interface.

3. discovery: it calls the ”execute motels” method, it creates the initial

local list, it adds the motes to the global list and it notifies the server.

Finally it activates the monitoring thread.

4. list polling: it activates the ”list update” method every ”polling inter-

val” seconds.

5. list update: this method implements the central mechanism of the

interface. In order to be more comprehensible, the procedure will be

described through a list of steps.

1 create the lists for the motes that will be added(”add list”), removed

(”remove list”) and updated (”update id list” and ”update feature

list”); fill the ”remove list” with all the old motes;

2 call the ”execute motels” method and obtain the current state of the

motes;

3 compare the old list with the new information and fill the lists; this

step analyses every mote recognized in step 2: if the mote is

already in list then remove it from the ”remove list” and check its

features and ids, else add it to the ”add list”; notice that removing

a mote from the ”remove list” means that the mote will not be

removed from the local list;

4 since the ”motels” script makes no difference between the switched-

off motes and those not connected, every mote that is still in

”remove list” has to be checked up: if its ”usb power” feature has

48

the value ”off” then it means that it had been switched off by a

client before the monitoring, thus it has to be removed from the

”remove list”;

5 update the local list;

6 update the global list and get the XML data;

7 forward the XML data to the clients of the updating services.

6. usbp: it executes a bash script in order to switch on or off a port of an

USB hub; the port number is retrieved from the mote-port dictionary.

7. do usb power on/off: they are used as operative methods by the threads

created in the ”perform operation” method. They invoke ”usbp” to

send the signal to the USB hubs and then they check if the system has

registered the operation. Since the ”motels” script does not recognize

the connected motes which have been switched off, the ”do usb power

off”method modifies the information on the involved mote and returns,

besides the result, the (mote, feature, new value) tuple. The latter is

used to update the global mote and to report the change to the clients

of the updating services.

Provider.

This interface is used by the daemon to create the connections between the

NCGs. The server, after the parsing of the configuration file, instantiates a

”Provider” interface for each child in the network hierarchy. This means that

every child (also called provider from now on) is seen as a distinct interface

which contributes to create the global list of motes. The daemon, in order to

keep the list updated, makes a request on the ”Streaming Subscribe”resource

of every provider. Every time it receives a chunk of data, this is parsed using

a method of ”XMLCore”’s and the new information are exploited to update

both the local and the global list. The requests on the local motes are

forwarded to the provider, which in turn could forward them to its children.

This mechanism continues until the requests do not reach the interfaces

which interact directly with the physical motes. When this happens, the

response follows the path in backward until it reaches the the initial client.

Another interesting aspect is that for each step in the network hierarchy the

levels related to the interfaces are incremented by one. This implies that,

for what concerns the execution of the operations on the motes, the higher is

49

the distance of the provider in the hierarchy, the lower is its usage priority.

The principal attributes of the ”Provider” class are the following.

1. polling interval: the internal mechanism uses a particular instruction,

called ”select”, to monitor the presence of updating data. This in-

struction permits defining a timeout, after whose expiry it stops and

returns. The ”polling interval” attribute is used to set up the timeout

value, so that to exit from the select and control if the server has set

the stop event.

2. provider id/ip: these attributes represent the identifier and the IP

address of the NCG. Their values are specified in the configuration

file.

3. connection and response: these attributes are used to store the ”HTTP-

Connection”and the ”HTTPResponse”objects which permit managing

the exchange of data between the daemon and the provider.

The main methods implemented by the interface are the following.

1. discovery: first of all is created the connection to the provider by re-

questing the ”streaming subscribe” resource. When the connection is

established, the first received chunk contains the complete list of the

motes of the provider. This becomes the local list of the interface. Ev-

ery mote is then passed to the list handler and added to the global list.

After having notified the server that the discovery phase is completed,

the ”handle streaming connection” method is activated.

2. handle streaming connection: the main task of this method is to receive

the chunks of data coming from the provider. This is done by using

the ”select” instruction, which accepts in input a list of file objects (in

this case the list is composed only by the connection socket) and as

soon as one or more of them contain new data it returns the list of

the ready-to-read ones. Once a chunk is available, this is read and

passed to the ”list update” method as input. The ”select” instruction

is able to recognize if the socket is closed by the provider, i.e. if the

connection is dropped. This can happen if the provider crashes or its

daemon is stopped. If the connection can not be restored, the interface

empties the local list, reports the situation to the list handler and to

50

the clients and starts to request every few seconds a new streaming

subscription to the provider. When the new connection is established,

the interface refills the local list and returns performing its normal

tasks. Another important issue which deserves to be deepened regards

the reading of the chunks. Python 3 provides the ”http.client” library

to manage the HTTP connections and responses, but there are no

ways to read a HTTP Streaming response a chunk at a time with the

offered methods. It has been therefore necessary to develop an ad-hoc

method with which implement this functionality and patch the Python

library. This method, called ”read chunk”, can be perfectly integrated

into the library, thus is not needed making any other modification to

the original Python code.

3. list update: when a chunk of data is received from the provider it

means that the list of the motes is changed. The ”list update” method

firstly invokes the ”XMLCore” module to parse the chunk, then it

creates a set of lists for the motes that will be added, removed and

updated. Once the lists are filled with the information from the chunk

and the local list is updated, the thread communicates the modifica-

tions to the list handler. Instead of creating a new chunk with the XML

data obtained from the list handler’s methods, the thread modifies the

received one increasing by one the level associated to the interfaces,

and then it forwards it to the clients of the updating services.

4. forward operation: this method permits forwarding an operation to a

provider. Firstly it creates the XML payload by using the list of the ids

of the involved motes, secondly it makes a request on the appropriate

resource of the provider and it returns the ”HTTPConnection” object.

5. manage response: the connection created in the previous method is

used to get the ”HTTPResponse” object which can be passed in input

to the ”select” instruction. When the response is available it is parsed

using the ”XMLCore” module. The retrieved data are used to fill the

dictionary containing the results of the operation, where the keys are

the motes and the values are (code, message) pairs.

6. do operation: it calls the ”forward operation” and the ”manage re-

sponse” methods and then it returns the dictionary of the results.

51

7. do usb power on/off: these methods are used as operative methods by

the threads created in the ”perform operation” method. They simply

call the ”do operation”method and return the dictionary of the results.

8. set mote position: in order to store the position information of a mote

at every level of the network hierarchy, it is necessary to forward the

information to the provider directly connected with the mote. The

”Provider” interface overrides the ”set mote position” method of the

”Interface” class precisely to achieve this purpose.

User interface.

The architecture of the daemon permits integrating interfaces of various

nature. ”MoteLs” and ”Provider”, although their mechanisms are very dif-

ferent, make use of an internal thread with which they control the status

of the motes. The ”User Interface”, unlike them, leave the management of

the motes to the users, which can change the local list as they prefer. This

means that the users can define, by using the methods offered by the in-

terface, the ids and the features of the motes. The interface is useful to

simulate a WSN with many motes or when the physical motes are not avail-

able. Furthermore, when a fake mote is defined by a user it can be merged

to a real mote with the ”merge motes” resource. This can be seen as the

addition of information on a mote. Another way to get this result is to define

a fake mote that shares an id with the real one. The list handler, when the

interface adds the fake mote to the global list, unifies the information on the

two motes. When the motes are no longer necessary the users can simply

remove them from the list.

3.4 WebIoT integration

The users of the testbed can access to the various functionalities by using the

WebIoT web application. In its booting phase, the application instantiates

a set of ”MoteManager” objects. The references to the classes are stored in

a database. Every manager creates a list of detected motes which will com-

pose a part of the global one managed by the upper layer. The thesis project

has implicated the creation of a ”MoteManager” extension, with which make

possible interacting with the Python daemon. Figure 3.7 depicts the UML

diagram of the classes of the developed solution.

52

Fig. 3.7: Web Application - UML Diagram of the classes

53

The ”PyMote” class (”Py” stands for Python) extends the more general

”Mote” class, which abstracts the principal properties of the sensor nodes.

Every mote is tied to a bunch, which is composed by a set of motes related

each other. The relation can be, for example, their geographical position.

The ids and the features of each mote are instances of the ”Field” class

and are stored in two distinct lists. Every field has a name, a value and a

level. The level equals to the one associated to the highest priority interface

of the daemon which supports the field. The ”PyMoteManager” class ex-

tends ”MoteManager”, from which it gets the id attribute, and implements

the ”SensorProvider” interface. The latter defines the base methods for the

visualization and the update of the information about the motes. The prin-

cipal attributes of ”PyMoteManager” include a list of ”Mote” objects, which

is kept updated thanks to a subscription to the updating service provided by

the daemon. The ”lpCallback” attribute is used to store the AsyncCallback

object with which receive the updating data. The ”AsyncCallback”class rep-

resents one between the fundamental mechanism on which is based the GWT

technology. When an asynchronous callback is created, in order to make an

RPC (Remote Procedure Call) request to a server, the application will not

expect to get the response but it will proceed in its execution. This means

that it is possible to make non-blocking calls on the resources offered by the

daemon. When the response becomes available the application executes one

among the ”onSuccess” and ”onFailure” methods of the AsyncCallback ob-

ject. The described mechanism is perfect to exploit the HTTP Long Polling

technique, which is intrinsically asynchronous. The ”lpRequest” attribute

has precisely this purpose, since it is used to store an instance of the ”Long-

PollingSubscribe” class. The mote manager, by requiring the ”long polling

subscribe” resource to the NCG at the top of the network hierarchy, initially

gets the complete list of the motes and then it starts to receive the updating

data. This is done by calling the ”startLongPolling” method. Each mes-

sage exchanged between the web application and the daemon is written in

XML. The XML handler creates a bridge between the information contained

in the messages and the classes of the application. Every time a chunk of

data arrives from the daemon, the mote manager exploits the XML handler

to parse it and obtain a list of Notification objects. The list is then used

to update the available information on the motes. The application can re-

quire the resources offered by the daemon, like ”long polling subscribe” and

54

”usb power on/off”, by instantiating the corresponding class and using the

”sendRequest” method. The obtained response is received and read thanks

to the callback and then transformed by the XML handler into a list of Re-

sponse object, each of which stores the (code, message) pair for a mote.

At the moment the WebIoT application is still under development. One

future improvement is surely represented by the possibility of exploiting all

the functionalities provided by the daemon.

55

56

Chapter 4

Tests and Results

Abstract:

In this chapter are discussed the various tests which have been made to

adjust the parameters of the daemon and to analyse the performance of the

system.

4.1 Environment set up

The daemon has been installed on the WISE-WAI Server and on seven

NCGs. In this way has been possible to manage up to 60 motes scattered

throughout the department. The Python 3.1.3 interpreter has been compiled

on a NCG and then copied on any other involved. The network hierarchy

has been defined by setting up the configuration files of the daemons. The

logical network topology which has been chosen is described in figure 4.1.

The figure 4.2 depicts a configuration more suitable for networks that are

distributed in a wider geographical area, where it makes sense to create a

sub-network for each building or delimited zone. In this case, the NCGs at

the top of the sub-networks would be directly connected to server, while the

others would be not aware of it. The choice to adopt the flat configuration

described in figure 4.1 for the WISE-WAI testbed comes also from a consid-

eration about the network latency. In this scenario, the daemon running on

the WISE-WAI Server represents the point where all the information from

the NCGs converge. Since the number of motes and ALIXes situated in the

same room is very limited, the use of sub-networks would imply the creation

of useless additional levels, which would introduce the exchange of further

57

Fig. 4.1: Flat configuration of the logical network topology.

Fig. 4.2: Tree configuration of the logical network topology.

58

messages. Every eventual NCG used as root of a sub-tree would manage

a list of motes whose size would not justify a similar configuration. The

latter is in any case possible and properly working. In order to execute the

tests has been created a set of Python scripts. Each script has been used to

interact directly with the daemons. Their functioning will be described in

the following sections.

4.2 Parallelism degree

The number of threads running at any given instant has to be limited to

a known value. Incrementing without control the number of concurrent

threads can lead to a degradation of the performance, since the management

of the time slots and the context switch, although the threads all refer to

the same process, is not at zero cost. Moreover, the use of semaphores

and condition variables can introduce further overhead. When no request is

served by the demon, the active threads are the following:

• the thread in charge of accepting the client requests;

• the internal threads of the interfaces;

• the internal threads of the updating service connections.

Every time a client request is received, the number of threads increases by

one; if the request is on an active resource the corresponding operation can

activate up to a new thread for each involved mote. Before to panic, there

are two important facts to consider. The first is that the threads for most of

the time are in a waiting state, in which they do not use the computational

resources. The second one is more subtle. As discussed in Section 3.3.3,

every interface defines a weight for each supported operation. The weight

corresponds to the credit needed to perform the operation on a single mote.

If the weight of an operation is set to zero by an interface, the operation will

be executed on all the motes by the same thread. The ”Provider” interface,

since it is used to forward the requests between the NCGs, defines all the

weights to zero. This means that number of threads can be increased for

each request at most by the number of the directly connected motes. Since

this number can however be high, the weights set by the interfaces have to

be chosen accurately. The credit management is done within every interface

59

by using a dedicated attribute. The initial amounting of credit is set to one.

The weights can be chosen in the real interval [0,1]. Each operative thread

has to get a quantity of credit equal to the operation weight before starting

its execution. This implies that for each interface the number of threads

that can process in parallel is limited to a precise value. When two or more

operations have to be performed at the same time on the motes managed by

a single interface, the available credit will be shared between them. In this

way, the control on the parallelism degree can be extended simultaneously

to all the active operations. The test described in the current section had

the aim to find the best values for the weights of the operations, so that

to achieve the best possible performance. The test has been performed on

a single ALIX connected to 40 motes by using various USB hubs arranged

in cascade. The requests on the resources of the daemon have been made

by using a Python script. The script gets the list of the concerned motes

from an XML file, which is forwarded to the daemon as the payload of the

request. The script calculates the time between sending the request and

receiving the response. The retrieval of the response is done by using the

”select” instruction. In figure 4.3 is shown the graph of the execution times

obtained by turning on and off all the 40 available motes and varying the

weights of the associated operations (their values can be derived from the

reciprocal of the parallelism degree). The time values refer to the execution

Fig. 4.3: Execution times obtained by varying the weights of the operations.

of the operations on a single mote. When the parallelism degree is equal to

one the operative threads are completely serialized, while when the degree

amounts to forty they are all activated at the same time. It is possible to

see that the performance become stable once the parallelism degree reaches

60

the value of ten. Even if the number of parallel threads increases, the time

required to switch on or off a mote does not decrease. The causes of these

results can be found in the internal mechanisms of the hubs and of the Op-

erating System. When a hub is powered on, its ports are activated one at

a time. This means that the threads which try to turn on the motes are

actually serialized. The behaviour of the hubs, however, is not enough to

explain the situation. It can be supposed that a second serialization is intro-

duced by the USB controller, which is not able to serve all the simultaneous

requests and thus creates a bottleneck.

In order to optimize both the number of parallel threads and the perfor-

mance, the weights of the operations of turning on and off the motes have

been set to 0.1, which corresponds to a maximum number of parallel threads

equal to ten.

4.3 Update delay

The test has been performed in order to observe, with respect to a request

on an active resource, the time between the receipt of the response and the

arrival of the update data. The predisposed Python script makes use of two

distinct threads, one for sending the request and retrieving its response and

the other for receiving and parsing the updating data. The latter thread

requires to the daemon the ”Long Polling Subcribe” resource and maintains

a counter for storing the number of satisfied motes. Every time a block

of data arrives the thread stores the point in time, parses the data and

increments the counter. When the counter value reaches the number of the

involved motes the thread ends the cycle. The test has been performed by

using a single ALIX with eight connected motes. In figure 4.4 are reported

the results of ten measurements. The negative values refer to the situation

Fig. 4.4: Measured delays between the receiving of the response and the
arrival of the updating data.

in which the updating data arrive before the response. It is possible to notice

that for what concerns the turning off of the motes the values are always

negative, while for the turning on the values are both positive and negative.

61

This is due to the behaviour of the ”MoteLs” interface. The turning on of the

motes leaves to the monitoring thread the management of the updating data.

During the operation execution the thread recognizes the turned-on motes

and updates the local and the global lists. This brings to get a separation

between the response’s sending and the forwarding of the update data. The

turning off, instead, implies the creation of a unique block of update data,

which is sent to the clients by the resource thread. In this case, indeed, the

monitoring thread is not able to distinguish the disconnected motes from

the turned-off ones, thus the updating of the mote information has to be

done by the resource thread before the sending of the response. The higher

measured delay is equal to 62 ms. This value, compared to the average time

required by the turning on of eight motes on a single ALIX (approximately

3.7 seconds), is lower than the 1.7 percent. The test’s result shows that

the system is able to update and reconfigure itself in a very short time.

Furthermore, the clients of the updating services can receive the messages

almost in real-time.

4.4 Performance evaluation

The following tests have been performed in order to analyse the performance

of the system and its level of scalability. Every test has involved the opera-

tions of turning on and off the motes by requiring the resources offered by

the daemons. The script used to execute the test is the same of the one

employed during the parallelism analysis. In figures 4.5 and 4.6 are given

the trends of the execution times in two different configurations. In the first

case the daemon was running on a single ALIX, while in the second it was

running on six different ALIXes. The ALIX engaged in the first test has

been connected to 16 motes. It is possible to notice that in the left part

of the graph the decreasing of the execution times is very marked. This

behaviour indicates that when the number of the involved motes is low the

parallelism has a great impact. The serialization introduced by the hubs

and the USB controller starts to be significant when the number of involved

motes is equal or greater than six. A similar trend is given also by the sec-

ond test, where the motes are distributed among more ALIXes. Figures 4.7

and 4.8 show a comparison between the two configurations. The reported

values refer to the total time of execution of the operations. The graphs

62

Fig. 4.5: Execution times obtained by varying the number of motes on a
single ALIXes

Fig. 4.6: Execution times obtained by varying the number of motes on six
ALIXes

show that the two trends are very similar. For what concerns the turning

off, the system is almost insensitive to the number of ALIXes employed.

The trend is identical also for the turning on, except for an additive fac-

tor related to a different management of the updating data. These results

are confirmed by the graph in figure 4.9. This test had the aim to analyse

the scalability of the system by studying its behaviour when increasing the

number of involved ALIXes. Each ALIX has been connected to eight motes.

At every step of the test the turning on and off have been executed on all

the motes connected to the interested ALIXes. The time values reported in

the graph are calculated as the ratio between the total time spent and the

fixed number of motes per ALIX (equal to eight). It is possible to observe

63

Fig. 4.7: Graph comparing the performance of turning ON the motes in the
two configurations.

Fig. 4.8: Graph comparing the performance of turning OFF the motes in
the two configurations.

Fig. 4.9: Execution times obtained by varying the number of ALIXes

64

that the number of the engaged ALIXes does not affect on the performance.

This demonstrates that the parallelism is exploited to its full capacity and

the management of the results is fast and reliable. The tests have confirmed

that the system architecture shows a high level of scalability, both for what

concerns the internal functioning of the daemon and for the management of

the network.

65

66

Chapter 5

Conclusion

The Internet of Things is a technological revolution that represents the fu-

ture of computing and communications, and its development needs the sup-

port from some innovative technologies. The principal aim of the IoT is to

connect physical objects to the web. New smart things should be able to pro-

cess data, to configure, maintain and repair themselves, to make independent

decision, to interact with others by exchanging information. The Wireless

Sensor Networks constitute a direct application of the IoT paradigm. Every

sensor node is provided with an IPv6 address, so it is reachable through web

connections. The nodes can interact each other so that to share informa-

tion and execute distributed applications. The nodes can be also connected

to elaborative units called sink nodes. These tiny computers are used to

provide the sensor nodes with power supply, to monitor their state and to

accept external requests with which intervene on the WSN devices. In order

to develop and test applications and protocols for the WSNs, the SigNET

group of the University of Padova has set up a large testbed. The thesis

project has consisted on the design and the development of a software sys-

tem with which make possible the high-level management of this testbed

and, more in general, of a WSN. The heart of the project is focused on the

sink nodes. The developed software, which implements the functionality of

Web Server, runs on every sink node as an internal daemon. The software is

based on the REST architectural style, so it has been designed to offer web

resources to the clients. The daemons are able to keep updated a local list

of connected motes, which permits storing all the useful information about

the motes and their states. The daemons are able to share this list with

67

the other units, to accept requests on the available resources, to forward the

requests through the network and, last but not least, to provide clients an

updating service. The software architecture is based on the concept of mod-

ularity. The internal data structures are completely configurable according

to the kind of sensor nodes that compose the WSN. The various kinds of

interactions with the nodes are provided by a set of interface modules. Each

module monitors the state of a set of nodes and implements the operations

to intervene on their states. These operations are performed as result of

client requests on the available REST resources. The interface modules and

the resources can be added and removed as needed. This kind of architec-

ture allows to easily add new functionalities to the system without change

the core structure. Furthermore, the implementation and the integration of

network-specific modules makes the system portable and easily extensible.

The software is completely configurable also for what concerns the logical

network topology. As described in Chapter 4, the sink nodes can be arranged

in a flat configuration or in multiple layers. This permits to adapt the soft-

ware according to the size and the features of the WSN. The use of XML

for the data interchanging represents another choice that aims to make the

software usable and accessible. The dynamic nature of the software ensures

a fast and continuous updating of the information about the sensor nodes.

The monitoring task, which is performed by the interfaces modules, exploits

an implementation of the Bidirectional HTTP techniques in order to report

the changes to the clients of the updating services by reducing as more as

possible the network traffic. The developed software also shows a high level

of scalability. The tests have demonstrated that the performance of the sys-

tem remain constant with the increasing of its size. The fully exploitation

of the parallelism, granted locally by using multithreading and globally by

redistributing the client requests between the sink nodes, makes the system

suitable both to small and large networks. As described in Chapter 3, the

project has also involved the development of a part of the WebIoT applica-

tion. The users in this way are able to interact with the WSN without being

aware of the implementation details. The possible future improvements of

the developed software concern the extension of the functionalities offered

by the daemon, by creating new interface modules and resources. Even the

WebIoT application can be integrated with new modules. In this way the

users will be able to interact with the system in all its possibilities.

68

Bibliography

[1] C. Buratti et al., Sensor Networks with IEEE 802.15.4 Systems, Sig-

nal and Communication Technology, DOI: 10.1007/978-3-642-17490-2 1,

Springer-Verlag Berlin Heidelberg, 2011.

[2] Vlado Handziski et al., TWIST: A Scalable and Reconfigurable Testbed

for Wireless Indoor Experiments with Sensor Networks, in Proc. Of the

2nd Intl. Workshop on Multi-hop Ad Hoc Networks: from Theory to

Reality, (RealMAN 2006), Florence, Italy, May 2006.

[3] WISE-WAI project web site.

Available online: http://cariparo.dei.unipd.it.

[4] Lu Tan et al., Future Internet: The Internet of Things, 2010 3rd In-

ternational Conference on Advanced Computer Theory and Engineer-

ing(ICACTE).

[5] K. Finkenzeller, RFID Handbook, 3rd Ed., Wiley, 2010, ISBN: 978-0-

470-69506-7.

[6] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, From todayâĂŹs INTRAnet

of things to a future INTERnet of things: a wireless- and mobility-related

view, IEEE Wireless Communications, vol. 17, no. 6, pp. 44-51, Dec.

2010.

[7] Angelo P. Castellani et al., Architecture and Protocols for the Internet

of Things: A Case Study, In Proc. of the 1st IEEE IntâĂŹl. Wksp. Web

of Things (WoT 2010 at IEEE PER- COM), pp. 678-83.

[8] Roy T. Fielding and Richard N. Taylor, Principled design of the modern

web architecture, ACM Trans. Inter. Tech., 2(2):115-150, 2002.

69

[9] Michael Jakl, REST Representational State Transfer, CiteSeerX,

http://citeseerx.ist.psu.edu, doi=10.1.1.97.7334

[10] T. Berners-lee, R. Fielding, and L. Masinter., Uniform resource identi-

fiers (URI): generic syntax, Technical Report Internet RFC 2396, IETF,

1998.

[11] W3C, XML base, Technical report, W3C, 06 2001.

[12] P. Casari et al., The ”Wireless Sensor Networks for City-Wide Ambi-

ent Intelligence (WISE-WAI)” Project, www.mdpi.com/journal/sensors,

doi:10.3390/s90604056.

[13] http://www.alix-board.de.

[14] http://linux.voyage.hk/

[15] CrossBow Technology. TelosB sensor node. http://www.xbow.com.

[16] Google Web Toolkit , http://code.google.com/webtoolkit/.

[17] J. Hill et al., System architecture directions for networked sensors, In

Proc. of the 9th Intl. Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), pages 93-104. ACM

Press, 2000.

[18] G. Werner-Allen et al., MoteLab: a wireless sensor network testbed, in

ISPN, 2005.

[19] S. Loreto et al., Known Issues and Best Practices for the Use of Long

Polling and Streaming in Bidirectional HTTP, RFC 6202, April 2011.

[20] http://www.python.org

[21] B. W. Kernighan, D. M. Ritchie., The C Programming Language (2nd

ed.), Prentice Hall, ISBN 0-13-110362-8, 1988.

70

Ringrazio la mia famiglia, in particolare i miei genitori e i miei nonni,

per avermi donato libertà e giusti consigli.

Ringrazio Veronica, per aver reso questo mondo un posto bello dove vivere.

Ringrazio tutti gli amici che ho la fortuna di avere accanto, in questi anni

di gioe, fatiche, speranze e battaglie non mi sono mai sentito solo.

Ringrazio i ragazzi del laboratorio SigNET per il supporto durante questi

mesi di tesi, in particolare un sentito grazie va ad Angelo e a Moreno che

non si sono mai stufati di rispondere alle mie domande (o almeno credo).

Infine ringrazio Dio, semplicemente perché sono qui, vivo.

71

	1 Introduction
	1.1 Wireless Sensor Networks
	1.2 Internet of Things
	1.3 Representational State Transfer
	1.4 Purpose of the thesis
	1.5 Document structure

	2 Related work
	2.1 The WISE-WAI testbed
	2.2 WebIoT
	2.3 TWIST
	2.4 MoteLab

	3 Design and implementation
	3.1 Design Principles
	3.2 System architecture
	3.2.1 Deployment
	3.2.2 Resources
	3.2.3 Information management

	3.3 Daemon
	3.3.1 Employed technologies
	3.3.2 Global view
	3.3.3 Implementation choices

	3.4 WebIoT integration

	4 Tests and Results
	4.1 Environment set up
	4.2 Parallelism degree
	4.3 Update delay
	4.4 Performance evaluation

	5 Conclusion
	Bibliography

